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Preface

This book is based on my notes from lectures to students of electrical, elec-
tronic, and computer engineering at South Bank University. It presents
a first year degree/diploma course in engineering mathematics with an
emphasis on important concepts, such as algebraic structure, symme-
tries, linearity, and inverse problems, clearly presented in an accessible
style. It encompasses the requirements, not only of students with a good
maths grounding, but also of those who, with enthusiasm and motiva-
tion, can make up the necessary knowledge. Engineering applications
are integrated at each opportunity. Situations where a computer should
be used to perform calculations are indicated and ‘hand’ calculations
are encouraged only in order to illustrate methods and important special
cases. Algorithmic procedures are discussed with reference to their effi-
ciency and convergence, with a presentation appropriate to someone new
to computational methods.

Developments in the fields of engineering, particularly the extensive
use of computers and microprocessors, have changed the necessary sub-
ject emphasis within mathematics. This has meant incorporating areas
such as Boolean algebra, graph and language theory, and logic into
the content. A particular area of interest is digital signal processing,
with applications as diverse as medical, control and structural engineer-
ing, non-destructive testing, and geophysics. An important consideration
when writing this book was to give more prominence to the treatment
of discrete functions (sequences), solutions of difference equations and z
transforms, and also to contextualize the mathematics within a systems
approach to engineering problems.
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1 Sets and functions

1.1 Introduction Finding relationships between quantities is of central importance in
engineering. For instance, we know that given a simple circuit with a
1000� resistance then the relationship between current and voltage is
given by Ohm’s law, I = V /1000. For any value of the voltage V we can
give an associated value of I . This relationship means that I is a function
of V . From this simple idea there are many other questions that need
clarifying, some of which are:

1. Are all values of V permitted? For instance, a very high value of the
voltage could change the nature of the material in the resistor and the
expression would no longer hold.

2. Supposing the voltage V is the equivalent voltage found from con-
sidering a larger network. Then V is itself a function of other voltage
values in the network (see Figure 1.1). How can we combine the func-
tions to get the relationship between this current we are interested in
and the actual voltages in the network?

3. Supposing we know the voltage in the circuit and would like to know
the associated current. Given the function that defines how current
depends on the voltage can we find a function that defines how the
voltage depends on the current? In the case where I = V /1000, it is
clear that V = 1000I . This is called the inverse function.

Another reason exists for better understanding of the nature of func-
tions. In Chapters 5 and 6, we shall study differentiation and integration.
This looks at the way that functions change. A good understanding of
functions and how to combine them will help considerably in those
chapters.

The values that are permitted as inputs to a function are grouped
together. A collection of objects is called a set. The idea of a set is very
simple, but studying sets can help not only in understanding functions
but also help to understand the properties of logic circuits, as discussed
in Chapter 10.

Figure 1.1 The voltage V is
an equivalent voltage found
by considering the combined
effect of circuit elements in
the rest of the network.
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4 Sets and functions

1.2 Sets A set is a collection of objects, called elements, in which the order is not
important and an object cannot appear twice in the same set.

Example 1.1 Explicit definitions of sets, that is, where each element is
listed, are:

A = {a, b, c}
B = {3, 4, 6, 7, 8, 9}
C = {Linda, Raka, Sue, Joe, Nigel, Mary}

a ∈ A means ‘a is an element of A’ or ‘a belongs to A’; therefore in the
above examples:

3 ∈ B

Linda ∈ C

The universal set is the set of all objects we are interested in and will
depend on the problem under consideration. It is represented by E .

The empty set (or null set) is the set with no elements. It is represented
by ∅ or { }.

Sets can be represented diagrammatically – generally as circular
shapes. The universal set is represented as a rectangle. These are called
Venn diagrams.

Example 1.2

E = {a, b, c, d, e, f, g}, A = {a, b, c}, B = {d, e}

This can be shown as in Figure 1.2.

Figure 1.2 A Venn diagram
of the sets E =
{a, b, c, d, e, f, g}, A = {a, b, c},
and B = {d, e}.

We shall mainly be concerned with sets of numbers as these are more
often used as inputs to functions.

Some important sets of numbers are (where ‘. . .’ means continue in
the same manner):

The set of natural numbers N = {1, 2, 3, 4, 5, . . .}
The set of integers Z = {. . .−3,−2,−1, 0, 1, 2, 3 . . .}
The set of rationals (which includes fractional numbers) Q

The set of reals (all the numbers necessary to represent points on a
line) R

Sets can also be defined using some rule, instead of explicitly.

Example 1.3 Define the set A explicitly where E = N and
A = {x | x < 3}.
Solution The A = {x | x < 3} is read as ‘A is the set of elements x, such
that x is less than 3’. Therefore, as the universal set is the set of natural
numbers, A = {1, 2}

Example 1.4 E = days of the week and A = {x | x is after
Thursday and before Sunday}. Then A = {Friday, Saturday}.
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Subsets
We may wish to refer to only a part of some set. This is said to be a subset
of the original set.

A ⊆ B is read as ‘A is a subset of B’ and it means that every element
of A is an element of B.

Example 1.5

E = N

A = {1, 2, 3}, B = {1, 2, 3, 4, 5}

Then A ⊆ B

Note the following points:

All sets must be subsets of the universal set, that is, A ⊆ E and
B ⊆ E

A set is a subset of itself, that is, A ⊆ A
If A ⊆ B and B ⊆ A, then A = B

Proper subsets
A ⊂ B is read as ‘A is a proper subset of B’ and means that A is a subset
of B but A is not equal to B. Hence, A ⊂ B and simultaneously B ⊂ A
are impossible.

Figure 1.3 A Venn diagram
of a proper subset of B:
A ⊂ B. A proper subset can be shown on a Venn diagram as in Figure 1.3.

1.3 Operations
on sets

In Chapter 1 of the background Mathematics notes available on the com-
panion website for this book, we study the rules obeyed by numbers
when using operations like negation, multiplication, and addition. Sets
can be combined in various ways using set operations. Sets and their
operations form a Boolean Algebra which we look at in greater detail
in Chapter 4, particularly its application to digital design. The most
important set operations are as given in this section.

Complement
Ā or A′ represents the complement of the set A. The complement of A is
the set of everything in the universal set which is not in A, this is pictured
in Figure 1.4.

Figure 1.4 The shaded area
is the complement, A′, of the
set A.

Example 1.6

E = N

A = {x | x > 5}

then A′ = {1, 2, 3, 4, 5}
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6 Sets and functions

Figure 1.5 A = {x |x < 5} and A′ = {x |x � 5}.

Figure 1.6 The
shaded area
represents the
intersection of A
and B.

Figure 1.7 The
intersection of two
sets {1, 2, 4} ∩
{1, 5, 6} = {1}.

Figure 1.8 The
intersection of two sets:
{a, b, c, d, e} ∩
{a, b, c, d, e, f, g, h, i, j} =
{a, b, c, d, e}.

Figure 1.9 The
intersection of the
two sets:
{−3,−2,−1} ∩
{1, 2} = ∅, the empty
set, as they have no
elements in common.

Example 1.7 The universal set is the set of real numbers represented
by a real number line.

If A is the set of numbers less than 5, A = {x | x < 5} then A′ is the
set of numbers greater than or equal to 5. A′ = {x | x � 5}. These sets
are shown in Figure 1.5.

Intersection
A ∩ B represents the intersection of the sets A and B. The intersection
contains those elements that are in A and also in B, this can be represented
as in Figure 1.6 and examples are given in Figures 1.7–1.10.

Note the following important points:

If A ⊆ B then A∩B = A. This is the situation in the example given
in Figure 1.8.

If A and B have no elements in common then A ∩ B = ∅ and they
are called disjoint. This is the situation given in the example in
Figure 1.9. Two sets which are known to be disjoint can be shown
on the Venn diagram as in Figure 1.10.

Figure 1.10 Disjoint sets A
and B.

Union
A∪B represents the union of A and B, that is, the set containing elements
which are in A or B or in both A and B. On a Venn diagram, the union can
be shown as in Figure 1.11 and examples are given in Figures 1.12–1.15.

Note the following important points:

If A ⊆ B, then A ∪ B = B. This is the situation in the example
given in Figure 1.13.

The union of any set with its complement gives the universal set, that
is, A∪A′ = E , the universal set. This is pictured in Figure 1.15.
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Figure 1.11 The
shaded area
represents to union
of sets A and B.

Figure 1.12 The
union of two sets:
{1, 2, 4} ∪ {1, 5, 6} =
{1, 2, 4, 5, 6}.

Figure 1.13 The
union of two sets:
{a, b, c, d, e} ∪
{a, b, c, d, e, f, g, h, i, j} =
{a, b, c, d, e, f, g, h, i, j}.

Figure 1.14 The
union of the two sets:
{−3,−2,−1} ∪
{1, 2} =
{−3,−2,−1, 1, 2}.

Figure 1.15 The shaded
area represents the union of a
set with its complement giving
the universal set.

Cardinality of a finite set
The number of elements in a set is called the cardinality of the set and is
written as n(A) or |A|.

Example 1.8

n(∅) = 0, n({2}) = 1, n({a, b}) = 2

For finite sets, the cardinality must be a natural number.

Example 1.9 In a survey, 100 people were students and 720 owned a
video recorder; 794 people owned a video recorder or were students. How
many students owned a video recorder?

E = {x | x is a person included in the survey}

Setting S = {x | x is a student} and V = {x | x owns a video recorder},
we can solve this problem using a Venn diagram as in Figure 1.16.

Figure 1.16 S is the set of
students in a survey and V is
the set of people who own a
video. The numbers in the
sets give the cardinality of the
sets, n(S) = 100, n(S ∪ V) =
794, n(V) = 720,
n(S ∩ V) = x .

x is the number of students who own a video recorder. From the diagram
we get

100− x + x + 720− x = 794

⇔ 820− x = 794

⇔ x = 26

Therefore, 26 students own a video recorder.

1.4 Relations
and functions

Relations
A relation is a way of pairing up members of two sets. This is just like
the idea of family relations. For instance, a child can be paired with its
mother, brothers can be paired with sisters, etc. A relation is such that it
may not always be possible to find a suitable partner for each element in
the first set whereas sometimes there will be more than one. For instance,
if we try to pair every boy with his sister there will be some boys who have
no sisters and some boys who have several. This is pictured in Figure 1.17.
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Figure 1.17 The relation
boy→ sister. Some boys
have more than one sister
and some have none at all.

Functions
Functions are relations where the pairing is always possible. Functions
are like mathematical machines. For each input value there is always
exactly one output value.

Figure 1.18 An arrow
diagram of the function
y = 1/x .

Calculators output function values. For instance, input 2 into a cal-
culator, press 1/x and the calculator will display the number 0.5. The
output value is called the image of the input value. The set of input values
is called the domain and the set containing all the images is called the
codomain.

The function y = 1/x is displayed in Figure 1.18 using arrows to link
input values with output values.

Functions can be represented by letters. If the function of the above
example is given the letter f to represent it then we can write

f : x �→ 1

x

This can be read as ‘f is the function which when input a value for x gives
the output value 1/x’ . Another way of giving the same information is:

f (x) = 1

x

f (x) represents the image of x under the functionf and is read as ‘f of x’.
It does not mean the same as f times x.
f (x) = 1/x means ‘the image of x under the function f is given by

1/x’ but is usually read as ‘f of x equals 1/x’.
Even more simply, we usually use the letter y to represent the output

value, the image, and x to represent the input value. The function is
therefore summed up by y = 1/x.
x is a variable because it can take any value from the set of values in

the domain. y is also a variable but its value is fixed once x is known.
So x is called the independent variable and y is called the dependent
variable.

The letters used to define a function are not important. y = 1/x is the
same as z = 1/t is the same as p = 1/q provided that the same input
values (for x, t , or q) are allowed in each case.

More examples of functions are given in arrow diagrams in
Figures 1.19(a) and 1.20(a). Functions are more usually drawn using
a graph, rather than by using an arrow diagram. To get the graph the
codomain is moved to be at right angles to the domain and input and
output values are marked by a point at the position (x, y). Graphs are
given in Figures 1.19(b) and 1.20(b).
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Continuous functions and discrete
functions applied to signals
Functions of particular interest to engineers are either functions of a real
number or functions of an integer. The function given in Figure 1.19 is
an example of a real function and the function given in Figure 1.20 is an
example of a function of an integer, also called a discrete function.

Often, we are concerned with functions of time. A variable voltage
source can be described by giving the voltage as it depends on time, as also
can the current. Other examples are: the position of a moving robot arm,
the extension or compression of car shock absorbers and the heat emission
of a thermostatically controlled heating system. A voltage or current
varying with time can be used to control instrumentation or to convey
information. For this reason it is called a signal. Telecommunication
signals may be radio waves or voltages along a transmission line or light
signals along an optical fibre.

Time, t , can be represented by a real number, usually non-negative.
Time is usually taken to be positive because it is measured from some
reference instant, for example, when a circuit switch is closed. If time is
used to describe relative events then it can make sense to refer to negative
time. If lightning is seen 1 s before a thunderclap is heard then this can
be described by saying the lightning happened at −1 s or alternatively
that the thunderclap was heard at 1 s. In the two cases, the time origin
has been chosen differently. If time is taken to be continuous and rep-
resented by a real variable then functions of time will be continuous or
piecewise continuous. Examples of graphs of such functions are given in
Figure 1.21.

Figure 1.19 The function
y = 2x + 1 where x can take
any real value (any number
on the number line). (a) is the
arrow diagram and (b) is the
graph.

Figure 1.20 The function
q = t −3 where t can take any
integer value (a) is the arrow
diagram and (b) is the graph.
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Figure 1.21 Continuous and piecewise functions where time is represented by a real number > 0. (a) A
ramp function; (b) a wave (c) a square wave. (a) and (b) are continuous, while (c) is piecewise continuous.

A continuous function is one whose graph can be drawn without taking
your pen off the paper. A piecewise continuous function has continuous
bits with a limited number of jumps. In Figure 1.21, (a) and (b) are
continuous functions and (c) is a piecewise continuous function. If we
have a digital signal, then its values are only known at discrete moments
of time. Digital signals can be obtained by using an analog to digital
(A/D) convertor on an originally continuous signal. Digital signals are
represented by discrete functions as in Figure 1.22(a)–(c)

A digital signal has a sampling interval, T , which is the length of
time between successive values. A digital functions is represented by a
discrete function. For example, in Figure 1.22(a) the digital ramp can be
represented by the numbers

0, 1, 2, 3, 4, 5, . . .

If the sample interval T is different from 1 then the values would be

0, T, 2T, 3T, 4T, 5T, . . .

This is a discrete function also called a sequence. It can be represented
by the expression f (t) = t , where t = 0, 1, 2, 3, 4, 5, 6, . . . or using the
sampling interval, T , g(n) = nT , where n = 0, 1, 2, 3, 4, 5, 6, . . .

Yet another common way of representing a sequence is by using a
subscript on the letter representing the image, giving

fn = n, where n = 0, 1, 2, 3, 4, 5, . . .

or, using the letter a for the image values,

an = n, where n = 0, 1, 2, 3, 4, 5, . . .

Substituting some values for n into the above gives

a0 = 0, a1 = 1, a2 = 2, a3 = 3, . . .

As a sequence is a function of the natural numbers and zero (or if
negative input values are allowed, the integers) there is no need to specify
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Figure 1.22 Examples of
discrete functions. (a) A digital
ramp; (b) a digital wave; (c) a
digital square wave.

the input values and it is possible merely to list the output values in order.
Hence the ramp function can be expressed by 0, 1, 2, 3, 4, 5, 6, . . .

Time sequences are often referred to as ‘series’. This terminology is
not usual in mathematics books, however, as the description ‘series’ is
reserved for describing the sum of a sequence. Sequences and series are
dealt with in more detail in Chapter 18.

Example 1.10 Plot the following analog signals over the values of t
given (t real):

(a) x = t3 t � 0

(b)

y =




0 t � 3
t − 3 3 < t � 5
2 t > 5

(c) z = 1

t2
t > 0

Solution In each case, choose some values of t and calculate the function
values at those points. Plot the points and join them.
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(a)
t 0 0.5 1 1.5 2 2.5 3 3.5

x = t3 0 0.125 1 3.375 8 15.625 27 42.875

These values are plotted in Figure 1.23(a).
(b)

t 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
y 0 0 0 0 0 0.5 1 1.5 2 2 2 2 2

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
y = 0 y = t − 3 y = 2

These values are plotted in Figure 1.23(b).
(c)

t 0.0001 0.001 0.01 0.1 1 10 100 1000 10000
z 108 106 104 100 1 0.01 10−4 10−6 10−8

These values are plotted in Figure 1.23(c).

Figure 1.23 The
analog signals described in
Example 1.10.
(a) x = t3 t � 0

(b) y =




0 t � 3
t − 3 3 < t � 5
2 t > 5

(c) z = 1/t2 t > 0
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Example 1.11 Plot the following discrete signals over the values of t
given (t an integer):

(a) x = 1

t − 1
t > 2

(b)

y =




0 t � 4
1/t − 0.25 4 < t < 10
−0.15 t � 10

(c) z = 4t − 2 t > 0

Solution In each case, choose successive values of t and calculate the
function values at those points. Mark the points with a dot.

(a)

t 2 3 4 5 6 7 8 9 10
x 1 0.5 0.33 0.25 0.2 0.17 0.14 0.13 0.11

These values are plotted in Figure 1.24(a).

(b)

t 3 4 5 6 7 8 9 10 11 12
y 0 0 −0.05 −0.08 −0.11 −0.12 −0.14 −0.15 −0.15 −0.15

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
y = 0 y = 1

t
− 0.25 y = −0.15

These values are plotted in Figure 1.24(b).

(c)

t 1 2 3 4 5 6 7 8
z 2 6 10 14 18 22 26 30

These values are plotted in Figure 1.24(c).

Undefined function values
Some functions have ‘undefined values’, that is, numbers that cannot be
input into them successfully. For instance input 0 on a calculator and
try getting the value of 1/x. The calculator complains (usually display-
ing ‘-E-’) indicating that an error has occurred. The reason that this is an
error is that we are trying to find the value of 1/0 that is 1 divided by 0.
Look at Chapter 1 of the Background Mathematics Notes, given on the
accompanying website for this book, for a discussion about why division
by 0 is not defined. The number 0 cannot be included in the domain of
the function f (x) = 1/x. This can be expressed by saying

f (x) = 1/x, where x ∈ R and x �= 0

which is read as ‘f of x equals 1/x, where x is a real number not equal
to 0’.
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Figure 1.24 The digital signals described in Example 1.11.

(a) x = 1
t − 1

t > 2 (b) y =




0 t � 4
1/t − 0.25 4 < t < 10
−0.15 t � 10

(c) z = 4t − 2 t > 0
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Often, we assume that we are considering functions of a real variable
and only need to indicate the values that are not allowed as inputs for the
function. So we may write

f (x) = 1/x where x �= 0

Things to look out for as values that are not allowed as function
inputs are :

1. Numbers that would lead to an attempt to divide by zero
2. Numbers that would lead to negative square roots
3. Numbers that would lead to negative inputs to a logarithm.

Examples 1.12(a) and (b) require solutions to inequalities which we
shall discuss in greater detail in Chapter 2. Here, we shall only look at
simple examples and use the same rules as used for solving equations. We
can find equivalent inequalities by doing the same thing to both sides, with
the extra rule that, for the moment, we avoid multiplication or division
by a negative number.

Example 1.12 Find the values that cannot be input to the following
functions, where the independent variable (x or r) is real:

(a) y = 3
√
x − 2+ 5

(b) y = 3 log10(2− 4x)

(c) R = r + 1000

1000(r − 2)

Solution

(a) y = 3
√
x − 2+ 5

Here x − 2 cannot be negative as we need to take the square root of it.

x − 2 � 0⇔ x � 2

therefore, the function is

y = 3
√
x − 2+ 5 where x � 2

(b) y = 3 log10(2− 4x).

Here 2−4x cannot be 0 or negative else we could not take the logarithm.

2− 4x > 0 ⇔ 2 > 4x ⇔ 2/4 > x

or equivalently, x < 1
2 . So the function is

y = 3 log10(2− 4x) where x < 0.5

(c) R = r + 1000

1000(r − 2)
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Here 1000(r − 2) cannot be 0, else we would be trying to divide by 0.
Solve the equation for the values that r cannot take

1000(r − 2) = 0

r − 2 = 0

r = 2

The function is

R = r + 1000

1000(r − 2)
where r �= 2

Example 1.13 Find the values that can be input to the following discrete
functions where the independent variable is an integer

(a) y = 1

k − 4
where k ∈ Z

(b) f (k) = 1

(k − 3)(k − 2.2)
where k ∈ Z

(c) an = n2 where n ∈ Z

Solution

(a) y = 1

k − 4

Here k− 4 cannot be 0 else there would be an attempt to divide by 0. We
get k − 4 = 0 when k = 4 so the function is:

y = 1

k − 4
where k �= 4 and k ∈ Z

(b) f (k) = 1

(k − 3)(k − 2.2)
where k ∈ Z

Solve for (k − 3)(k − 2.2) = 0 giving k = 3 or k = 2.2. As 2.2 is not an
integer then there is not need to specifically exclude it from the function
input values, so the function is

f (k) = 1

(k − 3)(k − 2.2)
where k �= 3 and k ∈ Z

(c) an = n2, n ∈ Z

Here there are no problems with the function as any integer can be squared.
There are no excluded values from the input of the function.

Using a recurrence relation to
define a discrete function
Values in a discrete function can also be described in terms of its values
for preceeding integers.

TLFeBOOK



“chap01” — 2003/6/8 — page 17 — #17

Sets and functions 17

Example 1.14 Find a table of values for the function defined by the
recurrence relation:

f (n) = f (n− 1)+ 2 (1.1)

where f (0) = 0.

Solution Assuming that the function is defined for n = 0, 1, 2, . . . then
we can take successive values of n and find the values taken by the
function. n = 0 gives f (0) = 0 as given.

Substituting n = 1 into Equation (1.1) gives

f (1) = f (1− 1)+ 2

⇔ f (1) = f (0)+ 2 = 0+ 2 = 2 (using f (0) = 0)

hence, f (1) = 2.
Substituting n = 2 into Equation (1.1) gives

f (2) = f (2− 1)+ 2

⇔ f (2) = f (1)+ 2

⇔ f (2) = f (1)+ 2 = 2+ 2 = 4 (using f (1) = 2)

hence, f (2) = 4.
Substituting n = 3 into Equation (1.1) gives

f (3) = f (3− 1)+ 2

⇔ f (3) = f (2)+ 2 = 4+ 2 (using f (2) = 4)

hence, f (3) = 6.
Continuing in the same manner gives the following table:

n 0 1 2 3 4 5 6 7 8 9 10 · · · n · · ·
f 0 2 4 6 8 10 12 14 16 18 20 . . . 2n · · ·

Notice we have filled in the general term f (n) = 2n. This was found
in this case by simple guess work.

1.5 Combining
functions

The sum, difference, product, and
quotient of two functions, f and g
Two functions with R as their domain and codomain can be combined
using arithmetic operations. We can define the sum of f and g by

(f + g) : x �→ f (x)+ g(x)
The other operations are defined as follows:

(f − g) : x �→ f (x)− g(x) difference,

(f × g) : x �→ f (x)× g(x) product,

(f /g) : x �→ f (x)

g(x)
quotient.
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Example 1.15 Find the sum, difference, product, and quotient of the
functions:

f : x �→ x2 and g : x �→ x6

Solution

(f + g) : x �→ x2 + x6

(f − g) : x �→ x2 − x6

(f × g) : x �→ x2 × x6 = x8

(f /g) : x �→ x2

x6
= x−4

The specification of the domain of the quotient is not straightforward.
This is because of the difficulty which occurs when g(x) = 0. When
g(x) = 0 the quotient function is undefined and we must remove such
elements from its domain. The domain of f /g is R with the values where
g(x) = 0 omitted.

Composition of functions
This method of combining functions is fundamentally different from the
arithmetical combinations of the previous section. The composition of
two functions is the action of performing one function followed by the
other, that is, a function of a function.

Figure 1.25 The function
a : kilograms→ money used
in Example 1.16.

Example 1.16 A post office worker has a scale expressed in kilograms
which gives the cost of a parcel depending on its weight. He also has an
approximate formula for conversion from pounds (lbs) to kilograms. He
wishes to find out the cost of a parcel which weighs 3 lb.

The two functions involved are:

a : kilograms→ money and c : lbs→ kilograms

a is defined by Figure 1.25 and the function c is given by

c : x �→ x/2.2

Solution The composition ‘a ◦ c’ will be a function from lbs to money.
Hence, 3 lb after the function c gives 1.364 and 1.364 after the function

a gives e1.90 and therefore

(a ◦ c)(3) = e1.90.

Example 1.17 Supposing f (x) = 2x + 1 and g(x) = x2, then we can
combine the functions in two ways.

1. A composite function can be formed by performing f first and then
g, that is, g ◦ f . To describe this function, we want to find what happens
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to x under the function g ◦ f . Another way of saying that is we need to
find g(f (x)). To do this call f (x) a new letter, say y.

y = f (x) = 2x + 1

Rewrite g as a function of y

g(y) = y2

Now substitute y = 2x + 1 giving

g(2x + 1) = (2x + 1)2

Hence,

g(f (x)) = (2x + 1)2

(g ◦ f )(x) = (2x + 1)2.

2. A composite function can be formed by performing g first and then
f , that is, f ◦ g. To describe this function, we want to find what happens
to x under the function f ◦ g. Another way of saying that is we need to
find f (g(x)). To do this call g(x) a new letter, say y.

y = g(x) = x2

Rewrite f as a function of y

f (y) = 2y + 1

Now substitute y = x2 giving

f (x2) = 2x2 + 1

Hence,

f (g(x)) = 2x2 + 1

(f ◦ g)(x) = 2x2 + 1.

Example 1.18 Supposing u(t) = 1/(t − 2) and v(t) = 3 − t then,
again, we can combine the functions in two ways.

1. A composite function can be formed by performing u first and then
v, that is, v ◦ u. To describe this function, we want to find what happens
to t under the function v ◦ u. Another way of saying that is we need to
find v(u(t)). To do this call u(t) a new letter, say y.

y = u(t) = 1

t − 2
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Rewrite v as a function of y

v(y) = 3− y

Now substitute y = 1/(t − 2) giving

v

(
1

t − 2

)
= 3− 1

t − 2

= 3(t − 2)− 1

t − 2
(rewriting the expression over a common denominator)

= 3t − 6− 1

t − 2
= 3t − 7

t − 2

Hence,

v(u(t)) = 3t − 7

t − 2

(v ◦ u)(t) = 3t − 7

t − 2

2. A composite function can be formed by performing v first and then
u, that is u ◦ v. To describe this function, we want to find what happens
to t under the function u ◦ v. Another way of saying that is we need to
find u(v(t)). To find this call v(t) a new letter, say y.

y = v(t) = 3− t

Rewrite u as a function of y

u(y) = 1

y − 2

Now substitute y = 3− t giving

v(3− t) = 1

(3− t)− 2
= 1

1− t

Hence,

u(v(t)) = 1

1− t
(u ◦ v)(t) = 1

1− t

Decomposing functions
In order to calculate the value of a function, either by hand or using a
calculator, we need to understand how it decomposes. That is we need to
understand to order of the operations in the function expression

TLFeBOOK



“chap01” — 2003/6/8 — page 21 — #21

Sets and functions 21

Example 1.19 Calculate y = (2x + 1)3 when x = 2

Solution Remember the order of operations discussed in Chapter 1 of the
Background Mathematics booklet available on the companion website.
The operations are performed in the following order:

Start with x = 2 then

2x = 4

2x + 1 = 5

(2x + 1)3 = 125

So, there are three operations involved

1. multiply by 2,
2. add on 1,
3. take the cube.

This way of breaking down functions can be pictured using boxes
to represent each operation that makes up the function, as was used to
represent equations in Chapter 3 of the Background Mathematics booklet
available on the companion website. The whole function can be thought
of as a machine, represented by a box. For each value x, from the domain
of the function that enters the machine, there is a resulting image, y,
which comes out of it. This is pictured in Figure 1.26.

Figure 1.26 A function
pictured as a machine
represented by a box.
x represents the input value,
any value of the domain,
y represents the output, the
image of x under the function.

Inside of the box, we can write the name of the functions or the expres-
sion which gives the function rule. A composite function box can be
broken into different stages, each represented by its own box. The function
y = (2x + 1)3 breaks down as in Figure 1.27.
y = (3x − 4)4 can be broken down as in Figure 1.28.

Figure 1.27 The function
y = (2x + 1)3 decomposed
into its composite operations.

Figure 1.28 The function
y = (3x − 4)4 decomposed
into its composite operations.

The inverse of a function
The inverse of a function is a function which will take the image under
the function back to its original value. If f−1(x) is the inverse of f (x)
then

f−1(f (x)) = x
(f−1 ◦ f ) : x �→ x
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Example 1.20

f (x) = 2x + 1

f−1(x) = x − 1

2

To show this is true, look at the combined function f−1(f (x)) =
(2x + 1− 1)/2 = x.

Finding the inverse of a linear function
One simple way of finding the inverse of a linear function is to:

1. Decompose the operations of the function.
2. Combine the inverse operations (performed in the reverse order) to

give the inverse function.

This is a method similar to that used to solve linear equations in
Chapter 3 of the Background Mathematics Notes available on the
companion website for this book.

Figure 1.29 The top line
represents the function
f (x ) = 5x − 2 (read from left
to right) and the bottom line
the inverse function.

Example 1.21 Find the inverse of the function f (x) = 5x − 2.
The method of solution is given in Figure 1.29.
The inverse operations give that x = (y + 2)/5. Here y is the input

value into the inverse function and x is the output value. To use x and y
in the more usual way, where x is the input and y the output, swap the
letters giving the inverse function as

y = x + 2

5

This result can be achieved more quickly by rearranging the expression
so that x is the subject of the formula and then swap x and y.

Example 1.22 Find the inverse of f (x) = 5x − 2.

y = 5x − 2 ⇔ y + 2 = 5x

⇔ y + 2

5
= x

⇔ x = y + 2

5

Now swap x and y to give y = (x + 2)/5. Therefore,

f−1(x) = (x + 2)/5.
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Example 1.23 Find the inverse of

g(x) = 1

2− x where x �= 2

Set

y = 1

2− x ⇔ y(2− x) = 1

⇔ 2y − xy = 1

⇔ 2y = 1+ xy
⇔ 2y − 1 = xy
⇔ xy = 2y − 1

⇔ x = 2y − 1

y
where y �= 0

⇔ x = 2− 1

y

Swap x and y to give y = 2− (1/x)
So

g−1(x) = 2− 1

x
x �= 0

To check, try a couple of values of x.
Try x = 4,

g(x) = 1

2− x =
1

2− 4
= −1

2

Perform g−1 on the output value −(1/2).
Substitute g(4) = −(1/2) into g−1(x):

g−1
(
−1

2

)
= 2− 1

−(1/2) = 2+ 2 = 4.

The function followed by its inverse has given us the original value of x.

The range of a function
When combining functions, for example, f (g(x)), we have to ensure that
g(x) will only output values that are allowed to be input to f . The set of
images of g(x) becomes an important consideration. The set of images
of a function is called its range. The range of a function is a subset of its
codomain.

1.6 Summary 1. Functions are used to express relationships between physical
quantities.

2. The allowed inputs to a function are grouped into a set, called the
domain of the function. The set including all the outputs is called
the codomain.

3. A set is a collection of objects called elements.
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4. E is the universal set, the set of all objects we are interested in.
5. ∅ is the empty set, the set with no elements.
6. The three most important operations on sets are:

(a) intersection: A∩B is the set containing every element in both
A and B;

(b) union: A ∪ B is the set of elements in A or in B or both;
(c) complement: A′ is the set of everything, in the universal set,

not in A.
7. A relation is a way of pairing members of two sets.
8. Functions are a special type of relation which can be thought of as

mathematical machines. For each input value there is exactly one
output value.

9. Many functions of interest are functions of time, used to represent
signals. Analogue signals can be represented by functions of a real
variable and digital signals by functions of an integer (discrete func-
tions). Functions of an integer are also called sequences and can be
defined using a recurrence relation.

10. To find the domain of a real or discrete function exclude values that
could lead to a division by zero, negative square roots, or negative
logarithms or other undefined values.

11. Functions can be combined in various ways including sum, dif-
ference, product, and quotient. A special operation of functions is
composition. A composite function is found by performing a second
function on the result of the first.

12. The inverse of a function is a function which will take the image
under the function back to its original value.

1.7 Exercises

1.1. Given E = {a, b, c, d, e, f, g}, A = {a, b, e},
B = {b, c, d, f}, C = {c, d, e}.
Write down the following sets:
(a) A ∩ B
(b) A ∪ B
(c) A ∩ C′
(d) (A ∪ B) ∩ C
(e) (A ∩ C) ∪ (B ∩ C)
(f) (A ∩ B) ∪ C
(g) (A ∪ C) ∩ (B ∪ C)
(h) (A ∩ C)′
(i) A′ ∪ C′.

1.2. Use Venn diagrams to show that:
(a) (A ∩ B) ∩ C = A ∩ (B ∩ C)
(b) (A ∪ B) ∪ C = A ∪ (B ∪ C)
(c) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)
(d) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
(e) (A ∩ B)′ = A′ ∪ B′
(f) (A ∪ B)′ = A′ ∩ B′.

1.3. Let E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and given P =
{x|x < 5}, Q = {x|x � 3} find explicitly:
(a) P
(b) Q
(c) P ∪ Q
(d) P′
(e) P′ ∩ Q.

1.4. Below are various assertions for any sets A and B.
Write true or false for each statement and give a
counter-example if you think the statement is false.
(a) (A ∩ B)′ = A′ ∩ B′
(b) (A ∩ B)′ ⊆ A
(c) A ∩ B = B ∩ A
(d) A ∩ B′ = B ∩ A′.

1.5. Using a Venn diagram simplify the following:
(a) A ∩ (A ∪ B)
(b) A ∪ (B ∩ A′)
(c) A ∩ (B ∪ A′).

1.6. A computer screen has 80 columns and 25 rows:
(a) Define the set of positions on the screen.
(b) Taking the origin as the top left hand corner

define:
(i) the set of positions in the lower half of the

screen as shown in Figure 1.30(a);
(ii) the set of positions lying on or below the

diagonal as shown in Figure 1.30(b).

1.7. A certain computer system breaks down in two main
ways: faults on the network and power supply faults. Of
the last 50 breakdowns, 42 involved network faults and
20 power failures. In 13 cases, both the power supply
and the network were faulty. How many breakdowns
were attributable to other kinds of failure?
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Figure 1.30 (a) Points lying in shaded area rep-
resent the set of positions on the lower half of the
computer screen as in Exercise 1.6(a). (b) Points
on the diagonal line and lying in the shaded area
represent the set of positions for Exercise 1.6(b).

1.8. Draw arrow diagrams and graphs of the following
functions:
(a) f (t) = (t − 1)2 t ∈ {0, 1, 2, 3, 4}
(b) g(z) = 1/z z ∈ {−1,−0.5, 0.5, 1, 1.5, 2}
(c) y =

{
x x ∈ {−2,−1}
2x x ∈ {0, 1, 2, 3}

(d) h : t �→ 3− t t ∈ {5, 6, 7, 8, 9, 10}
1.9. Given that f : x �→ 2x − 1, g : x �→ (1/3)x2,

h : x �→ 3/x
(a) Find the following:

(i) f (2) (ii) g(3) (iii) h(5)

(iv) h(2)+ g(2) (v) h/g(5) (vi) (h× g)(2)
(vii) h(g(2)) (viii) h(h(3))

(b) Find the following functions:

(i) f ◦ g (ii) g ◦ f (iii) h ◦ g (iv) f −1

(v) h−1

(c) Confirm the following:

(i) (f −1 ◦ f ) : x �→ x (ii) (h−1 ◦ h) : x �→ x

(iii) (f ◦ f −1) : x �→ x

(d) Using the results from sections (b) and (c), find the
following:

(i) (h−1 ◦ h)(1) (ii) h(g(5)) (iii) g(f (4))

1.10. An analog signal is sampled using an A/D convertor
and represented using only integer values. The origi-
nal signal is represented by g(t) and the digital signal
by h(t) sampled at t ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. The
definitions of g and h are as below

g(t) =
{
t − 2.25 t < 5

6.8− t t � 5

h : 2 �→ 0 h : 3 �→ 1 h : 4 �→ 2

h : 5 �→ 2 h : 6 �→ 1 h : 7 �→ 0

h : 8 �→ −1 h : 9 �→ −2 h : 10 �→ −3

If e(t) is the error function (called quantization error),
defined at the sample points, find e(t) and represent it
on a graph.
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2 Functions and
their graphs

2.1 Introduction The ability to produce a picture of a problem is an important step towards
solving it. From the graph of a function, y = f (x), we are able to predict
such things as the number of solutions to the equation f (x) = 0, regions
over which it is increasing or decreasing, and the points where it is not
defined.

Recognizing the shape of functions is an important and useful skill.
Oscilloscopes give a graphical representation of voltage against time,
from which we may be able to predict an expression for the voltage. The
increasing use of signal processing means that many problems involve
analysing how functions of time are effected by passing through some
mechanical or electrical system.

In order to draw graphs of a large number of functions, we need only
remember a few key graphs and appreciate simple ideas about transforma-
tions. A sketch of a graph is one which is not necessarily drawn strictly
to scale but shows its important features. We shall start by looking at
special properties of the straight line (linear function) and the quadratic.
Then we look at the graphs of y = x, y = x2, y = 1/x, y = ax and how
to transform these graphs to get graphs of functions like y = 4x − 2,
y = (x − 2)2, y = 3/x, and y = a−x .

2.2 The straight
line: y = mx + c

y = mx + c is called a linear function because its graph is a straight
line. Notice that there are only two terms in the function; the x term,mx,
wherem is called the coefficient of x and c which is the constant term.m
and c have special significance.m is the gradient, or the slope, of the line
and c is the value of y when x = 0, that is, when the graph crosses the
y-axis. This graph is shown in Figure 2.1(a) and two particular examples
shown in Figure 2.1(b) and (c).

Figure 2.1 (a) The graph of the function y = mx + c. m is the slope of the line, if m is positive then travelling
from left to right along the line of the function is an uphill climb, if m is negative then the journey is downhill.
The constant c is where the graph crosses the y-axis. (b) m = 2 and c = 3 (c) m = −1 and c = 2.
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The gradient of a straight line
The gradient gives an idea of how steep the climb is as we travel along the
line of the graph. If the gradient is positive then we are travelling uphill
as we move from left to right and if the gradient is negative then we are
travelling downhill. If the gradient is zero then we are on flat ground. The
gradient gives the amount that y increases when x increases by 1 unit. A
straight line always has the same slope at whatever point it is measured.
To show that in the expression y = mx + c, m is the gradient, we begin
with a couple of examples as in Figure 2.1(b) and (c)

In Figure 2.1(b), we have the graph of y = 2x + 3. Take any two
values of x which differ by 1 unit, for example, x = 0 and x = 1. When
x = 0, y = 2×0 + 3 = 3 and when x = 1, y = 2×1 + 3 = 5. The
increase in y is 5− 3 = 2, and this is the same as the coefficient of x in
the function expression.

In Figure 2.1(c), we see the graph of y = −x + 2. Take any two
values of x which differ by 1 unit, for example, x = 1 and x = 2. When
x = 1, y = −(1) + 2 = 1 and when x = 2, y = −(2) + 2 = 0. The
increase in y is 0− 1 = −1 and this is the same as the coefficient of x in
the function expression.

In the general case, y = mx+ c, take any two values of x which differ
by 1 unit, for example, x = x0 and x = x0+1. When x = x0, y = mx0+c
and when x = x0 + 1, y = m(x + 1)+ c = mx +m+ c. The increase
in y is mx +m+ c − (mx + c) = m.

We know that every time x increases by 1 unit y increases by m.
However, we do not need to always consider an increase of exactly 1 unit
in x. The gradient gives the ratio of the increase in y to the increase in x.
Therefore, if we only have a graph and we need to find the gradient then
we can use any two points that lie on the line.

To find the gradient of the line take any two points on the line (x1, y1)

and (x2, y2).

The gradient = change in y

change in x
= y2 − y1

x2 − x1

Example 2.1 Find the gradient of the lines given in Figure 2.2(a)–(c)
and the equation for the line in each case.

Solution

(a) We are given the coordinates of two points that lie on the straight
line in Figure 2.2(a) as (0,3) and (2,5),

gradient = change in y

change in x
= 5− 3

2− 0
= 2

2
= 1.

To find the constant term in the expression y = mx + c, we find
the value of y when the line crosses the y-axis. From the graph this
is 3, so the equation is y = mx + c where m = 1 and c = 3, giving

y = x + 3

(b) Two points that lie on the line in Figure 2.2(b) are (−1,−3) and
(−2,−6). These are found by measuring the x and y values for
some points on the line.

gradient = change in y

change in x
= −6− (−3)

−2− (−1)
= −3

−1
= 3.

To find the constant term in the expression y = mx + c, we find
the value of y when the line crosses the y-axis. From the graph this
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Figure 2.2 Graphs for
Example 2.1.

is 0, so the equation is y = mx + c where m = 3 and c = 0 giving

y = 3x

(c) Two points that lie on the line in Figure 2.2(c) are (0,2) and (3,3.5).

gradient = change in y

change in x
= 3.5− 2

3− 0
= 1.5

3
= 0.5

To find the constant term in the expression y = mx+ c, we find the
value of y when the line crosses the y-axis. From the graph this is
2, so the equation is y = mx + c where m = 0.5 and c = 2 giving

y = 0.5x + 2

Finding the gradient from the
equation for the line
To find the gradient from the equation of the line we look for the value
of m, the number multiplying x in the equation. The constant term gives
the value of y when the graph crosses the y-axis, that is, when x = 0.

Example 2.2 Find the gradient and the value of y when x = 0 for the
following lines:

(a) y = 2x + 3, (b) 3x − 4y = 2,

(c) x − 2y = 4, (d)
x − 1

2
= 1− y

3
.
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Solution

(a) In the equation y = 2x+ 3, the value ofm, the gradient, is 2 as this
is the coefficient of x. c = 3 which is the value of y when the graph
crosses the y-axis, that is, when x = 0.

(b) In the equation 3x − 4y = 2, we rewrite the equation with y as the
subject of the formula in order to find the value of m and c.

3x − 4y = 2 ⇔ 3x = 2+ 4y

⇔ 3x − 2 = 4y

⇔ 3x

4
− 2

4
= y

⇔ y = 3x

4
− 1

2

We can see, by comparing the expression with y = mx+ c, thatm,
the gradient, is 3/4 and c = −1/2.

(c) Write y as the subject of the formula:

x − 2y = 4 ⇔ x = 4+ 2y

⇔ x − 4 = 2y

⇔ 2y = x − 4

⇔ y = x

2
− 2

We can see, by comparing the expression with y = mx+ c, thatm,
the gradient, is 1/2 and c = −2.

(d) Write y as the subject of the formula

x − 1

2
= 1− y

3

⇔ x

2
− 1

2
= 1− y

3

⇔ 3x

2
− 3

2
= 3− y

⇔ y = 3−
(

3x

2
− 3

2

)

⇔ y = −3x

2
+ 9

2

We can see, by comparing the expression with y = mx+ c, thatm,
the gradient, is −3/2 and c = 9/2.

Finding the equation of a line which
goes through two points
Supposing we have been given two points, (x1, y1) and (x2, y2), which
lie on a line and we want to find the equation of that line. We already
found that the gradient of the line is given by:

The gradient = change in y

change in x
= y2 − y1

x2 − x1

We know that the equation of a line is of the form y = mx + c, but we
would like to express the equation just in terms of the two variables, x
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Example 2.4

(a) Sketch the graph of y = 4x − 2.
To find where the graph crosses the y-axis, substitute x = 0 into

the equation of the line:

y = 4(0)− 2 = −2.

This means that the graph passes through the point (0,−2).
To find where the graph crosses the x-axis, substitute y = 0,

that is,

4x − 2 = 0

⇔ 4x = 2

⇔ x = 2

4
= 0.5.

Therefore, the graph passes through (0.5, 0).
Mark the points (0,2) and (0.5,0), on the x- and y-axes and join

the two points. This is done in Figure 2.3(a).
(b) Sketch the graph of y = −4x When x = 0 we get y = 0, that is

the graph goes through the point (0,0). In this case, as the graph
passes through the origin, we need to choose a different value for x
for the second point. Taking x = 2 gives y = −8, so another point
is (2,−8). These points on marked on the graph and joined to give
the graph as in Figure 2.3(b).

Figure 2.3 (a) The graph of
y = 4x − 2. (b) The graph of
y = −4x .
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2.3 The
quadratic
function:
y = ax 2 +bx +c

y = ax2 + bx + c is a general way of writing a function in which the
highest power of x is a squared term. This is called the quadratic function
and its graph is called a parabola as shown in Figure 2.4.

All the graphs, in this figure, cross the y-axis at (0, c). To find where
they cross the x-axis can be more difficult. These values, wheref (x) = 0,
are called the roots of the equation. There is a quick way to discover
whether the function crosses the x-axis, only touches the x-axis, or does
not cross or touch it. In the latter case there are no solutions to the equation
f (x) = 0. The three possibilities are given in Figure 2.4.

Crossing the x -axis
The function y = ax2 + bx + c crosses the x-axis when y = 0, that is,
when ax2+bx+c = 0. The solutions to ax2+bx+c = 0 are examined in
the Background Mathematics Notes available on the companion website
for this book and are given by the formula

x = −b ±
√
b2 − 4ac

2a

Figure 2.4 (a) The function y = ax 2 + bx + c. (a) Case 1 where there are 2 solutions to f (x ) = 0. (b) Case
2 where there is only one solution to f (x ) = 0. (c) Case 3, where there are no real solutions to f (x ) = 0.
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Figure 2.5 Three quadratic
functions with two roots to the
equation f (x ) = 0. Each
satisfies b2 − 4ac > 0.(a)
y = 2x 2 − 3, a = 2, b = 0,
c = −3, b2 − 4ac =
0− 4(2)(−3) = 24.
(b) y = −x 2 + 5, a = −1,
b = 0, c = 5, b2 − 4ac =
0− 4(−1)(5) = 20.(c)
y = −3(x − 2)2 + 1⇔ y =
−3x 2 + 12x − 11, a = −3,
b = 12, c = −11, b2 − 4ac =
(12)2 − 4(−3)(−11) =
144− 132 = 12.

From the graph, we can see there are three possibilities:

1. In Figure 2.4(a) where there are two solutions, that is, the graph
crosses the x-axis for two values of x. For this to happen, the square
root part of the formula above must be greater than zero:

b2 − 4ac > 0

Examples are given in Figure 2.5.
2. Only one unique solution, as in Figure 2.4(b). The graph touches the

x-axis in one place only. For this to happen, the square root part of the
formula must be exactly 0. Examples of this are given in Figure 2.6.

3. No real solutions, that is, the graph does not cross the x-axis.
Examples of these are given in Figure 2.7.

2.4 The
function y = 1/x

The function y = 1/x has the graph as in Figure 2.8. This is called
a hyperbola. Notice that the domain of f (x) = 1/x does not include
x = 0. The graph does not cross the x-axis so there are no solutions to
1/x = 0.

2.5 The
functions y = ax

Graphs of exponential functions, y = ax , are shown in Figure 2.9. The
functions have the same shape for all a > 1. Notice that the function is
always positive and the graph does not cross the x-axis so there are no
solutions to the equation ax = 0.
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Figure 2.6 Quadratic
functions with only one unique
root of the equation f (x ) = 0.
Each satisfies b2 − 4ac = 0.
(a) y = x 2 − 4x + 4, a =
1, b = −4, c = 4, b2 − 4ac =
(−4)2−4(1)(4) = 16−16 = 0.
(b) y = −3x 2 − 12x − 12,
a = −3, b = −12, c = −12,
b2 − 4ac = (−12)2 −
4(−3)(−12) = 144− 144 = 0.
(c) y = x 2, a = 1,
b = 0, c = 0, b2 − 4ac =
(0)2 − 4(1)(0) = 0− 0 = 0.

Figure 2.7 Quadratic
functions with no real roots to
the equation f (x ) = 0. In each
case b2 − 4ac < 0.
(a) y = x 2 + 2, a = 1,
b = 0, c = 2, b2 − 4ac =
(0)2 − 4(1)(2) = 0− 8 = −8.
(b) y = −x 2 + 2x − 2, a =
−1, b = 2, c = −2, b2−4ac =
(2)2 − 4(−1)(−2) =
4− 8 = −4.
(c) y = 3x 2 − 6x + 4, a = 3,
b = −6, c = 4, b2 − 4ac =
(−6)2 − 4(3)(4) = 36− 48 =
−12.
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Figure 2.8 Graph of the
hyperbolic function y = 1/x .

Figure 2.9 Graphs of functions y = ax : (a) y = 2x ; (b) y = 3x ; (c) y = (1.5)x .

2.6 Graph
sketching using
simple
transformations

One way of sketching graphs is to remember the graphs of simple func-
tions and to translate, reflect or scale those graphs to get graphs of other
functions. We begin with the graphs below as given in Figure 2.10.

The translation x �→ x + a
If we have the graph of y = f (x), then the graph of y = f (x + a) is
found by translating the graph of y = f (x) a units to the left. Examples
are given in Figure 2.11.
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Figure 2.10 To sketch graphs using transformations we begin with known graphs. In the rest of this section
we use: (a) y = x ; (b) y = x 2; (c) y = x 3; (d) y = 1/x ; (e) y = ax .

The translation f (x ) �→ (x ) + A
AddingAon to the function value leads to a translation ofAunits upwards.
Examples are given in Figure 2.12.

Reflection about the y -axis, x �→ −x
Replacing x by −x in the function has the effect of reflecting the graph
in the y-axis – that is, as though a mirror has been placed along the axis
and only the reflection can be seen. Examples are given in Figure 2.13.

Reflection about the x axis,
f (x ) �→ −f (x )

To find the graph of y = −f (x), reflect the graph of y = f (x) about the
x-axis. Examples are given in Figure 2.14.
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Figure 2.11 Translations
x 	→ x + a. (a) (i) y = 1/x ;
(ii) y = 1/(x + 2). Here x has
been replaced by x + 2
translating the graph 2 units to
the left. (b) (i) y = x 2;
(ii) y = (x − 3)2, x has been
replaced by x − 3 translating
the graph 3 units to the right.

Figure 2.12 Translations
f (x ) 	→ f (x )+ A. (a) y = 1/x ;
(ii) y = 1/x + 2. Here the
function value has been
increased by 2 translating the
graph 2 units upwards. (b) (i)
y = x 2; (ii) y = x 2 − 2. The
function value has had 2
subtracted from it, translating
the graph 2 units downwards.
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Figure 2.13 Reflections
x 	→ −x . (a) (i) y = ax , a > 1;
(ii) y = a−x , x has been
replaced by −x to get
the second function. This has
the effect of reflecting the
graph in the y-axis. (b) (i)
y = (x/2)+ (1/2);
(ii) y = −(x/2)+ (1/2), x has
been replaced by −x ,
reflecting the graph in the
y-axis.

Figure 2.14 Reflections f (x ) 	→ −f (x ). (a) (i) y = x 2; (ii) y = −x 2. The function value has been multiplied
by −1 turning the graph upside down (reflection in the x-axis). (b) (i) y = 2x ; (ii) y = −2x . The second
function has been multiplied by −1 turning the graph upside down.

Scaling along the x -axis, x �→ ax
Multiplying the values of x by a number, a, has the effect of: squashing
the graph horizontally if a > 1 or stretching the graph horizontally if
0 < a < 1. Examples are given in Figure 2.15.
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Figure 2.15 Scalings x 	→ ax . (a) (i) y = x 2; (ii) y = [(1/2)x ]2; (iii) y = (2x )2. The second function has x
replaced by (1/2)x which has stretched the graph horizontally (the multiplication factor is between 0 and 1).
The third function has replaced x by 2x, which has squashed the graph horizontally (the multiplication factor
is greater than 1). (b) (i) y = 2x ; (ii) y = 2(1/2x ); (iii) y = 22x . The second function has replaced x by (1/2)x
which has stretched the graph horizontally. The third function has x replaced by 2x which has squashed the
graph horizontally.

Figure 2.16 Scalings f (x ) 	→ Af (x ). (a) y = 1/(x + 2); (b) y = 2/(x + 2) (c) y = 1/[3(x + 2)]. The second
graph has the function values multiplied by 2 stretching the graph vertically. The third graph has function
values multiplied by 1/3 squashing the graph vertically.

Scaling along the y -axis, f (x ) �→ Af (x )

Multiplying the function value by a numberA has the effect of stretching
the graph vertically if A > 1, or squashing the graph vertically if 0 <
A < 1. Examples are given in Figure 2.16.

Reflecting in the line y = x
If the graph of a function y = f (x) is reflected in the line y = x,
then it will give the graph of the inverse relation. Examples are given in
Figure 2.17.
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Figure 2.17 Reflections in the line y = x produce the inverse relation. (a) (i) y = 2x ; (ii) y = log2(x ). The
second graph is obtained from the first by reflecting in the dotted line y = x . The inverse is a function as there
is only one value of y for each value of x. (b) (i) y = x 2; (ii) y = ±√x . The second graph is found by reflecting
the first graph in the line y = x . Notice that y = ±√x is not a function as there is more that one possible
value of y for each value of x > 0.

In Chapter 1, we defined the inverse function as taking any image
back to its original value. Check this with the graph of y = 2x in
Figure 2.17(a): x = 1 gives y = 2. In the inverse function, y = log2(x),
substitute 2, which gives the result of 1, which is back to the original
value.

However, the inverse of y = x2, y ±√x, shown in Figure 2.17(b), is
not a function as there is more than one y value for a single value of x.

To understand this problem more fully, perform the following exper-
iment. On a calculator enter −2 and square it (x2) giving 4. Now take
the square root. This gives the answer 2, which is not the number we first
started with, and hence we can see that the square root is not a true inverse
of squaring. However, we get away with calling it the inverse because it
works if only positive values of x are considered. To test if the inverse
of any function exists, draw a line along any value of y = constant.
If, wherever the line is drawn, there is ever more than one x value
which gives the same value of y then the function has no inverse func-
tion. In this situation, the function is called a ‘many-to-one’ function.
Only ‘one-to-one’ functions have inverses. Figure 2.18 has examples
of functions with an explanation of whether they are ‘one-to-one’ or
‘many-to-one’.
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Figure 2.18 (a) (i) y = x 3. This function has only one x value for each value of y as any line y = constant
only cuts the graph once. In this case, the function is one-to-one and it has an inverse function (ii) y = 3

√
x is

the inverse function of y = x 3. (b) y = 1/x , x �= 0, has only one x value for each value of y as any line
y = constant only cuts the graph once. It therefore is one-to-one and has an inverse function – in fact, it is
its own inverse! (to see this reflect it in the line y = x and we get the same graph after the reflection).
(c) (i) y = x 4. This function has two values of x for each value of y when y is positive (e.g. the line y = 16 cuts
the graph twice at x = 2 and at x = −2). This shows that there is no inverse function as the function is
many-to-one. (ii) The inverse relation y = ± 4

√
x .

2.7 The
modulus
function,
y = |x | or
y = abs(x )

The modulus function y = |x|, often written as y = abs(x) (short for the
absolute value of x) is defined by

y =
{
x x � 0 (x positive or zero)
−x x < 0 (x negative)

The output from the modulus function is always a positive number or zero.

Example 2.5 Find | − 3|.
Here x = −3, which is negative, therefore

y = −x = −(−3) = +3.

An alternative way of thinking of it is to remember that the modulus
is always positive, or zero, so simply replacing any negative sign by a
positive one will give a number’s modulus or absolute value.

| − 5| = 5, | − 4| = 4, |5| = 5, |4| = 4.

The graph of the modulus function can be found from the graph of y = x
by reflecting the negative x part of the graph to make the function values
positive. This is shown in Figure 2.19.
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Figure 2.19 The graph of the modulus function y = |x | obtained from the graph of y = x . (a) The graph of
y = x with the negative part of the graph displayed as a dotted line. This is reflected about the x-axis to give
y = −x for x < 0. (b) The graph of y = |x |.

2.8 Symmetry
of functions and
their graphs

Functions can be classified as even, odd, or neither of these.

Even functions
Even functions are those that can be reflected in the y-axis and then result
in the same graph. Examples of even functions are (see Figure 2.20):

y = x2, y = |x|, y = x4.

As previously discussed, reflecting in the y-axis results from replacing x
by −x in the function expression and hence the condition for a function
to be even is that substituting −x for x does not change the function
expression, that is, f (x) = f (−x).

Example 2.6 Show that 3x2 − x4 is an even function. Substitute −x
for x in the expression f (x) = 3x2 − x4 and we get

f (−x) = 3(−x)2 − (−x)4 = 3(−1)2(x)2 − (−1)4(x)4 = 3x2 − x4.

So, we have found that f (−x) = f (x) and therefore the function is even.

Odd functions
Odd functions are those that when reflected in the y-axis result in an
upside down version of the same graph. Examples of odd functions are
(see Figure 2.21):

y = x, y = x3, y = 1

x

Reflecting in the y-axis results from replacing x by −x in the function
expression and the upside down version of the function f (x) is found by
multiplying the function by−1. Hence, the condition for a function to be
odd is that substituting −x for x gives −f (x), that is,

f (−x) = −f (x).
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Figure 2.20 y = x 2, y = |x |, and y = x 4 are even functions.

Figure 2.21 (a) y = x , (b) y = x 3, (c) y = 1/x are odd functions. If they are reflected in the y-axis they
result in an upside down version of the original graph.

Example 2.7 Show that 4x− (1/x) is an odd function. Substitute x for
−x in the expression f (x) = 4x − (1/x) and we get

f (−x) = 4(−x)− 1

−x = −4x + 1

x
= −

(
4x − 1

x

)
.

We have found that f (−x) = −f (x), so the function is odd.

2.9 Solving
inequalities

For linear and quadratic functions, y = f (x), we have discussed how to
find the values where the graph of the functions crosses the x-axis, that is
how to solve the equation f (x) = 0. It is often of interest to find ranges
of values of x where f (x) is negative or where f (x) is positive. This
means solving inequalities like f (x) < 0 or f (x) > 0, respectively.

Like equations, inequalities can be solved by looking for equivalent
inequalities. One way of finding these is by doing the same thing to both
sides of the expression. There is an important exception for inequalities
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that if both sides are multiplied or divided by a negative number then the
direction of the inequality must be reversed.

To demonstrate these equivalences begin with a true proposition

3 < 5 or ‘3 is less than 5’.

Add 2 on to both sides and it is still true

3+ 2 < 5+ 2, i.e. 5 < 7.

Subtract 10 from both sides and we get

5− 10 < 7− 10, i.e. − 5 < −3

which is also true.
Multiply both sides by−1 and if we do not reverse the inequality we get

(−1)(−5) < (−1)(−3), i.e. 5 < 3

which is false. However, if we use the correct rule that when multiplying
by a negative number we must reverse the inequality sign then we get:

(−1)(−5) > (−1)(−3), i.e. 5 > 3

which is true. This process is pictured in Figure 2.22.
Note that inequalities can be read from right to left as well as from left

to right: 3 < 5 can be read as ‘3 is less than 5’ or as ‘5 is greater than 3’
and so it can also be written the other way round as 5 > 3.

Using a number line to represent
inequalities
An inequality can be expressed using a number line as in Figure 2.23. In
Figure 2.23(a), the open circle indicates that 3 is not included in the set
of values, t < 3. In Figure 2.23(b), the closed circle indicates that −2 is
included in the set of values, x � −2. In Figure 2.23(c), the closed circle
indicates that the value 4.5 is included in the set y � 4.5.

Figure 2.22 On the number line, numbers to the left are less than numbers to their right: −5 < −3 . If the
inequality is multiplied by −1 we need to reverse the sign to get 5 > 3.

Figure 2.23 Representing inequalities on a number line.
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Figure 2.24 The solution to 2t + 3 < t − 6 is given by t < −9.

Figure 2.25 The solution to x + 5 � 4x − 10 is found to be x � 5, here represented on a number line.

Figure 2.26 The solution to 16− y > −5y is found to be y > −4, here pictured on a number line.

Example 2.8 Find a range of values for t , x, and y such that the
following inequalities hold

(a) 2t + 3 < t − 6
(b) x + 5 � 4x − 10
(c) 16− y > −5y

Solution

(a) 2t + 3 < t − 6 ⇔ 2t − t + 3 < −6 (subtract t from both
sides)

⇔ t < −6− 3 (subtract 3 from both sides)

⇔ t < −9.

This solution can be represented on a number line as in Figure 2.24.

(b) x + 5 � 4x − 10

⇔ +5 � 3x − 10 (subtract x from both sides)

⇔ 15 � 3x (add 10 to both sides)

⇔ 5 � x (divide both sides by 3)

⇔ x � 5.

This solution in represented in Figure 2.25.

(c) 16− y > −5y

⇔ 16 > −4y (add y to both sides)

⇔ −4 < y (divide by − 4and reverse the sign)

⇔ y > −4.

This solution is represented in Figure 2.26.

Representing compound inequalities
on a number line
We sometimes need a picture of the range of values given if two inequal-
ities hold simultaneously, for instance x � 3 and x < 5. This is analysed
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Figure 2.27 (a) x � 3 and x < 5. (b) x > 6 and x > 2 combines to give x > 6. (c) x < 5 or x � 7. (d) x < 2
or x � 0.

in Figure 2.27(a) and we can see that for both inequalities to hold simulta-
neously xmust lie in the overlapping region where 3 � x < 5. 3 � x < 5
is a way of expressing that x lies between 3 and 5 or is equal to 3. In the
example in Figure 2.27(b), x > 6 and x > 2, and for them both to hold
then x > 6.

Another possible way of combining inequalities is to say that one or
another inequality holds. Examples of this are given in Figure 2.27(c)
where x < 5 or x � 7 and this gives the set of values less than 5 or
greater than or equal to 7. Figure 2.27(d) gives the example where x < 2
or x � 0 and in this case it results in all numbers lying on the number
line, that is, x ∈ R.

Example 2.9 Find solutions to the following combinations of inequal-
ities and represent them on a number line.

(a) x + 3 > 4 and x − 1 < 5,
(b) 1− u < 3u+ 2 or u+ 2 � 6,
(c) t + 5 > 12 and −t > 24.

Solution

(a) x + 3 > 4 and x − 1 < 5 We solve both inequalities separately
and then combine their solution sets

x + 3 > 4 ⇔ x > 1 (subtracting 3 from both sides)

x − 1 < 5 ⇔ x < 6 (adding 1 to both sides)

So the combined inequality giving the solution is x > 1 and x < 6,
which from Figure 2.28(a) we can see is the same as 1 < x < 6.

(b) 1− u < 3u+ 2 or u+ 2 � 6
We solve both inequalities separately and then combine their
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Figure 2.28 Solutions to compound inequalities as given in Example 2.8 represented on a number line.

solution sets.

1− u < 3u+ 2

⇔ −1 < 4u (subtracting 2 from both sides)

⇔ −1

4
< u (dividing both sides by 4)

⇔ u > −1

4

u+ 2 � 6

⇔ u � 4 (subtracting 2 from both sides)

Combining the two solutions gives u > −1/4 or u � 4 and this
is represented on the number line in Figure 2.28(b) where we can
see that it is the same as u > −1/4.

(c) t + 5 > 12 and − t > 24

t + 5 > 12

⇔ t > 7 (subtracting 5 from both sides)

− t > 24

⇔ t < −24 (multiply both sides by −1 and reverse the
inequality sign)

Combining the two solutions sets gives t > 7 and t < −24 and we
can see from Figure 2.28(c) that this is impossible and hence there
are no solutions.

Solving more difficult inequalities
To solve more difficult inequalities, our ideas about equivalence are not
enough on their own, we also use our knowledge about continuous func-
tions. In the previous chapter, we defined a continuous function as one
that could be drawn without taking the pen off the paper. If we wish to
solve the inequality f (x) > 0 and we know that f (x) is continuous then
we can picture the problem graphically as in Figure 2.29. From the graph
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Figure 2.29 The graph of a continuous function. To solve for
f (x ) > 0, we first find the values where f (x ) = 0. On the graph these
are marked as a, b, c, and d. If the function is above the x-axis then
the function values are positive, if the function lies below the x-axis
then the function values are negative. The solution to f (x ) > 0 is
given by those values of x for which the function lies above the x-axis,
that is, y positive. For the function represented in the graph the
solution to f (x ) > 0 is x < a or b < x < c or x > d
.

Figure 2.30 Solving t 2 − 3t + 2 < 0 (Example 2.10).

we can see that to solve the inequality we need only find the values where
f (x) = 0 (the roots of f (x) = 0) and determine whether f (x) is positive
or negative between the values of x where f (x) = 0. To do this, we can
use any value of x between the roots. We are using the fact that as f (x)
is continuous then it can only change from positive to negative by going
through zero.

Example 2.10 Find the values of t such that t2 − 3t < −2.
Write the inequality with 0 on one side of the inequality sign

t2 − 3t < −2⇔ t2 − 3t + 2 < 0 (adding 2 to both sides)

Find the solutions to f (t) = t2−3t+2 = 0 and mark them on a number
line as in Figure 2.30.

Using the formula

t = −b ±
√
b2 − 4ac

2a

where a = 1, b = −3, and c = 2 gives

t = −3±√9− 8

2

⇔ t = 3± 1

2

⇔ t = 3+ 1

2
or t = 3− 1

2

⇔ t = 2 or t = 1

Substitute values for t which lie on either side of the roots of f (t) in
order to find the sign of the function between the roots. Here we choose
0, 1.5, and 3.
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When t = 0

t2 − 3t + 2 = (0)2 − 3(0)+ 2 = 0+ 0+ 2 = 2

which is positive, giving f (t) > 0.
When t = 1.5

t2 − 3t + 2 = (1.5)2 − 3(1.5)+ 2 = 2.25− 4.5+ 2 = −0.25

which is negative giving f (t) < 0.
When t = 3

t2 − 3t + 2 = (3)2 − 3(3)+ 2 = 9− 9+ 2 = 2

which is positive, giving f (t) > 0.
By marking the regions on the number line, given in Figure 2.30, with

f (t) > 0, f (t) < 0, or f (t) = 0 as appropriate we can now find the
solution to our inequality f (t) < 0 which is given by the region where
1 < t < 2.

Example 2.11 Find the values of x such that (x2 − 4)(x + 1) > 0.

Solution The inequality already has 0 on one side of the inequality sign
so we begin by finding the roots to f (x) = 0, that is,

(x2 − 4)(x + 1) > 0

Factorization gives

(x2 − 4)(x + 1) > 0⇔ (x − 2)(x + 2)(x + 1) = 0

⇔ x = 2, x = −2, or x = −1. So the roots are −2,−1, and 2. These
roots are pictured on the number line in Figure 2.31.

Substitute values for x which lie on either side of the roots of f (x) in
order to find the sign of the function between the roots. Here we choose
−3,−1.5, 0, and 2.5.

When x = −3

(x − 2)(x + 2)(x + 1) = 0 gives (−3− 2)(−3+ 2)(−3+ 1)

= (−5)(−1)(−2)

= −10, giving f (x) < 0.

When x = −1.5

(x − 2)(x + 2)(x + 1) gives (−1.5− 2)(−1.5+ 2)(−1.5+ 1)

= (−3.5)(0.5)(−0.5) = 0.875, giving f (x) > 0.

When x = 0

(x − 2)(x + 2)(x + 1) gives (0− 2)(0+ 2)(0+ 1)

= (−2)(2)(1) = −4, giving f (x) < 0.

Figure 2.31 Solving (x 2 − 4)(x + 1) > 0 (Example 2.11).
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When x = 2.5

(x − 2)(x + 2)(x + 1) gives (2.5− 2)(2.5+ 2)(2.5+ 1)

= (0.5)(4.5)(3.5) = 7.875, giving f (x) > 0.

These regions are marked on the number line as in Figure 2.31 and
the solution is given by those regions where f (x) > 0. Looking for the
regions where f (x) > 0 gives the solution as −2 < x < −1 or x > 2.

2.10 Using
graphs to find
an expression
for the function
from
experimental
data

Linear relationships
Linear relationships are the easiest ones to determine from experimental
data. The points are plotted on a graph and if they appear to follow a
straight line then a line can be drawn by hand and the equation can be
found using the method given in Section 2.2.

Example 2.12 A spring is stretched by hanging various weights on it
and in each case the length of the spring is measured.

Mass (kg) 0.125 0.25 0.5 1 2 3
Length (m) 0.4 0.41 0.435 0.5 0.62 0.74

Approximate the length of the spring when no weight is hung from it
and find the expression for the length in terms of the mass.

Solution First, draw a graph of the given experimental data. This is done
in Figure 2.32.

A line is fitted by eye to the data. The data does not lie exactly on a line
due to experimental error and due to slight distortion of the spring with
heavier weights. From the line we have drawn we can find the gradient
by choosing any two points on the line and calculating

change in y

change in x
.

Taking the two points as (0,0.28) and (2,0.58), we get the gradient as

0.58− 0.38

2− 0
= 0.2

2
= 0.1.

The point where it crosses the y-axis, that is, where the mass hung
on the spring is 0 can be found by extending the line until it crosses the
y-axis. This gives 0.38 m.

Finally, the expression for the length in terms of the mass of the attached
weight is given by y = mx + c, where y is the length and x is the mass,

Figure 2.32 The data for
length of spring against mass
of the weight as given in the
Example 2.11. The line is a
fitted by eye to the
experimental data and the
equation of the line can be
found using the method of
Section 2.2.
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m is the gradient and c is the value of y when x = 0, that is, where there
is no weight on the string. This gives

length = 0.1×mass+ 0.38

The initial length of the spring is 0.38 m.

Exponential relationships
Many practical relationships behave exponentially particularly those
involving growth or decay. Here it is slightly less easy to find the rela-
tionship from the experimental data, however, it is simplified by using a
log–linear plot. Instead of plotting the values of the dependent variable,
y, we plot the values of log10(y). If the relationship between y and time,
t , is exponential as we suspected then the log10(y) against t plot will be
a straight line.

The reason this works can be explained as follows. Supposing y = y0
10kt where y0 is the value of y when t = 0 and k is some constant; then,
taking the log base 10 of both sides, we get

log10(y) = log10(y010kt )

= log10(y0)+ log10(10kt ).

As the logarithm base 10 and raising to the power of 10 are inverse
operations, we get

log10(y) = log10(y0)+ kt
As y0 is a constant, the initial value of y, and k is a constant then we can

see that this expression shows that we shall get a straight line if log10(y)

is plotted against t . The constant k is given by the gradient of the line and
log10(y0) is the value of log10 y where it crosses the vertical axis. Setting
Y = log10(y), c = log10(y0)

Y = c + kt
which is the equation of the straight line.

Example 2.13 A room was tested for its acoustical absorption proper-
ties by playing a single note on a trombone. Once the sound had reached its
maximum intensity, the player stopped and the sound intensity was mea-
sured for the next 0.2 s at regular intervals of 0.02 s. The initial maximum
intensity at time 0 is 1.0. The readings were as follows:

Time(s) 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Intensity 1.0 0.63 0.35 0.22 0.13 0.08 0.05 0.03 0.02 0.01 0.005

Draw a graph of intensity against time and log(intensity) against
time and use the latter plot to approximate the relationship between the
intensity and time.

Figure 2.33 (a) Graph of
sound intensity against time
as given in Example 2.13.
(b) Graph of log10(intensity)
against time and a line fitted
by eye to the data. The line
goes through the points (0,0)
and (0.2,−2.2).

Solution The graphs are plotted in Figure 2.33 where, for the second
graph (b), we take the log10 (intensity) and use the table below:

Time 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
log10 0−0.22−0.46−0.66−0.89−1.1−1.3 −1.5 −1.7 −2 −2.3
(intensity)
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We can see that the second graph is approximately a straight line and
therefore we can assume that the relationship between the intensity and
time is exponential and could be expressed as I = I010kt . The log10 of
this gives

log10(I ) = log10(I0)+ kt .
From the graph in Figure 2.33(b), we can measure the gradient, k. To do
this we calculate

change in log10(intensity)

change in time

giving

−2.2− 0

0.2− 0
= −11 = k.

The point at which it crosses the vertical axis gives

log10(I0) = 0⇔ I0 = 100 = 1.

Therefore, the expression I = I010kt becomes

I = 10−11t .

Power relationships
Another common type of relationship between quantities is when there
is a power of the independent variable involved. In this case, if y = axn
where n could be positive or negative then the value of a and n can be
found by drawing a log–log plot.

This is because taking log10 of both sides of y = axn gives

log10(y) = log10(ax
n) = log10(a)+ n log10(x)

Replacing Y = log10(y) and X = log10(x) we get:

Y = log10(a)+ nX,

showing that the log–log plot will give a straight line, where the slope of
the line will give the power of x and the position where the line crosses
the vertical axis will give the log10(a). Having found a and n, they can
be substituted back into the expression

y = axn.

Example 2.14 The power received from a beacon antenna is though to
depend on the inverse square of the distance from the antenna and the
receiver. Various measurements, given below, were taken of the power
received against distance r from the antenna. Could these be used to justify
the inverse square law? If so, what is the constant, A, in the expression:

p = A

r2

Power received (W) 0.39 0.1 0.05 0.025 0.015 0.01
Distance from antenna (km) 1 2 3 4 5 6
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Figure 2.34 (a) Plot of power against distance (Example 2.14). (b) log10(power) against log10(distance). In
(b), the line is fitted by eye to the data, from which the slope of the graph indicates n in the relationship
P = Ar n. Two points lying on the line are (0,−0.38) and (0.7,−1.8).

Solution To test whether the relationship is indeed a power relationship,
we draw a log–log plot. The table of values is found below:

log10(power) −0.41 −1 −1.3 −1.6 −1.8 −2
log10(distance) 0 0.3 0.5 0.6 0.7 0.78

Graphs of power against distance and log10(power) against
log10(distance) are given in Figure 2.34(a) and (b).

As the second graph is a straight line, we can assume that the relation-
ship is of the form P = Arn where P is the power and r is the distance.
In which case, the log–log graph is

log10(P ) = log10(A)+ n log10(r).

We can measure the slope by calculating

change in log10(P )

change in log10(r)

and, using the two points that have been found to lie on the line, this gives

−1.8− (−0.38)

0.7− 0
= −2.03.

As this is very near to −2, the inverse square law would appear to be
justified.

The value of log10(A) is given from where the graph crosses the vertical
axis and this gives

log10(A) = −0.38 ⇔ A = 10−0.38 ⇔ A = 0.42.

So the relationship between power received and distance is approximately

P = 0.42r−2 = 0.42

r2
.
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2.11 Summary 1. The linear function y = mx + c has gradient (slope)m and crosses
the y-axis at y = c.

2. The gradient, m, of a straight line y = mx + c is given by:

m = change in y

change in x

and this is the same along the length of the line.
3. The equation of a line which goes through two points, (x1, y1) and

(x2, y2) is:

y − y1

y2 − y1
= x − x1

x2 − x1
where y2 �= y1.

4. The graph of the quadratic function y = ax2 + bx + c is called a
parabola. The graph crosses the y-axis (when x = 0) at y = c.

5. There are three possibilities for the roots of the quadratic equation
a x2 + bx + c = 0

Case I: two real roots when b2 − 4ac > 0,
Case II: only one unique root when b2 − 4ac = 0,

Case III: no real roots when b2 − 4ac < 0.
6. By considering the graphs of known functions y = f (x), for

instance, those given in Figure 2.10, and the following transfor-
mations, many other graphs can be drawn.
(a) Replacing x by x + a in the function y = f (x) results in

shifting the graph a units to the left.
(b) Replacing f (x) by f (x) + A results in shifting the graph A

units upwards.
(c) Replacing x by −x reflects the graph in the y-axis.
(d) Replacing f (x) by −f (x) reflects the graph in the x-axis

(turning it upside down).
(e) Replacing x by ax squashes the graph horizontally if a > 1

or stretches it horizontally if 0 < a < 1.
(f) Replacing f (x) byAf (x) stretches the graph vertically ifA >

1 or squashes it vertically if 0 < A < 1.
(g) Reflecting the graph of y = f (x) in the line y = x results in

the graph of the inverse relation.
7. A function may be even, or odd, or neither of these.

(a) An even function is one whose graph remains the same if
reflected in the y-axis, that is, when x 	→ −x. This can also
be expressed by the condition

f (−x) = f (x)
Examples of even functions are y = x2, y = |x|, and y = x4.

(b) An odd function is one which when reflected in the y-axis,
that is, when x 	→ −x, gives an upside down version of the
original graph (i.e. −f (x)). This can also be expressed as the
condition:

f (−x) = −f (x)
Examples of odd functions are y = x and y = x3.

8. Not all functions have true inverses. Only one-to-one functions have
inverse functions. A function is one-to-one if any line y = constant
drawn on the graph y = f (x) crosses the function only once. This
means there is exactly one value of x that gives each value of y.
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9. Simple inequalities can be solved by finding equivalent inequalities.
Inequalities remain equivalent if both sides of the inequality have the
same expression added or subtracted. They may also be multiplied
or divided by a positive number but if they are multiplied or divided
by a negative number then the direction of the inequality sign must
be reversed.

10. To solve the inequalities f (x) > 0, f (x) < 0, f (x) � 0, or f (x) �
0, where f (x) is a continuous function, solve f (x) = 0 and choose
any value for x around the roots to find the sign of f (x) for each
region of values for x.

11. Graphs can be used to find relationships in experimental data. First,
plot the data then:
(a) If the data lies on an approximate straight line then draw a

straight line through the data and find the equation of the line.
(b) If it looks exponential, then take the log of the values of

the dependent variable and draw a log–linear graph. If this
looks approximately like a straight line then assume there is
an exponential relationship y = y010kt , where k is given by
the gradient of the line and log10(y0) is the value where the
graph crosses the vertical axis.

(c) If the relationship looks something like a power relationship,
y = Axn, then take the log of both sets of data and draw
a log–log graph. If this is approximately like a straight line,
then assume there is a power relationship and n is given by the
gradient of the line and log10 A is the value where the graph
crosses the vertical axis.

2.12 Exercises

2.1. Sketch the graphs of the following:

(a) y = 3x − 1, (b) y = 2x + 1,
(c) y = −5x, (d) y = 1

2x − 3.

In each case state the gradient of the line.

2.2. A straight line passes through the pair of points given.
Find the gradient of the line in each case.

(a) (0, 1), (1, 4) (b) (1, 1), (2,−4)
(c) (−1,−1), (6, 3) (d) (1, 4), (3, 4)

2.3. A straight line graph has gradient −5 and passes
through (1,6). Find the equation of the line.

2.4. In Figure 2.35 are various graphs drawn to the scale
1 unit = 1 cm. By finding the gradients of the lines
and where they cross the y-axis, find the equation of
the line.

Figure 2.35 Straight line graphs for
Exercise 2.4.

2.5. A straight line passes through the pair of points given.
Find the equation of the line in each case.

(a) (0, 1), (−1, 4) (b) (1, 1), (−2,−4)
(c) (1, 1), (6, 3) (d) (−1,−4), (−3,−4)
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2.6. Find the values of x such that f (x) = 0 for the
following functions
(a) f (x) = x2 − 4,
(b) f (x) = (2x − 1)(x + 1),
(c) f (x) = (x − 3)2,
(d) f (x) = (x − 4)(x + 4),
(e) f (x) = x2 + x − 6,
(f) f (x) = x2 + 7x + 12,
(g) f (x) = 12x2 − 12x − 144.
Using the fact that the peak or trough in the parabola,
y = f (x), occurs at a value of x half-way between
the values where f (x) = 0 then sketch graphs of the
above quadratic functions.

2.7. By considering transformations of simple functions
sketch graphs of the following:

(a) y = 1
x−(1/2) , (b) y = 3.2−x ,

(c) y = 1
2x

3, (d) y = −3(1/2)x ,

(e) y = (2x − 1)2 (f) y = (2x − 1)2 − 2,

(g) y = log2(x + 2), (h) y = 6− 2x ,

(i) y = 4x − x2.

2.8. Consider reflections of the graphs given in Figure 2.36
to determine whether they are even, odd, or neither of
these.

Figure 2.36 Graphs of functions for
Exercise 2.7.

2.9. By substituting x 	→ −x in the following functions
determine whether they are odd, even, or neither of
these:
(a) y = −x2 + 1

x2 where x �= 0,

(b) y = |x3| − x2,

(c) y = −1
x
+ log2(x) where x > 0,

(d) y = −1
x
+ x + x5,

(e) y = 6+ x2,

(f) y = 1− |x|.
2.10. Draw graphs of the following functions and draw the

graph of the inverse relation in each case. Is the inverse
a function?

(a) f (t) = −t + 2, (b) g(x) = (x − 2)2,

(c) h(w) = 4

w + 2
.

2.11. Find the range of values for which the following
inequalities hold and represent them on a number line.

(a) 10t − 2 � 31, (b) 10x − 3x > −2,
(c) 3− 4y � 11+ y, (d) t + 15 < 6− 2t .

2.12. Find the range of values for which the following hold
and represent them on a number line:
(a) x − 2 > 4 or 1− x < 12,
(b) 4t + 2 � 10 and 3− 2t < 1,
(c) 3u+ 10 > 16 or 3− 2u > 13.

2.13. Solve the following inequalities and represent the
solutions on a number line:

(a) x2 − 4 < 5, (b) (2x − 3)(x + 1)(x − 5) > 0,
(c) t2 + 4t � 21, (d) 4w2 + 4w − 35 � 0.

2.14. For the following sets of data, y is thought to depend
exponentially on t . Draw log–linear graphs in each case
and find constants A and k such that y = A10kt .
(a)

y 75 48 30 19 12 7
t 1 2 3 4 5 6

(b)

y 2 4.2 8.5 18 35 73
t 0.1 0.2 0.3 0.4 0.5 0.6

2.15 An experiment measuring the change in volume of a
gas as the pressure is decreased gave the following
measurements:

P(105 N m−2) 1.5 1.4 1.3 1.2 1.1 1
V (m3) 0.95 1 1.05 1.1 1.16 1.24

If the gas is assumed to be ideal and the expansion is
adiabatic then the relationship between pressure and
volume should be:

pV γ = C
where γ and C are constants and p is the pres-
sure and V is the volume. Find reasonable values
of γ and C to fit the data and from this expression
find the predicted volume at atmospheric pressure,
p = 1.013× 105 N m−2.
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and the art of the
convincing
argument

3.1 Introduction Mathematics is used by engineers to solve problems. This usually involves
developing a mathematical model. Just as when building a working model
aeroplane we would hope to include all the important features, the same
thing applies when building a mathematical model. We would also like to
indicate the things we have had to leave out because they were too fiddly
to deal with, and also those details that we think are irrelevant to the
model. In the case of a mathematical model the things that have been left
out are listed under assumptions of the model. To build a mathematical
model, we usually need to use scientific rules about the way things in the
world behave (e.g. Newton’s laws of motion, conservation of momentum
and energy, Ohm’s law, Kirchoff’s laws for circuits, etc.) and use num-
bers, variables, equations, and inequalities to express the problem in a
mathematical language.

Some problems are very easy to describe mathematically. For instance:
‘Three people sitting in a room were joined by two others, how many
people are there in the room in total?’ This can be described by the sum
3+ 2 =? and can be solved easily as 3+ 2 = 5.

The final stage of solving the problem is to translate it back into the
original setting – the answer is: ‘there are 5 people in the room in total’.

Assumptions were used to solve this problem. We assumed that no
one else came in or left the room in the meantime and we made general
assumptions about the stability of the room, for example, the building
containing it did not fall down. However, these assumptions are so obvious
that they do not need to be listed. In more complex problems it is necessary
to list important assumptions as they may have relevance as to the validity
of the solution.

Another example is as follows: ‘There are three resistors in series in a
circuit, two of the resistors are known to have resistance of 3 and 4 ohm,
respectively. The voltage source is a battery of 12 V and the current is
measured as 1 A. What is the resistance of the third resistor?’

Figure 3.1 A simple circuit.

To help express the problem in a mathematical form we may draw a
circuit diagram as in Figure 3.1.

The problem can be expressed mathematically by using Ohm’s law
and the fact that an equivalent resistance to resistances in series is given
by the sum of the individual resistances. If x is the unknown value of the
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third resistance and V = RI where R = R1 + R2 + R3, we obtain:

12 = (3+ 4+ x)1
The expression of the mathematical problem has taken the form of an

equation where we now need to find x, the value of the third resistance.
The main assumptions that have been used to build this mathematical

model are:

(1) There are such things as pure resistors that have no capacitance or
inductance.

(2) Resistances remain constant and are not affected by any possible
temperature changes or other environmental effects.

(3) The battery gives a constant voltage that does not deteriorate with
time.

(4) The battery introduces no resistance to the circuit.

These assumptions are simplifications that are acceptable because
although the real world cannot behave with the simplicity of the
mathematical model, the amount of error introduced by making these
assumptions is small.

Once we have the solution of a mathematical model then it should
be tested against a real-life situation to see whether the model behaves
reasonably closely to reality. Once the model has been accepted then it
can be used to predict the behaviour of the system for input values other
than those that it has been tested for.

The stages in solving a problem are as follows:

(1) Take to real problem and express it as a mathematical one using any
necessary scientific rules and assumptions about the behaviour of
the system and using letters to represent any unknown quantities.
Include an account of any important assumptions and simplifications
made.

(2) Solve the mathematical problem using your knowledge of
mathematics.

(3) Translate the mathematical solution back into the setting of your
original problem.

(4) Test the model solutions for some values to check that it behaves
like the real-life problem.

Most mathematical problems are expressed by using equations, or
inequalities, differential or difference equations, or by expressing a prob-
lem geometrically or a combination of all of these. We might need to
incorporate a random element which results in the need to use a prob-
abilistic model. In many of the following chapters we will look at the
modelling process in more detail as we come across new mathematical
tools and the situations in which they are used. To perform the entire
modelling cycle properly, we need to be able to test our results in a real-
life situation in order to reconsider assumptions used in the model. This
would require access to engineering situations and tools. For this reason,
engineering mathematics books tend to concentrate on those models that
are commonly used by engineers. Many of the applied problems pre-
sented in the following chapters however do present an opportunity to
move from an English language description of a problem to a mathemati-
cal language description of a problem, which is an important step in the
modelling process.

In this chapter, we will look at translating a problem into mathematical
language and, for the main part of the chapter, we concentrate on solving
a mathematical problem and the reasoning that is involved in so doing.
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To solve the problem using your knowledge of mathematics, we need to
use the ideas of mathematical statements and how to decide whether, and
express the fact that, one statement leads logically on to the next. We
shall mainly use examples of solving equations and inequalities although
the same ideas apply to the solving of all problems.

3.2 Describing
a problem in
mathematical
language

The stages in expressing a problem in mathematical language can be
summarized as:

(1) Assign letters to represent the unknown quantities.
(2) Write down the known facts using equations and inequalities, and

using drawings and diagrams where necessary.
(3) Express the problem to be solved mathematically.

This is not a simple process because it involves a great deal of inter-
pretation of the original problem. It is useful to try to limit the number
of unknowns used as much as possible, or the problem may appear more
difficult than necessary.

Example 3.1 Express the following problem mathematically: A web
development company employs a freelance web designer and a freelance
graphic designer to put up listings for new businesses on to their virtual
business park website. Business customers are charged e200 per year
for a listing. The fixed costs of the web development company amount
to e2000 per week over 52 weeks in the year. The web designer charges
e80 per listing and the graphic designer e100 per listing and both can
prepare these at the rate of 2.4 listings in a day. The freelancers work for
up to 200 days per year. How many listings does the company need in
the first year to break even?

Solution The mathematical problem can be expressed by firstly assign-
ing letters to some of the unknown quantities and then write down all the
known facts as equations or inequalities.

First assign letters: Total number of listings of businesses on the park
in the first year is L. LW is the number of listings prepared by the web
designer andLG is the number of listings prepared by the graphic designer.
The costs are K per year and the profit is P . The known facts can be
expressed as follows:

L = LW + LG

This expresses the fact that the total number of listings L is made up of
those prepared by the web designer and those prepared by the graphic
designer. As there are up to 200 working days in a year and they both do
a maximum of 2.4 listings per day.

0 � LW � 480, 0 � LG � 480

The costs,K , are; fixed costs of 2000× 52, plus the cost of the freelance
web designer at 80LW, plus the cost of the freelance graphic designer at
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100LG. This can be expressed as:

K = 104 000+ 80LW + 100LG.

We need to relate the profit to the other variables. As the profit is 200
multiplied by the number of jobs minus the total costs, we get:

P = 200L−K

Finally, we must express the mathematical problem that we would like to
solve. For the web development business to make a profit in the first year
then the profit must be positive, hence we get the problem expressed as:
Find the minimum L such that P > 0.

Example 3.2 Express the following in mathematical language: A car
brake pedal, as represented in Figure 3.2(a) is pivoted at point A. What
is the force on the brake cable if a constant force of 900 N is applied by
the driver’s foot and the pedal is stationary.

Solution First, we assign letters to the unknowns. Let F = the force on
the brake cable.

In order to write down the known facts we need to consider what
scientific laws can be used. As the force applied on the pedal initially
provides a turning motion then we know to use the ideas of moments.
The moment of a force about an axis is the product of the force F and its
perpendicular distance, x, to the line of action of the force. Furthermore,
as the pedal is now stationary, then the moments must be balanced so the
clockwise moment must equal the anti-clockwise moment.

To use this fact, we need to use two further measurements, currently
unknown, the perpendicular distance from the line of action of the force
provided by the driver to the axis, A. This is marked asx1 m on the diagram
in Figure 3.2(b). The other distance is the perpendicular distance from
the line of action of the force on the cable to the axis A. This is marked
as x2 m in Figure 3.2(b).

We can now write down the known facts, involving the unknowns
x1, x2, and F . From the right angle triangle containing x1, we have

Figure 3.2 (a) A representation of a car brake pedal. (b) The same diagram as (a) with some unknown
quantities marked and triangles used to formulate the problem.
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(converting 210 mm = 0.21 m),

cos(40◦) = x1

0.21

From the right angle triangle containing x2, we have (converting 75 mm =
0.075 m),

cos(15◦) = x2

0.075

The moments of the forces can now be calculated and equated. The clock-
wise moment is 800x1 and the anti-clockwise moment is given by Fx2
and hence we have:

800x1 = Fx2

Finally, we need to express the problem we are trying to solve. In this
case it is simply ‘what is F ?’.

Note that in both Examples 3.1 and 3.2, certain modelling assumptions
had been used in order to formulating the ‘natural language’ description
of the problem that we were given. For instance, it is probable that the
business park listings for the business park in Example 3.1 are not all
identical and therefore average figures for times and costings have been
used. Similarly, in Example 3.2 no mention has been made of friction
would provide an extra force to consider. Here we have only consid-
ered the transition from natural language and accompanying diagrams
to the mathematical problem. We have implicitly assumed that the mod-
elling process can be performed in two stages. From real-life problem
to a natural language description which incorporates some simplifying
assumptions, and then from there to a mathematical description. In reality
modelling a system is much more involved. We would probably repeat
stages in this process if we decided that the mathematical description was
too complex and return to the real-life situation in order to make new
assumptions.

We are now in a position to discuss mathematical statements and how
to move from the statement of the problem to finding the desired solution.

3.3
Propositions
and predicates

When we first set up a problem to be solved, we write down mathematical
expressions like:

2+ 3 =? (3.1)

and

12 = (3+ 4+ x) · 1 (3.2)

These are mathematical statements with an unknown value. Statements
containing unknowns (or variables) are called predicates. A predicate can
be either true or false depending on the value(s) substituted into it. When
values are substituted into a predicate it becomes a simple proposition. If
in Equation (3.1) we substitute 5 for the question mark we get:

2+ 3 = 5 ⇔ 5 = 5 which is true.

If, however, we substitute 6 we get:

2+ 3 = 6 ⇔ 5 = 6 which is false.

2+ 3 = 5 and 2+ 3 = 6 are examples of propositions. These are simple
statements that can be assigned as either true or false. They contain no
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unknown quantities. Notice that if we simply rewrite a proposition or
predicate we use ‘≡’ or ‘⇔’ to mean ‘is equivalent to’ or ‘is the same as’.

In Equation (3.2) if we substitute 4 for x we get:

12 = 11 which is false

but, if we substitute 5 for x we get

12 = 12 which is true.

Example 3.3 Assign true or false to the following:

(a) (3x − 2)(x + 5) = 10 where x = 1
(b) 5x2 − 2x + 1 = 25 where x = −2
(c) y > 5t + 3 where y = 2 and t = −3

Solution

(a) Substitute x = 1 in the expression and we get:

(3 · 1− 2)(1+ 5) = 10

⇔ 1(6) = 10

⇔ 6 = 10 which is false.

(b) Substituting x = −2 into 5x2 − 2x + 1 = 25 gives

5(−2)2 − 2(−2)+ 1 = 25

⇔ 20+ 4+ 1 = 25

⇔ 25 = 25 which is true.

(c) Substituting y = 2 and t = −3 into y > 5t + 3 gives

2 > 5(−3)+ 3

⇔ 2 > −15+ 3

⇔ 2 > −12 which is true.

Like functions, predicates have a domain which is the set of all allowed
inputs to the predicate. For instance, the predicate 1/(x − 1) = 1, where
x ∈ R, has the restriction that x 
= 1, as letting x equal 1 would lead to
an attempt to divide by 0, which is not defined.√

x − 2 = 25 where x ∈ R has the restriction that x � 2, as values of
x less than 2 would lead to an attempt to take the square root of a negative
number, which is not defined.

3.4 Operations
on propositions
and predicates

Consider the problem given in Example 3.1. Notice that the conditions
that we discovered when writing down the known facts must all be true
in any solution that we come up with. If any one of these conditions is
not true then we cannot accept the solution. The first condition must be
true and the second and the third, etc.

Here we have an example of an operation on predicates. In Chapter 1,
we defined an operation on numbers is a way of combining two numbers
to give a single number. ‘And’, written as ∧ is an operation on two
predicates or propositions which results a single predicate or proposition.
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Therefore, to express the fact that both L � 0 and L = LW+LG we can
write

L � 0 ∧ L = LW + LG

and the compound statement is true if each part is also true.
As propositions can only be either true (T) or false (F), all possible

outcomes of the operation can easily be listed in a small table called a
truth table. The truth table for the operation of ‘and’ is given in Table 3.1.
p and q represent any two propositions, for instance, for some given
values of L, LW, and LG, p and q could be defined by:

p: ‘L � 0’

q: ‘L = LW + LG’

Table 3.1 Truth table
for the operation ‘and’.
This table can also be
expressed by
T ∧ T ⇔ T ,
T ∧ F ⇔ F ,
F ∧ T ⇔ F ,
F ∧ F ⇔ F . T stands
for ‘true’ and F stands
for ‘false’

p q p ∧ q

T T T
T F F
F T F
F F F

Another important operation is that of ‘or’. One example of the use of
this operation comes about by solving a quadratic equation. One way of
solving quadratic equations is to factorize an expression which is equal
to 0.

To solve x2 − x − 6 = 0, the left-hand side of the equation can be
factorized to give (x − 3)(x + 2) = 0.

Now we use the fact that for two numbers multiplied together to equal
0 then one of them, at least, must be 0, to give:

(x − 3)(x + 2) = 0 ⇔ (x − 3) = 0 or (x + 2) = 0

‘or’ can be written using the symbol ∨. The compound statement is true
if either x − 3 = 0 is true or if x + 2 = 0 is true. Therefore, to express
the statement that either x − 3 = 0 or x + 2 = 0 we can write:

(x − 3) = 0 ∨ (x + 2) = 0

∨ is also called ‘non-exclusive or’ because it is also true if both parts of
the compound statement are true. This usage is unlike the frequent use of
‘or’ in the English language, where it is often used to mean a choice, for
example, ‘you may have either an apple or a banana’ implies either one
or the other but not both. This everyday usage of the word ‘or’ is called
‘exclusive or’.

The truth table for ‘or’ is given in Table 3.2.

Table 3.2 Truth table
for ‘or’, This table can
also be expressed by
T ∨ T ⇔ T ,
T ∨ F ⇔ T ,
F ∨ T ⇔ T ,
F ∨ F ⇔ F

p q p ∨ q

T T T
T F T
F T T
F F F

Table 3.3 The truth
table for ‘not’, ¬. This
table can also be
expressed by
¬T ⇔ F , ¬F ⇔ T

p ¬p

T F
F T

A further operation is that of ‘not’ which is represented by the
symbol ¬. For instance, we could express the sentence ‘x is not bigger
than 4’ as ¬(x > 4).

The truth table for ‘not’ is given in Table 3.3.

Example 3.4 Assign truth values to the following:

(a) x − 2 = 3 ∧ x2 = 4 when x = 2
(b) x − 2 = 3 ∨ x2 = 4 when x = 2
(c) ¬(x − 4 = 0) when x = 4
(d) ¬((a − b) = 4) ∨ (a + b) = 2 when a = 5, b = 3

Solution

(a) x − 2 = 3 ∧ x2 = 4 when x = 2

Substitute x = 2 into the predicate, x − 2 = 3 ∧ x2 = 4 and we get
2− 3 = 3 ∧ 22 = 4.
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The first part of the compound statement is false and the second part
is true. Overall, as F ∧ T ⇔ F , the proposition is false.

(b) x − 2 = 3 ∨ x2 = 4 when x = 2

Substitute x = 2 into the predicate and we get

2− 2 = 3 ∨ 22 = 4

The first part of the compound statement is false and second part is
true. As F ∨ T ⇔ T , the proposition is true.

(c) ¬(x − 4 = 0) when x = 4

When x = 4 the expression becomes:

¬(4− 4 = 0) ⇔ ¬T ⇔ F

(d) ¬((a − b) = 4) ∨ (a + b) = 2 when a = 5, b = 3

¬((a − b) = 4) when a = 5, b = 3 gives

¬(5− 3 = 4) ⇔ ¬F ⇔ T

(a + b) = 2 when a = 5, b = 3 gives

(5+ 3) = 2 ⇔ 8 = 2 ⇔ F

Overall, T ∨ F ⇔ T so ¬((a − b) = 4) ∨ (a + b) = 2 when a = 5,
b = 3 is true.

Example 3.5 Represent the following inequalities on a number line:

(a) x > 2 ∧ x � 4
(b) x < 2 ∨ x � 4
(c) ¬(x < 2)

Solution

(a) x > 2 ∧ x � 4. To represent the operation of ‘and’, find where
the two regions overlap (Figure 3.3a). x > 2 ∧ x � 4 can also be
represented by 2 < x � 4.

(b) x < 2∨ x � 4. To represent the operation of ∨, ‘or’, take all points
on the first highlighted region as well as all points in the second
highlighted region and any end points (Figure 3.3b).

(c) ¬(x < 2). To represent the operation of ‘not’ take all the points on
the number line not in the original region (Figure 3.3c). This can
also be expressed by x � 2.

3.5 Equivalence We can now express an initial problem in terms of a predicate, probably an
equation, a number of equations, or a number of inequalities. However, to
solve the problem we need to be able to move from the original expression
of the problem toward the solution. In Chapter 3 of the Background
Mathematics Notes, available on the companion website for this book,
we discussed how to solve various types of equations and introduced the
idea of equivalent equations. In Chapter 2 we also looked at equivalent
inequalities. In both cases we used the idea that in moving from one
expression to an equivalent expression the set of solutions remained the
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Figure 3.3 The operations (a)∧ (and); (b) ∨ (or); and (c) ¬ (not).

same. In general, two predicates are equivalent if they are true for exactly
the same set of values. We use our knowledge of mathematics to determine
what operations can be performed that will maintain that equivalence.
The rule that can be used to move from one equation to another was
given as: ‘Equations remain equivalent if the same operation is performed
to both sides of the equation’. In the case of quadratic equations we
can also use a formula for the solution or use a factorization and the
fact that:

ab = 0 ⇔ a = 0 or b = 0.

In passing from one equation to an equivalent equation we should use the
equivalence symbol. This then makes a mathematical sentence:

x + 5 = 3

⇔ x = 3− 5

can be read as ‘The equation x + 5 = 3 is equivalent to x = 3− 5’.
In all but the most obvious cases, it is a good practice to list a short

justification for the equivalence by the side of the expression.

x + 5 = 3

⇔ x = 3− 5 (subtracting 5 from both sides)

⇔ x = −2.

Because of the possibility of making a mistake, the solution(s) should
be checked by substituting the values into the original expression of the
problem. To check, substitute x = −2 into the original equation giving
−2+ 5 = 3 which is true, indicating that the solution is correct.

Example 3.6 Solve the following equation:

x − 3 = 5− 2x.
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Solution

x − 3 = 5− 2x

⇔ x + 2x − 3 = 5 (adding 2x to both sides)

⇔ 3x = 8 (adding 3 to both sides)

⇔ x = 8
3 (dividing both sides by 3).

Check by substituting x = 8/3 into the original equation:

8
3 − 3 = 5− 2× 8

3

⇔ − 1
3 = − 1

3 , which is true.

We looked at methods of solving inequalities in Chapter 2. The rules
for finding equivalent inequalities were: ‘Perform the same operation to
both sides’; but in the case of a negative number when multiplying or
dividing the direction of the inequality sign must be reversed. To solve
more complex inequalities, such as f (x) > 0, f (x) < 0, where f (x) is
a continuous but non-linear function, then we solve f (x) = 0 and then
use a number line to mark regions where f (x) is positive, negative or
zero. The important thing in the process is to present a short justification
of the equivalence. Finally, when the set of solutions has been found,
some of the solutions can be substituted into the original expression of
the problem in order to check that no mistakes have been made.

Example 3.7 Solve the following inequalities:

(a) 3x − 1 < 6x + 2
(b) x2 − 5x > −6

Solution

(a) 3x − 1 < 6x + 2

⇔ −1 < 6x + 2− 3x (subtracting 3x from both sides)

⇔ −1− 2 < 3x (subtracting 2 from both sides)

⇔ −3

3
<

3x

3
(dividing both sides by 3)

⇔ −1 < x

⇔ x > −1

Check: Test a few values from the set x > −1 and substitute into

3x − 1 < 6x + 2

Try x = 0: this gives −1 < 2⇔ T

Try x = 2: this gives 3(2)− 1 < 6(2)+ 2⇔ 5 < 14⇔ T

(b) x2 − 5x > −6

Write the inequality with 0 on one side of the inequality sign

x2 − 5x > −6 ⇔ x2 − 5x + 6 > 0 (adding 6 to both sides)

Find the solutions to f (x) = 0 where f (x) = x2 − 5x + 6 and mark
them on a number line as in Figure 3.4.

x2 − 5x + 6 = 0 ⇔ x = 5±√25− 24

2
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Figure 3.4 Solving x 2 − 5x + 6 > 0.

(using the formula for solution of quadratic equations)

⇔ x = 5+ 1

2
∨ x = 5− 1

2

⇔ x = 3 ∨ x = 2

Using the fact that the function is continuous, we can substitute values
for x which lie on either side of the roots of f (x) = 0 in order to find the
sign of the function in that region. Here, we choose 0, 2.5, and 4 and find
that

when x = 0: f (x) = x2 − 5x + 6 = 6, so f (x) > 0

when x = 2.5: f (x) = x2 − 5x + 6 = 6.25− 12.5+ 6

= −0.25, so f (x) < 0

when x = 4: f (x) = x2 − 5x + 6 = 16− 20+ 6 = 2,

so f (x) > 0

These regions are marked on the number line as in Figure 3.4 and this
gives the solution to f (x) > 0 as x < 2 ∨ x > 3.

Check: A check is to substitute some values from the solution set x <
2 ∨ x > 3 into the original predicate x2 − 5x > −6

Substitute x = 1, this gives 1− 5 > −6⇔ −4 > −6⇔ T

Substitute x = 5, this gives 25− 25 > −6⇔ 0 < −6⇔ T

It therefore appears that this solution is correct.

3.6 Implication We previously described one method of finding equivalent equations as
that of ‘doing the same thing to both sides’. This was rather simplistic but a
useful way of seeing it at the time. There are only certain things that can be
‘done to both sides’ like adding, subtracting, multiplying by a non-zero
expression, or dividing by a non-zero expression that always maintain
equivalence. There are also many operations that can be performed to
both sides of an equation which do not give an equivalent equation but
give an equation with the same solutions and yet more besides. In this
situation we say that the first equation implies the second equation. The
symbol for implies is⇒.

An example of implication is given by squaring both sides of the
equation

x − 2 = 2⇒ (x − 2)2 = 4

The first predicate x − 2 = 2 has only one solution, x = 4, the second
predicate has two solutions x = 4 and x = 0. By squaring the equation
we have found a new equation which includes all the solutions of the first
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equation, and has one more beside. Implication is expressed in English
by using phrases like ‘If . . . then . . .’.

An expression involving an implication cannot always be turned the
other way around in the same way as those involving equivalence can.
An example of this is given by the following statement. It is true that: ‘If
I am going to work then I take the car’ which can be written using the
implication symbol as:

‘I am going to work’ ⇒ ‘I take the car’

However, it is not true that:

‘If I take the car then I am going to work’

This is because there are more occasions when I take the car than simply
going to work.

More examples are:

‘I only clean the windows if it is sunny’

‘I am cleaning the windows’ ⇒ ‘it is sunny’

This does not mean that ‘If it is sunny then I clean the windows’, as there
are some sunny days when I have to go to work or just laze in the garden,
or I am on holiday.

An implication sign can be written, and read, from left to right

‘It is sunny’⇐ ‘I am cleaning the windows’

which I can still read as ‘I am cleaning the windows therefore it is sunny’
or I could try rearranging the sentence as ‘Only if it is sunny will I clean
the windows’.

Figure 3.5 P is the solution
set of p, Q is the solution set
of q. p ⇒ q means that
P ⊆ Q. D is the domain of p
and q.

The various ways of expressing these sentiments can get quite involved.
The important point to remember is that p⇒ q means that q must be true
for all the occasions that p is true, but q could be true on more occasions
besides. Going back to equations or inequalities:

p⇒ q

means that the solution set, P, of p is a subset of the solution set, Q, of q.
This is pictured in Figure 3.5.

We can now see that for two equations or inequalities to be equivalent
then p ⇒ q and q ⇒ p. This means that their solution sets are exactly
the same (Figure 3.6).

Figure 3.6 P is the solution
set of p and Q is the solution
set of q. Then p ⇔ q means
that P = Q.

Example 3.8 Fill in the correct symbol in each case either⇒,⇐ or⇔
(a) x2 − 9 = 0 . . . x = −3

(b) x = − 1
2 . . . (1/(2x − 5)(x + 1)) = − 1

3 where x ∈ R, x 
= 5,
x 
= −1

(c) (x − 3)(x − 1) > 0 · · · x > 3 ∨ x < 1
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Solution

(a) x2 − 9 = 0 · · · x = −3

Solving x2 − 9 = 0 gives

x2 − 9 = 0 ⇔ (x − 3)(x + 3) = 0

⇔ x = 3 ∨ x = −3.

Hence, −3 is only one of the solutions of the first equation so the correct
expression is

x2 − 9 = 0⇐ x = −3.

(b) x = − 1
2 . . . (1/(2x − 5)(x + 1)) = − 1

3 where x ∈ R, x 
= 5,
x 
= −1

Solving

1

(2x − 5)(x + 1)
= −1

3

gives

1

(2x − 5)(x + 1)
= −1

3
⇔ −3 = (2x − 5)(x + 1)

(multiplying both sides by (2x−5)(x + 1) and as x 
= 5, x 
= 1)

⇔ −3 = 2x2 − 3x − 5 (multiplying out the brackets)

⇔ 2x2 − 3x − 2 = 0

(adding 3 on to both sides of the equation)

⇔ x = 3±√9+ 16

4

(using the quadratic formula to solve the equation)

⇔ x = 3± 5

4

⇔ x = 2 ∨ x = − 1
2

The second predicate

1

(2x − 5)(x + 1)
= −1

3

has more solutions than the first predicate x = − 1
2 . Thus, the correct

expression is:

x = −1

2
⇒ 1

(2x − 5)(x + 1)
= −1

3

where x ∈ R, x 
= 5, x 
= −1.

(c) (x − 3)(x − 1) > 0 · · · x > 3 ∨ x < 1

Solve the inequality on the left by firstly solving f (x) = 0:

(x − 3)(x − 1) = 0 ⇔ x = 3 ∨ x = 1
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Choosing values on either side of the roots, for example 0,2,4 gives

f (0) = (−3)(−1) = 3, i.e. f (x) > 0

f (2) = (−1)(1) = −1, i.e. f (x) < 0

f (4) = (1)(3), i.e. f (x) > 0

This is then marked on a number line as in Figure 3.7.Figure 3.7 Solving
(x − 3)(x − 1) > 0. As the solution to (x − 3)(x − 1) > 0 is x < 1 ∨ x > 3; we have

therefore shown that (x − 3)(x − 1) > 0⇔ x > 3 ∨ x < 1.

3.7 Making
sweeping
statements

In Chapter 1 of the Background Mathematics Notes, available on the
companion website for this book, we made some statements about num-
bers which we stated were true for all real numbers. Some of these were
the commutative laws:

a + b = b + a and ab = ba

and the distributive law:

a(b + c) = ab + bc.

There is a symbol which stands for ‘for all’ or ‘for every’ which allows
these laws to be expressed in a mathematical shorthand

∀a, b ∈ R a + b = b + a
∀a, b ∈ R ab = ba
∀a, b, c ∈ R a(b + c) = ab + bc.

Rules, such as the commutative law, are axioms for numbers and need
not be proved true. However, more involved expressions, such as

∀a, b ∈ R (a − b)(a + b) = a2 − b2

need to be justified.
If the symbol ‘for all’ is used with a predicate about its free variable

then it becomes a simple proposition which is either true or false. To show
that an expression is true we use our knowledge of mathematics to write
equivalent expressions until we come across an expression which is obvi-
ously true (like a = a). To prove it is false is much easier. As we have
made a sweeping statement about the expression and said it is true for all
a, b then we only need to come across one example of numbers which
make the expression false.

Example 3.9 Are the following true or false? Justify your answer.

(a) ∀a, b ∈ R, a3 − b3 = (a − b)(a2 + ab + b2)

(b) ∀t ∈ R, where t 
= 1, t 
= −1 1/(t + 1) = (t − 1)/(t2 − 1)

(c) ∀x ∈ R, where x 
= 0 (x2 − 1)/x = x − 1
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Solution

(a) ∀a, b ∈ R a3 − b3 = (a − b)(a2 + ab + b2)

Looking at the right-hand side of the equality we have

(a − b)(a2 + ab + b2)

= a(a2 + ab + b2)− b(a2 + ab + b2) (taking out the brackets)

= a3 + a2b + ab2 − ba2 − ab2 − b3

(taking out the remaining brackets)

= a3 − b3 (simplifying)

We have shown that the right-hand side is equal to the left-hand side

∀a, b ∈ R a3 − b3 = (a − b)(a2 + ab + b2)⇔ a3 − b3 = a3 − b3

which is true. Therefore

∀a, b ∈ R a3 − b3 = (a − b)(a2 + ab + b2)

is true.

(b) ∀t ∈ R where t 
= 1, t 
= −1 1/(t + 1) = (t − 1)/(t2 − 1)

Take the right-hand side of the equality

t − 1

t2 − 1
= t − 1

(t − 1)(t + 1)
(factorizing the bottom line)

= 1

(t + 1)
(dividing the top and bottom line by t − 1

which is allowed as t 
= 1)

Hence

1

t + 1
= t − 1

t2 − 1
⇔ 1

t + 1
= 1

t + 1

which is true. Thus,

∀t ∈ R where t 
= 1, t 
= −1
1

t + 1
= t − 1

t2 − 1

is true.

(c) ∀x ∈ R where x 
= 0
x2 − 1

x
= x − 1

To show this is false, substitute a value for x, for example, x = 2. When
x = 2

x2 − 1

x
= x − 1

becomes

4− 1

2
= 2− 1⇔ 3

2
= 1⇔ F.

As the predicate fails for one value of x then

∀x ∈ R where x 
= 0 (x2 − 1)/x = x − 1

is false.
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Another useful symbol is ∃, which means, ‘there exists’. This can
be used to express the fact that every real number has an inverse under
addition. Hence, we get

∀a ∈ R, ∃b, a + b = 0.

If the symbol ∃ is used with a predicate about its free variable, it
becomes a simple proposition which is either true or false. In the case
of the example given concerning the inverse, this is an axiom of the
real numbers and we can just state it is true. Other statements involving
existence will need some justification. Proving existence is simpler than
disproving it. If I were to state ‘There exists a blue moon in the universe’,
to prove this to be true I only need to find one blue moon but to disprove
it I must find all the moons in the universe and show that not one of them
is blue.

In other words, to show that some value exists which makes a certain
predicate into a true proposition then we only need to find that value and
demonstrate that the resulting proposition is true. To show that no value
exists, however, is more difficult and if the domain of interest is a set of
numbers we need to present an argument about any member of the set.

Example 3.10 Are the following true or false? Justify your answer.

(a) ∃x ∈ R, (x + 2)(x − 1) = 0
(b) ∃x ∈ R, x2 + 4 < 0

Solution

(a) ∃x ∈ R, (x + 2)(x − 1) = 0

To show this is true, we only need find one value of x which makes the
equality correct. For instance, take x = −2: when x = −2, (x + 2)(x −
1) = 0 becomes (−2+ 2)(−2− 1) = 0⇔ 0 = 0, which is true.

Therefore, ∃x ∈ R, (x + 2)(x − 1) = 0 is true.

(b) ∃x ∈ R, x2 + 4 < 0

Trying a few values for x (e.g. −1, 0, 20, −2) we might suspect that
this statement is false. We need to present a general argument in order to
convince ourselves of this.
x2 is always positive or zero, that is, x2 � 0 for all x. If we then add

on 4, then for all x, x2 + 4 � 4 and as 4 is bigger than 0.

x2 + 4 > 0 for all x; hence,
∃x ∈ R, x2 + 4 < 0 is false.

3.8 Other
applications of
predicates

Predicates are often used in software engineering. Some simpler appli-
cations are:

(a) To express the condition under which a program block will be carried
out (or a loop will continue execution).

(b) To express a program specification in terms of its pre- and post-
conditions.

Example 3.11 Express the following in pseudo-code: print x and y if
y is a multiple of x and x is an integer between 1 and 100 inclusive.
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Solution Pseudo-code is a system of writing algorithms which is similar
to some computer languages but not in any particular computer language.
We can use any symbols we like as long as the meaning is clear.
y is a multiple of x means that if y is divided by x then the result is an

integer. This can be expressed as

y

x
∈ Z

The condition that x must lie between 1 and 100 can be expressed as
x � 1 and x � 100. Combining these conditions gives the following
interpretation for the algorithm:

if
(y
x
∈ Z ∧ x � 1 ∧ x � 100

)
then

print x, y
endif

Example 3.12 A program is designed to take a given whole positive
number, x, greater than 1, and find two factors of x, a and b, which
multiplied together give x. a and b should be whole positive numbers
different from 1, unless x is prime. Express the pre- and post-conditions
for the program.

Solution Pre-condition is x ∈ N ∧ x > 1.
The post-condition is slightly more difficult to express. Clearly ab = x

is a statement of the fact that a and b must multiply together to give x.
Also a and b must be elements of N. a and b cannot be 1 unless x is
prime, this can be expressed by

(a 
= 1 ∧ b 
= 1) ∨ (x is prime).

Finally, we have the post-condition as

a · b = x ∧ (a ∈ N) ∧ (b ∈ N) ∧ ((a 
= 1 ∧ b 
= 1) ∨ (x is prime)).

3.9 Summary (1) The stages in solving a real-life problem using mathematics are:
(a) Express the problem as a mathematical one, using any neces-

sary scientific rules and assumptions about the behaviour of the
system and using letters to represent any unknown quantities.
This is called a mathematical model.

(b) Solve the mathematical problem by moving from one state-
ment to an equivalent statement justifying each stage by using
relevant mathematical knowledge.

(c) Check the mathematical solution(s) by substituting them into
the original formulation of the mathematical problem.

(d) Translate the mathematical solution back into the setting of the
original problem.

(e) Test the model solutions for some realistic values to see how
well the model correctly predicts the behaviour of the system.
If it is acceptable, then the model can be used to predict more
results.

(2) A predicate is a mathematical statement containing a variable.
Examples of predicates are equations and inequalities.

(3) If values are substituted into a predicate it becomes a simple
proposition which is either true or false.
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(4) The three main operations on predicates and propositions are
∧, ∨, ¬, and these can be defined using truth tables as in
Tables 3.1–3.3.

(5) Two predicates, p, q, are equivalent (p⇔ q) if they are true for
exactly the same set of values.

(6) p⇒ q means ‘p implies q’, that is, q is true whenever p is true. If
p, q are equations or inequalities and p⇒ q then all solutions of p
are also solutions of q and q may have more solutions besides.

(7) The symbol ∀ stands for ‘for all’ or ‘for every’ and can be used
with a predicate to make it into a simple proposition, for example,
∀a, b ∈ R, a2 − b2 = (a + b)(a − b), which is true.

(8) The symbol ∃ stands for ‘there exists’ and can also be used with a
predicate to make it into a simple proposition, for example, ∃x ∈ R,
3x = 45, which is true.

3.10 Exercises

3.1. Assign T or F to the following
(a) 2x + 2 = 10 when x = 1
(b) 2x + 2 = 10 when x = 2
(c) 3x2 + 3x − 6 = 0 when x = 1
(d) 1− t2 = −3 when t = −2
(e) t − 5 = 6.5 ∧ t + 4 = 2.5 when t = 1.5
(f) u+ 3 = 6 ∧ 2u− 1 = 4 when u = 3
(g) 3y + 2 = −2.5 ∨ 1− y = 1 when y = −1.5
(h) ¬(x2 − x + 2 = 0) when x = −1
(i) ¬(t − 2 = 4 ∧ t = 3)
(j) ¬(t − 2 = 4) ∧ (t = 3)
(k) ¬ (3t − 4 = 6 ∨ 1− t = −2 1

3

)
when t = 3 1

3 .

3.2. Solve the following, justifying each stage of the solution
and checking the result.
(a) 3− 2x = −1, (b) 1− 2t2 = 1− 10t
(c) 50t − 11 = −25t2, (d) 30y − 13 = 8y2

(e) 10t − 4 � −3, (f) 10− 4x > 12.

3.3. Find the range of values for which the following hold
and represent them on a number line.
(a) x+3 � 5∨1−2x > 3, (b) 2−4t � 3∧2− t < 1
(c) ¬(2x + 3 � 9).

3.4. Fill the correct sign ⇒, ⇐ or ⇔ or indicate none
of these. Assume the domain is R unless indicated
otherwise.
(a) 3x2 − 1 = 0 · · · x = 1√

3

(b)
√
x − 1 = 5 · · · x = 26 (where x � 1)

(c) t2 − 5t = 36 · · · (t − 4)(t − 9) = 0

(d) (2x − 2)/(x − 3) = 1 · · · 3x + 4 = −x (where
x 
= 3)

(e) 3x = 4 · · · (3x)2 = (4)2
(f) t + 1 = 5 · · · (t + 1)3 = 53

(g) (x+1)(x−3) = (x−3)(x+2) · · · (x+1) = (x+2)

(h) x − 1 = 25 · · ·√x − 1 = 5 where x � 1

(i) w/(w2 − 1) = 1 · · · 1/(w − 1) = 1 where w 
= 1
and w 
= −1

(j) (x − 1)(x − 3) < 0 · · · (x − 3) < 0 ∨ (x − 1) < 0

(k) x > 2 ∨ x < −2 · · · x2 > 4.

3.5. Determine whether the following statements are true or
false and justify your answer.
(a) ∀a, b ∈ R, a4−b4 = (a−b)(a3−a2b+ab2−b3)

(b) ∀a, b ∈ R, a3 + b3 = (a + b)3
(c) ∀x ∈ R, x 
= 0 1/(1/x) = x
(d) ∃t , t ∈ R, t2 − 3 = 4
(e) ∃t , t ∈ R, t2 + 3 = 0.

3.6. Write the following conditions using mathematical
symbols:
(a) x is not divisible by 3,
(b) y is a number between 3 and 60 inclusive,
(c) w is an even number greater than 20,
(d) t differs from tn−1 by less than 0.001.

3.7. Express the following problems mathematically and
solve them:
(a) A set of screwdrivers cost e10 and hammers
e6.50. Find the possible combinations of maximum
numbers of screwdriver and hammer sets that can
be bought for e40.

(b) An object is thrown vertically upwards from the
ground with an initial velocity of 10 m s−1. The
mass of the object is 1 kg. Find the maximum height
that the object can reach using

(i) Kinetic energy (KE) is given by 1
2mv

2, where
m is its mass and v its velocity.

(ii) The potential energy (PE) is mgh, where m is
the mass, g is the acceleration due to gravity
(which can be taken as 10 m s−2), and h is the
height.

(iii) Assuming that no energy is lost as heat due to
friction, then the conservation of energy law
gives KE + PE = constant.
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3.8. A road has a bend with radius of curvature 100 m. The
road is banked at an angle of 10◦. At what speed should
a car take the bend in order not to experience any side
thrust on the tyres? Use the following assumptions:
(a) The sideways force needed on the vehicle in order to

maintain it in circular motion (called the centripetal
force) = mv2/r where r is the radius of curvature
of the bend, v the velocity, and m the mass of the
vehicle.

(b) The only force with a component acting sideways
on the vehicle, is the reactive force of the ground.
This acts in a direction normal to the ground (i.e. we
assume no frictional force in a sideways direction).

(c) The force due to gravity of the vehicle ismg, where
m is the mass of the vehicle and g is the acceleration
due to gravity (≈ 9.8 m s−2). This acts vertically
downwards. The forces operating on the vehicle and
ground, in a lateral or vertical direction, are pictured
in Figure 3.8.

Figure 3.8 A vehicle rounding a banked bend
in the road. R is the reactive force of the ground
on the vehicle. The vehicle provides a force of
mg, the weight of the vehicle, operating vertically
downwards. The vehicle needs a sideways force
of mv 2/r in order to maintain the locally circular
motion.
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4.1 Introduction Boolean algebra can be thought of as the study of the set {0, 1} with the
operations+ (or), . (and), and − (not). It is particularly important because
of its use in design of logic circuits. Usually, a high voltage represents
TRUE (or 1), and a low voltage represents FALSE (or 0). The operation
of OR (+) is then performed on two voltage inputs, using an OR gate,
AND(.) using an AND gate and NOT is performed using a NOT gate. This
very simple algebra is very powerful as it forms the basis of computer
hardware.

You will probably have noticed that the operations of ∧ (AND), ∨
(OR), and ¬ (NOT) used in Chapter 3 for propositions are very similar
to the operations ∩ (AND), ∪ OR, and ′ (NOT) (complement) used for
sets. This connection is not surprising as membership of a set, A, could
be defined using a statements like ‘3 is a member of A’ which is either
TRUE or FALSE. In simplifying logic circuits, use is made of the different
interpretations that can be put upon the operations and variables. We can
use truth tables, borrowed from the theory of propositions, as given in
Chapter 3, or we can use Venn diagrams, borrowed from set theory, as
given in Chapter 1.

The first thing we shall examine in this chapter is what do we mean by an
algebra and why are we able to skip between these various interpretations.
Then we look at implementing and minimizing logic circuits.

4.2 Algebra Before we look at Boolean algebra, we will have a look at some ideas
about algebra:

(a) What is an algebra?
(b) What is an operation?
(c) What do we mean by properties (or laws or axioms) of an algebra?

An algebra is a set with operations defined on it. In Chapter 1 of the
Background Mathematics Notes, available on the companion website
for this book, we looked at the algebra of real numbers and defined an
operation is a way of combining two numbers to give a single number. We
could therefore define an operation as a way of combining two elements
of the set to result in another element of the set.

Example 4.1 The set of real numbers, R, has the operations+ and ., for
example,

3+ 5 = 8 and 3 · 4 = 12
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and we could combine any two numbers in this way and we would always
get another real number.

Example 4.2 Consider the set of sets in some universal set E , for
example,

E = {a, b, c, d, e}

A = {a, d}, B = {a, b, c}
then

A ∩ B = {a} and A ∪ B = {a, b, c, d}.

The operations of ∩ and ∪ also result in another set contained in E .
In both of these examples, the operations are binary operations because

they use two inputs to give one output.
There is another sort of operation which is important, called a unary

operation, because it only has one input to give one output. Consider
Example 4.2: A′ = {b, c, e} gives the complement of A. This is a unary
operation as only one input, A, was needed to define the output A′.

If we can find a rule which is always true for an algebra then that is called
a property, (law or axiom) of that algebra. For example, (3 + 5) + 4 =
3+ (5+ 4) is an application of the associative law of addition which can
be expressed in general in the following way for the set of real numbers:

∀a, b, c ∈ R, (a + b)+ c = a + (b + c)

If we can list all the properties of a particular algebra then we can give
that algebra a name. For instance, the real numbers with the operations
of + and . form a field.

4.3 Boolean
algebras

Sets as a Boolean algebra
The sets contained in some universal set display a number of properties
which can be shown using Venn diagrams.

Example 4.3 Show, using Venn diagrams, that, for any 3 sets A, B, C
in some universal set E ,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution This can be shown to be true by drawing a Venn diagram
of the left-hand side of the expression and another of the right-hand
side of the expression. Operations are performed in the order indicated
by the brackets and the result of each operation is given a different
shading. This is done in Figure 4.1(a) and (b). The region shaded in
Figure 4.1(a) representing A ∩ (B ∪ C) is the same as that representing
(A ∩ B) ∪ (A ∩ C) in Figure 4.1(b), hence, showing that A ∩ (B ∪ C) =
(A ∩ B) ∪ (A ∩ C).
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Table 4.1 The truth tables defining the
logical operators

p q p ∧ q p q p ∨ q p ¬p

T T T T T T T F
T F F T F T F T
F T F F T T
F F F F F F

Figure 4.1 (a) A Venn
diagram of A ∩ (B ∪ C).
(b) A Venn diagram of
(A ∩ B) ∪ (A ∩ C).

In the same way, other properties can be shown to be true. A full list
of the properties gives:

For every A, B, C ⊆ E

(B1) A ∪ A = A A ∩ A = A Idempotent
(B2) A ∪ (B ∪ C) A ∩ (B ∩ C) Associative

= (A ∪ B) ∪ C = (A ∩ B) ∩ C
(B3) A ∪ B = B ∪ A A ∩ B = B ∩ A Commutative
(B4) A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A Absorption
(B5) A ∪ (B ∩ C) A ∩ (B ∪ C) Distributive

laws= (A ∪ B) ∩ (A ∪ C) = (A ∩ B) ∪ (A ∩ C)
(B6) A ∪ E = E A ∩ ∅ = ∅ Bound laws
(B7) A ∪ ∅ = A A ∩ E = A Identity law
(B8) A ∪ A′ = E A ∩ A′ = ∅ Complement

laws
(B9) ∅′ = E E ′ = ∅ 0 and 1 laws
(B10) (A ∪ B)′ = A′ ∩ B′ (A ∩ B)′ = A′ ∪ B′ De Morgan’s

laws

Notice that all the laws come in pairs (called duals). A dual of a rule
is given by replacing ∪ by ∩ and ∅ by E and vice versa.

Propositions
We looked at propositions in Chapter 3. Propositions can either be given
a value of TRUE (T) or FALSE (F). Examples of propositions are 3 = 5
which is false and 2 < 3 which is true. The logical operators of AND, OR,
and NOT are defined using truth tables, which we repeats in Table 4.1.

Properties of propositions and their operations can be shown using
truth tables.

Example 4.4 Show, using truth tables, that for any propositions p, q, r

(p ∧ q) ∧ r = p ∧ (q ∧ r)
Solution The truth tables are given in Table 4.2. Note that there are eight
lines in the truth table in order to represent all the possible states (T, F) for
the three variables p, q, and r . As each can be either TRUE or FALSE, in
total there are 23 = 8 possibilities. To find (p∧q)∧r ,p∧q is performed
first and the result of that is ANDed with r . To findp∧(q∧r) then q∧r is
performed first and p is ANDed with the result. As the resulting columns
are equal we can conclude that

(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)
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Table 4.2 A truth table to show
(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r ). The fifth column gives
the truth values of (p ∧ q) ∧ r and the seventh
column gives the truth value of p ∧ (q ∧ r ). As
the two columns are the same we can conclude
that (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r )

p q r p ∧ q (p ∧ q) ∧ r q ∧ r p ∧ (q ∧ r )

T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F F T F
F T F F F F F
F F T F F F F
F F F F F F F

Table 4.3 A truth table to show ¬(p ∧ q)⇔ (¬p) ∨ (¬q).
The fourth column gives the truth values of ¬(p ∧ q) and
the seventh column gives the truth value of (¬p)∨ (¬q). As
the two columns are the same we can conclude that
¬(p ∧ q)⇔ (¬p) ∨ (¬q)

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

Example 4.5 Show that for any two propositions p, q:

¬(p ∧ q) ⇔ (¬p) ∨ (¬q)

Solution The truth table is given in Table 4.3.
It turns out that all the properties we listed for sets are also true for

propositions. We list them again, for any three propositions p, q, r

(B1) p ∨ p⇔ p p ∧ p⇔ p Idempotent
(B2) p ∨ (q ∨ r) p ∧ (q ∧ r) Associative

⇔ (p ∨ q) ∨ r ⇔ (p ∧ q) ∧ r
(B3) p ∧ q⇔ q ∨ p p ∧ q⇔ q ∧ p Commutative
(B4) p ∨ (p ∧ q)⇔ p p ∧ (p ∨ q)⇔ p Absorption
(B5) p ∨ (q ∧ r) p ∧ (q ∨ r) Distributive laws

⇔ (p ∨ q) ∧ (p ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
(B6) p ∨ T⇔ T p ∧ F⇔ F Bound laws
(B7) p ∨ F⇔ p p ∧ T⇔ p Identity laws
(B8) p ∨ ¬p⇔ T p ∧ ¬p⇔ F Complement laws
(B9) ¬F⇔ T ¬T⇔ F 0 and 1 laws
(B10) ¬(p ∨ q)⇔ ¬p ∧ ¬q ¬(p ∧ q)⇔ ¬p ∨ ¬q De Morgan’s laws

Notice again that all the laws are duals of each other. A dual of a rule
is given by replacing ∨ by ∧ and F by T, and vice versa.
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Table 4.4 The operations of AND (.), OR
(+) and NOT (−) defined for any variables a,
b taken from the Boolean set {0, 1}

a b a.b a b a + b a ā

0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

The Boolean set {0, 1}
The simplest Boolean algebra is that defined on the set {0,1}. The oper-
ations on this set are AND (.), OR (+), and NOT (−). The operations can
be defined using truth tables as in Table 4.1, shown again in Table 4.4.
This time notice that the first two are usually ordered in order to mimic
binary counting, starting with 0 0, then 0 1, then 1 0, then 1 1. This is
merely a convention and the rows may be ordered any way you like. a
and b are two variables which may take the values 0 or 1.

This now looks far more like arithmetic. However, beware because
although the operation AND behaves like multiplication, 0.0 = 0, 0.1 =
0, 1.0 = 0 and 1.1 = 1 as in ‘ordinary’ arithmetic, the operation OR
behaves differently as 1+ 1 = 1.

All the laws as given for sets and for propositions hold again and they
can be listed as follows:

For any three variables a, b, c ∈ {0, 1}

(B1) a + a = a a.a = a Idempotent
(B2) a + (b + c) a.(b.c) = (a.b).c Associative

= (a + b)+ c
(B3) a + b = b + a a + b = b + a Commutative
(B4) a + (a.b) = a a.(a + b) = a Absorption
(B5) a + (b.c) a.(b + c) Distributive laws

= (a + b).(a + c) = (a.b)+ (a.c)
(B6) a + 1 = 1 a.0 = 0 Bound laws
(B7) a.1 = a a + 0 = a Identity laws
(B8) a + ā = 1 a.ā = 0 Complement laws
(B9) 0̄ = 1 1̄ = 0 0 and 1 laws
(B10) (a + b) = ā.b̄ (a.b) = ā + b̄ De Morgan’s laws

We often leave out the ‘.’ so that ‘ab’ means ‘a.b’. We also adopt
the convention that . takes priority over + hence miss out some of the
brackets.

Example 4.6 Evaluate the following where +, ., and − are Boolean
operators.

(a) 1.1.0+ 0̄.1
(b) (1.1̄)+ 1
(c) (1̄+ 1).0+ (1+ 1).0
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Solution

(a) We use the convention that . is performed first:

1.1.0+ 0̄.1 = 0+ 1.1 = 0+ 1 = 1

(b) (1.1̄)+ 1 = (1.0)+ 1 = 0+ 1 = 1
(c) (1̄+ 1).0+ (1+ 1).0 = 1.0+ 1.0 = 0+ 0 = 0

The algebraic laws can be used to simplify a Boolean expression.

Example 4.7 Simplify

abc + ābc + bc̄

Solution

abc + āb + bc̄
= (a + ā)bc + bc̄ (using a distributive law)
= 1.bc + bc̄ (using a complement law)
= bc + bc̄ (using an identity law)
= b(c + c̄) (by one of the distributive laws)
= b (using a complement and identity law)

Although it is possible to simplify in this way, it can be quite difficult
to spot the best way to perform the simplification; hence, there are special
techniques used in the design of digital circuits which are more efficient.

4.4 Digital
circuits

Switching circuits form the basis of computer hardware. Usually, a high
voltage represents TRUE (or 1) while a low voltage represents a FALSE
(or 0). Digital circuits can be represented using letters for each input.

There are three basic gates which combine inputs and represent the
operators NOT(−), AND (.), and OR (+). These are shown in Figure 4.2.

Figure 4.2 The three basic
gates; NOT (−), AND (.), and
OR (+).

Other gates
Other common gates used in the design of digital circuits are the NAND
gate, (ab), that is, not(ab), the NOR gate, (a + b), that is, not(a+ b) and
the EXOR gate, a ⊕ b, (exclusive or) a ⊕ b = ab̄ + ab

These gates are shown in Figure 4.3.

Implementing a logic circuit
First, we need to simplify the expression. Each letter represents an input
that can be on or off (1 or 0). The operations between inputs are rep-
resented by the gates. The output from the circuit represents the entire
Boolean expression.

Figure 4.3 Three other
common gates; NAND (ab),
NOR (a + b), and EXOR
(a ⊕ b).
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Example 4.8 Implement abc̄ + ab̄ + ac̄.
Solution We can use absorption to write this as ab̄ + ac̄ and this can
be implemented as in Figure 4.4 using AND, OR, and NOT gates. Alter-
natively, we can use the distributive and De Morgan’s laws to write the
expression as:

ab̄ + ac̄ = a(b̄ + c̄) = abc
which can be implemented using an AND and a NAND gate.

Minimization and Karnaugh maps
It is clear that there are numbers of possible implementations of the same
logic circuit. However, in order to use less components in building the
circuit it is important to be able to minimize the Boolean expression. There
are several methods for doing this. A popular method is using a Karnaugh
map. Before using a Karnaugh map, the Boolean expression must be
written in the form of a ‘sum of products’. To do this, we may either
use some of the algebraic rules or it may be simpler to produce a truth
table and then copy the 0s and 1s into the Karnaugh map. Example 4.9 is
initially in the sum of product form and Example 4.10 uses a truth table
to find the Karnaugh map.

Example 4.9 Minimize the following using a Karnaugh map:

ab + āb + ab̄
and draw the implementation of the resulting expression as a logic circuit.

Solution Draw a Karnaugh map as in Figure 4.5(a). If there are two
variables in the expression then there are 22 = 4 squares in the Karnaugh
map. Figure 4.5(b) shows a Karnaugh map with the squares labelled term

Figure 4.4 (a) An
implementation of
abc̄ + ab̄ + ac̄ = ab̄ + ac̄.
(b) An alternative
implementation using
ab̄ + ac̄ = abc.

Figure 4.5 (a) A two-variable Karnaugh map representing
ab + āb + ab̄ (b) A two-variable Karnaugh map with all the boxes
labelled. (c) A Karnaugh map is like a Venn diagram. The second row
represents the set a and the second column represents the set b.
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by term. Figure 4.5(c) shows that the map is like a Venn diagram of the
sets a and b. In Figure 4.5(a) we put a 0 or 1 in the square depending on
whether that term is present in our expression. Adjacent 1s indicate that
we can simplify the expression. Figure 4.6 indicates how we go about the
minimization. We draw a line around any two adjacent 1s and write down
the term representing that section of the map. We are able to encircle the
second row, representing a, and the second column, representing b. As
all the 1s have now been included we know that a + b is a minimization
of the expression. Notice that it does not matter if one of the squares
with a 1 in it has been included twice but we must not leave any out. The
implementation of a + b is drawn in Figure 4.7.

Figure 4.6 A two-variable
Karnaugh map representing
ab + āb + ab̄.

Figure 4.7 An
implementation of a + b.

Example 4.10 Minimize c(b+ (ab))+ c̄ab and draw the implementa-
tion of the resulting expression as a logic circuit.

Solution First, we need to find the expression as a sum of products.
This can be done by finding the truth table and then copying the result
into the Karnaugh map. The truth table is found in Table 4.5. Notice
that we calculate various parts of the expression and build up to the final
expression. With practice, the expression can be calculated directly for
instance when a = 0, b = 0, and c = 0 then c(b + (ab)) + c̄ab =
0(0+ (0.0))+ 0̄.0.0

= 0(0+ 1)+ 1.0 = 0.

Draw a Karnaugh map as in Figure 4.8(a) and copy in the expres-
sion values as found in Table 4.5. There are three variables in the
expression, therefore, there are 23 = 8 squares in the Karnaugh map.

Table 4.5 A truth table to find ab + āb + ab̄

a b c ab c̄ (ab) c̄ab b + (ab) c(b + (ab)) c(b + (ab))+ c̄ab

0 0 0 0 1 1 0 1 0 0
0 0 1 0 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 0
0 1 1 0 0 1 0 1 1 1
1 0 0 0 1 1 0 1 0 0
1 0 1 0 0 1 0 1 1 1
1 1 0 1 1 0 1 1 0 1
1 1 1 1 0 0 0 1 1 1

Figure 4.8 (a) A three-variable Karnaugh map representing
c(b + (ab))+ c̄ab. (b) A three-variable Karnaugh map with all the
boxes labelled. (c) A Karnaugh map is like a Venn diagram. The third
and fourth rows represent the set a and the second and third rows
represent the set b. c is represented by the second column.
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Figure 4.8(b) shows a Karnaugh map with the squares labelled term by
term. Figure 4.8(c) shows the Venn diagram equivalence with sets a, b,
and c. In Figure 4.8(a) we put a 0 or 1 in the square depending on whether
that term is present, as given in the truth table in Table 4.5.

Adjacent 1s indicate that we can simplify the expression. Figure 4.9
indicates how we go about the minimization. We draw a line around any
four adjacent 1s and write down the term representing that section of
the map. The second column represents c and has been encircled. Then
we look for any two adjacent 1s. We are able to encircle the third row,
representing ab. As all the 1s have now been included we know that
c+ ab is a minimization of the expression. An implementation of c+ ab
is drawn in Figure 4.10.

Example 4.11 Minimize abc̄ + ābd + abcd̄ + ab̄c̄d + abc using a
Karnaugh map and draw the implementation of the resulting expression
as a logic circuit.

Solution Draw a Karnaugh map as in Figure 4.11(a). There are four
variables in the expression therefore there are 24 = 16 squares in the
Karnaugh map. Figure 4.11(b) shows a Karnaugh map with the squares
labelled term by term. Figure 4.11(c) shows the Venn diagram equiv-
alence with sets a, b, c, and d. In Figure 4.11(a), we put a 0 or 1 in
the square depending on whether that term is present in our expression.
However, the term abc̄ involves only three out of the four variables. In
this case, it must occupy two squares. As d could be either 0 or 1 for
‘abc̄’ to be true, we fill in the squares for abc̄d and abc̄ d̄. The num-
ber of squares to be filled with a 1 to represent a certain product is 2m

where m is the number of missing variables in the expression. In this
case, abc̄ has no d term in it so the number of squares representing
it is 21.

Figure 4.9 A three-variable
Karnaugh map representing
c(b + (ab))+ c̄ab.

Figure 4.10 An
implementation of c + ab.

Adjacent 1s indicate that we can simplify the expression. Figure 4.12
indicates how we go about the minimisation. We draw a line around
any eight adjacent 1s of which there are none. Next we look for any
four adjacent 1s and write down the term representing that section of
the map. The third row represents ab and has been encircled. The mid-
dle four squares represent bd and have been encircled. Then we look
for any two adjacent 1s. The bottom two squares of the second col-
umn represent ac̄d. As all the 1s have now been included we know that
ab+bd+ac̄d is a minimization of the expression. This is implemented in
Figure 4.13.

Figure 4.11 (a) A four variable Karnaugh map representing abc̄ + ābd + abcd̄ + ab̄ c̄d + abc. (b) A
four-variable Karnaugh map with all the squares labelled. (c) A Karnaugh map is like a Venn diagram. The
third and fourth rows represent the set a and the second and third rows represent the set b. c is represented
by the third and fourth columns and d by the second and third columns.
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Figure 4.13 An implementation of ab + bd + ac̄d .

Figure 4.14 To display the digits 0–9 a seven-segment LED display
may be used. For instance, the number 1 requires the segments
labelled q and r to light up and the other segments to be off.

Table 4.6 A truth table giving the logic control signals for the lamp
drivers for the LED segments pictured in Figure 4.14

Digit
displayed

Circuit inputs Segments

a b c d p q r s t u v

0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 0 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 1 0 1 1
– 1 0 1 0 X X X X X X X
– 1 0 1 1 X X X X X X X
– 1 1 0 0 X X X X X X X
– 1 1 0 1 X X X X X X X
– 1 1 1 0 X X X X X X X
– 1 1 1 1 X X X X X X X

Example 4.12 To display the digits 0–9, a seven-segment light emitting
diode (LED) display may be used as shown in Figure 4.14. The various
states may be represented using a four-variable digital circuit. The logic
control signals for the lamp drivers are given by the truth table given in
Table 4.6. The X indicates a ‘don’t care’ condition in the truth table. The
column for the segment labelled p can be copied into a Karnaugh map as
given in Figure 4.15. Wherever a 1 appears in the truth table representa-
tion for p there is a 1 copied to the Karnaugh map. Similarly, the 0s and
the ‘don’t care’ crosses are copied. Minimize the Boolean expression for
p using the Karnaugh map.

Figure 4.12 A four-variable
Karnaugh map representing
abc̄ + ābd + abcd̄ + ab̄ c̄d +
abc.

Solution The minimization is represented in Figure 4.15(b). We first
look for any eight adjacent squares with a 1 or a X in them. The bottom
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Figure 4.15 (a) A Karnaugh
map for the segment labelled
p in Figure 4.14. This has
been copied from the truth
table given in Table 4.5 (b) A
minimization of the Karnaugh
map. The ‘don’t care’ Xs may
be treated as 1s if it is
convenient but they can also
be treated as 0s.

two rows are encircled giving the term a. Now we look for groups of four.
The central four squares represent bd and the third column represents
cd. Finally, we can count the four corner squares as adjacent. This is
because two squares may be considered as adjacent if they are located
symmetrically with respect to any of the lines which divide the Karnaugh
map into equal halves, quarters, or eighths. This means that squares that
could be curled round to meet each other, as if the Karnaugh map where
drawn on a cylinder, are considered adjacent and also the four corner
squares. Here, the four corner squares represent the term b̄ d̄. Hence, the
minimization for p gives

p = a + cd + bd + b̄ d̄.

4.5 Summary (1) An algebra is a set with operations defined on it. A binary operation
as a way of combining two elements of the set to result in another
element of the set. A unary operation has only one input element
producing one output.

(2) A Boolean algebra has the operations of AND, OR, and NOT defined
on it and obeys the set of laws given in Section 4.3 as (B1)–(B10).
Examples of a Boolean algebra are: the set of sets in some universal
set E , with the operations of ∩, ∪ and ′; the set of propositions with
the operations of ∧,∨, and ¬; the set {0, 1} with the operations ‘.’
+, and −.

(3) Logic circuits can be represented as Boolean expressions. Usually,
a high voltage is represented by 1 or TRUE and a low voltage by
0 or FALSE. There are three basic gates to represent the operators
AND (.), OR (+), and NOT (−).

(4) A Boolean expression may be minimized by first expressing it as a
sum of products and then using a Karnaugh map to combine terms.

4.6 Exercises

4.1 Show the following properties of sets using Venn
diagrams:
(a) A ∪ (A ∩ B) = A
(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

4.2 p = ‘It rained yesterday’
q = ‘I used an umbrella yesterday’
(a) Construct English sentences to express, (∧ ⇔ ‘and’,
∨ ⇔ ‘or’, ¬ ⇔ ‘not’)

(i) p ∧ q (ii) p ∨ q (iii) ¬p ∨ q
(iv) p ∧ ¬q (v) ¬(p ∧ q) (vi) ¬p ∨ ¬q.

(b) Given that p is true and q is false, what is the truth
value of each part of section (a)?

4.3 Show the following properties of propositions using truth
tables
(a) p ∨ (p ∧ q)⇔ p (b) ¬(p ∨ q)⇔ ¬p ∧ ¬q.

TLFeBOOK



“chap04” — 2003/6/8 — page 87 — #12

Boolean algebra 87

4.4 Using Venn diagrams or truth tables find simpler expres-
sions for the following:
(a) ab + ab̄ (b) (ab)(ac)
(c) a + abc (d) (ab)a

4.5 (a) Draw implementations of the following as logic
circuits:

(i) ā b̄ + ab̄ (ii) a + bc
(iii) ā + ab (iv) ā b̄c

(b) If a = 1, b = 0 and c = 1, what is the value of each
of the expressions in section (a)?

4.6 Minimize the following expressions and draw their logic
circuits:
(a) ab̄ c̄ + ab̄ + abc (b) abc(a + b + c)+ a
(c) (a + c)(a + b)+ ab (d) (a + b)(a + d)+ abc̄ +

abd̄ + abcd
4.7 Obtain a Boolean expression for the logic networks

shown in Figure 4.16.

4.8 Consider the LED segment labelled r in Figure 4.14
given in the text. Follow the method given in

Example 4.12 to find a minimized expression for r and
draw its logic network.

Figure 4.16 (a,b) Logic networks for
Exercise 4.7.
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5 Trigonometric
functions and
waves

5.1 Introduction Waves occur naturally in a number of situations: the movement of dis-
turbed water, the passage of sound through the air, vibrations of a plucked
string. If the movement of a particular particle is plotted against time, then
we get the distinctive wave shape, called a sinusoid. The mathematical
expression of a wave is found by using the trigonometric functions, sine
and cosine. In Chapter 6 of the Background Mathematics Notes on the
companion website for this book we looked at right angled triangles and
defined the trigonometric ratios. The maximum angle in a right angled
triangle is 90◦ so to find the trigonometric functions, sin(t), cos(t), and
tan(t) where t can be extended over the real numbers, we need a new
way of defining them. This we do by using a rotating rod. Usually the
function will be used to relate, for instance, the height of the rod to time.
Therefore, it does not always make sense to think of the input to the cosine
and sine functions as being an angle. This problem is overcome by using
a new measure for the angle called the radian, which easily relates the
angle to the distance travelled by the tip of the rotating rod.

Waves may interfere with each other, as for instance on a plucked
string, where the disturbance bounces off the ends producing a standing
wave. Amplitude modulation of, for instance, radio waves, works by the
superposition of a message on a higher signal frequency. These situations
require an understanding of what happens when two, or more cosine or
sine functions are added, subtracted, or multiplied and hence we also
study trigonometric identities.

5.2
Trigonometric
functions and
radians

Consider a rotating rod of length 1. Imagine, for instance, that it is a
position marked on a bicycle tyre at the tip of one of the spokes, as the
bicycle travels along. The distance travelled by the tip of the rod in 1
complete revolution is 2π (the circumference of the circle of radius 1).
The height of the rod (measured from the centre of the wheel), y, can be
plotted against the distance travelled by the tip as in Figure 5.1.

Similarly, the position to the right or left of the origin, x, can be
plotted against the distance travelled by the tip of the rod as in Figure 5.2.
Figure 5.1 defines the function y = sin(t) and Figure 5.2 defines the
function x = cos(t).

This definition of the trigonometric function is very similar to that
used for the ratios in the triangle, if the hypotenuse is of length 1 unit.
The definitions become the same for angles up to a right angle if radians
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Figure 5.1 The function y = sin(t ), where t is the distance travelled by the tip of a rotating rod of length
1 unit and y is the height of the rod.

Figure 5.2 The function x = cos(t ), where t is the distance travelled by the tip of a rotating rod of length
1 unit and x is the position to the right or left of the origin.

Figure 5.3 (a) 360◦ = 2π radians. (b) 90◦ = π/2 radians. (c) 60◦ = π/3 radians.

are used as a measure of the angle in the triangle instead of degrees.
Instead of 360◦making a complete revolution 2π radians make a complete
revolution. Some examples of degree to radian conversion are given in
Figure 5.3.

To convert degrees to radians use the fact that 360◦ is the same as 2π
radians or equivalently that 180◦ is the same as π radians. Hence, to
convert degrees to radians multiply by π/180 and to convert radians to
degrees multiply by 180/π .

Remember that π is approximately 3.1416 so these conversions can
be expressed approximately as: to convert degrees to radians multiply
by 0.01745 (i.e. 1◦ ≈ 0.01745 radians) and to convert radians to degrees
multiply by 57.3 (i.e. 1 radian ≈ 57.3◦).

Example 5.1

(a) Express 45◦ in radians.
Multiply 45 by π/180 giving π/4 ≈ 0.785. Hence, 45◦ ≈
0.785 radians.

(b) Express, 17◦ in radians.
Multiply 17 by π/180 giving 17π/180 ≈ 0.297. Hence 17◦ ≈
0.297 radians.

(c) Express 120◦ in radians.
Multiply 120 byπ/180 giving 2π/3 ≈ 2.094. Hence, 120◦ ≈ 2.094.

(d) Express 2 radians in degrees.
Multiply 2 by 180/π giving 114.6. Hence, 2 radians ≈114.6◦.

(e) Express (5π/6) radians in degrees.
Multiply 5π/6 by 180/π giving 150. Hence, (5π/6) radians =
150◦.
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(f) Express 0.5 radians in degrees.
Multiply 0.5 by 180/π giving 28.6. Hence, 0.5 radians ≈28.6◦.

The trigonometric functions can also be defined using a rotating rod of
length r as in Figure 5.4.

Figure 5.4 The
trigonometric functions
defined in terms of a rotating
rod of length r.

The function values are given by:

cos(α) = x

r
, sin(α) = y

r
, tan(α) = y

x
= sin(α)

cos(α)

Also

sec(α) = 1

cos(α)
, cosec(α) = 1

sin(α)
, cot(α) = 1

tan(α)

where α is measured in radians (one complete revolution is 2π radians).
Notice that the definitions are exactly the same as the trigonometric

ratios, where r is the hypotenuse and x and y are the adjacent and opposite
sides to the angle, except that x and y can now take both positive and
negative values and the angles can be as big as we like or negative (if the
rod rotates clockwise):

cos(α) = adjacent

hypotenuse

sin(α) = opposite

hypotenuse

tan(α) = opposite

adjacent

To get the correct function values from the calculator, it should be in
‘radian’ mode. However, by custom, engineers often use degrees, so we
will use the convention that if the ‘units’ are not specified then radians
must be used and for the input to be in degrees that must be expressly
marked, for example cos(30◦).

Important relationship between the
sine and the cosine
From Pythagoras’s theorem, looking at the diagram in Figure 5.4, we
have x2 + y2 = r2. Dividing both sides by r2 we get:

x2

r2
+ y2

r2
= 1

and using the definitions of

cos(α) = x

r
and sin(α) = y

r

we get

(cos(α))2 + (sin(α))2 = 1

and this is written in shorthand as

cos2(α)+ sin2(α) = 1

where cos2(α) means (cos(α))2.
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5.3 Graphs and
important
properties

We can now draw graphs of the functions for all input values t as in
Figures 5.5–5.7.

These are all important examples of periodic functions. To show that
the cos(t) or sin(t) function is periodic, translate the graph to the left or
right by 2π . The resulting graph will fit exactly on top of the original
untranslated graph. 2π is called the fundamental period as translating
by 4π , 6π , 8π , etc. also results in the graph fitting exactly on top of
the original function. The fundamental period is defined as the smallest
period that has this property and all other periods are multiples of the
fundamental period. This periodic property can be expressed using a
letter, n, to represent any integer, giving

sin(t + 2πn) = sin(t)

cos(t + 2πn) = cos(t)

Figure 5.5 The graph of y = sin(t ), where t can take any value.
Notice that the function repeats itself every 2π . This shows that the
function is periodic with period 2π . Notice also that the value of sin(t )
is never more than 1 and never less than −1. The function is odd as
sin(−t ) = − sin(t ).

Figure 5.6 The graph of x = cos(t ), where t can take any value.
Notice that the function repeats itself every 2π . This shows that the
function is periodic with period 2π . Notice also that the value of cos(t )
is never more than 1 and never less than −1. The function is even as
cos(−t ) = cos(t ).

Figure 5.7 The graph of
z = tan(t ), where t can take
any value except odd
multiples of π/2 (for instance
tan(t ) is not defined for
t = π/2, 3π/2, 5π/2). Notice
that the function repeats itself
every π . This shows that the
function is periodic with
period π . The function values
extend from −∞ to∞, that is,
the range of tan(t ) is all the
real numbers. The function is
odd as tan(−t ) = − tan(t ).
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That is, adding or subtracting any multiple of 2π from the value of t gives
the same value of the functions x = cos(t) and y = sin(t).

The other important thing to remember about cos(t) and sin(t) is that
although the domain of the functions is all the real numbers, the function
values themselves lie between −1 and +1

−1 � cos(t) � 1

−1 � sin(t) � 1.

We say that the functions are bounded by −1 and +1 or, in other words,
the range of the cosine and sine functions is [−1, 1].

z = tan(t) has fundamental period π . If the graph is translated by
π to the left or right, then the resulting graph will fit exactly on top of
the original graph. This periodic property can be expressed using n to
represent any integer, giving

tan(t + πn) = tan(t).

The values of tan(t) are not bounded. We can also say that −∞ <

tan(t) <∞.

Symmetry
Other important properties of these functions are the symmetry of the
functions. cos(t) is even, while sin(t) and tan(t) are odd. Unlike the
terms odd and even when used to describe numbers, not all functions
are either odd or even, most are neither. To show that cos(t) is even,
reflect the graph along the vertical axis. The resulting graph is exactly the
same as the original graph. This shows that swapping positive t values
for negative ones has no difference on the function values, that is,

cos(−t) = cos(t).

Other examples of even functions were given in Chapter 2 and the
general property of even functions was given there as f (t) = f (−t). The
functions sine and tangent are odd. If they are reflected along the vertical
axis then the resulting graph is an upside down version of the original.
This shows that swapping positive t values for negative ones gives the
negative of the original function. This property can be expressed by

sin(−t) = − sin(t)

tan(−t) = − tan(t).

For a general function, y = f (t), the property of being odd can be
expressed by f (−t) = −f (t).

The relationships between
the sine and cosine
Take the graph of sin(t) and translate it to the left by 90◦ or π/2 and
we get the graph of cos(t). Equivalently, take the graph of cos(t) and
translate it to the right by π/2 and we get the graph of sin(t). Using the
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ideas of translating functions given in Chapter 2, we get

sin
(
t + π

2

)
= cos(t)

cos
(
t − π

2

)
= sin(t).

Other relationships can be shown using triangles as in Figure 5.8 giving

cos
(
α − π

2

)
= sin(α) and sin

(π
2
− α

)
= cos(α).

Figure 5.8 (a) sin(α) = a/r
and cos(90◦ − α) = a/r . Then
cos(90◦ − α) = sin(α). As the
cosine is an even function
cos(90◦ − α) =
cos(−(90◦−α)) = cos(α−90◦)
which confirms that
cos(α − 90◦) = sin(α).
cos(α) = b/r and
sin(90◦ − α) = b/r , so
cos(α) = sin(90◦ − α).

From Pythagoras theorem we also have that

a2 + b2 = r2,

dividing both sides by r2 we get

a2

r2
+ b2

r2
= 1,

and using the definitions of sin(α) = a/r and cos(α) = b/r , we get

cos2(α)+ sin2(α) = 1.

Rearranging this, we have cos2(α) = 1 − sin2(α) or sin2(α) = 1 −
cos2(α).

Example 5.2 Given sin(A) = 0.5 and 0 � A � 90◦, use trigonometric
identities to find:

(a) cos(A)

(b) sin(90◦ − A)

(c) cos(90◦ − A).

Solution

(a) Using cos2(A) = 1− sin2(A) and sin(A) = 0.5

⇒ cos2(A) = 1− (0.5)2 = 0.75

⇔ cos(A) ≈ ±0.866.

As A is between 0◦ and 90◦, the cosine must be positive giving
cos(A) ≈ 0.866.

(b) As sin(90◦ − A) = cos(A), sin(90◦ − A) ≈ 0.866.
(c) As cos(90◦ − A) = sin(A), cos(90◦ − A) = 0.5.

The functions A cos(at + b) + B and
A sin(at + b) + B
The graph of these functions can be found by using the ideas of Chapter 2
for graph sketching.

Example 5.3 Sketch the graph of y against t , where

y = 2 cos

(
2t + 2π

3

)
.

The stages in sketching this graph are shown in Figure 5.9.
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Figure 5.9 Sketching the
graph of 2 cos(2t + 2π/3): (a)
start with y = cos(t ); (b) shift
to the left by 2π/3 to give
y = cos(t + (2π/3)); (c)
squash the graph in the t-axis
to give y = cos(2t + (2π/3));
(d) stretch the graph in the
y-axis giving
y = 2 cos(2t + (2π/3)).

Example 5.4 Sketch the graph of z against q where

z = 1

2
sin
(
πq − π

4

)
− 1

2
.

The stages in sketches this graph are given in Figure 5.10.

Amplitude, fundamental period,
phase, and cycle rate
In Figure 5.11 are some examples of functions y = A cos(ax+ b) and in
each case the amplitude, phase, fundamental period, and cycle rate has
been found. In Figure 5.11(a)

y = 1

2
cos

(
5πx + π

2

)
is drawn, and has a peak value of 0.5 and a trough value of −0.5. There-
fore, the amplitude is half the difference: (0.5 − (−0.5))/2 = 0.5. The
period, or cycle length, is the minimum amount the graph needs to be
shifted to the left or right (excluding no shift) in order to fit over the origi-
nal graph. In this case the period is 0.4. The phase is found by finding the
proportion of the cycle that the graph has been shifted to the left. In this
case the proportion of shift is 1/4. Now multiply that by a standard cycle
length of 2π to give the phase angle ofπ /2. The cycle rate is the number of
cycles in unit length given by the reciprocal of the period = 1/0.4 = 2.5.
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Figure 5.9 Continued.

In Figure 5.11(b) y = 3 cos(2x − 1), has a peak value of 3 and a
trough value of −3. Therefore, the amplitude is half the difference =
(3 − (−3))/2 = 3. The period is the minimum amount the graph needs
to be shifted to the left or right (excluding no shift) in order to fit over
the original graph. In this case the period is π . The phase is found by
finding the proportion of the cycle that the graph has been shifted to the
left. In this case the proportion of shift is −0.5/π . Now multiply that by
a standard cycle length of 2π to give the phase angle of −1. The cycle
rate is the number of cycles in unit length given by the reciprocal of the
period 1/π ≈ 0.32.

We can generalize from these examples to say that for the function
y = A cos(ax + b), A positive, we have the following.

The amplitude is half the difference between the function values at the
peak and the trough of the wave and in case where y = A cos(ax + b) is
given by A.
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Figure 5.10 Sketching the graph of z = 1
2 sin(πq − (π/4))− 1

2 : (a) start with z = sin(q); (b) shift to the
right by π/4 to give z = sin(q − (π/4)); (c) squash the graph in the q-axis to give z = sin(πq − (π/4));
(d) squash the graph in the z-axis giving z = 1

2 sin(πq − (π/4)); (e) translate in the z direction by 1
2 to get

z = 1
2 sin(πq − (π/4))− 1

2 .

The fundamental period, P , or cycle length is the smallest, non-zero,
distance that the graph can be shifted to the right or left so that it lies on top
of the original graph. This can be found by looking for two consecutive
values where the function takes its maximum value, that is when the
cosine takes the value 1. Using the fact that cos(0) = 1 and cos(2π) = 1,

cos(ax + b) becomes cos(0) when ax + b = 0⇔ x = −b/a
cos(ax + b) becomes cos(2π) when ax + b = 2π ⇔ x = 2π/a − b/a

and the difference between them is 2π/a; giving the fundamental period
of the function cos(ax + b) as 2π/a.

TLFeBOOK



“chap05” — 2003/6/8 — page 97 — #10

Trigonometric functions and waves 97

Figure 5.11 (a) y = cos(5πx + (π/2)); (b) y = 3 cos(2x − 1).

The phase is given by the number, b, in the expression A cos(ax + b).
The phase is related to the amount the function A cos(ax + b) is shifted
to the left or right with respect to the function A cos(ax). It expresses the
proportion of a standard cycle (maximum 2π ) that the graph has been
shifted by and therefore a phase can always be expressed between 0 and
2π or more often between −π and π . Various phase shifts are given in
Figure 5.12.

The cycle rate or frequency is the number of cycles in one unit can be
found by relating this to the length of the cycle. The longer the cycle the
less cycles there will be in one unit. If the length of one cycle is P (the
fundamental period) then there is 1 cycle in P units and 1/P cycles in
1 unit.

The cycle rate is the reciprocal of the fundamental period. As for the
function y = A cos(ax + b) the fundamental period is P = 2π/a, the
number of cycles is 1/P , that is, a/2π . Examples are given in Figure 5.13.

5.4 Wave
functions of
time and
distance

A wave allows energy to be transferred from one point to another without
any particles of the medium moving between the two points. Water waves
move along the surface of a pond in response to a child rhythmically
splashing a hand in the water. The child’s boat floating in the path of the
wave merely bobs up and down without moving in the direction of the
wave. See Figure 5.14.

If we look at the position of the boat as the wave passes, it moves
up and down with the height expressed against time giving a sinusoidal
function. This is then a wave function of time and in the expression
y = A cos(ωt + φ), the letter A represents the amplitude, φ represents
the phase, and ω is related to the wave frequency. This is explained in
detail in the next section. If we take a snapshot picture of the surface of
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Figure 5.12 Examples of phase shifting. (a) A graph y = cos(πx ). (b) y = cos(πx − (π/4)) has phase of
−π/4 and is shifted by 1/8 of a cycle (given by the proportion that the phase, −π/4, represents of a standard
cycle of 2π ). (c) y = cos(πx + (π/3)) has phase of π/3 and is shifted by 1/6 of a cycle (given by the
proportion that the phase, π/3, represents of a standard cycle of 2π ). (d) y = cos(πx +π) has phase of π and
is shifted by 1/2 of a cycle (given by the proportion that the phase, π , represents of a standard cycle of 2π ).

the water at a particular point in time then we will also get a wave shape
where we now have an graph of the height of the water expressed against
the distance from the waves origin. In this case where y = A cos(kx+φ),
A still represents the amplitude, φ the phase but the coefficient of x, k,
is now related to the wavelength. Ideally, we want an expression that
can give the height, y, at any position x at any time t . This function is
called the progressive wave function and we can combine the two ideas
of waves as a function of time and distance to obtain an expression for
this function.
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Figure 5.13 The relationship between cycle length (fundamental period) and the number of cycles in 1 unit.
(a) y = cos(2π t ) has cycle length 2π/2π = 1 and therefore 1 cycle in 1 unit. (b) y = cos(4π t ) has cycle
length 2π/4π = 1/2 and therefore 2 cycles in 1 unit. (c) y = cos(5π t ) has cycle length 2π/5π = 0.4 and
therefore 2.5 cycles in 1 unit.

Figure 5.14 A wave created
by rhythmically splashing a
hand at the edge of a pond.
The child’s boat bobs up and
down without moving in the
direction of the wave.
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Sinusoidal functions of time:
amplitude, frequency, angular
frequency, period, and phase
Waves that represent a displacement from a central fixed position varying
with time can be represented by an expression such as y=A cos(ωt+φ) or
y = A sin(ωt+φ), where t is in seconds. Examples include an alternating
voltage measured across a particular circuit element or the position of the
centre of an ear drum as it vibrates in response to a pure sound wave.
As we saw in the previous section, A represents the wave amplitude, ω
(the Greek letter, omega) is called the angular frequency as it gives the
number of cycles in 2π , it is measured in radians per second. The number
of cycles in 1 s is called the frequency, f = ω/2π and is measured in hertz
(Hz). φ (the Greek letter, phi) is the phase, the cycle length is 2π/ω s. In
the case of a function of time the cycle length is called the periodic time
or just the period and we often use the greek letter, τ (tau), to represent
this, where τ = 2π/ω. Then we have that y = A cos(ωt + φ) can be
rewritten as

y = A cos(2πf t + φ)

using the frequency. As f = 1/τ , this can be written as

y = A cos

(
2π

τ
t + φ

)

Example 5.5

(a) y = 3 cos(t + 1); find the amplitude, frequency, period, angular
frequency, and phase where t is expressed in seconds.

Compare y = 3 cos(t + 1) with y = A cos(ωt + φ). Then we can see
that the angular frequency ω = 1, the phase φ = 1, and the amplitude
A = 3. As the frequency, f = ω/2π , f = 1/2π , and the period τ =
1/f = 1/(1/2π) = 2π s.

(b) V = 12 cos(314t + 1.6); find the amplitude, frequency, period,
angular frequency, and phase where t is expressed in seconds.

Compare V = 12 cos(314t + 1.6) with V = A cos(ωt + φ). Then
the angular frequency, ω = 314, the phase φ = 1.6, and the amplitude
A = 12. As f = ω/2π , f = 314/2π ≈ 50 Hz, and the period τ =
1/f = 1/50 = 0.02 s.

Sinusoidal functions of distance:
amplitude, cycle rate, wavelength,
and phase
Waves that give the displacement from a central fixed position of vari-
ous different points at a fixed moment in time can be represented by an
expression such as y = A cos(kx+φ) or y = A sin(kx+φ), where x is in
metres. Examples include the position of a vibrating string at a particular
moment or the surface of pond in response to a disturbance. As we saw
in the previous section, A represents the wave amplitude; k is called the
wavenumber and represents the number cycles in 2π . The spatial fre-
quency gives the number of cycles in 1 m (= k/2π). The cycle length
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is called the wavelength and we often use the greek letter λ (lambda), to
represent this. The phase is φ.

The expression for y can be written, using the wavelength, as

y = A cos

(
2π

λ
x + φ

)
.

Example 5.6

(a) y = 4 cos(x + 0.5); find the amplitude, wavelength, wavenumber,
spatial frequency, and phase where x is expressed in metres.

Compare y = 4 cos(x + 0.5) with y = Acos(kx + φ). Then the
wavenumber k = 1, the phase = 0.5, and the amplitude A = 4. As
spatial frequency= k/2π , this gives 1/2π wavelengths per metre and the
wavelength λ = 2π/k = 2π/1 = 2π m.

(b) y = 2 sin(2πx); find the amplitude, wavelength, wavenumber,
spatial frequency, and phase where x is expressed in metres.

Using sin(θ) = cos(θ − (π/2)), we get 2 sin(2πx) = cos(2πx −
(π/2)). Compare y = cos(2πx − (π/2)) with y = A cos(kx + φ). We
can see that the wavenumber k = 2π , φ the phase = −π/2, and the
amplitude A = 2. As spatial frequency = k/2π , this gives 1 wavelength
per metre, and the wavelength λ = 2π/k = 2π/2π = 1 m.

Waves in time and space
The two expressions for a wave function of time and space can be
combined as

y = A cos(ωt − kx)

and this is called a progressive wave equation. The− sign is used to give
a wavefront travelling from left to right and t should be taken as positive
with ωt � kx.

Notice that if we look at the movement of a particular point by fixing
x, then we replace x by x0 and this just gives a function of time, y =
A cos(ωt + φ) where φ = −kx0.

If we look at the wave at a single moment in time, then we fix time
and replace t by t0 and this just gives a function of distance x, y =
A cos(kx + φ) where φ = −ωt0.

Waves are of two basic types. Mechanical waves need a medium
through which to travel, for example, sound waves, water waves, and
seismic waves. Electromagnetic waves can travel through a vacuum, for
example, light rays, X-rays. In all cases where they can be expressed as
a progressive or travelling wave, the frequency, wavelength, etc. can be
found from the expression of the wave in the same way.

Figure 5.15 shows three snapshot pictures of the progressive wave
y = cos(15t − 3x) at t = 0, t = 2, and t = 5. This wave has angular
frequency ω = 15, and wavenumber, k = 3 and therefore the frequency
f is 2π/15 and the wavelength λ = 2π/3. By considering the amount
the wavefront moves in a period of time, we are able to find the wave
velocity.
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Figure 5.15 The progressive wave given by the function y = cos(15t − 3x ) where t > 0 and
3x < 15t , y = 0 otherwise. (a) No wave at t = 0; (b) t = 2 gives y = cos(30− 3x ) = cos(3x − 30) for
3x < 30, that is, x < 10; (c) t = 5 gives y = cos(75− 3x ) = cos(3x − 75) for 3x < 75, that is, x < 25.
Notice that the wavefront has moved 25 m in 5 s giving a velocity of 25/5 = 5 m s−1.

Velocity of a progressive wave
The progressive wave y = A cos(ωt − kx) vibrates f times per second
and the length of each cycle, the wavelength, is λ. In which case the
wavefront must move through a distance of λf metres per second and
hence the velocity v is given by

v = f λ

where f = ω/2π and λ = 2π/k; hence, v = ω/k.

Example 5.7 A wave is propagated from a central position as in
Figure 5.16 and is given by the function y = 2 cos(6.28t − 1.57r) where
t > 0 and 1.57r � 6.28t . Find the frequency, periodic time, spatial
frequency, wavenumber, and wavelength.

The wave is pictured for t = 5 in Figure 5.16.

Solution Comparing y = 2 cos(6.28t−1.57r) with y = A cos(ωt−kr)

givesA = 2, angular frequencyω = 6.28, wavenumber k = 1.57. Hence,
frequency f = ω/2π = 6.28/2π ≈ 1 Hz, periodic time τ = 1/f = 1 s,
spatial frequency = k/2π = 1.57/2π ≈ 1

4 , wavelength λ = 2π/k =
2π/1.57 ≈ 4 m and velocity = f λ = 1× 4 = 4 ms−1.

Figure 5.16
y = 2 cos(6.28t − 1.57r )
where 1.57r � 6.28t when
t = 5 giving y =
2 cos(31.4− 1.57r ), r < 20.
The concentric circles
represent the peak
amplitudes of the wave. The
wavefront has moved to
r = 20 at t = 5 giving a wave
velocity of 20/5 = 4 m s−1.

Measuring amplitudes – decibels
In Chapter 2 we looked at sound decay in a room and found that the
expression was exponential and could be expressed by using a power of
10. Because of this property of sound decay, and decay of other wave
forms, and also because of the need to have a unit which can be used
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easily to express relatively small quantities, decibels are often used to
represent wave amplitudes. In this case the measurement is always in
relation to some reference level.

Sound pressure is parallel in electronics to the voltage. The sound
pressure level is measured in decibels and is defined as 20 log10(p/p0)

where p is the actual sound pressure and p0 the reference pressure in
N m−2. The reference pressure used is approximately the threshold of
audibility for sound at 1000 Hz and is given by

p0 = 2× 10−5 N m−2.

Voltage, measured in decibels, is given by 20 log10(V /V0).
Sound intensity is parallel to power in a circuit. The sound intensity

level = 10 log10(I/I0) where I is the sound intensity and I0 is the sound
intensity at the threshold of audibility,

I0 = 10−12 W m−2.

Because the reference points used for the measurement of the amplitude
of sound are the same whether measuring the sound pressure level or the
sound intensity level measurement, of either, will give the same result on
the save wave.

Example 5.8 The sound generated by a car has intensity 2 ×
10−5 W m−2. Find the sound intensity level and sound pressure level.

Solution The sound intensity level is

10 log10

(
2× 10−5

10−12

)
= 10 log10(2× 107)

= 70 log10(2) ≈ 21.1 dB.

As this is the same as the sound pressure level, the sound pressure level =
21.1 dB.

Example 5.9 An amplifier outputs 5 W when the input power is
0.002 W. Calculate the power gain.

Solution The power gain is given by

10 log10

(
5

0.002

)
= 10 log10(2500) ≈ 34 dB.

5.5
Trigonometric
identities

Compound angle identities
It can often be useful to write an expression for, for instance, cos(A+B)

in terms of trigonometric ratios for A and B. A common mistake is
to assume that cos(A + B) = cos(A) + cos(B) but this can easily be
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disproved. Take as an example A = 45◦, B = 45◦, then

cos(A+ B) = cos(45◦ + 45◦) = cos(90◦) = 0,

cos(A)+ cos(B) = cos(45◦)+ cos(45◦) ≈ 0.707+ 0.707 = 1.414,

showing that

cos(A+ B) = cos(A)+ cos(B) is FALSE.

The correct expression is

cos(A+ B) = cos(A) cos(B)− sin(A) sin(B).

The other compound angle identities are as follows:

sin(A+ B) = sin(A) cos(B)+ cos(A) sin(B)

tan(A+ B) = tan(A)+ tan(B)

1− tan(A) tan(B)
.

Figure 5.17 sin(A + B) =
sin(A) cos(B)+ cos(A) sin(B).

There are various ways of showing these to be true, in Figure 5.17
we show that sin(A + B) = sin(A) cos(B) + cos(A) sin(B) by using
a geometrical argument. Draw two triangles YZW and YWX so that
∠A and ∠B are adjacent angles and the two triangles are right angled as
shown. Draw the lines XX′ and YY′ so that they form right angles to each
other, as shown. Notice that ∠YXY′ is also ∠A. From�WX′X, sin(A+
B) = XX′/XW, and as X′Y′YZ is a rectangle then X′Y′ = ZY. So

sin(A+ B) = XY′ + ZY

XW
= XY′

XW
+ ZY

XW
= ZY

XW
+ XY′

XW

As WY/WY = 1 and XY/XY = 1,

sin(A+ B) = ZY

XW

WY

WY
+ XY′

XW

XY

XY

= ZY

WY

WY

XW
+ XY′

XY

XY

XW
.

Looking at the triangles containing these sides we can see that this gives
sin(A+ B) = sin(A) cos(B)+ cos(A) sin(B).

A similar argument can be used for cos(A + B), and tan(A + B) is
usually found by using the expressions for sin(A+B), cos(A+B), and
the definition of the tangent in terms of A and B.

tan(A+ B) = sin(A+ B)

cos(A+ B)
= sin(A) cos(B)+ cos(A) sin(B)

cos(A) cos(B)− sin(A) sin(B)
.

Divide the top and bottom lines by cos(A) cos(B), giving

tan(A+ B) =
sin(A) cos(B)

cos(A) cos(B)
+ cos(A) sin(B)

cos(A) cos(B)

cos(A) cos(B)

cos(A) cos(B)
− sin(A) sin(B)

cos(A) cos(B)

tan(A+ B) = tan(A)+ tan(B)

1− tan(A) tan(B)
.

From these three identities for sin(A+B), cos(A+B), and tan(A+B)

we can obtain many other expressions. A list of important trigonometric
identities is given in Table 5.1.
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Table 5.1 Summary of important trigonometric
identities

cos(A ± B) = cos(A) cos(B)∓ sin(A) sin(B)

sin(A ± B) = sin(A) cos(B)± cos(A) sin(B)

tan(A ± B) = tan(A)± tan(B)

1∓ tan(A) tan(B)

sin(X )+ sin(Y ) = 2 sin
( 1

2 (X + Y )
)

cos
( 1

2 (X − Y )
)

sin(X )− sin(Y ) = 2 cos
( 1

2 (X + Y )
)

sin
( 1

2 (X − Y )
)

cos(X )+ cos(Y ) = 2 cos
( 1

2 (X + Y )
)

cos
( 1

2 (X − Y )
)

cos(X )− cos(Y ) = −2 sin
( 1

2 (X + Y )
)

sin
( 1

2 (X − Y )
)

sin(2A) = 2 sin(A) cos(A)

cos(2A) = cos2(A)− sin2(A)

tan(2A) = 2 tan(A)

1− tan(A)

cos(2A) = 2 cos2(A)− 1

cos(2A) = 1− 2 sin2(A)

cos2(A)+ sin2(A) = 1

cos2(A) = 1
2 (cos(2A)+ 1)

sin2(A) = 1
2 (1− cos(2A))

cos
(
A − π

2

)
= sin(A)

sin
(
A + π

2

)
= cos(A)

Example 5.10 Using cos(2A) = cos2(A) − sin2(A) and cos2(A) +
sin2(A) = 1, show that cos2(A) = 1

2 (cos(2A)+ 1).

Solution From cos2(A) + sin2(A) = 1, sin2(A) = 1 − cos2(A)

(subtracting cos2(A) from both sides).
Substitute this into

cos(2A) = cos2(A)− sin2(A)

cos(2A) = cos2(A)− (1− cos2(A))

⇔ cos(2A) = cos2(A)− 1+ cos2(A)

⇔ cos(2A) = 2 cos2(A)− 1

⇔ cos(2A)+ 1 = 2 cos2(A) (adding 1 on to both sides)

⇔ cos2(A) = 1
2 (cos(2A)+ 1) (dividing by 2)

Hence

cos2(A) = 1
2 (cos(2A)+ 1)

Example 5.11 From

cos(A± B) = cos(A) cos(B)∓ sin(A) sin(B)

sin(A± B) = sin(A) cos(B)± cos(A) sin(B),

show that

sin(X)+ sin(Y ) = 2 sin
( 1

2 (X + Y )
)

cos( 1
2 (X − Y )).
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Solution Use

sin(A+ B) = sin(A) cos(B)+ cos(A) sin(B) (5.1)

and

sin(A− B) = sin(A) cos(B)− cos(A) sin(B), (5.2)

and set

X = A+ B (5.3)

and

Y = A− B. (5.4)

Using Equations (5.3) and (5.4), we can solve for A and B. Add
Equations (5.3) and (5.4) giving

X + Y = 2A ⇔ A = X + Y

2
.

Subtract Equation (5.4) from Equation (5.3) giving

X − Y = A+ B − (A− B) ⇔ X − Y = 2B ⇔ B = X − Y

2
.

Add Equations (5.1) and (5.2) to give

sin(A+ B)+ sin(A− B) = sin(A) cos(B)+ cos(A) sin(B)

+ sin(A) cos(B)− cos(A) sin(B)

⇔ sin(A+ B)+ sin(A− B) = 2 sin(A) cos(B).

Substitute for A and B giving

sin(X)+ sin(Y ) = 2 sin
( 1

2 (X + Y )
)

cos
( 1

2 (X − Y )
)
.

Example 5.12 Given that cos(60◦) = 1
2 , find cos(30◦).

Solution Using

cos2(A) = 1
2 (cos(2A)+ 1)

and putting A = 30◦, we get

cos2(30◦) = 1

2
(cos(60◦)+ 1) = 1

2

(
1

2
+ 1

)
= 1

2

(
3

2

)
= 3

4

⇔ cos(30◦) = ±
√

3
2 .

From the knowledge of the graph of the cosine we know cos(30◦) > 0,

so cos(30◦) =
√

3
2 .
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Example 5.13 Using sin(90◦) = 1 and cos(90◦) = 0, find sin(45◦)
Solution Using

sin2(A) = 1
2 (1− cos(2A))

and putting A = 45◦, 2A = 90◦, we get

sin2(45◦) = 1
2 (1− cos(90◦)) = 1

2 (as cos(90◦) = 0)

⇔ sin(45◦) = ±
√

1
2 .

From the knowledge of the graph of the sine function we know that
sin(45◦) > 0, hence,

sin(45◦) =
√

1
2 .

5.6
Superposition

The principle of superposition of waves states that the effect of a number
of waves can be found by summing the disturbances that would have
been produced by the individual waves separately. This behaviour is quite
different from that of travelling particles, which will bump into each other,
thereby altering the velocity of both.

The idea of superposition is used to explain the behaviour of:

1. stationary waves formed by two wave trains of the same amplitude
and frequency travelling at the same speed in opposite directions.

2. Interference of coherent waves from identical sources.
3. Two wave trains of close frequency travelling at the same speed,

causing beats.
4. Diffraction effects.

We look at some examples of these applications.

Standing waves
Suppose that a wave is created by plucking a string of a musical instru-
ment; when the wave reaches the end of the string it is reflected back.
The reflected wave will have the same frequency as the initial wave but a
different phase and will be travelling in the opposite direction.

The sum of the incident and reflected wave forms a standing wave. An
example is shown in Figure 5.18. Figure 5.18(a) shows the incident wave
in a string at some instant in time. Its phase is 18◦. Beyond the barrier
is shown the hypothetical continuation of the wave as if there were no
barrier. The reflected wave is found by turning this section upside down
and reflecting it, as shown in Figure 5.18(b). The reflected wave has
phase (180◦− phase of the incident wave) = 180◦ − 18◦ = 162◦. In
Figure 5.18(c), the sum of the incident and reflected wave produces a
standing wave. The maximum and minimum values on this are called
antinodes and the zero values are called nodes. As the string is fixed at
both ends there must be nodes at the ends.

At different moments in time, the phase of the incident wave will be
different. This changes the amplitude of the standing wave but does not
change the position of the nodes or antinodes (for a given frequency of
wave). Only waves whose wavelengths exactly divide into 2l (twice the
length of the string) can exist on the string because their amplitude must
be 0 at the two end points. Each possible wavelength defines a mode of
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Figure 5.18 (a) Incident wave in a string at some instant in time. (b) The reflected wave. (c) The sum of the
incident and reflected waves.

vibration of the string. λ = 2l is called the fundamental mode and is
shown in Figure 5.19.

Figure 5.19 The
fundamental mode for a
standing wave in a string of
length % has wavelength 2% so
that half a cycle fits into the
length of the string. This is the
longest wavelength possible.

The standing wave can be explained using

cos(X)+ cos(Y ) = 2 cos 1
2 (X + Y ) cos 1

2 (X − Y ).

The example given in Figure 5.18 has a wavelength of 4 giving
wavenumber 360◦/4 = 90◦. The incident wave (phase 18◦) is y =
cos(90◦x + 18◦) and the reflected wave is y = cos(90◦x + 162◦).

Summing these gives

cos(90◦x + 18◦)+ cos(90◦x + 162◦)

= 2 cos
( 1

2 (90◦x + 18◦ + 90◦x + 162◦)
)

cos
( 1

2 (90◦x + 18◦

− (90◦x + 162◦))
)

= 2 cos(90◦x + 90◦) cos(72◦).

As a 90◦ phase-shifted version of a cosine gives a negative sine, this gives
−2 cos(72◦) sin(90◦x). We see that the result is a sine wave of the same
spatial frequency as the incident and reflected wave but with an amplitude
of 2 cos 72◦ ≈ 0.62.

This result can also be found for a general situation – now expressing
the phases, etc. in radians. The initial wave is cos(kx+δ) and the reflected
wave is cos(kx + π − δ). The standing wave is given by summing these,
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which gives

cos(kx + δ)+ cos(kx + π − δ)

= 2 cos

(
kx + δ+ kx + π − δ

2

)
cos

(
kx + δ− (kx + π − δ)

2

)

= 2 cos
(
kx + π

2

)
cos

(
δ− π

2

)
.

The standing wave has the same spatial frequency as the original waves.
As cos(kx+π/2) = − sin(kx) and cos(δ−π/2) = sin(δ), this becomes
−2 sin(kx) sin(δ). So, the instantaneous amplitude of the standing wave
is 2 sin(δ) where δ is the phase of the incident wave.

5.7 Inverse
trigonometric
functions

From the graphs of the trigonometric functions, y = sin(x), y = cos(x),
and y = tan(x), we notice that for any one value of y there are several
possible values of x. This means that there are no inverse functions if all
input values for x are allowed. However, we can see on a calculator that
there is a function listed above the sine button and marked as sin−1, so is
it in fact the inverse function?

Try the following with the calculator in degree mode. Enter 60 and
press sin, then press sin−1. This is shown in Table 5.2(a). The same
process is repeated for 120◦ and for −120◦. However, for the latter two
cases the inverse function does not work.

If we can restrict the range of values allowed into sin(x) to the range
−90◦ to +90◦, then sin−1(x) is a true inverse.

The inverse function of y = sin(x) is defined as f (x) = sin−1(x)

(often written as arcsin(x) to avoid confusion with 1/ sin(x)). It is the
inverse function only if the domain of the sine function is limited to
−π/2 � x � π/2. Thus, sin−1(sin(x)) = x if x lies within the limits
given above and sin(sin−1(x)) = x if −1 � x � 1. The graph of
y = sin−1(x) is given in Figure 5.20.

Figure 5.20 Graph of
y = sin−1(x ).

f (x) = cos−1(x) is the inverse of y = cos(x) if the domain of cos(x)
is limited to 0 � x � π . cos−1(cos(x)) = x if x is limited to the interval
above and cos(cos−1(x)) = x if−1 � x � 1. The graph of y = cos−1(x)

is given in Figure 5.21.

Figure 5.21 Graph of
y = cos−1(x ).

f (x) = tan−1(x) is the inverse of y = tan(x) if the domain of tan(x)
is limited to −π/2 < x < π/2. Thus, tan−1(tan(x)) = x if x is limited
as above and tan(tan−1(x)) = x for all x. The graph of y = tan−1(x) is
given in Figure 5.22.

Table 5.2 sin and sin−1 on a calculator

(a) (b) (c)

sin−1 sin sin−1 sin sin−1 sin

60◦ → 0.8660 120◦ → 0.8660 −120◦ → −0.8660
60◦ ← 0.8660 60◦ ← 0.8660 −60◦ ← −0.8660
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5.8 Solving the
trigonometric
equations
sin x = a,
cos x = a,
tan x = a

The solutions to the equations sin(x) = a, cos(x) = a, and tan(x) = a

are shown in Figures 5.23–5.25, respectively. Where the lines y = a cross
the sine, cosine, or tangent graph gives the solutions to the equations. In
Figure 5.23, solutions to sin(x) = a are given by values of x where
the line y = a crosses the graph y = sin(x). Notice that there are two
solutions in every cycle. The first solution is sin−1(a) and the second is
given by π − sin−1(a). Solutions in the other cycles can be found by
adding a multiple of 2π to these two solutions.

In Figure 5.24, solutions to cos(x) = a are given by values of x where
the line y = a crosses the graph y = cos(x). Notice that there are two
solutions in every cycle. The two solutions in [−π , π ] are cos−1(a) and
− cos−1(a). Other solutions can be found by adding a multiple of 2π to
these two solutions.

In Figure 5.25, solutions to tan(x) = a are given by values of x where
the line y = a crosses the graph y = tan(x). Notice there is one solution
in every cycle. The solution in [0, π ] is tan−1(a). Solutions in the other
cycles can be found by adding a multiple of π to this solution.

Example 5.14 Find solutions to sin(x) = 0.5 in the range [2π , 4π ]
Solution From the graph of y = sin(x) and the line y = 0.5 in
Figure 5.26, the solutions can be worked out from where the two lines

Figure 5.22 Graph of
y = tan−1(x ).

Figure 5.23 Solutions of
sin(x ) = a.

Figure 5.24 Solutions of
cos(x ) = a.

Figure 5.25 Solutions of
tan(x ) = a.
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Figure 5.26 Solutions of
y = sin(x ) and y = 0.5.

Figure 5.27 Solutions of y = cos(x ) and y = 0.3.

cross. The solution nearest x = 0 is given by sin−1(0.5) ≈ 0.524. The
other solution in [0, 2π ] is given by π − 0.524 ≈ 2.62. Any multiple of
2π added on to these solutions will also give a solution. Therefore, in the
range [2π , 4π ] the solutions are 3.64 and 8.9.

Example 5.15 Find solutions to cos(x) = 0.3 in the range
[−480◦, 480◦].
Solution From the graph of y = cos(x) and the line y = 0.3 in
Figure 5.27, the solutions can be worked out from where the two lines
cross. The solution nearest x = 0 is given by cos−1(0.3) ≈ 73◦. The
other solution in [0◦, 360◦] is given by −73◦. Any multiple of 360◦
added on to these solutions will also give a solution. Therefore, in the
range [−480◦, 480◦] the solutions are −433◦,−287◦,−73◦, 73◦, 287◦,
and 433◦ (approximately).

Example 5.16 Find solutions to tan(x) = 0.1 in the range [360◦, 540◦].
Solution From the graph of y = tan(x) and the line y = 0.1 in
Figure 5.28, the solutions can be worked out from where the two lines
cross. The solution nearest x = 0 is given by tan−1(0.1) ≈ 6◦. Any mul-
tiple of π added on to this solution will also give a solution. Therefore,
in the range [360◦, 540◦] there is only one solution, that is, 366◦.

5.9 Summary 1. Trigonometric functions can be defined using a rotating rod of
length 1. The sine is given by plotting the height of the tip of the
rod against the distance travelled. The cosine is given by plotting the
position that the tip of the rod is to the left or right of the origin against
the distance travelled. Hence, if the tip of the rod is at point (x, y) and
the tip has travelled a distance of t units, then sin(t) = y, cos(t) = x,
and the tangent is given by

tan(t) = sin(t)

cos(t)
= y

x
.

2. If angles are measured in radians, then this definition is the same
for angles between 0 and π/2 as that given by defining the cosine,
sine, and tangent from the sides of a triangle (of hypotenuse 1) as
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Figure 5.28 Solutions of y = tan(x ) and y = 0.1.

in Chapter 6 of the Background Mathematics Notes given on the
companion website for this book.

There are 2π radians in a complete revolution (360◦) and therefore
π radians = 180◦.

1 radian = 180◦

π

1◦ = π

180
radians.

The trigonometric ratios can now be defined using a rotating rod
of length r and the angle, α, made by the rod to the x axis. Then, if
the tip of the rod is at point (x, y):

cos(α) = x

r
, sin(α) = y

r
, tan(α) = y

x
= sin(α)

cos(α)

α is normally expressed in radians, although engineers often use
degrees. If degrees are intended, then they must be explicitly marked.

3. sin(t) and tan(t) are odd functions, while cos(t) is an even function.
This can be expressed by

sin(−t) = − sin(t)

cos(−t) = cos(t)

tan(−t) = − tan(t)

sin(t) and cos(t) are periodic with period 2π and tan(t) is periodic
with period π . This can be expressed by

sin(t + 2πn) = sin(t)

cos(t + 2πn) = cos(t)

tan(t + πn) = tan(t)

where n ∈ Z.
4. For the function y = A cos(ax + b). A is the amplitude, the cycle

rate (number of cycles in 1 unit) = a/2π , the fundamental period,
or cycle length, P = 2π/a, the phase is b.

For a function of time y = A cos (ωt + φ), ω is the angular
frequency and is measured in radians s−1. The number of cycles in
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1 s is the frequency, f = ω/2π and is measured in Hz. The cycle
length is called the periodic time or period (often represented by
τ ) = 2π/ω and is measured in seconds. The phase is φ.

For a function of distance y = A cos(kx + φ), k is the wave-
number. The number of cycles in 1 m is the spatial frequency, = k/2π
wavelengths per metre, the cycle length is called the wavelength
(often represented by λ) = 2π/k and is measured in metres, and the
phase is φ.

The function y = A cos(ωt−kx) with t > 0 and ωt � kx is called
the progressive wave equation and has velocity v = λf m s−1.

5. Wave amplitudes are often measured on a logarithmic scale using
decibels.

6. There are many trigonometric identities, summarized on Table 5.1.
Some of the more fundamental ones are:

cos(A± B) = cos(A) cos(B)∓ sin(A) sin(B)

sin(A± B) = sin(A) cos(B)± cos(A) sin(B)

tan(A) = sin(A)

cos(A)

cos2(A)+ sin2(A) = 1

from which others can be derived.
7. The principle of superposition of waves gives that the effect of a

number of waves can be found by summing the disturbances that
would have been produced by the waves separately. One applica-
tion of this is the case of stationary waves, which can be explained
mathematically using trigonometric identities.

8. sin−1(x) is the inverse function to sin(x) if the domain of sin(x) is
limited to −π/2 � x � π/2, in which case sin−1(sin(x)) = x.

cos−1(x) is the inverse function to cos(x) if the domain of cos(x)
is limited to 0 � x � π , in which case cos−1(cos(x)) = x.

tan−1(x) is the inverse function to tan(x) if the domain of tan(x)
is limited to −π/2 < x < π/2, in which case tan−1(tan(x)) = x.

9. Inverse trigonometric functions are used in solving trigonometric
equations. There are many solutions to trigonometric equations and
graphs can be used to help see where the solutions lie.

sin(x) = a has two solutions: one is x = sin−1(a) and another is
π − sin−1(a). Other solutions can be found by adding or subtracting
a multiple of 2π .

cos(x) = a has two solutions: one is x = cos−1(a) and another is
− cos−1(a). Other solutions can be found by adding or subtracting a
multiple of 2π .

tan(x) = a has one solution: x = tan−1(a). Other solutions can
be found by adding or subtracting a multiple of π .

5.10 Exercises

5.1. Without using a calculator, express the following
angles in degrees (remember π radians = 180◦, π ≈
3.142):

(a) 2
3π radians (b) 4π radians (c) 3

5π radians
(d) 6.284 radians (e) 1.571 radians.

Check your answers using a calculator.

5.2. Without using a calculator, express the following
angles in radians:

(a) 45◦ (b) 135◦ (c) 10◦ (d) 150◦.

Check your answers using a calculator.

TLFeBOOK



“chap05” — 2003/6/8 — page 114 — #27

114 Trigonometric functions and waves

Figure 5.29 Graphs for
Exercise 5.5.

5.3. Given that cos(π/3) = 1/2, without using a calculator,
find:

(a) sin(π/3) (b) tan(π/3) (c) cos(2π/3)

(d) sin(7π/3) (e) tan(4π/3)

Check your answers using a calculator.

5.4. By considering transformations of the graphs of
sin(x), cos(x), and tan(x), sketch the graphs of the
following:

(a) y = sin(x + (π/4)) (b) y = tan(x − (π/2))
(c) y = 3 sin(x) (d) y = 1

2 cos(x)
(e) y = sin(πx) (f) y = 2 sin( 1

2x + (π/6))
(g) y = sin(x)+ 3 (h) y = − cos(x).

5.5. From the graphs in Figure 5.29, find the phase, ampli-
tude, period (cycle length), and number of cycles in
one unit.

5.6. For the following functions of time, find the amplitude,
period, angular frequency, and phase:

(a) y = 3 cos(4t + (π/2)) (b) V = sin(377t + 0.4)
(c) p = 40 cos(3000t − 0.8).

5.7. For the following functions of distance, x, find
the amplitude, wavelength, spatial frequency, and
wavenumber:

(a) y = 0.5 cos(2x − (π/2))
(b) y = 2 cos(72x + 0.33)
(c) y = 52 sin(80x)

5.8. Given a progressive wave t > 0

y =
{

3 cos(2t − 5x) for 5x � 2t

0 otherwise

(a) Sketch the waves for t = 1, t = 5, and t = 10.
(b) Sketch the wave as a function of time for: (i) x =

2 (t > 5); and (ii) x = 4 (t > 10).

(c) Find the wave velocity and use your graphs to
justify it.

5.9. A pneumatic drill produces a sound pressure of
6 N m−2. Given that the reference pressure is 2 ×
10−5 N m−2, find the sound pressure level in decibels.

5.10. The reference level on a voltmeter is set as 0.775 V.
Calculate the reading in decibels when the voltage
reading is 0.4 V.

5.11. Show, using trigonometric identities, that
(a) cos(X + δ)− cos(X − δ) = −2 sin(δ) sin(X)

(b) sin(X + δ)+ sin(X − δ) = 2 sin(X) cos(δ)

5.12. Two wave trains have very close frequencies and can
be expressed by the sinusoids y = 2 sin(6.14t) and
y = 2 sin(6.19t). Their sum is sketched in Figure 5.30.
Use the expression for the summation of two sines to
find the beat frequency (the number of times the mag-
nitude of the amplitude envelope reaches a maximum
each second).

5.13. A single frequency of 200 Hz (message signal)
is amplitude modulated with a carrier frequency
of 2 MHz. Express the message signal as m =
a cos (ω1t) and the carrier as c = b cos(ω2t) and
assume that the modulation gives the product mc =
ab cos(ω1t) cos(ω2t). Use trigonometric identities to
show that the modulated signal can be represented by
the sum of two frequencies at 2× 106 ± 200 Hz.

5.14. (a) Give the wavelengths of three modes of vibration
on a string of length 0.75 m.

(b) The velocity v is approximately given by v =√
T /mwhereT is the tension andm is the mass per

unit length of the string. Given that T = 2200 N
and m = 0.005 kg m−1, find the frequency of the
fundamental mode.

5.15. Usea cos(ωt+δ) = a cos(ωt) sin(δ)−a sin(ωt) sin(δ)
to find c and d in the expression 2 cos(3t + (π/3)) =
c cos(3t)+ d sin(3t).

5.16. Express as single sines or cosines:
(a) sin(43◦) cos(61◦)+ cos(43◦) sin(61◦)
(b) sin(22◦) cos(18◦)− cos(22◦) cos(18◦)
(c) cos(63◦) cos(11◦)+ sin(63◦) sin(11◦)
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Figure 5.30 Two sinusoids y = 2 sin(6.14t ) and 2 sin(6.19t ) for Exercise 5.12.

(d) sin(41◦) sin(22◦)− cos(41◦) cos(22◦)
(e) sin(2x) cos(x)+ cos(2x) sin(x)
(f) cos2(x)− sin2(x).

5.17. Express cos(x+y+z) in terms of the sines and cosines
of x, y, and z.

5.18. Find all the solutions to the following equations in the
interval [0, 6π ]:
(a) sin(x) = −1/2 (b) tan(x) = 1/3
(c) cos(x) = −0.8 (d) sin2(x) = 0.25
(e) cos(x)+ 2 cos2(x) = 0 (f) sin2(x)− 2 = 2.
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6 Differentiation

6.1 Introduction We have used functions to express relationships between variables. For
instance, in an electrical circuit the current and the voltage through a
resistor can be related by V = IR. Here, one physical relationship can
be found by simply substituting in the formula the known value of the
other. Another common relationship between physical quantities is that
one quantity is the rate of change of another: for instance, speed is defined
as rate of change of distance with respect to time. It is simple to find the
average speed of a moving object if we know how far it has travelled in a
certain length of time, which is given by

Distance travelled

Time taken

This does not give an idea of the speed at any particular instant. If
I am travelling by coach from London to Birmingham the journey takes
about 2.75 h to go about 110 miles. This means that the average speed
is about 40 mph. However, I know that the coach by no means travels at
a constant speed. Through central London it travels at around 12 mph
and on the motorway at around 70 mph. Is there a way that we can
estimate the speed at any particular moment as accurately as possible,
armed only with a mileometer, to give the distance travelled, and a stop
watch? I can measure the distance travelled in a 10 s interval and find
that it is 0.2 miles. This means that the average speed is 0.2/10 miles per
second = 0.02 miles per second = 0.02 × 60 × 60 mph = 72 mph.
This gives a pretty good idea of the speed at any moment within that
10 s interval, as the length of time is small enough that the speed prob-
ably has not changed too much. The smaller the period of time over
which we take the measurement, the more accurately we should be
able to estimate the speed at any one instant. The speed is found by
looking at the ratio of the distance travelled over the time taken where
the time interval is taken as small as possible. This is an approxi-
mation to the instantaneous rate of change of distance with respect
to time.

The rate of change of one quantity with respect to another is called
its derivative. If we know the expression defining the function then we
are able to find its derivative. The techniques used for differentiating are
described in this chapter.

Many physical quantities are related through differentiation. Some
of these are current and charge, acceleration and velocity, force and
work done, momentum and force, and power and energy. Applica-
tions of differentiation are, therefore, very widespread in all areas of
engineering.
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6.2 The average
rate of change
and the gradient
of a chord

A ball is thrown from the ground and after t s is at a distance s m from
the ground, where

s = 20t − 5t2

Find:

(a) the average velocity of the ball between t = 1 s and t = 1.1 s;
(b) the average velocity between t = 1 and t = 1.01 s;
(c) the average velocity between t = 1 and t = 1.001 s;
(d) the average velocity between t = 1 and t = 1.0001 s;

Guess the velocity at t = 1.

Solution The average velocity is given by the distance moved divided
by the time taken. That can be represented by

Average velocity = change in distance

change in time
= δs

δt
= s(t2)− s(t1)

t2 − t1

where t2 and t1 are the times between which we are finding the average.
δs (‘delta s’) is used to represent a change in s and δt (‘delta t’) is used
to represent a change in t . The average velocity δs/δt = ‘delta s over
delta t’.

So, to solve this problem we can use a table, as given in Table 6.1.
The graph of this function is given in Figure 6.1. If a line that joins

two points lying on the graph of the function it is drawn it is called a
chord. We found that when t = 1 and s = 15 the point (1, 15) lies on
the graph. When t = 1.1 and s = 15.95 we can also mark the point

Table 6.1 Calculation of the average velocities over various intervals

t1 t2 s(t1) =
20t1 − 5t 2

1

s(t2) = 20t2 − 5t 2
2 t2 − t1 s(t2)− s(t1) Average

velocity = δs/δt

1 1.1 15 15.95 0.1 0.95 9.5
1 1.01 15 15.0995 0.01 0.0995 9.95
1 1.001 15 15.009995 0.001 0.009995 9.995
1 1.0001 15 15.00099995 0.0001 9.9995× 10−4 9.9995

...
...

Velocity at t = 1 10

Figure 6.1 Part of the graph
of s = 20t − 5t 2. The chord
joining (1, 15) to (1.1, 15.95)
has gradient δs/δt = 9.5 The
chord joining (1, 15) to (1.1,
15.0995) has gradient 9.95.
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(1.1, 15.95). The triangle containing the chord joining these two points
has height δs = change in s = 15.95− 15 = 0.95 and base length δt =
change in t = 1.1− 1.0 = 0.1. This means that the gradient = δs/δt =
0.95/0.1 = 9.5. Another chord can be drawn from t = 1 to t = 1.01.
When t = 1.01 and s = 15.0995 we mark the point (1.01, 15.0995).
The triangle containing the chord joining (1, 15) to (1.01, 15.0995) has
height δs = change in s = 15.0995 − 15 = 0.0995 and base length
δt = change in t = 1.01 − 1.0 = 0.1. This means that the gradient =
δs/δt = 0.0995/0.01 = 9.95.

As the ends of the chord are put nearer together the gradient of the chord
gives a very good approximation to the instantaneous rate of change.
Unfortunately, the chord becomes so small that we can hardly see it! To
get round this problem we can extend the line at either end. So a chord
between two points that are very close together appears to only just touch
the function curve. A line that just touches at one point is called a tangent.
As the two points on the chord approach each other the line of the chord
approaches the tangent. Therefore, the gradient of the chord must also
give a good approximation to the gradient of the tangent.

We can guess from Table 6.1 that the instantaneous velocity at t = 1
is 10 m s−1. Although the length of time over which we take the average
gets smaller and smaller, that is, tends towards zero, the average veloc-
ity does not get nearer to zero but instead approaches the value of the
instantaneous velocity.

The instantaneous velocity is represented by ds/dt , the derivative of s

with respect to t , and can defined using

Instantaneous velocity = ds

dt
= lim

δt→0

δs

δt

read as ‘ds by dt equals the limit, as delta t tends to zero, of delta s over
delta t’.

Note that ds/dt is read as ‘ds by dt’ (not ‘ds over dt’) because the line
between the ds and the dt does not mean ‘divided by’. However, because
it does represent a rate of change it usually ‘works’ to treat ds/dt like
a fractional expression. This is because we can always approximate the
instantaneous rate of change by the average rate of change (which is a
fraction)

ds

dt
≈ δs

δt
for small δt

‘ds by dt is approximately delta s over delta t for small delta t’.
δs/δt represents the gradient of a chord and ds/dt represents the gra-

dient of the tangent. If δs/δt is used as an approximation to ds/dt then
we are using the chord to approximate the tangent.

6.3 The
derivative
function

We saw in Section 6.2 that if the ends of the chord are put closer together
the gradient of the chord approaches the gradient of a tangent. The tangent
to a curve is a line that only touches the curve at one point. The gradient
of the tangent is also more simply referred to as the slope of the curve at
that point. If the slope of the curve is found for every point on the curve
then we get the derivative function.
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The derivative of a function, y = f (x) is defined as

dy

dx
= lim

δx→0

δy

δx

provided that this limit exists. As δy is the change in y and y = f (x)

then, at the points x and x + δx, y has values f (x) and f (x + δx), the
increase in y is given by δy = f (x + δx)− f (x). We have

dy

dx
= lim

δy

δx
= lim

δx→0

f (x + δx)− f (x)

δx
.

The derivative of y = f (x), dy/dx, ‘dy by dx’ can also be represented
as f ′(x) (read as ‘f dashed of x’). f ′(a) is the gradient of the tangent to
the curve f (x) at the point x = a. This is found by finding the gradient
of the chord between two points at x = a + δx and x = a and taking the
limit as δx tends to zero.

The gradient of a chord gives the average rate of change of a function
over an interval and the gradient of the tangent, the derivative, gives the
instantaneous rate of change of the function at a point. These definitions
are shown in Figure 6.2.

Derivative functions can be found by evaluating the limit shown in
Figure 6.2. This is called differentiating from first principles.

Figure 6.2 The gradient of the chord δy/δx approaches the gradient of the tangent (or the slope of the
curve) as the ends of the chord get closer together (i.e. δx tends to zero). This is written as

dy
dx
= lim

δx→0

δy
δx

read as ‘dy by dx equals the limit, as the change in x (delta x) tends to zero, of the change in y (delta y)
divided by the change in x (delta x)’.

TLFeBOOK



“chap06” — 2003/6/8 — page 120 — #5

120 Differentiation

Example 6.1 If y = x2 find dy/dx using

dy

dx
= lim

δx→0

δy

δx

Solution Consider a small change so that x goes from x to x + δx. As
y = x2 we can find the function value at x+ δx by replacing x by x+ δx
giving y + δy = (x + δx)2. Therefore, the change in y, δy, is given by

(x + δx)2 − x2 = x2 + 2xδx + (δx)2 − x2 = 2xδx + (δx)2

Therefore,

δy

δx
= 2xδx + (δx)2

δx

As long as δx does not actually equal 0 we can divide the top and bottom
line by δx giving

δy

δx
= 2x + δx

and therefore

dy

dx
= lim

δx→0
2x + δx = 2x

This has shown that

y = x2 ⇒ dy

dx
= 2x.

6.4 Some
common
derivatives

We begin by listing derivatives of some simple functions (see Table 6.2).

Table 6.2 The derivative
of some simple functions

f (x ) f ′(x )

C 0
x n nx n−1

cos(x ) −sin(x )
sin(x ) cos(x )

tan(x ) sec2(x )

= 1/ cos2(x )

We can also express the lines of Table 6.2 using d/dx as an operator
giving, for instance,

d

dx
(xn) = nxn−1

This can be read as ‘the derivative of xn is nxn−1’ or ‘d by dx of xn is
nxn−1’.

To see the validity of a couple of entries in Table 6.2, refer to Figure 6.3
for the derivative of a constant, C, and Figure 6.4 for the derivative of
cos(x).

Example 6.2 Differentiate

(a) x (b) x5 (c) 1/x3 (d)
√

x (e) 1/
√

x3
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Figure 6.3 (a) The
derivative of a constant, for
instance y = 3. The slope at
any point is zero (the line has
zero gradient everywhere).
(b) The graph of the derivative
is given as dy/dx = 0.

Figure 6.4 (a) The graph of
y = cos(x ) with a few
tangents marked. On
travelling from left to right,
when we are going uphill the
slope (and therefore the
derivative) must be positive
and when going downhill the
derivative must be negative.
At the top of the hills and the
bottom of the troughs the
slope is 0. Joining up the
points on the bottom graph
gives something like an
upside-down sine wave.
(b) The graph of the derivative
dy/dx = −sin(x ).

Solution To differentiate a power of x we must first write the expression
in the form xn where n is some number. We can then use the fact that

d

dx
(xn) = nxn−1

from Table 6.2.

(a) x = x1; therefore, n = 1. Substitute n = 1 in

d

dx
(xn) = nxn−1

to give

d

dx
(x1) = 1x1−1 = 1x0 = 1

as x0 = 1. Hence,

d

dx
(x) = 1

(b)

d

dx
(x5) = 5x5−1 = 5x4
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(c) 1/x3 = x−3 (using properties of negative powers given in Chapter 4
of the Background Mathematic Notes available on the companion
website for this book), so n = −3

d

dx
(x−3) = (−3)x−3−1 = −3x−4 = −3

x4

(d)
√

x = x1/2 (using properties of roots given in Chapter 4 of the
Background Mathematic Notes available on the companion website
for this book), so n = 1/2

d

dx
(x1/2) = 1

2
x1/2−1 = 1

2
x−1/2 = 1

2

1

x1/2
= 1

2
√

x

(e)

1√
x3
= 1

x3/2
= x−3/2

so n = −3/2. Hence,

d

dx
(x−3/2) = −3

2
x−3/2−1 = −3

2
x−5/2 = −3

2

1

x5/2
= −3

2

1√
x5

Figure 6.5 A spring has a
weight hanging from it of
unknown mass m. The spring
extends by an amount x and
the energy stored in the
spring is known to be E = x 2.
The force due to gravity is
F = mg where g is the
acceleration due to gravity.

Example 6.3 The energy stored in a stretched spring of extension x m
is found to be E = x2 J (Figure 6.5). The force exerted by hanging
a weight on the spring is given by mg where g is the acceleration due
to gravity g ≈ 10 m s−1 and m is the mass. Given that the spring is
extended by 0.5 m and that F = dE/dx find the mass hanging on the
spring.

Solution Find the expression for the force by differentiating E = x2:

F = dE

dx
= 2x

As x = 0.5, F = 2(0.5) = 1 N. Now, F = mg, and as g ≈ 10 then

1 = m× 10⇔ m = 1
10 = 0.1 kg

Thus, the mass on the spring is 0.1 kg.

6.5 Finding the
derivative of
combinations of
functions

To find the derivative of functions that are the sum, difference quotient,
product, or composite of any of the functions given in Table 6.2, we use
the entries given in Table 6.2 the rules given in this section.

Derivatives of af (x ) where a is
a constant
d

dx
(af (x)) = af ′(x)

This is only true if a is a constant, not if it is a function of x.
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Example 6.4 Differentiate y = 2x3. Notice that this a constant, 2,
multiplied by x3. The derivative of x3 is found by looking Table 6.2. The
derivative of xn is given by nxn−1. In this case n = 3 so

d

dx
(x3) = 3x2

and hence

dy

dx
= 2(3x2) = 6x2

Derivatives of a sum (or a difference) of
functions
If y can be written as the sum of two functions, that is, y = u+ v where
u and v are functions of x then

dy

dx
= du

dx
+ dv

dx

Example 6.5 Differentiate y = sin(t)+√t .

Solution

y = sin(t)+√t ⇔ y = sin(t)+ t1/2

To differentiate a sum differentiate each part

dy

dt
= cos(t)+ 1

2
t−1/2

dy

dt
= cos(t)+ 1

2
√

t

Derivatives of composite functions
(function of a function)
If y = f (x) is a composite function, so that we can write y = h(u) where
u = g(x), then

dy

dx
= dy

du

du

dx

This is called the chain rule.

Example 6.6 Differentiate y = sin(2x).

Solution We can substitute u = 2x giving y = sin(u):

du

dx
= 2 and

dy

du
= cos(u).

Therefore,

dy

dx
= dy

du

du

dx
= 2 cos(u).

Finally, resubstitute for u giving

dy

dx
= 2 cos(2x).
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Note that we always need to make substitutions so that our function is
the composite of the simple functions that we know how to differentiate,
that is, xn, sin(x), cos(x), tan(x) (or a constant times these functions,
or the sum of these functions). One simple way to guess the required
substitution is to look for a bracket.

Example 6.7 Differentiate y = (5x − 2)3.

Solution Substitute u = 5x − 2 (the function in the bracket) so that
y = u3. Then

du

dx
= 5 and

dy

du
= 3u2.

Therefore,

dy

dx
= dy

du

du

dx

gives

dy

dx
= 5(3u2) = 15(5x − 2)2 (resubstituting u = 5x − 2).

Example 6.8 Differentiate y = cos(2x2 + 3).

Solution Substitute u = 2x2 + 3, giving y = cos(u). Then

du

dx
= 4x and

dy

du
= − sin(u).

Therefore,

dy

dx
= dy

du

du

dx
= −4x sin(u) = −4x sin(2x2 + 3).

Because of the widespread use of the chain rule it is useful to be able
to differentiate a composite function ‘in your head’. This is a technique
that comes with practice (like mental arithmetic).

Example 6.9 Differentiate V = 1/(t + 1).

Solution Rewrite V = 1/(t + 1) as V = (t + 1)−1 and think of this as
V = ( )−1 where ( ) = t + 1.

Now differentiate V with respect to ( ) and multiply by the derivative
of ( ) with respect to t . That is,

dV

dt
= dV

d( )

d( )

dt

where ( ) can be any expression. So

dV

dt
= (−1(t + 1)−2)

d

dt
(t + 1)

dV

dt
= (−1(t + 1)−2)1

dV

dt
= −1

(t + 1)2
.
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Example 6.10 Differentiate

y = 1

(3t2 + 2t)2

Solution Rewrite

y = 1

(3t2 + 2t)2

as y = (3t2+ 2t)−2, and think of this as y = ( )−2 where ( ) = 3t2+ 2t .
Now differentiate y with respect to ( ) and multiply by the derivative

of ( ) with respect to t . That is,

dy

dt
= dy

d( )

d( )

dt

where ( ) can be any expression. So

dy

dt
= (−2(3t2 + 2t)−3)

d

dt
(3t2 + 2t)

⇔ dy

dt
= (−2(3t2 + 2t)−3)(6t + 2)

⇔ dy

dt
= − 12t + 4

(3t2 + 2t)3
.

Derivative of inverse trigonometric
functions
By the definition of the inverse function we know that y = sin−1(x)⇔
sin(y) = x, where−1 ≤ x ≤ 1, and therefore the derivatives are related.
We can find the derivative of sin−1(x) as in Example 6.11.
Example 6.11 Given

y = sin−1(x) and
d

dx
(sin(x)) = cos(x)

find dy/dx.

Solution As y = sin−1(x) then by the definition of the inverse
(assuming x is limited to [−1, 1])

sin(y) = x

The left-hand side of this is a function of y, which we can call w; hence,
w = sin(y) and w = x. By the chain rule:

dw

dx
= dw

dy

dy

dx

Differentiating w = x with respect to x gives dw/dx = 1.
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Differentiating w = sin(y) with respect to y gives

dw

dy
= cos(y)

Hence,

dw

dx
= dw

dy

dy

dx

becomes

1 = cos(y)
dy

dx

Dividing both sides by cos(y) (if cos(y) �= 0) gives

dy

dx
= 1

cos(y)

This is an expression for the derivative we want to find but it is a
function of y instead of x. Use sin(y) = x and the trigonomet-

ric identity cos2(y) = 1 − sin2(y), giving cos(y) =
√

1− sin2(y)

for (−π/2 ≤ y ≤ π/2). As sin(y) = x and cos(y) = √1− x2,
we get

dy

dx
= 1√

1− x2
.

The same method can be used to find the derivatives of cos−1(x) and
tan−1(x) and we can now add these functions to the list, giving a new
table of standard derivatives, as in Table 6.3.

Table 6.3 The derivatives
of some simple functions

f (x ) f ′(x )

C 0
x n nx n−1

cos(x ) − sin(x )
sin(x ) cos(x )

tan(x ) sec2(x )

sin−1(x ) 1
/√

1− x 2

cos−1(x ) −1
/√

1− x 2

tan−1(x ) 1
/

(1+ x 2)

Derivatives of a product of two functions
If y can be written as the product of two functions so that

y = uv

where u and v are functions of x, then

dy

dx
= u

dv

dx
+ v

du

dx

Example 6.12 Find the derivative of y = 5x sin(x).

Solution y = uv, where u = 5x and v = sin(x).

du

dx
= 5 and

dv

dx
= cos(x)

Using the derivative of a product formula:

dy

dx
= 5x cos(x)+ 5 sin(x)
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Example 6.13 Find the derivative of y = sin(t) cos(3t)

Solution y = uv, where u = sin(t) and v = cos(3t):

du

dt
= cos(t) and

dv

dt
= −3 sin(3t)

Using the derivative of a product formula:

dy

dt
= cos(t) cos(3t)− 3 sin(t) sin(3t).

Derivatives of a quotient of two
functions
If y can be written as the quotient of two functions so that y = (u/v),
where u and v are functions of x, then

dy

dx
= v(du/dx)− u(dv/dx)

v2
.

Example 6.14 Find the derivative of

y = sin(3x)

x + 1
.

Solution We have u = sin(3x) and v = x + 1, so

du

dx
= 3 cos(3x) and

dv

dx
= 1

Hence

dy

dx
= (x + 1)(3 cos(3x))− (sin(3x))1

(x + 1)2

= 3(x + 1) cos(3x)− sin(3x)

(x + 1)2

Example 6.15 Find the derivative of

z = 12t

1+ t3

Solution Setting u = 12t and v = 1+ t3, we have

du

dt
= 12 and

dv

dt
= 3t2

Hence

dz

dt
= (1+ t3)12− 3t2(12t)

(1+ t3)2
= 12+ 12t3 − 36t3

(1+ t3)2
= 12− 24t3

(1+ t3)2
.
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6.6
Applications of
differentiation

As mentioned in the introduction to this chapter, many physical quantities
important in engineering are related by the derivative. Here is a list of
just some of these.

Mechanics

v = dx

dt
, where v = velocity, x = distance, t = time.

a = dv

dt
, where a = acceleration, v = velocity, t = time.

F = dW

dx
, where F = force, W = work done (or energy used), x =

distance moved in the direction of the force.

F = dp

dt
, where F = force, p = momentum, t = time.

P = dW

dt
, where P = power, W = work done (or energy used), t =

time.
dE

dv
= p, where E = kinetic energy, v = velocity, p = momentum.

Gases
dW

dV
= p, where p = pressure, W = work done under isothermal

expansion, V = volume.

Circuits

I = dQ

dt
, where I = current, Q = charge, t = time.

V =
(

L
dI

dt

)
, where V is the voltage drop across an inductor, L =

inductance, I = current, t = time.

Electrostatics

E = −dV

dx
, where V = potential, E = electric field, x = distance.

Example 6.16 A ball is thrown in the air so that the height of the ball
is found to be s = 3t − 5t2. Find

(a) the ball’s initial velocity when first thrown into the air;
(b) the time when it returns to the ground;
(c) its final velocity as it hits the ground.

Solution
(a)

v = ds

dt
, s = 3t − 5t2 ⇒ ds

dt
= 3− 10t

The ball is initially thrown into the air when t = 0, so

ds

dt
= 3− 10(0) = 3 m s−1
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(b) The ball returns to the ground on the second occasion so that the
distance travelled, s, is equal to 0. This time is given by solving the
equation for t when s = 0.

0 = 3t − 5t2 ⇔ t(3− 5t) = 0

⇔ t = 0 or 3− 5t = 0

⇔ t = 0 or t = 3/5

Therefore, it must return to the ground when t = 3/5 = 0.6 s.
(c) When t = 0.6, using v = ds/dt = 3− 10t

v = 3− 10(0.6) = 3− 6 = −3 m s−1

Therefore, the velocity as it hits the ground is, −3 m s−1.

Example 6.17 A rocket is moving with a velocity of v = 4t2 +
10 000 m s−1 over a brief period of time while leaving the Earth’s
atmosphere. Find its acceleration after 2 s.

Solution Use a = dv/dt as v = 4t2 + 10 000. Then, a = 8t , and at
t = 2 this gives a = 16, so the acceleration after 2 s is 16 m s−2.

Example 6.18 The potential due to a point charge Q at a position r

from the charge is given by

V = Q

4πε0r

where ε0, the permittivity of free space, ≈ 8.85 × 10−12 F m−1 and
π ≈ 3.14.

Given that Q = 1 C, find the electric field strength at a distance of 5 m
using E = −dV /dr .

Solution

V = Q

4πε0r

substituting for ε0 and π and using Q = 1, we get

V = 1

4× 3.14× 8.85× 10−12r
≈ 9× 109

r
= 9× 109r−1

Now

E = −dV

dr
= −9× 109(−r−2) = 9× 109r−2

When r = 5 m,

E = 9× 109

25
= 3.6× 108 V m−1.
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6.7 Summary (1) The average rate of change of a function over a certain interval is
the same as the gradient of the chord drawn on the graph of the
function. This chord gradient, for a function, y = f (x), is given by

δy

δx
= change in y

change in x

(2) If the chord is very short then the gradient of the chord is approxi-
mately the gradient of the tangent to the graph at a particular spot,
that is, the slope of the graph at that point. The slope of the graph
gives the instantaneous rate of change of the function with respect to
its independent variable, known as its derivative. This is represented
by dy/dx. Then we have the definition

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

f (x + δx)− f (x)

δx

This is read as ‘dy by dx is the limit, as delta x tends to 0, of delta
y over delta x’. The derivative of y = f (x), dy/dx, (‘dy by dx’),
can also be represented by f ′(x) (read as ‘f dashed of x’).

(3) Derivatives of simple functions are given in Table 6.3. Rules are
used to differentiate combinations of these functions. These are:

Product with a constant

d

dx
(af (x)) = af ′(x)

Sum

If y = u+ v then

dy

dx
= du

dx
+ dv

dx

Composite function (function of a function) called the chain rule
If y = f (x) where y = h(u) and u = g(x) then

dy

dx
= dy

du

du

dx

Product
If y = uv then

dy

dx
= u

dv

dx
+ v

du

dx

Quotient
If y = u/v then

dy

dx
= v(du/dx)− u(dv/dx)

v2

(4) There are many applications of differentiation in all areas of
engineering, some of which are listed in Section 6.6.
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6.9 Exercises

6.1 A car is travelling such that its distance, s (m), from its
starting position after time t (s) is

s = 1

15
t3 + 2t , 0 < t < 10

s = 22(t − 10)+ 86.67, t ≥ 10
(a) What is its average velocity in the first 10 s?
(b) Give the velocity as a function of time.
(c) What is the instantaneous velocity when (i) t = 5,

(ii) t = 10, and (iii) t = 15?
(d) What is the average acceleration for the first 10 s?
(e) What is the average acceleration between t = 10

and t = 15?
(f) Give the acceleration as a function of time.
(g) What is the instantaneous acceleration when

(i) t = 5, (ii) t = 10, and (iii) t = 15?

6.2 Differentiate the following:

(1) 3x2 + 6x − 12 (2) x1/2 − x−1/2

(3)
√

2x3 − (5/6x2) (4) sin(3x3 + x)

(5) 2 cos(6x − 2) (6) tan(x2)

(7) 1/(2x − 3) (8) (4x − 5)6

(9) 1/
√

x2 − 1 (10) sin−1(5− 2x)

(11) tan(1/x) (12)
√

x2 + 2

(13) (x + 4)−3/2 (14) sin2(x)

(15) 5 cos3(x) (16) 1/ sin3(x)

(17) cos2(5x) (18) x3
√

x + 1

(19) 5x cos(x) (20) 6x2 sin(x)

(21) (3x + 1) tan(5x) (22) x3 cos−1(x)

(23) x3/ cos(x) (24) 1/ sin2(x)

(25) sin(x)/(2x + 10) (26) x2/ tan(x)

(27) 3x2/
√

x − 1 (28) (5x2−1)/(5x2+1)

(29) (x−1) cos(x)/(x2−1) (30) sin−1(x2)

(31) x2
√

x − 1 sin(x) (32) cos2(x2)

(33) tan2(
√

5x − 1)

12.3 A current i is travelling through a single turn loop
of radius 1 m. A four-turn search coil of effective area
0.03 m2 is placed inside the loop. The magnetic flux
linking the search coil is given by

φ = µ0
iA

2r
Wb

where r (m) is the radius of the current carrying loop,
A (m2) is the area of the search coil and µ0 is the perme-
ability of free space = 4× 10−7 H m−1. Find the e.m.f.
induced in the search coil, given by ε = −N(dφ/dt),
where N is the number of turns in the search coil and the
current is given by i = 20 sin(20πt)+ 50 sin(30πt).
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7.1 Introduction In Chapter 6, we saw that many physical quantities are related by one
being the rate of change, the derivative, of the other. It follows that there
must be a way of expressing the ‘inverse’ relationship. This is called
integration. Velocity is the rate of change of distance with time, distance
is the integral of velocity with respect to time.

Unfortunately, there are two issues that complicate the simple idea
that ‘integration is the inverse of differentiation’. First, we find that there
are many different functions which are the integral of the same function.
Luckily, these functions only differ from each other by a constant. To
find all the possible integrals of a function we can find any one of them
and add on some constant, called the constant of integration. This type of
integral is called the indefinite integral. As it is not satisfactory to have an
unknown constant left in the solution to a problem we employ some other
information to find its value. Once the unknown constant is replaced by
some value to fit a certain problem, we have the particular integral.

The second problem with integration is that most functions cannot be
integrated exactly, even apparently simple functions like sin(x)/x.

For this reason, numerical methods of integration are particularly
important. These methods all depend on understanding the idea of integra-
tion as area under the graph. The definite integral of a function, y = f (x),
is the integral between two values of x and therefore gives a number (not
a function of x) as a result. There is no uncertainty, hence it is called the
definite integral.

This chapter is concerned with methods of finding the integral, the for-
mulas that can be used for finding exact integrals and also with numerical
integration. We also look more closely at the definitions of definite and
indefinite integrals and at applications of integration.

7.2 Integration Integration is the inverse process to differentiation. Consider the follow-
ing examples (where C is a constant):

Function → derivative
Integral ← function

x2 + C 2x
sin(x)+ C cos(x)

The derivative of x2 + C with respect to x is 2x, therefore, the integral
of 2x with respect to x is x2 + C. This can be written as

d

dx
(x2 + C) = 2x ⇔

∫
2x dx = x2 + C
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2x dx is read ‘the integral of 2x with respect to x’. The

∫
notation is

like an ‘s’ representing a sum, and its origin will be explained more when
we look at the definite integral.

The second example gives

d

dx
(sin(x)+ C) = cos(x) ⇔

∫
cos(x) dx = sin(x)+ C

The derivative of sin(x) + C with respect to x is cos(x), which is the
same as saying that the integral of cos(x) with respect to x is sin(x)+C.

Constant of integration
Because the derivative of a constant is zero, it is not possible to
determine the exact integral simply through using inverse differentia-
tion. For instance, the derivatives of x2 + 1, x2 − 2, and x2 + 1000, all
give 2x. Therefore, we express the integral of 2x as x2 + C, where C is
some constant called the constant of integration.

To find the value that the constant of integration should take in the
solution of a particular problem we use some other known information.
Supposing we know that a ball has velocity v = 20 − 10t . We want to
find the distance travelled in time t and we also know that the ball was
thrown from the ground which is at distance 0. We can work out the
distance travelled by doing ‘inverse differentiation’ giving the distance
s = 20t − 5t2 + C, where C is the constant of integration. As we also
know that s = 0 when t = 0 we can substitute these values to give 0 = C,
hence, the solution is that s = 20t − 5t2.

In solving this problem we used the fact that v = ds/dt and therefore
we know that ds/dt = 20 − 10t . This is called a differential equation
because it is an equation and contains an expression including a derivative.
This is one sort of differential equation which can be solved directly
by integrating. Some other sorts of differential equations are solved in
Chapters 8, 10, and 14.

In this case, the solution s = 20t − 5t2 + C represents all possible
solutions of the differential equation and is therefore called the general
solution. If a value of C is found to solve a given problem, then this is
the particular solution.

Example 7.1 Find y such that dy/dx = 3x2 given that y is 5 when
x = 0.

Solution We know that x3, on differentiation, gives 3x2, so

dy

dx
= 3x2 ⇔ y =

∫
3x2 dx ⇔ y = x3 + C

where C is some constant. This is the general solution to the differential
equation. To find the particular solution for this example use the fact that
y is 5 when x is 0. Substitute in y = x3+C to give 5 = 0+C, so C = 5
giving the particular solution as y = x3 + 5.

7.3 Finding
integrals

To find the table of standard integrals we take Table 6.3 for differentiation,
swap the columns, rewrite a couple of the entries in a more convenient
form and add on the constant of integration. This gives Table 7.1.

As integration is ‘anti-differentiation’ we can spot the integral in the
standard cases, that is, those listed in Table 7.1.
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Table 7.1 A table of standard integrals

f (x )
∫

f (x ) dx

1 x + C

x n(n �= −1)
x n+1

n + 1
+ C

sin(x ) − cos(x )+ C

cos(x ) sin(x )+ C

sec2(x ) tan(x )+ C

1√
1− x 2

sin−1(x )+ C

−1√
1− x 2

cos−1(x )+ C

1
1+ x 2

tan−1(x )+ C

Example 7.2 (a) Find
∫
x3 dx.

From Table 7.1∫
xn dx = xn+1

n+ 1
+ C where n �= −1

Here n = 3, so∫
x3 dx = x3+1

3+ 1
+ C = x4

4
+ C.

Check: Differentiate (x4/4) + C to give (4x3/4) = x3 which is the
original expression that we integrated, hence showing that we integrated
correctly.

(b) Find∫
1

1+ x2
dx.

From Table 7.1∫
1

1+ x2
dx = tan−1(x)+ C

Check: Differentiate tan−1(x)+ C to give 1/(1+ x2).

(c) Find
∫
x−1/2 dx.

From Table 7.1∫
xn dx = xn+1

n+ 1
+ C

where n �= −1 and in this case n = −1/2, so,∫
x−1/2 dx = x−(1/2)+1

−(1/2)+ 1
+ C = x1/2

1/2
+ C = 2x1/2 + C.
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Check: Differentiate 2x1/2 + C to give 2(1/2)x(1/2)−1 = x−1/2.

(d) Find
∫

1 dx.
From Table 7.1,

∫
1 dx = x + C.

Check: Differentiate x + C to give 1.

We can also find integrals of some combinations of the functions listed
in Table 7.1. To do this, we need to use rules similar to those for differen-
tiation. However, because when integrating we are working ‘backwards’,
the rules are not so simple as those used to perform differentiation and
furthermore, they will not always give a method that will work in finding
the desired integral.

Integration of sums and af (x )

We can use the fact that∫
(f (x)+ g(x)) dx =

∫
f (x) dx +

∫
g(x) dx

and also that∫
af (x) dx = a

∫
f (x) dx.

Example 7.3

(a)
∫
(3x2 + 2x − 1) dx = x3 + x2 − x + C.

Check:

d

dx
(x3 + x2 − x + C) = 3x2 + 2x − 1.

(b)
∫

3 sin(x)+ cos(x)dx = −3 cos(x)+ sin(x)+ C.

Check:

d

dx
(−3 cos(x)+ sin(x)+ C) = 3 sin(x)+ cos(x).

(c)
∫

1√
1− x2

− 2

1+ x2
dx = sin−1(x)− 2 tan−1(x)+ C.

Check:

d

dx
(sin−1(x)− 2 tan−1(x)+ C) = 1√

1− x2
− 2

1+ x2
.

Changing the variable of integration
In Chapter 6 we looked at differentiating composite functions. If y =
f (x) where we can make a substitution in order to express y in terms of
u, that is, y = g(u), where u = h(x), then

dy

dx
= dy

du

du

dx
.
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We can use this to integrate in very special cases by making a substi-
tution for a new variable. The idea is to rewrite the integral so that we
end up with one of the functions in Table 7.1. To see when this might
work as a method of integration, we begin by looking at differentiating
a composite function. Consider the derivative of

y = (3x + 2)3.

We differentiate this using the chain rule, giving

dy

dx
= 3(3x + 2)2

d

dx
(3x + 2) = 3(3x + 2)23.

As integration is backwards differentiation, therefore

∫
3(3x + 2)23 dx = (3x + 3)3 + C.

Supposing then we had started with the problem to find the following
integral

∫
3(3x + 2)23 dx.

If we could spot that the expression to be integrated comes about from
differentiating using the chain rule then we would be able to perform the
integration. We can substitute u = 3x + 2 to give du/dx = 3, and the
integral becomes:

∫
3u2 du

dx
du

we then use the ‘trick’ of replacing (du/dx) dx by du giving

∫
3u2 du.

As the expression to be integrated only involves the variable u, we can
perform the integration and we get

∫
3u2 du = u3 + C.

Substituting again for u = 3x + 2, we get the integral as

∫
3(3x + 2)23 dx = (3x + 2)3 + C.
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We used the trick of replacing (du/dx) dx by du, this can be justified
in the following argument. By the definition of the integral as inverse
differentiation, if y is differentiated with respect to x and then integrated
with respect to x we will get back to y, give or take a constant. This is
expressed by∫

dy

dx
dx = y + C. (7.1)

If y is a composite function that can be written in terms of the variable u,
then

dy

dx
= dy

du

du

dx
.

Substituting the chain rule for dy/dx into Equation (7.1) gives∫
dy

du

du

dx
dx = y + C. (7.2)

If y is a function of u, then we could just differentiate with respect to
u and then integrate again and we will get back to the same expression,
give or take a constant, that is∫

dy

du
du = y + C. (7.3)

Considering Equations (7.2) and (7.3) together, we have∫
dy

du

du

dx
dx =

∫
dy

du
du

so that we can represent this result symbolically by (du/dx) dx = du.
In practice, we make a substitution for u and change the variable of

integration by finding du/dx and substituting dx = du/(du/dx).

Example 7.4 Find the integral
∫ −(4− 2x)3 dx.

Make the substitution u = 4−2x. Then du/dx = −2, so du = −2 dx
and dx = −du/2. The integral becomes∫
−u3

(−du

2

)
=
∫

u3

2
du = u4

8
+ C

Re-substitute for u = 4− 2x, giving∫
−(4− 2x)3 dx = 1

8
(4− 2x)4 + C.

Check: Differentiate the result.

d

dx

(
(4− 2x)4

8
+ C

)
= 1

8
4(4− 2x)4

d

dx
(4− 2x)

= 1

8
4(4− 2x)3(−2) = −(4− 2x)3

As this is the original expression that we integrated, this has shown that
our result was correct.
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When using this method, to find a good thing to substitute, look for
something in a bracket, or an ‘implied’ bracket. Such substitutions will
not always lead to an expression which it is possible to integrate. However,
if the integral is of the form

∫
f (u) dx, where u is a linear function of x,

or if the integral is of the form

∫
f (u)

du

dx
dx

then a substitution will work providing f (u) is a function with a known
integral (i.e. a function listed in Table 7.1).

Integrations of the form
∫

f (ax + b) dx
For the integral

∫
f (ax + b) dx, make the substitution u = ax + b.

Example 7.5 Find
∫

sin(3x + 2) dx.

Solution Substitute u = 3x + 2. Then du/dx = 3 ⇒ du = 3 dx ⇒
dx = du/3. Then the integral becomes

∫
sin(u)

du

3
= −cos(u)

3
+ C

Re-substitute u = 3x + 2 to give

∫
sin(3x + 2) dx = −cos(3x + 2)

3
+ C.

Check:

d

dx

(
−cos(3x + 2)

3
+ C

)
= sin(3x + 2)

3

d

dx
(3x + 2)

= 3 sin(3x + 2)

3
= sin(3x + 2).

Example 7.6 Integrate

1√
1− (3− x)2

with respect to x.

Solution Notice that this is very similar to the expression which inte-
grates to sin−1(x) or cos−1(x). We substitute for the expression in the
bracket u = 3 − x giving du/dx = −1 ⇒ dx = −du. The integral
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becomes∫
1√

1− (u)2 (−du) =
∫

(−du)√
1− (u)2

From Table 7.1, this integrates to give

cos−1(u)+ C
Re-substituting u = 3− x gives∫

1√
1− (3− x)2 dx = cos−1(3− x)+ C.

Check:

d

dx
(cos−1(3− x)+ C) = − 1√

1− (3− x)2
d

dx
(3− x)

= 1√
1− (3− x)2 .

Integrals of the form
∫

f (u)(du/dx ) dx
Make the substitution for u(x). This type of integration will often work
when the expression to be integrated is of the form of a product. One of
the terms will be a composite function. This term could well involve an
expression in brackets, in which case substitute the expression in the
bracket for a new variable u. The integral should simplify, provided
the other part of the product is of the form du/dx.

Example 7.7 Find
∫
x sin(x2) dx.

Solution Substitute u = x2 ⇒ du/dx = 2x ⇒ du = 2x dx ⇒ dx =
du/2x to give∫
x sin(x2) dx =

∫
x sin(u)

du

2x
=
∫

1

2
sin(u) du

= −1

2
cos(u)+ C.

As u = x2, we have∫
x sin(x2) dx = −1

2
cos(x2)+ C.

Check:

d

dx

(
−1

2
cos(x2)+ C

)
= 1

2
sin(x2)

d

dx
(x2)

= 1

2
sin(x2)(2x) = x sin(x2).

TLFeBOOK



“chap07” — 2003/6/8 — page 140 — #9

140 Integration

Example 7.8 Find

∫
3x

(x2 + 3)4
dx.

Solution Substitute u = x2 + 3. Then du/dx = 2x ⇒ du = 2x dx ⇒
dx = du/2x. The integral becomes

∫
3x

(u)4

du

2x
=
∫

3

2
u−4 du

which can be integrated, giving

3

2

u−4+1

(−4+ 1)
+ C = 1

2
u−3 + C.

Re-substituting for u = x2 + 3 gives

∫
3x

(x2 + 3)4
dx = −1

2
(x2 + 3)−3 + C = − 1

2(x2 + 3)3
+ C.

Check:

d

dx

(
−1

2
(x2 + 3)−3 + C

)
= −1

2
(−3)(x2 + 3)−4 d

dx
(x2 + 3).

Using the function of a function rule, we get

−1

2
(−3)(x2 + 3)−4(2x) = 3x(x2 + 3)−4 = 3x

(x2 + 3)4
.

Example 7.9 Find
∫

cos2(x) sin(x) dx.

Solution This can be rewritten as
∫
(cos(x))2 sin(x) dx. Substitute

u = cos(x), then du/dx = − sin(x), so du = − sin(x) dx, or
dx = −du/ sin(x). The integral becomes

∫
u2 sin(x)

du

− sin(x)
=
∫
−u2 du.

Integrating gives

−u
3

3
+ C.

Re-substitute for u, giving

∫
(cos(x))2 sin(x) dx = −cos3(x)

3
+ C.
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Check:

−1

3
cos3(x)+ C = −1

3
(cos(x))3 + C.

Differentiate

d

dx

(
−1

3
(cos(x))3 + C

)
= −3

(
1

3

)
(cos(x))2(− sin(x))

= cos2(x) sin(x).

This method of integration will only work when the integral is of the
form∫
f (u)

du

dx
dx

that is, there is a function of a function multiplied by the derivative of the
substituted variable, or where the substituted variable is a linear function.

Sometimes you may want to try to perform this method of integration
and discover that it fails to work, in this case, another method must be
used.

Example 7.10 Find

∫
x2

(x2 + 1)2
dx.

Substitute u = x2 + 1, then du/dx = 2x ⇒ dx = du/2x. The integral
becomes∫

x2

u2

du

2x
=
∫

x

2u2
du.

This substitution has not worked. We are no nearer being able to perform
the integration. There is still a term in x involved in the integral, so we
are not able to perform an integration with respect to u only.

In some of these cases, integration by parts may be used.

Integration by parts
This can be useful for integrating some products, for example,∫
x sin(x) dx. The formula is derived from the formula for differentiation

of a product.

d

dx
(uv) = du

dx
v + udv

dx

⇔ d

dx
(uv)− du

dx
v = u

dv

dx

(subtracting (du/dx) v from both sides)

⇔ u
dv

dx
= d

dx
(uv)− du

dx
v

⇒
∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx (integrating both sides)
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As we found before (du/dx) dx can be replaced by du so (dv/dx) dx
can be replaced by dv, and this gives a compact way of remembering the
formula:∫
u dv = uv −

∫
v du.

To use the formula, we need to make a wise choice as to which term is
u (which we then need to differentiate to find du) and which term is dv
(which we then need to integrate to find v). Note that the second term∫
v du must be easy to integrate.

Example 7.11 Find
∫
x sin x dx

Solution Use u = x; dv = sin(x) dx. Then

du

dx
= 1 and v =

∫
sin x dx = − cos(x).

Substitute in
∫
u dv = uv − ∫ v du to give

∫
x sin x dx = −x cos(x)−

∫
− cos(x)1 dx

= −x cos(x)+ sin(x)+ C.

Check:

d

dx
(−x cos(x)+ sin(x)+ C) = − cos(x)+ x sin(x)+ cos(x)

= x sin(x).

We can now solve the problem that we tried to solve using a substitution,
but had failed.

Example 7.12 Find

∫
x2

(x2 + 1)2
dx.

Solution
We can spot that if we write this as

∫
x

x

(x2 + 1)2
dx

then the second term in the product can be integrated. We set u = x and

dv = x

(x2 + 1)2
dx = x(x2 + 1)−2 dx.

Then du = dx and v = − 1
2 (x

2 + 1)−1. (To find v we have performed
the integration

∫
x(x2 + 1)−2 dx = − 1

2 (x
2 + 1)−1. Check this result by
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substituting for x2 + 1). Substitute in
∫
u dv = uv − ∫ v du to give

∫
x

x

(x2 + 1)2
dx = −x

2
(x2 + 1)−1 −

∫ −(x2 + 1)−1

2
dx

= −x
2(x2 + 1)

+ 1

2

∫
dx

(x2 + 1)
.

Note that the remaining integral is a standard integral given in Table 7.1
as tan−1(x), so the integral becomes

∫
x2

(x2 + 1)2
dx = −x

2(x2 + 1)
+ 1

2
tan−1(x)+ C.

Check:

d

dx

( −x
2(x2 + 1)

+ 1

2
tan−1(x)+ C

)

= d

dx

(
−x

2
(x2 + 1)−1 + tan−1(x)+ C

)
= −1

2
(x2 + 1)−1 + x

2
(2x)(x2 + 1)−2 + 1

2

1

(x2 + 1)

= x2

(x2 + 1)2
.

Integrating using trigonometric
identities
There are many possible ways of using trigonometric identities in order
to perform integration. We shall just look at examples of how to deal with
powers of trigonometric functions. For even powers of a trigonometric
function, the double angle formula may be used. For odd powers of a
trigonometric function a method involving the substitution

cos2(x) = 1− sin2(x) or sin2(x) = 1− cos2(x)

is used.

Example 7.13 Find
∫

sin2(x) dx.

Solution As cos(2x) = 1− 2 sin2(x),

sin2(x) = 1− cos(2x)

2
.

The integral becomes∫
sin2(x) dx =

∫
1− cos(2x)

2
dx = 1

2
x − 1

4
sin(2x)+ C.
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Check:

d

dx
=
(

1

2
x − 1

4
sin(2x)+ C

)
= 1

2
− 1

4
· 2 cos(2x)

= 1

2
(1− cos(2x))

= sin2(x) (from the double angle formula).

Example 7.14 Find
∫

cos3(x) dx.

Solution As cos2(x)+ sin2(x) = 1, we have cos2(x)=1− sin2(x).∫
cos3(x) dx =

∫
cos(x) cos2(x) dx

=
∫

cos(x)(1− sin2(x)) dx

=
∫

cos(x)− cos(x) sin2(x) dx

=
∫

cos(x) dx −
∫

cos(x) sin2(x) dx.

The second part of this integral is of the form∫
f (u)

du

dx
dx.

Substitute u = sin(x); then

du = cos(x) dx ⇒ dx = du

cos(x)
.

Hence,∫
cos(x) sin2(x) dx =

∫
cos(x) u2 du

cos(x)
=
∫
u2 du = u3

3
+ C.

Re-substituting u = sin(x) gives∫
cos(x) sin2(x) dx = 1

3
sin3(x)+ C.

Therefore,∫
cos3(x) dx =

∫
cos(x)− cos(x) sin2(x) dx

= sin(x)− 1

3
sin3(x)+ C.

Check:

d

dx
(sin(x)− 1

3
sin3(x)+ C)

= cos(x)− 3

3
sin2(x) cos(x) = cos(x)(1− sin2(x))

= cos(x) cos2(x) = cos3(x).
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7.4
Applications of
integration

In Section 6.7, we listed the applications of differentiation that are impor-
tant in engineering. Here, we list the equivalent relationships using
integration.

Mechanics
x = ∫ v dt , where v= velocity, x= distance, t = time

v = ∫ a dt , where a= acceleration, v= velocity, t = time

W = ∫ F dx, where F = force, W =work done (or energy used),
x= distance moved in the direction of the force

p = ∫ F dt , where F = force, p=momentum, t = time

W = ∫ P dt , where P = power, W =work done (or energy used),
t = time

p = ∫ E dv, where E= kinetic energy, v= velocity, p=momentum.

Gases
p = ∫

W dV , where p = pressure, W = work done under isothermal
expansion, V = volume.

Electrical circuits
Q = ∫ I dt , where I = current, Q = charge, t = time
I = (1/L)

∫
V dt , where V = voltage drop across an inductor, L =

inductance, I = current, t = time.

Electrostatics
V = − ∫ E dx, where V = potential, E = electric field, x = distance.

Example 7.15 A car moving with a velocity of 12 m s−1 acceler-
ated uniformly for 10 s at 1 m s−2 and then kept a constant velocity.
Calculate:

(a) the distance travelled during the acceleration,
(b) the velocity reached after 20 m,
(c) the time taken to travel 100 m from the time that the acceleration

first started.

Solution Take as time 0 the time when the car begins to accelerate.
From t = 0 to t = 10, the acceleration is 1 m s−2 dv/dt = 1. Therefore,
v = ∫

1 dt = t + C. For 0 ≤ t ≤ 10, this gives v = t + C. To find
the constant C, we need to use other information given in the problem.
We know that at t = 0 the velocity is 12 m s−1. Substituting this into
v = t + C gives

12 = 0+ C ⇔ C = 12

so, v = t + 12. For t > 10, the velocity is constant, therefore v =
10+ 12 = 22 m s−1 for t > 10. The velocity function is therefore

v =
{
t + 12 0 ≤ t ≤ 10
22 t > 10.
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To find the distance travelled we need to integrate one more time

v = dx

dt
= t + 12 for 0 ≤ t ≤ 10

x = t2 + 12t + C for 0 ≤ t ≤ 10.

To find the value ofC, consider that the distance travelled is 0 at t = 0.
Hence, 0 = C and therefore

x = t2 + 12t for 0 ≤ t ≤ 10.

For t > 10, we have a different expression for the velocity

v = dx

dt
= 22 for t > 10

x = 22t + C for t > 10.

To find the value of C is this expression, we need some information
about the distance travelled, for instance, at t = 10. Using x = t2 + 12t ,
we get that at t = 10, x = 100 + 120 = 220 m. Substituting this into
x = 22t + C gives 220 = 22× 10+ C, which gives C = 0, so x = 22t
for t ≥ 10. The function for x is therefore

x =
{
t2 + 12t 0 ≤ t ≤ 10
22t t > 10.

As we now have expressions for v and x, we are in a position to answer
the questions.

(a) The distance travelled during the acceleration is the distance
after 10 s.

x = (10)2 + 12(10) = 220 m.

(b) To find the velocity reached after 20 m, we need first to find the time
taken to travel 20 m

x = 20⇒ 20 = t2 + 12t

t2 + 12t − 20 = 0.

Using the formula for solving a quadratic equation:

at2 + bt + c = 0 ⇔ t = −b ±
√
b2 − 4ac

2a

t = −12±√144+ 80

2
= −12±√224

2

t ≈ −13.5 or t ≈ 1.5 s.
As t cannot be negative, t ≈ 1.5 s. Substituting the value for t

into the expression for v gives

v = t + 12 = 1.5+ 12 = 13.5 m s−1.

So the velocity after 20 m is 13.5 ms−1.
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(c) The time taken to travel 100 m from when the acceleration first
started can be found from x = 100

100 = t2 + 12t ⇔ t2 + 12t − 100 = 0.

Using the quadratic formula gives

t = −12±√144+ 400

2
≈ −12± 23.2

2

t ≈ −17.66 or t ≈ 5.66.
The time taken to travel 100 m is 5.66 s.

Example 7.16 The current across a 1µF capacitor from time t = 3 ms
to t = 4 ms is given by I (t) = −2t . Find the voltage across the capacitor
during that period of time given that V = −0.1 V when t = 3 ms.

Solution For a capacitor V = Q/C, where Q = ∫
I dt and C is the

capacitance, V the voltage drop across the capacitor, Q the charge, and
I the current. So

V = 1

1× 10−6

∫
−2t dt

= 106(−t2)+ C

when t = 3 ms,V = 0.1, so V = 0.1 when t = 3× 10−3

0.1 = 106(−10−6 × 9)+ C ⇔ C = 0.1+ 9 ⇔ C = 9.1.

So V = −106t2 + 9.1.

7.5 The definite
integral

The definite integral from x = a to x = b is defined as the area under
the curve between those two points. In the graph in Figure 7.1, the area
under the graph has been approximated by dividing it into rectangles. The
height of each is the value of y and if each rectangle is the same width
then the area of the rectangle is yδx.

If the rectangle is very thin, then y will not vary very much over its
width and the area can reasonably be approximated as the sum of all of
these rectangles.

The symbol for a sum is � (read as capital Greek letter sigma). The
area under the graph is approximately

A = y1δx + y2δx + y3δx + y4δx + · · · =
x=b−δx∑
x=a

yδx.

We would assume that if δx is made smaller, the approximation to the
exact area would improve. An example is given for the function y = x in
Figure 7.2. Between the values of 1 and 2, we divide the area into strips,
first of width 0.1, then 0.01, then 0.001.
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Figure 7.1 A graph of
y = f (x ) and the area under
the graph from x = a to
x = b. This is approximated
by splitting the area into strips
of width δx .

When δx = 0.1, the approximate calculation gives

1× 0.1+ 1.1× 0.1+ 1.2× 0.1+ 1.3× 0.1+ 1.4× 0.1+ 1.5× 0.1

+ 1.6× 0.1+ 1.7× 0.1+ 1.8× 0.1+ 1.9× 0.1 = 1.45

When δx = 0.01, the calculation gives

1× 0.01+ 1.01× 0.01+ 1.02× 0.01+ · · ·
+ 1.98× 0.01+ 1.99× 0.01 = 1.495

When δx = 0.001, the calculation gives

1× 0.001+ 1.001× 0.001+ 1.002× 0.001+ · · ·
+ 1.998× 0.001+ 1.999× 0.001 = 1.4995

The exact answer is given by the area of a trapezoid which is equal to
the average length of the parallel sides multiplied by the width. In this
case for ya = 1 and yb = 2 we get

Area = 1
2 (1+ 2)1 = 1.5

We can see that the smaller the strips the nearer the area approximates
to the exact area of 1.5. Therefore, as the width of the strips gets smaller
and smaller, then there is a better approximation to the area, and we say
that in the limit, as the width tends to zero, we have the exact area, which
is called the definite integral.

The area under the curve, y = f (x) between x = a and x = b is
found as

∫ b

a

y dx = lim
δx→0

x=b−δx∑
x=a

y δx

which is read as ‘The definite integral of y from x = a to x = b equals
the limit as δx tends to 0 of the sum of y times δx for all x from x = a

to x = b − δx.
This is the definition of the definite integral which gives a number as

its result, not a function.
We need to show that our two ways of defining integration (the indefi-

nite integral as the inverse process to differentiation and the definite
integral as the area under the curve) are consistent. To do this, consider
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Figure 7.2 The
area under the graph y = x
between x = 1 and x = 2: (a)
divided into strips of width 0.1
gives 1.45; (b) divided into
strips of width 0.01 gives
1.495; (c) divided into strips of
width 0.001 gives 1.4995.

an integral of y from some starting point, a, up to any point x. Then, the
area A is

A =
∫ x

a

y dx

TLFeBOOK



“chap07” — 2003/6/8 — page 150 — #19

150 Integration

Notice that as we move the final point x, A will change. Now consider
moving the final value by a small amount, δx, this will increase the area
by δA and δA is approximately the area of a rectangle of height y and
width δx. This is shown in Figure 7.3.

Figure 7.3 The area A is
given by the definite integral∫ x

a y dx and the increase in
the area, δA = yδx .

So, we have δA ≈ yδx, that is,

δA

δx
≈ y.

Taking the limit as δx tends to 0 gives

y = dA

dx
.

This shows that finding the area under the graph does in fact give a function
which, when differentiated, gives back the function of the original graph,
that is, the area function gives the ‘inverse’ of differentiation. The area
function, A, is not unique because different functions will be found by
moving the position of the starting point for the area, however in each
case dA/dx will be the original function.

This is illustrated for the area under y = 1
2 t in Figure 7.4, where there

are two area functions, one starting from t = −1 and the other from t = 0.
The first area function is

A = t2

4
− 1

4

and the second is

A = t2

4

The definite integral, the area under a particular section of the graph,
can be found, as in Figure 7.5, by subtracting the areas.

In practice, we do not need to worry about the starting value for finding
the area. The effect of any constant of integration will cancel out.

Example 7.17 Find
∫ 3

2 2t dt .
This is the area under the graph from t = 2 to t = 3. As

∫
2t dt =

t2 + C, the area up to 2 is (2)2 + C = 4 + C and the area up to 3 is
(3)2 + C = 9 + C. The difference in the areas is 9 + C − (4 + C) =
9− 4 = 5. Therefore,

∫ 3
2 2t dt = 5.

The working of a definite integral is usually laid out as follows

∫ 3

2
2t dt = [t2]32 = (3)2 − (2)2 = 5.

The square brackets indicate that the function should be evaluated at the
top value, in this case 3, and then have its value at the bottom value, in
this case 2, subtracted.
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Figure 7.4 (a) The graph of
y = t/2. (b) The area under
the graph of y = t/2 starting
from t = −1. (c) The area
under the graph of y = t/2
starting from t = 0.

Figure 7.5 The area
between a and b is given by
the area up to b minus the
area up to a. The area up to a
is marked by . The area up
to b is marked by ///.

TLFeBOOK



“chap07” — 2003/6/8 — page 152 — #21

152 Integration

Example 7.18 Find

∫ 1

−1
3x2 + 2x − 1 dx.

Solution

∫ 1

−1
3x2 + 2x − 1 dx = [x3 + x2 − x] 1

−1

= (13 + 12 − 1)− ((−1)3 + (−1)2 − (−1))

= 1− (−1+ 1+ 1) = 1− 1 = 0.

Example 7.19 Find

∫ π/6

0
sin(3x + 2) dx.

Solution

∫ π/6

0
sin(3x + 2) dx = [− 1

3
cos(3x + 2)

]π/6
0

= 1

3
cos

(
3
π

6
+ 2

)
−
(
−1

3
cos(2)

)

= 1

3
cos

(π
2
+ 2

)
+ 1

3
cos(2) ≈ 0.1644.

Example 7.20 Find the shaded area in Figure 7.6, where y = −x2 +
6x − 5.

Solution First, we find where the curve crosses the x-axis, that is, when
y = 0

0 = −x2 + 6x − 5 ⇔ x2 − 6x + 5 = 0

⇔ (x − 5)(x − 1) = 0 ⇔ x = 5 ∨ x = 1

Figure 7.6 The shaded
area is bound by the graph of
y = −x 2 + 6x − 5 and the
x-axis.
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This has given the limits of the integration. Now we integrate:

∫ 5

1
−x2 + 6x − 5 dx =

[
−x

3

3
+ 6x2

2
− 5x

]5

1

= − (5)
3

3
+ 6(5)2

2
− 5(5)

−
(
− (1)

3

3
+ 6(1)2

2
− 5(1)

)

= −125

3
+ 75− 25+ 1

3
− 3+ 5 = 32

3
= 10 2

3

Therefore, the shaded area is 10 2
3 units2.

Finding the area when the
integral is negative
The integral can be negative if the curve is below the x-axis as in
Figure 7.7, where the area under the curve y = sin(x) from x = π

to x = 3π/2 is illustrated.

∫ 3π/2

π

sin(x) dx = [− cos(x)
]3π/2
π
= − cos

(
3π

2

)
+ cos(π) = −1

The integral is negative because the values of y are negative in that
region. In the case where all of that portion of the curve is below the
x-axis to find the area we just take the modulus. Therefore, the shaded
area A = 1.

This is important because negative and positive areas can cancel out
giving an integral of 0. In Figure 7.8, the area under the curve y = sin(x)
from x = 0 to x = 2π is pictured. The area under the curve has a positive
part from 0 to π and an equal negative part from π to 2π .

Figure 7.7 The area under the curve given by
∫ 3π/2
π

sin(x ) dx .

Figure 7.8 The area under the graph y = sin(x ) from x = 0 to 2π .
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The following gives an integral of 0

∫ 2π

0
sin(x) dx = [− cos(x)

]2π
0 = − cos(2π)− (− cos(0))

= −1− (−1) = 0

To prevent cancellation of the positive and negative parts of the integra-
tion, we find the total shaded area in two stages

∫ π

0
sin(x) dx = [− cos(x)

]π
0 = − cos(π)− (− cos(0)) = 2

and

∫ 2π

π

sin(x) dx = [− cos(x)
]2π
π
= − cos(2π)− (− cos(π)) = −2

So, the total area is 2+ | − 2| = 4.
We have seen that if we wish to find the area bounded by a curve which

crosses the x-axis, then we must find where it crosses the x-axis first and
perform the integration in stages.

Example 7.21 Find the area bounded by the curve y = x2 − x and the
x-axis and the lines x = −1 and x = 1.

Solution First, we find if the curve crosses the x-axis. x2 − x = 0 ⇔
x(x − 1) = 0 ⇔ x = 0 or x = 1. The sketch of the graph with the
required area shaded is given in Figure 7.9.

Therefore, the area is the sum of A1 andA2. We findA1 by integrating
from −1 to 0

∫ 0

−1
(x2 − x) dx =

[
x3

3
− x2

2

]0

−1
= 0−

(
(−1)3

3
− (−1)2

2

)

= 1

3
+ 1

2
= 5

6

therefore, A1 = 5
6 .

Figure 7.9 Sketch of
y = x (x − 1), with the area
bounded by the x-axis and
x = −1 and x = 1 marked.
The area above the x-axis is
marked as A1 and the area
below the x-axis is marked
as A2.
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Find A2 by integrating from 0 to 1 and taking the modulus∫ 1

0
(x2 − x) dx =

[
x3

3
− x2

2

]1

0
= 1

3
− 1

2
= −1

6

Therefore, A2 = 1
6 .

Then, the total area is A1 + A2 = 5
6 + 1

6 = 1.

7.6 The mean
value and r.m.s.
value

The mean value of a function is the value it would have if it were constant
over the range but with the same area under the graph, that is, with the
same integral (see Figure 7.10).

The formula for the mean value is

M = 1

b − a
∫ b

a

y dx.

Figure 7.10 The mean
value of a function is the value
it would take if it were
constant over the range but
with the same integral.

Example 7.22 Find the mean value of i(t) = 20+ 2 sin(πt) for t = 0
to 0.5.

Solution Using the formula a = 0, b = 0.5 gives

M = 1

0.5− 0

∫ 0.5

0
20+ 2 sin(πt) dt

2

[
20t − 2

π
cos(πt)

]0.5

0
= 2(10− 0−

(
0− 2

π
(1)

)
≈ 21.27

The root mean squared (r.m.s) value
The ‘root mean squared value’ (r.m.s. value) means the square root of
the mean value of the square of y. The formula for the r.m.s. value of y
between x = a and x = b is

r.m.s.(y) =
√

1

b − a
∫ b

a

y2 dx

The advantage of the r.m.s.value is that as all the values for y are
squared, they are positive, so the r.m.s.value will not give 0 unless we are
considering the zero function. If the function represents the voltage then
the r.m.s. value can be used to calculate the average power in the signal.
In contrast the mean value gives zero if calculated for the sine or cosine
over a complete cycle, giving no additional useful information.

Example 7.23 Find the r.m.s. value of y = x2 − 3 between x = 1 and
x = 3.

(r.m.s.(y))2 = 1

3− 1

∫ 3

1
(x2 − 3)2 dx = 1

2

∫ 3

1
(x4 − 6x2 + 9) dx

= 1

2

[
x5

5
− 6x3

3
+ 9x

]3

1

= 1

2

((
243

5
− 54+ 27

)
−
(

1

5
− 2+ 9

))
= 7.2

Therefore, the r.m.s value is
√

7.2 ≈ 2.683.
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7.7 Numerical
Methods of
Integration

Many problems may be difficult to solve analytically. In such cases
numerical methods may be used. This is often necessary in order to per-
form integrations. The following integrals could not be solved by the
methods of integration we have met so far:

∫ 3

2

sin(x)

x2 + 1
dx

∫ 2

−3
2x

2
dx

Numerical methods can usually only give an approximate answer.

General method
We wish to approximate the integral

∫ b

a

f (x) dx

Formulae for numerical integration are obtained by considering the
area under the graph and splitting the area into strips, as in Figure 7.11.
The area of the strips can be approximated using the trapezoidal rule or
Simpson’s rule. In each case, we assume that the thickness of each strip
is h and that there are N strips, so that

h = (b − a)
N

Numerical methods are obviously to be used with a computer or pos-
sibly a programmable calculator. However, it is a good idea to be able to
check some simple numerical results, which needs some understanding
of the algorithms used.

The trapezoidal rule
The strips are approximated to trapeziums with parallel sides of length
yr−1 and yr as in Figure 7.12. The area of each strip is (h/2)(yr−1+ yr).

Figure 7.11 Numerical
integration is performed by
splitting the area into strips of
width h. The area of the strips
is approximated using the
trapezoidal rule or Simpson’s
rule.
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Figure 7.12 The trapezoidal
rule is found by approximating
each of the strips as a
trapezium.

The formula becomes:

A = h
( 1

2y0 + y1 + y2 + · · · + yN−1 + 1
2yN

)

where xr = a + rh.

yr = f (xr)

N = (b − a)
h

.

A computer program would more likely use the equivalent recurrence
relation, where Ar is the area up to rth strip (at x = xr )

Ar = Ar−1 + h

2
(yr−1 + yr)

for r = 1 to N and A0 = 0.
This is simply stating that the area is found by adding on the area of

one strip at a time to the previously found area.

Example 7.24 We wish to approximate

∫ 3

1
x2 dx.

The limits of the integration are 1 and 3, so a = 1 and b = 3. We choose
a step size of 0.5, therefore,

N = (b − a)
h
= (3− 1)

0.5
= 4.
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Using xr = a + rh and yr = f (xr), which in this case gives yr = x2
r

we get

x0 = 1 y0 = (1)2 = 1
x1 = 1.5 y1 = (1.5)2 = 2.25
x2 = 2 y2 = (2)2 = 4
x3 = 2.5 y3 = (2.5)2 = 6.25
x4 = 3 y4 = (3)2 = 9.

Using the formula for the trapezoidal rule:

A = h( 1
2y0 + y1 + y2 + · · · + yN−1 + 1

2yN)

we get

A = 0.5(0.5+ 2.25+ 4+ 6.25+ 4.5) = 8.75.

Hence, by the trapezoidal rule:∫ 3

1
x2 dx ≈ 8.75.

Simpson’s rule
For Simpson’s rule, the area of each strip is approximated by drawing a
parabola through three adjacent points (see Figure 7.13). Notice that the
number of strips must be even.

The area of the strips in this case is not obvious as in the case of the
trapezoidal rule. Three strips together have an area of:

h

3
(y2n−2 + 4y2n−1 + y2n)

where r = 2n. The formula then becomes

A = h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yN−2 + 4yN−1 + yN)

Figure 7.13 Simpson’s rule
is found by approximating the
areas of the strips by drawing
a parabola through three
adjacent points. To do this the
total number of strips must be
even.
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where

xr = a + rh, yr = f (xr), N = (b − a)
h

as before.
Again, a computer program would more likely use the recurrence

relation to define the area

A2n = A2(n−1) + h

3
(y2n−2 + 4y2n−1 + y2n)

where r = 1, . . . ,N/2 and A0 = 0.

Example 7.25 Find
∫ 3

1 x
2 dx using Simpson’s rule with h = 0.5.

Solution From the limits of the integral we find that a = 1 and b = 3.
So,

N = (b − a)
h
= (3− 1)

0.5
= 4.

Using xr = a + rh and yr = f (xr), which in this case gives

yr = x2
r

we get
x0 = 1 y0 = (1)2 = 1
x1 = 1.5 y1 = (1.5)2 = 2.25
x2 = 2 y2 = (2)2 = 4
x3 = 2.5 y3 = (2.5)2 = 6.25
x4 = 3 y4 = (3)2 = 9.

Hence,

A = 0.5

3
(1+ 4(2.25)+ 2(4)+ 4(6.25)+ 9) ≈ 8.66667.

In this case, as we are integrating a parabola the result is exact (except
for rounding errors).

7.8 Summary 1. Integration can be defined as the inverse process of differentiation.
If y = f (x) then

dy

dx
= f ′(x) ⇔ y =

∫
dy

dx
dx = f (x)+ C

or equivalently∫
dy

dx
dx = y + C.

This is called indefinite integration and C is the constant of
integration.

2. A table of standard integrals can be found as in Table 7.1 by swapping
the columns of Table 6.3, rearranging them in a more convenient form
and adding the constant of integration.

3. Integrals of combinations of the functions given in Table 7.1 cannot
always be found but some methods can be tried as follows.
(a) Substitute u = ax + b to find

∫
f (ax + b) dx.
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(b) Substitute when the integral is of the form
∫
f (u)(du/dx) dx.

(c) Use integration by parts when the integral is of the form
∫
u dv,

using the formula
∫
u dv = uv − ∫ v du.

(d) Use trigonometric identities to integrate powers of cos(x) and
sin(x).

4. Integration has many applications, some of which are listed in
section 7.4.

5. The definite integral, fromx = a tox = b, is defined as the area under
the curve between those two values. This is written as

∫ b
a f (x) dx.

6. The mean value of a function is the value the functions would have
if it were constant over the range but with the same area under the
graph. The mean value from x = a to x = b of y is

M = 1

b − a
∫ b

a

y dx.

7. The root mean squared value (r.m.s. value) is the square root of the
mean value of the square of y. The r.m.s. value from x = a to x = b

is given by

r.m.s.(y) =
√

1

b − a
∫ b

a

y2 dx.

8. Two methods of numerical integration are: trapezoidal rule and
Simpson’s rule, where

A ≈
∫
f (x) dx.

Trapezoidal rule

A = h
( 1

2y0 + y1 + y2 + · · · + yN−1 + 1
2yN

)
Simpson’s rule

A = h

3
(y0+ 4y1+ 2y2+ 4y3+ 2y4+ · · ·+ 2yN−2+ 4yN−1+ yN).

In both cases, xr = a + rh and N = (b − a)/h. For Simpson’s
rule, N must be even. h is called the step size and N is the number
of steps.

7.9 Exercises

7.1. Find the following integrals

(a)
∫
(x3 + x2) dx (b)

∫
2 sin(x)+ sec2(x) dx

(c)
∫

1

x2
dx (d)

∫
(1+ x2 + 3x3) dx

(e)
∫
(1− 5x) dx (f)

∫
cos(2− 4x) dx

(g)
∫ √

2x − 1 dx (h)
∫

1√
x + 2

dx

(i)
∫
x(x2 − 4)3 dx (j)

∫
x
√
(1+ x2) dx

(k)
∫

cos(x)

(1+ sin(x))2
dx (l)

∫
(x2+x−6)(2x+1) dx

(m)
∫

4x2

(x2 − 7)2
dx (n)

∫ 2

1
x cos(x) dx

(o)
∫
x2 cos(x) dx (p)

∫ 4

2
x
√
x − 1 dx

(q)
∫
x(2x − 3)4 dx (r)

∫ π/2

0
sin5(x) dx

(s)
∫

cos4(x) dx (t)
∫

sin(3x) cos(5x)dx.

TLFeBOOK



“chap07” — 2003/6/8 — page 161 — #30

Integration 161

Figure 7.14 Field on the axis of a solenoid for Exercise 7.7.

7.2. Given that v = ds/dt = 3 − t , find s in terms of t if
s = 5 when t = 0. What is the value of s when t = 2?

7.3. Find the equation of the curve with the gradient
dy/dt = −5 which passes through the origin.

7.4. A curve, y = f (x) passes through the point (0,1) and
its gradient at any point is 1− 2x2. Find the function.

7.5. The voltage across an inductor of inductance 3 H is
measured as V = 2 sin(2t − (π/6)).
The current at t = 0 is 0. Given that V = L(di/dt)
find the current after 10 s.

7.6. The velocity of a spring is found to be V = 6 sin(3πt).
Assuming that the spring is perfect, so that v =
(1/k)(dF/dt), where k is the spring constant (known
to be 0.5), v the velocity, and F the force operating on
the spring, find the force, given that it is 0 N initially.

7.7. The magnitude of the magnetic flux density at the mid-
point of the axis of a solenoid, as in Figure 7.14, can
be found by the integral

B =
∫ β2

β1

µ0nI

2
sin(β) dβ

where µ0 is the permeability of free space (≈4π ×
10−7 H m−1), n is the number of turns and I is the cur-
rent. If the solenoid is so long that β1 ≈ 0 and β2 ≈ π ,
show that B = µ0nI .

7.8. Find the area under the curve y = x + x2 between the
lines x = 1 and x = 4.

7.9. Find the area bounded by the x-axis and the portion of
the curve y = 2(x − 1)(x − 4) which lies below it.

7.10. Find the total area bounded by the curve y = 2x− x2,
the x-axis and the lines x = −1 and x = 1.

7.11. Find the mean value of i(t) = 5− cos(t/2) for t = 0
to t = 5.

7.12. Calculate the r.m.s. value of i = 3 cos(50πt) between
t = 0 and t = 0.01.

7.13. Approximate:

∫ 1

0

sin(x)

x
dx

(a) using the trapezoidal rule with h = 0.2 and h =
0.1; (b) using Simpson’s rule with h = 0.5 and
h = 0.25.

7.14. Find an approximate value of

A =
∫ 3

1

dx

x

(a) by the trapezoidal rule with N = 6; (b) by
Simpson’s rule with N = 6.

7.15. Approximate
∫ 1

0 x
5 dx using Simpson’s rule

with N = 10.
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8 The exponential
function

8.1 Introduction In Example 2.11, we looked at an acoustical absorption problem. We
found that after a single note on a trombone had been played, the sound
intensity decayed according to the expression I = 10−11t . This is a dying
exponential function. Many other physical situations involve decay or
growth in an exponential fashion; for instance, population growth or the
decay of charge on a discharging capacitor. The functions y = at , where
a can be any positive number, are called exponential functions. In this
chapter, we shall look at how they describe this particular type of growth
or decay, when the growth or decay is proportional to the current size
of the ‘population’, y. This situation can be described by a differential
equation of the form dy/dt = ky. The special case where k = 1, giving
the equation dy/dt = y, leads us to define the number e ≈ 2.7182818
and the function y = et , which is called the exponential function. The
inverse function is y = loge(t), which is also refered to as y = ln(t) and
called the natural or Napierian logarithm.

The function y = et is neither even nor odd; however, it is possible
to split any real function into an even part and an odd part and in this
case we find that this gives the hyperbolic functions. These hyperbolic
functions have properties that are surprisingly similar to the properties of
the trigonometric functions and hence have similar names, cosh(t), sinh(t)
(the hyperbolic sine and hyperbolic cosine) from which we can define
also tanh(t), the hyperbolic tangent. We also look at differentiation and
integration problems involving the exponential and hyperbolic functions.

8.2 Exponential
growth and
decay

Supposing, following some deed of heroism, the police offered you the
choice of the following rewards:

(a) Tomorrow you receive 1 c and the following day 2 c and after that
4 c, then 8 c and each day the amount doubles for the next month.

(b) Tomorrow you receive e2, the following day e4 and the day after
e6, then e8 so that each day you receive e2 more than the day
before. Again you receive payments on every day for the next month.

If, although not motivated by personal greed, you wish to receive the
highest possible reward (in order, presumably, to donate the amount
to charity), which reward should you accept? Option (b) superficially
appears to be the best because at least it starts off with enough money
to buy a small sandwich. However, a closer look reveals the that if you
choose option (a), on the last day (assuming there are 31 days in the month)
you receive in excess ofe10 000 000 with the total reward exceedinge20
million. However, option (b) only reaps e62 on the final day with a total
award of only e992.
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Both options are examples of growth. Option (b) gives a constant
growth rate ofe2. If yn is the amount received on day n, the way that this
grows could be expressed by yn+1 = yn + 2. This is expressing the fact
that the amount received on day n+1 ise2 more than the amount received
on day n. This also means that the change each day in the amount received
is 2, which can be expressed as 
yn = 2, where 
yn = yn+1 − yn and
represents the change in y from day n to day n+ 1.

Option (a) is an example of exponential growth (or geometric growth).
The amount received each day is proportional to the amount received the
day before, in this case twice as much. yn can be expressed byyn+1 = 2yn.
The change in y is equal to the value of y itself, 
yn = yn.

Because of the nature of exponential growth it is unlikely that you
would be given such an attractive award as option (a) represents. However,
exponential growth is not beyond the reach of the everyday person as
savings accounts offer this opportunity. Unfortunately, the amount you
receive does not increase as quickly as doubling each day but it is based
on how much you have already in the bank; hence, it is exponential.
Supposing you opened an account that paid an annual interest of 6%
and the annual rate of inflation was 3%, then the real rate of growth is
approximately 3% per annum. If yn is the value of the amount you have
in the bank after n years then yn+1 = 1.03yn. We can also express this by
saying that the interest received each year, that is, the change in yn, 
yn,
is 3% of yn, that is, 
yn = 0.03yn, where 
yn = yn+1 − yn. If the rate
of interest remains constant then if you deposit e1 tomorrow then your
descendents, in only 500 years time, will receive an amount worth over
e2.5 million in real terms.

The models of growth that we have discussed so far give examples of
recurrence relations, also called difference equations. Their solutions are
not difficult to find. For instance, if yn+1 = 2yn and we know that on day 1
we received 1 c, that is, y1 = 0.01 then we can substitute n = 1, 2, 3, . . .
(as we did in Section 1.4) to find values of the function giving

0.01, 0.02, 0.04, 0.08, 0.16, 0.32, . . .

Clearly, there is a power of 2 involved in the expression for yn, so we
can guess that y = 0.01 (2n−1). By checking a few values of n we
can confirm that this is indeed the amount received each day. When we
deposit e1 in the bank at a real rate of growth of 3% we get the recur-
rence relation yn+1 = 1.03yn, where yn is the current day value of the
amount in the savings account after n years. Substituting a few values
beginning with y0 = 1 (the amount we initially deposit) we then get
1, 1.03, 1.06, 1.09, 1.13, 1.16, 1.19, . . . (to the nearest cent). Each time we
multiply the amount by 1.03, there must be a power of 1.03 in the solution
for y. We can guess the solution as yn = (1.03)n. By checking a few val-
ues of n we can confirm that this is, in fact, the amount in the bank after
n years.

The models we have looked at so far are discrete models. In the case
of the money in the bank the increase occurs at the end of each year.
However, if we consider population growth, for instance, then it is not
possible to say that the population grows at the end of a certain period, the
growth could happen at any moment of time. In this case, providing the
population is large enough, it is easier to model the situation continuously,
using a differential equation. Such models take the form of dy/dt = ky.
dy/dt is the rate of growth, if k is positive, or the rate of decay, if k

is negative. The equation states that the rate of growth or decay of a
population of size y is proportional to the size of the population.
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Example 8.1 A malfunctioning fridge maintains a temperature of 6◦C
which allows a population of bacteria to reproduce such that, on average,
each bacteria divides every 20 min. Assuming no bacteria die in the time
under consideration find a differential equation to describe the population
growth.

Solution If the population at time t is given by p then the rate of change
of the population is dp/dt . The increase in the population is such that it
approximately doubles every 20 min, that is, it increases by p in 20×60 s.
That gives a rate of increase as p/(20 × 60) per second. Hence, the
differential equation describing the population is

dp

dt
= p

1200
.

Figure 8.1 A closed RC
circuit.

Example 8.2 A capacitor, in an RC circuit, has been charged to
a charge of Q0. The voltage source has been removed and the
circuit closed as in Figure 8.1. Find a differential equation that
describes the rate of discharge of the capacitor if C = 0.001 µF and
R = 10 M�.

Solution The voltage across a capacitor is given by Q/C where C is the
capacitance and Q is the charge on the capacitor. The voltage across
the resistor is given by Ohm’s Law as IR. From Kirchoff’s voltage law,
the sum of the voltage drops in the circuit must be 0; therefore, as the
circuit is closed, we get voltage across the resistor + voltage across the
capacitor = 0:

⇒ IR+ Q

C
= 0.

By definition, the current is the rate of change of charge with respect to
time, that is I = dQ/dt giving the differential equation

R
dQ

dt
+ Q

C
= 0.

We can rearrange this equation as

R
dQ

dt
= −Q

C
⇔ dQ

dt
= − Q

RC
.

We can see that this is an equation for exponential decay. The rate of
change of the charge on the capacitor is proportional to the remain-
ing charge at any point in time with a constant of proportionality
given by 1/RC. In this case as R = 10 M� and C = 0.001 µF,
we get

dQ

dt
= −100Q.

Example 8.3 Radioactivity is the emission of α- or β-particles and
γ -rays due to the disintegration of the nuclei of atoms. The rate of dis-
integration is proportional to the number of atoms at any point in time
and the constant of proportionality is called the radioactivity decay con-
stant. The radioactive decay constant for Radium B is approximately
4.3 × 10−4 s−1. Give a differential equation that describes the decay of
the number of particles N in a piece of Radium B.
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Solution If the number of particles at time t is N , then the rate of change
is dN/dt . The decay is proportional to the number of atoms, and we are
given that the constant of proportionality is 4.3 × 10−4 s−1 so that we
have

dN

dt
= −4.3× 10−4N

as the equation which describes the decay.

Example 8.4 An object is heated so that its temperature is 400 K and
the temperature of its surroundings is 300 K, and then it is left to cool.
Newton’s law of cooling states that the rate of heat loss is proportional
to the excess temperature over the surroundings. Furthermore, if m is the
mass of the object and c is its specific heat capacity then the rate of change
of heat is proportional to the rate of fall of temperature of the body, and
is given by

dQ

dt
= −mc

dφ

dt

where Q is the heat in the body and φ is its temperature. Find a differential
equation for the temperature that describes the way the body cools.

Solution Newton’s law of cooling gives

dQ

dt
= A(φ − φs)

where A is some constant of proportionality, Q is the heat in the body, φ
is its temperature, and φs is the temperature of its surroundings. As we
also know that

dQ

dt
= −mc

dφ

dt

this can be substituted in our first equation giving:

−mc
dφ

dt
= A(φ − φs) ⇔ dφ

dt
= − A

mc
(φ − φs)

A/(mc) can be replaced by a constant k, giving

dφ

dt
= −k(φ − φs).

In this case, the temperature of the surroundings is known to be 300 K,
so the equation describing the rate of change of temperature is

dφ

dt
= −k(φ − 300).

We have established that there are a number of important physical sit-
uations that can be described by the equation dy/dt = ky. The rate of
change of y is proportional to its value. We would like to solve this equa-
tion, that is, find y explicitly as a function of t . In Chapter 7, we solved
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simple differential equations such as dy/dt = 3t by integrating both sides
with respect to t , for example,

dy

dt
= 3t ⇔ y =

∫
3t dt ⇔ y = 3t2

2
+ C.

However, we cannot solve the equation dy/dt = ky in this way because
the right-hand side is a function of y not of t . If we integrate both sides
with respect to t we get

dy

dt
= ky ⇔ y =

∫
ky dt .

Although this is true we are no nearer solving for y as we need to know
y as a function of t in order to find

∫
ky dt .

When we solved equations in Chapter 3 of the Background Mathe-
matics notes available on the companion website for this book, we said
that one method was to guess a solution and substitute that value for the
unknown into the equation to see if it gave a true statement. This would
be a very long method to use unless we are able to make an informed
guess. We can use this method with this differential equation as we know
from our experience with problems involving discrete growth that a solu-
tion should involve an exponential function of the form y = at . The
main problem is to find the value of a, which will go with any particular
equation. To do this we begin by looking for an exponential function that
would solve the equation dy/dt = y, that is, we want to find the function
whose derivative is equal to itself.

8.3 The
exponential
function y = et

Figures 8.2(a) and 8.3(a) give graphs of y = 2t and y = 3t , which are
two exponential functions. We can sketch their derivative functions by
drawing tangents to the graph and measuring the gradient of the tan-
gent at various different points. The derivative functions are pictured in
Figure 8.2(b), dy/dt where y = 2t , and in Figure 8.3(b), dy/dt where
y = 3t .

We can see that for these exponential functions the derivative has
the same shape as the original function but has been scaled in the
y-direction, that is, multiplied by a constant, k, so that dy/dt = ky as we
expected:

d

dt
(2t ) = (C)(2t ) and

d

dt
(3t ) = (D)(3t )

where C and D are constants. We can see from the graphs that C < 1 and
D > 1. Thus, the derivative of 2t gives a squashed version of the original
graph and the derivative of 3t gives a stretched version of the original
graph.

It would seem reasonable that there would be a number somewhere
between 2 and 3 that we can call e, which has the property that the
derivative of et is exactly the same as the original graph. That is,

d

dt
(et ) = et .

TLFeBOOK



“chap08” — 2003/6/8 — page 167 — #6

The exponential function 167

Figure 8.2 (a) The graph of
y = 2t with some tangents
marked. (b) The graph of the
derivative (the gradient of the
tangent at any point on y = 2t

plotted against t).

Finding the value of e
There are various methods for finding the value of e and a graphical
investigation into finding e to one decimal place is given in the projects
and investigations available on the companion website for this book. An
alternative, numerical, method is to look at the gradient of the chord for
the function y = et at t = 0:

δy

δt
= f (t + δt)− δt

δt
= et+δt − et

δt

At t = 0 all functions y = at have value 1 so that the gradient of the
chord at t = 0 is

δy

δt
= eδt − 1

δt

We defined e as the number for which
d

dt
(et ) = et so that at the point

t = 0 the gradient of the tangent is given by dy/dt = 1. For small δt
the gradient of the tangent is approximately equal to the gradient of the
chord

dy

dt
≈ δy

δt

and therefore

1 ≈ eδt − 1

δt
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Figure 8.3 (a) The graph of
y = 3t with some tangents
marked. (b) The graph of the
derivative (the gradient of the
tangent at any point on y = 3t

plotted against t).

Rearranging this equation gives e ≈ (1+δt)1/δt for small δt . Replacing
δt by 1/n, with n large, gives

e ≈
(

1+ 1

n

)n

for large n.
Let n tend to infinity and this gives the well-known limit

e = lim
n→∞

(
1+ 1

n

)n

.

We can use the expression

e ≈
(

1+ 1

n

)n
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for large n to calculate e on a calculator. This is done in Table 8.1 to five
decimal places.

Table 8.1 Estimating e
using (1+ 1/n)n gives
e = 2.71828 to five decimal
places

n (1+ (1/n))n to five
decimal places

1000 2.71692
10 000 2.71815
100 000 2.71827
1 000 000 2.71828
10 000 000 2.71828

We have shown that e = 2.71828 to five decimal places. e is an irra-
tional number which means that it cannot be written exactly as a fraction
(or as a decimal). The function et is often referred to as exp(t). et and its
derivative are shown in Figure 8.4.

By definition of the logarithm (as given in Chapter 4 of the Background
Mathematics notes available on the companion website for this book), we
know that the inverse function to et is loge(t) (log, base e, of t). This is
often represented by the short hand of ln(t) and called the natural or
Napierian logarithm.

We are now able to solve the differential equation dy/dt = y as we
know that one solution is y = et because the derivative of y = et is et .
When we discussed differential equations in Chapter 7, we noticed that
there was an arbitrary constant that was involved in the solution of a
differential equation. In this case the constant represents the initial size
of the population, or the initial charge or the initial number of atoms or
the initial temperature. The general solution to dy/dt = y is y = y0et

where y0 is the value of y at time t = 0. We can show that this is, in fact,
the general solution by substituting into the differential equation.

Example 8.5

(a) Show that any function of the form y = y0et , where y0 is a constant,
is a solution to the equation

dy

dt
= y

(b) Show that in the function y = y0et , y = y0 when t = 0.

Figure 8.4 (a) The graph of y = et with some tangents marked. (b) The graph of the derivative (the gradient
of the tangent at any point on et plotted against t).
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Solution

(a) To show that y = y0et are solutions, we first differentiate

d

dt
(y0et ) = y0et

(as y0 is a constant and d(et )/dt = et ).
Substitute for dy/dt and for y into the differential equation and

we get y0et = y0et , which is a true statement for all t . Hence the
solutions to dy/dt = y are y = y0et .

(b) Substitute t = 0 in the function y = y0et and we get y = y0e0. As
any number raised to the power of 0 is 1, we have y = y0. Hence
y0 is the value of y at t = 0.

Using the function of a function rule we can find the derivative
of ekt , where k is some constant, and show that this function can be
used to solve differential equations of the form dy/dt = ky.

The derivative of ekt

To find the derivative of y = ekt where k is a constant substitute u = kt

so that y = eu

du

dt
= k and

dy

du
= eu

therefore, using the chain rule,

dy

dt
= du

dt

dy

du
= k eu = k ekt

(resubstituting u = kt). Therefore,

d

dt
(ekt ) = k ekt

Notice that if we substitutey for ekt into d(ekt )/dt = k ekt we get dy/dt =
ky, which was the differential equation we set out to solve for our growth
or decay problems.

This tells us that one solution to the equation dy/dt = ky is y = ekt .
The general solution must involve a constant, so we try y = y0ekt where
y0 is the initial size of the population, or initial temperature, etc.

Example 8.6

(a) Show that any function of the formy = y0ekt , wherey0 is a constant,
is a solution to the equation

dy

dt
= ky

(b) Show that in the function y = y0ekt , y = y0 when t = 0.
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Solution

(a) To show that y = y0ekt are solutions we first differentiate:

d

dt
(y0ekt ) = y0kekt

as y0 is a constant and d(ekt )/dt = kekt . Substitute for dy/dt and
for y into the differential equation and we get

y0kekt = ky0ekt

which is a true statement for all values of t . Hence the solutions to
dy/dt = ky are y = y0ekt .

(b) Substitute t = 0 in the function y = y0et and we get y = y0e0. As
any number raised to the power of 0 is 1, we have y = y0. Hence,
y0 is the value of y at t = 0.

Example 8.7 Solve the differential equation given in Example 8.2,
describing the discharge of a capacitor in a closed RC circuit with
R = 10 M� and C = 0.001 µF:

dQ

dt
= −100Q

and find a particular solution given that at t = 0 the voltage drop against
the capacitor was 1000 V.

Solution We have discovered that the solution to a differential equation
of the form dy/dt = kt is given by y = y0ekt where y0 is the initial value
of y.

Comparing dy/dt = ky with dQ/dt = −100Q, and replacing y by Q

and k by −100, we get the solution

Q = Q0e−100t

To find the value of Q0 we need to find the value of Q when t = 0. We are
told that the initial value of the voltage across the capacitor was 1000 V
and we know that the voltage drop across a capacitor is Q/C. Therefore,
we have

Q0

0.001× 10−6
= 1000 ⇔ Q0 = 1000× 0.001× 10−6

⇔ Q0 = 10−6 C.

Therefore, the equation that describes the charge as the capacitor
discharges is Q = 10−6e−100t C at time t s.

The derivative of at

The derivative of y = 2t can now be found by observing that 2 = e(ln(2)).
Therefore, y = 2t = (eln(2))t = eln(2)t . This is of the form ekt with
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k = ln(2). As

d

dt
(ekt ) = kekt

then

d

dt
(eln(2)t ) = ln(2)et ln(2)

Using again the fact that eln(2)t = (eln(2))t = 2t we get

d

dt
(2t ) = d

dt
(eln(2)t ) = ln(2)eln(2)t = ln(2)2t

that is

d

dt
(2t ) = ln(2)2t

Compare this result to that which we found by sketching the derivative of
y = 2t in Figure 8.2(b). We said that the derivative graph was a squashed
version of the original graph. This result tells us that the scaling factor
is ln(2) ≈ 0.693, which confirms our observation that the scaling factor,
C < 1.

Using the same argument for any exponential function y = at we find
that dy/dt = ln(a)at .

In finding these results we have used the fact that an exponential
function, to whatever base, a, can be written as ekt where k = ln(a).

The derivative of y = ln(x )

y = ln(x) is the inverse function of f (x) = ex , and therefore we can find
the derivative in a manner similar to that used to find the derivatives of
the inverse trigonometric functions in Chapter 5.

y = ln(x) where x > 0

⇔ ey = eln(x) (take the exponential of both sides)

⇔ ey = x (as exp is the inverse function to ln, eln(x) = x)

We wish to differentiate both sides with respect to x but the left-hand side
is a function of y, so we use the chain rule, setting w = ey , thus, equation
ey = x becomes w = x and dw/dy = ey .

Differentiating both sides of w = x with respect to x gives dw/dx = 1,
where

dw

dx
= dw

dy

dy

dx
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from the chain rule. So

ey dy

dx
= 1

and resubstituting x = ey we get

x
dy

dx
= 1 ⇔ dy

dx
= 1

x

(we can divide by x as x > 0). Hence,

d

dx
(ln x) = 1

x
.

The derivative of the log, of whatever the base, can be found using the
change of base rule for logarithms as given in Chapter 4 of the Background
Mathematics notes available on the companion website for this book. We
can write

loga(x) =
ln(x)

ln(a)
.

Therefore

d

dx
(loga(x)) =

d

dx

(
ln(x)

ln(a)

)
= 1

ln(a)x
.

8.4 The
hyperbolic
functions

Any function defined for both positive and negative values of x can be
written as the sum of an even and odd function. That is, for any function
y = f (x) we can write

f (x) = fe(x)+ fo(x)

where

fe(x) = f (x)+ f (−x)

2

and

fo(x) = f (x)− f (−x)

2
.

The even and odd parts of the function ex are given the names of hyper-
bolic cosine and hyperbolic sine. The names of the functions are usually
shortened to cosh(x) (read as ‘cosh of x’) and sinh(x) (read as ‘shine
of x’).

ex = cosh(x)+ sinh(x)

and

cosh(x) = ex + e−x

2
, sinh(x) = ex − e−x

2
.

They are called the hyperbolic sine and cosine because they bear the same
sort of relationship to the hyperbola as the sine and cosine do to the circle.
When we introduced the trigonometric functions in Chapter 5 we used
a rotating rod of length r . The horizontal and vertical positions of the
tip of the rod as it travels around the circle defines the cosine and sine
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function, respectively. A point (x, y) on the circle can be defined using
x = r cos(α), y = r sin(α). These are called parametric equations for
the circle and α is the parameter. If the parameter is eliminated then we
get the equation of the circle

x2

r2
+ y2

r2
= 1

(shown in Figure 8.4(a)). Any point on a hyperbola can similarly be
defined in terms of a parameter, α, and thus we get x = a cosh(α) and
y = b sinh(α).

If the parameter is eliminated from the equations we get the equation
for the hyperbola as

x2

a2
− y2

b2
= 1

Figure 8.5(b) shows the graph of the hyperbola.
The function y = tanh(x) is defined, similarly to the tan(x), as

tanh(x) = sinh(x)

cosh(x)

and the reciprocal of these three main functions may be defined as

cosech(x) = 1

sinh(x)
(the hyperbolic cosecant)

sech(x) = 1

cosh(x)
(the hyperbolic secant)

coth(x) = 1

tanh(x)
(the hyperbolic cotangent)

The graphs of cosh(x), sinh(x), and tanh(x) are shown in Figure 8.6.

Figure 8.5 (a) x = r cos(α), y = r sin(α) defines a point on the circle x 2/r 2 + y 2/r 2 = 1. (b) x = a cosh(α)
and y = b sinh(α) defines a point on the hyperbola x 2/a2 − y 2/b2 = 1.
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Figure 8.6 (a) The graph of y = cosh(x ). (b) The graph of y = sinh(x ). (c) The graph of y = tanh(x ).

Table 8.2 Summary of important hyperbolic identities

cosh(x ) = (ex + e−x )/2
sinh(x ) = (ex − e−x )/2
tanh(x ) = sinh(x )/ cosh(x ) = (ex − e−x )/(ex + e−x )
cosh(x )+ sinh(x ) = ex

cosh(x )− sinh(x ) = e−x

cosh(A ± B) = cosh(A) cosh(B)± sinh(A) sinh(B)
sinh(A ± B) = sinh(A) cosh(B)± cosh(A) sinh(B)
tanh(A ± B) = (tanh(A)± tanh(B))/(1± tanh(A) tanh(B))

Hyperbolic identities
The hyperbolic identities are similar to those for trigonometric functions.
A list of the more important ones is given in Table 8.2.

Example 8.8 Show that cosh(A + B) = cosh(A) cosh(B) +
sinh(A) sinh(B).

Solution Substitute

cosh(A) = eA + e−A

2

sinh(A) = eA − e−A

2

cosh(B) = eB + e−B

2

sinh(B) = eB − e−B

2

TLFeBOOK



“chap08” — 2003/6/8 — page 176 — #15

176 The exponential function

into the right-hand side of the expression

cosh(A) cosh(B)+ sinh(A) sinh(B)

= (eA + e−A)

2

(eB + e−B)

2

(eA − e−A)

2

(eB − e−B)

2
.

Multiplying out the brackets gives

1
4

(
eA+B + eA−B + e−A+B + e−(A+B)

+(eA+B − eA−B − e−A+B + e−(A+B))
)

.

Simplifying then gives

1
4 (2eA+B + 2e−(A+B)) = 1

2 (e
A+B + e−(A+B))

which is the definition of cosh(A+ B).
We have shown that the right-hand side of the expression is equal to

the left-hand side, and therefore

cosh(A+ B) = cosh(A) cosh(B)+ sinh(A) sinh(B).

Inverse hyperbolic functions
The graphs of the inverse hyperbolic functions sinh−1(x), cosh−1(x), and
tanh−1(x) are given in Figure 8.7.

As cosh(x) is not a one-to-one function, it has no true inverse. However,
if we limit x to zero or positive values only then cosh−1(x) is indeed the
inverse function and cosh−1(cosh(x)) = x. The sinh−1(x) function is
defined for all values of x, but cosh−1(x) is defined for x � 1 only and
tanh−1(x) is defined for −1 < x < 1.

As the hyperbolic functions are defined in terms of the exponential
function we might suspect that the inverse would be defined in terms of
the logarithm. The logarithmic equivalences are

sinh−1(x) = ln
(
x +

√
x2 + 1

)
for all x

cosh−1(x) = ln
(
x +

√
x2 − 1

)
x � 1

tanh−1(x) = 1

2
ln

(
1+ x

1− x

)
− 1 < x < 1

Example 8.9 Show that sinh−1(x) = ln(x + √x2 + 1) using the
definitions

y = sinh−1(x) ⇔ sinh(y) = x

and

sinh(y) = ey − e−y

2
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Figure 8.7 (a) The graph of
y = cosh−1(x ), x � 1. (b)
The graph of y = sinh−1(x ).
(c) The graph of
tanh−1(x ),−1 � x � 1.

Solution

y = sinh−1(x) ⇔ sinh(y) = x

Using

sinh(y) = ey − e−y

2

to substitute on the left-hand side, we get

ey − e−y

2
= x

⇔ ey − e−y = 2x (multiplying by 2)

⇔ e2y − 1 = 2xey (multiplying by ey and using properties of

powers to write ey · ey = e2y)

⇔ e2y − 2xey − 1 = 0 (subtracting 2xey from both sides)
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This is now a quadratic equation in ey

(ey)2 − 2xey − 1 = 0.

Using the formula for solving a quadratic equation, where a = 1, b =
−2x, c = −1 gives

ey = 2x ±√4x2 + 4

2
.

Dividing the top and bottom lines by 2 gives

ey = x ±
√

x2 + 1.

Taking ln of both sides and using ln(ey) = y (ln is the inverse function
of exp) we get

y = ln(x ±
√

x2 + 1).

We discount the negative sign inside the logarithm, as this would lead to
a negative values, for which the logarithm is not defined. So finally

sinh−1(x) = ln(x +
√

x2 + 1).

Calculations
The hyperbolic and inverse hyperbolic functions are often not given in a
calculator. To calculate a hyperbolic function then use the definitions

cosh(x) = ex + e−x

2

sinh(x) = ex − e−x

2

tanh(x) = sinh(x)

cosh(x)
= ex − e−x

ex + e−x

To calculate the inverse hyperbolic functions use their logarithmic
equivalences.

Example 8.10 Calculate the following, and where possible use the
appropriate inverse function to check your result:

(a) sinh(1.444) (b) tanh−1(−0.5) (c) cosh(−1)
(d) cosh−1(3) (e) cosh−1(0)

Solution From the definition

sinh(1.444) = e1.444 − e−1.444

2

≈ 2.0008152

= 2.001 to 4 s.f.
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Check: Use the inverse function of the sinh, that is, find
sinh−1(2.0008152). From the logarithmic equivalence

(a) sinh−1(2.0008152) = ln(2.0008152+
√

(2.0008152)2 + 1)

= 1.444

As this is the original number input into the sinh function we have
found sinh−1(sinh(1.444)) = 1.444, which confirms the accuracy of
our calculation.

(b) To calculate tanh−1(−0.5) use the logarithmic equivalence giving

tanh−1(0.5) = 1

2
ln

(
1+ (−0.5)

1− (−0.5)

)
= 1

2
ln
( 1

3

) ≈ −0.5493061

= −0.5493 to 4 s.f.

Check: Use the inverse function of tanh−1, that is, find

tanh(−0.5493061) = e−0.5493061 − e0.5493061

e−0.5493061 + e0.5493061
≈ −0.5

This is the original number input to the tanh−1 function and this confirms
the accuracy of our calculation.

(c) cosh(−1) = e−1 + e1

2
≈ 1.5430806

= 1.543 to 4 s.f.

Check: Use the inverse function of cosh, that is, cosh−1:

cosh−1(1.5430806) = ln(1.5430806+
√

1.54308062 − 1) ≈ 1

This is not the number that we first started with, which was−1. However,
we know that cosh−1(x) is only a true inverse of cosh(x) if the domain
of cosh(x) is limited to positive values and zero. We did not expect the
inverse to ‘work’ in this case where we started with a negative value.

(d) To calculate cosh−1(3), use

cosh−1(3) = ln(3+
√

32 − 1) = ln(3+√8)

≈ 1.7627472

= 1.763 to 4 s.f.

Check: The inverse function to cosh−1 is cosh, so we find

cosh(1.7627472) = e1.7627472 + e−1.7627472

2
≈ 3

This confirms the accuracy of our calculation as we have shown
cosh(cosh−1(3)) = 3.

(e) Using the logarithmic definition of cosh−1 leads to an attempt to
take the square root of a negative number. This confirms that cosh−1(0)
is not defined in R.
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Derivatives
Derivatives of the hyperbolic functions can be found by reverting to their
definitions in terms of the exponential function.

Example 8.11 Show that

d

dx
(sinh(x)) = cosh(x)

Solution As

sinh(x) = ex − e−x

2

then

d

dx
(sinh(x)) = d

dx

(
ex − e−x

2

)

= ex − (−1)e−x

2
= ex + e−x

2
= cosh(x).

Therefore

d

dx
(sinh(x)) = cosh(x).

In a way similar to Example 8.6, we can find

d

dx
(cosh(x)) = sinh(x)

and

d

dx
(tanh(x)) = sech2(x).

The derivatives of the inverse hyperbolic functions can be found using
the same method as given for the derivatives of the inverse trigonometric
functions (in Chapter 5) and give

d

dx
(sinh−1(x)) = 1√

1+ x2

d

dx
(cosh−1(x)) = 1√

x2 − 1

d

dx
(tanh−1(x)) = 1

1− x2
.

8.5 More
differentiation
and integration

We are now able to add the functions y = ex and y = ln(x), y = ax , y =
loga(x), and the hyperbolic and inverse hyperbolic functions to the list
of functions (Table 8.3). By swapping the columns and rearranging some
of the terms in a more convenient fashion, and adding the constant of
integration, we get a list of integrals (Table 8.4).

The methods of differentiation and integration of combined functions,
discussed in Chapters 12 and 13, can equally be applied to exponential
and logarithmic functions.
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Example 8.12 Find derivatives of the following:

(a) y = e−2t2+3 (b) x = e−t cos(3t) (c) y = sinh(x)

x
x �= 0.

Solution (a) To differentiate y = e−2t2+3 using the function of a
function rule think of this as y = e( )(‘y = e to the bracket’).

Table 8.3 The derivatives
of some simple functions

f (x ) f ′(x )

C 0
x n nx n−1

cos(x ) − sin(x )

sin(x ) cos(x )

tan(x ) sec2(x )

sin−1(x ) 1/
√

1− x 2

cos−1(x ) −1/
√

1− x 2

tan−1(x ) 1/(1+ x 2)

ex ex

ax (ln(a)ax )

ln(x ) 1/x
loga(x ) 1/(ln(a)x )

cosh(x ) sinh(x )

sinh(x ) cosh(x )

tanh(x ) sech2(x )

sinh−1(x ) 1/
√

1+ x 2

cosh−1(x ) 1/
√

x 2 − 1

tanh−1(x ) 1/(1− x 2)

Table 8.4 Some standard
integrals

f (x )
∫

f (x )dx f (x )

1 x + C
x n(n �= −1) (x n+1)/(n + 1)+ C
sin(x ) − cos(x )+ C
cos(x ) sin(x )+ C
sec2(x ) tan(x )+ C

1/
√

1− x 2 sin−1(x )+ C

−1/
√

1− x 2 cos−1(x )+ C

1/(1+ x 2) tan−1(x )+ C
ex ex + C
ax (ax / ln(a))+ C
1/x ln(x )+ C
cosh(x ) sinh(x )+ C
sinh(x ) cosh(x )+ C

sech2(x ) tanh(x )+ C

1/
√

1+ x 2 sinh−1(x )+ C

1/
√

x 2 − 1 cosh−1(x )+ C

1/(1− x 2) tanh−1(x )+ C

Now differentiate y with respect to ( ) and multiply by the derivative
of ( ) with respect to t . That is, use

dy

dt
= dy

d( )

d( )

dt

where ( ) represents the expression in the bracket

dy

dt
= e−2t2+3 d

dt
(−2t2 + 3) = e−2t2+3(−4t) = −4te−2t2+3.

(b) To find the derivative of x = e−t cos(3t), write x = uv so that
u = e−t and v = cos(3t); then,

du

dt
= −e−t dv

dt
= −3 sin(3t)

where we have used the chain rule to find both these derivatives.
Now use the product rule

dx

dt
= u

dv

dt
+ v

du

dt

dx

dt
= −e−t cos(3t)− e−t3 sin(3t) = −e−t cos(3t)− 3e−t sin(3t).

(c) To find the derivative of

y = sinh(x)

x

we use the formula for the quotient of two functions where y = u/v, u =
sinh(x), v = x, and

dy

dx
= v(du/dx)− u(dv/dx)

v2

Hence, we get

d

dx

(
sinh(x)

x

)
= x cosh(x)− sinh(x) · 1

x2

= x cosh(x)− sinh(x)

x2
.

Example 8.13 Find the following integrals:

(a)
∫

xex2+2 dx (b)
∫

sinh(t) cosh2(t) dt (c)
∫

xex dx

(d)
∫ 2

1 ln(x) dx (e)
∫ ( 3x2 + 2x

x3 + x2 + 2

)
dx
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Solution (a)
∫

xex2+2 dx. Here, we have a function of a function e(x2+2)

multiplied by a term that is something like the derivative of the term in
the bracket.

Try a substitution, u = x2 + 2

⇒ du

dx
= 2x ⇒ dx = du

2x

then∫
xex2+2 dx =

∫
xeu du

2x
=
∫

1
2 eudu = 1

2 eu + C

resubstituting u = x2 + 2 gives∫
xex2+2dx = 1

2 ex2+2 + C

(b) To find
∫

sinh(t) cosh2(t) dt we remember that cosh2(t) =
(cosh(t))2, so∫

sinh(t) cosh2(t) dt =
∫

sinh(t)(cosh(t))2dt

sinh(t) is the derivative of the function in the bracket, cosh(t), so a
substitution, u = cosh(t), should work:

u = cosh(t)⇒ du

dt
= sinh(t)

⇒ dt = du

sinh(t)

∫
sinh(t) cosh2(t) dt =

∫
sinh(t)u2 du

sinh(t)
=
∫

u2 du

= u3 + C

resubstituting u = cosh(t) gives

∫
sinh(t) cosh2(t) dt = cosh3(t)

3
+ C

(c)
∫

xexdx. Use integration by parts∫
u dv = uv −

∫
v du

and choose u = x and dv = exdx giving

du

dx
= 1 and v =

∫
exdx = ex

Then∫
xexdx = xex −

∫
exdx

= xex − ex + C
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(d)
∫ 2

1 ln(x)dx. Write ln(x) = 1 ln(x) and use integration by parts with

u = ln(x) and dv = 1 dx

⇒ du = dx

x
v =

∫
1 dx = x

∫ 2

1
ln(x)dx = [x ln(x)]21 −

∫ 2

1
x

1

x
dx

= 2 ln(2)− 1 ln(1)−
∫ 2

1
1dx

= 2 ln(2)− [x]21
= 2 ln(2)− (2− 1) ≈ 0.3863 to 4 s.f.

(e) We rewrite∫
3x2 + 2x

x3 + x2 + 2
dx =

∫
(3x2 + 2x)(x3 + x2 + 2)−1 dx.

Notice that there are two brackets. To decide what to substitute we notice
that

d

dx
(x3 + x2 + 2) = 3x2 + 2x.

so it should work to substitute u = x3 + x2 + 2

⇒ du

dx
= 3x2 + 2x ⇒ dx = dx

3x2 + 2x
.

The integral becomes∫
(3x2 + 2x)u−1 du

3x2 + 2x∫
du

u
= ln(u)+ C.

Resubstituting for u gives∫
3x2 + 2x

x3 + x2 + 2
dx = ln(x3 + x2 + 2)+ C.

Integration using partial fractions
The fact that expressions like 1/(3x + 2) can be integrated using a
substitution which results in an integral of the form:∫

1

u
du = ln(u)+ C

is exploited when we perform the integration of fractional expressions
like

2x − 1

(x − 3)(x + 1)
.

We first rewrite the function to be integrated using partial fractions.
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Example 8.14 Find

(a)
∫

2x − 1

(x − 3)(x + 1)
dx

(b)
∫

x2

(x + 2)(2x − 1)2
dx.

Solution

(a)
∫

2x − 1

(x − 3)(x + 1)
dx.

Rewrite the expression using partial fractions. We need to find A and B

so that:

2x − 1

(x − 3)(x + 1)
= A

(x − 3)
+ B

(x + 1)

where this should be true for all values of x.
Multiplying by (x − 3)(x + 1) gives 2x − 1 = A(x + 1)+B(x − 3).

This is an identity, so we can substitute values for x:

substitute x = −1 giving − 3 = B(−4) ⇔ B = 3/4

substitute x = 3 giving 5 = A(4) ⇔ A = 5/4

Hence,

2x − 1

(x − 3)(x + 1)
= 5

4(x − 3)
+ 3

4(x + 1)
.

So∫
2x − 1

(x − 3)(x + 1)
dx =

∫
5

4(x − 3)
+ 3

4(x + 1)
dx.

As (x − 3) and (x + 1) are linear functions of x, we can find each part of
this integral using substitutions of u = x − 3 and u = x + 1:∫

5

4(x − 3)
+ 3

4(x + 1)
dx = 5

4
ln(x − 3)+ 3

4
ln(x + 1)+ C

∫
2x − 1

(x − 3)(x + 1)
dx = 5

4
ln(x − 3)+ 3

4
ln(x + 1)+ C.

Check:

d

dx

(
5

4
ln(x − 3)+ 3

4
ln(x + 1)+ C

)
= 5

4(x − 3)
+ 3

4(x + 1)

writing this over a common denominator gives

d

dx

(
5

4
ln(x − 3)+ 3

4
ln(x + 1)+ C

)
= 5(x + 1)+ 3(x − 3)

4(x − 3)(x + 1)

= 5x + 5+ 3x − 9

4(x − 3)(x + 1)

= 8x − 4

4(x − 3)(x + 1)

= 2x − 1

(x − 3)(x + 1)

(b)
∫

x2

(x + 2)(2x − 1)2
dx
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Again, we can use partial fractions. Because of the repeated factor in the
denominator we use both a linear and a squared term in that factor. We
need to find A, B, and C so that

x2

(x + 2)(2x − 1)2
= A

(x + 2)
+ B

(2x − 1)
+ C

(2x − 1)2

where this should be true for all values of x.
Multiply by (x + 2)(2x − 1)2 to get

x2 = A(2x − 1)2 + B(2x − 1)(x + 2)+ C(x + 2)

This is an identity, so we can substitute values for x

substitute x = 1
2 giving 0.25 = C(2.5) ⇔ C = 0.1

substitute x = −2 giving 4 = A(−5)2 ⇔ A = 4/25 = 0.16

substitute x = 0 giving 0 = A+ B(−1)(2)+ C(2).

Using the fact that A = 0.16 and C = 0.1, we get

0 = 0.16−2B+0.2 ⇔ 0 = 0.36−2B ⇔ 2B = 0.36 ⇔ B = 0.18.

Then we have∫
x2

(x + 2)(2x − 1)2
dx =

∫
0.16

(x + 2)
+ 0.18

(2x − 1)
+ 0.1

(2x − 1)2
dx

= 0.16 ln(x + 2)+ 0.18

2
ln(2x − 1)− 0.1

2
(2x − 1)−1 + C

= 0.16 ln(x + 2)+ 0.09 ln(2x − 1)− 0.05

(2x − 1)
+ C.

Check:

d

dx

(
0.16 ln(x + 2)+ 0.09 ln(2x − 1)− 0.05

2x − 1
+ C

)

= d

dx
(0.16 ln(x + 2)+ 0.09 ln(2x − 1)− 0.05(2x − 1)−1 + C)

= 0.16

(x + 2)
+ 0.09

(2x − 1)
(2)+ 0.05(2)(2x − 1)−2

= 0.16

(x + 2)
+ 0.18

(2x − 1)
+ 0.1

(2x − 1)2
.

Writing this over a common denominator gives

0.16(2x − 1)2 + 0.18(2x − 1)(x + 2)+ 0.1(x + 2)

(x + 2)(2x − 1)2

= 0.16(4x2 − 4x + 1)+ 0.18(2x2 + 3x − 2)+ 0.1x + 0.2

(x + 2)(2x − 1)2

= 0.64x2 − 0.64x + 0.16+ 0.36x2 + 0.54x − 0.36+ 0.1x + 0.2

(x + 2)(2x − 1)2

= x2

(x + 2)(2x − 1)2
.
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8.6 Summary 1. Many physical situations involve exponential growth or decay where
the rate of change of y is proportional to its current value.

2. All exponential functions, y = at , are such that dy/dt = ky, that
is, the derivative of an exponential function is also an exponential
function scaled by a factor k.

3. The exponential function y = et has the property that dy/dt = y,
that is, its derivative is equal to the original function:

d

dt
(et ) = et ,

where e ≈ 2.71828. The inverse function to et is loge(t), which
is abbreviated to ln(t). This is called the natural or Napierian
logarithm.

4. The general solution to dy/dt = ky is y = y0ekt , where y0 is the
value of y at t = 0.

5.
d

dt
(at ) = ln(a)at and

d

dt
(loga(t)) =

1

ln(a)t
.

6. The hyperbolic cosine (cosh) and hyperbolic sine (sinh) are the even
and odd parts of the exponential function:

ex = cosh(x)+ sinh(x)

cosh(x) = ex + e−x

2

sinh(x) = ex − e−x

2

These functions get the name hyperbolic because of their relation-
ship to a hyperbola. The hyperbolic tangent is defined by

tanh(x) = sinh(x)

cosh(x)
= ex − e−x

ex + e−x

There are various hyperbolic identities, which are similar to the
trigonometric identities (Table 8.2).

7. The inverse hyperbolic functions cosh−1(x)(x � 1), sinh−1(x),
tanh−1(x)(−1 < x < 1) have the following logarithmic identities:

sinh−1(x) = ln(x +
√

x2 + 1) for all x ∈ R

cosh−1(x) = ln(x +
√

x2 − 1) x � 1

tanh−1(x) = 1

2
ln

(
1+ x

1− x

)
− 1 < x < 1

cosh−1(x) is the inverse of cosh(x) if the domain of cosh(x) is
limited to the positive values of x and zero.

8. Adding the derivatives and integrals of the exponential, ln, hyper-
bolic and inverse hyperbolic functions to the tables of standard
derivatives and integrals gives Tables 8.3 and 8.4.

9. Partial fractions can be used to integrate fractional functions such as

x + 1

(x − 1)(x + 2)
.
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8.7 Exercises

8.1. Using
d

dt
(et ) = et show that the function 2e3t is a

solution to the differential equation

dy

dt
= 3y

8.2. Assuming p = p0ekt find p0 and k such that

dp

dt
= p

1200

and p = 1 when t = 0.

8.3. Assuming N = N0ekt find N0 and k such that

dN

dt
= −4.3× 10−4N and N = 5× 106 at t = 0.

8.4. Assuming φ = Aekt + 300 find A and k such that

dφ

dt
= −0.1(φ − 300) and φ = 400 when t = 0.

8.5. Using the definitions of

cosh(x) = ex + e−x

2

and

sinh(x) = ex − e−x

2

show that
(a) cosh2(x)− sinh2(x) = 1
(b) sinh(x − y) = sinh(x) cosh(y)− cosh(x) sinh(y)

8.6. Using y = tanh−1(x) ⇔ tanh(y) = x, where
−1 < x < 1, and

tanh(y) = ey − e−y

ey + e−y

show that

tanh−1(x) = 1

2
ln

(
1+ x

1− x

)

where −1 < x < 1.

8.7. Calculate the following and where possible use the
appropriate inverse functions to check your result:

(a) cosh(2.1) (b) tanh(3) (c) sinh−1(0.6)
(d) tanh−1(1.5) (e) cosh−1(−1.5)

8.8. Differentiate the following:

(a) z = et2−2 (b) x = e−t cosh(2t)

(c)
x2 − 1

sinh(x)
(d) ln(x3 − 3x)

(e) log2(2x) (f) a4t

(g) 2t t2 (h) 1/(et−1)2

8.9. Find the following integrals:

(a)
∫

e4t−3dt (b)
∫ 3

2

dt

4t − 1

(c)
∫

x sinh(2x2)dx (d)
∫

x ln(x)dx

(e)
∫ 1

0
exx2 dx (f)

∫
sinh(t)

cosh(t)
dt

(g)
∫

2(x − 1)

x2 − 2x − 4
dx (h)

∫
t + 1

(t − 3)(t − 1)
dt

(i)
∫ 4

2

−t

t2(t − 1)
dt

8.10. The charge on a discharging capacitor in an RC circuit
decays according to the expression Q = 0.001e−10t .
Find an expression for the current using I = dQ/dt
and find after how long the current is half of its initial
value.

8.11. A charging capacitor in an RC circuit with a d.c. volt-
age of 5 V charges according to the expression q =
0.005(1 − e−0.5t ). Given that the current i = dq/dt ,
calculate the current: (a) when t = 0; (b) after 10 s;
and (c) after 20 s.
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9 Vectors

9.1 Introduction Many things can be represented by a simple number, for instance, time,
distance, mass, which are then called scalar quantities. Others, however,
are better represented by both their size, or magnitude, and a direction.
Some of these are velocity, acceleration, and force. These quantities are
called vector quantities because they are represented by vectors.

A simple example of a vector is one that describes displacement. Sup-
posing someone is standing in a room with floor tiles (as in Figure 9.1)
and moving from one position to another can be described by the number
of tiles to the right and the number of tiles towards the top of the page.

In the example, to move from the door to the cupboard can be repre-
sented by (4, 2). This vector consists of two numbers, where the order
of the numbers is important. Moving (4, 2) results in a different final
position to that if we move (2, 4). The magnitude of the displacement can
be found by drawing a straight line from the starting position to the final
position and measuring the length. From Pythagoras theorem this can be
found as

√
42 + 22 = √20 ≈ 4.47. The direction can be described by an

angle, for instance, the angle made to the wall with the window on it.
This example shows that a two-dimensional vector (2D) can be used

to represent movement on a flat surface. A 2D vector is two numbers,
where the order of the numbers is important.

If the room in Figure 9.1 also had wall tiles then we could represent a
position above the floor by the number of tiles towards the ceiling. This
three-dimensional (3D) vector can be represented by three numbers. It
can also be represented by the distance travelled and the direction, angles
made to the floor and the angle made to the wall.

Velocity is an example of a vector quantity. This can be described by
two things, the speed, which is the rate of change of distance travelled with
respect to time, and also the direction in which it is travelling. Similarly,
force can be described by the size of magnitude of the force and also the
direction in which it operates.

Vectors have their own rules for addition and subtraction. If two forces
of equal magnitude operate on one object then the net effect will depend
on the direction of the forces. If the forces operate in opposite directions

Figure 9.1 A tiled room.
To reach the cupboard from
the door we need to move four
tiles to the right and two tiles
towards the top of the page.
This can be represented by
the vector (4, 2).

TLFeBOOK



“chap09” — 2003/6/8 — page 189 — #2

Vectors 189

they could balance each other out, like two tug-of-war teams in a stale-
mate struggle. Alternatively, they could operate in the same direction or
partially in the same direction and cause the object to have an acceleration.

Figure 9.2 A network
consisting of sides a, b, c, d,
e, f, g, and h.

For the examples of vectors given so far, the maximum dimension of
the vector is three as there are only three spatial dimensions. However,
there are many examples when vectors of higher dimension are useful.
For instance, a path through the network given in Figure 9.2 can be
represented by a list of 1s and 0s to indicate whether each of the edges is
included in the path. A path from S to T can be represented by a vector,
for instance:

a b c d e f g h

0 1 0 0 1 0 0 0 represents the path be
0 0 1 0 0 1 1 0 represents the path cfg.

Although there are many other types of vectors we will concentrate on
vectors of two or three dimensions, called spatial or geometrical vectors,
used to represent physical quantities in space. Many of the ideas in this
chapter are only true for geometrical vectors of two and three dimensional.
As 3D vectors can only be correctly represented by making a 3D model,
it is important to concentrate on understanding 2D vectors as they can be
drawn on a piece of paper allowing results to be checked easily.

9.2 Vectors and
vector
quantities

A vector is a string of numbers, for example,

(1, 2, −1)

(1, 0)

(3, −4, 2, −6, 8)

(2.6, 9, −1.2, 0.3).

The length of the string is called the dimension of the vector. For the
examples given above, the dimensions are 3, 2, 5, and 4, respectively.
The commas can be left out, so the examples given above can be written as

(1 2 −1)

(1 0)

(3 −4 2 −6 8)

(2.6 9 −1.2 0.3).

Vectors may also be written as columns, giving:


 1

2
−1


(1

0

)
3
−4
2
−6
8






2.6
9
−1.2
0.3


 .

Whether vectors are written as columns or rows only becomes impor-
tant when we look at matrices (Chapter 13). However, the order of the
numbers in the vector is important: (0, 1) is a different vector from (1, 0).

Figure 9.3 A vector is drawn
in a diagram as a line
segment with an arrow to
indicate its direction.

We will mainly deal with 2D or 3D vectors. Vectors are represented
in a diagram by a line segment with an arrow as in Figure 9.3. In printed
material vectors can be represented by bold letters: a. They are also rep-
resented by a or �a or

−→
AB, where A and B are points at either end of the

vector.
In the rest of this chapter, we will assume that we are dealing with 2D

or 3D vectors represented in rectangular form, also called Cartesian form.
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Figure 9.4 (a) A two-dimensional rectangular set of axes and the
vector (1, 5). The axes are at right angles and the numbers in the
vector give the x, y translation it represents. (b) A three-dimensional
rectangular set of axes and the vector (2, 3, 1). The axes are at right
angles and the numbers in the vector correspond to the x, y, z
translation it represents.

Figure 9.5 (a) The position vector p = (2, 3) or
−→
OP = (2, 3) is used

to represent a point in the plane. The point can be found by
translating from the origin by 2 in the x-direction followed by 3 in the
y-direction; hence, p = (2, 3). (b) The position vector p = (2, 3, 4) is
used to represent a point in space. The point can be found by
translating from the origin by 2 in the x-direction, followed by 3 in the
y-direction, and by 4 in the z-direction; hence, p = (2, 3, 4).

This means that the numbers in the vectors correspond to the x, y, z values
for a set of rectangular axes, as shown in Figure 9.4. This assumption is
important for many of the geometrical interpretations presented here.

Figure 9.6 (a) The vector
t = (2, 3) is used to represent
a translation of the figure
ABCD. Each of the points
defining the figure have been
translated by (2,3).

Position vectors and
translation vectors
Vectors can represent points in a plane, as in Figure 9.5(a), or points in
space, as in Figure 9.5(b). These are called position vectors. They can be
thought of as representing a translation from the origin.

Vectors can represent a translation that can be applied to figures. In
Figure 9.6, a four-sided figure ABCD has been translated through the
vector (2, 3).Figure 9.7 The object is

being pulled up the slope
using a force F which has a
direction parallel with the
slope of the hill. There is also
a force due to gravity Fg
acting vertically downwards
and a force at right angles to
the plane, FN .

Vector quantities
Vectors can represent physical quantities that have both a magnitude and
a direction. In Figure 9.7, there is an example of the forces acting on a
body that is being pulled up a slope. By using vectors and vector addition
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the resultant force acting on the body can be found and therefore the
direction in which the body will travel can be found together with the size
of the acceleration. Other quantities with both magnitude and direction are
velocity, acceleration, and moment. Quantities that only have magnitude
and no direction are called scalar quantities and can be represented using
a number, for example, mass and length.

9.3 Addition
and subtraction
of vectors

Addition
To add two vectors, add the corresponding elements of the vectors.

Example 9.1

a = (2, 3) b = (4, 2)

a + b = (2, 3)+ (4, 2) = (2+ 4, 3+ 2) = (6, 5)

c = (1, 3, 1.5) d = (5,−2, 1)

c+d = (1, 3, 1.5)+ (5,−2, 1) = (1+5, 3+ (−2), 1.5+1) = (6, 1, 2.5).

Figure 9.8 The resultant or
vector sum of a and b.

If the vectors are represented in the plane then the vector sum can be found
using the parallelogram law, as in Figure 9.8. The resultant or vector sum
of a and b is found by drawing vector a and then drawing vector b from
the tip of vector a which gives the point C. Then a + b can be found by
drawing a line starting at O to the point C. If we imagine walking from
O to A, along vector a, and then from A to C, along vector b, this has the
same effect as walking direct from O to C, along vector c. We can also
use the parallelogram to show that a + b = b + a. To find b + a, start
with vector b and draw vector a from the tip of vector b; this also gives
the point C. Then if we walk from O to B along vector b and then from
B to C along vector a, this has the same effect as walking along the other
two sides of the parallelogram or walking direct from O to C. Hence

a + b = b+ a = c

Subtraction
To subtract one vector from another, subtract the corresponding elements
of the vectors.

Example 9.2

a = (2, 3) b = (4, 2)

a − b = (2, 3)− (4, 2) = (2− 4, 3− 2) = (−2, 1).

Using a vector diagram we can perform vector subtraction in two ways.
Draw a and −b and add as before or simply draw vectors a and b from
the same point and the line joining the tip of b to the tip of a gives the
vector a − b. These methods are explained in Figure 9.9.

Example 9.3 In Figure 9.10,
−→
OA = a and

−→
OB = b. OB = BC, OA =

EO, and AD is parallel to OC and EF. Write the following vectors in
terms of a and b:

(a)
−→
OE (b)

−→
OC (c)

−→
BA (d)

−→
AB (e)

−→
AD (f)

−→
BE (g)

−→
BF .
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Figure 9.9 (a) To find a− b by using addition, draw a and b. Then
−b is the vector in the opposite direction. Then add a and −b by
drawing a parallelogram as in Figure 9.8. (b) Use the triangle OAB.−→
BA gives the vector a− b. To see this imagine walking directly from B
to A, this is the same as walking from B to O, which is backwards

along b and therefore is the vector −b, and then along
−→
OA which is

the vector a. Hence,
−→
BA = −b+ a = a− b.

Solution

(a)
−→
OE is the same length as a in the opposite direction; therefore,−→
OE = −a.

(b)
−→
OC is in the same direction as b, but twice the length; therefore,−→
OC = 2b.

(c)
−→
BA is in a triangle with a and b. To get from B to A we would walk
in the reverse direction along b and then along a:

−→
BA = −b+ a =

a − b.
(d)
−→
AB = −−→BA = −(a − b) = b− a.

(e)
−→
AD is parallel to

−→
OC in the same direction; therefore, as

−→
OC = 2b

then
−→
AD = 2b.

(f) To find
−→
BE we need to know

−→
OE.
−→
OE is the same length as a in

the opposite direction; therefore,
−→
OE = −a. To get from B to E we

could go from B to O (−b) and then from O to E (−a); therefore,−→
BE = −b− a.

(g)
−→
BF is the same length as

−→
AB and in the same direction; therefore,−→

BF = −→AB = b− a.

Figure 9.10 Using vectors.
See Example 9.3.

9.4 Magnitude
and direction of
a 2D vector –
polar
co-ordinates

We have already noted that a vector has magnitude and direction. A
2D vector can be represented by its length (also called magnitude or
modulus), r (or |r|), and its angle to the x-axis, also called its argument, θ .
If the vector is (x, y) then r2 = x2+ y2, from Pythagoras’s theorem The
angle is given by tan−1(y/x) if x is positive and by tan−1(y/x) + π if
x is negative. Hence, r = (r , θ) in polar coordinates, and can also be
written as r∠θ so it is clear that the second number represents the angle.
As it is usual to give the angle between−π and+π , it may be necessary
to subtract 2π from the angle given by this formula. (As a rotation of
2π is a complete rotation this will make no difference to the position of
the vector.)
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Example 9.4 Find the magnitude and direction of

(a) (2, 3) (b) (−1,−4) (c) (1,−2.2) (d) (−2, 5.6)

Solution To perform these conversions to polar form it is a good idea
to draw a diagram of the vector in order to be able to check that the angle
is of the correct size. Figure 9.11 shows the diagrams for each part of the
example.

(a) r = (2, 3) has magnitude
√

22 + 32 ≈ 3.606 and angle given
by tan−1(3/2) ≈ 0.983 and therefore in polar coordinates r is
3.606 ∠ 0.983.

(b) r = (−1,−4) has magnitude r = √(−1)2 + (−4)2 ≈ 4.123, and
angle given by tan−1(−4/−1)+π ≈ 1.326+3.142 = 4.467. As this
angle is bigger than π , subtract 2π (a complete revolution) to give

Figure 9.11 Converting vectors to polar form: (a) r = (2, 3) = 3.606 ∠ 0.983; (b) r = (−1,−4) =
4.123 ∠−1.816; (c) r = (1,−2.2) = 2.416 ∠−1.144; (d) r = (−2, 5.6) = 5.946 ∠ 1.914.
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−1.816. Therefore, in polar co-ordinates r = 4.123 ∠−1.816. Note
that the angle is between −π and −π/2, meaning that the vector
must lie in the third quadrant, which we can see is correct from the
diagram.

(c) r = (1,−2.2) has magnitude r = √
(1)2 + (−2.2)2 ≈ 2.416 and

the angle is given by tan−1(−2.2/1) ≈ −1.144. Therefore, in polar
co-ordinates r = 2.416 ∠−1.144. Note that the angle is between
−π/2 and 0, meaning that the vector must lie in the fourth quadrant.

(d) r = (−2, 5.6) has magnitude r = √
(−2)2 + (5.6)2 ≈ 5.946 and

angle given by tan−1(5.6/ − 2) + π ≈ 1.914. Therefore, in polar
co-ordinates r = 5.946 ∠1.914. Note that the angle is between π/2
and π , meaning that the vector must lie in the second quadrant.

Many calculators have a rectangular to polar conversion facility. Look
this up on the instructions with your calculator and check the results.
Remember, to get the result in radians you should first put your calculator
into radian mode.

Conversion from polar co-ordinates to
rectangular co-ordinates
If a vector is given by its length and angle to the x-axis, that is, r = r∠θ ,
then

x = r cos(θ) y = r sin(θ)

Hence, in rectangular co-ordinates r = (r cos(θ), r sin(θ)).
This result can easily be found from the triangle, as shown in

Figure 9.12; examples are given in Figure 9.13.

Figure 9.12 If a vector, r, is
known in polar co-ordinates,
r = r∠θ then from the triangle
cos(θ) = x/r ⇔ x = r cos(θ)
and sin(θ) = y/r ⇔
y = r sin(θ).

Figure 9.13 (a) 4 ∠20◦ in rectangular co-ordinates is given by
x = 4 cos(20◦) ≈ 3.759 and y = 4 sin(20◦) ≈ 1.368; therefore, the
vector is (3.759, 1.368). (b) 6.5 ∠1.932 in rectangular co-ordinates is
given by x = 6.5 cos(1.932) ≈ −2.297 and y = 6.5 sin(1.932) ≈
6.081; therefore, the vector is (−2.297, 6.081).
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Adding two vectors expressed in
polar co-ordinates
To add two vectors expressed in polar co-ordinates, first express them in
rectangular co-ordinates, then find the sum and then convert back into
polar co-ordinates.

Example 9.5 Find 2 ∠20◦ + 4 ∠50◦.
Solution Using x = r cos(θ) and y = r sin(θ), we can express the two
vectors in rectangular co-ordinates, giving

2 ∠20◦ ≈ (1.879, 0.684)

4 ∠50◦ ≈ (2.5711, 3.064).

Therefore, 2 ∠20◦ + 4 ∠50◦ ≈ (1.879, 0.684) + (2.571, 3.064) =
(4.45, 3.748).

Finally, this can be represented in polar co-ordinates by using
r = √

x2 + y2 and θ = tan−1(y/x) (+π , if x is negative) giving
(4.45, 3.748) ≈ 5.818 ∠40.106◦.

Example 9.6 Find 4 ∠1+ 2 ∠−1.6.

Solution Using x = r cos(θ) and y = r sin(θ), we can express the two
vectors in rectangular co-ordinates, giving 4 ∠1 ≈ (2.161, 3.366):

2 ∠−1.6 ≈ (−0.058,−1.999).

Therefore, 4 ∠1 + 2 ∠ − 1.6 ≈ (2.161, 3.366) + (−0.058,−1.999) =
(2.103, 1.367).

Finally, this can be represented in polar co-ordinates by using
r = √

x2 + y2 and θ = tan−1(y/x) (+π , if x is negative), giving
(2.103, 1.367) ≈ 2.508 ∠0.576.

9.5 Application
of vectors to
represent
waves
(phasors)

In Section 5.3, we found the amplitude, phase, and cycle rate (frequency)
of a wave. f (t) = A cos(ωt + φ) has amplitude A, angular frequency ω,
and phase φ. Suppose we consider waves of a fixed frequency (say 50 Hz
giving ω = 50 × 2π ≈ 314); then, different waves can be represented
by the amplitude and phase, giving y = A∠φ. The ideas of vectors can
then be used to add and subtract waves and find their combined effect.

If a wave can be represented in polar form by A∠φ, then what does
the rectangular form of the vector represent? We find that if the wave
is split into cosine and sine terms by using the trigonometric identity
cos(A+ B) = cos(A) cos(B)− sin(A) sin(B), we get:

f (t) = A cos(ωt + φ) = A cos(φ) cos(ωt)− A sin(φ) sin(ωt).

As A cos(φ) is a constant, not involving an expression in t , this can be
replaced by c and similarly A sin(φ) can be replaced by d giving

f (t) = c cos(ωt)− d sin(ωt)

where c = A cos(φ) and d = A sin(φ).
So the vector (c, d) used to represent a wave represents the func-

tion f (t) = c cos(ωt) − d sin(ωt) and if expressed in polar form A∠φ
it represents the equivalent expression

f (t) = A cos(ωt + φ)
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Example 9.7 Express the following as a single cosine term and give the
amplitude and phase of the resultant function:

x = 3 cos(2t)+ 2 sin(2t).

Solution Comparing x = 3 cos(2t) + 2 sin(2t) with the expression
f (t) = c cos(ωt)− d sin(ωt) gives c = 3, d = −2 and ω = 2. Express-
ing the vector (3, −2) in polar form gives 3.605∠−0.588 and hence
x = 3.605 cos(2t − 0.588) giving the amplitude as 3.605 and phase
as −0.588.

Check: Expand x = 3.605 cos(2t − 0.588) using

cos(A− B) = cos(A) cos(B)+ sin(A) sin(B)

3.605 cos(2t − 0.588) = 3.605 cos(2t) cos(0.588)

+ 3.605 sin(2t) sin(0.588)

= 3 cos(2t)+ 2 sin(2t)

which is the original expression.

Example 9.8 Express the following as a single cosine term and hence
give the magnitude and phase of the resultant function:

y = −2 cos(t)− 4 sin(t)

Solution Comparing y = −2 cos(t) − 4 sin(t) with the expression
f (t) = c cos(ωt) − d sin(ωt) gives c = −2, d = 4, and ω = 1.
Expressing the vector (−2, 4) in polar form gives 4.472 ∠ 2.034 and
hence y = 4.472 cos(t + 2.034).

Check: Expand y = 4.472 cos(t + 2.034) using cos(A+ B) =
cos(A) cos(B) − sin(A) sin(B) : 4.472 cos(t + 2.034) = 4.472 cos(t)
cos(2.034)− 4.472 sin(t) sin(2.034) = −2 cos(t)− 4 sin(t).

Example 9.9 Express x = 3 cos(20t+5) as the sum of cosine and sine
terms.

Solution On representing x as the phasor 3 ∠5 with angular frequency
20, 3 ∠5 converts to rectangular form as the vector (0.851, −2.877) and
this now gives the values of (c, d) in the expression f (t) = c cos(ωt)−
d sin(ωt), giving x = 0.851 cos(20t)+ 2.877 sin(20t).

Example 9.10 Find the resultant wave found from combining the
following into one term:

f (t) = 3 cos(314t + 0.5)+ 2 cos(314t + 0.9).

Solution As both terms are of the same angular frequency,
314 radians s−1, we can express the two component parts by their
amplitude and phase and then add the two vectors, giving 3 ∠0.5+2 ∠0.9.

Expressing these in rectangular form gives (2.633, 1.438) +
(1.243, 1.567) = (3.876, 3.005).

Finally, expressing this again in polar form gives 4.904 ∠ 0.659, so the
resultant expression is f (t) = 4.904 cos(314t + 0.659).

This method is a shorthand version of writing out all the trigonomet-
ric identities. It is even quicker if you use the polar – rectangular and
rectangular – polar conversion facility on a calculator.
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Figure 9.14 The vector (1,−2): (a) multiplied by 3; (b) multiplied
by 0.5.

9.6
Multiplication of
a vector by a
scalar and unit
vectors

Figure 9.15 The vector
r = (3, 4) has modulus, or
length r = √32 + 42 = 5. The
unit vector in the same
direction is found by dividing
the vector r by its length
giving r̂ = 1

5 (3, 4) = (0.6, 0.8).

Multiplying a vector by a scalar has the effect of changing the length
without affecting the direction. Each number in the vector is multiplied
by the scalar

Example 9.11 If a = (1,−2) then

3a = 3(1,−2) = (3× 1, 3× (−2)) = (3,−6)

0.5a = 0.5(1,−2) = (0.5× 1, 0.5× (−2)) = (0.5,−1).

This is shown in Figure 9.14.

Unit vectors
Unit vectors have length 1. They are often represented by vectors with a
cap on them r̂. Hence, r̂ means the unit vector in the same direction as r.

To find the unit vector in the same direction as r, divide r by its length:
r̂ = r/|r|, where |r| represents the magnitude of vector r.

In Section 9.5, we found the length of a 2D vector (x, y) is
√
x2 + y2,

similarly it can be shown that in three dimensions (x, y, z) the length is√
x2 + y2 + z2.

Example 9.12 Find unit vectors in the direction of the following
vectors:

(a) (1,−1) (b) (3, 4) (c) (0.5, 1, 0.2).

Solution (a) Find the length of (1, −1) given by
√
x2 + y2 =√

12 + 12 = √2. Therefore, the unit vector is

1√
2
(1,−1) ≈ (0.707,−0.707)

(b) Find the length of (3, 4) given by
√
x2 + y2 = √32 + 42 = 5.

Therefore, the unit vector (see Figure 9.15) is

1
5 (3, 4) = (0.6, 0.8).
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(c) Find the length of (0.5, 1, 0.2) given by
√
x2 + y2 + z2 =√

(0.5)2 + 12 + (0.2)2 ≈ 1.13578. Therefore, the unit vector is

1

1.13578
(0.5, 1, 0.2) ≈ (0.44, 0.88, 1.176).

9.7 Basis
vectors

Vectors in a plane are made up of a part in the x-direction and a part in
the y-direction, for example, (2, 3) = (2, 0) + (0, 3). i and j are used to
represent unit vectors in the x-direction and y-direction, that is, i = (1, 0)
and j = (0, 1).

Figure 9.16 Any vector in a
plane can be expressed in
terms of the vectors i and j;
for instance, (2, 3) =
2(1, 0)+ 3(0, 1) = 2i+ 3j.

Any vector in the plane can be expressed in terms of i and j. i and
j are called the Cartesian unit basis vectors, which is the name given
to a co-ordinate system where the axes are at right angles to each other
(orthogonal) (see Figure 9.16):

(2, 3) = 2(1, 0)+ 3(0, 1) = 2i+ 3j.

The unit vector in the z direction is often given the symbol k; and in
three dimensions, using rectangular axes we have:

i = (1, 0, 0) j = (0, 1, 0) k = (0, 0, 1)

that is

(5,−1, 2) = (5, 0, 0)+ (0,−1, 0)+ (0, 0, 2)

= 5(1, 0, 0)+ (−1)(0, 1, 0)+ 2(0, 0, 1)

= 5i− j+ 2k.

Figure 9.17 A room shaped
as a parallelogram. Any
position in the room can be
found by moving parallel to
the sides. The basis vectors
used are not at right angles.

The vectors i and j form a basis set because all 2D geometrical vectors can
be expressed in such terms. Similarly, all 3D vectors can be expressed in
terms of i, j, and k. There are many other sets of vectors that can be used as
a basis set: for instance, if we were in a room shaped like a parallelogram
we could express any position in the room by moving parallel to one of
the sides and then parallel to the other side. This is shown in Figure 9.17.
Other basis sets are not as useful for interpreting spatial vectors as they
do not give the same geometrical results. For instance, the interpretation
of the scalar product, given in Section 9.8, relies on the fact that we use
Cartesian basis vectors.

9.8 Products of
vectors

There are two products of vectors that are commonly used: the scalar
product, which results in a scalar, and the vector or cross product, which
gives a vector as the result. However, both of these products are irre-
versible: they have no inverse operation. In other words, it is not possible
to divide by a vector.

Scalar product
The scalar product of two vectors is defined by

a · b = (a1, a2) · (b1, b2) = a1b1 + a2b2.

Notice that the scalar product gives a simple number as the result.
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Example 9.13 Find the scalar product of (2, 3) and (1, 2).

Solution Using the definition

(2, 3) · (1, 2) = (2)(1)+ (3)(2) = 2+ 6 = 8.

Interpretation of the scalar product
The scalar product of a and b is related to the length of the vectors in
the following way: a · b = ab cos(θ), where θ is the angle between the
two vectors and a is the magnitude of a and b is the magnitude of b (see
Figure 9.18).

Figure 9.18 The scalar
product a·b = ab cos(θ)
where θ is the angle between
the two vectors.

The magnitude of a vector is the square root of the dot product with
itself; hence, a · a = a2.

The scalar product can be used to find the angle between two vectors.
It can also be used to find the length of a vector and can be used to test if
two vectors are at right angles (orthogonal).

Example 9.14 Find the angle between (1, −1) and (3, 2).

Solution If a = (1,−1) and b = (3, 2), then a · b = (1,−1) · (3, 2) =
(1)(3)+ (−1)(2) = 3− 2 = 1.

We now use the relationship

a · b = ab cos(θ) ⇔ cos(θ) = a · b
ab

to find the angle between the vectors. We find the magnitude of a and the
magnitude of b

a =
√

12 + (−1)2 ≈ 1.414 and b =
√

32 + 22 ≈ 3.606.

Hence,

cos(θ) = a · b
ab

becomes

cos(θ) = 1

1.414× 3.606
≈ 0.196

giving θ = cos−1(0.196) ≈ 1.373 radians.

Example 9.15 Show that (2,−1) and (−0.5,−1) are at right angles.

Solution If two vectors are at an angle θ , with cos(θ) = 0, then θ =
±90◦, so the vectors are at right angles. Hence, if we find that a · b = 0
this shows that a and b are at right angles (as long as one of the vectors
is not the null vector (0, 0)). In this case the scalar product gives:

(2,−1) · (−0.5,−1) = 2(−0.5)+ (−1)(−1) = −1+ 1 = 0

As the scalar product of the two vectors is 0 the angle between them is
90◦, so they are at right angles.
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Example 9.16 Show that (1,−1) and (−2,−2) are at right angles.

Solution

(1,−1) · (−2,−2) = (1)(−2)+ (−1)(−2) = −2+ 2 = 0

Hence, they are at right angles.

Direction cosines
We have seen that the scalar product of two vectors a and b, a · b =
ab cos(θ). We can use this result to show that the components of a unit
vector are the direction cosines of the vector, that is,

r̂ = (cos(α), cos(β))

where α is the angle that the vector makes to the x-axis and β is the angle
that the vector makes to the y-axis.

To show this, consider a unit vector r̂ = (x, y) = xi + yj. If we take
the scalar product with the unit vector along the x-axis, i = (1, 0), we
will get

r̂ · i = (x, y) · (1, 0) = x
and we know that r̂ · i = |r̂||i| cos(α), where |r̂| and |i| are the magnitudes
of r̂ and i, respectively, and α is the angle between them. In this case,
as we have two unit vectors their magnitudes are 1. This means that
r̂ · i = cos(α), where α is the angle between the two vectors. In this case,
α is the angle that the vector, r̂, makes to the x-axis. We have shown that
r̂ · i = cos(α) and we know that r̂ · i = x, so we have that x = cos(α),
where α is the angle to the x-axis. By considering r̂ · j, we find that
y = cos(β), where β is the angle that the vector r̂ makes to the y-axis.
So we have that the components of any unit vector r̂ are the direction
cosines of the vector.

If we consider any vector r we can find that a unit vector is the same
direction as r by dividing by the magnitude of r. Hence, we have that:

r̂ = r
|r| = (cos(α), cos(β))

where α is the angle the vector r makes to the x-axis and β is the angle
the vector r makes to the y-axis (see Figure 9.19).

y

r

x

�

�

Figure 9.19
r̂ = (cos(α), cos(β)) where α
is the angle the vector r
makes to the x-axis and β is
the angle the vector r makes
to the y-axis.

In three dimensions we get:

r̂ = r
|r| = (cos(α), cos(β), cos(γ ))

where α is the angle the vector r makes to the x-axis, β is the angle it
makes to the y-axis, and γ the angle it makes to the z-axis.

Example 9.17 Find the angle that the following vectors make to the
axes: (a) (3, 6); (b) (−1,−4, 5).

Solution (a) r/|r| = (cos(α), cos(β)), where α and β are the angles
made to the x and y axes. Therefore,

(cos(α), cos(β)) = (3, 6)√
32 + 62

= (3, 6)√
45
≈ (0.44721, 0.89443).

The angle made to the x-axis is α = cos−1(0.44721) ≈ 1.107 and the
angle made to the y-axis is β = cos−1(0.89443) ≈ 0.463. The angles
made to the x and y axes are 1.107 and 0.463 radians, respectively.
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(b) r/|r| = (cos(α), cos(β), cos(γ )), where α,β and γ are the angles
made to the x, y, and z axes. Therefore,

(cos(α), cos(β), cos(γ )) = (−1,−4, 5)√
(−1)2 + (−4)2 + 52

= (−1,−4, 5)√
42

≈ (−0.1543,−0.61721, 0.77151).

The angles made to axes in the x, y, and z directions are found by
taking the inverse cosines of the above: 1.726, 2.236, 0.6896 radians,
respectively.

Vector components
The scalar product can be used to find the component of a vector in a
given direction. This is a useful idea, for instance, if we are resolving
forces and we want to add up all the forces acting in a certain direction.
We can use the dot product with a unit vector in the direction of interest
to find the component in that direction. The component of a vector F in
the direction of a vector r is F · (r/|r|)

Example 9.18 A removal company wants to move a piano from the
upstairs window of a small house. A smooth plank is placed against a
wall near the window so that it touches the wall at a height of 4 m and the
base of the plank is 1.5 m from the building. The piano, of mass 800 kg, is
to be slid down the plank while attached by a rope. Taking the acceleration
due to gravity to be g ≈ 9.81 m s−2, what force is required on the other
end of the rope to hold the piano steady while it is on the plank?

80
0 kg

1.5 m

4 m

800 g

T

Figure 9.20 Piano on a
plank for Example 9.18.

Solution We draw the situation as in Figure 9.20 using x and y axes.
The vector that represents the plank goes from (0, 0) to (1.5, 4). This is
the direction vector p = (1.5, 4)− (0, 0) = (1.5, 4).

The acceleration due to gravity is in a vertical direction and is a =
(0,−g). From Newton’s second law the force due to gravity is

F = ma = 800× (0,−9.81).

The component of the force due to gravity acting along the direction of the
plank is the scalar product of the force with a unit vector in the direction
of the plank, that is

F · p
|p| = 800

(0,−9.81).(1.5, 4)√
(1.5)2 + 42

= 800
−39.24√

18.25
= −7348N to 4 s.f.

The − sign indicates that the component of the force due to gravity is
in the opposite direction to the vector p along the plank. In order to hold
the piano steady on the plank, we would need to have a force of equal
magnitude in the opposing direction to be provided by the rope. That is,
we would require a force of 7348 N on the rope.

Vector (or cross) product
The vector product of a and b is defined by a× b = ab sin(θ)n̂, where n̂
is the unit vector normal to the plane of a and b and θ is the angle between
a and b.
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Figure 9.22 The magnitude of the vector product of two vectors
gives the area of the parallelogram formed by the vectors. The area of
OABC is given by |(4, 3)× (7, 0)| = |(4.0)− (3.7)| = |0− 21| = 21
square units.

If a and b are vectors that lie in the x, y plane, the vector product will
be a vector normal to that plane, that is, wholly in the z-direction. It can
be found from the following expression:

(a1, a2, 0)× (b1, b2, 0) = (0, 0, a1b2 − a2b1) = (a1b2 − a2b1)k

where k is the unit vector in the z-direction.

Example 9.19 (1, 2, 0) × (−3,−1, 0) = (0, 0, (1)(−1) − (2)(−3)) =
(0, 0, 5). This is shown in Figure 9.21.

Applications of the vector product

Figure 9.21 The vector
product of two vectors lying in
the x , y plane,
(1, 2, 0)× (−3,−1, 0) =
(0, 0, 5).

The vector product can be used to find the area of a parallelogram with
sides OA and OB (see Figure 9.22).

The area of a parallelogram is given by ab sin(θ), where a and b
are the lengths of the sides and θ is the angle between them. Consider
vectors a and b representing the sides of the parallelogram. We know
that a × b = ab sin(θ)n̂, where n̂ is a unit vector normal to the plane
of a and b. As n̂ is a unit vector it has a magnitude of 1, so |a × b| =
ab sin(θ), which is exactly the same as the formula for the area of the
parallelogram. Therefore, the area of the parallelogram can be found by
taking the magnitude of the vector product of the vectors that define the
sides of the parallelogram.

As sin(θ) = 0 when θ = 0 or θ = 180◦, the vector product can also
be used to test for parallel vectors (vectors pointing in the same direction
or in exactly opposing directions). Again we only need to consider the
magnitude of the vector product.

Example 9.20 Show that the vectors (0.2,−5) and (−1, 25) are parallel.

Solution Find |(0.2,−5) × (−1, 25)| = |(0.2 × 25) − (−5 × −1)| =
|5− 5| = 0.

As we know that |a × b| = ab sin(θ), then as a and b are of non-zero
length, |a × b| = 0 ⇔ sin(θ) = 0. This shows that the vectors are
parallel.

9.9 Vector
equation of a
line

In Chapter 2, we looked at the equation of a line that we found to be
y = mx+ c, where the gradient of the line ism and the line goes through
the point (0, c). We also found that the equation of a line that goes through
two points, (x1, y1) and (x2, y2), is

y − y1

y2 − y1
= x − x1

x2 − x1
.

We would like to be able to express the equation of a line as a vector
equation. If we know that the two points A and B represented by the
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position vectors a and b lie on the line, then a vector in the direction of
the line will be a vector joining those two points, that is, b − a. As the
line must go through A, we can see that any multiple of b − a added to
the position vector a must lie on the line. This is shown in Figure 9.23

y

a
r

b–a
A

B

b

x

Figure 9.23 The vector
equation of the line. The
vector r represents points on
the line joining A and B.

If we call the position vector of any point on the line r where r = (x, y),
we now have the vector equation of the line as r = a + λ(b− a) where
λ ∈ R.

This can be rewritten as r = a(1− λ)+ λb.

Example 9.21 Find the vector equation of a line through the points
(2, 4) and (0, 6) and show that your result agrees with the equation of the
line y = −x + 6, as found in Example 2.3.

Solution Using r = a(1− λ)+ λb and a = (2, 4), b = (0, 6), we find

r = (2, 4)(1− λ)+ λ(0, 6) = (2(1− λ)+ λ(0), 4(1− λ)+ λ6)

r = (2− 2λ, 4+ 2λ)

To show that this is the same as equation y = −x + 6 use r = (x, y)

(x, y) = (2− 2λ, 4+ 2λ) ⇔ x = 2− 2λ and y = 4+ 2λ

This is a parametric equation for the line with parameter λ.
Eliminate λ by rewriting the equation for x so that λ is the subject and

substitute into the equation for y:

x = 2− 2λ ⇔ λ = 1
2 (2− x)

Substituting for λ in y = 4+ 2λ gives

y = 4+ 2
( 1

2

)
(2− x)

⇔ y = 6− x
⇔ y = −x + 6

This shows that the vector equation of the line is equivalent to y = −x+6.

9.10 Summary 1. A vector is a string of numbers where the length of the string is
called the dimension of the vector.

2. Vectors are used to represent points on a plane or in space, transla-
tions and physical quantities that have both magnitude and direction
(called vector quantities).

3. The vector sum is found by adding corresponding elements of the
vectors, or from a diagram by using a parallelogram.

4. To subtract vectors, subtract corresponding elements of the vectors.
A triangle may be used to perform vector subtraction in a diagram.

5. Two-dimensional vectors r = (x, y) can be expressed in polar
co-ordinates using

r =
√
x2 + y2

and θ = tan−1(y) (+π , if x is negative), so that (x, y) = r∠θ ,
where r or |r|is the magnitude, or length, of the vector and θ is the
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angle that the vector makes to the x-axis, also called its argument.
To convert from polar to rectangular co-ordinates use:

x = r cos(θ) and y = r sin(θ).

To add vectors given in polar form they must first be converted to
rectangular form.

6. Waves of a fixed frequency can be represented by phasors giving the
amplitude and phase. f (t) = A cos(ωt + φ) can be represented by
its amplitude and phaseA∠φ. Converting this vector to rectangular
form gives (c,d) where

f (t) = c cos(ωt)− d sin(ωt).

Using ideas of conversion from polar to rectangular form and vector
addition, waves of the same frequency can be easily combined.

7. Unit vectors have length 1. To find the unit vector in the same
direction as a vector r divide the vector by its length:

r̂ = r
|r| .

8. Any vectors in the plane can be represented in terms of i = (1, 0)
and j = (0, 1) and in three dimensions by i = (1, 0, 0), j = (0, 1, 0),
and k = (0, 0, 1). These are the Cartesian unit basis vectors and
they are at right angles to each other.

9. Where a = (a1, a2) and b = (b1, b2) are two vectors, the scalar
product is given by a · b = (a1, a2) · (b1, b2) = a1b1 + a2b2 and
a · b = ab cos(θ), where a, b are the magnitudes of the vectors a
and b, and θ is the angle between them. The scalar product can be
used to find the angle between two vectors.

10. The components of any unit vector give the cosines of the angles
that the vector makes to each of the Cartesian axes. Then we have
for any vector r:

r̂ = r
|r| = (cos(α), cos(β))

where α is the angle the vector r makes to the x-axis and β is the
angle it makes to the y-axis. In three dimensions:

r̂ = r
|r| = (cos(α), cos(β), cos(γ ))

where α is the angle the vector r makes to the x-axis, β is the angle
it makes to the y-axis, and γ is the angle it makes to the z-axis.
cos(α), cos(β), and cos(γ ) are called the direction cosines of the
vector.

11. The scalar product can be used to find the component of a vector in
any given direction. Component of a vector F in the direction of a
vector r = F · (r/|r|).

12. The vector product is given by a × b = ab sin(θ)n̂, where a and b
are the magnitudes of the vectors a and b, θ is the angle between
them, and n̂ is a unit vector normal to the plane of a and b. If a
and b are vectors in the x, y plane, that is, a = (a1, a2, 0) and
b = (b1, b2, 0), we have

(a1, a2, 0)× (b1, b2, 0) = (0, 0, a1b2 − a2b1) = (a1b2 − a2b1)k

where k is the unit vector in the z-direction. The magnitude of the
vector product can be used to find the area of a parallelogram.

13. The vector equation of a line passing through two points a and b is

r = a(1− λ)+ λb λ ∈ R
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9.12 Exercises

9.1. In Figure 9.24,
−→
OA = a and

−→
OB = b, OA = BC =

OD, OB = AC = EO, EOB and DOA are straight
lines. Write the following in terms of a and b:

(a)
−→
AB (b)

−→
BA (c)

−→
OC (d)

−→
OE (e)

−−→
OD

(f)
−→
ED (g)

−→
DE (h)

−→
DA (i)

−→
BE (j)

−→
EA

Figure 9.24 Vectors for Exercise 9.1.

9.2. Given a = (1, 3), b = (−1, 2), c = (3, 6, 2), and
d = (6, 4,−1), find the following:

(a) a + b (b) a − b (c) b− a (d) − b+ a
(e) 2b (f) a + 2b (g) 3a − b (h) c − d
(i) 10c (j) c + 6d (k) 6c − d

9.3. Express the following in its polar form, r∠θ , where r
is the length of the vector and θ its angle to the x-axis:

(a) (1, 3) (b) (3,−1) (c) (−1,−3) (d) (5,−6)

9.4. Express the following vectors r∠θ , where r is the mod-
ulus of the vector and θ the angle to the x-axis, in
rectangular form. The angle is expressed in radians.

(a) 5∠π (b) 1∠− π (c) 1
2 ∠π/4 (d) 3∠π/3

9.5. Express the following as a sum of a cosine and sine
term in ωt :
(a) f (t) = 3 cos(3t − 2)
(b) f (t) = 10 cos(20t + 5)

9.6. Express the following as single cosine terms:
(a) f (t) = 4 cos(10t)− 3 sin(10t)
(b) g(t) = −2 cos(157t)+ 10 sin(157t)

9.7. Express the following as a single wave:
(a) 6 cos(2t − 3)+ 10 cos(2t + 2)
(b) cos(t − π/2)+ cos(t + π/2)
(c) 2 cos(628t − 1.57)− 6 cos(628t)

9.8. Find the unit vectors in the same direction as the
following:

(a) (6, 8) (b) (5, 12) (c) (5,−12) (d) (1, 1)

(e) (3, 2) (f) (2, 0) (g) (0,−3) (h) (2, 4, 4)

(i) (1,−1, 2) (j) (0.5, 0,−0.5)

9.9. Express the following vectors in terms of i = (1, 0) and
j = (0, 1) or in terms of i = (0, 0, 1), j = (0, 1, 0), and
k = (0, 0, 1) for 3D vectors:

(a) (5, 2) (b) (−1,−2) (c) (−6, 2) (d) (−1, 2,−3)

(e) (0.2,−1.6, 3.3)

9.10. Find the following scalar products:

(a) (1,−2) · (3, 3) (b) (9, 2) · (−1, 6)

(c) (6,−1) · (−1,−3)

9.11. Find the angle between the following pairs of vectors:

(a) (1,−2) and (5, 1) (b) (6,−1) and (1, 6)

(c) (2,−1) and (4, 9)

9.12. Show that the following pairs of vectors are at right
angles to each other:

(a) (2, 1) and (−1, 2) (b) (−6, 3) and (1, 2)

(c) (0.5,−2) and (4, 1)

9.13. Find the angles that the following vectors make to the
axes:

(a) (3, 6) (b) (−1,−4, 5)

9.14. (a) Find the component of the vector (−1, 5) in the
direction of the following vectors:

(i) (0.5, 0.5) (ii) (0.5,−0.5) (iii) (−5, 1)

(iv) (1,−5) (v) (8, 2)

(b) Find the component of the vector (−1, 2, 7) in the
direction of the following vectors:

(i) (1, 1, 1) (ii) (6, 0, 2)

9.15. Show that the following pairs of vectors are parallel:

(a) (−3, 1) and (1.5,−0.5) (b) (6,3) and (18, 9)

9.16. Find the area of the parallelogram OABC where two
adjacent sides are:

(a)
−→
OA = (1,−1) and

−→
OC = (5, 2)

(b)
−→
OA = (4,−1) and

−→
OC = (2, 2)

(c)
−→
OA = (−3, 1) and

−→
OC = (2, 3)

9.17 A straight line passes through the pair of points given.
Find the vector equation of the line in each case:

(a) (0, 1), (−1, 4) (b) (1, 1), (−2,−4)
(c) (1, 1), (6, 3) (d) (−1,−4), (−3,−4)
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10.1
Introduction

In the previous chapter, we have shown that a single frequency wave
can be represented by a phasor. We begin this chapter with a brief look
at linear system theory. Such systems, when the input is a single fre-
quency wave, produce an output at the same frequency which may be
phase shifted with a scaled amplitude. Using complex numbers the sys-
tem can be represented by a number which multiplies the input phasor
having the effect of rotating the phasor and scaling the amplitude. We can
define j as the number which rotates the phasor by π/2 without changing
the amplitude. If this multiplication is repeated, hence rotating the phasor
by (π/2) + (π/2) = π , then the system output will be inverted. In this
way we can get the fundamental definition j2 = −1. j is clearly not a real
number as any real number squared is positive. j is called an imaginary
number.

The introduction of imaginary numbers allows any quadratic equa-
tion to be solved. In previous chapters we said that the equation
ax2 + bx + c = 0 had no solutions when the formula leads to an attempt
to take the square root of a negative number. The introduction of the num-
ber j makes square roots of negative numbers possible and in these cases
the equation has complex roots. A complex number, z, has a real and
imaginary part, z = x+ jy where x is the real part and y is the imaginary
part. Real numbers are represented by points on a number line. Complex
numbers need a whole plane to represent them.

We shall look at operations involving complex numbers, the conversion
between polar and Cartesian (rectangular) form and the application of
complex numbers to alternating current theory.

By looking at the problem of motion in a circle, we show the equiv-
alence between polar and exponential form of complex numbers and
represent a wave in complex exponential form. We can also obtain for-
mulae for the sine and cosine in terms of complex exponentials, and we
solve complex equations zn = c, where c is a complex number.

10.2 Phasor
rotation by π/2

In system theory, a system is represented (Figure 10.1) as a box with
an input and an output. We think about the system after it has been in
operation for a length of time, so any initial switching effects have
disappeared.

Figure 10.1 A system is
characterized by a box with
an input and output.

Of particular importance are systems which, when the input is a single
frequency wave, produce an output, at the same frequency that can be
characterized by a phase shift and a change of amplitude of the wave.
Examples of such systems are electrical circuits which are made up of
lumped elements, that is, resistors, capacitors, and inductors. Here the
input and output are voltages. Such a system is shown in Figure 10.2(a).
Equivalent mechanical systems are made up of masses, springs and
dampers, and the input and output is the external force applied and the
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Figure 10.2 (a) An electrical
system made up of resistors,
capacitors, and inductors with
voltage as input and output.
(b) A mechanical system
made up of masses, springs,
and dampers. The input is the
external force and the output
is tension in the spring.

Figure 10.3 (a) A system which produces a phase shift
of π/2, that is, rotates a phasor by π/2. This may be
represented as a multiplication by j. (b) A system
consisting of two sub-systems, both of which produce a
phase shift of π/2 giving a combined shift of π . As a phase
shift of π inverts a wave, that is, cos(ωt + π) = − cos(ωt )
this is equivalent to multiplication by −1. Hence, j× j = −1.

tension in the spring. An example of such a mechanical system is shown
in Figure 10.2(b).

We saw in Chapter 9 that a single frequency wave can be characterized
by its amplitude and phase and these can be represented by vectors, called
phasors. The advantage of complex numbers is that a phasor can be
treated as a number and the system can be represented also by a number
multiplying the input phasor.

Consider a single frequency input of 0 phase and amplitude 1. If there
is a system which has the effect of simply shifting the phase by π/2,
then we represent this by the imaginary number j. So j× 1∠0 = 1∠π/2.
This system is shown in Figure 10.3(a). Supposing now we consider a
system which can be broken into two components both of which shift the
phase by π

2 as shown in Figure 10.3(b). The combined effect of the two
systems is to multiply the input by j × j. The final output wave, shifted
now by π , is the cos(ωt + π) = − cos(ωt) so it is −1 times the initial
input. For this to be so then j× j = −1.

This is the central definition for complex numbers:

j× j = −1

meaning that j = √−1, where j is an operator which rotates a phasor
by π/2.

We will return to these linear time-invariant systems in Chapter 16.

10.3 Complex
numbers and
operations

Complex numbers allow us to find solutions to all quadratic equations.
Equations like x2 + 4 = 0 do not have real roots because

x2 + 4 = 0⇔ x2 = −4

and there is no real number, which if squared will give −4.
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If we introduce new numbers by using j = √−1, then a solution to
x2 + 4 = 0 is x = j2. j2 is an imaginary number. To check that j2 is in
fact a solution to x2 + 4 = 0, substitute it into the equation x2 + 4 = 0,
to give

(j2)2 + 4 = 0 ⇔ j2(2)2 + 4 = 0

⇔ (−1)(4)+ 4 = 0 using j2 = −1

⇔ 0 = 0

which is true.
Therefore, x = j2 is a solution. In order to solve all possible quadratic

equations we need to use complex numbers, that is numbers that have
both real and imaginary parts. Mathematicians often use i instead of j to
represent

√−1. However, j is used in engineering work to avoid confusion
with the symbol for the current.

Real and imaginary parts and
the complex plane
A complex number, z, can be written as the sum of its real and imaginary
parts:

z = a + jb

where a and b are real numbers.
The real part of z is a (Re(z) = a). The imaginary part of z is

b(Im(z) = b).
Complex numbers can be represented in the complex plane (often

called an Argand diagram) as the points (x, y) where

z = x + jy

for example, z = 1 − j2 is shown in Figure 10.4. The methods used for
visualizing and adding and subtracting complex numbers is the same as
that used for two-dimensional vectors in Chapter 9.

Figure 10.4 The number
z = 1− j2. The real part is
plotted along the x-axis and
the imaginary part along the
y-axis.

Equality of two complex numbers
Two complex numbers can only be equal if their real parts are equal and
their imaginary parts are equal.

Example 10.1 If a − 2+ jb = 6+ j2, where a and b are known to be
real numbers, then find a and b

Solution

a − 2+ jb = 6+ j2

We know that a and b are real, so

a − 2 = 6 (real parts must be equal)

⇔ a = 8

b = 2 (imaginary parts must be equal)
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Check by substituting a = 8 and b = 2 into

a − 2+ jb = 6+ j2

which gives

8− 2+ j2 = 6+ j2

⇔ 6+ j2 = 6+ j2

which is correct

Addition of complex numbers
To add complex numbers, add the real parts and the imaginary parts.

Example 10.2 Given z1 = 3+ j4 and z2 = 1− j2, find z1 + z2.

Solution

z1 + z2 = 3+ j4+ 1− j2 = (3+ 1)+ j(4− 2) = 4+ j2

On the Argand diagram, the numbers add like vectors by the parallelogram
law as in Figure 10.5.

Figure 10.5 Adding two
complex numbers using the
parallelogram law.

Subtraction of complex numbers
To subtract complex numbers, we subtract the real and imaginary parts.

Example 10.3 Given z1 = 3+ j4 and z2 = 1− j2, find z1 − z2.

Solution

z1 − z2 = 3+ j4− (1− j2) = 3− 1+ j(4− (−2)) = 2+ j6.

On the Argand diagram, reverse the vector z1 to give −z2 and then add
z1 and −z2 as in Figure 10.6.

Figure 10.6 To find z1 − z2
on an Argand diagram,
reverse vector z2 to give −z2
and then add giving z1 +−z2.

Multiplication of complex numbers
To multiply complex numbers multiply out the brackets, as for any other
expression, and remember that j2 = −1.

Example 10.4 Given z1 = 3+ j4 and z2 = 1− j2, find z1 · z2.

Solution

z1z2 = (3+ j4)(1− j2) = 3+ j4+ 3(−j2)+ (j4)(−j2)

= 3+ j4− j6− j28

= 3− j2+ 8 (using j2 = −1)

= 11− j2.
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Example 10.5 Find (4− j2)(8− j).

Solution Multiplying as before gives

(4− j2)(8− j) = 32− j16− j4+ (−j2)(−j)

= 32− j20+ j22

Using j2 = −1 gives 32− j20− 2 = 30− j20

The complex conjugate
The complex conjugate of a number, z = x+ jy, is the number with equal
real part and the imaginary part negated. This is represented by z∗:

z∗ = x − jy

A number multiplied by its conjugate is always real and positive (or zero).
For example, z = 3+ j4⇔ z∗ = 3− j4.

zz∗ = (3+ j4)(3− j4) = (3)(3)+ ( j4)3+ 3(−j4)+ ( j4)(−j4)

= 9+ j12− j12− j216

= 9− j216 = 9+ 16 = 25 (using j2 = −1).

Note that the conjugate of the conjugate takes you back to the original
number.

z = 3+ j4

z∗ = 3− j4

z∗∗ = 3+ j4 = z
The conjugate of a number can be found on an Argand diagram by
reflecting the position of the number in the real axis (see Figure 10.7).

Figure 10.7 The complex
conjugate of a number can be
found by reflecting the
number in the real axis in the
diagram are shown. The
diagram shows 1− j2 and its
conjugate 1+ j2.

Example 10.6 Find complex conjugates of the following and show that
zz∗ is real and positive, or zero, in each case

(a) 2− j5 (b) − 4+ j2 (c) − 5 (d) j6
(e) a + jb, where a and b are real.

Solution (a) The conjugate of 2− j5 is

(2− j5)∗ = 2+ j5

Hence

zz∗ = (2− j5)(2+ j5) = (2)(2)+ (−j5)2+ 2( j5)+ (−j5)( j5)

= 4− j10+ j10− j225

= 4− j225 (using j2 = −1)

= 4+ 25 = 29

which is real and positive. We have shown that 2 − j5 multiplied by its
conjugate 2+ j5 gives a real, positive number.
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(b) (−4+ j2)∗ = −4− j2

(−4+ j2)(−4− j2) = (−4)(−4)+ ( j2)(−4)

+ (−4)(−j2)+ ( j2)(−j2)

= 16− j8+ j8− j24

= 16− j24 (using j2 = −1)

= 16+ 4 = 20

which is real and positive.
(c)−5 is a real number and therefore its complex conjugate is the same:
−5. (−5)∗ = −5 and (−5)(−5) = 25, which is real and positive.

(d) (j6)∗ = −j6

(j6)(−j6) = −j236 = 36

which is real and positive.
(e)

(a + jb)∗ = a − jb

(a + jb)(a − jb) = (a)(a)+ (jb)(a)+ (a)(−jb)+ (jb)(−jb)

= a2 + jab − jab − j2b2 = a2 − j2b2

using j2 = −1, this gives a2 + b2

As a and b are real, this must be a real number. Also, we know that the
square of a real number is greater than or equal to 0. So a2 + b2 is real,
and it is positive if a 	= 0, b 	= 0 or zero if both a and b are zero.

It is a good idea to remember this last result that a + jb multiplied by
its conjugate, a − jb, gives a2 + b2. That is, any number multiplied by
its complex conjugate gives the sum of the square of the real part and the
square of the imaginary part. This is the same as the value of the modulus
of z squared,that is,

zz∗ = |z|2.

Division of complex numbers
To divide complex numbers, we use the fact that a number times its
conjugate is real to transform the bottom line of the fraction to a real
number. If we multiply the bottom line by its complex conjugate, we must
also multiply the top line in order not to change the value of the number.

Example 10.7 Given z1 = 3+ j4 and z2 = 1− j2, find z1/z2.

Solution

z1

z2
= 3+ j4

1− j2

= (3+ j4)(1+ j2)

(1− j2)(1+ j2)

Here, we have multiplied the top and bottom line by z∗2 to make the bottom
line entirely real. Hence, we get

(3+ j4+ j6+ j28)

(1+ 22)
= (−5+ j10)

5
= −5

5
+ j10

5
= −1+ j2.
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Example 10.8 Find

−3+ j2

10+ j5

in the form x + jy.

Solution Multiply the top and bottom line by the complex conjugate of
10+ j5 to make the bottom line real

−3+ j2

10+ j5
= (−3+ j2)(10− j5)

(10+ j5)(10− j5)

= (−3)(10)+ j2(10)+ (−3)(−j5)+ (j2)(−j5)

(102 + 52)

= −30+ j20+ j15− j210

125

= −30+ j20+ j15+ 10

125

= −20+ j35

125
= −20

125
+ j35

125
= −0.16+ j0.28.

10.4 Solution of
quadratic
equations

In Chapter 2 of the Background Mathematics Notes available on the com-
panion website for this book, we looked at solutions of ax2 + bx + c = 0
where a, b and c are real numbers and said that the solutions are given by
the formula

x = −b ±
√
b2 − 4ac

2a

We discovered that there are no real solutions if b2− 4ac < 0 because
we would need to take the square root of a negative number. We can now
find complex solutions in this case by using j = √−1.

Example 10.9 Solve the following where x ∈ C, the set of complex
numbers:

(a) x2 + 3x + 5 = 0 (b) x2 − x + 1 = 0
(c) 4x2 − 2x + 1 = 0 (d) 4x2 + 1 = 0

Solution (a) To solve x2+3x+5 = 0, compare with ax2 + bx + c = 0.
This gives a = 1, b = 3, and c = 5. Substitute in

x = −b ±
√
b2 − 4ac

2a

to give

x = −3±√32 − 4(1)(5)

2(1)
= −3±√−11

2

We write −11 = (−1) · (11), so
√−11 = √−1

√
11 ≈ j3.317 (using j = √−1)
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Therefore,

x ≈ −3± j3.317

2
⇒ x ≈ −1.5+ j1.658 ∨ x ≈ 1.5− j1.658.

(b) To solve x2 − x + 1 = 0, compare it with ax2 + bx + c = 0. We all
that a = 1, b = −1, and c = 1. Substitute in

x = −b ±
√
b2 − 4ac

2a

to give

x = −(−1)±√(−1)2 − 4(1)(1)

2(1)
= +1±√−3

2

We write −3 = (−1) · 3, so

√−3 = √−1
√

3 ≈ j1.732 (using j = √−1)

Therefore,

x ≈ 1± j1.732

2
⇒ x ≈ 0.5+ j0.866 ∨ x ≈ 0.5− j0.866.

(c) To solve 4x2 − 2x + 1 = 0, compare it with ax2 + bx + c = 0. We
get a = 4, b = −2, and c = 1. Substitute in

x = −b ±
√
b2 − 4ac

2a

to give

x = −(−2)±√(−2)2 − 4(4)(1)

2(4)
= 2±√−12

8

We write −12 = (−1) · 12, so

√−12 = √−1
√

12 ≈ j3.4641 (using j = √−1)

Therefore,

x ≈ 2± j3.4641

8
⇔ x ≈ 0.25+ j0.433 ∨ x ≈ 0.25− j0.433.

(d) To solve 4x2 + 1 = 0, we could use the formula as in the other cases
but it is quicker to do the following:

4x2 + 1⇔ 4x2 = −1 (subtracting 1 from both sides)

⇔ x2 = − 1
4 (dividing both sides by 4)

⇔ x = ±√−0.25 (taking the square root of both sides)

as
√−0.25 = √−1

√
0.25 = j0.5, we get x = ±j0.5⇔ x = j0.5 ∨ x =

−j0.5.
If ax2 + bx + c = 0 and the coefficients a, b, c are all real numbers,

then we find that the two roots of the equation, if they are not entirely
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real, must be the complex conjugates of each other. This is true for all the
cases we looked at in Example 10.9.

x2 + 3x + 5 = 0

has solutions x = −1.5+ j1.658 and x = −1.5− j1.658.

x2 − x + 1 = 0

has solutions x = 0.5+ j0.866 and x = 0.5− j0.866.

4x2 + 1 = 0

has solutions x = j0.5 and x = −j0.5.
We can show that if the coefficients a, b, and c are real in the equation

ax2 + bx + c = 0, then the roots of the equation must either be real or
complex conjugates of each other. We know from the formula that

ax2 + bx + c = 0 ⇔ x = −b ±
√
b2 − 4ac

2a

If x has an imaginary part, then b2 − 4ac < 0, so that
√
b2 − 4ac is an

imaginary number. We can write this is terms of j as follows:

√
b2 − 4ac =

√
−(4ac − b2) = √−1

√
(4ac − b2)

= j
√
(4ac − b2)

So the solutions, in the case, b2 − 4ac < 0 are

x = −b ± j
√

4ac − b2

2a

which can be written, using

p = −b
2a

and

q =
√

4ac − b2

2a
,

as

x = p ± jq ⇔ x = p − jq ∨ x = p + jq

where p and q are real.
This shows that the two solutions are complex conjugates of each other.

This fact can be used to find the other root when one root is known.

Example 10.10 Given that the equation x2− kx+ 8 = 0, where k ∈ R

has one solution x = 2 − j2 then find the other solution and also the
value of k.
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Solution We know that non-real solutions must be complex conjugates
of each other so if one solution is x = 2 − j2 the other one must be
x = 2+ j2. To find k, we use the result that if an equation has exactly two
solutions x1 and x2, then the equation must be equivalent to (x−x1)(x−
x2) = 0. We know that x = 2+ j2 or x = 2− j2, therefore, the equation
must be equivalent to

(x − (2+ j2))(x − (2− j2)) = 0.

Multiplying out the brackets gives:

x2 − x(2+ j2)− x(2− j2)+ (2+ j2)(2− j2) = 0

⇔ x2 + x(−2− j2− 2+ j2)+ (4+ 4) = 0

⇔ x2 − 4x + 8 = 0

Compare x2−4x+8 = 0 with x2− kx+8 = 0. The coefficient of x2

are equal in both cases, as are the constant terms, so the equations would
be the same if −k = −4⇔ k = 4, giving the solution as k = 4.

10.5 Polar form
of a complex
number

From the Argand diagram in Figure 10.8, we can see that a complex
number can be expressed in terms of the length of the vector (the modulus)
and the angle it makes with the x-axis (the argument). This is exactly the
same process as that as in expressing vectors in polar coordinates as in
Section 9.4.

Figure 10.8 The number
x + jy can be expressed in
polar form by the length of the
line representing the number,
r, and the angle it makes to
the x axis, θ ; that is,
x + jy = r∠θ .

If z = x + jy then z can be represented in polar form as r∠θ where

r2 = x2 + y2

tan(θ) = y
x

Hence

r =
√
x2 + y2, θ = tan−1

(y
x

)
(+π if x is negative)

We can write the complex number as

z = r∠θ
r , the modulus of z, is also written as |z|.

As it is usual to give the angle between−π and π , it may be necessary
to subtract 2π from the angle given by this formula. As 2π is a complete
rotation, this will make no difference to the position of the complex
number on the diagram.

Example 10.11 Express the following complex numbers in polar form

(a) 3+ j2 (b) − 2− j5
(c) − 4+ j2 (d) 4− j2

Solution To perform these conversions to polar form, it is a good idea
to draw a diagram of the number in order to check that the angle is of the
correct size (see Figure 10.9).

(a) 3+ j2 has modulus r = √32 + 22 ≈ 3.61 and the angle is given by
tan−1(2/3); therefore, in polar form 3+ j2 ≈ 3.61∠0.59

TLFeBOOK



“chap10” — 2003/6/8 — page 216 — #11

216 Complex numbers

Figure 10.9 Conversion to polar form: (a) 3+ j2 ≈ 3.61∠0.59; (b) − 2− j5 ≈ 5.39∠−1.95;
(c) −4+ j2 ≈ 4.47∠2.68; (d ) 4− j2 ≈ 4.47∠−0.46.

(b) −2− j5 has modulus r = √(−2)2 + (−5)2 ≈ 5.39 and the angle is
given by tan−1(−5/(−2))+π ≈ 4.332. As this angle is bigger than
2π , subtract 2π (a complete revolution) to give −1.95. Therefore,
in polar form −2 − j5 ≈ 5.39∠ − 1.95. Note that the angle is
between −π and −π/2, meaning that the number must lie in the
third quadrant, which we can see is correct from the diagram.

(c) −4 + j2 has modulus r = √
(−4)2 + 22 ≈ 4.47 and the angle is

given by tan−1(2/(−4)) + π ≈ −0.46 + π ≈ 2.68. Therefore, in
polar form−4+j2 ≈ 4.47∠2.68. Note that the angle is betweenπ/2
and π , meaning that the number must lie in the second quadrant,
which we can see is correct from the diagram.

(d) 4 − j2 has modulus r = √
(4)2 + (−2)2 ≈ 4.47 and the angle is

given by tan−1(−2/4) ≈ −0.46. Therefore, in polar form 4− j2 ≈
4.47∠− 0.46. Note that the angle is between −π/2 and 0 meaning
that the number must lie in the fourth quadrant, which we can see
is correct from the diagram.

Check the calculations by using the rectangular to polar conversion
facility on your calculator.

Conversion from polar form to
Cartesian (rectangular) form
If a number is given by its modulus and argument, in polar form, r∠θ ,
we can convert back to Cartesian (rectangular) form using:

x = r cos(θ) and y = r sin(θ)
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This can be seen from Figure 10.10 and examples are given in
Figure 10.11. As z = x + jy, z = r cos(θ) + jr sin(θ) = r(cos(θ) +
j sin(θ)).

Figure 10.10 The number
r∠θ can be written as x + jy .
Using the triangle,
cos(θ) = x/r giving
x = r cos(θ). Also
sin(θ) = y/r giving
y = r sin(θ).

Figure 10.11 (a) 5∠30◦ in
Cartesian (rectangular) form
is given by x = 5 cos(30◦) ≈
4.33, y = 5 sin(30◦) = 2.5,
therefore,
5∠30◦ ≈ 4.33+ j2.5.
(b) 2.2∠1.86 in rectangular
form is given by
x = 2.2 cos(1.86) ≈ −0.627
and y = 2.2 sin(1.86) ≈ 2.1,
therefore,
2.2∠1.86 ≈ −0.627+ j2.1.

Addition, subtraction, multiplication,
and division of complex numbers in
polar form
To add and subtract two complex numbers, always express them first in
rectangular form; that is, write as z = a + jb. The result of the addition
or subtraction then can be converted back to polar form.

To multiply two numbers in polar form, multiply the moduli and add
the arguments.

To divide two numbers in polar form divide the moduli and subtract
the arguments.

Example 10.12 Given

z1 = 3∠π/6 z2 = 2∠π/4

Find z1 + z2, z1 − z2, z1z2, and z1/z2.

Solution To find z1 + z2 use r∠θ = r(cos(θ)+ j sin(θ))

z1 = 3(cos(π/6)+ j sin(π/6)) ≈ 2.5981+ j1.5

z2 = 2(cos(π/4)+ j sin(π/4)) ≈ 1.4142+ j1.4142

z1 + z2 ≈ 2.5981+ j1.5+ 1.4142+ j1.4142

= 4.0123+ j2.9142.

To express z1 + z2 back in polar form, use r = √
x2 + y2 and

θ = tan−1(y/x) (+π if x is negative).

r =
√

4.01232 + 2.91422 ≈ 4.959,

θ = tan−1(2.9142/4.0123) ≈ 0.6282

Hence, z1 + z2 ≈ 4.959∠0.6282.
To find z1 − z2, we already have found (above) that z1 = 3∠π/6 ≈

2.5981 + j1.5 and z2 = 2∠π/4 ≈ 1.4142 + j1.4142. So z1 − z2 ≈
2.5981+ j1.5− (1.4142+ j1.4142) = 1.1839+ j0.0858.

To express z1 − z2 back in polar form use, r = √
x2 + y2 and θ =

tan−1(y/x) (+π if x is negative).
Then z1 − z2 ≈ 1.1839+ j0.0858 ≈ 1.187∠0.0723.
To find z1z2, multiply the moduli and add the arguments:

z1z2 = 3∠π/6 · 2∠π/4 = (3) · (2)∠((π/6)+ (π/4)) = 6∠5π/12.

To find z1/z2, divide the moduli and subtract the arguments:

z1

z2
= 3∠π/6

2∠π/4 =
3

2
∠((π/6)− (π/4)) = 1.5∠− π/12.
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10.6
Applications of
complex
numbers to AC
linear circuits

An alternating current (AC) electrical circuit consisting of resistors,
capacitors, and inductors can be analysed using the relationship

V = ZI
where V is the voltage, Z the impedance, and I the current and V ,Z, and
I are all complex quantities.

Figure 10.12
(a) Components in series.
(b) components in parallel.

Each component has a complex impedance associated with it and for
two components in series, as in Figure 10.12(a), the resultant impedance
ZR is found by the formula

ZR = Z1 + Z2

For two components in parallel, as in Figure 10.12(b), the resultant
impedance is given by

1

ZR
= 1

Z1
+ 1

Z2

In the case of parallel circuit elements, it may be easier to calculate the
admittance, the reciprocal of the impedance Y = 1/Z. Then use the fact
that for circuit elements in parallel

YR = Y1 + Y2 and V = I/Y .

The real part of Z is called the resistance and the imaginary part is
called the reactance.

Z = R + jS

where R is the resistance in ohms and S is the reactance in ohms.
The impedances of circuit elements are as follows:

Resistor Z = R No reactive element
Capacitor Z = 1/(jωC) = −j/(ωC) Purely reactive
Inductor Z = jωL Purely reactive

where ω is the angular frequency of the source, ω = 2πf , f is the
frequency in Hz, R is the resistance (in ohms) , C is the capacitance (in
farads), and L is the impedance (in henries).

Figure 10.13 (a) The circuit
for Example 10.13. (b) The
impedances of the circuit
elements shown on an
Argand diagram. As the
elements are in series, the
resultant is found by taking
the sum of the impedances of
the components.

Example 10.13 Find the impedance of the circuit shown in
Figure 10.13(a) at 20 kHz where L = 2 mH, C = 100 µF, and
R = 2000�. Assuming a voltage amplitude of 300 V, calculate the
current I and relative phase.

Solution The impedances of the elements are shown in Figure 10.13(b).
As we are given that f , the frequency of the input, is 20 kHz, ω = 2πf =
2π×20×103. As the elements are in series, we can sum the impedances

Z = R + jωL− j

ωC

= 2000+ j2π × 20× 103 × 2× 10−3

− j

2π × 20× 103 × 100× 10−6

giving

2000+ j

(
80− 1

4π

)
≈ 2000+ j251.2
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Expressing this is polar form gives Z ≈ 2016∠7◦. Therefore, from
V = ZI and given V = 300,

I = 300

Z
= 300

2016∠7◦
≈ 0.149∠− 7◦.

giving a current of magnitude 0.149 A with a relative phase of −7◦.

Figure 10.14 (a) The circuit
for Example 10.14(b) The
admittances of the circuit
elements shown on an
Argand diagram. As the
elements are in parallel, the
resultant is found by taking
the sum of the admittances of
the components.

Example 10.14 One form of a ‘tuned circuit’ that can be used as a band-
pass filter is given in Figure 10.14(a). Given that R = 300�, L = 2 mH,
and C = 10 µF, find the admittance of the circuit at 2 kHz. Given that
the current source is of amplitude 12 A, find the voltage amplitude and
its relative phase.

Solution The admittances of the elements are shown in Figure 10.14(b).
As the elements are in parallel, we can sum the admittances

Y = 1

R
+ jωC − j

ωL
where ω = 2× 103 × 2π

giving

Y = 1

300
+ j(2π × 103 × 2× 10× 10−6)

− j

2× 103 × 2π × 2× 10−3

≈ 0.003333+ j0.0859.

Expressing this is polar form gives Y = 0.086∠88◦. Therefore, from
V = ZI or V = I/Y , we have

V = 12

0.086∠88◦
≈ 139.6∠−88◦

giving a voltage amplitude of 139.6 V with a relative phase of −88◦.

10.7 Circular
motion

When we introduced the sine and cosine function in Chapter 5, we used
the example of a rotating rod of length r . We plotted the position of
the rod, its height, and horizontal distance from the centre against the
angle through which the rod had rotated. This defined the sine and cosine
functions. We consider this problem again. This time we specify that
the circular motion is at constant angular velocity ω. That is, the rate of
change of the angle θ , dθ/dt , is constant and equals ω. That is:

dθ

dt
= ω (where ω is a constant)

⇔ θ = ωt + φ
where φ is the angle when t = 0. If we start with the rod horizontal, then
φ = 0 and we have θ = ωt . The (x, y) position of the tip of the rod of
length r is given as a function of time by x = r cos(ωt) and y = r sin(ωt),
where ω is the constant angular velocity, so the rotating vector is given
by r = (r cos(ωt), r sin(ωt)) with θ = ωt .

Consider now a ball on the end of a string with constant angular veloc-
ity ω. Can we obtain an expression for its acceleration? The acceleration
is of particular importance because we know from Newton’s second law
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Figure 10.15 A ball on a
string is moving round a circle
with constant angular velocity
so that θ = ωt . If we observe
the ball from the position of
the eye in (a) then we can
only see the motion in the
horizontal direction and the
ball appears to oscillate back
and forth as shown in (b).
Also displayed is the graph of
x against time,
t : x = r cos(ωt ).

that the force required to maintain the circular motion can be found by
using F = ma, where F is the force, m is the mass, and a is the accel-
eration. We assume, in this discussion, that the effects of gravity and air
resistance are negligible. The ball is being rotated in a plane which is
vertical to the ground.

First, imagine lying flat on the ground in a line with the x-axis and
watching the ball. It appears to oscillate back and forth and its position
is given by x = r cos(ωt). This is pictured in Figure 10.15.

Differentiating with respect to t gives the component of the velocity in
the x-direction

dx

dt
= −rω sin(ωt).

The acceleration is the derivative of this velocity

d

dt

(
dx

dt

)
.

This is also written as d2x/dt2 (read as ‘d two x by dt squared’) and it
means the derivative of the derivative

dx

dt
= −rω sin(ωt)

differentiating again gives

d2x

dt2
= −rω2 cos(ωt) = −ω2(r cos(ωt))

and as x = r cos(ωt)

d2x

dt2
= −ω2x.

This equation tells us that the horizontal acceleration is proportional to
the horizontal distance from the origin in a direction towards the origin.
This type of behaviour is called simple harmonic motion.

We can consider the movement in the y-direction by changing our
point of view as in Figure 10.16. Again we can find the component of the
acceleration, this time in the y-direction.
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Figure 10.16 If we observe the ball from the position of the eye in Figure 10.16(a), we can only see the
motion in the vertical direction and the ball appears to oscillate up and down as shown in Figure 10.16(b).
Also shown is the graph of y against time, t : y = r sin(ωt ).

We differentiate y = r sin(ωt) to get the component of velocity in the
y-direction:

dy

dt
= rω cos(ωt)

Differentiate again to find the acceleration:

d2y

dt2
= −rω2 sin(ωt)

and as y = r sin(ωt)

d2y

dt2
= −ω2y

Notice that this is the same equation as we had for x. We can represent
the motion, both in the x- and y-directions by using a complex number
to represent the rotating vector. The real part of z represents the position
in the x-direction and the imaginary part of z represents the position in
the y-direction:

z = x + jy = r cos(ωt)+ jr sin(ωt)

Then

dz

dt
= −rω sin(ωt)+ jrω cos(ωt)

The real part of dz/dt represents the component of velocity in the
x-direction and the imaginary part represents the velocity in the y-
direction. Again, we can differentiate to find the acceleration

d2z

dt2
= −rω2 cos(ωt)− jrω2 sin(ωt)

= −ω2(r cos(ωt)+ jr sin(ωt)) = −ω2z

as

z = r cos(ωt)+ jr sin(ωt)

So, we get

d2z

dt2
= −ω2z

This shows that the acceleration operates along the length of the vector
z towards the origin and it must be of magnitude |−ω2z| = ω2r where r is
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the radius of the circle. The ball is always accelerating towards the centre
of the circle. This also tells us the force that the string must provide in order
to maintain the circular motion at constant angular velocity. The force
towards the centre, called the centripetal force, must be |F | = mω2r ,
where r is the radius of the circle and m is the mass of the ball. This has
been given by Newton’s second law F = ma.

We can use the equation for circular motion to show that it is possible
to represent a complex number, z, in the form z = r ejθ , where r is
the modulus and the argument. To do this we must first establish the
conditions which determine a particular solution to the equation

d2z

dt2
= −ω2z

We know that one solution of the differential equation

d2z

dt2
= −ω2z

with the condition that z = r when t = 0, is given by z = r cos(ωt) +
jr sin(ωt). Unfortunately, there is at least one other solution, given by the
case where the string travels clockwise rather than anti-clockwise, that is,
z = r cos(−ωt)+ jr sin(−ωt). However, we can pin down the solution to
the anti-clockwise direction of rotation by using the fact that we defined
the angular velocity by dθ/dt = ω. This gives a condition on the initial
velocity (at t = 0). From Figure 10.17 we can see that the velocity must
be positive and only have a component in the y-direction at t = 0.

Figure 10.17 The initial
velocity vector (as shown)
must be in the positive y
direction if the motion is
anti-clockwise.

This discounts the possibility of the motion being clockwise as this
would give a negative initial velocity. From z = r cos(ωt)+ jr sin(ωt)

dz

dt
= −rω sin(ωt)+ jrω cos(ωt)dt

and at t = 0, dz/dt = jrω. We now have enough information to say that

d2z

dt2
= −ω2z and z = r when t = 0

and

dz

dt
= jωr when t = 0 ⇔ z = r cos(ωt)+ jr sin(ωt)

In Chapter 8 we looked at the exponential function and we found that
y = y0 ekt is a solution to the equation dy/dt = ky. This equation models
the situation where the rate of change of the population is proportional to
its current size: the first derivative of y is proportional to y. The equation

d2z

dt2
= −ω2z

is similar only now the acceleration is related to z, that is the second
derivative is proportional to z. As the exponential functions have the
property that the derivative gives a scaled version of the original function,
we must also get a scaled version of the original function if we differentiate
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twice. So we can try a solution of the form z = r ekt for the equation

d2z

dt2
= −ω2z

z = r ekt

⇒ dz

dt
= rk ekt

⇒ d2z

dt2
= rk2 ekt

Substituting into

d2z

dt2
= −ω2z

we get

rk2 ekt = −ω2r ekt

Dividing both sides by r ekt gives k2 = −ω2 ⇔ k = ±jω.
This gives two possible solutions: z = r ejωt when k = jω and z =

r e−jωt when k = −jω. Again, we can use the initial velocity to determine
the solution. Using z = r ejωt we get

dz

dt
= jrω ejωt

at t = 0 then we get the velocity as jωr , which was one of the conditions
we wanted to fulfil.

This shows that the two expression z = r ejωt and z = r cos(ωt) +
jr sin(ωt) both satisfy

d2z

dt2
= −ω2z and z = r when t = 0

and

dz

dt
= jωr when t = 0.

We have stated that these initial conditions are enough to determine
the solution of the differential equation. So, the only possibility is that

r ejωt = r cos(ωt)+ jr sin(ωt)

This shows the equivalence of the polar form of a complex number and the
exponential form. Replacing ωt by θ , we get r ejθ = r cos(θ)+ jr sin(θ),
which we recognize as the polar form for a complex number z = r∠θ
where r is the modulus and θ is the argument. We can represent any
complex number z = x+ jy in the form r ejθ . r and θ are found, as given
before for the polar form, by

r =
√
x2 + y2

θ = tan−1
(y
x

)
(+π if x is negative)

Conversely, to express a number given in exponential form in rectangular
(Cartesian) form, we can use r ejθ = r cos(θ)+ jr sin(θ).
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Example 10.15 Show that z = 2 ej3t is a solution to d2z/dt2 = −9z
where z = 2 when t = 0 and dz/dt = j6 when t = 0.

Solution If z = 2 ej3t , then when t = 0, z = 2 e0 = 2

dz

dt
= 2( j3)ej3t = j6ej3t

when t = 0

dz

dt
= j6e0 = j6.

Hence

d2z

dt2
= j6(j3)ej3t

⇒ d2z

dt2
= −18ej3t

Substituting into d2z/dt2 = −9z gives −18 ej3t = −9(2 ej3t ) ⇔
−18 ej3t = −18 ej3t , which is true.

Example 10.16 Express z = 3+ j4 in exponential form.

Solution The modulus r if given by

r =
√

32 + 42 = √25 = 5

The argument is tan−1(4/3) ≈ 0.9273. Hence, z ≈ 5 ej0.9273.

Example 10.17 Find the real and imaginary parts of the following

(a) 3 ej(π/2) (b) e−j (c) e3+j2

(d) e−j( j−1) (e) jj

Solution (a) Use r ejθ = r cos(θ) + jr sin(θ) · 3 ej(π/2) has r = 3 and
θ = π/2

3 ej(π/2) = 3 cos(π/2)+ j3 sin(π/2)

= 3.0+ j(3)(1) = j3

The real part is 0 and the imaginary part is 3.
(b) Comparing e−j with rejθ gives r = 1 and θ = −1. Using r ejθ =

r cos(θ)+ jr sin(θ)

e−j = 1 cos(−1)+ j sin(−1)

≈ 0.5403− j0.8415

So the real part of e−j is approximately 0.5403 and the imaginary part is
approximately −0.8415.
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(c) Notice that e3+j2 is not in the form r ejθ because the exponent has a
real part. We therefore split the exponent into its real and imaginary bits
by using the rules of powers:

e3+j2 = e3ej2

e3 ≈ 20.09 is a real number, and the remaining exponent j2 is purely
imaginary:

e3ej2 ≈ 20.09 ej2

Comparing e3ej2 with rejθ gives r = e3 and θ = 2. Using rejθ =
r cos(θ)+ jr sin(θ) gives

e3ej2 = e3 cos(2)+ je3 sin(2)

≈ −8.359+ j18.26

The real part of e3+j2 is approximately −8.359 and the imaginary part is
approximately 18.26.

(d) For e−j(j−1) we need first to write the exponent in a form that allows
us to split it into its real and imaginary bits. So, we remove the brackets
to give

e−j(j−1) = e−j2+j

Using j2 = −1, this gives

e−j(j−1) = e1+j

Now, using the rules of powers we can write
e1+j = e1ej. e1 is a real number and the exponent of ej is purely

imaginary. Comparing e1ej with rejθ gives r = e1 and θ = 1. Using
rejθ = r cos(θ)+ jr sin(θ) gives

e1ej1 = e1 cos(1)+ je1 sin(1)

≈ 1.469+ j2.287

The real part of e−j(j−1) is approximately 1.469 and the imaginary part
is approximately 2.287

(e) jj looks a very confusing number as we have only dealt with complex
powers when the base is e. We therefore begin by looking for a way of
rewriting the expression so that its base is e. To do this, we write the base,
j, in exponential form. From the Argand diagram in Figure 10.18, as j is
represented by the point (0,1) we can see that that it has modulus 1 and
argument π/2. Hence, j = ej(π/2).

Use this to replace the base in the expression jj so that

jj = (ej(π/2)
)j = ej2(π/2) = e−π/2. We can now see that jj is in fact a

real number!

jj = e−π/2 ≈ 0.2079.

The real part of jj is approximately 0.2079 and the imaginary part is 0.

Figure 10.18 j is
represented by the point (0, 1)
in the complex plane.
Therefore, it has modulus 1
and argument π/2, that is,
j = ej(π/2).
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10.8 The
importance of
being
exponential

We have shown that

r ejθ = r cos(θ)+ jr sin(θ) = r∠θ
Here r is the modulus of the complex number and θ is the argument.
Therefore, the exponential form is simply another way of writing the polar
form. The advantage of the exponential form is its simplicity. For circular
motion, at constant angular velocity, it can represent the motion both in
the real and imaginary (x and y) directions in one simple expression
r ejωt . The rules for multiplication and powers of complex numbers in
exponential form are given by the rules of powers, as for any other number,
given in Chapter 4 of the Background Notes in Mathematics available on
the companion website for this book, thus confirming the rules that we
gave for the polar form.

Multiplication:

r1 ejθ1r2 ejθ2 = r1r2 ej(θ1+θ2)

That is, we multiply the moduli and add the arguments.

Division:

r1 ejθ1

r2 ejθ2
= r1
r2

e(θ1−θ2)

That is, we divide the moduli and subtract the arguments.
The complex conjugate is of a number r ejθ is the number of same

modulus and negative argument. That is, the complex conjugate of r ejθ

is r e−jθ

Powers:

(r ejθ )n = r ejnθ .

That is, to raise a complex number to the power n, take the nth power of
its modulus and multiply its argument by n.

Example 10.18 Given z1 = 3 ej(π/6)z2 = 2 ej(π/4), Find z1+z2, z1−z2,
z1z2, z1/z2, z∗1z∗2 and z3

1.

Solution To find z1 + z2, use r ejθ = r(cos(θ)+ j sin(θ))

z1 = 3 ej(π/6) = 3
(

cos
(π

6

)
+ j sin

(π
6

))
≈ 2.5981+ j1.5

z2 = 2 ej(π/4) = 2
(

cos
(π

4

)
+ j sin

(π
4

))
≈ 1.4142+ j1.4142

Therefore,

z1 + z2 ≈ 2.5981+ j1.5+ 1.4142+ j1.4142 = 4.0123+ j2.9142

To express z1 + z2 back in exponential form, use r = √x2 + y2 and
θ = tan−1(y/x) (+π if x is negative)

r =
√
(4.0123)2 + (2.9142)2 ≈ 4.959 and

θ = tan−1(2.9142/4.0123) ≈ 0.6282

Hence, z1 + z2 ≈ 4.959 ej0.6282
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To find z1 − z2, we already have found (above) that

z1 = 3 ej(π/6) ≈ 2.5981+ j1.5 and

z2 = 2 ej(π/4) ≈ 1.4142+ j1.4142

Therefore

z1 − z2 ≈ 2.5981+ j1.5− (1.4142+ j1.4142) = 1.1839+ j0.0858

To express z1 − z2 back in polar form, use r = √
x2 + y2 and θ =

tan−1(y/x) (+π if x is negative):

z1 − z2 ≈ 1.1839+ j0.0858 ≈ 1.187 ej0.0723.

To find z1z2, multiply the moduli and add the arguments

z1z1 = 3 ej(π/6)2ej(π/4) = 3.2 ej((π/6)+(π/4)) = 6 e−j(5π/12).

To find z1/z2, divide the moduli and subtract the arguments

z1

z2
= 3 ej(π/6)

2 ej(π/4)
= 3

2
ej((π/6)−(π/4)) = 1.5 e−j(π/12).

To find z∗1z∗2, we find the complex conjugate of z1 and z2

z∗1 = (3 ej(π/6))∗ = 3 e−j(π/6)

z∗2 = (2 ej(π/4))∗ = 2 e−j(π/4)

z∗1z∗2 = 3 e−j(π/6)2 e−j(π/4) = 3.2 e−j((π/6)+(π/4)) = 6 e−j(5π/12).

To find z3
1

z3
1 = (3 ej(π/6))3 = 33(ej(π/6))3 = 27 ej(π/6)×3 = 27 ej(π/2).

Expressions for the trigonometric
functions
From the exponential form, we can find expressions for the cosine or sine
in terms of complex numbers. We begin with a complex number z of
modulus 1 and its complex conjugate

ejθ = cos(θ)+ j sin(θ) (10.1)

e−jθ = cos(θ)− j sin(θ) (10.2)

From these, we can find the expression for the cosine and sine in terms
of the complex exponential. Adding Equation (10.1) and (10.2), we have

ejθ + e−jθ = cos(θ)+ j sin(θ)+ cos(θ)− j sin(θ)

⇔ ejθ + e−jθ = 2 cos(θ)

Dividing both sides by 2 gives

1
2 (e

jθ + e−jθ) = cos(θ)

⇔ cos(θ) = 1
2 (e

jθ + e−jθ )
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Now, subtracting Equation (10.2) from Equation (10.1), we get

ejθ − e−jθ = cos(θ)+ j sin(θ)− (cos(θ)− j sin(θ))

⇔ ejθ − e−jθ = 2j sin(θ)

Dividing both sides by 2j gives

1

2j
(ejθ − e−jθ ) = sin(θ)

⇔ sin(θ) = 1

2j
(ejθ − e−jθ )

So, we have

cos(θ) = 1
2 (e

jθ + e−jθ )

sin(θ) = 1

2j
(ejθ − e−jθ )

Using tan(θ) = sin(θ)/ cos(θ), we get

tan(θ) = (1/2j)(ejθ − e−jθ )

(1/2)(ejθ + e−jθ )
= 1

j

(
ejθ − e−jθ

ejθ + e−jθ

)

Compare these with the definition of the sinh, cosh, and tanh functions
given in Chapter 8:

cosh(θ) = 1
2 (e

θ + e−θ )

sinh(θ) = 1
2 (e

θ − e−θ )

tanh(x) = eθ − e−θ

eθ + e−θ

We see that:

cos( jθ) = cosh(θ)

sin( jθ) = j sinh(θ)

tan( jθ) = j tanh(θ)

De Moivre’s theorem
Using the expression for the cmoplex number in terms of a sine and cosine,
rejθ = r(cos(θ)+ j sin(θ)), and using this in r ejθn = r ejnθ , we get

(r(cos(θ)+ j sin(θ))n = rn(cos(nθ)+ j sin(nθ))

This is called De Moivre’s theorem and can be used to obtain multiple
angle formulae.

Example 10.19 Find sin(3θ) in terms of powers of sin(θ) and cos(θ).

TLFeBOOK



“chap10” — 2003/6/8 — page 229 — #24

Complex numbers 229

Solution We use the fact that sin(3θ) = Im(cos(3θ)+ j sin(3θ)), where
Im( ) represents ‘the imaginary part of’. Hence

sin(3θ) = Im(ej3θ )

= Im((cos(θ)+ j sin(θ))3).

Expanding

(cos(θ)+ j sin(θ))3 = (cos(θ)+ j sin(θ))(cos(θ)+ j sin(θ))2

= (cos(θ)+ j sin(θ))(cos2(θ)+ 2j cos(θ) sin(θ)+ j2 sin2(θ))

= cos3(θ)+ j sin(θ) cos2(θ)+ 2j cos2(θ) sin(θ)

+ j2 cos(θ) sin2(θ)+ 2j2 cos(θ) sin2(θ)+ j3 sin3(θ)

= cos3(θ)+ 3j sin(θ) cos2(θ)− 3 cos(θ) sin2(θ)− j sin3(θ)

= cos3(θ)− 3 cos(θ) sin2(θ)+ j(3 sin(θ) cos2(θ)− sin3(θ)).

As sin(3θ) = Im((cos(θ)+ j sin(θ))3), we take the imaginary part of the
expression we have found to get

sin(3θ) = 3 sin(θ) cos2(θ)− sin3(θ).

Example 10.20 Express cos3(θ) in terms of cosines of multiples of θ .

Solution Using cos(θ) = (1/2)(ejθ+e−jθ ) and the expansion (a+b)3 =
a3 + 3a2b + 3ab2 + b3:

cos3(θ) =
(

1

2
(ejθ + e−jθ )

)3

= 1

23
(ej3θ + 3ejθ + 3e−jθ + e−j3θ )

1

22

(
1

2
(ej3θ + e−j3θ )+ 3

2
(ejθ + e−jθ )

)
.

As

cos(θ) = 1
2 (e

jθ + e−jθ ) and cos(3θ) = 1
2 (e

j3θ + e−j3θ )

we get

cos3(θ) = 1
4 cos(3θ)+ 3

4 cos(θ).

The exponential form can be used to solve complex equations of the
form zn = c, where c is a complex number. A particularly important
example is the problem of finding all the solutions of zn = 1, called the
n roots of unity.

The n roots of unity
To solve the equation zn = 1, we use the fact that 1 is a complex number
with modulus 1 and argument 0, as can be seen in Figure 10.19(a). How-
ever, we can also use an argument of 2π , 4π , 6π , or any other multiple of
2π . As 2π is a complete revolution, adding 2π on to the argument of any
complex number does not change the position of the vector representing
it and therefore does not change the value of the number.
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Figure 10.19 (a) 1 is the complex number ej0, that is, with a modulus of 1 and an argument of 0. (b) 1 can
also be represented using an argument of 2π , that is, 1 = ej2π . (c) 1 represented with an argument of 4π ,
that is, 1 = ej4π .

The equation zn = 1 can be expressed as

zn = ej2πN where N ∈ Z

We can solve this equation by taking the nth root of both sides, which is
the same as taking both sides to the power 1/n.

(zn)1/n = ej2πN/n where N ∈ Z

We can substitute some values for N to find the various solutions also
using the fact that there should be n roots to the equation zn = 1 so that
we can stop after finding all n roots.

Figure 10.20 The solutions
to z3 = 1 are z = 1,
z = ej2π/3, and z = ej4π/3.
Notice that one solution can
be obtained from another by
rotation through 2π/3.

Example 10.21 Find all the solutions to z3 = 1.

Solution Write 1 as a complex number with argument 2πN giving the
equation as

z3 = ej2πN where N ∈ Z.

Taking the cube root of both sides:

(z3)1/3 = ej(2πN/3) where N ∈ Z.

Substituting

N = 0 : z = ej2π0 = 1

N = 1 : z = ej2π/3

N = 2 : z = ej4π/3.

There is no need to use any more values of N . We use the fact that
there should be three roots of a cubic equation. If we continued to sub-
stitute values for N , then the values will begin to repeat. For example,
substitutingN = 3 gives z = ej2π3/3 = ej2π , which we know is the same
as ej0 (subtracting 2π from the argument) which equals 1, which is a root
that we have already found.

The solutions to z3 = 1 are shown on an Argand diagram in
Figure 10.20. The principal root of a complex equation is the one found
nearest to the position of the positive x-axis. Notice that in the case of
z3 = 1, the principal root is 1 and the other solutions can be obtained
from another by rotation through 2π/3. Hence, another way of finding
the n roots of zn = 1 is to start with the principal root of z = 1 = ej0

and add on multiples of 2π/n to the argument, in order to find the other
roots.
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Example 10.22 Find all the roots of z5 = 1

Solution One root, the principal root, is z = 1 = ej0. The other roots
can be found by rotating this around the complex plane by multiples of
2π/5. Therefore, we have the solutions:

z = 1, ej2π/5, ej4π/5, ej6π/5, ej8π/5.

These are shown in Figure 10.21.
Figure 10.21 The solutions
to z5 = 1 are z=1, ej2π/5,
ej4π/5, ej6π/5, and ej8π/5.
Notice that one solution can
be obtained from another by
rotation through 2π/5.

Solving some other complex equations
If we have the equation zn = c, where c is any complex number, then we
write the right-hand side of the equation in exponential form and use the
fact that we can add a multiply of 2π to the argument without changing
the value of the number. Write

c = r ejθ = r ej(θ+2πN) where N ∈ Z

zn = r ej(θ+2πN)

⇔ z = r(1/n)e(j(θ+2πN)/n)

taking the nth root of both sides.

Figure 10.22 The solutions
to z3 = −4+ j4/3 are
z = 2ej2π/9, 2ej8π/9, and
2ej14π/9. Notice that one
solution can be obtained from
another by rotation through
2π/3.

Example 10.23 Solve z3 = −4+ j4
√

3.

Solution Write −4+ j4
√

3 in exponential form, r ejθ

r =
√
(−4)2 + (4√3)2 = √16+ 48 = √64 = 8

= tan−1

(
−4
√

3

4

)
+ π = 2π/3 (using tan−1(

√
3) = π/3).

So, the equation becomes

z3 = 8ej(2π/3+2πN) where N ∈ Z

⇔ z = 81/3 ej(2π/3+2πN)/3

⇔ z = 2 ej(2π/3+2πN)/3, where N ∈ Z

Substituting some values for N gives

N = 0 : z = 2 ej2π/9

N = 1 : z = 2 ej(2π/9+2π/3) = 2 ej8π/9

N = 2 : z = 2 ej(2π/9+4π/3) = 2 ej14π/9.

The solutions are

z = 2 ej2π/9, 2 ej8π/9, 2 ej14π/9.

These are shown in Figure 10.22.
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10.9 Summary 1. Simple systems can be represented by a complex number multiplying
a single frequency input. The output then has the same frequency as
the input, with a modified amplitude and a shifted phase.

2. j is the number which when multiplying a phasor has the effect of
rotating the phase byπ/2 (or 90◦). j× j rotates the phase byπ (180◦),
which is equivalent to multiplication by −1. Hence j2 = −1 and
j = √−1. Sometimes i is used instead of j to represent

√−1.
3. A complex number is any number that can be represented on the

complex plane. It can be written as z = x + jy (x and y real) where
x is the real part of z (Re(z) = x) and y is the imaginary part of
z (Im(z) = y). A complex number expressed in the form z = x+ jy
is said to be in Cartesian or rectangular form.

4. The complex conjugate of a + jb is a − jb; (a + jb)∗ = a − jb.
The product of a number and its complex conjugate is always a real
number greater than or equal to 0: (a+ jb)(a+ jb)∗ = (a+ jb)(a−
jb) = a2 + b2, which is real and � 0. zz∗ = |z|2, where z is
any complex number: a number multiplied by its conjugate gives its
modulus squared.

5. The operations of addition and subtraction of complex numbers are
like those for vectors: simply add or subtract the real parts and then
the imaginary parts. Multiply as follows, remembering j2 = −1.

(1+ j2)(−3− j3) = (1)(−3)+ j2(−3)+ 1(−j3)+ (j2)(−j3)

= −3− j6− j3− j26

= −3− j9+ 6 = 3− j9

To divide multiply the top and bottom lines by the complex
conjugate of the bottom line as follows:

1+ j2

−3− j3
= (1+ j2)(−3+ j3)

(−3− j3)(−3+ j3)

= −3− j6+ j3− 6

(−3)2 + (3)2 = −9− j3

18
= −1

2
− j

6

6. All quadratic equations can now be solved if x ∈ C, that is, x is a
complex number. If ax2+bx+c = 0 where a, b, c are real numbers,
then

x = −b ±
√
b2 − 4ac

2a

The solutions are real if b2 � 4ac. If b2 < 4ac, then the solutions
can be written as x = p ± jq, where

p = −b
2a

and

q =
√

4ac − b2

2a
, p and q are real

and therefore, non-real roots are complex conjugates of each other.
7. Complex numbers can be written in polar form r∠θ , where r is the

modulus of the number and θ is the argument. The modulus is the
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length of the vector representing the complex number and θ is the
angle made with the positive real axis.

z = x + jy = r∠θ ,

r =
√
x2 + y2 and θ = tan−1

(y
x

)
(+π if x < 0)

x = r cos(θ) and y = r sin(θ)

To add or subtract complex numbers expressed in polar form, first
convert to rectangular form. To multiply, multiply the moduli and
add the arguments and to divide, divide the moduli and subtract the
arguments:

r1∠θ1r2∠θ2 = r1r2∠(θ1 + θ2)

r1∠θ1

r2∠θ2
= r1
r2

∠(θ1 − θ2)

8. Complex numbers are used in the analysis of alternating current (AC)
circuits. ω is the angular frequency of the source. Resistors, capac-
itors, and inductors have associated impedances, Z, where for a
resistor Z = R, for a capacitor Z = 1/jωC, and for an inductor
Z = jωL, where R is the resistance, C is the capacitance, and L is
the inductance. The voltage and the current are related by

V = ZI

and the impedances of circuit elements obey

ZR = Z1 + Z2

for elements in series, and

1

ZR
= 1

Z1
+ 1

Z2

for elements in parallel, where ZR is the resultant impedance. The
admittance Y is the reciprocal of the impedance: Y = 1/Z.

9. d2y/dt2 = −ω2y is the differential equation that defines waves
as a function of time. This is an equation of motion where the
acceleration is proportional to the distance from the origin. This
is called simple harmonic motion. By examining the case of circu-
lar motion, at constant angular velocity, where the rotating vector
z = x + jy = r cos(ωt) + jr sin(ωt) obeys this equation, we can
show the equivalence of the polar representation of a complex wave
and the exponential form:

r ejωt = r cos(ωt)+ jr sin(ωt) = r∠ωt

as θ = ωt , we have

r ejθ = r cos(θ)+ jr sin(θ) = r∠θ

Here, r is the modulus of the complex number and θ is the argument.
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Replacing θ by −θ , we get

r e−jθ = r cos(θ)− j sin(θ) = r∠− θ
From these, using the case where r = 1, we can find the expression

for the cosine and sine in terms of the complex exponential:

cos(θ) = 1
2 (e

jθ + e−jθ )

sin(θ) = 1

2j
(ejθ − e−jθ )

tan(θ) = 1

j

(
ejθ − e−jθ

ejθ + e−jθ

)
and by comparing these with the definition of the sinh, cosh, and
tanh function we see that:

cos( jθ) = cosh(θ)

sin( jθ) = j sinh(θ)

tan( jθ) = j tanh(θ)

10. The advantage of the exponential form is its simplicity. For circular
motion, at constant angular velocity, it can represent the motion both
in the real and imaginary (x andy) directions in one simple expression
r ejωt . The rules for multiplication and powers of complex numbers
in exponential form are given by the rules of powers, as for any other
number, given in Chapter 4 of the Background Mathematics Notes
on the companion website for this book.

Multiplication:

r1 ejθ1r2 ejθ2 = r1r2 ej(θ1+θ2)

that is, we multiply the moduli and add the arguments.

Division:

r1 ejθ1

r2 ejθ2
= r1
r2

e(θ1−θ2)

that is, we divide the moduli and subtract the arguments.

Powers:

(r ejθ )n = r ejnθ

This last relationship can be used to show De Moivre’s theorem.
Using the expression for the complex number in terms of a sine and
cosine, r ejθ = r(cos(θ)+ j sin(θ)), and using this in the expression
above, we get

(r(cos(θ)+ j sin(θ))n = rn(cos(nθ)+ j sin(nθ))

The complex conjugate of r ejθ is r e−jθ .
The derivative of a complex exponential is easy to find. As

d

dt
(et ) = et

therefore

d

dt
(ejωt ) = jωejωt .
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10.10 Exercises

10.1. Given z1 = 1− 2j, z2 = 3+ 3j, and z3 = −1+ 4j.
(a) Represent z1, z2, and z3, on an Argand diagram.
(b) Find the following and show the results on the

Argand diagram

(i) z1 + z2 (ii) z3 − z1 (iii) z∗1

(c) Calculate

(i) z1 + z2 + z3 (ii) z1 − z3 + z2 (iii) z1z
∗
1

(iv) z1/z2 (v) z1z3.

10.2. Simplify

(a) j8 (b) j11 (c) j28

10.3. Find each of the following complex numbers in the
form a + jb, where a and b are real:

(a) (3− 7j)(2+ j4) (b) (−1+ 2j)2 (c)
4− j3

5− j

(d)
5+ j3

j(4− j9)
− 6

j

10.4. Find the real and imaginary parts of z2+1/z2, where
z = (3+ j)/(2− j)

10.5. Given that x and y are real and that 2x−3+j(y−x) =
x + j2, find x and y.

10.6. Find the roots x1 and x2 of the following quadratic
equations. In each case, find the product (x−x1)(x−
x2) and show that the original equation is equivalent
to (x − x1)(x − x2) = 0.

(a) x2 − 3x + 2 = 0 (b) − 6+ 2x − x2 = 0
(c) 3x2 − x + 1 = 0 (d) 4x2 − 7x − 2 = 0
(e) 2x2 + 3 = 0.

10.7. The equation x2+ bx+ c = 0 where b and c are real
numbers, has one complex root, x = −1+ j3.

(a) What is the other root?
(b) Find b and c.

10.8. Convert the following to polar form:

(a) 3+ j5 (b) − 6+ j3
(c) − 4− j5 (d) − 5− j3.

10.9. Express in rectangular (Cartesian) form

(a) 5∠225◦ (b) 4∠330◦
(c) 2∠2.723 (d) 5∠− 0.646.

10.10. If x and y are real and 2x+ y+ j(2x− y) = 15+ j6,
find x and y

10.11. If z1 = 12∠3π/4 and z2 = 3∠2π/5, find:

(a) z1z2 (b) z1/z2 (c) z1 + z2

(d) z2 − z1 (e) z∗1 (f) z2
2.

giving the results in polar form.

10.12. If z = 2∠0.8, find z4.

10.13. Find the impedance of the circuit shown in
Figure 10.23(a) at 90 kHz, where L = 4 mH, C =
2 pF, andR = 400 k�. Assuming a current source of
amplitude 5 A, calculate the voltage V and its relative
phase.

10.14. Find the admittance of the circuit given in
Figure 10.23(b) at 20 kHz given that R = 250 k�,
L = 20 mH, and C = 50 pF. Given that the voltage
source has amplitude 10 V find the current, I , and its
relative phase.

10.15. Feedback is applied to an amplifier such that

A′ = A

1− βA
where A′, A, and β are complex quantities. A is the
amplifier gain, A′ the gain with feedback, and β the

Figure 10.23 (a) Circuit for
Exercise 10.13. (b) Circuit for
Exercise 10.14.

Figure 10.24 An amplifier with feedback, as in Exercise 10.15.
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proportion of the output which has been fed back (see
Figure 10.24)
(a) If at 30 HzA = 500∠180◦ and β = 0.005∠160◦,

calculate A′.
(b) At a particular frequency it is desired to haveA′ =

300∠100◦where it is known thatA = 400∠110◦.
Find the value of β necessary to achieve this gain
modification.

10.16. Write the following in exponential form:

(a) 3+ j5 (b) − 6+ j3
(c) − 4− j5 (d) 8∠22◦
(e) 3∠− 4.15 (f ) 6(cos(1.9)+ j sin(1.9))

10.17. Express the following in polar form and in the form
a + jb:

(a) 4 ej2 (b) e−j(π/2)

(c) 2 e−jπ (d) − 6 ej4

(e)
1

2
e−j5 (f ) ej(π/6)3 ej3(π/4)

(g) ej(π/6) + 3 ej(3π/4)

10.18. Find the real and imaginary parts of the following:

(a) 2 e−jπ (b) − 3 ej0.5 (c) 2.5 e−2+j

(d) 5 ej(3+j) (e) (3− j4)2+j

10.19. Given z1 = 12 ej(3π/4) and z2 = 3 ej(2π/5), find:

(a) z1z2 (b) z1/z2 (c) z1 + z2 (d) z2 − z1

(e) z∗1 (f) z∗1/z2 (g) z1z
∗
1

giving the results in exponential form.

10.20. If z = 3 ej0.46, find z3 in polar and exponential forms.

10.21. Find all the solutions of the following and show them
on an Argand diagram

(a) z4 = 1 (b) z6 = −1
(c) z5 + 32 = 0 (d) 3z3 + 2 = 0.

10.22. Find cos(3θ) in powers of sin(θ) and cos(θ).

10.23. Express sin3(θ) in terms of sines of multiples of θ .

10.24. Find the fifth roots of−2+j3 and represent the results
on an Argand diagram.

10.25. Solve the following equations:

(a) z2 + 2jz− 2 = 0 (b) z2 − 3jz = j.

10.26. Show that the following are solutions to the differen-
tial equation d2z/dt2 = −ω2z and find the value of
ω in each case:

(a) z = 2 e−j4t (b) z = 4 ej0.5t .
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11 Maxima and
minima and
sketching
functions

11.1
Introduction

Differentiation can be used to examine the behaviour of a function and find
regions where it is increasing or decreasing, and where it has maximum
and minimum values. For instance, we may be interested in finding the
maximum height, maximum power, or generating the maximum profit, or
in finding ways to use the minimum amount of energy or minimum use of
materials. Maximum and minimum points can also help in the process of
sketching a function.

11.2 Stationary
points, local
maxima and
minima

Example 11.1 Throw a stone in the air and initially it will have a positive
velocity as the height, s, increases; that is, ds/dt > 0. At some point it
will start to fall back to the ground, the distance from the ground is then
decreasing, and the velocity is negative, ds/dt < 0. In order to go from
a positive velocity to a negative velocity there must be a turning point,
where the stone is at its maximum height and the velocity is zero. If the
stone has initial velocity 20 ms−1, how can we find the maximum height
that it reaches?

In order to express the velocity of the stone we can make the assumption
that air resistance is negligible and use the relationship between distance
and time for motion under constant acceleration, giving

s = ut + 1
2at

2

where s is the distance travelled, u the initial velocity, t is time, and a the
acceleration. In this case, u = 20 ms−1 and a = −g (acceleration due to
gravity ≈ 10 ms−2), so s = 20t − 5t2.

At the maximum height, the rate of change of distance with time
must be 0, that is, the velocity is 0. Therefore, we differentiate to find
the velocity:

v = ds

dt
= 20− 10t

Putting v = 0 gives

0 = 20− 10t ⇔ 10t = 20 ⇔ t = 2
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We have shown that the maximum height is reached after 2 s. But what
is that height? Substituting t = 2 into the equation for s gives

s = 20(2)− 5(2)2 = 20 m

giving the maximum value of s as 20 m.
This example illustrates the important step in finding maximum and

minimum values of a function, y = f (x). That is, we differentiate and
solve

dy

dx
= 0

This may give various values of x. The points where dy/dx = 0 are
called the stationary points but having found these we still need a way
of deciding whether they could be maximum or minimum values. In the
example, we knew that a stone thrown into the air must reach a maximum
height and then return to the ground, and so by solving ds/dt = 0 we
would find the time at the maximum. Other problems may not be so clear
cut and thus we need a method of distinguishing between different types
of stationary points.

A stationary point is classified as either a local maximum, a local
minimum, or a point of inflexion. The plural of maximum is maxima
and the plural of minimum is minima. The word ‘local’ is used in the
description, because local maxima or local minima do not necessarily give
the overall maximum or minimum values of the function. For instance,
in Figure 11.1 there is a local maximum at B, but the value of y at x = x1
is actually bigger; hence, the overall maximum value of the function in
the range is given by y at x1.

To see how to classify stationary points, examine Figure 11.1, where
points A, B, and C are all stationary points.

In order to analyse the slope of the function, imagine the function as
representing the cross-section of a mountain range and we are crossing it
from left to right.

At points A, B, and C in Figure 11.1, the gradient of the tangent to the
curve is zero, that is, dy/dx = 0.

At A there is a local minimum, where the graph changes from going
downhill to going uphill.

At B there is a local maximum, where the graph changes from going
uphill to going downhill.

Figure 11.1 A graph of
some function y = f (x )
plotted from x = x1 to x = x2.
Points A, B, and C in the
graph are stationary points.
They are points where the
gradient of the tangent to the
curve is zero, that is,
dy/dx = 0.
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Figure 11.2 (a) The graph
of Figure 11.1. (b) A sketch of
its derivative dy/dx = f ′(x ).
Where y = f (x ) has a
stationary point, that is, where
the tangent to the curve is flat,
then dy/dx = 0. Where f (x ) is
increasing the derivative is
positive and where f (x ) is
decreasing the derivative is
negative.

At C there is a point of inflexion, where the graph goes flat briefly before
resuming its descent.

Local maxima and minima are also called turning points because the
function is changing from increasing to decreasing or vice versa.

By looking at where the graph is going uphill, that is, dy/dx > 0, at
where it is going downhill, that is, dy/dx < 0, and especially remem-
bering to mark the points where dy/dx = 0, the stationary points, we
can draw a very rough sketch of the derivative of any function just by
looking at its graph. This we do for our example graph in Figure 11.2. By
examining the graph of dy/dx we can see that at a local minimum point
dy/dx = 0 and dy/dx is negative just before the minimum and positive
afterwards. For a local maximum point dy/dx = 0 and dy/dx is positive
just before the maximum and negative afterwards.

If at the point where dy/dx = 0 and the derivative has the same sign
on either side of the stationary point then it must be a point of inflexion.
(At point C, dy/dx is negative just before and just after x = c.)

Analysing the sign of dy/dx on either side of a stationary point is
one way of classifying whether it is a maximum, minimum, or point of
inflexion. Another, sometimes quicker way, is to use the derivative of the
derivative, the second derivative, d2y/dx2, also referred to as f ′′(x).

To understand how to use the second derivative, examine
Figure 11.2(b). We can see that at xa , f ′(x) is heading uphill; hence,
its slope, f ′′(x), is positive. At xb, f ′(x) is heading downhill; hence, its
slope, f ′′(x), is negative. At xc, f ′(x) has zero slope and therefore f ′′(x)
is 0.

We can now summarize the steps involved in finding and classifying
the stationary points of a function y = f (x) and in finding the overall
maximum or minimum value of a function.

Step 1 Find the values of x at the stationary points. First, find dy/dx
and then solve for x such that dy/dx = 0.

Step 2 To classify the stationary points there is a choice of method,
although Method 2 does not always give a conclusive
result.
Method 1 For each of the values of x found in Step 1, find

out whether the derivative is positive or negative
just before the stationary point and just after the
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stationary point. The classifications are summarized
below.

dy/dx before → 0 → dy/dx after Type of stationary point

+ → 0 → − Maximum point
− → 0 → + Minimum point
+ → 0 → + Point of inflexion
− → 0 → − Point of inflexion

These results are summarized in Figure 11.3.

Method 2 Find the second derivative, d2y/dx2 and substitute
in turn each of the values of x found in Step 1 (the
values of x at the stationary points).

If d2y/dx2 is negative, this indicates that there is a
maximum point.

If d2y/dx2 is positive, this indicates that there is a
minimum point.

However, if d2y/dx2 = 0, then the test is inconclu-
sive and we must revert to Method 1.

Figure 11.3 Distinguishing
stationary points: (a) a
maximum point; (b) a
minimum point; (c) two points
of inflexion. The sign of the
slope of the curve, given by
dy/dx, are marked on either
side of the stationary point.

Step 3 Find the values of y at the maximum and minimum points to
give the co-ordinates of the turning points.

Step 4 The overall maximum or minimum values of the function can be
found in the following way, as long the function is continuous
over the values of x of interest. Substitute the boundary values
of x into the function to find the corresponding values for y.
Compare the values of y found in Step 3 to these boundary values
to find the overall maximum and minimum.

Example 11.2 Find and classify the stationary points of y = x3−9x2+
24x+3 and find the overall maximum and minimum value of the function
in the range x = 0 to x = 5.

Solution
Step 1. First, we must solve dy/dx = 0

y = x3 − 9x2 + 24x + 3 ⇒ dy

dx
= 3x2 − 18x + 24

So we put

3x2 − 18x + 24 = 0

⇔ x2 − 6x + 8 = 0 (dividing by 3)

⇔ (x − 2)(x − 4) = 0
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(factorizing to find the roots, although we could also use the formula for
solving a quadratic equation if no factorization can easily be found)

⇔ x − 2 = 0 or x − 4 = 0

⇔ x = 2 or x = 4

Therefore, the stationary points occur when x = 2 or x = 4.
Step 2. To classify these we use Method 2 as outlined above and look

at the second derivative, that is, we differentiate dy/dx

dy

dx
= 3x2 − 18x + 24 ⇒ d2y

dx2
= 6x − 18

At x = 2, d2y/dx2 = 12− 18 = −6, which is negative, showing that at
x = 2, f ′′(x) is negative and we therefore have a local maximum.

At x = 4, d2y/dx2 = 24− 18 = 6, which is positive, showing that at
x = 4, f ′′(x) is positive and we therefore have a local minimum.

Step 3. We still need to know the function value, the value of y at these
stationary points. To find the value of y we substitute into the original
expression. At x = 2, we get

y = (2)3 − 9(2)2 + 24(2)+ 3 = 8− 36+ 48+ 3 = 23

Therefore, the local maximum occurs at the point (2,23). At x = 4, we get

y = (4)3 − 9(4)2 + 24(4)+ 3 = 64− 144+ 96+ 3 = 19

Hence, the local minimum occurs at the point (4,19).
Step 4. To find the overall maximum value and minimum value,

substitute the boundary values for x. These are given as x = 0 and
x = 5.

At x = 0, y = (0)3 − 9(0)2 + 24(0) + 3 = 0 − 0 + 0 + 3 = 3
At x = 5, y = (5)3 − 9(5)2 + 24(5)+ 3 = 125− 225+ 120+ 3 = 23
So the boundary points are (0, 3) and (5, 23).

Comparing the numbers 3 and 23 with the values of the function
at the maximum and minimum in Step 3, that is, 23 and 19, we
can see that the overall maximum value occurs at x = 5 and x =
2, where y = 23. The overall minimum value occurs at x = 0,
where y = 3. These findings are confirmed by the sketch of the
function, which we now have sufficient information to make, as in
Figure 11.4.

Figure 11.4 Sketch of
y = x 3 − 9x 2 + 24x + 3.
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Example 11.3 Find and classify the stationary points of y = −(2−x)4.

Solution
Step 1

y = −(2− x)4 ⇒ dy

dx
= 4(2− x)3

Stationary points occur where dy/dx = 0:

4(2− x)3 = 0 ⇔ x = 2

Step 2. To classify this stationary point, we differentiate again:

d2y

dx2
= −12(2− x)2

At x = 2, we get d2y/dx2 = −12(2− 2)2 = 0. So the second derivative
is zero.

We cannot use the second derivative test to classify the stationary point
because a zero value is inconclusive, so we go back to the first derivative
and examine its sign at a value of x just less than x = 2 and just greater
than x = 2. This can be done with the help of a table. Choose any values
of x less than x = 2 and greater than x = 2, and here we choose x = 1
and x = 3. Be careful if the function is discontinuous at any point not to
cross the discontinuity

x 1 2 3

dy/dx = 4(2− x)3 4 0 −4

At x = 1, dy/dx = 4(2 − 1)3 = 4 (positive); at x = 3, dy/dx =
4(2−3)3 = −4 (negative). Therefore, near the point x = 2 the derivative
goes from positive to zero to negative. Therefore, the graph of the function
goes from travelling uphill to travelling downhill, showing that we have
a maximum value.

Step 3. Finally, we find the value of the function at the maximum point.
At x = 2, y = 0, that is, there is a maximum at (2, 0).

Applications of maximum and
minimum values of a function

Figure 11.5 Circuit for
Example 11.4.

Example 11.4 The power delivered to the load resistance RL for the
circuit shown in Figure 11.5 is defined by

P = 25RL

(2000+ RL)2

Show that the maximum power delivered to the load occurs for RL =
2000.
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Solution For a maximum value dP/dRL = 0

P = 25RL

(2000+ RL)2

Using the quotient rule to find the derivative we get

dP

dRL
= 25(2000+ RL)

2 − 25RL(2)(2000+ RL)

(2000+ RL)4

⇔ dP

dRL
= (2000+ RL)(50 000+ 25RL − 50RL)

(2000+ RL)4

As RL is positive 2000 + RL is non-zero so we can cancel the common
factor of 2000+ RL. Also simplifying the top line gives

dP

dRL
= 50 000− 25RL

(2000+ RL)3

Setting dP/dRL = 0 gives

50 000− 25RL

(2000+ RL)3
= 0

multiplying by (2000+ RL)
3, we get

50 000− 25RL = 0 ⇔ RL = 2000

We have shown that there is a stationary value of the function P when
RL = 2000 but now we need to check that it is in fact a maximum
value. To do this we substitute values above and below RL = 2000 (say
RL = 1000 and RL = 3000) into dP/dRL:

dP

dRL
= 50 000− 25RL

(2000+ RL)3

when RL = 1000 the top line is positive and the bottom line is positive,
so the sign of dP/dRL is +/+, which is positive. When RL = 3000 the
top line is negative and the bottom line is positive, so the sign of dP/dRL
is −/+, which is negative.

So the derivative of the power with respect to the load resistance goes
from positive to 0 to negative when RL = 2000, indicating a maximum
point.

We have shown that the maximum power to the load occurs when
RL = 2000.

Example 11.5 A rectangular field is to be surrounded by a fence of
length 400 m. What is the dimensions of the field such that it has maximum
area?

Solution The field is shown in Figure 11.6. Call the length of the sides
am and bm. Then the area is given by A = ab.

Figure 11.6 A rectangular
field.

The perimeter is given by P = 2a + 2b and as the length of the fence
is 400 m we get:

400 = 2a + 2b ⇔ 200 = a + b
We wish to find the maximum area, and to do this we need to be able
to differentiate A in terms of one of the variables, a or b. We use the
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information given about the length of the perimeter to express a in terms
of b;

a = b − 200

and substitute this into the expression for the area, giving

A = b(200− b) = 200b − b2

To find the maximum value for A differentiate with respect to b:

dA

db
= 200− 2b

and solve

dA

db
= 0 ⇒ 200− 2b = 0 ⇔ 2b = 200 ⇔ b = 100

Check that this is indeed a local maximum value by differentiating a
second time: d2A/db2 = −2, which is negative.

Now we find the length of the other side of the field

a = 200− b = 100

Therefore, the field with maximum area is a square of side 100. The area
of the field is 100× 100 = 10 000 m2.

To check that this agrees with the original condition that 2a+2b = 400,
substitute a = 100 and b = 100 to get 200+200 = 400, which is correct.

11.3 Graph
sketching by
analysing the
function
behaviour

To sketch the graph of any function y = f (x), we first analyse the main
features of the function’s behaviour. Look at the graph in Figure 11.7 and
list the ‘important features’ of the graph. List these in a way that would
enable someone else to sketch the graph from your description.

Figure 11.7 Exercise in
graph sketching.
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Here are some of the important features. The list is not exhaustive but
should be enough to enable someone to reproduce the graph:

1. The graph is positive for x < −2 and x > 3 and negative for x
between −2 and +3. There are no values of x for which y is zero
and when x = 0, y = −0.167.

2. The graph is discontinuous at x = −2 and x = 3. y keeps getting
larger as x approaches −2 from the left. A more precise way of
expressing this is to say that as x tends to −2, with x less than −2,
y tends to infinity. The symbol for infinity is∞ and the symbol for
‘tends to’ is→. x tends to−2, with x less than−2 can be expressed
more briefly as x → 2−. This gives

as x →−2−, y →∞.

Similarly

as x →−2+, y →−∞.

For the discontinuity at x = 3 we have:

as x → 3−, y →−∞
as x → 3+, y →∞

3. There is a local maximum at x = 0.5, where y = −0.16.
4. For large values of x, y gets nearer to 0. This can be expressed as

as x →∞, y → 0+

Similarly:

as x →−∞, y → 0+

This list of important features indicates the steps that should be taken
in order to sketch a graph:

Step 1. Find the value of y when the graph crosses the y-axis; that is,
when x = 0. If possible find where the graph crosses the x-axis;
that is, the values of x where y = 0.

Step 2. Find any discontinuities in the function, that is, are there values
of x where there is no value of y? Infinite discontinuities (a
‘divide by zero’) will lead to vertical asymptotes. These are
vertical lines which the function approaches but does not meet.
We must decide whether the function is positive or negative on
either side of the asymptote.

Step 3. Find the co-ordinates of the maxima and minima.
Step 4. Find the behaviour of the function as x tends to plus and minus

infinity.
Step 5. Mark these features, found from steps 1 to 4 on the graph and

join them, where appropriate, to give the sketch of the graph.

Example 11.6 Sketch the curve whose equation is

y = 2x + 1

(x + 1)(x − 5)
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Table 11.1 Finding the sign on either side of the asymptotes

x −2 −1 −0.75 −0.5 4 5 6

y = 2x + 1/[(x + 1)(x − 5)] −0.4286 Not defined 0.348 0 −1.8 Not defined 0.93
Sign of y − Not defined + 0 − Not defined +

Solution
Step 1. When x = 0:

y = 2.0+ 1

(0+ 1)(0− 5)
= 1

−5
= −0.2

When y = 0,

2x + 1

(x + 1)(x − 5)
= 0

then 2x + 1 = 0⇔ x = −0.5
Step 2. If the bottom line of the function were 0 this would lead to a

‘divide by zero’ which is undefined. This happens when x + 1 = 0, that
is, x = −1 and when x − 5 = 0, that is, x = 5.

These are infinite discontinuities, that is, y will tend to plus or minus
infinity as x approaches these values. The lines at x = −1 and x = 5 are
the asymptotes.

To find the sign of y on either side of the asymptotes substitute values
of x on either side of them (avoiding including any values where y = 0).
This can be done using a table, as in Table 11.1.

Using Table 11.1, we can conclude that as y is negative to the left of
the asymptote at x = −1 and positive to the right, then

as x →−1−, y →−∞
as x →−1+, y →+∞

Similarly, as y is negative to the left of the asymptote at x = 5 and positive
to the right of it, then

as x → 5−, y →−∞
as x → 5+, y →+∞

Step 3. To find the turning points look for points where dy/dx = 0

y = 2x + 1

(x + 1)(x − 5)

To differentiate, first multiply out the brackets on the bottom line of
the expression and then use the formula for finding the derivative of a
quotient.

y = 2x + 1

(x + 1)(x − 5)
⇔ y = 2x + 1

x2 − 4x − 5
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This gives

dy

dx
= 2(x2 − 4x − 5)− (2x + 1)(2x − 4)

(x2 − 4x − 5)2

dy

dx
= 2x2 − 8x − 10− 4x2 + 6x + 4

(x2 − 4x − 5)2

dy

dx
= −2x2 − 2x − 6

(x2 − 4x − 5)2

We now solve dy/dx = 0

−2x2 − 2x − 6

(x2 − 4x − 5)2
= 0

⇒ −2x2 − 2x − 6 = 0 ⇒ x2 + x + 3 = 0

Using the formula to solve the quadratic equation gives

x = −1±√12 − 12

2
= −1±√−11

2

Because of the square root of a negative number in this expression we
can see that there are no real solutions; here, there are no turning points.

Step 4. When x is large in magnitude then the highest powers of x on
the top and bottom lines of the function expression will dominate. In this
case ignore all the other terms. Considering

y = 2x + 1

(x + 1)(x − 5)
= 2x + 1

x2 − 4x − 5

For x large in magnitude

y ∼ 2x

x2
= 2

x

which tends to 0 and is positive as x →∞ and tends to 0 and is negative
as x → −∞. We can say that as x → ∞, y → 0+ and as x → −∞,
y → 0−.

Step 5. Sketch the graph. This is done in two stages, as shown in
Figure 11.8.

Figure 11.8 Sketching the graph of y = (2x + 1)/((x + 1)(x − 5)): (a) first mark the important points as
found in Example 11.6; (b) join up these points, where relevant, to give the sketch of the function.
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Example 11.7 A spring of modulus of elasticity k has a mass, m, sus-
pended from it and is subjected to a oscillating force F = F0 cos(ωt),
where ω > 0. The motion of the mass is damped by the use of a dashpot
of damping constant c. This is displayed in Figure 11.9. After some time
the spring force is found to have oscillations of angular frequency ω and
of magnitude

F = kF0√
ω2c2 + (ω2m− k)2

Taking m = 1 and k = 1, sketch the graph of F/F0 against ω for

Figure 11.9 A spring
subjected to damped, forced
motion.

(a) c = 2 (b) c = 1
2 (c) c = 1

4 (d) c = 0

Solution We are given that

F = kF0√
ω2c2 + (ω2m− k)2

Therefore,

F

F0
= k√

ω2c2 + (ω2m− k)2
Substituting m = 1 and k = 1 gives

F

F0
= 1√

ω2c2 + (ω2 − 1)2

Call this function H .
One method to solve this problem would be to consider cases (a), (b),

(c), and (d) separately. However, it is quicker to leave c as an unknown
constant and substitute in for the particular cases later.

Step 1.

H = 1√
ω2c2 + (ω2 − 1)2

when ω = 0,H = 1. The denominator is a positive square root, which
means that H is always � 0 where it is defined.

Step 2. Consider any points where H is not defined

H = 1√
ω2c2 + (ω2 − 1)2

As the term inside the square root in the expression for H is a sum of
squares it is always, � 0. This means that H is always defined, except
where the denominator is 0. H is not defined when√
ω2c2 + (ω2 − 1)2 = 0

⇒ ω2c2 + (ω2 − 1)2 = 0

ω2c2 + ω4 − 2ω2 + 1 = 0

ω4 + ω2(c2 − 2)+ 1 = 0

By substituting the values of c of interest we see that in case (a) when
c = 2, in case (b) when c = 1/2, and in case (c) when c = 1/4 there
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are no real solutions of this equation for ω. This means that there are no
points where H is undefined. However, for case (d), where c = 0 we get
the equation

ω4 − 2ω2 + 1 = 0 ⇔ (ω2 − 1)2 = 0

ω2 − 1 = 0 ⇔ ω2 = 1 ⇔ ω = 1 or ω = −1

As the frequency of the forcing function is positive then we just have
the one value where H is discontinuous, at ω = 1. For case (d), where
c = 0, H is undefined when ω = 1. This is an infinite ‘divide by zero’
discontinuity. We have already noted that H is always positive where it
is defined and so we know that as ω → 1−,H → +∞ and as ω →
1+,H →+∞.

Step 3. To find the stationary points solve dH/dω = 0

H = 1√
ω2c2 + (ω2 − 1)2

is easier to differentiate if we use the rules of powers to give

H = (ω2c2 + (ω2 − 1)2)−1/2

Using the function of a function rule we get

dH

dω
= −1

2
(ω2c2 + (ω2 − 1)2)−3/2(2ωc2 + 2(ω2 − 1)(2ω))

dH

dω
= − 2ωc2 + 2(ω2 − 1)(2ω)

2(ω2c2 + (ω2 − 1)2)3/2
= − 2ωc2 + 4ω3 − 4ω

2(ω2c2 + (ω2 − 1)2)3/2

Dividing the top and bottom lines by 2 and rearranging the terms on
the top line gives

dH

dω
= − 2ω3 + ω(c2 − 2)

(ω2c2 + (ω2 − 1)2)3/2

Setting dH/dω = 0 gives

− 2ω3 + ω(c2 − 2)

(ω2c2 + (ω2 − 1)2)3/2
= 0

multiplying both sides by−1 times the denominator of the left-hand side
gives

2ω3 + ω(c2 − 2) = 0

⇔ ω(2ω2 + c2 − 2) = 0

⇔ ω = 0 ∨ 2ω2 + c2 − 2 = 0

⇔ ω = 0 ∨ 2ω2 = 2− c2

⇔ ω = 0 ∨ ω2 = (2− c2)/2

⇔ ω = 0 ∨ ω = ±
√
(2− c2)/2

As we assume that the frequency is positive (or zero) there are two possi-
bilities and ω = 0 and ω = √(2− c2)/2. The second case does not give
a real solution if c = 2.
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We wait until specific values of c are substituted in order to analyse the
type of stationary points and the value ofH at these points. Also note that
this analysis is not valid for the case c = 0 as this completely changes
the nature of the function H .

Step 4. When ω is large in magnitude

H ∼ 1√
ω4

and this tends to 0 for large ω. Therefore, as ω→∞, H → 0+.
Step 5. Now we can sketch the graph using the information found and

after substituting the various values of c.
Case (a): c = 2. On substituting c = 2, we have

H = 1√
4ω2 + (ω2 − 1)2

.

The graph passes through (0, 1) (Step 1), and the function is defined for
all ω � 0 (Step 2). The stationary point is at ω = 0. In this case

dH

dω
= − 2ω3 + 2ω

(4ω2 + (ω2 − 1)2)3/2
= − 2ω(ω2 + 1)

(4ω2 + (ω2 − 1)2)3/2

This is positive for ω < 0 and negative for ω > 0 and therefore there is
a maximum value at ω = 0.

Case (b): c = 1
2 . Here

H = 1√
ω2/4+ (ω2 − 1)2

The graph passes through (0, 1) (Step 1), and there are no discontinuities
(Step 2). The stationary points are at ω = 0 and ω = √

(2− c2)/2 =√
7/8 ≈ 0.935 (Step 3):

dH

dω
= −ω(2ω2 − 7/4)

(ω2/4+ (ω2 − 1)2)3/2

dH/dω < 0 for ω < 0 and dH/dω > 0 for ω > 0; therefore, there is a
minimum value at ω = 0,

dH/dω > 0 for ω just less than
√

7/8,

dH/dω < 0 for ω just greater than
√

7/8.

Therefore there is a maximum value of H at ω = √7/8 ≈ 0.935.
At the maximum

H = 1√
7/32+ 1/64

= 1√
15/64

≈ 2.06

Case (c): c = 1
4 .

H = 1√
ω2/16+ (ω2 − 1)2

.
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The graph passes through (0, 1) (Step 1) and there are no discontinuities
(Step 2). The stationary points are at ω = 0 and ω = √

(2− c2)/2 =√
31/32 ≈ 0.98. There is a minimum value at ω = 0 and a maximum at

ω = √31/32, where

H = 1√
31/512+ 1/1024

≈ 4.03

Case (d): c = 0

H = 1√
(ω2 − 1)2

=




1

1− ω2
for ω < 1

1

ω2 − 1
for ω > 1

The graph passes through (0, 1) (Step 1). There is an infinite discontinuity
at ω = 1, and for

ω→ 1−, H →+∞
ω→ 1+, H →+∞
The stationary points have to be analysed separately as the general case
always assumed c > 0. Differentiating H we get

dH

dω
= 2ω

(ω2 − 1)2
ω < 1

dH

dω
= −2ω

(ω2 − 1)2
ω > 1

which has a zero value at ω = 0.
dH/dω is negative for ω just less than 0 and positive for ω just greater

than 0. Therefore, there is a minimum point at ω = 0. We can now sketch
the graphs as in Figure 11.10.

11.4 Summary 1. To find and classify stationary values of a function y = f (x), then

Step 1. find dy/dx and solve for x such that dy/dx = 0
Step 2. classify the stationary points.

Method 1. By examining the sign of dy/dx near the point, in
which case + → 0 → − indicates a local maximum point,
−→ 0→+ indicates a local minimum point, and+→ 0→
+ or −→ 0→− indicates a point of inflexion.
Method 2. By finding d2y/dx2 at the point.

If d2y/dx2 < 0 then there is a local maximum point

If d2y/dx2 > 0 then there is a local minimum point

However, if d2y/dx2 = 0 then this test is inconclusive and
Method 1 must be used instead.

Substitute the values of x at the stationary points to find the relevant
values of y. Local maxima and minima are also called turning points.

2. If the function, defined for a range of values of x, is continuous, then
the overall maximum and minimum values can be found by finding
the values of y at the local maxima and minima and the values of y
at the boundary points. The maximum of all of these is the global
maximum and the minimum of all of these is the global minimum
value.
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Figure 11.10 (a) The graph
of H = 1/

√
ω2c2 + (ω2 − 1)2,

as in Example 11.7 for
c = 2, c = 1

2 , and c = 1
4 . (b)

The graph of H for c = 0.
H = 1/(1− ω2) for ω < 1 and
H = 1/(ω2 − 1) for ω > 1.

3. There are many practical problems that involve the need to find the
maximum or minimum value of a function.

4. The stationary values are used when sketching a graph. We also
look for: (a) values where the graph crosses the axes; (b) points of
discontinuity and the behaviour near discontinuities; (c) behaviour
as x tends to ±∞.

11.5 Exercises

11.1. Find and classify the stationary points of the following
functions:

(a) y = x2 − 5x + 2 (b) y = −3x2 + 4x

(c) y = 3x3 − x (d) x = 2t + 200

t
(e) w = z4 + 4z3 − 8z2 + 2

11.2. Find the overall maximum and minimum value of
x/(2x2 + 1) in the range x ∈ [−1, 1]

11.3. Sketch the graphs of the following functions:

(a) y = (x − 3)(x + 5)

x + 2
(b) y = x + 1

x

(c) y = x3 − 3x − 1 (d) y = (x − 1)(x + 4)

(x − 2)(x − 3)

11.4. Sketch the graph of y = 2 sin(x) − sin(2x) for x
between −2π and 2π .
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11.5. Find the overall maximum and minimum value of
y = x3(x − 1) in the range x ∈ [0, 2].

11.6. An open box of variable height and width is to have
a length of 3 m. It should not use more than a total of
20 m2 of surface area. Find the height and width that
gives maximum volume.

11.7. An LRC series circuit has an impedance of magnitude

Z =
√
R2 +

(
ωL− 1

ωC

)2

where R is the resistance, L the inductance, C the
capacitance andω is the angular frequency of the volt-
age source. Sketch Z against ω for the case where
R = 200 , C = 0.03 µF, L = 2 mH.

11.8. A crank is used to drive a piston as in Figure 11.11.
The angular velocity of the crank shaft is the rate of
change of the angle θ , ω = dθ/dt . The piston moves
horizontally with velocity vp and acceleration ap. The
crankpin performs circular motion with a velocity ofvc

and centripetal acceleration of ω2r . The acceleration
ap of the piston varies with θ and is related by

ap = ω2r

(
cos(θ)+ r cos(2θ)

l

)

where r is the length of the crank and l is the length
of the connecting rod. Substituting r = 150 mm and
l = 375 mm find the maximum and minimum values
of the acceleration ap.

Figure 11.11 Crank used to drive a piston
(Exercise 11.8).

11.9. A water wheel is constructed with symmetrical curved
vanes of angle of curvature θ . Assuming that friction
can be taken as negligible, the efficiency, η, that is, the
ratio of output power to input power, is calculated as

η = 2(V − v)(1+ cos(θ))v

V 2

where V is the velocity of the jet of water as it strikes
the vane, v is the velocity of the vane in the direc-
tion of the jet, and θ is constant. Find the ratio v/V
that gives maximum efficiency and find the maximum
efficiency.

11.10. Power is transmitted by a fluid of density ρ moving
with positive velocity V along a pipeline of con-
stant cross-section area A. Assuming that the loss
of power is mainly attributable to friction and that
the friction coefficient f can be taken to be a con-
stant, then the power transmitted is given by P ,
P = ρgA(hV −cV 3), where, g is acceleration due to
gravity and h is the head (the energy per unit weight).
c = 4f l/2gd where l is the length of the pipe and d
is the diameter of the pipe. Assuming h is a constant
find the value of V which gives a maximum value for
P , and given the input power is Pi = ρgAV h, find
the maximum efficiency.
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12 Sequences and
series

12.1
Introduction

Sequences have two main applications: serving as a digital representation
of a signal after analog to digital (A/D) conversion or as a method of
solving a numerical problem by getting a sequence of answers, each one
being closer to the exact, correct solution.

The advance of digital communications has resulted from the increased
accuracy in reproduction of the stored or transmitted signal in digital form.
For instance, the reproduction of the stored signal by a compact disc player
is far superior to the analog reproduction of the old vinyl records. It is also
very convenient to be able to apply filters and other processing techniques
in digital form using computers or dedicated microprocessors.

Sequences are often defined in the form of a recurrence relation, special
sorts of which are also called difference equations. Recurrence relations
can be found which will solve certain problems numerically or they may
be derived by modelling the physical processes in a digital system.

The sum of a sequence of terms is called a series. An important example
of a series is the Taylor series which can be used to approximate a function.
Later in the book, we will look at other examples of series such as z
transforms and Fourier series.

Many problems involving sequences and series are solved using a com-
puter. However, it is useful to be able to solve a few simple cases without
the aid of a computer, as this can often help check a result for some special
cases. Some examples of special sequences are the arithmetic progression
and the geometric progression.

12.2 Sequences
and series
definitions

A sequence is a collection of objects (not necessarily all different)
arranged in a definite order. Some examples of sequences are:

1. The numbers 1 to 10, that is, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2. Red, Red and Amber, Green, Amber, Red
3. 3, 6, 9, 12, 15, 18.

When a sequence follows some ‘obvious’ rule then three dots (. . .) are
used to indicate ‘and so on’, for example, list 1 above may be rewritten as
1, 2, 3, . . . , 10.

The examples so far have all been finite sequences. Infinite sequences
may use dots at the end, meaning carry on indefinitely in the same fashion,
for example,

2, 4, 6, 8, 10, . . .
1, 2, 4, 8, 16, . . .
4, 9, 16, 25, 36, . . .
1, 1, 2, 3, 5, 8, . . .
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and the (. . .) indicates that there is no end to the sequence of values and
that they carry on in the same fashion.

The elements of a sequence can be represented using letters, for
example,

a1, a2, a3, a4, . . . , an, . . .

The first term is called a1, the second a2 etc. (Sometimes it is more
convenient to say that a sequence begins with a zeroth term, a0).

If a rule exists by which any term in the sequence can be found then this
may be expressed by the ‘general term’ of the sequence, usually called
an or ar . This rule may be expressed in the form of a recurrence relation,
giving an+1 in terms of an, an−1, . . . . In this case, it may be quite difficult
to find the explicit function definition, that is to solve the recurrence
relation. We look at solving recurrence relations in Chapter 14.

A sequence is a function of natural numbers, or integers. The function
expression is given by the general term.

Example 12.1 Find the general term of the sequence of numbers from
1 to 10

Solution 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 has the general term an = n, where
n = 1 to 10.

We can also write this in ‘standard’ function notation as

a(n) = n, where n = 1 to 10.

Check: To check that the correct general term or function expression
has been found, reproduce a few of the members of the sequence by
substituting values for n in the general term and check that the sequence
found is the same as the given values. Wherever n occurs in the function
expression or general term replace it by a value.

an = n
for n = 1 gives a1 = 1
for n = 2 gives a2 = 2, etc.

Figure 12.1 The ‘square
numbers’.

Example 12.2 Find the general term of the sequence 1, 4, 9, 16, 25, 36, . . .
and also define the sequence in terms of a recurrence relation.

Solution Notice that each term in the sequence is a complete square.
The first term is 12, the second term 22, etc. We therefore speculate that
the general term is

an = n2, where n = 1 to∞.

In function notation this is

a(n) = n2

To define the sequence in terms of a recurrence relation means that we
must find a way of getting to the n + 1th term if we know the nth term.
There is no prescribed way of doing this: we merely have to try out a few
ideas as to how to see a pattern in the sequence. In this case, we can best
see the pattern with the aid of a diagram where we represent the ‘square
numbers’ using a square as in Figure 12.1. Here we can see that to get
from 22 to 32 we need to add a row of two dots and a column of three
dots. To get from 32 to 42 we need to add a row of three dots and a column
of four dots. In general, to get from n2 to (n+ 1)2, we need to add a row
of n dots and a column of n+ 1 dots.
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As n2 is an and (n+ 1)2 is an+1, the rule can be expressed as

an+1 = an + n+ n+ 1 ⇔ an+1 = an + 2n+ 1.

However, we also need to give the starting value in order to define the
sequence using a recurrence relation, so we can say that

an+1 = an + 2n+ 1, where a1 = 1.

Check: To check, we substitute a few values into both the explicit defini-
tion and the recurrence relation to see if we correctly reproduce the terms
in the sequence.

Substitute n = 1, n = 2, n = 3, n = 4, and n = 5 into an = n2.
We get 1, 4, 9, 16, 25, correctly reproducing the first five terms of the
sequence.

Substituting n = 1, n = 2, n = 3 and n = 4, into an+1 = an+2n+1,
where a1 = 1 gives the following.

n = 1: a2 = a1+ 2+ 1; as a1 = 1, this gives a2 = 1+ 2+ 1 = 4, which
is correct,

n = 2: a3 = a2+ 4+ 1, as a2 = 4, this gives a3 = 4+ 4+ 1 = 9, which
is correct,

n = 3: a4 = a3 + 6+ 1, as a3 = 9, this gives a4 = 9+ 6+ 1 = 16,
which is correct,

n = 4: a5 = a4 + 8+ 1, as a4 = 16, this gives a5 = 16+ 8+ 1 = 25,
which is correct.

Example 12.3 Find a recurrence relation to define the Fibonacci
sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

Solution After some trial and error attempts to spot the rule, we should
be able to see that the way to get the next number is to add up the last
two numbers, so the next term after 13, 21 is 13+ 21 = 34 and the next
is 21+ 34 = 55, etc.

The recurrence relation is therefore

an+1 = an + an−1

and because we have two previous values of the sequence used in the
recurrence relation then we also need to give two initial values. So we
define that a1 = 1 and a2 = 1.

The recurrence relation definition of the Fibonacci sequence is

an+1 = an + an−1, where a1 = 1 and a2 = 1.

Check: Substitute a few values for n into the recurrence relation to see if
it correctly reproduces the given values of the sequence

n = 2: a3 = a2 + a1, where a1 = 1 and a2 = 1, so a3 = 1+ 1 = 2,
which is correct,
n = 3: a4 = a3 + a2, where a2 = 1 and a3 = 2, so a4 = 2+ 1 = 3,

which is correct,
n = 4: a5 = a4 + a3, where a4 = 3 and a2 = 1, so a5 = 3+ 2 = 5,

which is correct.

Digital representation of signals
Supposing we would like to give a digital representation of the sine wave
of angular frequency 3: f (t) = sin(3t), then we might choose a(n) =
sin(3n) to give the sequence of values.
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Figure 12.2 The sequence
given by a(n) = sin(3n).

Figure 12.3 The function
f (t ) = sin(3t ) sampled at an
interval of T = 0.1, giving the
sequence a(n) = sin(0.3n).

Substituting some values for n gives the sequence (to 2 significant
figures or s.f.)

n = 0: a(0) = sin(0) = 0
n = 1: a(1) = sin(3) = 0.14
n = 2: a(2) = sin(6) = −0.27
n = 3: a(3) = sin(9) = 0.41

This sequence is shown on a graph in Figure 12.2.
This graph does not look like the sine wave it is supposed to represent.

This is due to ‘undersampling’. a(n) = sin(3n) is the function f (t) =
sin(3t) sampled at a sampling rate of 1, which is very inadequate to see a
good representation. Digital signals are usually expressed in terms of the
sampling interval T so that a suitable sampling interval can be chosen.
For the function f (t) = sin(3t), this gives the sequence

a(n) = sin(3T n) where n = 0, 1, 2, 3, . . .

The original variable, usually time, t , can be given by t = T n. Choosing
T = 0.1, for instance, gives

a(n) = sin(3× 0.1n) = sin(0.3n) where t = nT = 0.1n.

Substituting a few values for n gives

n = 0: a(0) = 0, t = 0
n = 1: a(1) = 0.3, t = 0.1
n = 2: a(2) = 0.56, t = 0.2
n = 3: a(3) = 0.78, t = 0.3
n = 4: a(4) = 0.93, t = 0.4
n = 5: a(5) = 1, t = 0.5
n = 6: a(6) = 0.97, t = 0.6.

The values are plotted against t in Figure 12.3.
We can see that the picture in Figure 12.3 is a reasonable representation

of the function. The digital representation of f (t) = sin(3t) is therefore
f (nT ) = sin(3nT ), where n is an integer.

The problem of undersampling, which we saw in Figure 12.2 leads
to a phenomenon called aliasing. Instead of looking like line sin(3t),
Figure 12.2 looks like a sine wave of much lower frequency. This same
phenomenon is the one that makes car wheels, pictured on the television,
apparently rotate backwards and at the wrong frequency. The television
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picture is scanned 30 times per second whereas the wheel on the car is
probably revolving in excess of 30 times per second. The sample rate is
insufficient to give a good representation of the movement of the wheel.
The sampling theorem states that the sampling interval must be less than
T = 1/(2f ) seconds in order to be able to represent a frequency of
f hertz.

Example 12.4 Represent the function y = 4 cos(10πt) as a sequence
using a sampling interval of T = 0.01. What is the maximum sampling
interval that could be used to represent this signal?

Solution The digital representation of y = 4 cos(10πt) is given by

y(0.01n) = 4 cos(0.1πn).

Substituting some values for n gives (to 3 s.f.)

n 0 1 2 3 4 5 6 7 8 9 10
y 1 0.951 0.809 0.588 0.309 0 −0.309 −0.588 −0.809 −0.951 −1

The maximum sampling interval that could be used is 1/(2f ) where f ,
the frequency in this case, is 5, giving T = 1/(2× 5) = 0.1.

Example 12.5 A triangular wave of period 2 is given by the function

f (t) = t 0 � t < 1

f (t) = 2− t 1 � t < 2.

Draw a graph of the function and give a sequence of values for t � 0
at a sampling interval of 0.1.

Solution To draw the continuous function, use the definition y = t

between t = 0 and 1 and draw the function y = 2− t in the region where
t lies between 1 and 2. The function is of period 2 so that section of the
graph is repeated between t = 2 and 4, t = 4 and 6, etc.

The sequence of values found by using a sampling interval of 0.1 is
given by substituting t = T n = 0.1n into the function definition, giving

a(n) = 0.1n 0 � 0.1n < 1 (for n between 0 and 10)

a(n) = 2− 0.1n 1 � 0.1n < 2 (for n between 10 and 20).

The sequence then repeats periodically.
This gives the sequence:

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4,
0.3, 0.2, 0.1, 0, 0.1, 0.2, . . .

The continuous function is plotted in Figure 12.4(a) and the digital
function in Figure 12.4(b).

Figure 12.4 (a) A triangular
wave of period 2 given by
f (t ) = t , 0 < t � 1, f (t ) =
2− t , 1 < t < 2. (b) The
function sampled at a
sampling interval of 0.1.
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Series
A series is the sum of a sequence of numbers or of functions. If the series
contains a finite number of terms then it is a finite series otherwise it is
infinite. For example,

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 10

is a finite series, while

1+ 1/2+ 1/4+ 1/8+ 1/16+ · · · + 1/2n + · · ·
is an infinite series.

To represent series, we may use the sigma notation �.

n=10∑
n=0

1

2n

means ‘sum all the terms 1/2n for n from 0 to 10’.

Example 12.6 Express the following series in sigma notation

−1+ 4− 9+ 16+ · · · + 256.

Solution To write in sigma notation, we need to first express the general
term in the sequence. We notice here that the pattern is that each term is
a complete square with every other term multiplied by −1. The general
term is, therefore

(−1)nn2.

The (−1)n part of this will just cause the sign of the term to be negative
or positive depending on whether n is odd or even.

We can now write

−1+ 4− 9+ 16+ · · · + 256 =
n=16∑
n=1

(−1)nn2.

The limits of the summation are found by considering the value of n
to use for the first and last terms. Check that the expression is correct by
substituting a few values for nwhich should recover terms in the original
series.

We now look at two commonly encountered types of sequences and
series, the arithmetic and geometric progression.

12.3 Arithmetic
progression

An arithmetic progression (AP) is a sequence where each term is found by
adding a fixed amount on to the previous term. This fixed amount is called
the common difference. Some examples of arithmetic progressions are:

1. −1, 3, 7, 11, 15, 19, 23, 27, . . .

Notice that successive terms can be found by adding 4 to the previous
term

−1+ 4 = 3

3+ 4 = 7

7+ 4 = 11

...
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showing that the common difference is 4.

2. 25, 15, 5,−5,−15, . . .

Notice that successive terms can be found by adding−10 to the previous
term

25− 10 = 15

15− 10 = 5

5− 10 = −5

−5− 10 = −15

showing that the common difference is −10.
It is not difficult to obtain the recurrence relation for the arithmetic

progression. If we call the common difference d, then the (n+ 1)th term
can be found by the previous term, the nth, by adding on d, that is

an+1 = an + d.

This can also be expressed using the difference operator, � (the Greek
capital letter delta) so that �an = d, where �an = an+1 − an.

If the first term is a and the common difference is d then the sequence is

a, a + d, a + 2d, a + 3d, a + 4d, a + 5d, a + 6d, . . .

The second term is a+d, the fourth is a+3d, the seventh term is a+6d
and the general term

an = a + (n− 1)d.

Example 12.7 The seventh term of an AP is 11 and the sixteenth term
is 29. Find the common difference, the first term of the sequence, and the
nth term.

Solution If the first term of the sequence is a and the common difference
is d , then the seventh term is given by

an = a + (n− 1)d with n = 7

so

a + 6d = 11. (12.1)

Similarly, the sixteenth term is a + 15d and as we are given that this is
29, we have

a + 15d = 29. (12.2)

Subtracting Equation (12.1) from Equation (12.2) gives 9d = 18 ⇔
d = 2, and substituting this into Equation (12.1) gives

a + 6× 2 = 11 ⇔ a = 11− 12⇔ a = −1.

That is, the first term is −1 and the common difference is 2. Hence, the
nth term is a + (n − 1)d = −1 + (n − 1)2 = −1 + 2n − 2 giving,
an = 2n− 3.

TLFeBOOK



“chap12” — 2003/6/8 — page 261 — #8

Sequences and series 261

Check: To check that the general term is correct for this sequence sub-
stitute n = 7 giving a7 = 2(7) − 3 = 14 − 3 = 11; substitute n = 16
giving a16 = 2(16)− 3 = 29, which are the values given in the problem.

The sum of n terms of an
arithmetic progression
There are some simple formulae which can be used to find the sum of the
first n terms of an AP. These can be found by writing out all the terms of
a general AP from the first term to the last term, �, and then adding on
the same series again but this time reversing it. We will begin by finding
the sum of 20 terms of an AP with first term 1 and common difference 3,
giving the general term as 1+ (n− 1)× 3 and the last term as 1+ 19× 3

S20 = 1+ (1+ 3)+ (1+ 2× 3)+ · · · + (1+ 18× 3)+ (1+ 19× 3)

on reversing, we have

S20 = (1+19×3)+ (1+18×3)+ (1+17×3)+· · ·+ (1+1×3)+1

on adding we have 2S20 = (2+ 19× 3)+ (2+ 19× 3)+ (2+ 19× 3)+
· · · + (2+ 19× 3)+ (2+ 19× 3).

Notice that each term in the last line is the same, and is equal to the
sum of the first term (1) and the last term (1+ 19× 3) giving 2+ 19× 3.
As there are 20 terms, we have

2S20 = 20× (2+ 19× 3)

S20 = 10× (2+ 19× 3) = 590.

It would obviously be simpler to be able to use a formula to calculate
this rather than having to repeat this process for every AP. Therefore,
we go through the same process for an AP of first term a and common
difference d with last term l.

The sum of the first n terms of an AP is given by:-

Sn = a + (a + d)+ (a + 2d)+ · · · + (a + (n− 2)d)

+ (a + (n− 1)d)

Sn = (a + (n− 1)d)+ (a + (n− 2)d)+ (a + (n− 3)d)

+ · · · + (a + d)+ a
2Sn = (2a + (n− 1)d)+ (2a + (n− 1)d)+ (2a + (n− 1)d)

+ · · · + (2a + (n− 1)d)+ (2a + (n− 1)d).

Using the fact that there are n terms, we have

2Sn = n(2a + (n− 1)d)

Sn = n

2
(2a + (n− 1)d)

which gives the first of two formulae that can be used to find the sum of
n terms of an AP.

An alternative formula is found by noticing that the sum is the given by
the number of terms multiplied by the average term. The average term is
half the sum of the first term and the last term: average term = (a+ l)/2.
This gives the sum of n terms as

Sn = n

2
(a + l).
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This is the second of the two formulae that may be used to find the sum
of the first n terms of an AP.

Example 12.8 Find the sum of an AP whose first term is 3 and has 12
terms ending with −15.

Using the formula Sn = n

2
(a+l), and then substituting n = 12, a = 3,

and l = −15:

Sn = 12

2
(3− 15) = 6(−12) = −72.

Example 12.9 Find

r=9∑
r=1

(
1− r

4

)
.

Write out the series by substituting values for r

r=9∑
r=1

(
1− r

4

)
=
(

1− 1

4

)
+
(

1− 2

4

)
+
(

1− 3

4

)
+
(

1− 4

4

)

+
(

1− 5

4

)
+
(

1− 6

4

)
+ · · · +

(
1− 9

4

)

= 3

4
+ 1

2
+ 1

4
+ 0− 1

4
− 1

2
· · · − 5

4

This is the sum of an arithmetic progression with nine terms where a = 3
4

and d = − 1
4 . Using

Sn = n

2
(2a + (n− 1)d)

gives Sn = 9
2

(
2× 3

4 + (9− 1)
(− 1

4

) ) = 9
2

(
6
4 − 8

4

)
= − 9

4 .

12.4 Geometric
progression

A geometric progression (GP) is a sequence where each term is found
by multiplying the previous term by a fixed number. This fixed number
is called the common ratio, r . We have already come across examples
of geometric progressions in Chapter 8, where we looked at exponential
growth. There we had the example of e1 deposited in a bank with a real
rate of growth of 3% so we get the sequence 1, 1.03, 1.09, 1.13, 1.16,
1.19, . . . (expressed to the nearest cent) where each year the amount in
the bank is multiplied by 1.03.

Some more examples of GPs are

1. 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, . . .

Notice that successive terms can be found by multiplying the previous
term by 0.5:

16× 0.5 = 8

8× 0.5 = 4

4× 0.5 = 2

...
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showing that the common ratio is 0.5.

2. 1, 3, 9, 27, 81, . . .

Notice that successive terms can be found by multiplying the previous
term by 3:

1× 3 = 3

3× 3 = 9

9× 3 = 27

...

showing that the common ratio is 3.

3. −1, 2,−4, 8,−16, . . .

Notice that successive terms can be found by multiplying the previous
term by −2:

(−1)× (−2) = 2

2× (−2) = −4

(−4)× (−2) = 8

...

showing that the common ratio is −2.
It is not difficult to obtain the recurrence relation for the geometric

progression. If we call the common ratio r then the (n + 1)th term can
be found by the previous term, the nth, by multiplying by r , that is

an+1 = ran.

This can also be expressed using the difference operator, �, so that
�an = (r − 1)an, where�an = an+1− an. If a GP has first term, a, and
common ratio, r , then the sequence is

a, ar , ar2, ar2, ar4, . . . , arn−1, . . .

The second term is ar , the fourth term is ar3 and the seventh term is ar6;
the general term is given by

an = arn−1

Example 12.10 Find the general term of the GP
16, 8, 4, 2, 1, 0.5, 0.25, 0.125, . . .

Solution This GP has first term 16. The common ratio is found by taking
the ratio of any two successive terms. Take the ratio of the first two terms
(second term divided by the first term) to give

r = 8/16 = 0.5

The general term is given by arn−1 = 16(0.5)n−1.

Example 12.11 A GP has third term 12 and fifth term 48. Find the first
term and the common ratio.
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Solution Call the first term a and the common ratio r . We know that the
nth term is given by an = arn−1. The fact that the third term is 12 gives
the equation

ar2 = 12 (12.3)

and the fact that the fifth term is 48 gives the equation

ar4 = 48. (12.4)

Dividing Equation (12.4) by Equation (12.3) gives

r2 = 4.

This means that there are two possible values for the common ratio: either
2 or−2. To find the first term, substitute for r into Equation (18.3), to get

ar2 = 12 and r = ±2 ⇒ 4a = 12 ⇔ a = 3

So the first term is 3.

The sum of a geometric progression
Consider the sum of the first six terms of the GP with first term 2 and
common ratio 4. To try to find the sum we first write out the original
series and then multiply the whole series by the common ratio, as this
will reproduce the same terms in the series, only shifted up one place. We
can then subtract the two expressions:

S6 = 2+ 8+ 32+ 128+ 512+ 2048

4S6 = 8+ 32+ 128+ 512+ 2048+ 9192

S6 − 4S6 = 2 − 9192

So

S6 = 2− 9192

1− 4

as 9192 = 2× 46, this gives the sum of the first six terms as

S6 = 2(1− 46)

1− 4
.

Applying this process to a general GP gives a formula for the sum
of the first n terms. Consider the sum, Sn, of the first n terms of a GP
whose first term is a and whose common ratio is r . Multiply this by r and
subtract.

Sn = a + ar + ar2 + · · · + arn−2 + arn−1

rSn = ar + ar2 + · · · + arn−2 + arn−1 + arn
Sn − rSn = a − arn.

This gives

Sn(1− r) = a − arn = a(1− rn) ⇔ Sn = a(1− rn)
1− r .

If r > 1, it may be more convenient to write

Sn = a(rn − 1)

r − 1
.
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Example 12.12 The second term of a GP is 2, and the fifth term is
0.03125. Find the first term, the common ratio, and the sum of the first
10 terms.

Solution Let the first term be a and the common ratio r , then the nth
term is arn+1. The second term is 2 giving the equation

ar = 2. (12.5)

The fifth term is 0.03125 giving the equation

ar4 = 0.03125. (12.6)

Dividing Equation (12.6) by Equation (12.5) gives

ar4

ar
= 0.03125

2
⇔ r3 = 0.015625⇔ r = (0.015625)1/3 ⇔ r = 0.25.

Substituting this value for r into Equaton (21.5) gives

a(0.25) = 2⇔ a = 2/0.25⇔ a = 8.

Therefore, the first term is 8 and the common ratio is 0.25.
The sum of the first n terms is given by

Sn = a(1− rn)
1− r .

Substituting a = 8, r = 0.25, and n = 10 gives

S10 = a(1− (0.25)10)

1− 0.25
= 13.33 to 4 s.f.

Example 12.13 The general term of a series is given by

an = 2n+1

3n
.

Show that the terms of the series form a GP and find the sum of the first
n terms.

Solution To show that this is a GP, we must show that consecutive terms
have a common ratio. Take two terms, the mth term and the (m + 1)th
term. The mth term is
2m+1

3m
= am

and the (m + 1)th term is found by substituting n = m + 1 into the
expression for the general term, which gives

am+1 = 2(m+1)+1

3(m+1)
= 2m+2

3m+1
.

We can now spot that am+1 = 2
3am, meaning that the (m + 1)th term is

found by multiplying the mth term by 2
3 .

Alternatively, we could divide the (m+ 1)th term by the mth term

am+1

am
= 2m+2/3m+1

2m+1/3m
= 2m+2

3m+1
× 3m

2m+1
= 2

3

giving the common ratio as 2
3 .

To find the sum of n terms, we need to know the first term. To find
this, substitute n = 1 into 2n+1/3n, giving 22/3 = 4

3 . Thus, the sum of n
terms is given by:
4
3

(
1− ( 2

3

)n)
1− 2

3

=
4
3

(
1− ( 2

3

)n)
1
3

= 4
(

1− ( 2
3

)n)
.
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The sum to infinity of a geometric
progression
Consider Example 12.13 concerning the series whose general term is
2n+1/3n. This can be written as

4

3
+ 4

3

(
2

3

)
+ 4

3

(
2

3

)2

+ 4

3

(
2

3

)3

+ 4

3

(
2

3

)4

+ · · · +
(

2n+1

3n

)
+ · · ·

and the sum of n terms is 4(1− (2/3)n).
We can write out this sum for various values of n to 7 s.f. as in

Table 12.1.
After 40 terms, the sum has become 4 to 7 s.f. and however many more

terms are considered the sum is found to be 4 to 7 s.f. This shows that the
limit of the sum is 4 to 7 s.f. The limit of the sum of n terms as n tends
to infinity is called the sum to infinity.

We can see that the limit is exactly 4 in this case by looking what
happens to 4(1− (2/3)n) as n tends to infinity.

4(1− (2/3)n) = 4− 4(2/3)n.

The second term becomes smaller and smaller as n gets bigger and
bigger, and we can see that (2/3)n→ 0 as n→∞, therefore

S∞ = lim
n→∞ Sn = lim

n→∞(4− 4(2/3)n) = 4.

This approach can also be applied to the general GP, where

Sn = a(1− rn)
1− r = a

1− r −
arn

1− r .

If |r| < 1, we have

lim
n→∞(r

n) = 0

which gives

lim
n→∞ Sn = lim

n→∞
a

1− r − lim
n→∞

arn

1− r =
a

1− r .

We can write

S∞ = a

1− r |r| < 1.

Example 12.14 Find the sum to infinity of a GP with first term −10
and common ratio 0.1.

Table 12.1 The sum of the first n terms of the GP expressed to 7 s.f., for various values of n

n 5 10 15 20 25 30 35 40 45 50

4(1− (2/3)n) 3.47325 3.930634 3.990865 3.998797 3.999842 3.999979 3.999997 4 4 4
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Solution The formula for the sum to infinity gives

S∞ = a

1− r .

Substituting a = −10 and r = 0.1 gives

S∞ = −10

1− 0.1
= −10

0.9
= −11

1

9
.

Example 12.15 Express the recurring decimal 0.02̇ = (0.0222222 . . .)
as a fraction.

Solution

0.02̇ = 0.02+ 0.002+ 0.0002+ · · ·

This is the sum to infinity of a GP with first term 0.02 and common ratio
0.1. The sum to infinity is therefore

S∞ = 0.02

1− 0.1
= 0.02

0.9
= 2

90

giving 0.02̇ = 2/90.

Example 12.16 Find the sum to infinity of

1+ z− z2 + z3 − z4 · · ·

where 0 < z < 1.

Solution The first term of this series is 1 and the common ratio is −z
giving the sum to infinity as

S∞ = 1

1− (−z) =
1

1+ z .

Note that in the case of a GP with common ratio |r| � 1, the series sum
will not tend to a finite limit. For instance, the sum of the GP

2+ 4+ 8+ 16+ 32+ · · · + 2n

gets much larger each time a new term is added. We say that the sum of
this series tends to infinity.

12.5 Pascal’s
triangle and the
binomial series

Expressions like (3 + 2y)5 are called binomial expressions. Expanding
these expressions can be very tedious as we need to multiply out (3+2y)
(3+2y)(3+2y)(3+2y)(3+2y) term by term. To speed up this process,
we analyse the coefficients of the terms in the expansion and find that
they make a triangular pattern, called Pascal’s triangle.
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Pascal’s triangle
Consider a simpler case of (1+x)5. To work this out, we would first start
with (1+ x) and multiply by (1+ x) to get (1+ x)2. We then multiply
(1+ x)2 by (1+ x) to get (1+ x)3, etc. continuing this process gives the
following

1+ x (1)
1+ 2x + x2 (2)
1+ 3x + 3x2 + x3 (3)
1+ 4x + 6x2 + 4x3 + x4 (4)
1+ 5x + 10x2 + 10x3 + 5x4 + x5 (5)

If we write out the coefficients of each line of this in a triangular form,
we get

1

1

1

1

1 5 10 10 5 1

1

2

3

4 6 4 1

3

1

1

(5)

(3)

(4)

(2)

(1)

Notice that each line can be found from the line above by adding pairs
of numbers, where the outer numbers are always 1. That is, looking at line
5, the first number is 1, the others are found by adding the two numbers
above, 5 = 1 + 4, 10 = 4 + 6, 10 = 6 + 4, 5 = 4 + 1, and the last
number is 1.

Example 12.17 Expand (1+ x)7 in powers of x.

Solution Write out the first seven lines of the Pascal’s triangle in order
to find the coefficients in the expansion, giving

1 1 (1)
1 2 1 (2)

1 3 3 1 (3)
1 4 6 4 1 (4)

1 5 10 10 5 1 (5)
1 6 15 20 15 6 1 (6)

1 7 21 35 35 21 7 1 (7)

Now write out the expansion with the powers of x, giving

1+ 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7.

As we can now easily find expansions of the form (1+x)n, we now move
on to the more difficult problem of expressions such as (1 + 2y)5. We
can find this by substituting x = 2y into the expression for (1+ x)5

(1+ 2y)5 = 1+ 5(2y)+ 10(2y)2 + 10(2y)3 + 5(2y)4 + (2y)5.

Remembering to take the powers of 2 as well as y this gives

(1+ 2y)5 = 1+ 10y + 40y2 + 80y3 + 80y4 + 32y5.
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Finally, we look at (3 + 2y)5, and to do this we need to be able to
expand expressions like (a + b)5. To find (a + b)5, start by dividing
inside the bracket by a to give

(a + b)5 = a5
(

1+ b
a

)5

and substitute x = b/a and use the expansion for (1+ x)5:

a5
(

1+ b
a

)5

= a5

(
1+ 5

(
b

a

)
+ 10

(
b

a

)2

+10

(
b

a

)3

+ 5

(
b

a

)4

+
(
b

a

)5
)

.

Multiplying out gives

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

Notice the pattern on the powers ofa andb. The powers ofa are decreasing
term by term as the powers of b are increasing. Always, the sum of the
power of a and power of b is 5.

We can now expand (3+ 2x)5 by using

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

and substitute a = 3 and b = 2x, giving

(3+ 2x)5 = (3)5 + 5(3)4(2x)+ 10(3)3(2x)2

+ 10(3)2(2x)3 + 5(3)(2x)4 + (2x)5
= 243+ 810x + 1080x2 + 720x3 + 240x4 + 32x5.

Example 12.18 Expand (2x − y)6.

Solution Find the sixth row of Pascal’s triangle

1 1 (1)
1 2 1 (2)

1 3 3 1 (3)
1 4 6 4 1 (4)

1 5 10 10 5 1 (5)
1 6 15 20 15 6 1 (6)

This gives the expansion of (a + b)6 as

a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6.

Now, substitute a = 2x and b = −y
(2x − y)6 = (2x)6 + 6(2x)5(−y)+ 15(2x)4(−y)2 + 20(2x)3(−y)3

+ 15(2x)2(−y)4 + 6(2x)(−y)5 + (−y)6
(2x − y)6 = 64x6 − 192x5y + 240x4y2 − 160x3y3

+ 60x2y4 − 12xy5 + y6.
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Example 12.19 Expand

(
x + 1

x

)3

.

Solution Find the third row of Pascal’s triangle

1 1 (1)
1 2 1 (2)

1 3 3 1 (3)

This gives the expansion of (a + b)3 as

(a + b)3 = a3 + 3a2b + 3ab2 + b3.

Now, substitute a = x and b = 1/x to give

(
x + 1

x

)3

= x3 + 3x2
(

1

x

)
+ 3x

(
1

x

)2

+
(

1

x

)3

(
x + 1

x

)3

= x3 + 3x + 3

x
+ 1

x3
.

Example 12.20 Expand (ex − e−x)4.

Solution Find the fourth row of Pascal’s triangle

1 1 (1)
1 2 1 (2)

1 3 3 1 (3)
1 4 6 4 1 (4)

This gives the expansion of (a + b)4 as

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

Now, substitute a = ex and b = −e−x to give

(ex − e−x)4 = (ex)4 + 4(ex)3(−e−x)+ 6(ex)2(−e−x)2

+ 4(ex)(−e−x)3 + (−e−x)4

= e4x − 4e2x + 6− 4e−2x + e−4x .

The binomial theorem
The binomial theorem gives a way of writing the terms which we have
found for the binomial expansion without having to write out all the lines
of Pascal’s triangle to find the coefficients. The rth coefficient in the
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binomial expansion of (1+ x)n is expressed by nCr or(
n

r

)
= n!
(n− r)!r!

where ‘!’ is the factorial sign. The factorial function is defined by

n! = n(n− 1)(n− 2) · · · 1
For example,

3! = 3× 2× 1 = 6, 6! = 6× 5× 4× 3× 2× 1 = 720.

The binomial expansion then gives

(1+ x)n = 1+
(
n

1

)
x +

(
n

2

)
x2 +

(
n

3

)
x3 +

(
n

4

)
x4

+ · · · +
(
n

r

)
xr + · · · + xn

and

(a + b)n = an +
(
n

1

)
an−1b +

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3

+
(
n

4

)
b4 + · · · +

(
n

r

)
an−rbr + · · · + bn.

This can also be written as

(1+ x)n = 1+ nx + n(n− 1)

2! x2 + n(n− 1)(n− 2)

3! x3 + · · · + xn

and the expansion for (a + b)n becomes

(a + b)n = an + nan−1b + n(n− 1)

2! an−2b2

+ n(n− 1)(n− 2)

3! an−3b3 + · · · + bn.

Example 12.21 Expand (1+ x)4.

Solution Using the binomial expansion

(1+ x)n = 1+ nx + n(n− 1)

2! x2 + n(n− 1)(n− 2)

3! x3 + · · · + xn.

Substituting n = 4 gives

(1+ x)4 = 1+ 4x + 4(3)

2! x
2 + 4(3)(2)

3! x3 + x4

= 1+ 4x + 6x2 + 6x3 + x4.

Example 12.22 Expand(
2− 1

x

)5

.
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Solution Find the binomial expansion of (a + b)n

(a + b)n = an + nan−1b + n(n− 1)

2! an−2b2

+ n(n− 1)(n− 2)

3! an−3b3 + · · · + bn.

This gives the expansion of (a + b)5 as

(a + b)5 = a5 + 5a4b + 5(4)

2! a
3b2 + 5(4)(3)

3! a2b3

+ 5(4)(3)(2)

4! ab4 + b5

= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.

Now, substitute a = 2 and b = −1/x to give

= (2)5 + 5(2)4(−1/x)+ 10(2)3(−1/x)2 + 10(2)2(−1/x)3

+ 5(2)(−1/x)4 + (−1/x)5

= 32− 80

x
+ 80

x2
− 40

x3
+ 10

x4
− 1

x5
.

Example 12.23 Find to 4 s.f without using a calculator: (2.95)4

Solution Write 2.95 = 3− 0.05 so we need to find (3− 0.05)4. Using
the expansion

(a + b)4 = a4 + 4a3b + 4(3)

2! a
2b2 + 4(3)(2)

3! ab3 + b4.

Substitute a = 3 and b = −0.05:

(3− 0.5)4 = (3)4 + 4(3)3(−0.5)+ 4(3)

2! (3)
2(−0.5)2

+ 4(3)(2)

3! (3)(−0.5)3 + (−0.5)4

= 81− 5.4+ 0.135− 0.0015+ 0.00000625

= 75.73 to 4 s.f.

12.6 Power
series

A power series is of the form

a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · · + anxn + · · ·

Many functions can be approximated by a power series. To find a series,
we use repeated differentiation. Supposing we wanted to find a power
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series for sin(x) we could write:

sin(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·
+ anxn + · · · (12.7)

For x = 0, we know that sin(0) = 0, hence substituting x = 0 in
Equation (12.7) we find

0 = a0.

To find a1, we differentiate both sides of Equation (12.7) to give

cos(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + 5a5x
4 + · · ·

+ nanxn−1 + · · · (12.8)

Substititute x = 0 and as cos(0) = 1, this gives:

1 = a1.

Differentiating Equation (12.8) we get:

− sin(x) = 2a2 + 3.2a3x
1 + 4.3a4x

2 + 5.4a5x
3 + · · ·

+ n(n− 1)anx
n−2 + · · · (12.9)

Therefore, at x = 0

0 = 2a2 ⇔ a2 = 0.

Differentiating Equation (12.9) we get:

− cos(x) = 3.2.1a3 + 4.3.2a4x + · · ·
+ n(n− 1)(n− 2)anx

n−3 + · · · (12.10)

Substituting x = 0 gives:

−1 = 3!a3 ⇔ a3 = −1/3!

A pattern is emerging, so that we can write:

sin(x) = x − x
3

3! +
x5

5! −
x7

7! · · ·

This is a power series for sin(x) which we have found by expanding
around x = 0.

When we expand around x = 0, we find a special case of the Taylor
series expansion called a Maclaurin series.

Maclaurin series: definition
If a function f (x) is defined for values of x around x = 0, within some
radius R, that is, for −R < x < R (or |x| < R) and if all its derivatives
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are defined then:

f (x) = f (0)+ f ′(0)x + f
′′(0)
2! x2 + f

′′′(0)
3! x3 + · · ·

+ f
(n)(0)

n! xn + · · · (12.11)

Notice that this is a power series with coefficient sequence:

an = f (n)(0)

n!

where f (n)(0) is found by finding the nth derivative of f (x) with respect
to x and then substituting x = 0.

Example 12.24 Find the Maclaurin series for f (x) = ex and give the
range of values of x for which the series is valid.

Solution Find all order derivatives of f (x) and substitute x = 0

f (x) = ex , f ′(x) = ex , f ′′(x) = ex , f ′′′(x) = ex , f (iv)(x) = ex

f (0) = e0 = 1, f ′(0) = 1, f ′′(0) = 1, f ′′′(0) = 1, f (iv)(0) = 1.

Substituting into Equation (12.11), the Maclaurin series is

ex = 1+ x + x
2

2! +
x3

3! +
x4

4! + · · · +
xn

n! + · · ·

As ex exists for all values of x, we can use this series for all values of x.

Example 12.25 Find a power series for sinh(x) and give the values of
x for which it is valid.

Solution Find all order derivatives of sinh(x) and substitute x = 0 in
each one.

f (x) = sinh(x), f ′(x) = cosh(x), f ′′(x) = sinh(x), f ′′′(x) = cosh(x),

etc.

f (0) = sinh(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = 1, f (iv)(0) = 0

Then

sinh(x) = x + x
3

3! +
x5

5! + · · ·

As sinh(x) is defined for all values of x then the series is valid for all
values of x.
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Example 12.26 Expand f (x) = 1/(1+ x) in powers of x.

Solution Find all order derivatives of f (x) and substitute x = 0

f (x) = 1

1+ x = (1+ x)
−1, f ′(x) = (−1)(1+ x)−2

f ′′(x) = (−1)(−2)(1+ x)−3, f ′′′(x) = (−1)(−2)(−3)(1+ x)−4

f (0) = 1 f ′(0) = −1 f ′′(0) = 2! f ′′′(0) = −3!.

Then

1

1+ x = 1− x + 2!
2!x

2 − 3!
3!x

3 · · ·
= 1− x + x2 − x3 · · · (−1)xn · · ·

As 1/(1 + x) is not defined at x = −1 we can only use this series for
|x| < 1.

The binomial theorem revisited
The binomial theorem, as stated in the previous section, was only given
for n as a whole positive number. We can now find the binomial expansion
for (1+ x)n for all values of n using the Maclaurin series.

f (x) = (1+ x)n.

Then

f ′(x) = n(1+ x)n−1

f ′′(x) = n(n− 1)(1+ x)n−2

f ′′′(x) = n(n− 1)(n− 2)(1+ x)n−3.

Substituting x = 0, we get

f (0) = 1, f ′(0) = n, f ′′(0) = n(n−1), f ′′′(0) = n(n−1)(n−2).

Therefore, using Equation (12.11) for the Maclaurin series, we find:

(1+ x)n = 1+ nx + n(n− 1)

2! x2 + n(n− 1)(n− 2)

3! x3 · · ·

Notice that n can take fractional or negative values, but if n is negative,
|x| < 1 (as found in Example 12.26). For many fractional values of n we
also need to keep to the restriction |x| < 1.
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Example 12.27 Expand (1+ x)1/2 in powers of x.

Solution Using the binomial expansion

(1+ x)n = 1+ nx + n(n− 1)

2! x2 + n(n− 1)(n− 2)

3! x3 · · · (12.12)

and substituting n = 1/2 gives

(1+ x)1/2 = 1+ 1

2
x +

1
2

( 1
2 − 1

)
2! x2

+
1
2

( 1
2 − 1

) ( 1
2 − 2

)
3! x3

+
1
2

( 1
2 − 1

) ( 1
2 − 2

) ( 1
2 − 3

)
4! x4 + · · ·

= 1+ 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4 + · · ·

Notice that (1+ x)1/2 = √1+ x is not defined for x < −1, so the series
is only valid for |x| < 1.

Series to represent products and
quotients

Example 12.28 Find the Maclaurin series up to the term in x3 for the
function

f (x) = (1+ x)1/2
1− x .

Solution As this function would be difficult to differentiate three times
(to use the Maclaurin series directly), we use

f (x) = (1+ x)1/2(1− x)−1

and find series for the two terms in the product then multiply them
together.

(1+ x)1/2 = 1+ 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4 + · · ·

(1− x)−1 = 1+ x + (−1)(−2)

2! (−x)2

− (−1)(−2)(−3)

3! (−x)3 · · ·
(1− x)−1 = 1+ x + x2 + x3 + · · · + xn + · · ·
Then

(1+ x)1/2(1− x)−1 =
(

1+ 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4 + · · ·

)
× (1+ x + x2 + x3 + · · · )
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Up to the term in x3:

(1+ x)1/2(1− x)−1 = 1+ x + x2 + x3 + 1

2
x + 1

2
x2 + 1

2
x3

− 1

8
x2 − 1

8
x3 + 1

16
x3

= 1+
(

1+ 1

2

)
x +

(
1+ 1

2
− 1

8

)
x2

+
(

1+ 1

2
− 1

8
+ 1

16

)
x3

= 1+ 3

2
x +

(
11

8

)
x2 +

(
23

16

)
x3.

Approximation
Power series can be used for approximations.

Example 12.29 Use a series expansion to find
√

1.06 correct to 5 s.f.

Solution We need to write
√

1.06 in a way that we could use the binomial
expansion, so we use

√
1.06 = √1+ 0.06 = (1+ 0.06)1/2

When doing this it is important that the second term, in this case 0.06,
should be a small number so that its higher powers will tend towards zero.

We can now use the binomial expansion, taking terms up to x3,
as we estimate that terms beyond that will be very small. Using
Equation (12.12), we find

(1+ x)1/2 = 1+ 1

2
x − 1

8
x2 + 1

16
x3 − · · ·

Now substitute x = 0.06 giving

√
1.06 ≈ 1+ 0.06

2
− (0.06)2

8
+ (0.06)3

16

= 1+ 0.03− 0.00045+ 0.0000135 = 1.0295635

⇒√1.06 = 1.0296 to 5 s.f.

Example 12.30 Find sin(0.1) correct to five decimal places by using a
power series expansion.

Solution At the beginning of this section, we found that the power series
expansion for sin(x) was as follows:

sin(x) = x − x
3

3! +
x5

5! − · · ·

We substitute x = 0.1 to find sin(0.1) and continue until the next term
is small compared to 0.000005 which means that it would not effect the
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result when calculated to five decimal places:

sin(0.1) = 0.1− (0.1)3

3! +
(0.1)5

5! − · · ·
= 0.1− 0.00016̇+ 0.00000083̇− . . .
= 0.09983 (to five decimal places).

Taylor series
Maclaurin’s series is just a special case of Taylor series. A Taylor series
is a series expansion of a function not necessarily taken around x = 0.
This is given by:

If a function f (x) is defined for values of x around x = a, within some
radius R, that is, for a − R < x < a + R (or |x − a| < R) and if all its
derivatives are defined, then:

f (x) = f (a)+ f ′(a)(x − a)+ f
′′(a)
2! (x − a)2 + f

′′′(a)
3! (x − a)3

+ · · · + f
(n)(a)

n! (x − a)n + · · · (12.13)

or substituting x = a + h, where h is usually considered to be a small
value, this gives

f (a + h) = f (a)+ f ′(a)h+ f
′′(a)
2! h2 + f

′′′(a)
3! h3

+ · · · + f
(n)(a)

n! hn + · · · (12.14)

Example 12.31 Given sin(45◦) = 1/
√

2 and cos(45◦) = 1/
√

2,
approximate sin(44◦) by using a power series expansion.

Solution

sin(44◦) = sin(45◦ − 1◦).

Remember that the sine function is defined as a function of radians so
we must convert the angles to radians in order to use the Taylor series:
45◦ = π/4 and 1◦ = π/180.

Expand using the Taylor series for sin(a+h)where a = π/4 and using
Equation (12.14)

f (a + h) = f (a)+ f ′(a)h+ f
′′(a)
2! h2 + f

′′′(a)
3! h3

+ · · · + f
(n)(a)

n! hn + · · ·
f (x) = sin(x), f ′(x) = cos(x),

f ′′(x) = − sin(x), f ′′′(x) = cos(x)

f (π/4) = 1√
2

, f ′(π/4) = 1√
2

,

f ′′(π/4) = 1√
2

, f ′′′(π/4) = 1√
2

,
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So

sin((π/4)+ h) = 1√
2
+ 1√

2
h+ 1√

2

h2

2! +
1√
2

h3

3! + · · ·

Substituting h = −π/180 radians, we get

sin(44◦) = 1√
2

(
1− π

180
+ 1

2

( π

180

)2 + 1

6

( π

180

)3 + · · ·
)

= 1√
2
(1− 0.01745− 0.0001523+ 0.0000009+ · · · )

= 0.69466 to five decimal places.

L’Hopital’s rule
When sketching graphs of functions in Chapter 11, we looked at graphs
where the function is undefined for some values ofx. The functionf (x) =
1/x, for instance, is not defined when x = 0 and tends to−∞ as x → 0−
and tends to +∞ as x → 0+. Not all functions that have undefined
points tend to±∞ near the point where they are undefined. For example,
consider the function f (x) = sin(x)/x. The graph of this function is
shown in Figure 12.5. The function is not defined for x = 0, which we
can see by substituting x = 0 into the function expression. This gives
a zero in the denominator and hence an attempt to divide by 0 which is
undefined. However, we can see from the graph that the function, rather
than tending to plus or minus infinity as x → 0, just tends to 1. This
is very useful because we are able to ‘patch’ the function by giving it a
value at x = 0 and the new function is defined for all values of x.

We can define a new function. This particular function is quite famous,
and is called the sinc function

sinc(x) =



sin(x)

x
where x �= 0

1 where x = 0

The points where functions may tend to a finite limit can be identified
by looking out for points which lead to 0/0. These are called indeterminate
points, indicating that they are a special type of undefined point.

Figure 12.5 The graph of the function f (x ) = sin(x )/x .
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We can examine what happens to the function near the indetermi-
nate point by using the power series expansions of the denominator and
numerator. Substituting the series for sin(x)/x into the expression sin(x)
gives

sin(x)

x
= 1

x

(
x − x

3

3! +
x5

5! −
x7

7! · · ·
)

and therefore

lim
x→0

sin(x)

x
= lim

x→0

1

x

(
x − x

3

3! +
x5

5! − · · ·
)

= lim
x→0

(
1− x

2

3! +
x4

5! − · · ·
)

The last expression is defined at x = 0, so we can substitute x = 0
in order to find the limit. This gives the value 1. L’Hopital’s rule is a
quick way of finding this limit without needing to write out the series
specifically.

L’Hopital’s rule states that if a function f (x) = g(x)/h(x) is indeter-
minate at x = a then:

lim
x→a

g(x)

h(x)
= lim

x→a
g′(x)
h′(x)

.

If g′(x)/h′(x) is defined at x = a, we can then use

lim
x→a

g′(x)
h′(x)

= g′(a)
h′(a)

and if g′(x)/h′(x) is indeterminate at x = a, we can use the rule again.
We can show this to be true by using Equation (12.13) for the Taylor

series expansion about a:

g(x)

h(x)
= g(a)+ g′(a)(x − a)+ (g′′(a)/2!)(x − a)2 + · · ·
h(a)+ h′(a)(x − a)+ (h′′(a)/2!)(x − a)2 + · · ·

and given that g(a) = 0 and h(a) = 0

lim
x→a

g(x)

h(x)
= lim

x→a
g′(a)(x − a)+ (g′′(a)/2!)(x − a)2 + · · ·
h′(a)(x − a)+ (h′′(a)/2!)(x − a)2 + · · ·

= lim
x→a

g′(a)+ (g′′(a)/2!)(x − a)+ · · ·
h′(a)+ (h′′(a)/2!)(x − a)+ · · ·

= g′(a)
h′(a)

(if h′(a) �= 0).
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Example 12.32 Find

lim
x→1

x3−2x2 + 4x − 3

4x2 − 5x + 1
.

Solution Substituting x = 1 into

x3−2x2 + 4x − 3

4x2 − 5x + 1

gives 0/0, which is indeterminate. Using L’Hopital’s rule, we differentiate
the top and bottom lines:

lim
x→1

x3 − 2x2 + 4x − 3

4x2 − 5x + 1
= lim

x→1

3x2 − 4x + 4

8x − 5
.

We find that the new expression is defined at x = 1, so

lim
x→1

3x2 − 4x + 4

8x − 5
= 3− 4+ 4

8− 5
= 3

3
= 1

Example 12.33 Find

lim
x→0

cos(x)− 1

x2
.

Solution Substituting x = 0 into

cos(x)− 1

x2

gives 0/0, which is indeterminate. Therefore, using L’Hopital’s rule, we
differentiate the top and bottom lines:

lim
x→0

cos(x)− 1

x2
= lim

x→0

− sin(x)

2x
.

We find that the new expression is also indeterminate at x = 0, so we use
L’Hopital’s rule again:

lim
x→0

− sin(x)

2x
= lim

x→0

− cos(x)

2
.

The last expression is defined at x = 0 so we can substitute x = 0 to
give

lim
x→0

− cos(x)

2
= −1

2
.

Hence,

lim
x→0

cos(x)− 1

x2
= −1

2
.
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12.7 Limits and
convergence

We have already briefly mentioned ideas of limits in various contexts.
We will now look at the idea in more detail. When we looked at the
sum to infinity of a geometric progression in Table 12.1 we looked
at Sn = 4(1 − (2/3)n) as n was made larger and discovered that
S40 = 4 to 7 s.f. and all values of n > 40 also gave Sn = 4 to 7
s.f. This can give us an idea of how to find out if a sequence tends to
a limit:

1. Choose a number of significant figures
2. Write all terms in the sequence to that number of significant figures.
3. The sequence tends to a limit if the terms in the sequence, when

expressed to the agreed number of significant figures, become
constant, that is, do not change after some value of n.

Theoretically, this procedure must work for all possible numbers of
significant figures. As my calculator only displays 8 s.f. I cannot go
through this process for more than 7 s.f. A computer using double preci-
sion arithmetic could perform the calculations to far more (usually up to
18 s.f.).

Consider the series

1+ z+ z2 + z3 + · · ·

which is a GP with first term 1 and common ratio z, the sum to n terms
gives

1− zn
1− z .

For z = 1/2 this gives the series

1+ 1
2 +

( 1
2

)2 + ( 1
2

)3 + · · ·
and the sum of n terms gives

Sn = 1− ( 1
2

)n
1− 1

2

= 2

(
1−

(
1

2

)n)
.

We can write, Sn, as a sequence of values to 3 s.f., 5 s.f., and 7 s.f. as is
done in Table 12.2.

From these results we can see that the limit appears to be 2. The
limit is reached to 3 s.f for n = 9, to 5 s.f for n = 15, and to 7 s.f
for n = 22.

The more terms taken in a sequence which converges, then the nearer
we will get to the limit. However we can only get as near as the number
of significant figures, usually limited by the calculator, permits. When
using a numerical method to solve a problem we use these ideas about
convergence.
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Table 12.2 The values in the sequence
Sn =expressed to 3 s.f., 5 s.f., and 7 s.f. Notice
the sequence becomes constant after n = 9 for 3
s.f, after n = 15 for 5 s.f and after n = 22 for 7 s.f.

n Sn (3 s.f.) Sn (5 s.f.) Sn (7 s.f.)

1 1 1 1
2 1.5 1.5 1.5
3 1.75 1.75 1.75
4 1.88 1.875 1.875
5 1.94 1.9375 1.9375
6 1.97 1.9688 1.96875
7 1.98 1.9844 1.984375
8 1.99 1.9922 1.992188
9 2 1.9961 1.996094

10 2 1.998 1.998047
11 2 1.999 1.999023
12 2 1.9995 1.999512
13 2 1.9998 1.999756
14 2 1.9999 1.999878
15 2 2 1.999939
16 2 2 1.999969
17 2 2 1.999985
18 2 2 1.999992
19 2 2 1.999996
20 2 2 1.999998
21 2 2 1.999999
22 2 2 2
23 2 2 2

12.8
Newton–
Raphson
method for
solving
equations

Although we already know how to solve linear equations and quadratic
equations other equations may need to be solved by using a numerical
method. One such method is the Newton–Raphson method. The method
consists of an algorithm which can be expressed as follows:

Step 1: take an equation and write it in the form f (x) = 0, then,
Step 2: take a guess at a solution
Step 3: calculate a new value for x using

x ← x − f (x)

f ′(x)

Step 4: Repeat Step 3 until come convergence criterion has been sat-
isfied or until it is decided that the method has failed to find a
solution. Here, the ‘←’ symbol has been used to represent the
‘assignment operator’.

x ← x − f (x)

f ′(x)

means replace x by a value found by taking the old value of x and calcu-
lating x − f (x)/f ′(x). We will return to the problems in Steps 1 and 4
later; first we will look at a simple example of using the Newton–Raphson
method.

Example 12.34 Use Newton–Raphson method to find
√

5 correct
to 7 s.f.
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Solution
√

5 is one solution to the equation x2 = 5

Step 1: Write the equation in the form f (x) = 0

x2 = 5 ⇔ x2 − 5 = 0

Step 2: Take a guess at the solution. We know that
√

5 is slightly bigger
than
√

4 so take a first guess as x = 2.

Steps 3 and 4: Calculate

x ← x − f (x)

f ′(x)

until some convergence criterion is satisfied.
As f (x) = x2 − 5, f ′(x) = 2x

x ← x − f (x)

f ′(x)

gives

x ← x − x
2 − 5

2x
.

This can be written over a common denominator, giving

x ← x2 + 5

2x

which is the Newton–Raphson formula for solving x2 − 5 = 0.

Start with x = 2 x ← 4+ 5

4
x = 2.25

Substitute x = 2.25 x ← (2.25)2 + 5

2(2.25)
x = 2.2361111

Substitute x = 2.2361111 x ← (2.2361111)2 + 5

2(2.2361111)
x = 2.236068

Substitute x = 2.236068 x ← (2.236068)2 + 5

2(2.236068)
x = 2.236068

We notice that in the last iteration there has been no change in the value
of x, so we assume that the algorithm has converged, giving

√
5 = 2.236068 to 7 s.f.

The sequence of values we have found is:
2, 2.25, 2.2361111, 2.236068, 2.236068, and we need to stop at this

point because the value of x has not changed in the last iteration.
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Table 12.3 The function f (x ) = x 3 − 3x 2 + 2x + 1 evaluated for
a few values of x

x −1 −0.5 0 0.5 1 1.5 2

f (x ) = x 3 − 3x 2 + 2x + 1 −7 −0.875 1 1.375 1 0.625 1

Example 12.35 Find a solution to the equation x3− 3x2+ 2x+ 1 = 0

Solution

Step 1: The equation is already expressed in the correct form.

Step 2: We need to find a first guess for the solution and to do this
we could sketch the graph to see roughly where it crosses the x-axis or
we could try substituting a few values into the function f (x) = x3 −
3x2 + 2x + 1 and look for a change of sign, which we have done in
Table 12.3. As the function is continuous, the function must pass through
zero in order to change from positive to negative, or vice versa. There is
a change of sign between x = −0.5 and x = 0, so we take as a first guess
a point half way between these two values, giving x = −0.25.

Step 3: Using the Newton–Raphson formula

x ← x − f (x)

f ′(x)

and substituting f (x) = x3 − 3x2 + 2x + 1 gives

x ← x − x
3 − 3x2 + 2x + 1

3x2 − 6x + 2

and simplifying gives

x ← 2x3 − 3x2 − 1

3x2 − 6x + 2
.

Starting by substituting x = −0.25 gives

x ← 2(−0.25)3 − 3(−0.25)2 − 1

3(−0.25)2 − 6(−0.25)+ 2
= −1.21875

3.6875
= −0.3305084

Now substitute x = −0.3305084 giving

x ← 2(−0.3305084)3 − 3(−0.3305084)2 − 1

3(−0.3305084)2 − 6(−0.3305084)+ 2
= −0.3247489.

Substitute x = −0.3247489 giving

x ← 2(−0.3247489)3 − 3(−0.3247489)2 − 1

3(−0.3247489)2 − 6(−0.3247489)+ 2
= −0.3247179.

Substitute x = −0.3247179 giving

x ← 2(−0.3247179)3 − 3(−0.3247179)2 − 1

3(−0.3247179)2 − 6(−0.3247179)+ 2
= −0.3247179.

As the last two numbers are the same to the degree of accuracy we have
used, there is no point in continuing. We have thus obtained the sequence
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of values:

−0.25,−0.3305084,−0.3247489,−0.3247179,−0.3247179.

Finally, we can check that we have found a good approximation to a
solution of the equation by substituting x = −0.3247179 into the function
f (x) = x3−3x2+2x+1, which gives 2.441×10−7. As this value is very
close to 0 this confirms that we have found a reasonable approximation
to a solution of the equation f (x) = 0.

The convergence criterion
In Examples 12.34 and 12.35 we decided to stop the calculation when the
last two values found were equal. We had found the limit of the recurrence
relation to 7 s.f. In a computer algorithm, we could test if the last two
calculated values of x differ by a very small amount.

Example 12.36 A convergent sequence is defined by a recurrence rela-
tion. The calculation should stop when the limit has been found to an
accuracy of at least three decimal places. Give a condition that could be
used in this case.

Solution Assuming two consecutive terms are xn−1 and xn, then the
absolute difference between them is given by |xn−xn−1|. To test whether
this is small enough to accept xn as the limit to three decimal places we
use the fact that a number expressed to three decimal places could have
an absolute error of just less than 0.0005. So the condition we can use
to stop the algorithm could be |xn − xn−1| < 0.0005. If this condition is
satisfied we could then assume that xn is the limit to three decimal places.
To be on the safe side, however, it is better to perform the calculation one
final time and check that it is also true that |xn+1 − xn| < 0.0005 and
then use xn+1 as the value of the limit which should be accurate to at least
three decimal places.

Example 12.37 A convergent sequence is defined by a recurrence rela-
tion. The calculation should stop when the limit has been found to an
accuracy of at least 4 s.f. Give a condition that could be used in this case.

Solution Assuming two consecutive terms are xn−1 and xn then the
absolute difference between them is given by |xn−xn−1|. To test whether
this is small enough to accept xn as the limit to 4 s.f. use the fact that a
number expressed to 4 s.f. can have an absolute relative error of just
less than 0.00005. As we do not know that value of the limit we must
approximate it by the last value calculated in the sequence, so the absolute
relative error is approximately

|xn − xn−1|
|xn|

so an appropriate condition would be

|xn − xn−1|
|xn| < 0.00005

or

|xn − xn−1| < 0.00005|xn|.
As in the previous example it would be preferable to test that this condition
holds on at least two successive iterations. Hence, we could also check
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that

|xn+1 − xn| < 0.00005|xn+1|
and take xn+1 as the limit of the sequence correct to four significant
figures.

Divergence
A divergent sequence is one that does not tend to a finite limit. Some
examples of divergent sequences are:

(i) 1, 0, 1, 0, 1, 0, 1, 0 . . . which is an oscillating sequence,
(ii) 1, 2, 4, 8, 16 . . . which tends to plus infinity,

(iii) −1,−3,−5, . . . which tends to minus infinity.

Recurrence relations that are used for some numerical method may not
always converge, particularly if the initial value is chosen inappropriately.
To check for this eventuality, it is usual to stop the algorithm after some
finite number of steps, maybe 100 or 1000 iterations, depending on the
problem. If no convergence has been found after that number of iterations
then it is considered that sequence is failing to converge.

12.9 Summary 1. A sequence is a collection of objects arranged in a definite order. The
elements of a sequence can be represented by a1, a2, a3, . . . , an, . . .

2. If a rule exists by which any term in the sequence can be found
then this may be used to express the general term of the sequence,
usually represented by an or a(n). This rule can also be expressed in
the form of a recurrence relation where an+1 is expressed in terms
of an, an−1, an−2, . . .

3. During analog to digital (A/D) conversion, a signal is sampled and
can then be represented by a sequence of numbers. f (t) can be
represented by a(n) = f (nT ), where T is the sampling interval
and t = nT . The sampling theorem states that the sampling inter-
val must be less than T = 1/(2f ) seconds in order to be able to
represent a frequency of f Hz.

4. A series is the sum of a sequence. To represent series we may use
sigma notation, using the capital Greek letter sigma, �, to indicate
the summation process, for example,

n=10∑
n=0

1

2n

means ‘sum all the terms 1/2n for n from 0 to 10’.
5. An arithmetic progression (AP) is a sequence where each term is

found by adding a fixed amount, called the common difference, to
the previous term. If the first term is a and the common difference
is d, then the general term is an = a+ (n− 1)d and the sum of the
first n terms is given by

Sn = n

2
(2a + (n− 1)d) or Sn = n

2
(a + l)

where l is the last term in the sequence and n is the number of terms.
6. An geometric progression (GP) is a sequence where each term is

found by multiplying the previous term by a fixed amount, called
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the common ratio. If the first term is a and the common ratio is r ,
then the general term is an = arn−1, and the sum of the first n terms
is given by

Sn = a(1− rn)
1− r .

The sum to infinity of a GP can be found if |r| < 1 and is given by

S∞ = a

1− r .

7. The binomial expansion gives

(a + b)n = an + nan−1b + n(n− 1)

2! an−2b2

+ n(n− 1)(n− 2)

3! an−3b3 + · · ·

where n can be a whole number or a fraction.
8. The Maclaurin series is a series expansion of a function about x = 0.

If a function f (x) is defined for values of x around x = 0, within
some radius R, that is, for −R < x < R (or |x| < R) and if all its
derivatives are defined then:

f (x) = f (0)+ f ′(0)x + f
′′(0)
2! x2 + f

′′′(0)
3! x3

+ · · · + f
(n)(0)

n! xn + · · ·

This gives a power series with coefficient sequence:

an = f (n)(0)

n!
where f (n)(0) is found by calculating the nth derivative of f (x)
with respect to x and then substituting x = 0.

9. Maclaurin’s series is just a special case of Taylor series. A Taylor
series is a series expansion of a function not necessarily taken around
x = 0. If a function f (x) is defined for values of x around x = a,
within some radiusR, that is, fora−R < x < a+R (or |x−a| < R)
and if all its derivatives are defined, then:

f (x) = f (a)+ f ′(a)(x − a)+ f
′′(a)
2! (x − a)2

+ f
′′′(a)
3! (x − a)3 + · · · + f

(n)(a)

n! (x − a)n + · · ·

or, substituting x = a + h, where h is usually considered to be a
small value, we get

f (a + h) = f (a)+ f ′(a)h+ f
′′(a)
2! h2 + f

′′′(a)
3! h3

+ · · · + f
(n)(a)

n! hn + · · · .

10. L’Hopital’s rule is a way of finding the limit of a function at a
point where it is undetermined (i.e. it gives 0/0 at the point). The
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rule states that if a function f (x) = g(x)/h(x) is indeterminate at
x = a then:

lim
x→a

g(x)

h(x)
= lim

x→a
g′(x)
h′(x)

.

If g′(a)/h′(a) is defined, we can then use

lim
x→a

g′(x)
h′(x)

= g′(a)
h′(a)

and if g′(a)/h′(a) is indeterminate, we can use the rule again.
11. To test if a sequence tends to a limit follow the following

procedure:
(a) Choose a number of significant figures.
(b) Write all the terms in the sequence to that number of significant

figures.
(c) The sequence tends to a limit if the terms in the sequence, when

expressed to the agreed number of significant figures becomes
constant, that is, do not change after some value of n.

This procedure must theoretically work for any chosen number of
significant figures.

12. The algorithm for solving an equation using Newton–Raphson
method can be described as

Step 1: Take an equation and write it in the form f (x) = 0.
Step 2: Take a guess at a solution
Step 3: Calculate a new value for x using

x ← x − f (x)

f ′(x)

Step 4: Repeat Step 3 until some convergence criterion has been
satisfied or until it is decided that the method has failed to
find a solution.

13. Convergence criteria can either be based on the testing the size of
the absolute error or the relative absolute error. To find the limit of
a convergent sequence defined by a recurrence relation, correct to
three decimal places, we can test for |xn−xn−1| < 0.0005 and to be
correct to three significant figures we could test for |xn − xn−1| <
0.0005|xn|. It is also necessary to put a limit on the number of
iterations of some algorithm to check for the eventuality that the
sequence fails to converge (is divergent).

12.10 Exercises

12.1. Find the next three terms in the following sequences.
In each case, express the rule for the sequence as a
recurrence relation.

(a) −3, 1, 5, 9, 13, 17, . . .
(b) 8, 4, 2, 1, 0.5, . . .
(c) 18, 15, 12, 9, 6, 3, . . .
(d) 6,−6, 6,−6, . . .
(e) 10, 8, 6, 4, . . .
(f) 1, 2, 4, 7, 11, 16, 22, . . .
(g) 1, 3, 6, 10, 15, . . .

12.2. Given the following definitions of sequences write
out the first five terms

(a) an = 3n− 1
(b) xn = 720/n
(c) bn = 1− n2

(d) an+1 = an + 2; a1 = 6
(e) an+1 = 3an; a1 = 2
(f) an+1 = −2an; a1 = −1
(g) bn+1 = 2bn − bn−1; b1 = 1/2, b2 = 1
(h) �yn = 3; y0 = 2
(i) �yn = 2yn; y0 = 1.
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12.3. Express the following using sigma notation

(a) 1+ x + x2 + x3 + · · · + x10

(b) −2+ 4− 8+ 16− · · · + 256

(c) 1+ 8+ 27+ 64+ 125+ 216

(d) − 1
3 + 1

9 − 1
27 + · · · − 1

6561

(e) 1
4 + 1

9 + 1
16 + 1

25 + 1
36 + · · · + 1

100

(f) −4− 1− 1
4 − 1

16 − · · · − 1
4096 .

12.4. Sketch the following functions and give the first 10
terms of their sequence representation (t � 0) at the
sampling interval T given:

(a) f (t) = sin(2t), T = 0.1
(b) f (t) = cos(30t), T = 0.01
(c) f (t) is the periodic function of period 16, defined

for 0 � t < 16 by

f (t) =




2t 0 ≤ t ≤ 4

16− 2t 4 < t ≤ 12

2t − 32 12 < t < 16

with sample interval T = 1.
(d) The square wave of period 2 given for 0 < t < 2

by

f (t) =
{

1 0 ≤ t < 1

−1 1 ≤ t < 2

with a sampling interval of T = 0.25.

12.5. The following are arithmetic progressions. Find the
fifth, tenth, and general term of the sequence in each
case.

(a) 6, 10, 14, . . .
(b) 3, 2.5, 2, . . .
(c) −7,−1, 5, . . .

12.6. an is an arithmetic progression. Given the terms indi-
cated, find the general term and find the sum of the
first 20 terms in each case:

(a) a5 = 6, a10 = 26
(b) a7 = −2, a16 = 2.5
(c) a6 = 10, a12 = −8.

12.7. The sum of the first 10 terms of an arithmetic progres-
sion is 50 and the first term is 2. Find the common
difference and the general term and list the first six
terms of the sequence.

12.8. How many terms are required in the arithmetic
series 2 + 4 + 6 + 8 + · · · to make a sum of
1056?

12.9. The following are geometric progressions. Find the
fourth, eighth, and general term in each case:

(a) 1, 2, 4, . . .
(b) 1/3, 1/12, 1/48, . . .
(c) −9, 3,−1, . . .
(d) 15, 18.75, 23.4375, . . .

12.10. an is a geometric progression. Given the terms indi-
cated, find the general term and find the sum of the
first 8 terms in each case.

(a) a3 = 8, a6 = 1000
(b) a6 = 54, a9 = −486
(c) a2 = −32, a7 = 1.

12.11. How many terms are required in the geometric series
8+ 4+ 2+ · · · to make a sum of 15.9375?

12.12. A loan of e40 000 is repaid by annual instalments of
e5000, except in the final year when the outstanding
debt (if less thane5000) is repaid. Interest is charged
at 10% per year, calculated at the end of each year on
the outstanding amount of the debt. The first repay-
ment is 1 year after the loan was taken out. Calculate
the number of years required to repay the loan.

12.13. Evaluate the following

(a)
n=4∑
n=1

2n

(b)
r=8∑
r=0

1

2r

(c)
j=10∑
j=1

(−1)j
(

1

3

)j−2

.

12.14. Find the sum of the first n terms of the following:

(a) 1+ z+ z2 + z3 + · · ·
(b) 1− y2 + y4 − · · ·
(c) 2x + 4

x
+ 8

x2
+ · · ·

12.15. State whether the following series are convergent and
if they are find the sum to infinity.

(a) 2+ 1+ 1
2 + 1

4 + · · ·
(b) 3+ 0− 3− 6 · · ·
(c) 27− 9+ 3− 1 · · ·
(d) 0.3+ 0.03+ 0.003 · · ·

12.16. Find the following recurring decimals as fractions:

(a) 0.4̇ (b) 0.16̇ (c) 0.02̇.

12.17. Expand the following expressions

(a)
(
1+ 1

2x
)3

(b) (1− x)4
(c) (x − 1)3 (d) (1− 2y)4

(e) (1+ x)8 (f) (2x + 1)3

(g) (2a + b)3 (h) (x + (1/x))7 (i) (a − 2b)4

12.18. Find the following using the expansion indicated:

(a) (1.1)3 using (1+ 0.1)3

(b) (0.9)4 using (1− 0.1)4

(c) (2.01)3 using (2+ 0.01)3.

12.19. Give the first 4 terms in the binomial expansion of the
following:

(a) (1+ 2x)5 (b) (1− 3x)8

(c) (2+ z)6 (d)
(
1+ 1

2x
)16

(e) (1− x)6 (f) (1− 2x)5
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12.20. Use sin(5θ) = Im(ej5θ ) = Im((cos(θ)+j sin(θ))5) to
find sin(5θ) in terms of powers of cos(θ) and sin(θ).

12.21. Find the real and imaginary parts of the following:
(a) (1− j)6 (b) (1+ j2)4 (c) (3+ j)5

12.22. Use a binomial expansion to find the following correct
to four decimal places:

(a) (0.99)8 (b) (1.01)7 (c) (2.05)6.

12.23. Find the first 4 non-zero terms in a power series expan-
sion of the following functions and state for what
values of x they are valid in each case.

(a) cos(x) (b) cosh(x) (c) ln(1+ x)
(d) (1+x)1.5 (e) (1+ x)−2.

12.24. Find the first 4 non-zero terms in a power series expan-
sion for the following functions:

(a) cos2(x) (b) tan−1(x) (c) ex sin(x)
(d) (1− x)1.5/(1+ x).

12.25. Using a series expansion find the following correct to
4 significant figures:

(a)
√

1.05 (b) tan−1(0.1) (c) sin(0.03)
(d) 1/

√
1.06

12.26. Using a series expansion and the given value of the
function at x = a, evaluate the following correct to
four significant figures:

(a) cos(7π/16) using cos(π/2) = 0,
(b)
√

4.02 using
√

4 = 2.

12.27. Find the following limits:

(a) lim
x→2

((x2 − x − 2)/(4x3 − 4x − 7x − 2))

(b) lim
x→0

(x3/(x − sin(x)))

(c) lim
x→−3

((x2 + 6x + 9)/(4x2 + 11x − 3))

(d) lim
x→π/2((π/2− x)/ cos(x))

(e) lim
x→0

(tan(x))/x)

(f) lim
x→0

(sin(x − 2)/(x2 − 4x + 4)).

12.28. Use the Newton–Raphson method to find a solution
to the following equations correct to six significant
figures:

(a) x3 − 2x = 1 (b) x4 = 5 (c) cos(x) = 2x.

12.29. Suggest a test for convergence that could be used
in a computer program so that the limit of a
sequence, defined by some recurrence relation, could
be assumed to be correct to

(a) six decimal places,
(b) six significant figures.
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13 Systems of linear
equations,
matrices, and
determinants

13.1
Introduction

The widespread use of computers to solve engineering problems means
that it is important to be able to represent problems in a form suitable for
solution by a computer. Matrices are used to represent: systems of lin-
ear equations; transformations used in computer graphics or for robotic
control; road, electrical and communication networks, and stresses and
strains in materials. A matrix is a rectangular array of numbers of dimen-
sion m×n where m is the number of rows and n is the number of columns
in the matrix. Matrices are also useful because they enable us to consider
an array of numbers as a single object, represent it by a single symbol,
and manipulate these symbols conveniently. In this chapter, we look at
applications of matrices and arithmetic operations on matrices and some
common numerical methods. We shall also look at the problem of solv-
ing systems of linear equations. The methods of solving linear systems
of equations are well understood and we only need to be able to solve
simple cases of such problems ‘by hand’. However, it is important to
be able to express a problem in matrix form and also appreciate situa-
tions where no solution exists or where more than one solution exists.
This allows to analyse the problems of ill-conditioning of systems of
equations, which can lead to instability in the solution and the problem of
over- or under-determinacy, where either we have too much information,
leading to possibly contradictory conditions, or we have not got enough
to produce a single set of solutions for the unknowns.

We shall also look at the eigenvalue problem. The technique of finding
eigenvalues will become particularly important when applied to systems
of differential equations which we meet in Chapter 14.

13.2 Matrices A matrix is a rectangular array of numbers. They may also be used as a
simple store of information as in the following example.

Every weekday a household orders pints of milk, loaves of bread, and
yoghurt from a milk lorry. The orders for the week can be displayed
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as follows:

Milk Bread Yoghurt

Monday 3 2 4
Tuesday 4 1 0
Wednesday 2 2 4
Thursday 5 1 0
Friday 1 1 4

This information forms a matrix.
Transformations in a plane can be represented by using matrices, for

example, a reflection about the x-axis can be represented by the matrix

(
1 0
0 −1

)

and rotation through the angle by

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

We shall return to these examples later. Also in the chapter we will see
that linear equations can be written in matrix form.

Notation
A matrix is represented by a capital letter A (bold) or by [aij ] where aij
represents a typical element in the ith row and j th column of the matrix.
We represent a general matrix in the following form:

column number
1 2 3 . . . n

1 


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a2n

...
...

...
. . .

...
am1 am2 am3 . . . amn




2
3

ro
w

nu
m

be
r

...
m

In order to refer to the element which is in the third row and the second
column we can say a32. The matrix


3 2

6 1
8 2




is a 3× 2 matrix (read as 3 by 2) as it has 3 rows and 2 columns.

The sum and difference of matrices
The sum and difference of matrices is found by adding or subtracting
corresponding elements of the matrix. Only matrices of exactly the same
dimension can be added or subtracted.
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Example 13.1

A = (2 1) B = (6 2)

C =
(

3 7
8 3

)

D =
(

1 2
2 1

)

E =
(

8 2 1
6 1 3

)

F =
(

2 6 3
12 −2 −6

)

Find where possible: (a) A+ B, (b) C+ D, (c) E− F, (d) A+ D.

Solution

(a) A+ B = (2 1)+ (6 2) = (8 3)

(b) C+ D =
(

3 7
8 3

)
+
(

1 2
2 1

)
=
(

4 9
10 4

)

(c) E− F =
(

8 2 1
6 1 3

)
−
(

2 6 3
12 −2 −6

)

=
(

6 −4 −2
−6 3 9

)
(d) A+ D cannot be found because the two matrices are of

different dimensions.

Multiplication of a matrix by a scalar
To multiply a matrix by a scalar, every element is multiplied by the scalar.

Example 13.2

If A =
(

2 5
6 1

)

find 2A and 1
3 A

Solution

2A = 2

(
2 5
6 1

)
=
(

4 10
12 2

)

1
3 A = 1

3

(
2 5
6 1

)
=
(

2
3

5
3

2 1
3

)

Multiplication of two matrices
To multiply two matrices, every row is multiplied by every column. For
instance, if C = AB, to find the element in the second row and the third
column of the product, C, we take the second row of A and the third
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column of B and multiply them together, like taking the scalar product of
two vectors. Multiplication is only possible if the number of columns in
A is the same as the number of rows in B. For instance, if A is 2×3 it can
only multiply matrices that are 3 × n where n could be any dimension.
The result of a 2 × 3 multiplying a 3 × 4 is a 2 × 4 matrix. Notice the
pattern:

❄

✻
(2× 3) multiplying (3︸ ︷︷ ︸

Must be equal

×4) gives 2× 4

Example 13.3

A =
(

1 −1
3 1

)

B =
(

6 0 −1
2 2 3

)
Find, if possible, AB and BA

AB =
(

1 −1
3 1

)(
6 0 −1
2 2 3

)
(

1 · 6+ (−1) · 2 1 · 0+ (−1) · 2 1 · (−1)+ (−1) · (3)
3 · 6+ 1 · 2 3 · 0+ 1 · 2 3 · (−1)+ 1 · 3

)

=
(

4 −2 −4
20 2 0

)
BA cannot be found because the number of columns in B is not equal

to the number of rows in A.

We can justify the practical reasons for this method of matrix multi-
plication as in the following two examples. In the first, we return to our
household shopping example.

Example 13.4 Every weekday a household orders pints of milk, loaves
of bread and yoghurt from a milk lorry. The orders for the week are as
follows:

Milk Bread Yoghurt

Monday 3 2 4
Tuesday 4 1 0
Wednesday 2 2 4
Thursday 5 1 0
Friday 1 1 4

Next week, the dairy introduces a special offer and reduces its prices.
The prices for this week and the next are as follows:

This week Next week

Milk 0.34 0.32
Bread 0.60 0.50
Yoghurt 0.33 0.30

Calculate the cost each day for this week and the next.
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Solution The cost each day is made up of the number of pints of milk
times the cost of a pint plus the number of loaves of bread times the
cost of a loaf plus the number of cartons of yoghurt times the cost of the
yoghurt. In other words, we can find the cost each day by performing
matrix multiplication


3 2 4
4 1 0
2 2 4
5 1 0
1 1 4




0.34 0.32

0.60 0.50
0.33 0.30




=




3× (0.34)+ 2× (0.60)+ 4× (0.33) 3× (0.32)+ 2× (0.50)+ 4× (0.30)
4× (0.34)+ 1× (0.60)+ 0× (0.33) 4× (0.32)+ 1× (0.50)+ 0× (0.30)
2× (0.34)+ 2× (0.60)+ 4× (0.33) 2× (0.32)+ 2× (0.50)+ 4× (0.30)
5× (0.34)+ 1× (0.60)+ 0× (0.33) 5× (0.32)+ 1× (0.50)+ 0× (0.30)
1× (0.34)+ 1× (0.60)+ 4× (0.33) 1× (0.32)+ 1× (0.50)+ 4× (0.30)




=




3.54 3.16
1.96 1.78
3.20 2.84
2.30 2.10
2.26 2.02




The rows now represent the days of the week and the columns represent
this week and the next week. Hence, for instance, the cost for Thursday
of next week is given by the element a42 = 2.10.

Figure 13.1 A
representation of a
communication network.

Example 13.5 Figure 13.1 represents a communication network where
the vertices a,b,f,g represent offices and vertices c,d,e represent switching
centres. The numbers marked along the edges represent the number of
connections between any two vertices. Calculate the number of routes
from a,b to f,g.

Solution The number of routes from a to f can be calculated by taking
the number via c plus the number via d plus the number via e. In each
case, this is given by multiplying the number of connections along the
edges connecting a to c, c to f, etc giving the number of routes from a to
f as: 3× 2+ 4× 6+ 1× 1.

We can see that we can get the number of routes by matrix multiplica-
tion. The network from ab to cde is represented by:

c d e
a

(
3 4 1
2 1 3

)
b

and from cde to fg by

f g
c


2 1

6 3
1 2


d

e

So, the total number of routes is given by

(
3 4 1
2 1 3

)2 1
6 3
1 2




=
(

3× 2+ 4× 6+ 1× 1 3× 1+ 4× 3+ 1× 2
2× 2+ 1× 6+ 3× 1 2× 1+ 3× 1+ 3× 2

)

f g
a

(
31 17
13 11

)
b
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Hence, by interpreting the rows and columns of the resulting matrix we
can see that there are 31 routes from a to f, 17 from a to g, 13 from b to f
and 11 from b to g.

The unit matrix
The unit matrix is a square matrix which leaves any matrix, A, unchanged
under multiplication. If A is a square matrix, then

AI = IA = A

The unit matrix has 1s on its leading diagonal and 0s elsewhere. In two
dimensions

I =
(

1 0
0 1

)
In three dimensions

I =

1 0 0

0 1 0
0 0 1


 .

Example 13.6

A =
(

2 −1
0 1

)
, B =

(
3
2

)
Show that AI = IA = A and IB = B.

Solution

AI =
(

2 −1
0 1

)(
1 0
0 1

)

=
(

2× 1+ (−1)× 0 2× 0+ (−1)× 1
0× 1+ 1× 0 0× 0+ 1× 1

)

=
(

2 −1
0 1

)
= A

IA =
(

1 0
0 1

)(
2 −1
0 1

)

=
(

1× 2+ 0× 0 1× (−1)+ 0× 1
0× 2+ 1× 0 0× (−1)+ 1× 1

)

=
(

2 −1
0 1

)
= A

IB =
(

1 0
0 1

)(
3
2

)

=
(

1× 3+ 0× 2
0× 3+ 1× 2

)

=
(

3
2

)
= B

The transpose of a matrix
The transpose of a matrix is obtained by interchanging the rows and the
columns. The transpose of a matrix A is represented by AT.
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Example 13.7 Given

A =
(

2 −1
6 3

)
, B =

(
2 1 8
−1 0 1

)

find AT and BT

Solution The first row of A is (2 − 1) therefore this is the first column
of AT. The second row of A is (6 3) therefore this is the second column
of AT. This gives AT as follows.

AT =
(

2 6
−1 3

)

Similarly

BT =

2 −1

1 0
8 1




Some special types of matrices
A square matrix has the same number of rows as columns.

(
2 −1
6 3

)

is a square matrix of dimension 2.


 8 6 2
−3 1 0
3 2 1




is a square matrix of dimension 3.
A square matrix has a leading diagonal, which comprises the elements

lying along the diagonal from the top left-hand corner to the bottom right-
hand corner as marked below. These elements have the same row number
as they have column number.


 . . . . . . . . .

8 6 2
−3 1 0
3 2 1




The leading diagonal is shown by the dotted line in the above matrix.
A diagonal matrix is a square matrix which has zero elements

everywhere except, possibly, on its leading diagonal, for example


4 0 0

0 −2 0
0 0 3
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An upper triangular matrix is a square matrix which has zeros below
the leading diagonal, for example
1 1 2

0 6 6
0 0 8




A lower triangular matrix has zeros above the leading diagonal, for
example
1 0 0

3 −1 0
6 8 2




A symmetric matrix is such that AT = A, that is, the elements are
symmetric about the leading diagonal, for example

A =

 1 6 −3

6 0 −2
−3 −2 8


 , B =

(
1 6
6 1

)

are symmetric matrices. If you take the transpose of one of these matrices
they result in the original matrix.

A skew-symmetric matrix is such that AT = −A.

Example 13.8 Show that

A =
(

0 6
−6 0

)

is skew symmetric.

Solution

AT =
(

0 −6
6 0

)

Multiplying A by −1, we get

−A =
(

0 −6
6 0

)

We can see that AT = −A and hence we have shown that A is skew
symmetric.

Hermitian matrix
A Hermitian matrix is such that A

∗T = A.

Example 13.9 Show that

A =
(

3 7+ j2
7− j2 −2

)
and B =

(
2 3 e−j2

3 ej2 1

)

are Hermitian.
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Solution Taking the complex conjugates of each of the elements in A
and B gives

A∗ =
(

3 7− j2
7+ j2 −2

)
and B∗ =

(
2 3 ej2

3 e−j2 1

)

Now taking the transposes of A and B, we get

A
∗T =

(
3 7+ j2

7− j2 −2

)
and B

∗T =
(

2 3 e−j2

3 ej2 1

)

So we can see that

A
∗T = A and B

∗T = B

showing that they are Hermitian.

In the rest of this chapter we shall assume that our matrices are real.
A column vector is a matrix with only one column, for example

v =

1

2
3




A row vector is a matrix with only one row, for example

v = (1 2 3).

The inverse of a matrix
The inverse of a matrix A is a matrix A−1 such that AA−1 = A−1A = I
(the unit matrix).

Example 13.10 Show that(
1
3

1
3

1
3 − 2

3

)

is the inverse of(
2 1
1 −1

)
.

Solution Multiply:(
1
3

1
3

1
3 − 2

3

)(
2 1
1 −1

)

=
(

1
3 (2)+ 1

3 (1) 1
3 (1)+ 1

3 (−1)
1
3 (2)+ (− 2

3

)
(1) 1

3 (1)+ (− 2
3

)
(−1)

)

=
(

1 0
0 1

)
.
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Also(
2 1
1 −1

)( 1
3

1
3

1
3 − 2

3

)

=
(

(2) 1
3 + (1) 1

3 (2) 1
3 + (1)

(− 2
3

)
(1) 1

3 + (−1) 1
3 (1) 1

3 + (−1)
(− 2

3

)
)

=
(

1 0
0 1

)
.

Not all matrices have inverses and only square matrices can possibly
have inverses. A matrix does not have an inverse if its determinant is 0.

The determinant of(
a b

c d

)
is given by∣∣∣∣a b

c d

∣∣∣∣ = ad − cb

If the determinant of a matrix is 0 then it has no inverse and the matrix
is said to be singular. If the determinant is non- zero then the inverse
exists. The inverse of the 2× 2 matrix(
a b

c d

)
is

1

(ad − cb)

(
d −b
−c a

)
That is, to find the inverse of a 2×2 matrix, we swap the diagonal elements,
negate the off-diagonal elements, and divide the resulting matrix by the
determinant.

Example 13.11 Find the determinants of the following matrices and
state if the matrix has an inverse or is singular. Find the inverse in the
cases where is exists and check that AA−1 = A−1A = I

(a)

(−1 3
2 1

)
, (b)

(
6 −2
−3 1

)
, (c)

( 1√
2
− 1√

2
1√
2

1√
2

)
.

Solution

(a)

∣∣∣∣−1 3
2 1

∣∣∣∣ = (−1)× 1− 2× 3 = −7.

As the determinant is not zero the matrix(−1 3
2 1

)
has an inverse found by swapping the diagonal elements and negating the
off-diagonal elements, then dividing by the determinant. This gives

1

−7

(
1 −3
−2 −1

)
= 1

7

(−1 3
2 1

)
.
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Check that AA−1 = I(−1 3
2 1

)
1

7

(−1 3
2 1

)

= 1

7

(
(−1)(−1)+ (3)(2) (−1)3+ (3)(1)
(2)(−1)+ (1)(2) (2)(3)+ (1)(1)

)
=
(

1 0
0 1

)
and that A−1A = I

1

7

(−1 3
2 1

)(−1 3
2 1

)

= 1

7

(
(−1)(−1)+ (3)(2) (−1)3+ (3)(1)
(2)(−1)+ (1)(2) (2)(3)+ (1)(1)

)
=
(

1 0
0 1

)
.

(b)

∣∣∣∣ 6 −2
−3 1

∣∣∣∣ = 6 · 1− (−3)(−2) = 0

As the determinant is zero the matrix(
6 −2
−3 1

)
has no inverse. It is singular.

(c)

∣∣∣∣∣
1√
2
− 1√

2
1√
2

1√
2

∣∣∣∣∣
= 1√

2

1√
2
−
(
− 1√

2

)
1√
2
= 1.

Therefore, the matrix is invertible. Its inverse is given by swapping the
diagonal elements, and negating the off-diagonal elements, and then
dividing by the determinant. This gives( 1√

2
1√
2

− 1√
2

1√
2

)

Check that AA−1 = I:

AA−1 =
( 1√

2
− 1√

2
1√
2

1√
2

)( 1√
2

1√
2

− 1√
2

1√
2

)
=
(

1 0
0 1

)

Similarly, A−1A = I.

Solving matrix equations
To solve matrix equations, we use the same ideas about equivalent equa-
tions that we have used before. As in ordinary equations, we can ‘do
the same things to both sides’ in order to find equivalent equations.
It is important to remember that division by a matrix has not been
defined. In order to ‘undo’ matrix multiplication we have to multiply
by an inverse matrix, where it exists, and we need to specify whether
we are pre- or post-multiplying. This is necessary because matrices do
not obey the commutative law (AB 
= BA). If we pre- or post-multiply
both sides of an equation by a matrix we must also be able to justify
that the dimensions of the expressions are such that the multiplication
is possible. Also if we add or subtract a matrix from both sides of the
equation it must have exactly the same dimension as the current matrix
expression.
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Example 13.12 Given that A, B, and C are matrices and AB = C where
A and B are non-singular, find expressions for B and A.

Solution In this case, we are told that A and B are invertible, so they
must be square and therefore C must also be square and of the same
dimension. To find B we wish to ‘get rid’ of the A term on the left-hand
side. We pre-multiply both sides of the equation by A−1

AB = C and given A is invertible

⇔ A−1AB = A−1C.

Now using A−1A = I, the unit matrix, we have

IB = A−1C.

As the unit matrix multiplied by any matrix leaves it unchanged, we have

⇔ B = A−1C.

To find an expression for A, use

AB = C

given that B is invertible, we post-multiply by B−1

⇔ ABB−1 = CB−1.

Now using BB−1 = I, the unit matrix, we have

AI = CB−1.

As the unit matrix multiplied by any matrix leaves it unchanged, we have

⇔ A = CB−1.

Remember that it is always important to specify whether you are
pre- or post-multiplying when solving matrix equations. A term like
B−1AB cannot be simplified because we cannot swap the order, as we
would do with numbers.

13.3
Transformations

On a computer graphics screen an object is represented by a set of coor-
dinates, either with reference to the screen origin or with reference to
the origin of some window created by the graphical user interface (GUI).
We may wish to move the object around inside its window. We shall
consider in this section only two-dimensional objects as dealing with
three-dimensional objects would add the complication of needing to rep-
resent a perspective view. Ideas about transformations are also important
when considering movement of a robotic arm.

There are three ways of moving an object without affecting its overall
size or shape: rotation, reflection and translation. We could also stretch it
or compress it in some direction – the operation of scaling.

We shall look at how to perform these operations using matrices and
vectors. We can check that the operations performed are those that we
expected by looking at the effect on some simple shapes. In most of these
examples, we look at the effect of a unit square at the origin, defined by the
points A (0,0), B(1,0), C (1,1), D (0,1). The outcome of the transformation
is called the image which we will represent by the points A′, B′, C′, D′.
The transformation, T, is a function whose domain and codomain is the
plane (which is referred to as R2). The term ‘mapping’ is also used in this
context. It has exactly the same meaning as function, but is more often
used when referring to geometrical problems.
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Rotation
To perform a rotation through an angle θ , we multiply the position vector
of the point(
x

y

)
by a matrix of the form(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Figure 13.2 (a) The unit
square with vertices A(0,0),
B(1,0), C (1,1) D(0,1). (b)
The same unit square after
rotation by 30◦.

Example 13.13 Find and draw the image of the unit square with vertices
A(0,0), B(1,0), C(1,1), D(0,1) after rotation through 30◦ about the origin.

Solution Rotation through 30◦ about the origin is found by multiplying
the position vectors of the points by(

cos(30◦) − sin(30◦)
sin(30◦) cos(30◦)

)
≈
(

0.866 −0.5
0.5 0.866

)

Figure 13.3 In order not to
spill the tea, the axes –
defined with reference to the
lower arm – rotate but the
orientation of the tea cup
must stay the same.

To find the image of the unit square, we multiply the position vectors
of the vertices by this matrix(

0.866 −0.5
0.5 0.866

)(
0
0

)
=
(

0
0

)
(

0.866 −0.5
0.5 0.866

)(
1
0

)
=
(

0.866
0.5

)
(

0.866 −0.5
0.5 0.866

)(
1
1

)
=
(

0.366
1.366

)
(

0.866 −0.5
0.5 0.866

)(
0
1

)
=
(−0.5

0.866

)
This transformation is shown in Figure 13.2.

Sometimes, it is useful to be able to rotate the axes rather than the
object. For instance, the object may be held by a robotic arm and we want
the arm to rotate but keep the orientation of the object the same. This is
picture for the tea drinking robot in Figure 13.3.

In this case, if we rotate the axes Ox, Oy, by the position of the object
remains the same but even so has new coordinates relative to the the
transformed axes OX, OY . If the axes rotate through 30◦, then the object
moves relative to the axes by −30◦. So to rotate the axes by we multiply
the position vectors of the points(
x

y

)
by the matrix(

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

Example 13.14 A unit square has vertices A(0,0), B(1,0), C (1,1),
D(0,1) relative to axes Ox, Oy. The axes are rotated through 30◦ to
OX, OY , without moving the square. Find the coordinates of the vertices
relative to the new axes OX, OY .

TLFeBOOK



“chap13” — 2003/6/8 — page 308 — #16

308 Systems of linear equations, matrices, and determinants

Solution The effect of rotating the axes through 30◦ is found by
multiplying the position vectors of the points by(

cos(30◦) sin(30◦)
sin(−30◦) cos(30◦)

)
=
(

0.866 0.5
−0.5 0.866

)
.

Figure 13.4 (a) The unit
square with vertices A(0,0),
B(1,0), C (1,1) D(0,1) relative
to axes Ox, Oy. (b) The same
unit square shown relative to
axes OX, OY found by rotating
Ox, Oy through 30◦.

To find the coordinates of the unit square relative to the new axes, we
multiply the position vectors of the vertices by this matrix(

0.866 0.5
−0.5 0.866

)(
0
0

)
=
(

0
0

)
(

0.866 0.5
−0.5 0.866

)(
1
0

)
=
(

0.866
−0.5

)
(

0.866 0.5
−0.5 0.866

)(
1
1

)
=
(

1.366
0.366

)
(

0.866 0.5
−0.5 0.866

)(
0
1

)
=
(

0.5
0.866

)
.

This is shown in Figure 13.4.

Reflection
To perform a reflection in the x-axis, we multiply the position vectors of
the points(
x

y

)

by the matrix(
1 0
0 −1

)

Figure 13.5 (a) The unit
square with vertices A(0,0),
B(1,0), C (1,1) D(0,1). (b) The
same unit square after
reflection in the x axis. (c)
After reflection in the y axis.

This has the effect of keeping the x-coordinate the same whilst changing
the sign of the y-coordinate, hence turning the object upside down.

To perform a reflection in the y-axis, we multiply the position vectors
of the points(
x

y

)

by the matrix(−1 0
0 1

)

which keeps the y-value constant while changing the sign of the
x-coordinate. The effect on the unit square is shown in Figure 13.5.

Translation
Translation in the plane cannot be represented by multiplying by a 2× 2
matrix. To perform a translation, we add the vector representing the
translation to the original position vectors of the points.
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Example 13.15 Find and draw the image of the unit square with vertices
A(0,0), B(1,0), C(1,1), D(0,1) after translation through(

3
4

)
.

Solution Add(
3
4

)
to the position vectors of the vertices, that is

v +
(

3
4

)
which gives A′ as (3,4), B′ as (4,4), C′ as (4,5), and D′ as (3,5).
This transformation is shown in Figure 13.6.

It is again often useful to consider what happens if the object stays
where it is and the axes are translated. If the axes are translated through(

3
4

)
then the object appears to move relative to the axes by(−3
−4

)
.

Therefore, we subtract(
3
4

)
from the coordinates defining it. This is shown in Figure 13.7.

Figure 13.6 (a) The unit square with vertices
A(0,0), B(1,0), C (1,1) D(0,1). (b) The same
unit square after translation through (3,4)
becomes A′ (3,4), B′ (4,4), C′ (4,5), D′ (3,5).

Figure 13.7 (a) The unit square with
vertices, relative to Ox, Oy A(0,0), B(1,0),
C (1,1) D(0,1). (b) The unit square has
co-ordinates (−3,−4), (−2,−4), (−2,−3),
(−3,−3) relative to the axes OX, OY which
have been translated through (3,4).
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Scaling
To scale in the x-direction, we multiply the position vectors of the points(
x

y

)

by a matrix(
Sx 0
0 1

)

Figure 13.8 (a) The unit
square with vertices A(0,0),
B(1,0), C (1,1), D(0,1). (b)
The same unit square after
scaling in the x-direction by a
factor of 2. (c) The unit square
after scaling in the y-direction
by a factor of 3.

where Sx is the scale factor. Under this transformation, vectors that
have no x-component will be unaffected. To scale in the y-direction,
we multiply the position vectors of the points(
x

y

)

by a matrix(
1 0
0 Sy

)

where Sy is the scale factor. Under this transformation, vectors that have
no y-component will be unaffected.

The effect on the unit square of scaling by 2 in the x-direction is
shown in Figure 13.8(b) and of scaling by 3 in the y-direction is shown
in Figure 13.8(c).

Combined transformations

Example 13.16 Find the coordinates of the vertices of the unit square
after: (a) rotation about the origin through 50◦ followed by a translation
of (−1, 2); (b) translation of (−1, 2) followed by rotation about the origin
through 50◦.
Solution (a) We can write this combined transformation as

p′ = Rp+ t

where p′ is the position vector of the image point, p is the position vector
of the original point, R is the matrix representing the rotation, and t is
the vector representing the translation.

In this case

R =
(

cos(50◦) − sin(50◦)
sin(50◦) cos(50◦)

)
≈
(

0.643 −0.766
0.766 0.643

)

and

t =
(−1

2

)
, p′ =

(
x′

y′

)
, p =

(
x

y

)

So we have(
x′

y′

)
=
(

0.643 −0.766
0.766 0.643

)(
x

y

)
+
(−1

2

)
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For the coordinates of A′ substitute x = 0 and y = 0 giving

(
x′

y′

)
=
(

0.643 −0.766
0.766 0.643

)(
0

0

)
+
(−1

2

)
=
(

0

0

)
+
(−1

2

)
=
(−1

2

)

for B′

(
x′

y′

)
=
(

0.643 −0.766
0.766 0.643

)(
1

0

)
+
(−1

2

)
=
(

0.643

0.766

)
+
(−1

2

)

=
(−0.357

2.766

)

for C′

(
x′

y′

)
=
(

0.643 −0.766
0.766 0.643

)(
1

1

)
+
(−1

2

)
=
(−0.123

1.409

)
+
(−1

2

)

=
(−1.123

3.409

)

for D′

(
x′

y′

)
=
(

0.643 −0.766
0.766 0.643

)(
0

1

)
+
(−1

2

)
=
(−0.766

0.643

)
+
(−1

2

)

=
(−1.766

2.643

)

The image of the unit square is pictured in Figure 13.9(b).
(b) We can write this combined transformation as

p′′ = R(p+ t)

where p′′ is the position vector of the image point, p is the position vector
of the original point, R is the matrix representing the rotation, and t is
the vector representing the translation. We have put the brackets in to

Figure 13.9 (a) The unit
square with vertices A(0,0),
B(1,0), C (1,1) D(0,1). (b)
The same unit square after
rotation through 50◦ about the
origin and translation through
(−1, 2) and the unit square
after translation through
(−1, 2) and then rotation of
50◦ about the origin.
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indicate that the translation is performed first. As before

R =
(

cos(50◦) − sin(50◦)
sin(50◦) cos(50◦)

)
≈
(

0.643 −0.766
0.766 0.643

)

and

t =
(−1

2

)
, p′′ =

(
x′′

y′′

)
, p =

(
x

y

)

So we have(
x′′

y′′

)
=
(

0.643 −0.766
0.766 0.643

)((
x

y

)
+
(−1

2

))

which is the same as(
x ′′

y′′

)
=
(

0.643 −0.766
0.766 0.643

)(
x − 1

y + 2

)

For the coordinates of A′′, substitute x = 0 and y = 0 giving(
x′′

y′′

)
=
(

0.643 −0.766
0.766 0.643

)(
0− 1

0+ 2

)
=
(

0.643 −0.766
0.766 0.643

)(−1

2

)

=
(−2.175

0.52

)

for B′′(
x′′

y′′

)
=
(

0.643 −0.766
0.766 0.643

)(
1− 1

0+ 2

)
=
(

0.643 −0.766
0.766 0.643

)(
0

2

)

=
(−1.532

1.286

)

for C′′(
x′′

y′′

)
=
(

0.643 −0.766
0.766 0.643

)(
1− 1

1+ 2

)
=
(

0.643 −0.766
0.766 0.643

)(
0

3

)

=
(−2.298

1.929

)

for D′′(
x′′

y′′

)
=
(

0.643 −0.766
0.766 0.643

)(
0− 1

1+ 2

)
=
(

0.643 −0.766
0.766 0.643

)(−1

3

)

=
(−2.941

1.163

)

The image of the unit square is pictured in Figure 13.9(b).
Note that the order of the transformations is important.
Sometimes, we might need to use a trick of temporarily moving the

axes in order to perform certain transformations. Supposing we want to
scale by 2 along the line x = y we can rotate the axes temporarily so
that the new X-axis lies along the line that was previously x = y, then
perform X scaling, and then rotate back again, so the axes are back in
their original position. This is done in the next example.
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Example 13.17 Find a matrix that performs scaling by a factor of 2
along the direction x = y and draw the image of the unit square defined
by the vertices

A
(− 1

2 ,− 1
2

)
, B
( 1

2 ,− 1
2

)
, C
( 1

2 , 1
2

)
, D
(− 1

2 , 1
2

)
.

Solution First, we rotate the axes by 45◦, so that the OX-axis will lie
along the line that was previously x = y. This is pictured in Figure 13.10.

Figure 13.10 (a) The line
x = y is at 45◦ to the Ox axis.
If we rotate the axes by 45◦,
the new OX axis will lie in this
direction. This is shown in (b).

The matrix that transforms the coordinates so they are relative to the
new axes at an angle of 45◦ is given by:

(
cos(45◦) sin(45◦)
− sin(45◦) cos(45◦)

)

A scaling of 2 in the X-direction is then performed by multiplying by

(
2 0
0 1

)

We then need to rotate the axes back to their original position, that is,
rotate the axes by −45◦, this is done by multiplying by

(
cos(−45◦) sin(−45◦)
− sin(−45◦) cos(−45◦)

)
=
(

cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

)

Putting the three transformation matrices together we get

(
cos(45◦) sin(45◦)
− sin(45◦) cos(45◦)

)(
2 0
0 1

)(
cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

)

which gives the matrix that represents a scaling along the line x = y.

Using cos(45◦) = 1√
2
= sin(45◦), we get

( 1√
2
− 1√

2
1√
2

1√
2

)(
2 0
0 1

)( 1√
2

1√
2

− 1√
2

1√
2

)

Taking out the two factors of 1√
2

gives

1

2

(
1 −1
1 1

)(
2 0
0 1

)(
1 1
−1 1

)

Multiplying the second two matrices gives

1

2

(
1 −1
1 1

)(
2 2
−1 1

)

and multiplying out the remaining two matrices gives

1

2

(
3 1
1 3

)
=
(

3
2

1
2

1
2

3
2

)
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We can now multiply the position vectors representing the vertices of
the square(

3
2

1
2

1
2

3
2

)(− 1
2

− 1
2

)
=
(−1

−1

)
(

3
2

1
2

1
2

3
2

)( 1
2

− 1
2

)
=
( 1

2

− 1
2

)
(

3
2

1
2

1
2

3
2

)( 1
2
1
2

)
=
(

1

1

)
(

3
2

1
2

1
2

3
2

)(− 1
2

1
2

)
=
(− 1

2
1
2

)

The transformed figure is shown in Figure 13.11. We can see that has
been stretched along the x = y direction but has not been scaled along
the other diagonal. The image is no longer a square but a rhombus.

Figure 13.11 (a) The unit
square with vertices
A(−1

2 ,−1
2 ), B( 1

2 ,−1
2 ), C( 1

2 , 1
2 ),

D(−1
2 , 1

2 ). (b) The image after
scaling by 2 along the line
y = x .

Example 13.18 Find a transformation that will rotate any point p about
(1,1) through an angle of 90◦.
Solution To rotate about a point not at the origin, we translate the origin
temporarily, rotate, and then translate the origin back again.

Rotation through 90◦ is performed by multiplying by(
cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

)
=
(

0 −1
1 0

)
The combined transformation on a point p can be represented by

p′ =
(

0 −1
1 0

)(
p−

(
1

1

))
+
(

1

1

)
.

13.4 Systems of
equations

Example 13.19 Using Ohm’s law and Kirchoff’s laws for the electrical
network in Figure 13.12, show that

I1 − I2 − I3 = 0
3I2 − 2I3 = 0

7I1 + 2I3 = 8

Solution Kirchoff’s laws for an electrical network are as follows:

Kirchoff’s voltage law (KVL): The sum of all the voltage drops around any
closed loop is zero. This can also be expressed as: the voltage impressed
on a closed loop is equal to the sum of the voltage drops in the rest of
the loop.

Figure 13.12 The electrical
network for Example 13.19.
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Kirchoff’s current law (KCL): At any point of a circuit, the sum of the
in-flowing currents is equal to the sum of the out-flowing currents.

By Ohm’s law we know the voltage drop across a resistor is given by
V = IR, where R is the resistance of the resistor. Two loops have been
identified in Figure 13.12 and by using KVL and Ohm’s law in loop 1
we get

3I2 − 2I3 = 0.

Now looking at loop 2, we get

3I1 − 8+ 4I1 + 2I3 = 0

⇔ 7I1 + 2I3 = 8.

Finally, we use the current law at one of the nodes to give

I1 = I2 + I3 ⇐⇒ I1 − I2 − I3 = 0

Finally, we can list all the equations we have found

I1 − I2 − I3 = 0
3I2 − 2I3 = 0

7I1 + 2I3 = 8

and the problem is now to find a solution which satisfies all of these
equations simultaneously.

This is called a system of equations. In many electrical networks, there
will be far more than three unknown currents. In such situations, it is
impractical to solve the equations without the use of a computer. However,
we can discover a number of important principles and problems involved
in solving systems of linear equations by looking at some simple cases.
The first problem we have is that it is possible to get more that these
three equations from the network given in Figure 13.12. Using KVL in
the outer loop would give

7I1 + 3I2 = 8

and KCL at the other node gives

I2 + I3 = I1 ⇔ −I1 + I2 + I3 = 0

We therefore have five equations and only three unknowns.
Luckily, it is possible to show that these equations are a consistent set,

that is, it is possible to find a solution. We shall return to solve for I1, I2,
and I3 later. First, we shall examine all the possibilities when we have
only two unknown quantities.

Systems of equations in two unknowns
The equation

ax + by = c

where a, b, c are constants is a linear equation in two unknowns (or vari-
ables) x and y. Because there are two unknowns we need two axes to
represent it, and therefore the graph can be drawn in a plane.

Because the graph only involves terms in x, y and the constant term and
no other powers of either x or y, we know that the graph of the equation
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is a straight line, as we saw in Chapter 2. Examples of graphs of linear
equations in two unknowns are given in Figure 13.13.

We call a solution to the equation a pair of values for x and y which
satisfy the equation; that is, when they are substituted they give a true
expression. A solution to the equation x + y = 1 is x = 0.5, y = 0.5
because if we substitute these values we obtain a true expression:

0.5+ 0.5 = 1.

Figure 13.13 An equation
with two unknowns can be
represented as a line in a
plane: (a) x + y = 1;
(b) 2x − y = 5; (c) 2y = 3;
(d) 3x = −1.

However, there are many other solutions to x + y = 1, for instance
x = 2, y = −1 or x = 2.5, y = −1.5, etc. We say that the equation is
indeterminate because there are any number of solutions to the equation
x + y = 1. In fact, any point on the line x + y = 1 is a solution
to the equation. We can express the solutions in terms of x or y (e.g.
x = 1 − y) therefore the solutions are (1 − y, y) where y can be any
number. Alternatively y = 1− x gives solutions (x, 1− x) where x can
be any number.

A system of two linear equations with
two unknowns
We want to find values for x and y which solve both a1x+ b1y = c1 and
a2x + b2y = c2 simultaneously. The problem could be expressed as

(a1x + b1y = c1) ∧ (a2x + b2y = c2)

When we talk of systems of equations it is understood that we want all
of the equations to hold simultaneously so they are usually just listed as

a1x + b1y = c1

a2x + b2y = c2

Each equation can be represented geometrically by a straight line.
For example, the system

3x + 4y = 7

x + 2y = 2

can be represented by the pair of straight lines as in Figure 13.14.
We can find the point where the two straight lines cross by using

substitution as follows.

Example 13.20 Solve the following system of equations using substi-
tution:

3x + 4y = 7

x + 2y = 2.

Solution We begin by numbering the equations in order to identify them

3x + 4y = 7 (13.1)

x + 2y = 2 (13.2)

From Equation (13.2) we can express x in terms of y as

x + 2y = 2 ⇔ x = 2− 2y (subtracting 2y from both sides)
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Figure 13.14 A system of
two equations in two
unknowns: 3x + 4y = 7 and
x + 2y = 2.

Now substitute x = 2− 2y into Equation (13.1) to give

3(2− 2y)+ 4y = 7

⇔ 6− 6y + 4y = 7

⇔ 6− 2y = 7

⇔ −2y = 1 (subtracting 6 from both sides)

⇔ y = −1

2
(dividing both sides by −2)

⇔ y = −0.5

Now we can use x = 2− 2y to find x by substituting y = −0.5 to give

x = 2− 2(−0.5)

⇔ x = 2+ 1

⇔ x = 3

The solution is given by x = 3 and y = −0.5, which can be represented
by the pair of values for (x, y) of (3, 0.5).

An alternative method of solution is to use elimination.

Example 13.21 Solve the following system of equations using elimi-
nation:

3x + 4y = 7

x + 2y = 2.

Solution To solve the system of equations we look for a way of adding or
subtracting multiples of one equation from the other in order to eliminate
one of the variables. Multiply the second equation by 3 and leave the first
the same. We choose these numbers in order to get the coefficients of x
in both equations to be the same.

3x + 4y = 7

3x + 6y = 6.

Subtract the equations to give

−2y = 1⇔ y = −1

2
= −0.5.
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Figure 13.15 The graphs of
equations x + 2y = 1 and
2x + 4y = 2 are coincident.
The graph of one lies on top
of the other.

Substitute this into the first equation to give

3x + 4(−0.5) = 7

⇔ 3x − 2 = 7

⇔ 3x = 9

⇔ x = 3.

The solution is given by x = 3 and y = −0.5, which can be represented
by the pair of values for (x, y) of (3, −0.5).

The point (3,−0.5) is the point on the graph where the two lines cross.
This is the only point which lies both on the first graph and the second
graph. It is the only point which satisfies both equations simultaneously.
Hence, we say there is a unique solution to the system of equations.
The system of equations is said to be determined because there is a single
solution. The system of equations is also said to be consistent because it
is possible to find a solution.

We could have the system of equations:

x + 2y = 1

2x + 4y = 2.

If we plot these lines we find that they are coincident, that is, one line lies
on top of the other as in Figure 13.15.

In this case, the second equation, 2x + 4y = 2, can be obtained
by multiplying the first equation by 2. We say that the equations are
dependent. Two equations are dependent if one can be obtained from the
other by multiplying by a constant or by adding a constant to both sides.
As any point that lies on x + 2y = 1 also lies on 2x + 4y = 2, there is
no unique solution to the system of equations.

We say that the system of equations is indeterminate as there exist any
number of solutions to the system, that is, the system reduces to only
one equation. However, the system of equations is said to be consistent,
because at least one solution exists.

Example solutions are:

x = 2, y = 0.5 or (2,−0.5)

x = 3, y = −1 or (3,−1)

x = 4, y = −1.5 or (4,−1.5)

The solution set can be written as (x, (1 − x)/2), where x can take any
value or as (1− 2y, y), where y can take any value.
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If we try to use elimination to solve the equations

x + 2y = 1

2x + 4y = 2

we find that one equation reduces to 0 = 0, that is, a condition that is
always true.

Example 13.22 Solve, using elimination:

x + 2y = 1

2x + 4y = 2.

Solution

x + 2y = 1

2x + 4y = 2

multiply the first equation by 2 to give

2x + 4y = 2

2x + 4y = 2

On subtraction we get

0 = 0

which is always true, thus indicating that the system of equations is
indeterminate. The solutions are therefore any points lying on the line
x + 2y = 1.

The third possibility for a system of equations is one that has no
solutions at all. Such a system is as follows:

x + 2y = 1

2x + 4y = 5

If we plot these equations we find that they are parallel, as in Figure 13.16.
From the geometrical interpretation, it is therefore clear that no solution

exists to this system of equations as no point on the line x+2y = 1 lies on
the line 2x+ 4y = 5. We say that the system of equations is inconsistent
because no solutions exist.

Figure 13.16 The graphs of
x + 2y = 1 and 2x + 4y = 5
are parallel. There are no
points in common between
the two graphs.
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If we used elimination to attempt to solve an inconsistent system of
equations like these, then we will find that we will get an impossible
condition, such as

0 = 3

which is false. This situation indicates that there are no solutions and the
equations are inconsistent.

Example 13.23 Solve, using elimination

x + 2y = 1

2x + 4y = 5.

Solution Multiply the first equation by 2 to give

2x + 4y = 2

2x + 4y = 5.

Subtracting the equations, we get

0 = −3.

This condition is false. This indicates that the system of equations are
inconsistent and there are no solutions.

We can express systems of equations in matrix form as

Av = b

where A is the matrix of coefficients,

v =
(
x

y

)

and b is the vector of constants on the right-hand side of the equations.
For the three cases we have looked at in Examples 13.21–13.23, we get
the following:

Case 1:

3x + 4y = 7

x + 2y = 2

which can be represented in matrix form as(
3 4
1 2

)(
x

y

)
=
(

7
2

)
.

Case 2:

x + 2y = 1

2x + 4y = 2

which can be represented in matrix form as(
1 2
2 4

)(
x

y

)
=
(

1
2

)
.
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Case 3:

x + 2y = 1

2x + 4y = 5

which can be represented in matrix form as(
1 2
2 4

)(
x

y

)
=
(

1

5

)
.

We can look at the determinants of the coefficient matrices in order to
help us analyse the system.

For Case 1 ( the system with a unique solution) we find∣∣∣∣3 4
1 2

∣∣∣∣ = (3 · 2)− (1 · 4) = 6− 4 = 2.

The fact that the determinant of the matrix of coefficients is non-zero
shows that the system of equations has a unique solution.

For Case 2 (the system with many solutions) we find∣∣∣∣1 2
2 4

∣∣∣∣ = (1 · 4)− (2 · 2) = 0.

If we replace any column in this determinant by the constant terms(
1

2

)
we get the determinants∣∣∣∣1 1
2 2

∣∣∣∣ = (1 · 2)− (2 · 1) = 0

and∣∣∣∣1 2
2 4

∣∣∣∣ = 0.

This can be shown to hold in general. If all the determinants formed in
this way are 0 then we have indeterminacy in the solutions. That is, there
will be many solutions to the system.

For Case 3 (the system with no solutions) we find∣∣∣∣1 2
2 4

∣∣∣∣ = (1 · 4)− (2 · 2) = 0

If we replace any column in this determinant by the constant terms(
1

5

)
we get the determinants∣∣∣∣1 1
2 5

∣∣∣∣ = (1 · 5)− (2 · 1) = 3

and∣∣∣∣1 2
5 4

∣∣∣∣ = (1 · 4)− (2 · 5) = −6

This can be shown to hold in general. If the determinant of the matrix
of coefficients is zero but any one of the determinants formed using the
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vector of constant terms are non-zero, then this shows that the system is
inconsistent and there are no solutions.

We can summarize the results of this section as follows. For a system
of equations (assuming we have as many equations as unknowns) there
are three possibilities

Case 1: A determined system has a unique solution which can be found
by using elimination. Geometrically, the solution is a single point which
(in the case a a system in two unknowns) represents the intersection of
the two lines. The determinant of the coefficients is non-zero. The system
is both consistent and determined.

Case 2: An undetermined system has many solutions. If elimination
is used to solve the system it will result in a condition like 0 = 0,
which is always true. Geometrically the solutions lie (for a system in
two unknowns) anywhere along a line. The determinant of the coeffi-
cients is zero, as are any determinants found by replacing a column in
the matrix of coefficients by the vector of constant terms. The system is
undetermined but consistent (as there are solutions).

Case 3: An inconsistent system has no solutions. If elimination is used
to solve the system it will result in a condition like 0 = 3, which is
always false. Geometrically, for a system in two unknowns, the system is
represented by parallel lines which have no points in common, hence no
solutions. The determinant of the coefficients is zero but at least one of
the determinants found by replacing a column in the matrix of coefficients
by the vector of constant terms is non-zero. The system is inconsistent.

For Case 1, the solution of the system can be found by using the inverse
of the matrix of coefficients. We can represent the system by

Av = b.

As the determinant of A is non-zero, we know that A has an inverse
A−1. We pre-multiply both sides of the matrix equation by A−1 giving
A−1Av = A−1b

as A−1A = I, the unit matrix and Iv = v

we get

v = A−1b

Av = b ∧ |A| 
= 0⇔ v = A−1b.

Example 13.24 Solve

3x + 4y = 7

x + 2y = 2

by finding the inverse of the matrix of coefficients.

Solution The system can be expressed as

(
3 4
1 2

)(
x

y

)
=
(

7

2

)
.
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As we know that if Av = b and A is invertible then

v = A−1b

and in this case we have

A =
(

3 4
1 2

)
and b =

(
7

2

)
.

Then to find the solution we find the inverse of(
3 4
1 2

)
.

We know that the inverse of(
a b

c d

)
is

1

(ad − cb)

(
d −b
−c a

)
this gives the inverse of(

3 4
1 2

)
as

1

(3 · 2)− (4 · 1)
(

2 −4
−1 3

)
= 1

2

(
2 −4
−1 3

)

Using x = A−1b gives(
x

y

)
= 1

2

(
2 −4
−1 3

)(
7

2

)
= 1

2

(
6

−1

)
=
(

3

−0.5

)
So the solution of this system of equations is x = 3 and y = −0.5.

For a 2×2 system, this method of solving a system of equations is quite
straightforward. However, for larger systems a solution by finding the
inverse involves nearly twice as many operations as that by elimination
of variables and therefore should not be used as a method of solving
equations.

Equations with three unknowns
For three unknowns we need three axes to represent the equations.
Each equation is represented by a plane, for example, Figure 13.17 shows
the plane which represents the equation x + y + z = 1.

Figure 13.17 The plane
given by the equation
x + y + z = 1.

Two planes, if they intersect, will intersect along a line and if a third
independent equation is given then the three planes will intersect at a
point. More than three unknowns cannot be represented geometrically.

However many unknowns there are in a system of equations, the three
types of systems which we identified as Cases 1–3 remain as do the
methods to be used to distinguish between a determined, indeterminate,
and inconsistent system.

We shall later look at finding the determinant and inverse of larger
matrices, but first we look at a systematic way of doing elimination which
is suitable for a computer solution of a system of equations.
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13.5 Gauss
elimination

Gauss elimination is a structured process for the elimination of variables
in one of the equations. It is easy to generalize to larger systems of
equations and it is relatively numerically stable, making it suitable for
use with a computer.

Gauss elimination is performed in stages. At Stage 1, we concentrate on
the first column, the coefficients of x. The idea is to make the coefficient
of the first equation 1 and eliminate the variable from the other equation(s)
by using multiples of the first equation. Equation 1 is therefore the pivotal
equation for Stage 1.

Example 13.25 Solve

3x + 4y = 7

5x − 8y = 8

using Gauss elimination.

Solution We can either write out the equation each time we perform
a step or we can abbreviate the solution by expressing the equations in
short hand as an augmented matrix

(
3 4 7
5 −8 8

)
.

We shall present both notations at the same time. We shall refer to the
elements in the augmented matrix by

(
a11 a12 b1
a21 a22 b2

)
.

For the first step, the first equation is the pivotal equation:

3x + 4y = 7
5x − 8y = 8

(
3 4 7
5 −8 8

)
.

Stage 1
Step 1: Divide the first equation by a11:

x + 4
3y = 7

3

5x − 8y = 8

(
1 4

3
7
3

5 −8 8

)
.

Step 2: Take 5 times the first equation away from the second equation in
order to eliminate the term in x in the second equation:

x + 4
3y = 7

3

− 8y − ( 4
3y × 5) = 8− 7

3 × 5

which is the same as

x + 4
3y = 7

3

− 44
3 y = − 11

3

(
1 4

3
7
3

0 − 44
3 − 11

3

)
.
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Stage 2:
Divide the second equation through by the coefficient of y(a22).

x + 4
3y = 7

3

y = 1
4

(
1 4

3
7
3

0 1 1
4

)
.

We now already have the solution for y and we can obtain the solution for
x by substitution into the first equation. This is called ’back-substitution’.

x +
(

4

3

)(
1

4

)
= 7

3

⇔ x = 7

3
− 1

3

⇔ x = 2.

Therefore, the solution is (2, 0.25).

We see that the point of the exercise is to write the system of equations
so that the final equation contains only one variable and the last but one
equation has up to two variables, etc. The matrix of coefficients should
be in upper triangular form like:(

1 4
3

0 1

)
.

The augmented matrix is then like


1 4
3 ...........

7
3

0 1 1
4




which is said to be in echelon form. Once this form has been achieved,
then back-substitution can be performed to find the value of the variables.

Example 13.26 Solve the system of equations

2x + y − 2z = −1
2x − 3y + 2z = 9
−x + y − z = −3.5.

Solution

2x + y − 2z = −1
2x − 3y + 2z = 9
−x + y − z = −3.5


 2 1 −2 −1

2 −3 2 9
−1 1 −1 −3.5


 .

Stage 1
Stage 1 concerns the first column. We use the first row (the pivotal row)
to eliminate the elements below a11.
Step 1: Divide the first equation by a11.

x + 0.5y − z = −0.5
2x − 3y + 2z = 9
−x + y − z = −3.5


 1 0.5 −1 −0.5

2 −3 2 9
−1 1 −1 −3.5


 .

Step 2: Eliminate x from the second and third equations by taking away
multiples of equation 1. To do this we take Row 2 − 2 × (Row 1) and
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Row 3− (−1)× (Row 1).

x + 0.5y − z = −0.5
−4y + 4z = 10
1.5y − 2z = −4


1 0.5 −1 −0.5

0 −4 0 10
0 1.5 −2 −4




The calculations can be done ‘in the margin’ and were:

Row 2− 2× (Row 1)

2x − 3y + 2z = 9

−2× (x + 0.5y − z = −0.5)

−4y + 4z = 10

Row3− (−1)× (Row1)

−x + y − z = −3.5

−(−1)× (x + 0.5y − z = −0.5)

1.5y − 2z = −4

Stage 2
Stage 2 concerns the second column. We use the second row to eliminate
the elements below a22. Here Row 2 is the pivotal row.
Step 1: Divide the second equation by the coefficient a22:

x + 0.5y − z = −0.5
y − z = −2.5

1.5y − 2z = −4


1 0.5 −1 −0.5

0 1 −1 −2.5
0 1.5 −2 −4


 .

Step 2: Eliminate y from the third equation by taking away multiples of
the second equation.

x + 0.5y − z = −0.5
y − z = −2.5

−0.5z = −0.25


1 0.5 −1 −0.5

0 1 −1 −2.5
0 0 −0.5 −0.25


 .

Here, the calculation was Row 3− 1.5× (Row 2) and the calculation
was as follows

1.5y − 2z = −4

−1.5× (y − z = −2.5)

−0.5z = −0.25

Stage 3
Divide the third equation by the coefficient of z.

x + 0.5y − z = −0.5
y − z = −2.5

z = 0.5


1 0.5 −1 −0.5

0 1 −1 −2.5
0 0 1 0.5




Back-substitution: We have now finished the elimination stage and we
can easily solve the equations using back-substitution.

From the third equation, z = −0.5
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Find y from the second equation

y = −2.5+ z⇔ y = −2.5+ 0.5

⇔ y = −2

Substitute into the first equation to find x

x + 0.5(−2)− 0.5 = −0.5

⇔ x − 1.5 = −0.5

⇔ x = 1

So the solution of the system of equations is (1,−2, 0.5).

Check: To check, substitute x = 1, y = −2, and z = 0.5 into the original
equations

2x + y − 2z = −1

2x − 3y + 2z = 9

−x + y − z = −3.5

giving

2(1)+ (−2)− 2(0.5) = −1, which is true
2(1)− 3(−2)+ 2(0.5) = 9, which is true
−(1)+ (−2)− 0.5 = −3.5, which is true.

Now we can solve the system of equations for the electrical network,
which was the introductory example of Section 13.4.

Example 13.27 Solve, using Gauss elimination, the system of equa-
tions

I1 − I2 − I3 = 0
3I2 − 2I3 = 0

7I1 + 2I3 = 8

Solution We shall only show the augmented matrix in this example, so
we begin with


1 −1 −1 0

0 3 −2 0
7 0 2 8




Stage 1
Stage 1 concerns the first column. We use the first row to eliminate the
elements below a11.
Step 1: Divide the first equation by a11. As this is already 1 we do not
need to divide by it.
Step 2: Eliminate elements in the first column below a11 by taking away
multiples of Row 1 from Rows 2 and 3. Row 2 already has no entry in
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the first column so we leave it alone. We take Row 3− (7)× (Row 1).
1 −1 −1 0

0 3 −2 0
0 7 9 8




The calculations performed here was: Row 2− 7× (Row 1)

7 0 2 8

−7× (1 −1 −1 0)

0 7 9 8

Stage 2

Stage 2 concerns the second column. We use the second row to eliminate
the elements below a22.
Step 1: Divide the second equation by the coefficient of a22.
1 −1 −1 0

0 1 − 2
3 0

0 7 9 8




Step 2: Eliminate the element in the second column below a22 by taking
away multiples of Row 2 from Row 3.
1 −1 −1 0

0 1 − 2
3 0

0 0 41
3 8




Here the calculation was Row 3− (7)× (Row 2), and the calculation
was as follows:

0 7 9 8

−7× (0 1 − 2
3 0)

0 0 41
3 8

Stage 3
Divide the third equation by the coefficient of z:
1 −1 −1 0

0 1 − 2
3 0

0 0 1 24
41




Back-substitution: We have now finished the elimination stage and we
can easily solve the equations using back substitution.

From the third equation, I3 = 24
41 . Find I2 from the second equation:

I2 − 2

3
I3 = 0

I2 − 2

3
× 24

41
= 0 ⇔ I2 = 16

41
.

Substitute into the first equation to find I1:

I1 − 16

41
− 24

41
= 0 ⇔ I1 = 40

41

So the solution of the system of equations is

(
40

41
,

16

41
,

24

41

)
.
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Check: To check, substitute I1 = 40

41
, I2 = 16

41
, and I3 = 24

41
into the

original equations

I1 − I2 − I3 = 0

3I2 − 2I3 = 0

7I1 + 2I3 = 8

giving

40

41
− 16

41
− 24

41
= 0, which is true

3

(
16

41

)
− 2

(
24

41

)
= 0, which is true

7

(
40

41

)
+ 2

(
24

41

)
= 8, which is true.

Indeterminacy and inconsistency
When we analysed systems of equations in Section 13.5, we saw that one
of the equations reducing to 0 = 0, indicates that we have an indetermi-
nate system; that is that there will be many solutions. If, in the process of
performing Gauss elimination, we find a row of zeros then we know that
we have an indeterminate system. We can use the remaining equations to
eliminate as many of the unknowns as possible, giving a solution which
will still involve one or more of the variables. This will give a whole line
or possibly (in three dimensions) a plane of solutions.

If we come across a row that is zero everywhere in the matrix of coeffi-
cients but has a non-zero constant term we have found an equation 0 = c,
which is false. This is an inconsistent system and has no solutions.

Order of the equations
At the beginning of each stage in Gauss elimination, the order of the
rows may be swapped (other than those already used in previous stages
as the pivotal equation). We will have to swap the equations if the next
‘pivotal’ equation has a zero coefficient for the next variable to be elim-
inated. It is usual, although we have not illustrated this point, to always
consider swapping the order of the equations, in order to choose the
equation with the largest absolute value of the coefficient in the term to
be used for eliminating, as the pivotal equation. This is called partial piv-
oting. This procedure as an attempt to avoid problems with equations that
may become ill conditioned in the course if performing the elimination.
The equations are ill conditioned when a small change in the coefficients
of the equations causes a large change in the values of the solutions, and
in such equations rounding errors can become large and cause significant
inaccuracies in the solutions. We have not performed partial pivoting in
these examples as they are only presented to give an idea of the method.
It is assumed that for any real life problem a computer algorithm will
be used to solve the system of equations, and such an algorithm will
incorporate partial pivoting.
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13.6 The
inverse and
determinant of a
3 × 3 matrix

Finding the inverse by elimination
To find the inverse using elimination, we write the matrix we need to
invert on the left and the unit matrix on the right. We perform operations
on both matrices at the same time. The method, called Gauss–Jordan
elimination, begins in the same way as Gauss elimination. When we have
upper triangular form for the matrix we metaphorically turn the problem
upside down and eliminate the upper triangle also.

Example 13.28 Find the inverse of
 4 0 −4

3 4 2
−1 −1 1


 .

Solution We start by writing the matrix along with the unit matrix
 4 0 −4 1 0 0

3 4 2 0 1 0
−1 −1 1 0 0 1


 .

Stage 1
Step 1: Divide the first row by a11
 1 0 −1 0.25 0 0

3 4 2 0 1 0
−1 −1 1 0 0 1


 .

Step 2: Eliminate the first column below a11 by subtracting multiples of
the first row from the second and third rows
1 0 −1 0.25 0 0

0 4 5 −0.75 1 0
0 −1 0 0.25 0 1


 .

The calculations were as follows:
Row 2− 3× Row 1

3 4 2 0 1 0
−3.(1 0 −1 0.25 0 0)

0 4 5 −0.75 1 0

Row 3− (−1)× Row 1

−1 −1 1 0 0 1
−(−1) (1 0 −1 0.25 0 0)

0 −1 0 0.25 0 1

Stage 2
Step 1: Divide the second row by a22 (4)
1 0 −1 0.25 0 0

0 1 1.25 −0.1875 0.25 0
0 −1 0 0.25 0 1


 .

Step 2: Eliminate the elements in the second column below a22 by
subtracting multiples of the second row from the third row
1 0 −1 0.25 0 0

0 1 1.25 −0.1875 0.25 0
0 0 1.25 0.0625 0.25 1


 .
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The calculations were as follows:

Row 3− (−1)× Row 2

0 −1 0 0.25 0 1
−(−1) (0 1 1.25 −0.1875 0.25 0)

0 0 1.25 0.0625 0.25 1

Stage 3
Step 1: Divide the third row by a33 (1.25):
1 0 −1 0.25 0 0

0 1 1.25 −0.1875 0.25 0
0 0 1 0.05 0.2 0.8




Step 2: Turn the problem metaphorically upside down and use the third
row to eliminate elements in the third column above a33 by subtracting
multiples of the third row from the first row and the second row
1 0 0 0.3 0.2 0.8

0 1 0 −0.25 0 −1
0 0 1 0.05 0.2 0.8




The calculations were as follows:

Row 1− (−1)× Row 3

1 0 −1 0.25 0 0
−(−1) (0 0 1 0.05 0.2 0.8)

1 0 0 0.3 0.2 0.8

Row 2− 1.25× Row 3

0 1 1.25 −0.1875 0.25 0
−1.25 (0 0 1 0.05 0.2 0.8)

0 1 0 −0.25 0 −1

The matrix on the right-hand side is now the inverse of the original
matrix.

The inverse is
 0.3 0.2 0.8
−0.25 0 −1
0.05 0.2 0.8




Check: Multiply the original matrix by its inverse

 4 0 −4

3 4 2
−1 −1 1




 0.3 0.2 0.8
−0.25 0 −1
0.05 0.2 0.8




=

 4(0.3)+ 0(−0.25)− 4(0.05) 4(0.2)+ 0(0)− 4(0.2) 4(0.8)+ 0(−1)− 4(0.8)

3(0.3)+ 4(−0.25)+ 2(0.05) 3(0.2)+ 4(0)+ 2(0.2) 3(0.8)+ 4(−1)+ 2(0.8)
−1(0.3)− 1(−0.25)+ 1(0.05) −1(0.2)− 1(0)+ 1(0.2) −1(0.8)− 1(−1)+ 1(0.8)




=

1 0 0

0 1 0
0 0 1




Therefore we have correctly found the inverse of the matrix.
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The determinant of a 3 × 3 matrix
The definition of the (2× 2) determinant has been given as∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = a1b2 − a2b1.

Each of the terms on the right-hand side of this definition is of the form
aibj where i and j are different choices of the numbers 1 and 2. We
can define higher order determinants by using ideas of permutations.
We notice that the term a1b2 above has a positive sign because the indices
1 and 2 appear in order, whereas the term a2b1 has a negative sign because
the indices 2,1 are reversed.

To define∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
we write down all terms of the form aibj ck and give each term a+ sign
or a − sign depending on whether the permutation ijk is even or odd.
A permutation of 123 is even if it can be achieved by an even number
of swaps of the numbers, beginning with the order 123. If it can only
be obtained by an odd number of swaps then the permutation is odd.
For example, 231 is even because we can reach it by first swapping 1
and 2 giving 213 and then swapping 1 and 3. Alternatively, we could
have interchanged 2 and 3 giving 132 and 1 and 3 giving 312, 2 and 1
giving 321, 3 and 2 giving 231. Whatever way we use to get to the order
231 involves an even number of steps. Similarly we say that a permutation
of 123 is odd if it involves an odd number of adjacent interchanges.

This definition gives the determinant of a 3× 3 array as∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣= a1b2c3 − a1b3c2 − a2b1c3+a2b3c1 + a3b1c2 − a3b2c1

This expression may be written in such a way that it involves 2 × 2
determinants as follows:

a1b2c3 − a1b3c2 − a2b1c3 + a3b1c2 + a2b3c1 − a3b2c1

= a1(b2c3 − b3c2)− b1(a2c3 − a3c1)+ c1(a2b3 − a3b2)

= a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣a2 c2
a3 c3

∣∣∣∣+ c1

∣∣∣∣a2 b2
a3 b3

∣∣∣∣ .

The 2×2 determinants that appear in this expression are called minors.
This formula for the determinant is called the expansion by the first row,
because the numbers a1, b1, c1 which multiply the minors are from the
first row of the matrix.

Note that the minor multiplying a1 is the (2× 2) determinant obtained
from the original array by crossing out the row and column in which a1
appears, as follows∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
gives the minor of a1 as∣∣∣∣b2 c2
b3 c3

∣∣∣∣ .
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Similarly, the number multiplying b1 is the determinant found by
crossing out the row and the column in which b1 appears.

We could also find the determinant by expanding about the first column

a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

= a1(b2c3 − b3c2)− a2(b1c3 − b3c1)+ a3(b1c2 − b2c1)

= a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− a2

∣∣∣∣b1 c1
b3 c3

∣∣∣∣+ a3

∣∣∣∣b1 c1
b2 c2

∣∣∣∣ .

Again we see that the minor ofa2, for instance, can be found by crossing
out the row and column that a2 appears in from the original array.

To find the sign multiplying each term in the expansion for the
determinant we can remember the following pattern

+ − +
− + −
+ − +
To find the determinant we can expand about any row and column,
multiplying each term aij by its respective minor and find the sign by
multiplying by (−1)i+j .

Example 13.29 Find the following determinant∣∣∣∣∣∣
−1 2 3
6 −1 2
4 0 −1

∣∣∣∣∣∣
Solution Expanding about the first row∣∣∣∣∣∣
−1 2 3
6 −1 2
4 0 −1

∣∣∣∣∣∣ = −1

∣∣∣∣−1 2
0 −1

∣∣∣∣ − 2

∣∣∣∣6 2
4 −1

∣∣∣∣ + 3

∣∣∣∣6 −1
4 0

∣∣∣∣
= −1(1− 0)− 2(−6− 8)+ 3(0+ 4)

= −1+ 28+ 12 = 39.

Alternatively, expanding about the first column we get

− 1

∣∣∣∣−1 2
0 −1

∣∣∣∣ − 6

∣∣∣∣2 3
0 −1

∣∣∣∣ + 4

∣∣∣∣ 2 3
−1 2

∣∣∣∣
= −1(1− 0)− 6(−2− 0)+ 4(4− (−3))

= −1+ 12+ 28 = 39.

The inverse of a matrix using
(Adjoint(A))/|A|
We have already seen how to find the inverse of a matrix by using
elimination. It is also possible to find the inverse by the following
procedure:

(1) Find the matrix of minors.
(2) Multiply the minor for row i and column j by (−1)i+j . This is then

called the matrix of cofactors.
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(3) Take the transpose of the matrix of cofactors to find the adjoint
matrix.

(4) Divide by the determinant of the original matrix.

This procedure rarely needs to be used and only usually if we have a matrix
which involves some unknown variables or expresses some formula and
we would like to find the inverse formula. It would never be used as a
numerical procedure, as it is both numerically unstable and also uses a
very large number of operations (of the order of n! operations, where n

is the dimension of the matrix, whereas elimination is only of the order
of n3).

Example 13.30 Find the inverse of
 4 0 −4

3 4 2
−1 −1 1




using A−1 = (Adjoint(A))/|A|.
Solution Find the matrix of minors for each term in the matrix. The
minor for the ith row and j th column is found by crossing out that row
and column and finding the determinant of the remaining elements.

This gives the matrix of minors as


∣∣∣∣ 4 2
−1 1

∣∣∣∣
∣∣∣∣ 3 2
−1 1

∣∣∣∣
∣∣∣∣ 3 4
−1 −1

∣∣∣∣∣∣∣∣ 0 −4
−1 1

∣∣∣∣
∣∣∣∣ 4 −4
−1 1

∣∣∣∣
∣∣∣∣ 4 0
−1 −1

∣∣∣∣∣∣∣∣0 −4
4 2

∣∣∣∣
∣∣∣∣4 −4
3 2

∣∣∣∣
∣∣∣∣4 0
3 4

∣∣∣∣



=

 6 5 1
−4 0 −4
16 20 16


 .

To find the matrix of cofactors we multiply by the pattern

+ − +
− + −
+ − +
giving
 6 −5 1

4 0 4
16 −20 16


 .

To find the adjoint, we take the transpose of the above, giving
 6 4 16
−5 0 −20
1 4 16


 .

Now we find the determinant – expanding about the first row, this gives

4(4− (−2))− 0(3(1)− 2(−1))− 4(3(−1)− (−1)(4)) = 20

Finally, we divide the adjoint by the determinant to find the inverse giving

1

20


 6 4 16
−5 0 −20
1 4 16


 =


 0.3 0.2 0.8
−0.25 0 −1
0.05 0.2 0.8


 .
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Check: To check that the calculation is correct, we multiply the original
matrix by the inverse. If we get the unit matrix as the result we can
conclude that we have indeed found the inverse.
 4 0 −4

3 4 2
−1 −1 1




 0.3 0.2 0.8
−0.25 0 −1
0.05 0.2 0.8


 =


1 0 0

0 1 0
0 0 1




which is correct.

13.7
Eigenvectors
and eigenvalues

In Example 13.17, we looked at the problem of scaling along the line
x = y and we saw that the matrix(

3
2

1
2

1
2

3
2

)

represents a scaling along the line y = x and it leaves points along the
line y = −x unchanged. This means that any vector in the direction (1,1)
will simply be multiplied by 2 and any vector in the direction (−1,1) will
remain unchanged after multiplication by this matrix. Other vectors will
undergo a mixed effect.

Supposing we know that a matrix A represents a scaling but without
knowing the direction of the scaling or by how much it scales. Is there
any way we can find that direction and the scaling constant?

The problem then is to find a vector v which is simply scaled by some
currently unknown amount λ when multiplied by A, and v must be such
that

Av = λv

If we manage to find values of λ and v we call these the eigenvalues and
eigenvectors of the matrix A.

We shall solve this for(
3
2

1
2

1
2

3
2

)

as we know the result that we expect to get.
Example 13.31 Find λ and v such that Av = λv where

A =
(

3
2

1
2

1
2

3
2

)
.

Solution Subtract λv from both sides of the equation

Av = λv ⇔ Av − λv = 0

(
3
2

1
2

1
2

3
2

)
v − λv = 0

We put in the unit matrix as v = Iv and combine the terms.(
3
2

1
2

1
2

3
2

)
v − λ

(
1 0
0 1

)
v =

(
0

0

)
( 3

2 − λ 1
2

1
2

3
2 − λ

)
v =

(
0

0

)
.
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Now substitute

v =
(
x

y

)
giving(

3

2
− λ

)
x + 1

2
y = 0

1

2
x +

(
3

2
− λ

)
y = 0.

Unfortunately, the solution to this gives x = 0 and y = 0, which is not
very enlightening (it is called the trivial solution).

However, we started by saying that we wanted to find the direction in
which this matrix scaled any vector. That is, we want to find a whole
line of solutions. We can use a result that we found from solving systems
of equations. The equations may have a whole line of solutions if the
determinant of the coefficients is 0.

Hence, we need to find λ such that∣∣∣∣∣
3
2 − λ 1

2
1
2

3
2 − λ

∣∣∣∣∣ = 0.

Expanding the determinant gives(
3

2
− λ

)(
3

2
− λ

)
− 1

4
= 0

9

4
− 3λ+ λ2 − 1

4
= 0⇔ λ2 − 3λ+ 2 = 0.

This factorizes to

(λ− 2)(λ− 1) = 0 ⇔ λ = 1 ∨ λ = 1.

Hence, the eigenvalues of the matrix A are 1 and 2. To find the vectors
which go with each of these eigenvalues we substitute into the equations(

3

2
− λ

)
x + 1

2
y = 0

1

2
x +

(
3

2
− λ

)
y = 0.

For λ = 2

− 1

2
x + 1

2
y = 0

1

2
x − 1

2
y = 0.

We notice that these equations are dependent, which we would have
expected as by setting the determinant = 0 we were looking for an
undetermined system.

We have

−1

2
x + 1

2
y = 0 ⇔ x = y.

This means that any vector (x, y) where y = x will be scaled by 2 if
multiplied by the matrix A. The eigenvector can be given as (1,1) as it is
only necessary to indicate the direction.
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The other eigenvalue, λ = 1, gives

1

2
x + 1

2
y = 0

1

2
x + 1

2
y = 0.

Again, the equations are dependent and we have x+y = 0. The eigenvec-
tor is any vector (x, y) where x = −y so this gives the direction (−1,1).

As not all matrices represent scaling, it is not always possible to find
real eigenvalues. In particular, a rotation matrix has no real eigenvalues
for angle of rotation, θ 
= 0. Another point to note is that in this example
the eigenvectors were at right angles to each other. This is only true for
symmetric matrices (which we had in this case).

The method can be summarized as follows: To find the eigenvalues
and eigenvectors of A

(1) Solve |A − λI| = 0 to find the eigenvalues. This is called the
characteristic equation.

(2) For each value of λ found, substitute into

(A− λI)v = 0

and find v. This will be an undetermined system so we shall find
at least a whole line of solutions. Choose any vector lying in the
direction of the line.

Example 13.32 Find the eigenvectors and eigenvalues of(
1 3
2 −4

)
.

Solution Solve |A− λI| = 0, which gives∣∣∣∣1− λ 3
2 −4− λ

∣∣∣∣ = 0

⇔ (1− λ)(−4− λ)− 6 = 0

⇔ λ2 + 3λ− 10 = 0

⇔ (λ+ 5)(λ− 2) = 0⇔ λ = −5 or λ = 2.

For each value of λ solve(
1− λ 3

2 −4− λ

)(
x

y

)
=
(

0

0

)
.

For λ = −5, this gives(
6 3
2 1

)(
x

y

)
=
(

0

0

)
⇒ 6x + 3y = 0

2x + y = 0

We see that these equations are dependent. Solving the first one

6x + 3y = 0

⇔ 2x + y = 0

y = −2x

The vector is therefore (x, y) where y = −2x, giving (x,−2x). We only
need the direction of the vector so choose (1,−2) by substituting x = 1
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For λ = 2 we get(−1 3
2 −6

)(
x

y

)
=
(

0

0

)
⇒ −x + 3y = 0

2x − 6y = 0

Solving

−x + 3y = 0 ⇔ x = 3y

Hence, we have (x, y) where x = 3y giving (3y, y). Substitute y = 1
giving the vector as (3,1).

We have shown that the matrix(
1 3
2 −4

)

has eigenvalue −5 with eigenvector (1,−2) and eigenvalue 2 with
eigenvector (3,1).

13.8 Least
squares data
fitting

Matrix methods can be employed to the problem of finding the ‘best fit’
line through a set of data. In Chapter 2 we performed a fit by eye to a
set of data points. We drew a scatter diagram of the data and if the data
appeared, more or less, to fit on a line then we would draw the line by
hand and then use any two points lying on the line, to find the equation
of the line. We do not expect experimental data to be exact and that is
the reason that the data points do not lie exactly on a line. We shall now
look at the method of least squares, which can be used to compute the
‘best fit’ line. The method is called ‘least squares’ because it minimizes
the squared error between the data points and the equation of the line
found. The method is justified in the following example.

We start with two sets of data which we suspect are related linearly.

Example 13.33 A student was late for a particularly interesting engi-
neering maths lecture and was therefore walking briskly toward the lecture
hall in a straight line at approximately constant speed b. The student’s
position x (metres) at time t (seconds) is given by

t 0 5 10 15 20 25
x 100 111 119 132 140 151

We can plot these points on a scatter diagram, as in Figure 13.18.

We can see that they lie on an approximate straight line. We need to
decide which is the ‘best’ straight line to draw. One way is to fit the
straight line, y = a + bx, to a set of data points (xi , yi) so that the sum
of the squares of the vertical distances of the points from the straight line
drawn is minimum. This is illustrated in Figure 13.19.

In order to fit the line y = a+bx, we can vary the values of a and b until
it satisfies our condition for minimum squared error. If the data points are
(xi , yi), then the sum of the squares of the errors is given by

E =
∑
i

(yi − a − bxi)
2

We can vary a and b to make this a minimum. However, E is a function of
two variables a and b. We know how to find the minima or maxima with
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Figure 13.18 A scatter diagram of the data for Example 13.33.

Figure 13.19 Vertical distances between the data points and the line represent the error for each point.
The method of least squares minimises the sum of the squares of these errors.

respect to one variable, which we looked at in Chapter 11. We shall look in
more detail at functions of two variables in Chapter 17. To minimize with
respect to two variables we begin by differentiating with respect to each
variable in turn keeping the other variable constant. This is called partial
differentiation. The ideas used in finding stationary values are the same
as that for one variable although the method of distinguishing between
types of stationary values is slightly more involved because the function
represents a two-dimensional surface drawn in three dimensions rather
than a simple curve. A partial derivative is indicated by using a curly d,
∂ , for the derivative and ∂E/∂a is read as ‘partial dE by da’

∂E

∂a
= −2

∑
i

(yi − a − bxi)

∂E

∂b
= −2

∑
i

xi(ti − a − bxi)
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For a minimum value we must have ∂E/∂a = 0 and ∂E/∂b = 0 giving

− 2
∑
i

(yi − a − bxi) = 0⇔
∑
i

yi −
∑
i

a − b
∑
i

xi = 0

− 2
∑
i

xi(yi − a − bxi) = 0⇔
∑
i

xiyi − a
∑
i

xi − b
∑
i

x2
i = 0

Finally, we get the normal equations

an+ b
∑
i

xi =
∑
i

yi

a
∑
i

xi + b
∑
i

x2
i =

∑
i

xiyi

where n is the number of data points.
Here, we have not attempted to justify that this is actually a minimum

point (we have only shown it to give a stationary point). We can now
illustrate the method for finding the values of a and b which minimize the
sum of the squared errors. At the start of this example we had a set of data
which we wish to fit to a function x = a+bt where the dependent variable
is x and the independent variable is t . We wish to find the values of a and
b so that x = a + bt gives a least squares fit to the data. The number of
data points is 6, so we have as the normal equations:

6a + b

6∑
i=1

ti =
6∑

i=1

xi

a

6∑
i=1

ti + b

6∑
i=1

t2
i =

6∑
i=1

tixi

Make a table from the data, as in Table 13.1.
Then the normal equations become:

6a + 75b = 753

75a + 1375b = 10300

Solving

450a+5625b = 56475

450a+8250b = 61800

2625b = 5325

Table 13.1 A table made from the data
of Example 13.32

t x t 2 tx

0 100 0 0
5 111 25 555
10 119 100 1190
15 132 225 1980
20 151 625 3775
75 753 1375 10 300
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⇒ b ≈ 2.03

6a + 75(2.03) = 754⇒ a ≈ 100.14

We have a = 100.14 and b = 2.03. Hence, the line of best fit is

x = 100.14+ 2.03t .

Curve fitting
The same method for fitting a straight line can be generalized to fit any
polynomial. For example, it could appear that our data would be better
fitted to a parabola.

y = b0 + b1x + b2x
2

The normal equations in this case are

b0n+ b1

∑
i

xi + b2

∑
i

x2
i =

∑
i

yi

b0

∑
i

xi + b1

∑
i

x2
i + b2

∑
i

x3
i =

∑
i

xiyi

b0

∑
i

x2
i + b1

∑
i

x3
i + b2

∑
i

x4
i =

∑
i

x2
i yi

We can solve these system of equations using Gaussian elimination.

Example 13.34 Find the best fit parabola by the method of least squares
for (0,3) (1,1) (2,0) (4,1) (6,4).

Solution The data are given in Table 13.2. The normal equations are:

5b0 + 13b1 + 57b2 = 9

13b0 + 57b1 + 289b2 = 29

57b0 + 289b1 + 1569b2 = 161

Solving these using Gauss elimination gives
 5 13 57 9

13 57 289 29
57 289 1569 161




Stage 1
 1 2.6 11.4 1.8

13 57 289 29
57 289 1569 161




Table 13.2 Table made from the data of
Example 13.34

x y x 2 x 3 x 4 xy x 2y

0 3 0 0 0 0
1 1 1 1 1 1 1
2 0 4 8 16 0 0
4 1 16 64 256 4 16
6 4 36 216 1296 24 144
13 9 57 289 1569 29 161
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1 2.6 11.4 1.8

0 23.2 140.8 5.6
0 140.8 919.2 58.4




Stage 2
1 2.6 11.4 1.8

0 1 6.069 0.241
0 140.8 919.2 58.4





1 2.6 11.4 1.8

0 1 6.069 0.241
0 0 64.685 24.467




Stage 3
1 2.6 11.4 1.8

0 1 6.069 0.241
0 0 1 0.378




Back-substitution

b0 + 2.6b1 + 11.4b2 = 1.8

b1 + 6.069b2 = 0.241

b2 = 0.378

gives b2 = 0.378, b1 = −2.054, and b0 = 2.831.
Hence, the best fit parabola is y = 2.831− 2.054x + 0.378x2.

13.9 Summary 1. Matrices are used to represent information in a way suitable for use
by a computer. They can represent, among other things, systems
of linear equations, transformations, and networks. A matrix is a
rectangular array of numbers of dimension m × n where m is the
number of rows and n is the number of columns.

2. To add or subtract matrices add or subtract each corresponding
element. The matrices must be of exactly the same dimension. To
multiply two matrices, C = AB, the number of columns in matrix A
must equal the number of rows in matrix B. The i, j th element of C
is found by multiplying the ith row of A by the j th column of B.

3. The unit matrix, I, leaves any matrix unchanged under multiplication.

I =
(

1 0
1 0

)
(2 dimensions)

I =

1 0 0

0 1 0
0 0 1


 (3 dimensions)

IA = AI = A where A is any matrix.
4. The inverse of a matrix is represented by A−1 and can be found for

square, non-singular matrices. A matrix is singular if its determinant
is 0.

5. The 2× 2 determinant is defined by∣∣∣∣a b

c d

∣∣∣∣ = ad − cb.
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6. The inverse of a 2× 2 non-singular matrix

(
a b

c d

)
is

1

(ad − cb)

(
d −b
−c a

)
.

7. Transformations of the plane (R2) can be defined using vectors and
matrices as in Section 13.13.

8. Systems of linear equations may be determined (a single solution),
indeterminate (many solutions) or inconsistent (no solutions).

9. Systems of linear equations can be solved using Gaussian
elimination.

10. The inverse of a matrix, if it exists, can be found using Gauss–Jordan
elimination.

11. The determinant of a 3× 3 matrix may be found by expanding about
any row or column, where∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 c2
b3 c3

∣∣∣∣− b1

∣∣∣∣a2 c2
a3 c3

∣∣∣∣+ c1

∣∣∣∣a2 b2
a3 b3

∣∣∣∣
gives the expansion about the first row.

12. The inverse of a non-singular matrix can be found using

A−1 = (1/|A|)(Adjoint(A)).

13. The eigenvalues and eigenvectors of a matrix A are the values of and
v such that Av = λv.

14. The method of least squares is used to fit a line or a curve through
experimental data in such a way as the sum of the square of the errors
is a minimum.

13.10 Exercises

13.1
A =


2 3

0 −4
0 2


 B =


2 −1 0

1 6 1
0 3 4




C = (4 0 − 1) D =
(

0 3
−1 4

)

E =
(

3 2
−1 −2

3

)
Find the following, where possible
(a) A (b) ATB (c) AB (d) BA
(e) CT (f) AC (g) CA (h) CB
(i)3CA (j) D+ E (k) 3D− 1

2 E (l) 1
2 B+ A

(m) B2 (n) E3 (o) AC2 (p) ATBCT.

13.2 Use

A =
(
a11 a12

a21 a22

)
B =

(
b11 b12

b21 b22

)
C =

(
c11 c12

c21 c22

)
to justify the associative law for 2× 2 matrices

A(BC) = (AB)C

13.3 Find a real square matrix which is both symmetric and
skew symmetric.

13.4 A network as in Figure 13.20(a), (b), or (c) can be used
to represent an electrical network, as system of one-
way streets, or a communication system. An incidence
matrix can be defined for a network in the following
way (the lines are called arcs and the dots are called
vertices).

aij = 1 if the arc j is leaving the vertex i

aij = −1 if the arc j is entering the vertex i

aij = 0 if the arc j does not touch the vertex i

For instance, Figure 13.20(a) has incidence matrix

Arc
a b c

1

−1 0 −1

1 −1 0
0 1 1


Vertex 2

3

(i) Find incidence matrices for the networks in
Figure 13.20(b) and (c).
(b) Draw networks that have the following inci-

dence matrices
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(i)
Arc

a b c

1


−1 1 1
0 −1 0
1 0 −1
0 0 0


Vertex 2

3
4

(ii)
Arc

a b c d e

1

−1 0 −1 1 0

1 −1 0 −1 1
0 1 1 0 −1


Vertex 2

3

Figure 13.20 Networks for Exercise 13.4.

13.5 Represent the following transformations using matri-
ces and vectors. In each case, apply the transforma-
tions to A(0,0), B(1,0), C(1,1), and D(0,1) to find their
images A′, B′, C′ and D′ and draw your result:

(a) Rotation about the origin through 120◦.
(b) Translation by (−4, 1).
(c) Reflection in the x-axis.
(d) Scaling in the y-direction by 5.
(e) Rotation through 120◦ about the origin followed

by a translation by (−2, 3).
(f) Translation by (−1, 3) followed by rotation

through 120◦ about the origin.
(g) Rotation through 120◦ about the origin followed

by scaling by 5 in the y-direction.
(h) Reflection in the line y = x.
(i) Scaling along a line at a 30◦ angle to the x-axis,

by a factor of 4.
(k) Find inverse transformations for those given in

parts (a),(b),(c),(e),(g), and (i) and check in
each case that the inverse transformation returns
A′, B′, C′, and D′ to A,B,C,D.

13.6 Sketch the following systems of equations and solve
them using Gauss elimination. In each case, state
whether the system is determined, indeterminate, or
inconsistent.

(a) 4x + y = 3 (b) x + y = 3
−2x − y = −3 x − y = 7

(c) 3x + 2 y = 1 (d) −5x − y = 5
−2x − 4

3y = 0 10x + 2y = −10
(e) 3x + 2y = −17 (f) x + 6y = 4

10x + y = 0 3x + 18y = 10
(g) −3x + 2y = 1 (h) −7x + 8y = −10

1.5x − y = 0.5 −2x + y = −8.

13.7 Solve the following using Gauss elimination. In
each case state whether the system is determined,
indeterminate or inconsistent.
(a) 2x − 3y − z = 4 (b) 4x − y − 2z = 40

5x + 5y + 2z = −23 3x + y + 9z = 5
x + z = −1 x − y + z = −55

(c) x + y − 3z = 8 (d) x − y + z = 3
−10x + 6y = −14 x + z = 3

12x − 4y − 6z = 30 −4x − y − 4z = −10.

13.8 Find inverses of the following matrices A, if they exist,
and check that A−1A = I

(a)

(
1 −2
0 1

)
(b)

(
2 3
−1 6

)

(c)

(
2 −1
10 −5

)
(d)


 1 −1 0
−2 4 2
−3 1 2




(e)


 0 5 1
−1 5 3
2 0 2


 (f)


 1 −1 2

6 1 3
−5 −2 −1




13.9 Find the following determinants:

(a)
∣∣∣∣1 6
2 3

∣∣∣∣ (b)
∣∣∣∣ 5 1
−6 2

∣∣∣∣
(c)

∣∣∣∣∣∣
3 −2 1
0 1 0
3 2 1

∣∣∣∣∣∣
(d)

∣∣∣∣∣∣
6 −3 −2
1 −1 8
0 −1 0

∣∣∣∣∣∣ .

13.10 The vector product of two three-dimensional vectors
can be defined using a determinant as follows:

(a1, a2, a3)× (b1, b2, b3) =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
where i, j , and k are the unit vectors in the x, y, and z

directions, respectively. Use this definition to find the
following:

(a) (1, 3, 6)× (−1, 2, 2)
(b) ( 1

2 , 1
2 ,−1)× (0, 0, 3).

13.11 The scalar triple produce of three vectors a, b, c, given
by a · (b × c) can be found using a determinant as
follows:

(a1, a2, a3) · ((b1, b2, b3)× (c1, c2, c3))

=
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
The absolute value of this can be interpreted as the
volume of the parallelepiped which has a, b, c as its
adjacent edges.
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(a) Find the volume of the parallelepiped with
adjacent edges given by the vectors

(i) (1, 0,−3), (0,1,1), and (3,0,1)
(ii) (1,−2, 2), (3, 2,−1), and (2, 1, 1)

(b) Explain why in case (a), (ii) you could conclude
that the three vectors lie in the same plane.

13.12 In a homogeneous, isotropic and linearly elastic mate-
rial it is found that the strains on a section of the
material, represented by εx , εy , and εz for the x-,
y-, and z-directions, respectively, can be related to
the stresses, σx , σy , and σz by the following matrix
equation.
εx
εy
εz


 = 1

E


 1 −ν −ν
−ν 1 −ν
−ν −ν 1




σx

σy

σz




where E is the modulus of elasticity (also called
Young’s modulus) and ν is Poisson’s ratio which
relates the lateral and axial strains. Find σx , σy , σz,
in terms of εx , εy , and εz and express the relationship
in matrix form.

13.13 Find eigenvalues and eigenvectors of the following:

(a)
(

6 −1
0 2

)
(b)

(
1 5
1 −3

)
(c)

(
3 2
1 2

)
.

13.14 A simple circuit comprising a variable voltage Vs, a
diode and a resistor is shown in Figure 13.21. As Vs

is varied, values of VR and I are recorded. The values
are given in Table 13.3.

Figure 13.21 A simple circuit with a
variable voltage Vs (Exercise 13.14).

Table 13.3 Voltage (VR) against
current (I) for Exercise 13.14

VR (V) I (A)

2 0.18
4 0.58
6 0.98
10 1.81

Using the method of least squares, determine Z and
VD in the equation VR = ZI + VD.

13.15 In an attempt to measure the stiffness of a spring
the length of the spring under different loads was
measured and the data is given in Table 13.4

Table 13.4 Loads against
spring length for Problem 13.15

Load (kg) Length (cm)

0 10
0.5 10.8
1 11.5
2 14
3 15.5
4 17.5

(a) Use the data to find an equation that could be used
to find the length of the spring given the weight.

(b) From your equation estimate, if possible, the
length of the spring when
(i) the load is 2.5 kg,

(ii) the load is 5 kg.

13.16 The power dissipation of a n–p–n silicon transistor is
thought to vary linearly with temperature. The data
given in Table 13.5 were recorded experimentally

Table 13.5 Power dissipation
of a n–p–n silicon transistor
recorded against temperature

Temperature (◦C) Power
dissipation (W)

25 10
60 7.9
100 5.7
120 4.8
140 3.5

Plot these points on a scatter diagram and use the
method of least squares to obtain a and b in the equa-
tion relating the power (P ) to the temperature (T );
P = a + bT .

13.17 Fit parabolas to the following sets of data:
(a) (−1, 0), (0,−1), (1, 4), (2, 14)(3, 32)
(b) (−1, 5.5), (0, 1.5), (0.5, 0.5), (2, 5).
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14 Differential
equations and
difference
equations

14.1
Introduction

In order to model most physical situations we need to simplify their
description. The idea of a system is central to this simplification. We
identify the important elements that interact within the system. The only
external interactions characterized as system inputs and the outputs are
the quantities related to the system behaviour which we are interested
in measuring. For instance, in examining the suspension system of a car
we consider the system input to be forces exerted on the wheels of the
car. The important elements in the system are the mass of the car and the
springs and dampers used to connect the body of the car to the suspension
links. We are interested in measuring the amount of vertical movement
of the car and the velocity of that movement in response, mainly, to a
bumpy road. We can examine the behaviour of the system for various
external forces – building up a picture of how the system behaves in
normal driving conditions. We do not need to concern ourselves with an
exact model of the surface of the major motorways. In this way we have
managed to separate the problem of modelling the system from modelling
the environment in which it is operating. A system with a single input
and output is pictured in Figure 14.1.

Figure 14.1 A system has
an input f (t ) which produces
an output response y (t ).

Dynamic physical processes involve variables which are interdepend-
ent and constantly changing. When modelling the system we will obtain
relationships between variables, many of which will be related through
derivatives. Even in a simple system with a mass, spring, and damper,
there are many variables which can be identified, for example the exten-
sion of the spring, and its velocity and acceleration, the potential energy
stored in the spring and the force exerted by it, and the force exerted by
the damper. A choice of variables that completely describe the system is
an important task in systems analysis. These variables are then called the
state variables. These can be related to each other and the system inputs
through a system of first-order differential equations which are found by
using scientific laws and engineering principles to model the system. The
system output, which is some quantity that we wish to compare with
the response of a real system, can then be calculated from the values of
the state variables.

A differential equation is one that involves some derivatives of the
dependent variable, for example, dy/dt = ky is a differential equation.
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We have already looked at a number of examples of differential equations.
The simplest case, when the solution can be found by integration, was
looked at in Chapter 7 and then we found that exponential functions are
solutions to differential equations of the form dy/dt = ky in Chapter 8
and in Chapter 10 we looked at the problem of circular motion and found
that exponential functions are also solutions to equations of the form
d2y/dt2 = −ω2y. In simple equations, we look for a solution which is a
number. When solving a differential equation our idea of a solution is to
find an explicit function for y in terms of t .

We will only be concerned with single input, single output (SISO)
systems in which case there are two ways of proceeding in order to solve
the system of differential equations. The system may be reduced to a
single differential equation and then solved, or the system may be solved
directly. These two methods correspond, in systems theory, to the transfer
function description of the system or a state variable description.

The types of differential equations we shall look at are all linear; that
is, they involve no powers of y, the independent variable or powers of the
derivative or products of any of these. Any real system will, of course have
some non-linear behaviour. However, we usually assume that either the
non-linearities present are not very important or that it is possible to ana-
lyse a system as locally linear. Another important assumption used is that
time invariance, that is, operating the system now or in an hours time with
exactly the same input and initial conditions will yield the same result.

The method of solution we use for finding a particular solution of
differential equations in this chapter is called the method of unknown
coefficients. An alternative method, using Laplace transforms, is more
widely applied, and we shall look at them in the next chapter.

Differential equations are used to analyse systems that are subject to
continuous or piecewise continuous inputs. It may be necessary, or prefer-
able, to develop a discrete model of the system. A discrete model may be
used if the exact nature of the system is unknown and we attempt to predict
its nature by recording its response to various inputs. The recording of the
system inputs and response will generally be stored in digital form and
the data processed in digital form. Another major application of digital
systems is for digital filter design. Here we wish to design digital filters
with certain desirable characteristics. We can find the characteristics of
digital systems by solving difference equations. We give a method of
solution of simple difference equations. More frequently, z-transforms
are used and these are discussed in the next chapter.

14.2 Modelling
simple systems

Damped forced motion of a spring
A spring of length l has a massm attached to it and a dashpot damping the
motion. It is subject to a force f (t) forcing the motion (see Figure 14.2).

The input to this system is the forcing function f (t) and the output
is the displacement of the spring from its original length, x. In order to
model this system we make a number of assumptions about its behaviour.

Figure 14.2 Damped forced
motion of a spring.

1. We assume Newton’s second law, FT = ma where a = m d2x/dt2

and FT is the total force operating on the mass: m is the mass on the
spring.

2. The spring does not become distorted, that is, it is perfectly elastic.
This means, from Hooke’s Law, that FS = −kx, where x is the
displacement from the original spring length l and k is the spring
constant.

3. The damping force due to the dashpot is FD = −r dx/dt
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To relate these quantities together we use the fact that the total force
on the mass is made up of the spring force, the damping force, and the
external force FT = FD + FS + f (t).

If we wish to combine these equations to express them using a single
differential equation we simply substitute for FT in terms of x and the
derivatives of x, giving

m
d2x

dt2
= −r dx

dt
− kx + f (t)

⇔ m
d2x

dt2
+ r

dx

dt
+ kx = f (t)

Should we wish to solve the system as a system of first order differential
equations then we choose some state variables, usually the displacement
and the velocity. Called these x1 and x2, and asx1 is the displacementx1 =
x and as x2 is the velocity this is the derivative of the displacement giving
x2 = dx1/dt .

As the acceleration is the derivative of the velocity, we can write the
acceleration as the derivative of x2

a = d2x1

dt2
= d

dt

dx1

dt
= dx2

dt
.

Now FT = ma can be written in terms of x2 as FT = m dx2/dt and the
force due to the dashpot becomes FD = −rx2. So FT = FD+FS+ f (t)
gives

m
dx2

dt
= −rx2 − kx1 + f (t)

⇔ dx2

dt
= − k

m
x1 − r

m
x2 + 1

m
f (t).

So the system of equations that represent the system is

dx1

dt
= x2

dx2

dt
= − k

m
x1 − r

m
x2 + 1

m
f (t).

The first equation expresses the fact that x2 is the velocity and the
second equation was obtained by considering the total force on the mass
and using Newton’s second law.

This system of equations may be expressed in matrix form as

d

dt

(
x1
x2

)
=
(

0 1
−k/m −r/m

)(
x1
x2

)
+
(

0
1/m

)
f (t).
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Writing

x =
(
x1
x2

)

A =
(

0 1
−k/m −r/m

)

and

B =
(

0
1/m

)

we can give the system of equations as a matrix differential equation

dx

dt
= Ax + Bf .

The system input is f and the output y = x1.
To write the derivative of a variable when it is clear that it is in respect

to its independent variable we may write x′ (read as ‘x dashed’) or x′′
(read as ‘x double dashed’). In addition, when the independent variable
is time we often write ẋ (read as ‘x dot’) and for the second derivative ẍ
(read as ‘x double dot’). Using this notation we have

ẋ = Ax + Bf

as the matrix differential equation.

Figure 14.3 An LRC circuit.

Modelling electrical circuits
We can model an LRC circuit as shown in Figure 14.3 using the following
assumptions:

1. Kirchoff’s voltage law (KVL): the sum of all the voltage drops around
any closed loop is zero.

2. The voltage drop vR across a resistor is proportional to the current i
i.e.

vR = Ri (Ohm’s law)

where the constant of proportionality R is called the resistance of the
resistor.

3. The voltage drop across a capacitor is proportional to the electric
charge q on the capacitor

vc = 1

C
q

where C is the capacitance and is measured in farads, the charge q
is measured in coulombs.

4. The voltage drop across an inductor is proportional to the rate of
change of the current i

vL = L
di
dt

where L is the inductance, measured in henries.

TLFeBOOK



“chap14” — 2003/6/8 — page 350 — #5

350 Differential equations and difference equations

Then, from KVL:

L
di

dt
+ Ri + q

C
= v(t)

Since

i(t) = dq

dt

we have

di

dt
= d

dt

(
dq

dt

)
= d2q

dt2

So we can write this differential equation in terms of q:

L
d2q

dt2
+ R

dq

dt
+ q

C
= v(t).

Here, the system input is v and the output is the charge on the capacitor q.
To obtain a differential equation in terms of i we can differentiate the

whole of this equation and use i = dq/dt , giving

L
d2i

dt2
+ R

di

dt
+ i

C
= dv

dt
.

Here the input is dv/dt and the output is i. Notice that L,R, and 1/C are
constants.

Should we wish to solve the system as a system of first order differential
equations then we choose some state variables. The general procedure is
to choose capacitor voltages and inductor currents. Hence, we choose

x1 = i

and

x2 = vc = q/C.

We can obtain one equation relating x1 and x2 by using

dq

dt
= i

1

C

dq

dt
= i

C

dx2

dt
= x1

C
.

Now we use KVL to give the other equation

L
di

dt
+ Ri + q

C
= v(t)

substituting i = x1 and x2 = q/C gives

dx1

dt
= −R

L
x1 − 1

L
x2 + 1

L
v(t).

So the system of equations that give the state variables are

dx1

dt
= −R

L
x1 − 1

L
x2 + 1

L
v(t)

dx2

dt
= 1

C
x1.

The first equation expresses Kirchoff’s voltage law the second equation
expresses the relationship between the current and the voltage across the
capacitor.
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This system of equations may be expressed in matrix form as

d

dt

(
x1
x2

)
=
(−R/L −1/L

1/C 0

)(
x1
x2

)
+
(

1/L
0

)
v.

Writing

x =
(
x1
x2

)

A =
(−R/L −1/L

1/C 0

)

and

B =
(

1/L
0

)

This can be written as a matrix differential equation

dx
dt
= Ax + Bv.

A rotational mechanical system
A rotor of moment of inertia J is supported by a shaft of torsional stiff-
ness k and the motion is damped by a rotational damper of torque c per
unit angular velocity (see Figure 14.4). T is the external torque applied
to the rotor.

Figure 14.4 A damped
rotational system.

The torque due to the rotational spring is proportional to the angle
through which it has been twisted, giving TS = −kθ . The damper pro-
vides a torque of −cω and the total rotational torque of the system is
given by J dω/dt where ω is the angular velocity and J is the moment
of inertial of the rotating body.

J
dω

dt
= −cω − kθ + T

J
dω

dt
+ cω + kθ = T .

Using ω = dθ/dt , we can write this equation in terms of the angle of
rotation as

J
d2θ

dt2
+ c

dθ

dt
+ kθ = T

Alternatively, we can choose state variables as x1 = θ and x2 = ω =
dx1/dt . This gives the system of equations

d

dt

(
x1
x2

)
=
(

0 1
−k/J −c/J

)(
x1
x2

)
+
(

0
1/J

)
T .
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Initial conditions and boundary values
To solve these equations we also need knowledge of the state of the
system at some moment or moments in time. This is usually given
in terms of the initial displacement and the initial velocity, that is, x
and dx/dt at t = 0. This is then called an initial value problem. If
two values of the displacement are given at different times or if the
velocity and the displacement are given at different times, then the
problem is called a boundary value problem. Boundary value problems
are more difficult to specify correctly to ensure that they determine a
solution.

14.3 Ordinary
differential
equations

An ordinary differential equation is an equation which involves deriva-
tives of y (the dependent variable) as well as functions of y and t .

dy

dt
= cos(t)

d2y

dt2
+ 9t = 0

t2
d3y

dt3
dy

dt
+ et = t

are all ordinary differential equations.
The other sort of differential equations, which are introduced in

Chapter 17, are partial differential equations which are used to describe a
dependency on two independent variables and involve partial derivatives
like ∂y/∂t (read as ‘partial dy by dt’).

The order of differential equations
The order of the differential equation is the order of the highest derivative
of y (the dependent variable) in the equation.

R
dq

dt
+ q

C
= 3 is first order in q.

dθ

dt
= sin(θ) is first order in θ .

x′′ + 4t2 = 0 is second order in x.

d3u

dt3
− du

dt
+ u = 4t4 is third order in u.

The solution of a differential equation
If a function, y = g(t), is a solution to a differential equation in y then if,
in the differential equation, we replace y and byg(t) and all the derivatives
of y by the corresponding derivatives of g(t) then the resulting predicate
should be an identity for t . That is, it should be true for all values of t
where it is defined.
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Example 14.1 Show that x = t3 is a solution to the differential equation
dx/dt = 3t2.

Solution Replace x by t3 in the differential equation gives

d

dt
(t3) = 3t2

⇔ 3t2 = 3t2

As this is true for all values of t , we have shown that x = t3 is a solution
to dx/dt = 3t2.

Example 14.2 Show that y = t2 − 3t + 3.5 is a solution to

y′′ + 3y′ + 2y = 2t2.

Solution Set y = t2 − 3t + 3.5, then differentiating gives

y′ = 2t − 3

and differentiating again

y′′ = 2

We substitute these expressions for y and the derivatives of y into

y′′ + 3y′ + 2y = 2t2

so we get

2+ 3(2t − 3)+ 2(t2 − 3t + 3.5) = 2t2

⇔ 2+ 6t − 9+ 2t2 − 6t + 7 = 2t2

⇔ 2t2 = 2t2

which is true for all values of t showing that y = t2 − 3t + 3.5 is a
solution to y ′′ + 3y′ + 2y = 2t2.

A differential equation has many solutions. For instance, the equation
dx/dt = 3t2 has solutions x = t3, x = t3 + 4, x = t3 − 5, etc.
These are called particular solutions. A general solution is one which
contains some arbitrary constants and encompasses all possible solutions
to the differential equation. This means that by choosing values of these
arbitrary constants we are able to find any of the particular solutions of the
equation. For instance, x = t3+C is a general solution to dx/dt = 3t2.

Linear differential equations
A linear differential equation can be recognized by its form. It is linear
if the coefficients of y (the dependent variable) and all order derivatives
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of y, are functions of t , or constant terms, only.

dy/dt = 4t

d2y/dt2 = 6t

t dy/dt = 6

ay′′ + by′ + cy = f (t)

3 d2y/dt2 + t2 dy/dt + 6y = t5

are all linear.

(dy/dt)2 + 3 = 12t + y dy/dt − t2

θ ′′ + k sin(θ) = 0

u′′ − (1− u2)u′ + u = 0

are all non-linear.

Linearity and superposition of solutions
The property of linearity is very important. We have applied the term
linear to equations whose graphs are straight lines. However, in an alge-
braic sense the term does not mean that everything represents a straight
line! The property of linearity is defined for an operator, which we shall
call O. A linear operator is one that, when operating on the sum of two
terms gives the same result as operating on the terms and then taking the
sum. This can be expressed as

O(f1 + f2) = O(f1)+ O(f2).

The other condition is that

O(af ) = aO(f )

The two conditions can be combined to say that a linear operation
on a linear combination of inputs produces a linear combination of the
outputs. A linear combination of f1 and f2 is af1 + bf2, where a and b

are constants and therefore if an operator, O, is linear then

O(af1 + bf2) = aO(f1)+ bO(f2)

Examples of linear operators are:

Matrices
A(x1 + x2) = Ax1 +Ax2 and A(ax) = a(Ax) where a is a number and
A is a matrix and x1, x2, and x are vectors

The differential operator

d

dt
(3t + t2) = 3

d

dt
(t)+ d

dt
(t2).

The integral operator∫
(3t + t2)dt =

∫
3t dt +

∫
t2 dt
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An example of a non-linear operator is the sine function as

sin(A+ B) �= sin(A)+ sin(B)

For a differential equation the fact that it is linear leads to the fact that
if a solution to the differential equation with input function f1(t) is y1
and a solution to the differential equation with input f2(t) is y2, then
one solution to the equation with an input function af1 + bf2, is ay1 +
by2, where a and b are constants. This result is central to the method of
solving differential equations used in this chapter and also to the Laplace
transform method of the next chapter.

Example 14.3 A differential equation

d2x/dt2 + 9x = f (t)

is found to have a particular solution x = t/9 when f (t) = t and a
particular solution

1
5 sin(2t) whenf (t) = sin(2t).

Suggest a particular solution when f (t) = t + 5 sin(2t) and check that
your hypothesis is correct.

Solution As the differential equation is linear, if we sum the input
functions then we should be able to sum the solutions. Hence, a solution to

d2x/dt2 + 9x = t + 5 sin(2t)

should be given by

x = t

9
+ 5× 1

5
sin(2t) = t

9
+ sin(2t)

Check:

x = t/9+ sin(2t)

dx/dt = (1/9)+ 2 cos(2t)

d2x/dt2 = −4 sin(2t)

Then substituting these into

d2x/dt2 + 9x = t + 5 sin(2t)

gives

−4 sin(2t)+ 9((t/9)+ sin(2t)) = t + 5 sin(2t)

−4 sin(2t)+ t + 9 sin(2t) = t + 5 sin(2t)

which is true for all values of t , showing that

x = (t/9)+ sin(2t)

is a solution to

d2x/dt2 + 9x = t + 5 sin(2t).
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Linear equations with constant
coefficients
A linear equation is said to have constant coefficients if the coefficients
multiplying y and the derivatives of y (the dependent variable) are all
constants, that is, do not involve functions of t.

3 d2y/dt2 + 2 dy/dt + 4y = f (t)

has constant coefficients

t2 d2y/dt2 + 3t dy/dt + 4y = f (t)

does not have constant coefficients as t2 and 3t are functions of time.

Figure 14.5 If a system
is time invariant, then a
time-shifted input yields a
time-shifted output.

Time invariance
A linear differential equation with constant coefficients displays time
invariance. If we use the same input and starting conditions for a system
now or at some later time then the result relative to the initial starting time
will be identical. Another way of expressing this is that if the input is time
shifted then so is the output. This idea is represented in Figure 14.5.

Example 14.4 For the differential equation

d2y/dt2 + 4y = sin(3t)

show that

y = sin(2t)− 1
5 sin(3t)

is a solution and find a solution for the equation with the same input
function delayed by 1 s, that is, find a solution to

d2y/dt2 + 4y = sin(3(t − 1))

Solution First, we check that

y = sin(2t)− 1
5 sin(3t)

is a solution to the differential equation.
To do this, we must find the first and second derivatives

dy/dt = 2 cos(2t)− (3/5) cos(3t)

d2y/dt2 = −4 sin(2t)+ (9/5) sin(3t)

Substitute into

d2y/dt2 + 4y = sin(3t)

giving

−4 sin(2t)+ (9/5) sin(3t)+ 4(sin(2t)− 1
5 sin(3t)) = sin(3t)

⇔ sin(3t) = sin(3t)

which is true for all t . Hence,

y = sin(2t)− 1
5 sin(3t)

is a solution to

d2y/dt2 + 4y = sin(3t).
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To find a solution to d2y/dt2+4y = sin(3(t−1)), we use the property
of time invariance, which means that a solution should be given by a
time-shifted version of the solution to the first equation, that is

y = sin(2(t − 1))− 1
5 sin(3(t − 1))

then

dy/dt = 2 cos(2(t − 1))− (3/5) cos(3(t − 1))

d2y/dt2 = −4 sin(2(t − 1))+ (9/5) sin(3(t − 1)).

Substitute into

d2y/dt2 + 4y = sin(3(t − 1))

giving

− 4 sin(2(t − 1))+ (9/5) sin(3(t − 1))

+ 4(sin(2(t − 1))− (1/5) sin(3(t − 1)))

= sin(3(t − 1))

⇔ sin(3(t − 1)) = sin(3(t − 1))

which is true for all t .

Example 14.5 For the differential equation

t dy/dt + y = 6t2

(a) show that y = 2t2 is a solution
(b) show that the equation t dy/dt + y = 6t2 cannot represent a time

invariant system.

Solution (a) To show that y = 2t2 is a solution to

t dy/dt + y = 6t2

we need to find dy/dt

y = 2t2

⇒ dy/dt = 4t

substituting into

t dy/dt + y = 6t2

gives

t(4t)+ 2t2 = 6t2

⇔ 6t2 = 6t2, which is true for all t .

(b) To show that this cannot represent a time-invariant system, we take
an equation with a time-shifted input, for instance, shifted by 2 s to give

t dy/dt + y = 6(t − 2)2.

If it were to be time-invariant, then a solution to this equation would
be a time-shifted solution of the solution to the equation in part (a), that
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is, y = 2(t − 2)2. To show that the equation does not represent a time-
invariant system we just need to show that y = 2(t −2)2 is not a solution

y = 2(t − 2)2

⇒ dy/dt = 4(t − 2)

Substitution into

t dy/dt + y = 6(t − 2)2

gives

t(4(t − 2))+ 2(t − 2)2 = 6(t − 2)2

⇔ 4t(t − 2)+ 2(t − 2)2 − 6(t − 2)2 = 0

⇔ (t − 2)(4t + 2t(t − 2)− 6(t − 2)) = 0

⇔ (t − 2)(4t + 2t − 4− 6t + 12) = 0

⇔ 8(t − 2) = 0

which is not true for all values of t , showing that y = 2(t − 2)2 is not a
solution to t dy/dt + y = 6(t − 2)2 and therefore we have shown that
t dy/dt + y = f (t) does not represent a time-invariant system.

We have seen that linear differential equations with constant coeffi-
cients represent linear time invariant (LTI) systems.

14.4 Solving
first-order LTI
systems

To solve ay′ + by = f (t), we begin by ignoring the forcing function
setting it equal to 0. This is then called the homogeneous equation

ay′ + by = 0.

The general solution to this equation is called the complementary
function.

We then find any particular solution and the sum of the complemen-
tary function and the particular solution gives us the general solution to
the differential equation. Summing the two solutions in this way we are
making use of the linearity property of the differential equation.

It may seem strange that a system with no input, as represented
by the homogeneous equation ay′ + by = 0 may have a non-zero
output! This is due to the fact that the initial conditions may be non-
zero. For instance, a pendulum released from rest and performing small
oscillations, approximately obeys the differential equation

d2y/dt2 + ω2y = 0

where y is the distance the tip of pendulum has moved from its rest
position and ω is its angular velocity. The pendulum will only begin to
move if either it is given a non-zero initial velocity of if it is lifted slightly
and then released. This means that either the initial position or the initial
velocity or both must be non-zero for y to be non-zero.

The method we shall use for solving the complementary function relies
on the fact that we know that y′ = ky has the solution y = C ekt . That
is, the derivative of an exponential function is a scaled version of the
original function. This was discussed in Chapter 8. We can also show
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that any order derivative of an exponential function is a scaled version of
the original function. Consider

dy/dt = ky.

Differentiating this equation gives

d2y/dt2 = k dy/dt .

Substituting dy/dt = ky we get

d2y/dt2 = k2y

and hence the second derivative is a scaled version of the original
exponential function with scaling factor k2. Differentiating again, we get

d3y/dt3 = k2dy/dt

and on substituting dy/dt = ky, we get

d3y/dt3 = k3y

and hence the third derivative is a scaled version of the original function
with scaling factor k3. We use this property of exponential functions to
solve the homogeneous equation by trying a solution of the form y =
C eλt . We then find value(s) for λ which are appropriate for the equation
under consideration.

The equations we found in Section 14.2 were all second-order equa-
tions or systems of equations involving more than one state variable.
However, in some circumstances, we get simple first order equations. For
instance if their is no inductor present in an LRC circuit we can putL = 0
to give

R dq/dt + q/C = v(t),

which is first order in q.
The method of solution can be characterized by four steps. To find the

solution to ay′ + by = f (t):

Step 1: Find the complementary function
The solution of the homogeneous equation

ay′ + by = 0

is found by assuming a solution of the form y = A eλt . Hence, y′ =
Aλ eλt and substituting into ay′ + by = 0 we get

aAλ eλt + bA eλt = 0

We are not interested in the trivial solution A = 0 and eλt is never zero,
so we can divide through by A eλt giving

λa + b = 0

which is called the auxiliary, or characteristic equation.
The auxiliary equation has the solution λ=−b/a. Hence, the comple-

mentary function is

y = A e−(b/a)t .
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Table 14.1 A table of trial solutions to be used to find a particular
solution. The form of the trial solution is suggested by the form of
the forcing function f (t ). The coefficients c0, c1, . . . and c,d are to be
determined

Input function Trial solution

Polynomial of order n

f (t ) = a0 + a1t + a2t 2 + · · · + ant n y = c0 + c1t + c2t 2 + · · · + cnt n

(Use all terms up to n for the
trial solution)

Exponential function

f (t ) = a eαt y = c eαt

Sine or cosine function
f (t ) = a cos(ωt ) or b sin(ωt ) or y = c cos(ωt )+ d sin(ωt )
f (t ) = a cos(ωt )+ b sin(ωt )

Step 2: Find a particular solution
The system output, after the effect of any initial conditions have died
out, we would expect to mimic the system input. To find a particular
solution we try a trial solution with some undetermined coefficients. Some
good guesses to use for the trial solution, depending on the type of input
function f (t), are given in Table 14.1.

The coefficients in the trial solution are determined by substituting into

ay′ + by = f (t).

These trial solutions will not always work. Laplace transforms may be
used to find a particular solution in that case (see Chapter 15).

Step 3: Find the general solution
The general solution to the equation is given by the sum of the
complementary function plus the particular solution.

Step 4: Find the particular solution
The final step is to use the initial condition to find the appropriate value
of A, the arbitrary constant. This solution is then the particular solution
which solves the differential equation with the given initial condition.

Example 14.6 The RC circuit in Figure 14.6 is initially relaxed and is
closed at time t = 0. Hence, applying a DC voltage of v0 the charge of
the capacitor obeys the differential equation

R dq/dt + q/C = v0.

Solve for q and find an expression for the voltage across the capacitor at
a time t after the circuit was closed.Figure 14.6 An RC circuit

with an applied DC voltage.
Step 1
To find the complementary function we solve the homogeneous equation

R dq/dt + q/C = 0.

Substitute q = A eλt and dq/dt = Aλ eλt to give

RλA eλt + A eλt /C = 0.

Divide by A eλt

Rλ+ 1/C = 0 ⇔ λ = −1/(RC).
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The complementary function is

q = A e−t/RC

Step 2
Try a particular solution of the form q = a, where a is a constant. Then
q ′ = 0, substituting into

R dq/dt + q/C = v0

we get

a/C = v0

⇔ a = v0C

Step 3
The general solution is therefore the sum of the complementary function
(found in Step 1) and a particular solution (found from Step 2), so the
general solution for q is given by

q = A e−t/RC + Cv0

Step 4
Finally, we use the initial conditions to find the arbitrary constant A. We
are told that initially the circuit was relaxed meaning that all voltages
and currents are zero. In this case, this means that when t = 0, q = 0.
Substituting this condition into

q = A e−t/RC + Cv0

we get

0 = A+ Cv0

⇔ A = −Cv0

Therefore, the solution is

q = −Cv0 e−t/RC + Cv0

⇔ q = Cv0(1− e−t/RC).

This gives the voltage across the capacitor vc = q/C as vc = v0×
(1− e−t/RC) where v0 is the applied DC voltage.

Check:
To check that q = Cv0(1− e−t/RC) is in fact a solution to

R dq/dt + q/C = v0

we carry out the following steps:

q = Cv0(1− e−t/RC)

⇒ dq/dt = (Cv0/RC)e
−t/RC ⇔ dq/dt = (v0/R)e

−t/RC

Substituting into

R dq/dt + q/C = v0

gives

(Rv0/R)e
−t/RC + (v0C/C)(1− e−t/RC) = v0

⇔ v0 = v0

which is an identity for t , showing that q = Cv0(1−e−t/RC) is a solution
to the differential equation.
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We also check that the solution satisfies the given initial condition by
substituting q = 0 and t = 0 into q = Cv0(1− e−t/RC). We find

0 = Cv0(1− 1) ⇔ 0 = 0,

which is true.

Example 14.7 Solve the differential equation

y′ − 3y = 6 cos(2t),

given y(0) = 2.

Step 1
To find the complementary function we solve the homogeneous equation

y′ − 3y = 0

substitute y = A eλt so that dy = Aλ eλt , giving

Aλ eλt − 3A eλt = 0.

Therefore, we get the auxiliary equation

λ− 3 = 0 ⇔ λ = 3.

The complementary function is y = A e3t

Step 2
Try a particular solution (chosen from Table 14.1) of the form y=
c cos(2t) + d sin(2t) then y′ = −2c sin(2t) + 2d cos(2t). Substituting
into y′ − 3y = 6 cos(2t) we get

− 2c sin(2t)+ 2d cos(2t)− 3(c cos(2t)+ d sin(2t)) = 6 cos(2t)

⇔ (−2c − 3d) sin(2t)+ (2d − 3c) cos(2t) = 6 cos(2t).

We want this to be true for all values of t , so we can equate the coefficients
of the sin(2t) terms on both sides of the equation and also the cos(2t)
terms.

Equating the coefficients of sin(2t) gives:

−2c − 3d = 0.

Equating the coefficients cos(2t) gives:

−2d − 3c = 6.

Therefore,

−2c − 3d = 0

−3c + 2d = 6.

Solving these equations simultaneously gives

c = −18/13 d = 12/13.

Hence, a particular solution is

y = −(18/13) cos(2t)+ (12/13) sin(2t).
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Step 3
The general solution is given by the sum of the complementary function
and a particular solution giving

y = A e3t − (18/13) cos(2t)+ (12/13) sin(2t).

Step 4
Use the initial condition to find A.

When t = 0, y = 2. Substituting this into

y = A e3t − (18/13) cos(2t)+ (12/13) sin(2t)

gives

2 = A− (18/13) cos(0)+ (12/13) sin(0)

⇔ 2 = A− 18/13 ⇔ A = 44/13.

Therefore, the solution is

y = (44/13)e3t − (18/13) cos(2t)+ (12/13) sin(2t).

Check: Substitute

y = (44/13)e3t − (18/13) cos(2t)+ (12/13) sin(2t)

and

y′ = (132/13)e3t + (36/13) sin(2t)+ (24/13) cos(2t)

into

y′ − 3y = 6 cos(2t) giving

(132/13)e3t + (36/13) sin(2t)+ (24/13) cos(2t)

− 3(44/13)e3t − (18/13) cos(2t)+ (12/13) sin(2t) = 6 cos(2t)

⇔ (78/13) cos(2t) = 6 cos(2t)

which is correct.
We also check the initial condition by substituting t = 0, y = 2 into

y = (44/13)e3t − (18/13) cos(2t)+ (12/13) sin(2t).

We find

2 = (44/13)e0 − (18/13) cos(0)+ (12/13) sin(0)

⇔ 2 = (44/13)− (18/13)

⇔ 2 = 26/13, which is true.

14.5 Solution of
a second-order
LTI systems

We can solve a second-order system in a manner similar to first-order
systems. To solve ay′′ + by′ + cy = f (t) we solve the homogeneous
equation

ay′′ + by′ + cy = 0.

The solution to this equation is called the complementary function.
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We then find any particular solution and the sum of the complementary
function and a particular solution gives us the general solution to the
differential equation. We can again list the steps involved.

To solve ay′′ + by′ + cy = f (t)

Step 1 – Find the complementary function
The solution of the homogeneous equation

ay′′ + by′ + cy = 0

is found by assuming solutions of the form y = A eλt .
Hence, y′ = Aλ eλt and y′′ = Aλ2 eλt and we find

aAλ2 et + bAλ eλt + cA eλt = 0

giving the auxiliary equation

aλ2 + λb + c = 0.

The auxiliary equation is a quadratic equation. It has solutions

λ1, λ2 = −b ±
√
b2 − 4ac

2a
.

There are three possible types of solutions:

Case (1): λ1 and λ2 are real and distinct then the solution is:

y = A eλ1t + B eλ2t .

Case (2): λ1 and λ2 are complex. We set λ1 = k+jω0 and λ2 = k−jω0

so that k = −b/2a and

ω0 =
√

4ac − b2

2a
.

Then the complex exponentials can be written in terms of cosines and
sines and the solution becomes

y = ekt (A cos(ω0t)+ B sin(ω0t)).

Case (3): The roots are equal, that is, λ1 = λ2 = k = −b/2a, then the
solution is y = (At + B)ekt .

Step 2: Find a particular solution
The particular solution is any solution of the equation

ay′′ + by′ + cy = f (t).

As for the first-order system we expect the system output, after the effect
of any initial conditions have died out, to mimic the system input. Again
to find a particular solution we try a trial solution as given in Table 14.1.
The ‘guess’ at the particular solution is substituted into the differential
equation and the unknowns coefficients can be determined. If this guess
does not produce a solution then Laplace transform methods can be used
as in Chapter 15.

Step 3
The general solution to the equation is given by the sum of the
complementary function plus a particular solution.

Step 4
The final stage is to use the initial conditions or boundary conditions to
find the appropriate values of the arbitrary constants A and B.
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Example 14.8 Solve the differential equation 5y′′+6y′+5y = 6 cos(t),
where y(0) = 0 and y′(0) = 0.

Step 1
To find the complementary function we solve the homogeneous equation
5y′′ + 6y′ + 5y = 0. Trying solutions of the form y = A eλt leads to the
auxiliary equation 5λ2 + 6λ + 5 = 0. Notice that a quick way to get
the auxiliary equation is to ‘replace’ y ′′ by λ2, y′ by λ, and y by 1. The
auxiliary equation has solutions

λ = −6±√36− 100

10

= −6±√−64

10

= −0.6± j0.8.

Comparing this with λ = k± jω0 gives k = −0.6, ω0 = 0.8. This means
that the complementary function has the form

y = ekt (A cos(ω0t)+ B sin(ω0t))

(given as Case (2) in the general method), with k = −0.6 and ω0 = 0.8.
This gives

y = e−0.6t (A cos(0.8t)+ B sin(0.8t)).

Step 2
As f (t) = 6 cos(t), from Table 14.1 we decide to try a particular solution
of the form y = c cos(t)+ d sin(t). Then

y′ = −c sin(t)+ d cos(t)

and

y′′ = −c cos(t)− d sin(t).

Substituting in

5y′′ + 6y′ + 5y = 6 cos(t)

we find

5(−c cos(t)− d sin(t))+ 6(−c sin(t)+ d cos(t))

+ 5(c cos(t)+ d sin(t)) = 6 cos(t)

⇔ (−5c + 6d + 5c) cos(t)+ (−5d − 6c + 5d) sin(t) = 6 cos(t)

⇔ 6d cos(t)− 6c sin(t) = 6 cos(t).

As we want this to be an identity we equate the coefficients of cos(t) and
the coefficients of sin(t) and get the two equations

6d = 6 ⇔ d = 1

6c = 0 ⇔ c = 0.

Hence, a particular solution is y = sin(t).
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Step 3
The general solution is given by the sum of the complementary function
and a particular solution, so

y = e−0.6t (A sin(0.8t)+ B cos(0.8t))+ sin(t).

Step 4
Use the given initial conditions to find values for the constants A and B.
Substituting y = 0 when t = 0 into

y = e−0.6t (A cos(0.8t)+ B sin(0.8t))+ sin(t)

then

0 = e0(A cos(0)+ B sin(0))+ sin(0)

⇔ 0 = A.

To use the other condition, that y′ = 0 when t = 0, we need to differ-
entiate the general solution to find an expression for y′. Differentiating
(using the product rule):

y = e−0.6t (A cos(0.8t)+ B sin(0.8t))+ sin(t)

⇒ y′ = −0.6 e−0.6t(A cos(0.8t)+ B sin(0.8t))

+ e−0.6t (−0.8A sin(0.8t)+ 0.8B cos(0.8t))+ cos(t)

and using y′ = 0 when t = 0 gives

0 = −0.6A+ 0.8B + 1.

We have already found A = 0 from the first condition, so

B = −1/(0.8) = −1.25.

Therefore, the solution is

y = −1.25 e−0.6t sin(0.8t)+ sin(t).

Check

y = −1.25 e−0.6t sin(0.8t)+ sin(t)

y′ = 0.75 e−0.6t sin(0.8t)− e−0.6t cos(0.8t)+ cos(t)

y′′ = −0.45 e−0.6t sin(0.8t)+ 0.6 e−0.6t cos(0.8t)

+ 0.6 e−0.6t cos(0.8t)+ 0.8 e−0.6t sin(0.8t)− sin(t).

Substitute into

5y′′ + 6y′ + 5y = 6 cos(t)

giving

5(−0.45 e−0.6t sin(0.8t)+ 0.6 e−0.6t cos(0.8t)

+ 0.6 e−0.6t cos(0.8t)+ 0.8 e−0.6t sin(0.8t)− sin(t))

+ 6(0.75 e−0.6t sin(0.8t)− e−0.6t cos(0.8t)+ cos(t))

+ 5(−1.25 e−0.6t sin(0.8t)+ sin(t)) = 6 cos(t)

⇔ e−0.6t sin(0.8t)(1.75+ 4.5− 6.25)+ e−0.6t cos(0.8t)(6− 6)

+ sin(t)(−5+ 5)+ 6 cos(t) = 6 cos(t)

which is true for all values of t.
We can also check that the solution satisfies the given initial conditions.
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Example 14.9 Find the current in an initially relaxed LRC circuit with
R = 5%,L = 4 µH,C = 1 µF where the AC voltage source is given by
v(t) = 20 sin(10t).

Solution The differential equation is given in Section 14.2 as

L
d2i

dt2
+ R

di

dt
+ i

C
= dv

dt

As v = 20 sin(10t)

dv

dt
= 200 cos(10t)

and substituting in the given values of L,R, and C we get

(4× 10−6)d2i/dt2 + 5 di/dt + i

10−6
= 200 cos(10t)

4× 10−6 d2i/dt2 + 5 di/dt + 106i = 200 cos(10t).

Step 1
Solve the homogeneous equation

(4× 10−6)d2i/dt2 + 5 di/dt + 106i = 0

This has auxiliary equation

4× 10−6λ2 + 5λ+ 106 = 0

with solutions

⇔ λ = −5±√25− 4(4× 10−6 × 106)

2× 10−6
⇔ λ = −5±√9

2× 10−6

⇔ λ = −4× 106 ∨ λ = −106.

The complementary function is

i = A e−106t + B e−4×106t .

Step 2
Find a particular solution. As the forcing function is a cosine function we
try

i = c cos(10t)+ d sin(10t)

di/dt = −10c sin(10t)+ 10d cos(10t)

= −100c cos(10t)− 100d sin(10t).

Substituting into

(4× 10−6)d2i/dt2 + 5 di/dt + 106i = 200 cos(10t)

we get

4× 10−6(−100c cos(10t)− 100d sin(10t))

+ 5(−10c sin(10t)+ 10d cos(10t))

+ 106(c cos(10t)+ d sin(10t)) = 200 cos(10t)

⇔ −0.0004c cos(10t)− 0.0004d sin(10t)− 50c sin(10t)+ 50d cos(10t)

+ 106c cos(10t)+ 106d sin(10t).
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Equating coefficients of sine and cosine terms to make this an identity
gives

− 0.0004c + 50d + 106c = 200

− 0.0004d − 50c + 106d = 0

and solving these equations we find d ≈ 10−8 and c ≈ 0.0002, so

i = 0.0002 cos(10t)+ 10−8 sin(10t).

Step 3
Hence, the general solution is

i = A e−106t + B e−4×106t + 0.0002 cos(10t)+ 10−8 sin(10t).

Step 4
Given than i = 0 and di/dt = 0 when t = 0 initially, then we can
substitute into

i = A e−106t + B e−4×106t + 0.0002 cos(10t)+ 10−8 sin(10t)

and

di

dt
= −106Ae−106t − 4B106 e−4×106 − 0.002 sin(10t)+ 10−7 cos(10t)

to find equations for A and B

A+ 4B = −10−13

A+ B = −0.0002

which we solve to find A ≈ −0.000267 and B = 0.0000667.
So, the solution to the initial value problem is approximately

i = −0.000267 e−106t + 0.0000667 e−4×106t

+ 0.0002 cos(10t)+ 10−8 sin(10t).

The transient and steady state
solution – system stability
From the systems modelled in Section 14.2 we can see that the term by′
in the equation:

ay′′ + by′ + cy = f (t)

comes from the damping factor in the system. For electrical systems this
is provided by the resistance. b must be a positive quantity in any of those
systems as are the other coefficients.

The auxiliary equation is aλ2 + bλ+ c = 0 with solutions

λ1, λ2 = −b ±
√
b2 − 4ac

2a

and this gives three possibilities for the complementary function.
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Case (1): Real distinct roots y = A eλ1t+B eλ2t . Notice that λ1 λ2 must
be negative when a, b, and c are positive and therefore the
complementary function will die out as t→∞ . In this case
the system is said to be overdamped.

Case (2): Complex roots y = ekt (A cos(ω0t)+ B sin(ω0t))

where k = −b/2a which is negative, so ekt is a negative
exponential term. This then represents dying oscillations. The
system is said to be underdamped.

Case (3): The roots are equal, then= k = −b/2a and y = (At+B)ekt
Again this has a negative exponential part causing the com-
plementary function to tend to zero as t→ ∞. This case is
referred to as critical damping.

Because the contribution from the complementary function dies out as
t →∞, it is referred to as the transient solution. Graphs of the form of
the transients, for positive initial displacement and zero initial velocity,
are shown in Figures 14.7(a)–(c) for Cases (1)–(3) respectively.

Figure 14.7 The
complementary function,
found by solving the
homogenous equation,
provides the transient
solution. The graphs shown
are for positive initial
displacement and zero
velocity. (a) The graph of the
transient for the overdamped
case where
y = A eλ1t + B eλ2t , λ1, λ2
negative. (b) Graph of the
underdamped case where the
transient consists of dying
oscillations y =
ekt (A cos(ω0t )+ B sin(ω0t ))
(k is negative). (c) The
critically damped case where
y = (At + B)ekt , k negative.
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The other part of the solution, where we consider the effect of the
forcing function, is called the steady state solution. For the solution found
in Example 14.8 where

y = −1.25 e−0.6t sin(0.8t)+ sin(t)

we find that−1.25 e−0.6t sin(0.8t) is the transient and sin(t) is the steady
state solution. If we consider the system after some time has passes then
the transient will effectively be zero and we are left with y = sin(t), the
steady state solution.

We have said that in any truly linear system, as represented, for
instance, by our models in Section 14.2, the constants must be posi-
tive with positive damping. However, we may wish to analyse non-linear
systems by using a locally linear approximation. In this situation they
may exhibit unstable behaviour, where the ‘transients’, instead of dying
out, display positive exponential behaviour and grow very large. This is
then referred to as an unstable system.

We can analyse systems in the following way:

Stable system:A system is stable if all the solutions to the auxiliary equa-
tion have negative real parts. A system with some purely imaginary
solutions to the auxiliary equation can also considered to be stable
although the complementary function does not die out as t →∞ but
represents sustained oscillations.

Unstable system:A system is unstable if any solutions to the auxiliary
equation have positive real parts or, for systems of higher order, if
there is a repeated, purely imaginary, solution.

Damped oscillations of a mechanical
system – resonance
For damped oscillations of a spring we have the differential equation

⇔ m d2x/dt2 + r dx/dt + kx = f (t)

as shown in Section 14.2, where m is the mass, r the damping constant,
and k the spring constant. We shall look at the steady state solution in
the case where there is a single frequency input. We are interested in the
magnitude of the response in this case in order to analyse the problem of
resonance.

For simplicity we can regard the single frequency input as a complex
exponential f (t) = F0 ejωt where F0 is a constant. Having found the
response to the complex exponential, then as

F0 ejωt = F0 cos(ωt)+ jF0 sin(ωt)

we can find the response to a cosine function by taking the real part of
the output or to a sine function by taking the imaginary part of the output
(this is an application of the linearity property).

We have the equation mẍ+ rẋ+ kx = F0 ejωt and we want to find the
steady state solution. Try a solution of the form x = c ejωt then

ẋ = cjω ejωt

ẍ = −cω2 ejωt

and substituting into the differential equation we find

−mcω2 ejωt + crjω ejωt + kc ejωt = F0 ejωt .
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On dividing both sides by ejωt (which is non-zero), we get

c(−mω2 + jrω + k) = F0.

Hence

c = F0/(−mω2 + jrω + k)

giving the steady state solution as

x = F0 ejωt

−mω2 + jrω + k

We are interested in the magnitude of the oscillations, which is given by∣∣∣∣ F0

−mω2 + jrω + k

∣∣∣∣ .

We can find this by taking the magnitude of the top and bottom lines.
From Chapter 14 we know that the magnitude of a complex number,
z = x + jy, is given by r = √

x2 + y2. Hence, we find the amplitude
of the oscillations in response to a single frequency of input of angular
frequency is given by

F0√
(mω2 − k)2 + r2ω2

.

This was plotted in Figure 11.10 for the case m = k = 1 and various
values of r (there called c). If the damping, r , is quite small then we can
set it to be effectively 0. In this case

|x| =




F0

k − ω2m
for ω2 < k/m

F0

ω2m− k
for ω2 > k/m

In which case there is an infinite discontinuity at

ω =
√
k

m
.

We see that
√
k/m represents the natural angular frequencies of m the

system in the case where r is 0. We can show this by examining the
solution to the homogeneous in the case where r = 0.

mx ′′ + kx = 0 has auxiliary equation

mλ2 + k = 0

⇔ λ2 = −k/m

and setting λ = jω0 we find that ω2
0 = k/m and the complementary

function x = A cos(ω0t)+ B sin(ω0t).
We can see from this limiting case that if the damping constant is

small and the oscillations of the forcing function are near to the natu-
ral oscillations of the underdamped system then we have a situation of
resonance where the magnitude of the response can become very large.
This effect has led to the destruction of some physical systems before the
phenomenon of resonance was well understood.
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14.6 Solving
systems of
differential
equations

To solve a system of differential equations we can combine the equations
into a single differential equation using substitution. In this case we can
use the method as outlined in Section 14.5. Alternatively, we can solve
the system directly using matrices.

We follow the same pattern as in Section 14.4 for first-order systems.
We solve the homogeneous equation, to find the complementary function
and then find a particular solution. The sum of these two terms gives a
general solution to the system.

Example 14.10 Find the displacement of the spring after time t
described by the system of differential equations

d

dt

(
x1
x2

)
=
(

0 1
−k/m −r/m

)(
x1
x2

)(
0

1/m

)
f (t)

in the case where the mass on the spring is 1, the damping constant r = 5,
the spring constant k = 4, the forcing function f (t) = t , and the initial
extension of the spring is 0 with 0 initial velocity.

Solution Substituting the given values for m, r , k, and f , we have the
system

d

dt

(
x1
x2

)
=
(

0 1
−4 −5

)(
x1
x2

)
+
(

0
1

)
f (t).

Step 1
Solve the homogeneous system with f (t) = 0, giving

dx
dt
= Ax where A =

(
0 1
−4 −5

)
.

Try solutions of the form x = v eλt , where v is a constant vector. Then
dx/dt = λv eλt . Substitute for x and dx/dt into dx/dt = Ax, giving

λv eλt = Av eλt

as eλt �= 0, we have

λv = Av

Av = λv

which we recognize as the eigenvalue problem of Chapter 13. In this case,
however, we shall allow the possibility of complex eigenvalues.

The solutions for λ are found by solving |A− λI| = 0 as

A =
(

0 1
−4 −5

)
this gives∣∣∣∣−λ 1
−4 −5− λ

∣∣∣∣ = 0

⇔ λ(5+ λ)+ 4 = 0

⇔ λ2 + 5λ+ 4 = 0

⇔ λ = −5±√25− 16

2

⇔ λ = −5± 3

2
⇔ λ = −4 ∨ λ = −1.
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Now, we find the eigenvector v to go with each eigenvalue by solving
(A− λI)v = 0.

(−λ 1
−4 −5− λ

)(
v1
v2

)
=
(

0
0

)
.

For λ = −4

(
4 1
−4 −1

)(
v1
v2

)
=
(

0
0

)
.

Multiplying out, this gives

4 v1 + v2 = 0

−4 v1 − v2 = 0.

These equations are dependent, solving either one of them we find

4 v1 = −v2

v2 = −4v1.

The vector is given by (v1,−4v1). As we are interested only in the
direction of the vector we can set v1 = 1 giving the eigenvector as (1,−4).

For λ = −1 we get

(
4 1
−4 −1

)(
v1
v2

)
=
(

0
0

)
.

Multiplying out we get

v1 + v2 = 0

−4v1 − 4v2 = 0.

These equations are dependent, solving either one we get

v2 = −v1.

The vector is given by (v1,−v1). As we are interested only in the direction
of the vector we can set v1 = 1 giving the eigenvector as (1,−1).

Therefore, we have the complementary function for x as

x = a

(
1
−4

)
e−4t + b

(
1
−1

)
e−t

where a and b are arbitary constant scalars.

Step 2
Find a particular solution to the equation dx/dt = Ax + bt . For this
equation, the forcing function is bt so we try a particular solution of
the form x = c1t + c0 where c0 and c1 are constant vectors. We see that
this is similar to the choice of trial solution suggested in Table 14.1 but
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the constant terms are now constant vectors.

x = c1t + c0

⇒ dx/dt = c1.

Substitute this trial solution into

dx/dt = Ax + bt

giving

c1 = A(c1t + c0)+ bt .

We can equate vector coefficients of t and the constant terms on both sides
giving

0 = Ac1 + b

c1 = Ac0.

We solve these two matrix equations

0 = Ac1 + b

⇔ Ac1 = −b.

Pre-multiply by A−1 (if it exists) giving

c1 = −A−1b

As

A =
(

0 1
−4 −5

)
we have

A−1 = 1

4

(−5 −1
4 0

)
=
(−1.25 −0.25

1 0

)
and

b =
(

0
1

)
so

c1 = −
(−1.25 −0.25

1 0

)(
0
1

)
=
(

0.25
0

)
.

To find c0 we can use

c1 = Ac0

we get

c0 = A−1c1

=
(−1.25 0.25

1 0

)(
0.25

0

)
=
(−0.3125

0.25

)
.

Therefore, a particular solution x = c1t + c0 is given by

x =
(

0.25
0

)
t +

(−0.3125
0.25

)
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Step 3
The general solution is the sum of the complementary function and a
particular solution. This gives

x = a

(
1
−4

)
e−4t + b

(
1
−1

)
e−t +

(
0.25

0

)
t +

(−0.3125
0.25

)
.

Step 4
We can apply the initial conditions. We are told that at t = 0 both the
displacement and velocity is zero. These are the state variables x1 and x2.
Therefore, we have

x =
(

0
0

)
when t = 0

and substituting into the solution we find(
0
0

)
= a

(
1
−4

)
+ b

(
1
−1

)
+
(−0.3125

0.25

)

0 = a + b − 0.3125

0 = −4a − b + 0.25.

Solving these two equations gives

a ≈ −0.02083

b ≈ 0.3333

and therefore, the particular solution to this initial value problem is

x ∼= 0.02083

(
1
−4

)
e−4t+0.3333

(
1
−1

)
e−t+

(
0.25

0

)
t+
(−0.3125

0.25

)
.

Check:

dx
dt
= −0.08332

(
1
−4

)
e−4t − 0.3333

(
1
−1

)
e−t +

(
0.25

0

)
.

Substitute into

dx
dt
=
(

0 1
−4 −5

)
x +

(
0
1

)
t

giving

− 0.08332

(
1
−4

)
e−4t − 0.3333

(
1
−1

)
e−t +

(
0.25

0

)

=
(

0 1
−4−5

)(
0.02083 e−4t + 0.3333 e−t + 0.25t − 0.3125
−0.08332 e−4t − 0.3333 e−t + 0.25

)
+
(

0
1

)
t .

Multiplying out and simplifying, we get(−0.08332 e−4t − 0.3333 e−t + 0.25
0.3333 e−4t + 0.3333 e−t

)

=
(−0.08332 e−4t + 0.3333 e−t + 0.25

0.3333 e−4t + 0.3333 e−t
)

which is true for all t .
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14.7 Difference
equations

Discrete systems are designed using digital adders, multipliers, and shift
registers and are represented mathematically by difference equations.
Difference equations are used in the design of digital filters and also
to approximately model continuous systems.

The system has an input which is a sequence of values f0, f1, f2, . . .
and the output is a sequence y0, y1, y2, . . . If yn depends solely on the
values of the input, then

yn = b0fn + b1fn−1 + b2fn−2 + · · · .

This is a non-recursive system as we do not need previous knowledge
of y to determine yn. It is called a finite impulse response (FIR) system
(the meaning of ‘impulse response’ will be explained in Chapter 15).
If, however, the output y depends on the previous state of the system
as well as the input then we have a recursive system, modelled by a
difference equation (also called a recurrence relation). This is called a
infinite impulse response (IIR) system.

We shall look at linear time-invariant discrete systems. We shall
consider the solution of a second order difference equation

ayn + byn−1 + cyn−2 = fn.

The method of solution, as for differential equations, is to solve the
homogeneous system and find a particular solution. The sum of these
gives the general solution to the difference equation. We employ the
initial conditions to find the value of the arbitrary constants.

Example 14.11 Solve the difference equation (n � 2):

6yn − 5yn−1 + yn−2 = 1, y0 = 4.5 and y1 = 2.

Solution

Step 1
Solve the homogeneous difference equation

6yn − 5yn−1 + yn−2 = 0.

We know from Chapters 8 and 12 that the yn+1 = ryn defines a geometric
series yn = arn−1, where a is the first term of the sequence and r is the
common ratio. If we start at the zeroth term, then we have yn = a0r

n.
We therefore try a solution of this form to the homogeneous equation and
substitute yn = aλn into 6yn − 5yn−1 + yn−2 = 0. This gives

6 aλn − 5 aλn−1 + aλn−2 = 0.

Assuming that a and λn−2 are non-zero, we can divide by aλn−2 to give

6λ2 − 5λ+ 1 = 0.

This is called the auxiliary equation and solving this we find

λ = 5±√25− 24

12
⇔ λ = 1

3
∨ λ = 1

2
.

Hence, the general solution of the homogeneous equation is

yn = a

(
1

3

)n
+ b

(
1

2

)n
.

As in the case of differential equations, there are three possible types
of solution, depending on whether the roots for λ are real and distinct,
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complex, or equal, where

λ1, λ2 = −b ±
√
b2 − 4ac

2a

Case (1): λ1 and λ2 are real and distinct

yn = a(λ1)
n + b(λ2)

n.

Case (2): λ1 and λ2 are complex. Then we write in exponential form
λ1 = r ejθ so λ2 = r e−jθ and the solution can be expressed as

y = rn(a cos(nθ)+ b sin(nθ)).

Case (3): λ1 and λ2 are equal real roots and the solution is yn =
(a + bn)λn.

Step 2
Find a particular solution. We use a trial solution which depends on the
form of the input sequence fn as suggested by Table 14.2.

In this case the input is a constant so we try a constant output. The trial
solution is yn = c. Substituting this into

6yn − 5yn−1 + yn−2 = 1

gives the equation for c as

6c − 5c + c = 1

⇔ 2c = 1

c = 1/2

A particular solution for y is yn = 1/2.

Step 3
The general solution is the sum of the solution of the homogeneous
equation and a particular solution giving

yn = a
( 1

3

)n + b
( 1

2

)n + 1
2 .

Table 14.2 A table of trial solutions to be used to find a particular
solution of a difference equation. The form of the trial solution is
suggested by the form of the input sequence fn. The coefficients c0,
c1, . . . and c and d are to be determined

Input function Trial solution

Power series fn = nk (k an integer) y = c0 + c1n + c2n2 + · · · + ck nk

An exponential function fn = an y = can

Sine or cosine function y = c cos(ωn)+ d sin(ωn)
fn = cos(ωn) or sin(ωn)
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Step 4
Solve for the initial conditions y0 = 4.5 and y1 = 2. Substituting n = 0
and y0 = 4.5 in the solution

yn = a
( 1

3

)n + b
( 1

2

)n + 1
2

gives

4.5 = a + b + 1
2 ⇔ a + b = 4.

Substituting n = 1 and y1 = 4.5 gives

2 = 1
3a + 1

2b + 1
2 ⇔ 2a + 3b = 9.

Solving for the constants a and b gives

a + b =4 2a+2b=8
⇔ ⇒ −b=−1.

2a+3b=9 2a+3b= 9

Substituting b = 1 into a + b = 4:

a + 1 = 4 ⇔ a = 3

a = 3 and b = 1, so the solution is

yn = 3
( 1

3

)n + ( 1
2

)n + 1
2 .

System stability
We can see that the solution, as in the continuous case, is made up of
a transient, in this case, 3(1/3)n + (1/2)n, and a steady state response,
which in this case is 1/2. The transient tends to zero as n → ∞. This
will be so for any system as long as the roots to the auxiliary equation
are such that the modulus of λ is less than 1. If the roots have modulus
of exactly 1, then the solution of the homogeneous equation does not die
away as n → 0 but neither does it tend to infinity. Therefore, we can
identify a stable system as one with roots of the auxiliary equation such
that |λ| � 1.

14.8 Summary 1. Dynamic physical processes involve variables which are interdepen-
dent and constantly changing. When modelling the system we will
obtain relationships between variables, many of which will be
related through derivatives. We can combine these to make a single
differential equation relating the system input to the system output
or we can choose state variables and express the relationship through
a system of differential equations.

2. Linear time invariant (LTI) systems are represented by linear differ-
ential equations with constant coefficients. A second-order equation
is of the form

a d2y/dt2 + b dy/dt + cy = f (t)

where f (t) represents the system input and y the system output.
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3. If a function, y = g(t), is a solution to a differential equation in y

then if, in the differential equation, we replace y and by g(t) and
all the derivatives of y by the corresponding derivatives of g(t) then
the result should be an identity for t . That is, it should be true for
all values of t .

4. To solve linear differential equations with constant coefficients, we
solve the homogeneous equation (with f (t) = 0), thus finding the
complementary function. This leads to the auxiliary equation which,
for a second-order system is

aλ2 + bλ+ c = 0.

This gives three possibilities for the complementary function,
depending on the roots for λ.

λ1, λ2 = −b ±
√
b2 − 4ac

2a

Case (1): Real distinct roots: y = A eλ1t + B eλ2t

Case (2): Complex roots: y = ekt (A cos(ω0t)+ B sin(ω0t))

Case (3): The roots are equal, then λ = k = −b/2a, y = (At +
B)ekt .

We then find a particular solution to the equation by using a trial
solution as suggested in Table 14.1. The sum of the complemen-
tary function and a particular solution gives the general solution of
the differential equation. The initial conditions are used to find the
arbitrary constants A and B.

5. For a truly linear system, the complementary function dies out as
t → ∞ and is called the transient solution, The other part of the
solution, in response to the input f (t), is called the steady state
solution. When analysing a system as locally linear, we say that
the system is unstable if the roots of the complementary function
have a positive real part. In these circumstances, the complementary
function→∞ as t →∞. Higher order systems are also unstable
if there is a repeated purely imaginary root.

6. Resonance occurs when, in an underdamped system, the forcing
frequency approaches the natural frequency of the system.

7. Systems of differential equations may be solved using a matrix
method.

8. Discrete systems may be represented by difference equations (also
called recurrence relations). A second-order linear system is rep-
resented by ayn + byn−1 + cyn−2 = fn. To solve this equation
we find the solution to the homogeneous system (setting fn = 0),
which leads to the auxiliary equation

aλ2 + bλ+ c = 0.

This leads to three possibilities for the complementary function
depending on the roots for λ:

λ1, λ2 = −b ±
√
b2 − 4ac

2a

Case (1): λ1 and λ2 are real and distinct.

yn = a(λ1)
n + b(λ2)

n.
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Case (2): λ1 and λ2 are complex. Then we write in exponential
form λ1 = r ejθ so λ2 = r e−jθ and the solution can be
expressed as

y = rn(a cos(nθ)+ b sin(nθ)).

Case (3): λ1 and λ2 are equal real roots and the solution is yn =
(a + bn)λn. The system is stable if |λ| � 1.

We then find a particular solution by attempting a trial solution,
as suggested in Table 14.2. The general solution of the difference
equation is given by the sum of the complementary function and a
particular solution.

14.9 Exercises

14.1. For the following differential equations:

(a) State whether the equation is linear
(b) Give the order of the equation
(c) Show that the given function represents a solution

to the differential equation

(i)
t

4

dy

dy
= y, y = ct4

(ii)
d2y

dt2

(
t − 1

2

)
− dy

dt
= 0, y = t2 − t

(iii) t
d2y

dt2
+ t

dy

dt
+ y = 4, y = 3t e−t + 4

(iv) y
dy

dt
= t , y2 = t2 + c, y � 0

(v) 3y2 d2y

dt2
+ 6y

(
dy

dt

)2

= 2, y3 = t2

14.2. A linear differential equation

dy

dt
+ 4y = f (t)

is found to have a particular solution
y = 2t2 − t + 1 when f (t) = 8t2 + 3 and a particular
solution
y = 0.8 cos(3t)+ 0.6 sin(3t), when f (t) = 5 cos(3t).

(a) Suggest a particular solution when f (t) =
10 cos(3t)+4t2+ (3/2) and show by substitution
that your solution is correct.

(b) Suggest a particular solution when f (t) =
5 cos(3(t−10)) and show by substitution that your
solution is correct.

14.3. Show that the differential equation

cos(t)dy/dt − sin(t)y = f (t)

has a solution y = t2/ cos(t), when f (t) = 2t
and a solution y = tan(t) when f (t) = cos(t)

(a) Use the linearity property to find a solution when
f (t) = 2(t − cos(t)).

(b) By considering a time-shifted input of one of the
functions for f (t) given, show that

cos(t)dy/dt − sin(t)y = f (t)

cannot represent a time-invariant system.

14.4. Solve the following differential equations with the
given initial conditions

(a)
dy

dt
− 3y = 0, y(0) = 1

(b) 4
dy

dt
− y = 4, y(0) = −2

(c)
dy

dt
+ 5y = sin(12t), y(0) = 0

(d) 3
dy

dt
+ 2y = e−t , y(0) = 3

(e)
dy

dt
− 6t = 0, y(1) = 6

(f)
1

2

dy

dt
+ 6y − 3 sin(5t) = 2 cos(5t), y(0) = 0.

14.5. A spring of length l has a mass m attached to it
and a dashpot damping the motion. It is subject to a
force f (t) forcing the motion, as in Figure 14.2. The
extensionx of the spring obeys the differential equation

m d2x/dt2 + r dx/dt + kx = f (t).

Solve for x given the following information
(a) m= 2, r = 7, k= 5, f (t)= t2, x(0)= 0,

dx(0)

dt
= 0.16

(b) m= 1, r = 4, k= 4f (t)= 4 cos(6t), x(0)= 0,
dx(0)

dt
= 0

(c) m= 1, r = 4, k= 5, f (t)= e−t , x(0)= 0,
dx(0)

dt
= 0.

14.6. An LRC circuit, as in Figure 14.3 obeys the equation

Ld2q/dt2 + R dq/dt + q/C = v(t)

where q is the charge on the capacitor, v(t) the applied
voltage, L the inductance, R the resistance, and C
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the capacitance. Find a steady state solution for q

and hence calculate the voltages across the capacitor,
resistor, and inductor, given by vc = q/C, vR =
R dq/dt and vL = L d2q/dt2 in each of the following
cases:

(a) R = 120%,L = 0.06 H,C = 0.0001 F,
v(t) = 130 cos(1000t)

(b) R = 1 k%,L = 0.001 H,C = 1µF, v(t) = t .

14.7. An RC circuit is subjected to a single frequency input
of angular frequency ω and magnitude vi .

(a) Find the steady state solution of the equation
R dq/dt + (q/C) = viejωt

and hence find the magnitude of
(i) The voltage across the capacitor vc = q/C

(ii) The voltage across the resistor vR = R dq/dt
(b) Using the impedance method of Chapter 10

confirm your results to part (a) by calculating
(i) The voltage across the capacitor vc

(ii) The voltage across the resistor vR

in response to a single frequency of angular
frequency ω and magnitude vi

(c) For the case where R = 1 k%, C = 1µF find the
ratio |vc|/|vi| and fill in the table below:

ω 10 102 103 104 105 106

|vc|/|vi|

Explain why the table results show that an RC cir-
cuit acts as a high-cut filter and find the value of the
high-cut frequency, defined as fhc = ωhc/2π , such
that |vc|/|vi| = 1/

√
2.

14.8. A spring of length, l has a mass m attached to it
and a dashpot damping the motion. It is subject to
a force f (t) forcing the motion as in Figure 14.2.
The extension x1 of the spring obeys the system of
differential equations

d

dt

(
x1

x2

)
=
(

0 1
−k/m −r/m

)(
x1

x2

)
+
(

0
1/m

)
f (t)

By solving this system of equations, find the extension
of the spring after time t in the following cases
(a) m = 1, r = 12, k = 11, f (t) = e−2t , with initial

extension 0 and 0 initial velocity.
(b) m = 2, r = 13, k = 20, f (t) = 10t , x1(0) = 0 =

x2(0).

14.9. Solve the following difference equations

(a) 2yn − yn−1 = −3, y0 = 1

(b) 4yn + yn−1 = n, y0 = 2

(c) yn − 1.2yn−1 + 0.36yn−2 = 4, y0 = 3, y1 = 2

(d) yn + 0.6yn−1 = 0.16yn−2 + (0.5)n, y0 = 1, y1 = 2

(e) 2yn + yn−1 = cos
(πn

2

)
, y0 = 1.

TLFeBOOK



“chap15” — 2003/6/8 — page 382 — #1

15 Laplace and
z transforms

15.1
Introduction

In this chapter, we will present a quick review of Laplace transform
methods for continuous and piecewise continuous systems and z trans-
form methods for discrete systems. The widespread application of these
methods means that engineers need increasingly to be able to apply these
techniques in multitudes of situations.

Laplace transforms are used to reduce a differential equation to a simple
equation in s-space and a system of differential equations to a system of
linear equations. We discover that in the case of zero initial conditions,
we can solve the system by multiplying the Laplace transform of the input
function by the transfer function of the system. Furthermore, if we are
only interested in the steady state response, and we have a periodic input,
we can find the response by simply adding the response to each of the
frequency components of the input signal. In Chapter 16, we therefore
look at finding the frequency components of a periodic function by finding
its Fourier series.

Similar ideas apply to z transform methods applied to difference
equations representing discrete systems.

The system transfer function is the Laplace transform of the impulse
response function of the system. The impulse response is its response to an
impulse function also called a delta function. Inputting an impulse func-
tion can be though of as something like giving the system a short kick
to see what happens next. The impulse function is an idealized kick, as
it lasts for no time at all and has energy of exactly 1. Because of these
requirements, we find that the delta function is not a function at all, in the
sense that we defined functions in Chapter 1. We find that it is the most
famous example of a generalized function.

15.2 The
Laplace
transform –
definition

The Laplace transform F (s) of the function f (t) defined for t > 0 is

F(s) =
∫ ∞

0
e−stf (t) dt .

The Laplace transform is a function of s where s is a complex variable.
Because the integral definition of the Laplace transform involves an inte-
gral to∞ it is usually necessary to limit possible values of s so that the
integral converges (i.e. does not tend to∞). Also, for many functions the
Laplace transform does not exist at all.

L{ } is the symbolic representation of the process of taking a Laplace
transform (LT). Therefore,

L{f (t)} = F(s).
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Example 15.1 Find from the definition L{e3t }.
Solution

L{e3t } =
∫ ∞

0
e3te−st dt =

∫ ∞
0

e(3−s)t dt =
[

e(3−s)t

3− s

]∞
0

.

Now e(3−s)t → 0 as t → ∞ only if the real part of (3 − s) is negative,
that is, Re(s) > 3. Then the upper limit of the integration gives 0. Hence

L{e3t } = 1

s − 3

where Re{s} > 3.

Example 15.2 Find, from the definition, L{cos(at)}.
Solution We need to find the integral

I =
∫ ∞

0
e−st cos(at) dt .

We employ integration by parts twice until we find an expression that
involves the original integral, I . We are then able to express I in terms
of a and s.

Integrating by parts, using the formula
∫
u dv = uv − ∫ v du, where

u = cos(at), dv = e−st dt , du = −a sin(at) dt and v = e−st /(−s),
gives

I =
[−e−st

s
cos(at)

]∞
0
−
∫ ∞

0

e−st

s
a sin(at) dt .

The expression [e−st cos(at)]∞0 only has a finite value if e−st → 0 as
t →∞. This will only be so if Re(s) > 0. With that proviso we get

I = 1

s
− a

s

∫ ∞
0

e−st sin(at) dt

integrating the remaining integral on the right-hand side, again by parts,
where this time u = sin(at), dv = e−stdt , du = a cos(at) dt , v =
e−st /(−s), gives

I = 1

s
−
[−a
s2

e−st sin(at)

]∞
0
− a2

s2

∫ ∞
0

e−st cos(at) dt

= 1

s
− a2

s2

∫ ∞
0

e−st cos(at) dt .

We see that the remaining integral is the integral we first started with,
which we called I . Hence

I = 1

s
− a2

s2
I

and solving this for I gives

I

(
1+ a2

s2

)
= 1/s, I = s

s2 + a2
.

So we have that

L{cos(at)} = s

s2 + a2
, where Re(s) > 0.
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15.3 The unit
step function
and the
(impulse) delta
function

The unit step function and delta function are very useful in systems theory.

The unit step function
The unit step function is defined as follows:

u(t) =
{

1 t � 0
0 t < 0

and its graph is as shown in Figure 15.1.

Figure 15.1 The graph of
the unit step function u(t ).

The function is used to represent an idealized switch. It switches on at
time t = 0. If it is multiplied by any other function then it acts to switch
that function on at t = 0. That is, the function

f (t)u(t) =
{

0 t < 0
f (t) t � 0.

An example for f (t) = t2 is given in Figure 15.2.

Figure 15.2 Any function
when multiplied by the unit
step function is ‘switched on’
at t = 0. (a) the function
y = t2; (b) the function
y = t 2u(t ).

As the Laplace transform only involves the integral from t = 0, all
functions can be thought of as multiplied by the unit step function because
f (t) = f (t)u(t) as long as t > 0.

Shifting the unit step function
As we saw in Chapter 2, the graph of f (t − a) can be found by taking
the graph of f (t) and moving it a units to the right. There is an example
of a shifted unit step function in Figure 15.3.

Notice that the unit step function ‘switches on’ where the argument
of u is zero. Multiplying any function by the shifted unit step function
changes where it is switched on. That is

f (t)u(t − a) =
{

0 t < a

f (t) t � a.

The example of sin(t)u(t − 1) is shown in Figure 15.4.

The delta function
The impulse function, or delta function, is a mathematical representation
of a kick. It is an idealized kick that lasts for no time at all and has energy
of exactly 1.

Figure 15.3 (a) The graph
of y = u(t ). (b) The graph of
y = u(t − 2) is found by
shifting the graph of u(t) two
units to the right.
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Figure 15.4 (a) The graph of sin(ωt ). (b) The graph of u(t − 1) sin(ωt ). Notice that this function is zero for
t < 1 and equal to sin(ωt ) for t > 1.

Figure 15.5 The sequence
of rectangular pulse functions
of area 1. Starting from a
pulse of height 1 and width 1
we double the height and half
the width.

The delta function, δ(t), is an example of a generalized function. A
generalized function can be defined in terms of a sequence of functions.
One way of defining it is as the limit of a rectangular pulse function,
with area 1, as it halves in width and doubles in height. This sequence
of functions is shown in Figure 15.5. Although the height of the pulse is
tending to infinity, the area of the pulse remains 1.

Two important properties of the delta function are

1. δ(t − a) = 0 for t 
= a,
2.

∫∞
−∞ δ(t) = 1.

The second property expresses the fact that the area enclosed by the delta
function is 1.

The unit step function, u(t), has no derivative at t = 0. Because of the
sharp edges present in its graph and its jump discontinuity it is impossible
to define a single tangent at that point. However, if we also consider the
unit step function as a generalized function (by taking the limit of nice
smooth, continuous curves as they approach the shape of the unit step
function), we are able to define its derivative, which turns out to be the
delta function. This gives the third definition

3. du/dt = δ(t).
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Symbolic representation of δ(t )
δ(t) can be represented on a graph by an arrow of height 1. The height rep-
resents the weight of the delta function. A shifted delta function, δ(t − a),
is represented by an arrow at t = a. Examples are given in Figure 15.6.

15.4 Laplace
transforms of
simple
functions and
properties of
the transform

Rather than finding a Laplace transform from the definition we usually use
tables of Laplace transforms. A list of some common Laplace transforms
is given in Table 15.1. We can then use the properties of the transform
to find Laplace transforms of many other functions. To find the inverse
transform, represented by L−1{ } we use the same table backwards. That
is, look for the function of s on the right-hand column; the left-hand
column then gives its inverse:

F(s) =
∫ ∞

0
f (t) e−st dt f (t) = L−1{F(s)}.

Figure 15.6 Symbolic
representations of delta
functions: (a) δ(t ); (b)
3δ(t − a).

Properties of the Laplace transform
In all of the following, F(s) = L{f (t)}
1. Linearity:

L{af1(t)+ bf2(t)} = aF1(s)+ F2(s)

where a and b are constants.
2. First translation (or Shift rule):

L{eatf (t)} = F(s − a)

3. Second translation:

L{f (t − a)u(t − a)} = e−asF (s).

Table 15.1 Common Laplace transforms

f (t ) F (s) = L{f (t)}

u(t ) 1/s Re(s) > 0
δ(t ) 1 Re(s) > 0

t n−1

(n − 1)!
1
sn

Re(s) > 0

e−at 1
s + a

Re(s) > −a

1
a

sin(at )
1

s2 + a2
Re(s) > 0

cos(at )
s

s2 + a2
Re(s) > 0

1
a

sinh(at )
1

s2 − a2
Re(s) > |a|

cosh(at )
s

s2 − a2
Re(s) > |a|
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4. Change of scale:

L{f (at)} = 1

a
F
s

a
.

5. Laplace transforms of derivatives:

L{f ′(t)} = sF (s)− f (0)

L{f ′′(t)} = s2F(s)− sf (0)− f ′(0)

and

L{f (n)(t)} = snF (s)− sn−1f (0)− · · · − sf (n−2)(0)− f (n−1)(0)

6. Integrals:

L

{∫ t

0
f (τ) dτ

}
= F(s)

s
.

7. Convolution:

L{f ∗ g} = L

{∫ t

0
f (τ)g(t − τ) dτ

}
= F(s)G(s).

8. Derivatives of the transform:

L{tnf (t)} = (−1)nF (n)(s)

where

Fn(s) = dnF (n)

dsn
(s).

Example 15.3 (Linearity) Find L{3t2 + sin(2t)}.
Solution From Table 15.1

L

{
t2

2

}
= 1

s3

and

L

{
sin(2t)

2

}
= 1

(s2 + 4)
.

Therefore

L{3t2 + sin(2t)} = 6L

{
t2

2

}
+ 2L

{
sin(2t)

2

}
= 6

s3
+ 2

s2 + 4

using

L{af1(t)+ bf2(t)} = aF1(s)+ bF2(s).

Example 15.4 (Linearity and the inverse transform) Find

L−1
{

2

s + 4
+ 4s

s2 + 9

}
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Solution From Table 15.1

L−1
{

1

s + 4

}
= e−4t

and

L−1
{

s

s2 + 9

}
= cos(3t)

Therefore

L−1
{

2

s + 4
+ 4s

s2 + 9

}
= 2e−4t + 4 cos(3t)

Example 15.5 (First translation) Find L{t2e−3t }.
Solution As

L{t2} = 2

s3

using

L{e−atf (t)} = F(s − a).

Then multiplying by e−3t in the t domain will shift the functionF(s) by 3:

L{t2e−3t } = 2

(s + 3)2

Example 15.6 (First translation – inverse transform) Find

L−1
{

s + 2

(s + 2)2 + 9

}
.

Solution As

L−1
{

s

s2 + 9

}
= cos(3t)

and as

s + 2

(s + 2)2 + 9

is s/(s2 + 9) translated by 2, using the first translation rule this will
multiply in the t domain by e−2t , so

L−1
{

s + 2

(s + 2)2 + 9

}
= cos(3t)e−2t

Example 15.7 (Second translation) Find the Laplace transform of

f (t) =
{

0 t < 2
3

sin(3t − 2) t � 2
3
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Solution f (t) can be expressed using the unit step function

f (t) = sin(3t − 2)u

(
t − 2

3

)
= sin

(
3

(
t − 2

3

))
u

(
t − 2

3

)
.

Using L{f (t − a)u(t − a)} = e−asF (s) and as

L{sin(3t)} = 3

s2 + 9

we have

sin

(
3

(
t − 2

3

))
u

(
t − 2

3

)
= 3e−2s/3

s2 + 9

Example 15.8 (Second translation – inverse transform) Find

L−1
{

e−s

(s + 2)2

}
.

Solution As

L−1
{

1

(s + 2)2

}
= t e−2t

(using first translation), the factor of e−s will translate in the t domain,
t → t − 1. Then

L−1
{

e−s

(s + 2)2

}
= (t − 1)e−2(t−1)u(t − 1)

by second translation.

Example 15.9 (Change of scale) Given

L{cos(t)} = s

s2 + 1

find L{cos(3t)} using the change of scale property of the Laplace
transform

L{f (at)} = 1

a
F
s

a
.

Solution As

L{cos(t)} = s

s2 + 1
= F(s)

to find cos(3t) we put a = 3 into the change of scale property

L{f (at)} = 1

a
F
s

a

giving

L{cos(3t)} = 1

3

s/3

(s/3)2 + 1
= s

s2 + 9
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Example 15.10 (Derivatives) Given

L{cos(2t)} = s

s2 + 4

find L{sin(2t)} using the derivative rule.

Solution If f (t) = cos(2t) then f ′(t) = −2 sin(2t):

L{cos(2t)} = s

s2 + 4

and f (0) = cos(0) = 1. From the derivative rule L{f ′(t)} =
sF (s)− f (0),

L{−2 sin(2t)} = s

(
s

s2 + 4

)
− 1 = s2

s2 + 4
− 1 = s2 − s2 − 4

s2 + 4

= −4

s2 + 4
.

By linearity,

L{sin(2t)} = 1

−2

( −4

s2 + 4

)
= 2

s2 + 4
.

Example 15.11 (Integrals) Using

L

{∫ t

0
f (τ) dτ

}
= F(s)

s

and

L{t2} = 2

s3

find

L

{
t3

3

}
.

Solution As

∫ t

0
τ 2 dτ =

[
τ 3

3

]t
0
= t3

3

and

L{t2} = 2

s3

then

L

{∫ t

0
τ 2 dτ

}
= 2/s3

s
= 2

s4
⇒ L

{
t3

3

}
= 1

s

(
2

s3

)
= 2

s4
.
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Example 15.12 (Convolution) Find

L−1
{

1

(s − 2)(s − 3)

}
using the convolution property:

L

{∫ 1

0
f (t)g(t − τ)dτ

}
= F(s)G(s).

Solution

1

(s − 2)(s − 3)
= 1

(s − 2)

1

(s − 3)
.

Therefore, call

F(s) = 1

s − 2
, G(s) = 1

s − 3

f (t) = L−1
{

1

s − 2

}
= e2t

g(t) = L−1
{

1

s − 3

}
= e3t .

Then by the convolution rule

L−1
{

1

(s − 2)(s − 3)

}
=
∫ t

0
e2τ e3(t−τ) dτ .

This integral is an integral over the variable τ . t is a constant as far as the
integration process is concerned. We can use the properties of powers to
separate out the terms in τ and the terms in t , giving

L−1
{

1

(s − 2)(s − 3)

}
= e3t

∫ t

0
e−τ dτ = e3t

[
e−τ

−1

]t
0

= e3t (−e−t + 1)

= −e2t + e3t .

Example 15.13 (Derivatives of the transform) Find L{t sin(3t)}.
Solution Using the derivatives of the transform property

L{tnf (t)} = (−1)nF (n)(s)

we have f (t) = sin(3t) and

L{sin(3t)} = 3

s2 + 9
= F(s)

(from Table 15.1).
As sin(3t) is multiplied by t in the expression to be transformed, we

use the derivative of the transform property with n = 1:

L{t1f (t)} = (−1)1F (1)(s) = −F ′(s)
to give

L{t sin(3t)} = − d

ds

(
3

s2 + 9

)
= 6s

(s2 + 9)2
.
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Example 15.14 (Derivatives of the transform and the inverse transform)
Find

L−1
{

s

(s2 + 4)2

}

Solution We notice that

s

(s2 + 4)2
= −1

2

d

ds

(
1

s2 + 4

)
.

Using the derivatives of the transform property

L{tnf (t)} = (−1)nF (n)(s)

and setting n = 1 we have

L−1{(−1)dF/ds} = tf (t)

and as

L−1
{

1

(s2 + 4)

}
= 1

2
sin(2t)

we have

L−1
{

s

(s2 + 4)2

}
= 1

2
t

(
1

2
sin(2t)

)
= t

4
sin(2t)

Using partial fractions to find the
inverse transform
Partial fractions can be used to find the inverse transform of expressions
like

11s + 7

s2 − 1

by expressing F(s) as a sum of fractions with a simple factor in the
denominator.

Example 15.15 Find the inverse Laplace transform of

11s + 7

s2 − 1

Solution Factorize the denominator. This is equivalent to finding the
values of s for which the denominator is 0, because if the denominator
has factors s1 and s2 we know that we can write it as c(s − s1)(s − s2)

where c, is some number. In this case we could solve for s2 − 1 = 0.
However, it is not difficult to spot that s2−1 = (s−1)(s+1). The values
for which the denominator is zero are called the poles of the function.

11s + 7

s2 − 1
= 11s + 7

(s − 1)(s + 1)
.

We assume that there is an identity such that

11s + 7

(s2 − 1)
= A

s − 1
+ B

s + 1
.

Multiply both sides of the equation by (s − 1)(s + 1) to get

11s + 7 = A(s + 1)+ B(s − 1).
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Substitute s = 1; then 11+ 7 = 2A⇒ A = 9.

Substitute s = −1; then −11+ 7 = −2B ⇒ B = 2.

So

L−1
{

11s + 7

s2 − 1

}
= L−1

{
9

s − 1
+ 2

s + 1

}
= 9et + 2e−t .

A quick formula for partial fractions
There is a quick way of getting the partial fractions expansion, called
the ‘cover up’ rule, which works in the case where all the roots of the
denominator of F(s) are distinct. If F(s) = P(s)/Q(s) then write Q(s)

in terms of its factors Q(s)

Q(s) = c(s − s1)(s − s2)(s − s3) · · · (s − sr ) · · · (s − sn)

where s1 . . . sn are its distinct roots. Then we can find the constant Ar ,
etc., for the partial fraction expansion from covering up each of the factors
of Q in term and substituting s = sr in the rest of the expression:

F(s) = P(s)

c(s − s1)(s − s2)(s − s3) · · · (s − sr ) · · · (s − sn)

then

F(s) = A1

(s − s1)
+ A2

(s − s2)
+ · · · + Ar

(s − sr )
+ · · · + An

(s − sn)

where

✘✘✘Ar = P(sr)

c(sr − s1)(sr − s2)(sr − s3) · · · (sr − sr ) · · · (sr − sn)

In this case

F(s) = 11s + 7

s2 − 1
= 11s + 7

(s − 1)(s + 1)
= A

s − 1
+ B

s + 1

Then A is found by substituting s = 1 into

✘✘
11s + 7

(s − 1)(s + 1)
= 11+ 7

2
= 9

and B is found by substituting s = −1 into

✘✘
11s + 7

(s − 1)(s + 1)
= −11+ 7

−2
= 2.

This gives the partial fraction expansion, as before, as

F(s) = 9

s + 1
+ 2

s − 1
.

This method can also be used for complex poles; for instance,

1

(s2 + 4)(s + 3)
= 1

(s + 3)(s − j2)(s + j2)
.
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The roots of the denominator are−3, j2 and−j2, so we get for the partial
fraction expansion

1

(s2 + 4)(s + 3)
= 1

13(s + 3)
+ 1

(−8+ j12)(s − j2)

+ 1

(−8− j12)(s + j2)
.

The inverse transform can be found directly or the last two terms can be
combined to give the expansion as

1

(s2 + 4)(s + 3)
= 1

13(s + 3)
+ −16s + 48

208(s2 + 4)
= 1

13(s + 3)
+ 3− s

13(s2 + 4)
.

Repeated poles
If there are repeated factors in the denominator, for example,

4

(s + 1)2(s − 2)

then try a partial fraction expansion of the form

4

(s + 1)2(s − 2)
= A

(s + 1)2
+ B

s + 1
+ C

s − 2
.

The ‘cover up’ rule cannot be used to find the coefficients A and B.

15.5 Solving
linear
differential
equations with
constant
coefficients

The scheme for solving differential equations is as outlined below. The
Laplace transform transforms the linear differential equation with con-
stant coefficients to an algebraic equation in s. This can be solved and
then the inverse transform of this solution gives the solution to the original
differential equation.

Differential equation Solution t-domain

↓ ↑
Laplace transform Inverse Laplace transform

↓ ↑
Algebraic equation → Solution s-space

Example 15.16 A d.c. voltage of 3 V is applied to an RC circuit with
R = 2000� and C = 0.001 F, where q(0) = 0. Find the voltage across
the capacitor as a function of t .

Solution From Kirchoff’s voltage law, we get the differential equation

2000
dq

dt
+ q

0.001
= 3

dq

dt
+ 0.5q = 0.0015

Taking Laplace transforms of both sides of the equation where Q(s) =
L{q(t)},

sQ(s)− q(0)+ 0.5Q(s) = 0.0015

s
.
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Here, we have used the derivative property of the Laplace transform,
q ′(t) = sQ(s)− q(0). Solve the algebraic equation

(s + 0.5)Q = 0.0015

s
⇔ Q = 0.0015

s(s + 0.5)
.

We need to find the inverse Laplace transform of this function of s so that
we expand using partial fractions, giving

Q = 0.003

s
− 0.003

s + 0.5

q = L−1
{

0.003

s
− 0.003

s + 0.5

}
= 0.003− 0.003e−0.5t .

The voltage across the capacitor is

q(t)

c
= 0.003− 0.003e−0.5t

0.001
= 3(1− e−0.5t ).

Example 15.17 Solve the following differential equation using Laplace
transforms:

d2x

dt2
+ 4

dx

dt
+ 3x = e−3t

given x(0) = 0.5 and dx(0)/dt = −2.

Solution Transform the differential equation

d2x

dt2
+ 4

dx

dt
+ 3x = e−3t

to get(
s2X(s)− sx(0)− dx

dt
(0)

)
+ 4(sX(s)− x(0))+ 3X(s) = 1

s + 3
.

Here we have used

L

{
d2x

dt2

}
= s2X(s)− sx(0)− dx

dt
(0)

and

L

{
dx

dt

}
= sX(s)− x(0).

Substitute x(0) = 0.5 and dx(0)/dt = −2

s2X(s)− 1

2
s + 2+ 4sX(s)− 2+ 3X(s) = 1

s + 3

⇔ X(s)(s2 + 4s + 3) = 1

s + 3
+ 1

2
s

⇔ X(s) = 1

(s + 3)(s2 + 4s + 3)
+ s

2(s2 + 4s + 3)
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Use partial fractions:

1

(s + 3)(s2 + 4s + 3)
= 1

(s + 3)(s + 3)(s + 1)

1

(s + 3)(s + 3)(s + 1)
= A

(s + 3)
+ B

(s + 3)2
+ C

s + 1

⇒ 1 = A(s + 3)(s + 1)+ B(s + 1)+ C(s + 3)2.

Substituting s = −3

1 = −2B ⇔ B = − 1
2 .

Substituting s = −1

1 = 4C ⇔ C = 1
4 .

Substituting s = 0

1 = 3A+ B + 9C.

Substituting B = − 1
2 and C = 1

4 gives

1 = 3A− 1
2 + 9

4 ⇔ A = − 1
4 .

Therefore

1

(s + 3)2(s + 1)
= − 1

4(s + 3)
− 1

2(s + 3)2
+ 1

4(s + 1)
.

We can use the ‘cover up’ rule to find

s

2(s + 3)(s + 1)
= 3

4(s + 3)
− 1

4(s + 1)

so that

X(s) = − 1

4(s + 3)
− 1

2(s + 3)2
+ 1

4(s + 1)
+ 3

4(s + 3)

− 1

4(s + 1)

= −1

2(s + 3)2
+ 1

2(s + 3)
.

Taking the inverse transform, we find

x(t) = −1

2
te−3t + 1

2
e−3t = e−3t

2
(1− t)
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15.6 Laplace
transforms and
systems theory

The transfer function and impulse
response function
An important role is played in systems theory by the impulse response
function, the Laplace transform of which is called the Transfer Func-
tion (or system function). We remember from Chapter 14 that a linear,
time-invariant system is represented by a linear differential equation with
constant coefficients. We will stick to second-order equations although
the results can be generalized to any order.

An LTI system can be represented by

a
d2y

dt2
+ b

dy

dt
+ cy = f (t).

If we take f (t) as the delta function δ(t), then we get

a
d2y

dt2
+ b

dy

dt
+ cy = δ(t).

By definition of the impulse response function we consider all initial
conditions to be 0.

Taking the Laplace transform we get

as2Y (s)+ bsY (s)+ cY (s) = 1

Y (s)(as2 + bs + c) = 1

Y (s) = 1

as2 + bs + c
.

Notice that the poles of this function are found by solving as2+bs+c = 0,
which we recognize as the auxiliary equation or characteristic equation
from Chapter 14.

This function, the Laplace transform of the impulse response function,
is called the transfer function and is usually denoted by H(s), so we have

H(s) = 1

as2 + bs + c

and L{H(s)} = h(t), where h(t) is the impulse response function.
Note that the impulse response function describes the behaviour of the

system after it has been given an idealized kick.

Example 15.18 Find the transfer function and impulse response of the
system described by the following differential equation:

3
dy

dt
+ 4y = f (t).

Solution To find the transfer function replace f (t) by δ(t) and take
the Laplace transform of the resulting equation assuming zero initial
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conditions:

3
dy

dt
+ 4y = δ(t).

Taking the Laplace transform of both sides of the equation we get

3(sY − y(0))+ 4Y = 1

As y(0) = 0,

Y = 1

3s + 4
= H(s).

To find the impulse response function we take the inverse transform of
the transfer function to find

h(t) = L−1
{

1

3s + 4

}
= e
−4t

3 .

We now discover that we can find the system response to any input func-
tion f (t), with zero initial conditions, by using the transfer function.

Response of a system with zero initial
conditions to any input f (t )
Assuming all initial conditions are zero, that is, y′(0) = 0 and y(0) = 0,
then the equation

a
d2y

dt2
+ b

dy

dt
+ cy = f (t)

transforms to become

(as2 + bs + c)Y (s) = F(s) ⇔ Y (s) = F(s)

as2 + bs + c
.

We have just discovered that the transfer function, H(s), is given by

H(s) = 1

as2 + bs + c
.

Then we find that

Y (s) = F(s)H(s).

In order to find the response of the system to the function f (t)we take the
inverse transform of this expression. We are able to use the convolution
property of Laplace transforms which states:

L

{∫ t

0
f (τ)g(t − τ) dτ

}
= F(s)G(s)

or equivalently

L−1{F(s)G(s)} =
∫ t

0
f (τ)g(t − τ) dτ .

The integral
∫ t

0 f (t) g(t − τ) dτ is called the convolution of f and g

and can be expressed as f (t) ∗ g(t). So we find that the response of the
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system with zero initial conditions to any input function f (t) is given by
the convolution of f (t) with the system’s impulse response:

y(t) = L−1{F(s)H(s)} = f (t) ∗ h(t).
We can use this result to solve two types of problems, given zero initial
conditions. If we know the impulse response function of the system then
we can find the system response to any input f (t) either by convolving in
the time domain y(t) = f (t) ∗ h(t) or by finding the Laplace transform
of f (t), F(s), and finding the transfer function of the system L{h(t)} =
H(s) and then finding Y (s) = H(s)F (s) and taking the inverse transform
of this to find y(t). This type of problem is called a convolution problem.
The other type of problem is that given any output, y(t), and given the
input, f (t), we can deduce the impulse response of the system. This
we do by finding F(s) = L{f (t)},Y (s) = L{y(t)} and then H(s) =
Y (s)/F (s), thus giving the transfer function. To find the impulse response
we find h(t) = L−1{H(s)}
Example 15.19 The impulse response of a system is known to beh(t) =
e3t . Find the response of the system to an input of f (t) = 6 cos(2t) given
zero initial conditions.

Solution Method 1. We can take Laplace transforms and use Y (s) =
H(s)F (s). In this case

h(t) = e3t ⇔ H(s) = L{e3t } = 1

s − 3

f (t) = 6 cos(2t) ⇔ F(s) = L{6 cos(2t)} = 6s

4+ s2
.

Hence

Y (s) = H(s)F (s) = 6s

(s − 3)(4+ s2)
.

As we want to find y(t), we use partial fractions:

6s

(s − 3)(4+ s2)
= 6s

(s − 3)(s + j2)(s − j2)

= 18

13(s − 3)
+ 3

( j2− 3)(s − j2)

− 3

( j2+ 3)(s + j2)
(using the ‘cover up’ rule)

= 18

13(s − 3)
− 3(6s − 8)

13(s2 + 4)

= 18

13(s − 3)
− 18s

13(s2 + 4)
+ 12

13

2

(s2 + 4)
.

We can now take the inverse transform to find the system response:

y(t) = L−1{Y (s)}

= L−1
{

18

13(s − 3)
− 18s

13(s2 + 4)
+ 12

13

2

(s2 + 4)

}

= 18

13
e3t − 18

13
cos(2t)+ 12

13
sin(2t).

Alternative method. Find y(t) by taking the convolution of f (t) with
the impulse response function

y(t) = f (t) ∗ h(t) = (6 cos(2t)) ∗ (e3t )
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By definition of convolution

(6 cos(2t)) ∗ (e3t ) =
∫ t

0
6 cos(2τ) e3(t−τ) dτ .

As this is a real integral we can use the trick of writing cos(2τ) = Re(ej2τ )

to make the integration easier. So we find

I =
∫ t

0
6e j2τ e3(t−τ) dτ

= 6 e3t
∫ t

0
eτ( j2−3) dτ

= 6 e3t
[

eτ( j2−3)

j2− 3

]t
0

= 6 e3t
(

et( j2−3)

j2− 3
− 1

j2− 3

)

= 6 e3t (−j2− 3)(e−3t (cos(2t)+ j sin(2t))− 1)

4+ 9
.

Taking the real part of this result we get the system response as∫ t

0
6 cos(2τ)e3(t−τ) dτ = 6

13
(−3 cos(2t)+ 2 sin(2t))+ 18

13
e3t

= −18

13
cos(2t)+ 12

13
sin(2t)+ 18

13
e3t

which confirms the result of the first method.

Example 15.20 A system at rest has a constant input of f (t) = 3
applied at t = 0. The output is found to be u(t)( 3

2 − 3
2 e−2t). Find the

impulse response of the system.

Solution Since

y(t) = u(t)

(
3

2
− 3

2
e−2t

)

we have

y(s) = 3

2s
− 3

2(s + 2)
= 3s + 6− 3s

2s(s + 2)
= 3

s(s + 2)

and as f (t) = 3, we have

F(s) = 3

s
.

Hence

H(s) = Y (s)

F (s)
= 3/(s(s + 2))

3/s
= 1

s + 2

giving

h(t) = L−1
{

1

s + 2

}
= e−2t .

Hence the impulse response is h(t) = e−2t .
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The frequency response
In this section, we shall seek to establish a relationship between the trans-
fer function and the steady state response to a single frequency input.
Consider the response of the system

ÿ + 3ẏ + 2y = f (t)

to a single sinusoidal input ejωt = cos(ωt)+ j sin(ωt) with y(0) = 2 and
ẏ(0) = 1. Taking Laplace transforms we find

s2Y − 2s − 1+ 3(sY − 2)+ 2Y = 1

s − jω

Y(s2 + 3s + 2) = 2s + 7+ 1

s − jω

Y = 2s + 7

s2 + 3s + 2
+ 1

(s − jω)(s2 + 3s + 2)
.

Remember

H(s) = 1

s2 + 3s + 2
= 1

(s + 2)(s + 1)

Y = 2s + 7

(s + 2)(s + 1)
+ 1

(s − jω)(s + 2)(s + 1)
.

The first term in this expression is due to non-zero initial conditions. We
are particularly interested in the second term in the expression for Y (s),
which we notice may be written as H(s)/(s − jω).

Using the ‘cover up’ rule to write Y (s) in its partial fractions,

Y (s) = 5

s + 1
− 3

s + 2
+ 1

(−1− jω)(s + 1)
+ 1

(2+ jω)(s + 2)
+H( jω)

s − jω
.

Taking inverse transforms we find

y(t) = 5e−t − 3e−2t + 1

−1− jω
e−t + 1

2+ jω
e−2t +H( jω)ejωt .

The first two terms in this expression are caused by the non-zero initial
values and decay exponentially. The next two terms also decay with
increasing t and are as a result of the abrupt turn on of the input at t = 0.
Thus for a stable system, all four terms are part of the transient solution
that dies out as t increases. The fifth and final term is the sinusoidal input
f (t) = ejωt multiplied by H( jω). H( jω) is a complex constant. This is
the steady state response of the system to a single sinusoidal input, which
we have shown in this case is given by

Y (t) = H( jω)ejωt .

We can then see that for a single sinusoid input the steady state response
is found by substituting s = jω into the transfer function for the system
and multiplying the resulting complex constant by the sinusoidal input.
In other words, the steady state response is a scaled and phase shifted
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version of the input. We can find the response to a sine or cosine input by

y(t) = Re(H( jω)ejωt ) for f (t) = cos(ωt)

and

y(t) = Im(H( jω)ejωt ) for f (t) = sin(ωt)

Alternatively, we can find the response to ejωt and to e−jωt and use the
fact that

cos(ωt) = 1
2 (e

jωt + e−jωt )

sin(ωt) = 1
2j (e

jωt − e−jωt )

to write

for f (t) = cos(ωt), y(t) = 1
2 (H( jω)ejωt +H(−jω)e−jωt )

for f (t) = sin(ωt), y(t) = 1

2j
(H( jω)ejωt −H(−jω)e−jωt ).

All of these results make use of the principle of superposition for linear
systems.

We have seen in this section that the response to a simple sinusoid can
be characterized by multiplying the input by a complex constant H( jω)
where ω is the angular frequency of the input. The function H( jω) is
called the frequency response function. It is this result that motivates us
towards the desirability of expressing all signals in terms of cosines and
sines of single frequencies – a technique known as Fourier analysis. We
shall look at Fourier Analysis for periodic functions in Chapter 16.

Example 15.21 A system transfer function is known to be

H(s) = 1

3s + 1

then find the steady state response to the following:

(a) f (t) = ej2t ;
(b) f (t) = 3 cos(2t).

Solution (a) The steady state response to a single frequency ejωt is given
H( jω)ejωt . Here f (t) = ej2t , so in this case ω = 2 and H(s) is given as
1/(3s + 1). Hence we get the steady state response as

H( j2)ej2t = 1

3( j2)+ 1
ej2t = ej2t

1+ j6
= (1− j6)ej2t

37

(b) Using (1/2)(H( jω)ejωt+H(−jω)e−jωt ) as the response to cos(ωt)
and substituting for H and ω = 2 gives

1

2

(
(1− 6j)ej2t

37
+ (1+ j6)

37
e−j2t

)

= 1

74
((1− j6)(cos(2t)+ j sin(2t))

+ (1+ j6)(cos(2t)− j sin(2t))

= 1

37
(cos(2t)+ 6 sin(2t)).
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Hence, the steady state response to an input of 3 cos(2t) is

3
37 (cos(2t)+ 6 sin(2t)).

15.7
z transforms

z transforms are used to solve problems in discrete systems in a man-
ner similar to the use of Laplace transforms for piecewise continuous
systems. We take z transforms of sequences. We shall assume that our
sequences begin with the zeroth term and have terms for positive n .
f0, f1, f2, . . . , fn, . . . is an input sequence to the system. However, when
considering the initial conditions for a difference equation it is conve-
nient to assign them to y−j , . . . , y−2, y−1, etc., where j is the order of
the difference equation. So, in that case, we shall allow some elements
in the sequence with negative subscript. Our output sequence will be
of the form y−j , . . . , y−2, y−1, y0, y1, y2, . . . , yn, . . . where the difference
equation describing the system only holds for n � 0.

z transform definition
The z transform of a sequence f0, f1, f2, . . . , fn, . . . is given by

F(z) =
∞∑
n=0

fnz
−n.

As this is an infinite summation it will not always converge. The set of
values of z for which it exists is called the region of convergence. The
sequence, f0, f1, f2, . . . , fn, . . . is a function of an integer, however, its z
transform is a function of a complex variable z. The operation of taking
the z transform of the sequence fn is represented by Z{fn} = F(z).

Example 15.22 Find the z transform of the finite sequence 1, 0, 0.5, 3.

Solution We multiply the terms in the sequence by z−n, where n =
0, 1, 2, . . . and then sum the terms, giving

F(z) = 1+ 0z−1 + 0.5z−2 + 3z−3 = 1+ 0.5

z2
+ 3

z3
.

Example 15.23 Find the z transform of the geometric sequence a0r
n

where n = 0, 1, . . .

Solution

F(z) =
∞∑
n=0

a0r
nz−n =

∞∑
n=0

a0

(
r

z

)n

.

Writing this out we get

F(z) = a0 + a0

(
r

z

)
+ a0

(
r

z

)2

+ a0

(
r

z

)3

+ · · ·

From this we can see that we have another geometric progression with
zeroth term a0 and common ratio r/z; hence, we can sum to infinity
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provided |r/z| < 1, giving

F(z) = a0

1− (r/z)
= a0z

z− r

where∣∣∣∣ rz
∣∣∣∣ < 1 or |z| > |r|

We can see that in the case of infinite sequences there will be a region of
convergence for the z transform.

The impulse function and
the step function
The impulse function or delta function for a discrete system is the
sequence

δn =
{

1 n = 0
0 n 
= 0.

The step function is the function

un =
{

1 n � 0
0 n < 0

and the shifted unit step function is

un−j =
{

1 n � j

0 n < j .

As we are mainly considering sequences defined for n � 0, we could
consider that all of the sequences are multiplied by the step function un.
That is, they are all ’switched on’ at n = 0.

Rather than always using the definition to find the z transform, we will
usually make use of a table of well-known transforms and properties of
the z transform to discover the transform of various sequences. A list of
z transforms is given in Table 15.2.

Table 15.2 z transforms

fn F (z)

un
z

z − 1
|z | > 1

δn 1

n
z

(z − 1)2
|z | > 1

r n z
z − r

|z | > |r |

cos(θn)
z(z − cos(θ))

z2 − 2z cos(θ)+ 1
|z | > 1

sin(θn)
z sin(θ)

z2 − 2z cos(θ)+ 1
|z | > 1

e jθn z
z − e jθ

|z | > 1
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Properties of the z transform
For the following

Z {fn} =
∞∑
n=0

fnz
−n = F(z), Z {gn} =

∞∑
n=0

gnz
−n = G(z).

1. Linearity:

Z{afn + bgn} = aF(z)+ bG(z).

2. Left shifting property:

Z{fn+k} = zkF (z)−
k∑

i=0

zk−ifi .

3. Right shifting property (although usually we assume fn = 0 for n <

0 we use f−1, f−2 for the initial conditions when solving difference
equations using z transforms):

Z{fn−1} = z−1Z{fn} + f−1

Z{fn−2} = z−2Z{fn} + f−2 + z−1f−1

Z{fn−k} = z−kL{fn} +
k−1∑
i=0

fi−kz−i .

4. Change of scale:

Z{anfn} = F
( z
a

)
where a is a constant.

5. Convolution:

Z

{
n∑

k=0

gkfn−k

}
= G(z)F (z).

The convolution of f and g can be written as

g ∗ f =
n∑

k=0

gkfn−k .

where gn and fn are sequences defined for n � 0.
6. Derivatives of the transform:

Z {nfn} = −zdF
dz

(z).

Example 15.24 (Linearity) Find the z transform of 3n+ 2× 3n.

Solution From the linearity property

Z{3n+ 2× 3n} = 3Z{n} + 2Z{3n}
and from the Table 15.2

Z{n} = z

(z− 1)2
and Z{3n} = z

z− 3

(rn with r = 3). Therefore

Z{3n+ 2× 3n} = 3z

(z− 1)2
+ 2z

z− 3

TLFeBOOK



“chap15” — 2003/6/8 — page 406 — #25

406 Laplace and z transforms

Example 15.25 (Linearity and the inverse transform) Find the inverse
z transform of

2z

z− 1
+ 3z

z− 2
.

Solution From Table 15.2

Z−1
{

z

z− 1

}
= un

Z−1
{

z

z− 2

}
= 2n (r = 2)

So

Z−1
{

2z

z− 1
+ 3z

z− 2

}
= 2un + 3× 2n

Example 15.26 (Change of scale) Find the inverse z transform of

z

(z− 2)2

Solution

z

(z− 2)2
=

1
2 (z/2)

((z/2)− 1)2
.

From Table 15.2

Z−1
{

z

(z− 1)2

}
= n

Using the change of scale property and linearity:

Z−1

{
1
2 (z/2)

((z/2)− 1)2

}
= 1

2
n(2)n = n2n−1.

Example 15.27 (Convolution) Find the inverse z transform of

z

z− 1

z

z− 4

Solution Note that

Z−1
{

z

z− 1

}
= un and L−1

{
z

z− 4

}
= 4n.

Hence, using convolution

Z−1
{

z

z− 1

z

z− 4

}
= un ∗ 4n =

n∑
k=0

uk4n−k .

Writing out this sequence for n = 0, 1, 2, 3, . . .

1, (1+ 4), 1+ 4+ 16, 1+ 4+ 16+ 64, . . .
(n = 0) (n = 1) (n = 2) (n = 3)
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We see that the nth term is a geometric series with n+ 1 terms and first
term 1 and common ratio 4. From the formula for the sum for n terms
of a geometric progression, Sn = a(rn − 1)/(r − 1) where a is the first
term, r is the common ratio and n is the number of terms. Therefore, for
the n th term of the above sequence, we get:

4n+1 − 1

4− 1
= 4n+1 − 1

3
.

So we have found

Z−1
{

z

z− 1

z

z− 4

}
= 4n+1 − 1

3
.

Example 15.28 (Derivatives of the transform) Using

Z{n} = z

(z− 1)2

find Z{n2}.
Solution Using the derivative of the transform property

Z{n2} = Z{nn} = −z d

dz
Z{n}

= −z d

dz

(
z

(z− 1)2

)
.

As

d

dz

(
z

(z− 1)2

)
= (z− 1)2 − 2z(z− 1)

(z− 1)4
= z− 1− 2z

(z− 1)3

= −z− 1

(z− 1)3

we obtain

Z{n2} = −z
( −z− 1

(z− 1)3

)
= z(z+ 1)

(z− 1)3
.

Using partial fractions to find
the inverse transform

Example 15.29 Find

Z−1
{

z2

(z− 1)(z− 0.5)

}
.
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Solution Notice that most of the values of the transform in Table 15.2
have a factor of z in the numerator. We write

z2

(z− 1)(z− 0.5)
= z

(
z

(z− 1)(z− 0.5)

)

We use the ’cover up’ rule to write

z

(z− 1)(z− 0.5)
= 1

0.5(z− 1)
− 1

z− 0.5

= 2

z− 1
− 1

z− 0.5

So

z2

(z− 1)(z− 0.5)
= 2z

z− 1
− z

z− 0.5

and using Table 15.2 we find

Z−1
{

2z

z− 1
− z

z− 0.5

}
= 2un − (0.5)n

15.8 Solving
linear difference
equations
with constant
coefficients
using z
transforms

The scheme for solving difference equations is very similar to that for
solving differential equations using Laplace transforms and is outlined
below. The z transform transforms the linear difference equation with
constant coefficients to an algebraic equation in z. This can be solved
and then the inverse transform of this solution gives the solution to the
original difference equation.

Difference equation Solution n-Domain

↓ ↑
z transform Inverse z transform
↓ ↑

Algebraic equation → Solution z-space

Example 15.30 Solve the difference equation

yn + 2yn−1 = 2un

for n � 0 given y−1 = 1.

Solution We take the z transform of both sides of the difference equation

yn + 2yn−1 = 2un

and using the right shift property to find

Z{yn−1} = z−1Y (z)+ y−1

we get

Y (z)+ 2
(
z−1Y (z)+ y−1

)
= 2z

z− 1
.
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As y−1 = 1,

Y (z)
(

1+ 2z−1
)
= 2z

z− 1
− 2

Y (z) = 2z2

(z− 1)(z+ 2)
− 2z

(z+ 2)
.

To take the inverse transform we need to express the first terms using
partial fractions. Using the ’cover up’ rule we get

2z

(z− 1)(z+ 2)
= 2

3(z− 1)
+ 4

3(z+ 2)

So

Y (z) = 2z

3(z− 1)
+ 4z

3(z+ 2)
− 2z

(z+ 2)
= 2z

3(z− 1)
− 2z

3(z+ 2)
.

Taking inverse transforms we find

yn = 2
3un − 2

3 (−2)n

Check: To check that we have the correct solution we can substitute in
a couple of values for n and see that we get the same value from the
difference equation as from the explicit formula found.

From the explicit formula and using u0 = 1 (by definition of the unit
step function), n = 0 gives

y0 = 2
3u0 − 2

3 (−2)0 = 2
3 − 2

3 = 0

From the difference equation, yn + 2yn−1 = 2un, where
y−1 = 1, n = 0 gives

y0 + 2y−1 = 2u0.

Substituting y−1 = 1 gives y0 = 0 as before.
From the explicit formula, n = 1 gives

y1 = 2

3
u1 − 2

3
(−2)1 = 2

3
+ 4

3
= 2.

From the difference equation, n = 1 gives

y1 + 2y0 = 2u1

substituting y0 = 0 gives y1 = 2, confirming the result of the explicit
formula.

Example 15.31 Solve the difference equation

6yn − 5yn−1 + yn−2 = (0.25)n n � 0

given y−1 = 1, y−2 = 0.
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Solution We take the z transform of both sides of the difference equation
6yn − 5yn−1 + yn−2 = (0.25)n and use the right shift property to find

Z{yn−1} = z−1Y (z)+ y−1

Z{yn−2} = z−2Y (z)+ z−1y−1 + y−2

which gives

6Y (z)− 5(z−1Y (z)+ y−1)+ z−2Y (z)+ y−2 + z−1y−1 = 2

z− 0.25
.

Substituting the initial conditions y−1 = 1 and y−2 = 0 and collecting
the terms involving Y (z) we get

Y (z)(6− 5z−1Y (z)+ z−2)− 5+ z−1 = z

z− 0.25

⇔ Y (z) = z

(z− 0.25)(6− 5z−1 + z−2)
+ 5

6− 5z−1 + z−2

− z−1

6− 5z−1 + z−2

= z

(
z2

(z− 0.25)(6z2 − 5z+ 1)

)
+ z

(
5z

(3z− 1)(2z− 1)

)

− z

(
1

(3z− 1)(2z− 1)

)
.

Using the ‘cover up’ rule we write each of these terms as partial fractions:

z2

(z− 0.25)(3z− 1)(2z− 1)

= z2

6
(
z− 1

4

) (
z− 1

3

) (
z− 1

2

)
= 1

2
(
z− 1

4

) − 4

3

1(
z− 1

3

) + 1(
z− 1

2

)
5z

6
(
z− 1

3

) (
z− 1

2

) = −5

3
(
z− 1

3

) + 5

2
(
z− 1

2

)
1

3(z− 1)(2z− 1)
= 1

6
(
z− 1

3

) (
z− 1

2

)
= −1

z− 1
3

+ 1

z− 1
2

giving

Y (z) = z

2
(
z− 1

4

) − 4z

3
(
z− 1

3

) + z

z− 1
2

− 5z

3
(
z− 1

3

)
+ 5z

2
(
z− 1

2

) + z

z− 1
3

− z

z− 1
2

⇔ Y (z) = z

2
(
z− 1

4

) − 2z

z− 1
3

+ 5

2
(
z− 1

2

) .

Taking the inverse transform:

yn = 1

2

(
1

4

)n

− 2

(
1

3

)n

+ 5

2

(
1

2

)n
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15.9 z
transforms and
systems theory

The transfer function and impulse
response function
As before, when considering Laplace transforms, we find that an impor-
tant role is played by the impulse response function in systems theory of
discrete systems. If this case is a sequence, hn, its z transform of is called
the transfer function (or system function). We remember from Chapter 14
that a linear, time-invariant system is represented by a linear difference
equation with constant coefficients, that is, a second-order LTI system
can be represented by

ayn + byn−1 + cyn−2 = fn.

If we take fn as the delta function δn, we get

ayn + byn−1 + cyn−2 = δn.

By definition of the impulse response function we consider all initial
conditions to be 0, that is, y−1 = 0, y−2 = 0; taking the z transform we
get

aY (z)+ bz−1Y (z)+ cz−2Y (z) = 1

Y (z)(a + bz−1 + cz−2) = 1

Y (z) = 1

a + bz−1 + cz−2

Y (z) = z2

az2 + bz+ c
.

Notice that the poles of this function are found by solvingaz2+bz+c = 0,
which we recognize as the auxiliary equation or characteristic equation
from Chapter 14.

This function, the z transform of the impulse response function, is
called the transfer function and is usually denoted by H(z), so we have

H(z) = z2/(az2 + bz+ c)

and Z−1{H(z)} = hn, where hn is the impulse response function.

Example 15.32 Find the transfer function and impulse response of the
system described by the following difference equation:

3yn + 4yn−1 = fn

Solution To find the transfer function replace fn by δn and take the z

transform of the resulting equation assuming zero initial conditions:

4yn + 3yn−1 = δn.

Taking the z transform of both sides of the equation we get

4Y + 3(z−1Y + y−1) = 1.

As y−1 = 0,

Y = z

4z+ 3
= H(z) = z/4

z+ (3/4)
.
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To find the impulse response sequence we take the inverse transform
of the transfer function to find

hn = Z−1

{
z/4

z+ 3
4

}
= 1

4

(
−3

4

)n

We can now see why, in the design of digital filters, this is referred to
as an infinite impulse response (IIR) filter. This impulse response has a
non-zero value for all n . Hence it represents an IIR system.

We now discover that we can find the system response to any input
sequence fn, with zero initial conditions, by using the transfer function.

Response of a system with zero initial
conditions to any input fn
Assuming all initial conditions are zero, that is, y−1 = 0 and y−2 = 0,
then the equation

ayn + byn−1 + cyn−2 = fn

transforms to become

aY (z)+ bz−1Y (z)+ cz−2Y (z) = F(z) ⇔ y(z) = F(z)z2

az2 + bz+ c
.

We have just discovered that the transfer function, H(z), is given by

H(z) = z2

az2 + bz+ c
.

Then we find that

Y (z) = F(z)H(z).

In order to find the response of the system to the function fn we take the
inverse transform of this expression. We are able to use the convolution
property of z transforms, which states:

Z

{
n∑

k=0

fkgn−k

}
= F(z)G(z)

or equivalently

Z−1{F(z)G(z)} =
n∑

k=0

fkgn−k .

So we find that the response of the system with zero initial conditions to
any input sequence fn is given by the convolution of fn with the system’s
impulse response:

yn = Z−1{F(z)H(z)} = fn ∗ hn.

We can use this result to solve two types of problems, given zero initial
conditions. If we know the impulse response function of the system then
we can find the system response to any input fn either by convolving the
two sequences

yn =
n∑

k=0

fkhn−k = fn ∗ hn

or by finding the z transform of fn,F(z), finding the transfer function of
the system Z{hn} = H(z), then finding Y (z) = H(z)F (z) and taking
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the inverse transform of this to find yn. This type of problem is called a
convolution problem. The other type of problem is that given any output,
yn, and given the input, fn, we can deduce the impulse response of the
system. This we do by finding F(z) = Z{fn},Y (z) = Z{yn} and then
H(z) = Y (z)/F (z), thus giving the transfer function. To find the impulse
response we find hn = Z−1{H(z)}.
Example 15.33 The impulse response of a system is known to be hn =
3(0.5)n. Find the response of the system to an input of f (t) = 2un given
zero initial conditions.

Solution Method 1. We can take z transforms and use

Y (z) = H(z)F (z)

In this case

hn = 3(0.5)n ⇔ H(z) = Z{3(0.5)n} = 3z

z− 0.5

f (t) = 2un ⇔ F(z) = Z{2un} = 2z

z− 1

Hence,

Y (z) = H(z)F (z) = 6z2

(z− 0.5)(z− 1)
.

As we want to find yn, we use partial fractions

6z

(z− 0.5)(z− 1)
= −6

z− 0.5
+ 12

z− 1

(using the ’cover up’ rule). We can know take the inverse transform to
find the system response

yn = Z−1{Y (z)} = Z−1
{ −6z

z− 0.5
+ 12z

z− 1

}
= −6(0.5)n + 12un.

Alternative method. Find yn by taking the convolution of fn with the
impulse response function

yn = fn ∗ hn = (2un) ∗ (3(0.5)n).

By definition of convolution

yn =
n∑

k=0

2uk
(
3(0.5)n−k

) = n∑
k=0

6(0.5)n−k .

Writing out some of these terms we get

6, 6(0.5+ 1), 6((0.5)2 + 0.5+ 1),
(n = 0) (n = 1) (n = 2)

6((0.5)3 + 0.52 + 0.5+ 1).
(n = 3)

We see that each term in the sequence is a geometric progression with
first term 6 and common ratio 0.5 and n+ 1 terms. Hence

yn = 6(1− 0.5)n+1

1− 0.5
= 12(1− (0.5)n+1) = 12− 12(0.5)(0.5)n

= 12− 6(0.5)n

which confirms the result of the first method.
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The frequency response
As in the case of Laplace transforms and continuous systems, we find we
are able to establish a relationship between the transfer function and the
steady state response to a single frequency input.

The steady state response of the system to a sequence representing a
single frequency input, ejωn, is found to be

Y (z) = H(ejω)ejωn.

We can then see that for a single sinusoidal input the steady state response
is found by substituting z = ejω into the transfer function for the system
and multiplying the resulting complex constant by the sinusoidal input.
In other words, the steady state response is a scaled and phase shifted
version of the input. The functionH(ejω) is called the frequency response
function for a discrete system.

Example 15.34 A system transfer function is known to be

H(z) = z

z+ 0.2
.

Find the steady state response to the following:

(a) fn = ej2n;
(b) f (t) = cos(2n).

Solution (a) The steady state response to a single frequency ejωn is given
by H(ejω)ejωn. fn = ej2n , so in this case ω = 2 and H(z) is given as
z/(z+ 0.2). Hence, we get the steady state response as

ej2

ej2 + 0.2
ej2n.

(b) Using 1
2H(ejω)ejωt +H(e−jω)e−iωt as the response to cos(ωn) and

substituting for H and ω = 2 gives

yn = 1

2

(
ej2ej2n

ej2 + 0.2
+ e−j2

e−j2 + 0.2
e−j2n

)

Expressing this over a real denominator and simplifying gives

cos(2n)(1+ 0.2 cos(2))+ 0.2 sin(2) sin(2n)

1.4+ 0.4 cos(2)

Hence, the steady state response to an input of 3 cos(2n) is

3 cos(2n)(1+ 0.2 cos(2))+ 0.6 sin(2) sin(2n)

1.4+ 0.4 cos(2)
.

15.10 Summary 1. The Laplace transformF(s) of the function f (t) defined for t � 0 is:

F(s) =
∫ ∞

0
e−stf (t) dt .

The Laplace transform is a function of s, where s is a complex
variable. Because the integral definition of the Laplace transform
involves an integral to∞, it is usually necessary to limit possible
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values of s so that the integral above converges (i.e. does not tend
to∞ ).

2. The impulse function, δ(t), also called a delta function, is the most
famous example of a generalized function. The impulse function
represents an idealized kick as it lasts for no time at all and has
energy of exactly 1.

3. Laplace transforms are usually found by using a table of transforms
(as in Table 15.1) and also by using properties of the transform, some
of which are listed in Section 15.4.

4. Laplace transforms are used to reduce a differential equation to a
simple equation in s-space. This can then be solved and the inverse
transform used to find the solution to the differential equation.

5. The transfer function of the system, H(s), is the Laplace transform of
its impulse response function with zero initial conditions, h(t). The
Laplace transform of the response to any input function, with zero
initial conditions, can be found by multiply the Laplace transform
of the input function by the transfer function of the system Y (s) =
H(s)F (s).

6. The steady state response to a single frequency input ejωt is
H( jω)ejωt . H( jω) is called the frequency response function.

7. The z transform of a sequence f0, f1, f2, . . . , fn, . . . is given by

F(z) =
∞∑
n=0

fnz
−n.

As this is an infinite summation it will not always converge. The set
of values of z for which it exists is called the region of convergence.

8. The discrete impulse function or delta function is defined by

δn =
{

1 n = 0
0 n 
= 0.

9. z transforms are usually found by using a table of transforms (as in
Table 15.2) and also by using properties of the transform, some of
which are listed in Section 15.7

10. z transforms are used to reduce a difference equation to a simple
equation in z-space. This can then be solved and the inverse transform
used to find the solution to the difference equation.

11. The transfer function of a discrete system, H(z), is the z transform
of its impulse response function with zero initial conditions, hn. The
z transform of the response to any input function, with zero initial
conditions, can be found by multiply the z transform of the input
function by the transfer function of the system, Y (z) = H(z)F (z).

12. The steady state response of a discrete system to a single frequency
input ejωn is H(ejω)ejωn · H(ejωn) is called the frequency response
function.

15.11 Exercises

15.1. Using the definition of the Laplace transform

L{f (t)} =
∫ ∞

0
e−st f (t) dt

show the following. In each case specify the values of
s for which the transform exists.

(a) L{2e4t } = 2

s − 4

(b) L{3e−2t } = 3

s + 2

(c) L{5t − 3} = 5

s2
− 3

s

(d) L{3 cos(5t)} = 3s

s2 + 25
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15.2. Find Laplace transforms of the following using
Table 15.1:

(a) 5 sin(3t) (b) cos

(
t

2

)
(c)

t4

3
(d)

1

2
e−5t

15.3. Find inverse Laplace transforms of the following using
tables:

(a)
1

s − 4
(b)

3

s + 1
(c)

4

s
(d)

2

s2 + 3

(e)
4s

9s2 + 4
(f)

1

s3
(g)

5

s4

15.4. Find Laplace transforms of the following using the
properties of the transform:

(a) te−3t (b) 4 sin(t)e−2t (c) t sinh(4t)

(d) u(t − 1) (e) f (t) =
{

sin(t − π) t � π

0 t < π

15.5. Find inverse Laplace transforms of the following using
the properties of the transform:

(a)
1

(s − 2)2 + 9
(b)

s + 4

(s + 4)2 + 1

(c)
e−2s

s + 1
(d)

s − 1

s2 − 2s + 10

15.6. Find inverse Laplace transforms using partial
fractions:

(a)
1

s(s + 1)
(b)

1

s(s2 + 2)

(c)
s

(s2 − 4)(s + 1)
(d)

4

(s2 + 1)(s − 3)

15.7. In each case solve the given differential equation using
Laplace transforms:

(a) y ′ + 5y = 0, where y(0) = 3
(b) y ′ + y = t , where y(0) = 0
(c) y ′′ + 4y = 9t , where y(0) = 0, y ′(0) = 7
(d) y ′′−3y+2y = 4e2t , where y(0) = −3, y ′(0) = 5
(e) y ′′ + y = t , where y(0) = 1, y ′(0) = −2
(f) y ′′ + y ′ + 2y = 4, y(0) = 0, y ′(0) = 0

15.8. A capacitor of capacitance C in an RC circuit, as in
Figure 15.7, is charged so that initially its potential is
V0. At t = 0, it begins to discharge. Its charge q is
then described by the differential equation

R
dq

dt
+ q

C
= 0

Using Laplace transforms, find the charge on the
capacitor at time t after the switch was closed.

Figure 15.7 An RC circuit for Exercise 15.8.

15.9. Find the response of a system with zero ini-
tial conditions to an input of f (t) = 2e−3t ,
given that the impulse response of the system is
h(t) = 1/2(e−t − e−2t ) .

15.10. (a) The impulse response of a system is given by
h(t) = 3e−4t . Find the system’s step response,
that is, the response of the system to an input of
the step function, u(t).

(b) Use the result that Y (s) = H(s)F (s), where Y

is the Laplace transform of the system output,
F(s) the Laplace transform of the input and H(s)

the system transfer function to show that the step
response can be found by

yu(t) = L−1
{
H(s)

s

}

(c) Given that the step response of a system is

−4

3
u(t)− e−2t − 2

3
e−3t

then
(i) find the system’s transfer function; and

(ii) find its response to an input of e−t .

15.11. A system has a known impulse response of h(t) =
e−t sin(2t). Find the input function f (t) that would
produce an output of

y(t) = −0.16u(t)+ 0.4t + 0.16e−t cos(2t)

− 0.04 sin(2t)e−t

given zero initial conditions.

15.12. A system has transfer function

H(s) = 1

(s + 2)2 + 4

(a) Find its steady state response to a single frequency
input of ej5t ;

(b) Find the steady-state response to an input of
cos(5t) and sin(5t).

15.13. Using the definition of the z transform

Z{fn} =
∞∑
n=0

fnz
−n = F(z)

show the following. In each case specify the values of
z for which the transform exists:

(a) Z{3δn} = 3 (b) Z{6un} = 6z

z− 1
(c) Z{3n} = z

z− 3

15.14. Find z transforms of the following using Table 15.2:

(a) 2un + 1
2n (b) cos(3n)+ 2 sin(3n)

(c) 4(0.2)n − 6(2)n (d) 2ej4n
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15.15. Find inverse z transforms of the following using
Table 15.2:

(a)
2z

z− 1
+ 2 (b)

z

2(z− 1)2
+ 1

1+ 3/z

(c)
2z

2z− 3
+ 4z

2z+ 3
(d)

z2 + z(sin(1)− cos(1))

z2 − 2z cos(1)+ 1

15.16. Find z transforms of the following using the properties
of the transform:

(a) un+23n+2 (b)
( 1

2

)n
n (c) nejn (d) n3

15.17. Find inverse z transforms of the following using the
properties of the transform:

(a)
z

(z− 4)2
(b)

z

z− 2ej4
(c)

z

(z− 0.4)2

(d)
z

z− 1

2z

z− 2

15.18. Find inverse z transforms using partial fractions

(a)
z2

(z− 1)(z+ 1)
(b)

z3

(z− 1)(z2 − 2)

(c)
z2

(z− 0.1)(5z− 2)
(d)

z2

(z− 1)2(z+ 2)

(e)
z2

z2 + 1

15.19. In each case solve the given difference equation using
z transforms, n � 0

(a) yn + 5yn−1 = 0, where y−1 = 3;
(b) yn + yn−1 = n, where y−1 = 0;
(c) yn + 4yn−1 = 9, where y−1 = 1;
(d) yn − 3yn−1 + 2yn−2 = 4 × 2n, where y−1 =
−3, y−2 = 5;

(e) yn + yn−1 = n, where y−1 = 0, y−2 = 0

(f) 10yn − 3yn−1 − yn−2 = 4, y−1 = −1, y−2 = 2.

15.20. Find the response of a system with zero initial con-
ditions, to an input of fn = 2(0.3)n, given that the
impulse response of the system is hn = (0.1)n +
(−0.5)n.

15.21 (a) The impulse response of a discrete system is given
by hn = (0.8)n. Find the system’s step response,
that is, the response of the system to an input of
the step function, un.

(b) Use the result that Y (z) = H(z)F (z), where Y is
the z transform of the system output, F(z) is the
z transform of the input and H(z) is the system
transfer function to show that the step response
can be found by

yn = Z−1
{
H(z)z

z− 1

}

(c) Given that the step response of a discrete system
is

1

24
(0.2)n + 10

48
un

then
(i) find the system’s transfer functions; and

(ii) find its response to an input of 6(0.5)n.

15.22. A system has a known impulse response of hn =
(0.5)n . Find the input function fn that would produce
an output of 2(0.5)n + 2n − 2un given zero initial
conditions.

15.23. A system has transfer functionH(z) = z/(10z−3)
(i) find its steady state response to a single frequency

input of ej5n;
(ii) find the steady state response to an input of

cos(5n) and sin(5n).
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16 Fourier series

16.1
Introduction

Fourier analysis is the theory behind frequency analysis of signals. This
chapter is concerned with the Fourier analysis of periodic, piecewise con-
tinuous functions. A periodic function can be represented by a Fourier
series. A non-periodic function can be represented by its Fourier trans-
form which we shall not be concerned with here. Discrete functions may
be represented by a discrete Fourier transform, which also we shall not
look at in this book.

Any periodic signal is made up of the sum of single frequency
components. These components consist of a fundamental frequency com-
ponent, multiples of the fundamental frequency, called the harmonics and
a bias term, which represents the average off-set from zero. There are three
ways of representing this information which are equivalent. We can rep-
resent the frequency components as the sum of a sine and cosine terms,
or by considering the amplitude and phase of each component, or we can
represent them using a complex Fourier series. The use of the complex
Fourier series simplifies the calculation.

Having found the Fourier components we can use the system’s fre-
quency response function, as found in the previous chapter, to find the
steady state response to any periodic signal.

16.2 Periodic
Functions

In Chapter 5 we discussed the property of periodicity of the trigonometric
functions. A periodic function is one whose graph can be translated to the
right or left by an amount, called the period, such that the new graph fits
exactly on top of the original graph. The fundamental period, also called
the cycle, is the minimum non-zero amount the graph needs to be shifted
in order to fit over the original graph.

A periodic function, with period τ , satisfies f (t + τ) = f (t) for all
values of t . Examples of periodic functions are given in Figure 16.1.

The fundamental frequency of a periodic function is the number of
cycles in an interval of unit length, f = 1/τ . The fundamental angular
frequency is then given by ω0 = 2πf = 2π/τ . A periodic function need
only be defined in one cycle, as the periodicity property will then define
it everywhere. For example, the graph of the periodic square wave

f (t) =
{

1/2 0 < t < 1
−1/2 1 < t < 2

is drawn in Figure 16.2. First, we draw the section of the graph as given
in the definition and then shift the section along by the period, in this
case 2, and copy the section. By repeatedly shifting and copying in this
way, both to the left and right, we get the graph as shown.

As we mentioned in the introduction there are three ways of expressing
the Fourier series. As a sine and cosine series or in amplitude and phase
form or in complex form.
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Figure 16.1 Some periodic functions with their fundamental periods marked.

Figure 16.2 The periodic
square wave defined by:

f (t) =
{

1/2 0 < t < 1

−1/2 1 < t < 2

16.3 Sine and
cosine series

If f (t) is periodic with period τ = 2π/ω0, then the Fourier series for f
is given by:

f (t) = 1

2
a0 +

∞∑
n=1

an cos(nω0t)+ bn sin(nω0t)

where the coefficients are given by

a0 = 2

τ

∫ τ/2

−τ/2
f (t) dt

an = 2

τ

∫ τ/2

−τ/2
f (t) cos(nω0t) dt

bn = 2

τ

∫ τ/2

−τ/2
f (t) sin(nω0t) dt

The steps for finding the Fourier series are:

Step 1: Plot the periodic function f (t).
Step 2: Determine its fundamental period τ and its fundamental angular

frequency ω0 = 2π/τ .
Step 3: Evaluate a0, an, and bn as given above.
Step 4: Write down the resulting Fourier series.

Example 16.1 Find the Fourier series for

f (t) =
{

1/2 0 < t < 1
−1/2 1 < t < 2
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Solution

Step 1

We have already plotted the graph as shown in Figure 16.2.

Step 2

The fundamental period of this is τ = 2, so that ω0 = 2π/2 = π .

Step 3

Calculate a0, an, and bn. We find

a0 = 2

τ

∫ τ/2

−τ/2
f (t) dt = 2

2

∫ 1

−1
f (t) dt

=
∫ 0

−1

1

2
dt +

∫ 1

0

1

2
dt

=
[
−1

2
t

]0

−1
+
[

1

2
t

]−1

0
= −1

2
+ 1

2
= 0

an = 2

τ

∫ τ/2

−τ/2
f (t) cos(nω0t) dt = 2

2

∫ 1

−1
f (t) cos(nπt) dt

=
∫ 0

−1
−1

2
cos(nπt) dt +

∫ 1

0

1

2
cos(nπt) dt

=
[
−1

2

sin(nπt)

nπ

]0

−1
+
[

1

2

sin(nπt)

nπ

]1

0

= −1

2

sin(0)

nπ
+ sin(−nπ)

nπ
+ 1

2

sin(nπ)

nπ
− 1

2

sin(0)

nπ

= −0+ 0+ 0− 0 = 0

bn = 2

τ

∫ τ/2

−τ/2
f (t) sin(nω0t) dt

= 2

2

∫ 1

−1
f (t) sin(nπt) dt

=
∫ 0

−1
−1

2
sin(nπt) dt +

∫ 1

0

1

2
sin(nπt) dt

=
[

1

2

cos(nπt)

nπ

]0

−1
+
[
−1

2

cos(nπt)

nπ

]1

0

= 1

2nπ
(cos(0)− cos(−nπ))+ 1

2πn
(− cos(nπ)+ cos(0))

= 1

2nπ
(1− (−1)n)+ 1

2nπ
(−(−1)n + 1)

= 1

nπ
(1− (−1)n)

since cos(nπ) = (−1)n.
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Step 4

The Fourier series for f (t) is

f (t) = 1

2
a0 +

∞∑
n=1

an cos(nω0t)+ bn sin(nω0t)

in this case giving

f (t) = 1

π

∞∑
n=1

1− (−1)n

n
sin(nπt)

Note that the even values of n all give zero coefficients as 1− (−1)n = 0
for n even. Odd values give 2/(nπ). In this case, we can change the
variable for the summation, using n = 2m−1, which is always odd. This
gives

f (t) = 1

π

∞∑
m=1

2

2m− 1
sin((2m− 1)πt)

It is interesting to plot graphs of the first few partial sums that we obtain
from this series. In Figure 16.3 we have plotted the graph given by the
terms up to n = 3, n = 5, and n = 7:

S3 = 2

π
sin(πt)+ 2

3π
sin(3πt)

S5 = 2

π
sin(πt)+ 2

3π
sin(3πt)+ 2

5π
sin(5πt)

S7 = 2

π
sin(πt)+ 2

3π
sin(3πt)+ 2

5π
sin(5πt)+ 2

7π
sin(7πt).

Figure 16.3 Partial sums of the Fourier series for the square wave.
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You will notice that there is an overshoot of the value near the jump
discontinuities. This is an example of Gibb’s phenomenon. However
many terms we take in the partial sum this overshoot remains sig-
nificant, at about 10% of the function value. It is also interesting to
see the value that the Fourier series takes at the discontinuous points,
for example, t = 1. Substituting t = 1 into S3, S5, and S7 gives
0. This is half way between the values of f at either side of the
point t = 1.

Example 16.2 Find the Fourier series for the periodic function, defined
in the interval 0 < t < 1 by

f (t) =
{
t 0 < t < 1/2
0 1/2 < t < 1

Solution

Step 1

We plot the graph as shown in Figure 16.4.

Step 2

The fundamental period of this is τ = 1 so that ω0 = 2π/1 = 2π .

Step 3

Calculate a0, an, and bn. We find

a0 = 2

1

∫ 1/2

−1/2
f (t) dt = 2

∫ 1/2

0
t dt = [t2]1/20 = (1/4)− 0 = 1/4

an = 2

τ

∫ τ/2

−τ/2
f (t) cos(ω0nt) dt

= 2
∫ τ/2

−τ/2
f (t) cos(2πnt) dt = 2

∫ 1/2

0
t cos(2πnt) dt .

To find this integral we perform integration by parts. The formula, as
given in Chapter 7, is ∫ u dv = uv − ∫ v du. In this case, we choose

Figure 16.4 The graph for
Example 16.2.
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u = t , dv = cos(2πnt) dt , du = dt and v = sin(2πnt)/(2πn)

an = 2

([
t
sin(2πnt)

2πn

]1/2

0
−
∫ 1/2

0

sin(2πnt)

2πn
dt

)

as sin(πn) = 0 for all n, we get

an = 2

(
0−

[
−cos(2πnt)

4π2n2

]1/2

0

)
= 2

(
cos(πn)

4π2n2
− 1

4π2n2

)

cos(πn) is −1 when n is odd and 1 when n is even. This means that
cos(πn) = (−1)n. Then

an = 2
((−1)n − 1)

4π2n2
= (−1)n − 1

2π2n2

Next:

bn = 2

τ

∫ τ/2

−τ/2
f (t) sin(2πnt) dt = 2

∫ 1/2

0
t sin(2πnt)dt

Integrating by parts, using the formula ∫ u dv = uv−∫ v du and choosing
u = t , dv = sin(2πnt) dt

du = dt , v = − cos(2πnt)/(2πn), we obtain

bn = 2

([
t

(
−cos(2πnt)

2πn

)]1/2

0
+
∫ 1/2

0

cos(2πnt)

2πn
dt

)

= 2

(
−cos(πn)

4πn
+
[

sin(2πnt)

4π2n2

]1/2

0

)

= 2

(
− (−1)n

4πn

)
= − (−1)n

2πn

Step 4

The Fourier series for f (t) is

f (t) = 1

2
a0 +

∞∑
n=1

an cos(nω0t)+ bn sin(nω0t)

in this case, giving

f (t) = 1

8
+
∞∑
n=1

(−1)n − 1

2π2n2
cos(2πnt)+

∞∑
n=1

(−1)n+1

2πn
sin(2πnt)

The signal bias: the direct current (DC)
component
The term 1

2a0 is called the bias term, or the DC component (a name
adopted from electronic signals), as it corresponds to the average value
of the function over a single period.
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16.4 Fourier
series of
symmetric
periodic
functions

We looked at even functions and odd functions in Chapter 2.

Even functions
We find that even functions, which have the property that f (−t) = f (t),
have all bn = 0 in their Fourier series. They are represented by cosine
terms only. This is not surprising as the cosine is an even function and
the sine function is odd. We would expect that an even function would
be expressed in terms of other even functions. Another simplification in
this case is

an = 2

τ

∫ τ/2

−τ/2
f (t) cos(nω0t) dt

= 2

τ

∫ 0

−τ/2
f (t) cos(nω0t) dt + 2

τ

∫ τ/2

0
f (t) cos(nω0t) dt

= 4

τ

∫ τ/2

0
f (t) cos(nω0t) dt

and it is therefore only necessary to integrate over a half cycle.
To summarize, for an even function

a0 = 4

τ

∫ τ/2

0
f (t) dt

an = 4

τ

∫ τ/2

0
f (t) cos(nω0t) dt

bn = 0 all n

Odd functions
Odd functions, where f (−t) = −f (t) have all an = 0 and only have
sine terms in their Fourier series. We only need to consider the half cycle,
because

bn = 2

τ

∫ τ/2

−τ/2
f (t) sin(nω0t)

= 2

τ

∫ 0

−τ/2
f (t) sin(nω0t) dt + 2

τ

∫ τ/2

0
f (t) sin(nω0t) dt

= 4

τ

∫ 1/2

0
f (t) sin(nω0t) dt

To summarize, for an odd function

an = 0 all n

bn = 4

τ

∫ τ/2

0
f (t) sin(nω0t) dt .

Half-wave symmetry
There is another sort of symmetry that has an important effect on the
Fourier series representation. This is called half-wave symmetry. A func-
tion with half-wave symmetry obeys f (t + 1

2τ) = −f (t), that is, the
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graph of the function in the second half of the period is the same as
the graph of the function in the first half turned upside down. A function
with half-wave symmetry has no even harmonics. This can be shown by
considering one of the even terms where n = 2m. Then

b2m = 2

τ

∫ τ/2

−τ/2
f (t) sin(2mω0t) dt

= 2

τ

∫ 0

−τ/2
f (t) sin(2mω0t) dt + 2

τ

∫ τ/2

0
f (t) sin(2mω0t) dt

Substitute t ′ = t − (1/2)τ in the second term, so that dt ′ = dt , giving

2

τ

∫ 0

−τ/2
f
(
t ′ + τ

2

)
sin
(

2mω0

(
t ′ + τ

2

))
dt ′

As τ = 2π/ω0

sin
(

2mω0

(
t ′ + τ

2

))
= sin

(
2mω0t

′ + 2m
ω02π

ω02

)
= sin

(
2mω0t

′ + 2mπ
) = sin

(
2mω0t

′)

As f (t ′ + 1
2τ) = −f (t ′), the second term in b2m becomes

2

τ

∫ 0

−τ/2
−f (t ′) sin(2mω0t

′) dt ′

which cancels the first term, giving b2m = 0.
A similar argument shows that the coefficients of the cosine terms for

even n are also zero. In this case also it is only necessary to consider the
half-cycle, as

2

τ

∫ τ/2

−τ/2
f (t) sin(nω0t) dt = 4

τ

∫ τ/2

0
f (t) sin(nω0t) dt n odd

To summarize, for a function with half wave symmetry

an = 4

τ

∫ τ/2

0
f (t) cos(nω0t) dt n odd

bn = 4

τ

∫ τ/2

0
f (t) sin(nω0t) dt n odd

an = bn = 0 n even

An even function, an odd function, and a function with half-wave
symmetry are shown in Figure 16.5.
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Figure 16.5 (a) An even function satisfies f (−t ) = f (t ), that is reflecting the graph in the y-axis results in the
same graph. This function has only cosine terms in its Fourier series. (b) An odd function satisfies
f (−t ) = −f (t ), that is reflecting the graph in the y-axis results in an upside down version of the same graph.
This function has only sine terms in its Fourier series. (c) A function with half-wave symmetry satisfies
f (t + τ/2) = −f (t ) that is the graph of the function in the second half of the period is the same as the graph of
the function in the first half reflected in the x-axis. This function has no even harmonics.

16.5 Amplitude
and phase
representation
of a Fourier
series

In Chapter 9, when considering using vectors to represent single fre-
quency waves, we saw that terms like c cos(ωt) − d sin(ωt) can be
represented by a single cosine term A cos(ωt + φ) where A is the ampli-
tude and φ is the phase. The terms A and φ can be found by expressing
the vector (c, d) in polar form. We can employ this idea to represent
the Fourier series in amplitude and phase form. This can be very useful
because, for instance, a filter may be designed to attenuate frequencies
outside of the desired pass band. this requirement specifies its ampli-
tude characteristics. The phase characteristics may then be considered
separately.

The Fourier series becomes

f (t) = 1

2
a0 +

∞∑
n=1

cn cos(nω0t + φn)

where

cn cos(nω0t + φn) = an cos(nω0t)+ bn sin(nω0t)

From the trigonometric identity for cos(A+ B), we can expand the left-
hand side of the above expression to get

cn cos(nω0) cos(φn)−cn sin(nω0) sin(φn) = an cos(nω0t)+bn sin(nω0t)

Equating terms in cos(nω0t) and sin(nω0t), we get

cn cos(φn) = an
−cn sin(φn) = bn
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giving

cn =
√
a2
n + b2

n and φn = − tan−1
(
bn

an

)
(±π if an is negative)

We see that cn∠φn can be found by expressing (an,−bn) in polar form.
The amplitudes can be plotted against the frequency f (or angu-

lar frequency ω) giving the amplitude spectrum and the phases
can be plotted, giving the phase spectrum. The amplitude gives
information about the distribution of energy among the different
frequencies.

For the unbiased square wave which we considered in Example 16.1
we found

f (t) = 1

π

∞∑
n=1

1− (−1)n

n
sin(nπt) = 1

π

∞∑
m=1

2

2m− 1
sin((2m− 1)πt)

am = 0

bm = 2

(2m− 1)π

So

cm =
√
a2
m + b2

m =
2

π(2m− 1)

as there is only a sine term then the phase is given by −π/2. So we get

f (t) =
∞∑
m=1

2

π(2m− 1)
cos

(
(2m− 1)πt − π

2

)

where n = 2m− 1.
On plotting these amplitudes and phases we get Figure 16.6. The phases

are not defined for frequencies with zero amplitude but we can consider
them as 0.

Figure 16.6 (a) The amplitude and (b) phase spectra of the square wave given in Figure 16.1.
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16.6 Fourier
series in
complex form

The most useful form of the Fourier series is the amplitude and phase
form of the previous section. cn and φn can often be calculated more
simply by considering the complex form of the Fourier series. We can
find this by taking the expression from the previous section:

f (t) = 1

2
a0 +

∞∑
n=1

cn cos(nω0t + φn)

and expressing the cosine terms as the sums of complex exponentials:

cn cos(nω0t + φn) = cn

2
(ej(nω0t+φn) + e−j(nω0t+φn))

= cn

2
ejφn ejnω0t + cn

2
e−jφn e−jnω0t

Then setting

αn = cn

2
ejφn and α−n = cn

2
e−jφn

we get

f (t) = 1

2
a0 +

∞∑
n=1

αn ejnω0t + α−n e−jnω0t

⇒ f (t) =
n=∞∑
n=−∞

αn ejnω0t

where α0 = 1
2a0

αn = cn

2
ejφn and α−n = cn

2
e−jφn

as cn is real |αn| = |α−n| = cn

2
, and α∗n = α−n.

Therefore, αn(n > 0) is a complex coefficient of the Fourier series
with amplitude cn/2 and phase φn.

The complex form is generally the most convenient form of the Fourier
series because in the expression

f (t) =
∞∑

n=−∞
αn ejnω0t

the complex Fourier components can be found from

αn = 1

τ

∫ τ/2

−τ/2
f (t) e−jnω0t dt

and hence involve performing only a single integration.
This form of the Fourier series gives apparent negative frequencies

but for any real function of time the coefficients of negative frequencies
have equal amplitude to the equivalent positive frequencies and negative
phase. Thus, only the positive frequency coefficients need be given to
totally specify the function.
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From the complex form, we can easily find the amplitude and phase
spectra. If we write the coefficients in exponential form, |αn|ejθ , we find
cn = 2|αn| and φn = θn = arg(αn), n � 0.

We can also easily find the sine and cosine form of the Fourier series
by using

an = 2|αn| cos(φn) = 2 Re(αn)

bn = −2|αn| sin(φn) = −2 Im(αn).

Example 16.3 Find the complex Fourier series for a function defined
in the interval 0 < t < 1 by

f (t) =
{
t 0 < t < 1/2
0 1/2 < t < 1

Solution

Step 1

We have already plotted the graph as shown in Figure 16.4.

Step 2

The fundamental period of this is τ = 1 so that ω0 = 2π .

Step 3

Calculate αn. We find

αn = 1

τ

∫ τ/2

−τ/2
f (t) e−jnω0tdt =

∫ 1/2

0
t e−j2πntdt

To find this integral, we perform integration by parts using
∫
u dv =

uv − ∫ v du. In this case we choose u = t , dv = e−j2πntdt , du = dt and

ν = e−j2πnt

−j2πn
= j

e−j2πnt

2πn

giving

αn =
∫ 1/2

0
t e−j2πnt =

[
j
t e−j2πnt

2πn

]1/2

0
−
∫ 1/2

0

j e−j2πnt

(2πn)
dt

= j
e−jπn

4πn
−
[

j
e−j2πnt

(2πn)(−j2πn)

]1/2

0
= j e−jπn

4πn
+ e−jπn − 1

4π2n2

Since e−jπn = (−1)n, this means

αn = (−1)n − 1

4π2n2
+ j
(−1)n

4πn
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Step 4

The complex Fourier series for f (t) is

f (t) =
n=∞∑
n=−∞

αn ejnω0t

in this case giving

f (t) =
∞∑

n=−∞

(
(−1)n − 1

4π2n2
+ j
(−1)n

4πn

)
e−jnω0t

To find the trigonometric form from this we can use

an = 2 Re(αn) = (−1)n − 1

2π2n2

bn = −2 Im(αn) = −(−1)n

2πn

which agrees with our previous result found in Example 16.2.

16.7 Summary 1. If f (t) is periodic, with period τ , then ω0 = 2π/τ and the Fourier
series for f is given by:

f (t) = 1

2
a0 +

∞∑
n=1

an cos(nω0t)+ bn sin(nω0t)

where the coefficients are given by

a0 = 2

τ

∫ τ/2

−τ/2
f (t)dt

an = 2

τ

∫ τ/2

−τ/2
f (t) cos(nω0t)dt

bn = 2

τ

∫ τ/2

−τ/2
f (t) sin(nω0t)dt

This is the sine and cosine form (trigonometric form) of the Fourier
series.

2. An even function, such that f (−t) = f (t), has bn = 0 and an can
be found by integrating over the half cycle. An odd function, such
that f (−t) = −f (t), has an = 0 and the terms bn can be found by
integrating over the half cycle. A function with half-wave symmetry,
f (t + 1

2τ) = f (t) has no even terms in the expansion. The terms an
and bn can be found by integrating over a half-cycle only.

3. The amplitude and phase form of the Fourier series is

f (t) = 1

2
a0 +

∞∑
n=1

cn cos(nω0t + φn)

cn∠φn can be found by expressing (an, −bn) (as defined above) in
polar form: an = cn cos(φn), bn = −cn sin(φn).
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4. The complex form of the Fourier series is given by

f (t) =
n=∞∑
n=−∞

αn ejnω0t

where

αn = 1

τ

∫ τ/2

−τ/2
f (t) e−jnω0tdt

The coefficients are related to an and bn by

an = 2 Re(αn), bn = −2 Im(αn), αn = 1

2
(an − bn)

and to the amplitude and phase form by

cn = 2|αn| and φn = arg(αn), n � 0.

16.8 Exercises

For the following periodic functions in Exercises 16.1–16.7,
find the Fourier series in trigonometric and complex form

f (t) = 1

2
a0 +

∞∑
n=1

an cos(nω0t)+ bn sin(nω0t)

f (t) =
∞∑

n=−∞
αn ejnω0t

and check that the results are equivalent in each case.

16.1 f (t) =
{

1 0 < t < 1

0 1 < t < 4

16.2 f (t) =
{
t2 0 < t < 1

0 1 < t < 2

16.3 f (t) = cos2(t)

16.4 f (t) =
{
t 0 < t < 1

0 1 < t < 2

16.5 f (t) =
{
t2 0 < t < 1

1− (t − 1)2 1 < t < 2

16.6 f (t) =
{

cos(2πt) 0 < t < 1

0 1 < t < 2

16.7 f (t) =
{
t − 0.5 0 < t < 1

1.5− t 1 < t < 2

16.8 Which of the periodic functions whose graphs are
shown in Figure 16.7 are even, odd, or have half-wave
symmetry. What consequences will such properties
have for the Fourier series in trigonometric form?

16.9 Find the fundamental period and give the amplitude
and phase spectra of the Fourier series representation
of the following periodic functions

(a) f (t) = sin(3t)− sin(t)

(b) g(t) = 1

2
cos(2t)+ 2− 1

2
sin(2t)

(c) f (t) =
∞∑

n=−∞
1
n2 ejnt n = 0

16.10 Find and plot the amplitude and phase spectra of your
results from Exercises 16.1, 16.3, and 16.7.

Figure 16.7 Graphs for Exercise 16.8.
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16.11 Considering the functions in Exercises 16.1, 16.2, and
16.4 show that at the position of the jump discon-
tinuities, t = td, the Fourier series converges to the
value
f (t+d )+ f (t−d )

2
where f (t+d ) = limt→t+d f (t) and

f (t−d ) = limt→t−d f (t)

You may assume that:
∞∑
n=1

(−1)n−1

2n− 1
= π

4

∞∑
n=1

1

n2
= π2

6
and

∞∑
n=1

(−1)n−1

n2
= π2

12

16.12 The steady state response to a signal ejωt is given
by H(jω)ejωt . Find the steady state response to the
function f (t) = cos2(t) from a system with transfer
function 1/(s + 2).
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17 Functions of more
than one variable

17.1
Introduction

We concentrated so far in this book on functions of time. In Chapter 5 we
looked at waves that were functions of distance, x, and time, t . For many
applications, we need to analyse functions of the three possible spatial
coordinates, x, y, and z and also of time, t . For instance, consider making
a mug of tea using a tea bag. When first brewed, the temperature will be
nearly at boiling point 100◦C. The temperature of the water will start off
being much the same everywhere but it will be cooler near the tea bag
and at the sides of the mug. As time progresses the surface of the tea and
those parts in touch with the mug, will cool quicker than the centre of the
tea. We can see that the temperature of a mug of tea is a function both of
where in the mug we measure it and also the length of time since the tea
was first made. This is a function of more than one variable.

Some of the ideas that we have learnt for analysing a function of a
single variable we revisit here for functions of more than one variable.
In this chapter we consider graphs of functions and taking their partial
derivatives, changing variables, using the chain rule and the derivative in
any given direction. To begin we need to think about visualizing these
functions and that means considering how to visualize graphs of functions
that would require three or more dimensions when armed only with a
two-dimensional sheet of paper.

17.2 Functions
of two
variables –
surfaces

When drawing a graph we need one dimension to represent the actual
function value, the dependent variable, for which we have used the ver-
tical axis. When drawing a graph of distance, x or of time t , we are able
to use the horizontal axis of the graph to represent the independent vari-
able. Supposing now we have a function of two spatial dimensions – for
instance, the height above sea level on a landscape or the temperature in
a cup of tea at the surface of the tea. We would like to be able to picture
these functions. However, we need more than one horizontal axis in order
to be able to represent the spatial dimensions x and y when a picture on
a page of this book has only one horizontal direction. We could build
three-dimensional models only this would be time consuming and make
book production even more costly. One of the ways of representing these
graphs on a page of paper is to use a perspective representation of a sur-
face. The other way of doing it is to draw a plan of the function from above
and use contours to represent the function value at each point. You are
familiar with this from maps that mark contours representing the height
of the ground at each point. Another example is meteorological forecasts
that use contours superimposed on maps of the country, to represent the
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(a)

(c)

0
0

0
0

(b)

(d)

Figure 17.1 Graphs of φ = 4πε0q/(x 2 + y 2)1/2. (a) A perspective view. (b) Contour representation. (c) A
cross-section parallel to the x-axis for a fixed value of y . (d) A cross-section parallel to the y -axis for a fixed
value of x .

air pressure. A third way to picture the functions is to take a cross section
parallel to either one of the x- or y-axes.

Graphs of functions of two variables
The function:

φ = 4πε0q

(x2 + y2)1/2

represents the electrical potential field of a point source (where z = 0)
positioned at the origin. Various graphs of this function are shown in
Figure 17.1: (a) has a perspective view; (b) has a contour representation;
and (c) and (d) show x and y cross-sections.

Graphs of the function h = 4− 2x2 + y are shown in Figure 17.2.

17.3 Partial
differentiation

From the graphs of functions that we looked at in the last section we can
see that we are able to take a cross-section either parallel to the x-axis or
parallel to the y-axis. Each cross-section can be represented by a function
of one variable only. If we take a cross-section parallel to the x-axis, then
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Figure 17.2 Graphs of h = 4− 2x 2 + y . (a) A perspective view. (b) Contour representation. (c) A
cross-section parallel to the x-axis for a fixed value of y . (d) A cross-section parallel to the y -axis for a fixed
value of x .

we have fixed y and only x is varying. In this case, we can differentiate
the function as a function of one variable.

It is this idea that is used for partial differentiation. We can find the
derivative along a line parallel to the x-axis by ‘freezing’ y and differ-
entiation with respect to x only. We can find the derivative along a line
parallel to the y-axis by ‘freezing’ x and differentiation with respect to y
only. Partial derivatives of the function u = f (x, y) are defined by:

∂u

∂x
= lim

δx→0

u(x + δx, y)− u(x, y)

δx

∂u

∂y
= lim

δy→0

u(x, y + δy)− u(x, y)

δy

∂u/∂x reads as ‘partial du by dx’ and ∂u/∂y reads as ‘partial du by dy’.

Example 17.1

u = x3 − 3x2y + y.

Find its partial derivatives ∂u/∂x and ∂u/∂y.

Solution To find ∂u/∂x, we differentiate, u with respect to x and treat
y as though it were a constant

∂u

∂x
= 3x2 − 3(2)xy = 3x2 − 6xy.

To find ∂u/∂y, we differentiate u with respect to y and treat x as though
it were a constant

∂u

∂y
= −3x2 + 1.

We can substitute particular values for x and y in order to find the slope
of the graph parallel to the x- and parallel to the y-axes.
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Example 17.2 Find the slope of the curve h = 4− 2x2+ y at the point
where x = 3, y = 2

(a) in a direction parallel to the x-axis,
(b) in a direction parallel to the y-axis.

Solution

(a) To find the slope parallel to the x-axis, we freeze y and differenti-
ating with respect to x, that is, we need the partial derivative with
respect to x

h = 4− 2x2 + y ⇒ ∂h

∂x
= −4x.

At the point (3, 2), ∂h/∂x = −12 and therefore the slope parallel
to the x-axis is −12.

(b) To find the slope parallel to the y-axis, we freeze x and differenti-
ating with respect to y, that is, we need the partial derivative with
respect to y.

h = 4− 2x2 + y ⇒ ∂u

∂y
= 1.

At the point (3, 2), ∂u/∂y = 1 and therefore the slope parallel to
the y-axis is 1.

17.4 Changing
variables – the
chain rule

Supposing we have a function, u = f (x, y), and x and y are functions
of s and t so that x = v(s, t), y = w(s, t), and u = F(s, t). We want
to find a relationship between the partial derivatives of u with respect to
s and t and those with respect to x and y. We assume in the following
discussion that we have well-behaved functions, that is, the functions and
their partial derivatives do not have discontinuities in the region of x, y.

We want to find the partial derivative of u with respect to s, that is, we
would like to find

∂u

∂s
= lim

δs→0

u(s + δs, t)− u(s, t)
δs

.

As we are considering a change of variable so that the point (x, y)
corresponds to the point (s, t) and therefore u(x, y) = u(s, t). We con-
sider a small change, δs, in the variable s so that the point (s + δs, t)
will correspond to some point (x + δx, y + δy) in the (x, y) plane,
where δx and δy are small. Again u(s + δs, t) will have the same value
as u(x + δx, y + δy). Using u(s + δs, t) = u(x + δy, y + δy) =
u(x + δx, y + δy) − u(x, x + δy) + u(x, y + δy) and u(x, y) = u(s, t)
we find:

∂u

∂s
= lim

δs→0

u(x + δx, y + δy)− u(x, y + δy)+ u(x, y + δy)− u(x, y)

δs

= lim
δs→0

u(x + δx, y + δy)− u(x, y + δy)

δs

+ lim
δs→0

u(x, y + δy)− u(x, y)

δs
.
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As long as δx, δy are not actually equal to 0 we can multiply the first term
by δx/δx and the second term by δy/δy. As δs → 0, so also δx → 0 and
δy → 0, hence we get

∂u

∂s
= lim

δx→0,δy→0

u(x + δx, y + δy)− u(x, y + δy)

δx
lim

δs→0

δx

δs

+ lim
δx→0

lim
δy→0

u(x, y + δy)− u(x, y)

δy
lim

δs→0

δy

δs
.

In the first term, we can take the limit as δy → 0 to get:

∂u

∂s
= lim

δx→0

u(x + δx, y)− u(x, y)

δx
lim

δs→0

δx

δs

+ lim
δy→0

u(x, y + δy)− u(x, y)

δy
lim

δs→0

δy

δs
.

Using our previous definitions of the partial derivative we take the limits
to find:

∂u

∂s
= ∂u

∂x

∂x

∂s
+ ∂u
∂y

∂y

∂s
.

Similarly, we can show that

∂u

∂t
= ∂u

∂x

∂x

∂t
+ ∂u
∂y

∂y

∂t
.

Example 17.3 Given h = 4−2x2+y and x = r cos(θ), y = r sin(θ),
find ∂h/∂r and ∂h/∂θ .

Solution We can find the following partial derivatives:

∂h

∂x
= −4x

∂h

∂y
= 1

∂x

∂r
= cos(θ)

∂y

∂r
= sin(θ)

∂x

∂θ
= −r sin(θ)

∂y

∂θ
= r cos(θ).

To find ∂h/∂r we use the chain rule:

∂h

∂r
= ∂h

∂x

∂x

∂r
+ ∂h
∂y

∂y

∂r

∂h

∂r
= −4x cos(θ)+ sin(θ)

and substituting for x and y gives

∂h

∂r
= −4r cos2(θ)+ sin(θ)
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Similarly, to find ∂h/∂θ we use the chain rule:

∂h

∂θ
= ∂h

∂x

∂x

∂θ
+ ∂h
∂y

∂y

∂θ

∂h

∂θ
= 4xr sin(θ)+ r cos(θ)

and substituting for x and y gives

∂h

∂θ
= 4r2 cos(θ) sin(θ)+ r cos(θ).

Check: We should get the same result by substituting for x and y in h
and then directly finding ∂h/∂r and ∂h/∂θ .

Substituting x = r cos(θ) and y = r sin(θ) into h = 4 − 2x2 + y
gives

h = 4− 2r2 cos2(θ)+ r sin(θ).

Differentiating h with respect to r and keeping θ constant gives:

∂h

∂r
= −4r cos2(θ)+ sin(θ).

Differentiating h with respect to θ and keeping r constant gives:

∂h

∂θ
= 2r22 cos(θ) sin(θ)+ r cos(θ) = 4r2 cos(θ) sin(θ)+ r cos(θ)

and we see that these are the same results as before.

17.5 The total
derivative along
a path

We have found the derivatives in the x- and y-directions for some function
u = f (x, y). We would now like to consider the derivative along any
given path, where for instance x = g(t) and y = h(t), that is, both x and
y are a function of t . Consider a small change in u, δu, in the direction of
the path, with a change in t of δt . Then we can define the total derivative
along the path as:

du

dt
= lim

δt→0

u(x + δx, y + δy)− u(x, y)

δt
.

Substituting u(x + δy, y + δy) = u(x + δx, y + δy) − u(x, x + δy) +
u(x, y+ δy) and multiplying the first term by δx/δx and the second term
by δy/δy gives:

du

dt
= lim

δx→0,δy→0

u(x + δx, y + δy)− u(x, y + δy)

δx
lim
δt→0

δx

δt

+ lim
δx→0,δy→0

u(x, y + δy)− u(x, y)

δy
lim
δt→0

δy

δt
.

As x and y are functions of t only,

lim
δt→0

δx

δt
= dx

dt
and lim

δt→0

δy

δt
= dy

dt
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so taking the limits in the expression above we get:

du

dt
= ∂u

∂x

dx

dt
+ ∂u
∂y

dy

dt
.

This is the second version of the chain rule, where we are not just making a
change of variables but now we are limiting the direction of the derivative
to be along a particular path, such that x = g(t) and y = h(t). This is
the total derivative function along the path and du/dt is the gradient of
the tangent along the path defined by (x(t), y(t)).

Approximations
As we now have a way of determining the gradient along any given path as

du

dt
= ∂u

∂x

dx

dt
+ ∂u
∂y

dy

dt
.

We can use this to estimate the value of the function near some known
value (x, y). In Chapter 7, we used the approximation that for small
δx, δy/δx ≈ dy/dx. Therefore, along some known path we can use
δx/δt ≈ dx/dt , δy/δt ≈ dy/dt , and δu/δt ≈ du/dt . Substitute these
into the above chain rule above to get: δu/δt ≈ (∂u/∂x)(δx/δt) +
(∂u/∂y)(δy/δt). As long as δt is not actually equal to 0, we can multiply
both sides of this equation by δt to get

δu ≈ ∂u

∂x
δx + ∂u

∂y
δy.

This expression can be used to approximate the value of a function near
a known value.

Example 17.4 The focal length of a convex lens is given by

1

f
= 1

p
+ 1

q

where p is the distance of some object and q the distance of its image,
measured in both case from the position of the lens. The maximum error
in measurement of distances is known to be 5%. If p and q are measured
as 10 and 2.5 cm, respectively, estimate the focal length of the lens and
the maximum error in your estimate.

Solution We have p = 0.1 m and q = 0.025 m. Substituting for f gives

1

f
= 1

0.1
+ 1

0.025

⇒ 1

f
= 10+ 40 = 50

⇔ f = 0.02
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We can approximate the error for f using:

δf ≈ ∂f

∂p
δp + ∂f

∂q
δq

to estimate the maximum error in this value for f . If the error in mea-
surement of p and q could be up to 5%, then the maximum errors for p
and q are given by:

δp = p × 5/100, substitute p = 0.1, giving δp = 0.005

δq = q × 5/100, substitute q = 0.025, giving δq = 0.00125

We also find the first-order partial derivatives for f from the formula for
f in terms of p and q, which we rewrite as

1

f
= q + p

pq
⇔ f = pq

p + q
∂f

∂p
= − pq

(p + q)2 +
q

p + q =
qp + q2 − pq
(p + q)2 = q2

(p + q)2
∂f

∂q
= − pq

(p + q)2 +
p

p + q =
p2 + pq − pq
(p + q)2 = p2

(p + q)2 .

Substituting p = 0.1 and q = 0.025 gives

∂f

∂p
(0.1, 0.025) = 0.04 and

∂f

∂q
(0.1, 0.025) = 0.64.

Finally, we can estimate the error for f from

δf ≈ ∂f

∂p
δp + ∂f

∂q
δq.

At p = 0.1, q = 0.025, we have δp = 0.005, δq = 0.00125, ∂f /∂p =
0.04, and ∂f /∂q = 0.64, which gives δf ≈ 0.04 × 0.005 + 0.64 ×
0.00125 = 0.001.

This means that the focal length of the lens is 0.02 m with a maximum
error of approximately 0.001 m.

The chain rule holds whatever variable name we use in place of t , the
parameter to describe the path in the x, y plane. It also holds whatever
path we choose, that is, whatever the functions used for x = g(t) and
y = h(t) (provided all the derivatives exist and are continuous in the
region of the path). Therefore, we can use mathematical shorthand to
give an expression for the total derivative, du:

du = ∂u

∂x
dx + ∂u

∂y
dy.

Example 17.5 Given u = x3−3y2x+y2 and x = 2t , y = 1−2t , find
du/dt :

(a) using the chain rule,
(b) by direct substitution.
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Solution (a) u = x3 − 3y2x + y2 and x = 2t , y = 1− 2t , so:

∂u

∂x
= 3x2 − 3y2 and

∂u

∂y
= −6yx + 2y

dx

dt
= 2 and

dy

dt
= −2

The chain rule

du

dt
= ∂u

∂x

dx

dt
+ ∂u
∂y

dy

dt

gives

du

dt
= (3x2 − 3y2)2+ (−6yx + 2y)(−2)

= 6x2 − 6y2 + 12yx − 4y.

Substituting for x and y as functions of t , we find:

du

dt
= 6(2t)2 − 6(1− 2t)2 + 12(1− 2t)2t − 4(1− 2t)

= 24t2 − 6+ 24t − 24t2 + 24t − 48t2 − 4+ 8t

= −48t2 + 56t − 10.

(b) Substitute x = 2t , y = 1− 2t into u = x3 −−3y2x + y2 giving

u = 8t3 − 3(1− 2t)22t + (1− 2t)2

⇔ u = 8t3 − 3(1− 4t + 4t2)2t + (1− 4t + 4t2)

⇔ u = 8t3 − 6t + 24t2 − 24t3 + 1− 4t + 4t2

⇔ u = −16t3 + 28t2 − 10t + 1

Therefore, du/dt = −48t2 + 56t − 10.

17.6
Higher-order
partial
derivatives

We can carry on differentiating partial derivatives to find higher-order
partial derivatives such as ∂2u/∂x2, ∂2u/∂y2, ∂2u/∂x∂y, and ∂2u/∂y∂x,
where

∂2u

∂x2
= ∂

∂x

∂u

∂x

∂2u

∂y2
= ∂

∂y

∂u

∂y

∂2u

∂x∂y
= ∂

∂x

∂u

∂y

∂2u

∂y∂x
= ∂

∂y

∂u

∂x
.

For functions with continuous first-order derivatives

∂2u

∂x∂y
= ∂2u

∂y∂x
.
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The partial derivatives ∂2u/∂x2, ∂2u/∂y2, ∂2u/∂x∂y, and ∂2u/∂y∂x are
called the second-order partial derivatives of u because we have differ-
entiated twice to find them. We can continue differentiating to find third-
and higher-order partial derivatives.

Example 17.6

u = x4 − 2x3y + xy2.

Find its first- and second-order partial derivatives with respect to x and y

Solution

u = x4 − 2x3y + xy2

∂u

∂x
= 4x3 − 6x2y + y2

∂u

∂y
= −2x3 + 2xy.

We differentiate ∂u/∂x with respect to x, keeping y constant, to find

∂2u

∂x2
= ∂

∂x

∂u

∂x
= 12x2 − 12xy.

We differentiate ∂u/∂y with respect to y, keeping x constant, to find

∂2u

∂y2
= ∂

∂y

∂u

∂y
= 2x.

We differentiate ∂u/∂y with respect to x, keeping y constant, to find

∂2u

∂x∂y
= ∂

∂x

∂u

∂y
= −6x2 + 2y.

We differentiate ∂u/∂x with respect to y, keeping x constant, to find

∂2u

∂y∂x
= ∂

∂y

∂u

∂x
= −6x2 + 2y.

Notice that ∂2u/∂x∂y = ∂2u/∂y∂x as expected.

17.7 Summary 1. A function u(x, y) is a function of two variables x and y; u is the
dependent variable and x and y are the independent variables. The
graph of this function can be represented on the page of a book or a
computer screen by using a perspective representation of a surface
or by using contours to represent the lines where the value of the
function is constant.

2. A function of two variables f (x, y) has two first-order partial deriva-
tives. The partial derivative with respect to x is found by considering
y to be constant and then differentiating with respect to x only. The
partial derivative with respect to y is found by considering x to be a
constant and differentiating with respect to y only.

3. The chain rule can be used to change the variables of differentiation.
Supposing we have a function, u = f (x, y), andx andy are functions
of s and t so that x = v(s, t), y = w(s, t), and u = F(s, t), then:

∂u

∂s
= ∂u

∂x

∂x

∂s
+ ∂u
∂y

∂y

∂s
and

∂u

∂t
= ∂u

∂x

∂x

∂t
+ ∂u
∂y

∂y

∂t
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4. If we know the path on which we are travelling across the surface
f (x, y), so that x and y are defined in terms of a parameter t , then it
is possible to find the total derivative of f with respect to t because
the gradient along the path will be unique at each point. It this case
we can use:

du

dt
= ∂u

∂x

dx

dt
+ ∂u
∂y

dy

dt
.

5. Partial derivatives can be used for approximating the value of a
function near a known value. For a function of two variables we
have:

δu ≈ ∂u

∂x
δx + ∂u

∂y
δy.

This can also be used to estimate the maximum error in a calculated
value.

17.8 Exercises

17.1 Find the first-order partial derivatives of the
following:
(a) f (x, y) = x ln(y2)

(b) g(x, y) = x + xy − 4x

y

(c) h(x, y) = tan−1

(
x

y

)

(d) f (x, y) = 4x

y
e−x2

.

17.2 Use the chain rule to find partial derivatives of the fol-
lowing in terms of x and y where r = √

x2 + y2 and
θ = tan−1(

y

x
).

(a) u(r , θ) = sin(θ)/r

(b) u(r , θ) = r2 + tan(θ).

17.3 Given u = (x2 + y2)/
√
y, find the value of the

following partial derivatives at the point (0,4)

(a)
∂u

∂y
(b)

∂2u

∂x∂y
(c)

∂2u

∂y∂x

(d)
∂2u

∂x2
(e)

∂2u

∂y2
.

17.4 Given z = x2 + y2 and x = r cos(θ), y = r cos(θ),
find ∂z/∂r and ∂z/∂θ by substitution and by using the
relationships between the partial derivatives. Show that
the results obtained are equal.

17.5 Given that z = 2x + 3y2 and x = 3t + 5, y = −2t ,
find ∂z/∂x, ∂z/∂y, dx/dt , dy/dt , and dz/dt .

17.6 Given u = e−8t(A cos(2x) + B sin(2x)), evaluate
∂u/∂t and ∂2u/∂x2 and hence show that u is a solution
to the partial differential equation ∂u/∂t = 2∂2u/∂x2.

17.7 Use the approximation

δu ≈ ∂u

∂x
δx + ∂u

∂y
δy

with u = √x2 + y3 near the point (6,4) to estimate the
value of

√
5.962 + 4.033.

17.8 The power delivered to the load resistance RL for the
circuit is given by

P = 25RL/(R + RL)
2

If R = 2000 and RL = 1000 with a possible error of
5% in either, find P and estimate the maximum error
in P .

17.9 The height, width, and length of an open box are sub-
ject to errors of 1, 2, and 3%, respectively. Estimate
to the nearest percentage the maximum relative error
in calculating the surface area of the box for a desired
height of 4 m, width of 3 m, and length of 2 m.
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18.1
Introduction

In the previous chapter, we looked at functions of more than one variable.
For a function of two variables (x, y) we define a function u = f (x, y)
which can be represented by a surface. For each pair of values (x, y) we
can find a single value for u, showing that u is a scalar quantity. For this
reason, a function of spatial coordinates is called a scalar field. We also
saw how to calculate a gradient of a function of two variables and that
the gradient depends on the direction of the path that we choose across
the surface. This means that the gradient must be described by both a
magnitude and a direction. From Chapter 9, we know that vectors are
used to represent quantities that have both magnitude and direction and
we shall show in this chapter that we represent the gradient of a scalar
field as a vector field.

A vector field is a vector function, which means that at each point in
space the function has both magnitude and direction and can be expressed
by a vector with x, y, and z components. In Chapter 6, we quoted
many relationships between physical quantities that involve derivatives.
There we considered only movement in a single spatial direction. Many
of these equations should properly be described by vector field equations
in space. In order to express these equations, we need to define the opera-
tions of divergence and curl of a vector field. Vector field equations are
particularly important in electromagnetic field theory.

In this chapter we give an introduction to vector fields and operations
on vector fields with applications to evaluating line and surface integrals.

18.2 The
gradient of a
scalar field

We define the gradient of a scalar field as follows

∇φ = ∂φ

∂x
i+ ∂φ

∂y
j+ ∂φ

∂z
k =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
.

∇φ is the gradient of φ, or simply ‘grad φ’, ∇ is called the ‘del’ operator.
The meaning of this definition is that we take the partial derivative of the
scalar field with respect to x, y, and z, and these are the components of
our vector field.

This definition is equivalent to

∇φ =
(

i
∂

∂x
+ j

∂

∂x
+ k

∂

∂x

)
φ

and also to

∇φ =
(
∂

∂x
,
∂

∂x
,
∂

∂x

)
φ.

If φ is defined for two spatial dimensions (x, y) only then we would have

∇φ = ∂φ

∂x
i+ ∂φ

∂y
j =

(
∂φ

∂x
,
∂φ

∂y

)
.
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Example 18.1 Given φ = x2+ xyz, find the vector field that describes
its gradient.

Solution We use

∇φ = ∂φ

∂x
i+ ∂φ

∂y
j+ ∂φ

∂z
k.

Differentiating φ partially with respect to x, y, and z, we find:

∂φ

∂x
= 2x + yz

∂φ

∂y
= xz

∂φ

∂z
= xy.

Therefore, we find that

∇φ = (2x + yz)i+ xzj+ xyk = (2x + yz, xz, xy).

Direction of maximum slope
We would like to know why this vector function is called the gradient.
We saw in the last chapter that a function of more than one variable has
many derivatives associated with it, depending on the direction that we
choose to measure it. We found that for a function of φ of two variables,
along a path defined by (x(t), y(t)), the derivative of φ is given by:

dφ

dt
= ∂φ

∂x

dx

dt
+ ∂φ
∂y

dy

dt
.

Using the definition of the scalar product, we can write the above as

dφ

dt
=
(
∂φ

∂x
,
∂φ

∂y

)
·
(

dx

dt
,

dy

dt

)
= ∇φ ·

(
dx

dt
,

dy

dt

)
where (dx/dt , dy/dt) has components representing the rate of change of
x and y and therefore gives the direction of the path in the (x, y) plane.

We also know from Chapter 9 that for two vectors a and b:

a · b = ab cos(θ)

where a · b is the scalar product of vectors a and b, θ is the angle
between them and a, b are their magnitudes. If the direction of b could be
chosen in order to maximize this scalar product we would choose θ = 0,
because | cos(θ)| � 1 with the maximum value occurring at θ = 0, where
cos(θ) = 1. So to maximize the scalar product we choose the direction of
b to be along a. So the direction of the path which maximizes the scalar
product

dφ

dt
=
(
∂φ

∂x
,
∂φ

∂y

)(
dx

dt
,

dy

dt

)
will be when the direction of (dx/dt , dy/dt) is the same as that of ∇φ.
So ∇φ gives the magnitude and direction of maximum gradient of φ and
the slope in any general direction can be found by taking the component
of ∇φ in the direction of interest.
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Example 18.2 Given φ = z − x1/2 − y3/2, find the vector field that
describes its gradient, where x, y > 0 and find the maximum slope at the
point (4, 9, 1).

Solution We use

∇φ = ∂φ

∂x
i+ ∂φ

∂y
j+ ∂φ

∂z
k.

Differentiating φ partially with respect to x, y, and z, we find:

∂φ

∂x
= −1

2
x−1/2

∂φ

∂y
= −1

2
y−1/2

∂φ

∂z
= 1.

Therefore, we find that

∇φ = − 1
2x
−1/2i− 1

2y
−1/2j+ k =

(
− 1

2x
−1/2,− 1

2y
−1/2, 1

)
Therefore, the maximum slope at the point (4, 9, 1) is given by substituting
x = 4, y = 9, and z = 1 into the above expression for grad φ giving
(−1/4,−1/6, 1). This has a magnitude of√(− 1

4

)2 + (− 1
6

)2 + 12 ≈ 1.044

in a direction given by the unit vector

1

1.044

(
−1

4
,−1

6
, 1

)
= (−0.261,−0.174, 1).

The ∇ (del) operator
We defined

∇φ =
(
∂

∂x
,
∂

∂x
,
∂

∂x

)
φ

or equivalently

∇φ =
(

i
∂

∂x
+ j

∂

∂x
+ k

∂

∂x

)
φ.

We can see that ∇(del) can be considered as an operator defined by

∇ =
(
∂

∂x
,
∂

∂x
,
∂

∂x

)

or equivalently

∇ =
(

i
∂

∂x
+ j

∂

∂x
+ k

∂

∂x

)
.

This same operator can be used when differentiating vector fields.
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18.3
Differentiating
vector fields

We now consider vector fields, which represent a vector at each point in
space. Therefore, we have the field F which has components in the x, y,
and z directions, all of which are also functions of x, y, and z, that is

F(x, y, z) = iFx + jFy + kFz = (Fx ,Fy ,Fz)

where Fx ,Fy ,Fz are all functions of x, y, and z.
There are two important fields that can be found by differentiating

vector fields. The divergence of a vector field produces a scalar field and
the curl of a vector field produces a vector field. These are defined as
follows

∇·F = div F = ∂Fx

∂x
+ ∂Fy
∂y
+ ∂Fz
∂z

∇×F = curl F =
(
∂Fz

∂y
− ∂Fy

∂z

)
i+

(
∂Fx

∂z
− ∂Fz
∂x

)
j

+
(
∂Fy

∂x
− ∂Fx
∂y

)
k.

The last expression can also be represented by using a determinant to
define the cross-product of a vector. We have that

∇×F =
(
∂

∂x
,
∂

∂x
,
∂

∂x

)
× (Fx,Fy,Fz) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

Fx Fy Fz

∣∣∣∣∣∣ .

There is one more operator that is used in many equations of electromag-
netic fields. This is the ‘del squared’ operator ∇2 which operates on a
scalar field. This is defined by

∇2 = ∇ · ∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= ∂2

∂x
+ ∂2

∂y
+ ∂

2

∂z
.

All of these operators are important in describing vector field relation-
ships. For instance

∇2φ = k2 ∂
2φ

∂t2

represents the three-dimensional wave equation.

Example 18.3 For F = (2x2y, 4y2z, 8z2) find ∇·F and ∇×F.

Solution From the definition

∇·F = ∂Fx

∂x
+ ∂Fy
∂y
+ ∂Fz
∂z
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we see that we find the scalar field by partially differentiating the first
component by x, the second by y, and the third by z, and summing the
result. Hence

∇·F = 4xy + 8yz+ 16z.

To find ∇×F we use the definition in terms of the determinant and expand
about the first row, which in this case gives:

∇ × F =
∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z

2x2y 4y2z 8z2

∣∣∣∣∣∣
=
(
∂

∂y
(8z2)− ∂

∂z
(4y2z)

)
i−

(
∂

∂x
(8z2) + ∂

∂z
(2x2y)

)
j

+
(
∂

∂x
(4y2z)− ∂

∂y
(2x2y)

)
k

= 4y2i− 2x2yk = (4y2, 0, 2x2y).

Example 18.4 Show the vector identity

∇ · ∇×F = 0.

Solution Taking F = (Fx ,Fy ,Fz), we get from the definition of curl:

∇×F =
(
∂Fz

∂y
− ∂Fy

∂z

)
i +

(
∂Fx

∂z
− ∂Fz
∂x

)
j +

(
∂Fy

∂x
− ∂Fx
∂y

)
k.

Now taking the divergence of the resulting vector field we take the dot
product of

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

with the above giving(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
((

∂Fz

∂y
− ∂Fy

∂z

)
,

(
∂Fx

∂z
− ∂Fz
∂x

)
,

(
∂Fy

∂x
− ∂Fx
∂y

))

=
(
∂2Fz

∂x∂y
− ∂

2Fy

∂x∂z

)
+
(
∂2Fx

∂y∂z
− ∂2Fz

∂y∂x

)
+
(
∂2Fy

∂z∂x
− ∂

2Fx

∂z∂y

)
.

We use the fact that for functions with continuous partial derivatives

∂2Fz

∂y∂x
= ∂2Fz

∂x∂y

that is, the order of differentiation used to calculate higher-order partial
derivatives is not important. Then all the terms in the above cancel out
giving

∇ · ∇×F = 0.
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18.4 The scalar
line integral

The result of integrating a scalar field along a given curve is important for
calculating many physical quantities. We know that in one dimension we
relate the work done by a force in moving from one location to another
as W = ∫

F dx, where F is the force, W is the work done or energy
used and x is the distance moved in the direction of the force. In three
dimensions, an object can move along a path and the position of the object
will vary such that r = (x(t), y(t), z(t)) where t is some parameter used
to describe the path taken. The work done in any given direction will be
given by the component of the force in that direction multiplied by the
distance moved. Hence we find:

W =
∫
C

F · dr

where C is the path along which the object moves and r describes its
position vector. To calculate this value we need to be able to integrate
fields along a path, where the path is described in terms of a position
vector, r = (x(t), y(t), z(t)).

We use

dr
dt
=
(

dx

dt
,

dy

dt
,

dz

dt

)

and the symbolic relationship

dr = dr
dt

dt

to give

dr =
(

dx

dt
,

dy

dt
,

dz

dt

)
dt

and∫
C

F · dr =
∫ t2

t1

(Fx ,Fy ,Fz) ·
(

dx

dt
,

dy

dt
,

dz

dt

)
dt

=
∫ t2

t1

Fx
dx

dt
+ Fy dy

dt
+ Fz dz

dt
dt

where t1 and t2 are the values of the parameter at the start and end points
of the curve C.

Example 18.5 Given F = 2xyzi− x2yj+ z2xk, Find the integral of F
along a path defined by 2t i− tj+ k from t = 1 to t = 4.

Solution We have r = 2t i − 3tj + k, and therefore, x = 2t , y = −3t ,
and z = 1 giving

dr =
(

dx

dt
,

dy

dt
,

dz

dt

)
dt = (2,−3, 0)dt and F = (2xyz,−x2y, z2x)

Therefore, we want to find

∫ 4

1
(2xyz,−x2y, z2x) · (2,−3, 0) dt =

∫ 4

1
(4xyz+ 3x2y) dt
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Substituting for x, y, z in terms of t , as above, we get∫ 4

1
−24t2 − 24t3 dt =

[
24t3

3
− 24t4

4

]4

1
= [−8t3 − 6t4]41

= −(4× 64)− (6× 256)− (−8− 6)

= −1792+ 14 = −1778.

Example 18.6 Find∫
C

F · dr

where F = (2xy, 3z, 12xyz), and C is a path clockwise around a triangle
ABC with vertices A(1,0,−1), B (1,1,1), C (0,1,1).

Solution We need to integrate along each of the three sides of the trian-
gle. We need, in each case to find the equation of the line along the side
of the triangle. The vector equation of a line between two points a and b
was found in Chapter 9 to be r = a(1− t)+bt where t is some parameter
and for points between A and B then 0 � t � 1.

From A to B: r = (1, 0,−1)(1 − t) + (1, 1, 1)t = (1, t ,−1 + 2t). So
x = 1, y = t , and z = −1+ 2t , and

dx

dt
= 0,

dy

dt
= 1,

dz

dt
= 2

dr =
(

dx

dt
,

dy

dt
,

dz

dt

)
dt ⇒ dr = (0, 1, 2)dt

∫
A toB

F · dr =
∫ t2

t1

(Fx ,Fy ,Fz) ·
(

dx

dt
,

dy

dt
,

dz

dt

)
dt

=
∫ 1

0
(2xy, 3z, 12xyz) · (0, 1, 2) dt

=
∫ 1

0
3z+ 24xyz dt

=
∫ 1

0
3(−1+ 2t)+ 24t(−1+ 2t)dt

=
∫ 1

0
−3− 18t + 48t2 dt

= [−3t − 9t2 + 16t3]10 = 4.

Similarly, we find that from B to C: r =(1, 1, 1)(1 − t) + (0, 1, 1)t =
(1− t , 1, 1). So x = 1− t , y = 1, and z = 1, and

dx

dt
= −1,

dy

dt
= 0,

dz

dt
= 0

∫
B to C

F · dr =
∫ t2

t1

(Fx ,Fy ,Fz) ·
(

dx

dt
,

dy

dt
,

dz

dt

)
dt

=
∫ 1

0
(2xy, 3z, 12xyz) · (−1, 0, 0) dt

=
∫ 1

0
−2xy dt =

∫ 1

0
−2(1− t) dt = [(1− t)2]10 = −1
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From C to A: r = (0, 1, 1)(1− t)+ (1, 0,−1)t = (t , 1− t , 1− 2t). So
x = t , y = 1− t , and z = 1− 2t , and

dx

dt
= 1,

dy

dt
= −1,

dz

dt
= −2

∫
C to A

F · dr =
∫ t2

t1

(Fx ,Fy ,Fz) ·
(

dx

dt
,

dy

dt
,

dz

dt

)
dt

=
∫ 1

0
(2xy, 3z, 12xyz) · (1,−1,−2) dt

=
∫ 1

0
2xy − 3z− 24xyz dt

=
∫ 1

0
2t − 2t2 − 3(1− 2t)− 24t(1− t)(1− 2t) dt

=
∫ 1

0
−48t3 + 70t2 − 16t − 3t dt

=
[
−12t4 + 70t3

3
− 8t − 3t

]1

0

= −12+ 70

3
− 8− 3 = 1

3
.

Therefore, the total integral around the path is given by the sum of the
integral along the three sections – that is

4− 1+ 1
3 = 3 1

3 .

Integrals round a closed curve
If we are calculating the line integral round a closed curve in a plane
(where the field is a function of x and y only) we can use Green’s theorem
in a plane to convert the integral into a double integral over the enclosed
surface. This theorem is as follows

∮
C

Fx dx + Fy dy =
∫
s

∂Fy

∂x
− ∂Fx
∂y

dx dy.

The left-hand side of this expression represent the integral of F · dr,
as before, however now we are limited to considering a plane so that
r = (x, y) and also the path of integration must be closed. The fact that
C is a closed path is indicated by the small circle on the integral sign.

Example 18.7 Using Green’s theorem find the integral

∮
C

F · dr

where F = (3x2,−4xy), and C a path clockwise along the perimeter of
the rectangle 0 � x � 4, 0 � y � 1.
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Solution We want to find∮
C

F · dr =
∮
C

Fx dx + Fy dy

which, by Green’s theorem in the plane, is equal to∫
s

∂Fy

∂x
− ∂Fx
∂y

dx dy.

We have F = (3x2,−4xy) = (Fx ,Fy) and therefore

∂Fy

∂x
= −4y and

∂Fx

∂y
= 0.

The surface is a rectangle so the limits for the integration are easy to
establish as being for x from 0 to 4 and for y from 0 to 1. Hence, we get
the surface integral.∮
C

F · dr =
∫ 1

0

(∫ 4

0
−4y dx

)
dy.

To perform a multiple integral we simply do one integral and then inte-
grate the result. The order of performing the integrations will not matter
in this case because the limits of integration are independent of the other
variable and the integrals exists and are continuous in the relevant region.
We do the inner integration with respect to x. Here we are integrating
−4y, which does not contain a term in x, so we treat it as a constant for
the purposes of the first integration giving the integral as −4yx.∫ 1

0

[∫ 4

0
−4y dx

]
dy =

∫ 1

0
[−4yx]x=4

x=0 dy =
∫ 1

0
−16y dy.

Now, we do the integration in y to give

[−8y2]10 = −8.

18.5 Surface
integrals

Many problems in field theory involve the calculation of flux of a vector
field out of some enclosed surface. This requires us to integrate a vec-
tor field over the surface. Such problems are simplified by using the
divergence theorem, which relates the integral of a vector field over a
bounding surface to the integral of the divergence of the field over the
enclosed volume.∮
S

F · dS =
∫
V

(∇·F) dV .

S is a surface enclosing the volume V . This expresses the relationship
between the amount of source material in a volume and the flux out of
the enclosing surface. An example is the relationship between electric
charge within a volume and the flux of the resulting electric field.

Example 18.8 Given F = (x − y + z, 2x2y, 1) find the integral of F
over the closed surface consisting of the edges of the cube 0 � x � 3,
0 � y � 3 and 0 � z � 3.
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Solution We want to use the divergence theorem∮
S

F · dS =
∫
V

(∇·F) dV

so we need to find the divergence of the vector field F = (x − y + z,
2x2y, 1) giving Fx = x − y + z, Fy = 2x2y, and Fz = 1 and

∇·F = ∂Fx

∂x
+ ∂Fy
∂y
+ ∂Fz
∂z
= 1+ 2x2

The integral is

∮
S

F · dS =
∫
V

(∇·F) dV =
∫ 3

0

∫ 3

0

∫ 3

0
1+ 2x2 dx dy dz.

We can now perform each of the integrations one after the other. We begin
with, the integration over x, which gives

∫ 3

0

∫ 3

0

∫ 3

0
1+ 2x2 dx dy dz =

∫ 3

0

∫ 3

0

[
x + x

3

3

]3

0
dy dz

and evaluating the limits for x, this gives:

∫ 3

0

∫ 3

0
21 dy dz =

∫ 3

0
[21y]30 dz,

now evaluating the limits for y, we get:

∫ 3

0
63 dz = [63z]30 = 189.

Example 18.9 Use the divergence therem to evaluate the surface inte-
gral of F where R = e−(x+y+z) and S is the surface of a tetrahedron
defined by the vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1).

Solution We use∮
S

F · dS =
∫
V

(∇·F) dV

but in order to express the limits of the integration we need to consider
the geometry of the given tetrahedron. This is shown in Figure 18.1.

z

y

x

(0,0,1)

(1,0,0)

(0,0,0) (0,1,0)

Figure 18.1 Tetrahedron for
Example 18.9.

We can see from the figure that the sides of the tetrahedron lie along
the x, y- and z-axes and the fourth side is the plane ABC, given by the
equation x + y + z = 1. In this simple case, we can guess the equation
of this plane and check that it is correct by substituting the values for the
points A (1,0,0), B (0,1,0), and C (0,0,1). We need to choose the limits
of integration so that we integrate correctly over this tetrahedron. x must
start from 0 and go up to values lying on the plane ABC. This means that
x is from 0 to 1− y − z. If we integrate for x first then when considering
the integration for y, we will have eliminated the x variable and will be
left with the y, z plane. So y goes between y = 0 and the line BC, given
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by y = 1− z. Finally, in considering z we have the values of z from 0 to
1. This gives:

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0
e−(x+y+z) dx dy dz.

We perform the integration with respect to x:

=
∫ 1

0

∫ 1−z

0
[e−(x+y+z)]1−y−z0 dy dz

=
∫ 1

0

∫ 1−z

0
−e−(1−y−z+y+z) − e−(y+z) dy dz

=
∫ 1

0

∫ 1−z

0
−e−1 − e−(y+z) dy dz.

Now we integrate with respect to y:

∫ 1

0
[−e−1y + e−(y+z)]1−z0 dz =

∫ 1

0
−e−1(1− z)+ e−1 − e−z dz

Finally, integrating with respect to z we get:

[
e−1 (z− 1)2

2
+ e−1z− e−z

]1

0
= e−1 + e−1 − 1

2
e−1 − 1

= 3

2
e−1 − 1.

So the integral gives
3

2
e−1 − 1.

18.6 Summary 1. A scalar field is a function of spatial coordinates giving a single,
scalar value at every point (x, y, z).

2. The gradient of a scalar field φ, grad φ, is defined by:

∇φ = ∂φ

∂x
i+ ∂φ

∂y
j+ ∂φ

∂z
k =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
.

3. The gradient of a scalar field gives the magnitude and direction of
the maximum slope at any point r = (x, y, z) on φ.

4. ∇ is the ‘del’ operator where

∇ =
(
∂

∂x
,
∂

∂x
,
∂

∂x

)

or equivalently

∇ =
(

i
∂

∂x
+ j

∂

∂x
+ k

∂

∂x

)

5. A vector field is a vector function of spatial coordinates, for example,
F(x, y, z) = iFx + jFy + kFz = (Fx ,Fy ,Fz) where Fx ,Fy ,Fz are
all functions of x, y, and z.
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6. The divergence and curl of a vector field are defined by

∇·F = div F = ∂Fx

∂x
+ ∂Fy
∂y
+ ∂Fz
∂z

∇×F = curl F =
(
∂Fz

∂y
− ∂Fy

∂z

)
i+

(
∂Fx

∂z
− ∂Fz
∂x

)
j

+
(
∂Fy

∂x
− ∂Fx
∂y

)
k.

The expression for curl F can also be represented using a determinant,
to define the cross product of two vectors. We have that:

∇×F =
(
∂

∂x
,
∂

∂x
,
∂

∂x

)
× (Fx ,Fy ,Fz)

=
∣∣∣∣∣∣

i j k
∂/∂x ∂/∂y ∂/∂z

Fx Fy Fz

∣∣∣∣∣∣
7. A line integral of a vector field, F , along some path C can be

calculated by∫
C

F · dr =
∫ t2

t1

Fx
dx

dt
+ Fy dy

dt
+ Fz dz

dt
dt

where r = (x(t), y(t), z(t)) is the position vector of a position on
the curve C represented using a parameter t and values t1 and t2
correspond to the end points of the path of C.

8. The line integral around a closed path in two dimensions can be
converted to a surface integral by using Green’s theorem in two
dimensions:∮
C

Fx dx + Fy dy =
∫
s

∂Fy

∂x
− ∂Fx
∂y

dx dy.

This gives a double integral evaluated over the given surface in the
plane.

9. A surface integral around a closed surface in three dimensions can
be converted to a volume integral over the volume enclosed within
the surface using the divergence theorem∫
S

F · dS =
∫
V

(∇·F)dV .

This then gives a triple integral to be evaluated over the given volume.

18.7 Exercises

18.1. Given that φ = x2 − yz + 5z3, ψ = x2y2z, F =
(xy, 3xyz, x − z), and G = (3z, 4x, 2), find

(a) ∇φ at (1, 1,−2)
(b) ∇ψ at (0.5, 0.1,0)
(c) ∇·F

(d) ∇×G
(e) curl (φi+ ψj)
(f ) div(ψG)
(g) The magnitude of the maximum slope and the unit

vector in the direction of the maximum slope of ψ
at the point (1, 2, 0).
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18.2. φ and ψ are scalar field functions of (x, y, z). Show
the following vector identities:

(a) ∇(φψ) = φ∇ψ + ψ∇φ
(b) ∇ × (∇φ) = 0.

18.3. Calculate∫
C

F · dr

where

(a) F = (y2, x, zy) and C is along the line joining the
points A (2,0,0) and B (1,1,0),

(b) F = x2yi+ 2xyj+ 3xyzk and C is along the path
given by r = t i+ (1− t)j+ tk for t from 1 to 3.

18.4. Find the work done by the force F = (3x,−2y, z) in
the displacement along the curve y = x, z = 2x2 as x
goes from 1 to 2.

18.5. Use Green’s theorem in the plane to evaluate the
following line integrals clockwise around the given
closed curve

(a) F = xi + y2j, where C is the perimeter of a
rectangle ABCD where A = (0, 0), B = (0, 2),
C = (1, 2), and D = (1, 0);

(b) F = (x−y)i+(−x−y)j whereC is the perimeter
of the square given by 1 � x � 3 and 0 � y � 2;

(c) F = (cos(y), sin(x)) where C is the region
bounded by the lines x = 0, x = 1, y = −π/2,
and y = π/2.

18.6. For the following vector fields, F, use the divergence
theorem to evaluate the surface integrals over the
surface, S, indicated:

(a) F = xyi + yzj + xzk, where S is the surface of
the cube given by 0 � x � a, −a/2 � y � a/2,
and −a � z � 0;

(b) F = zi − y2j and S is the surface of 0 � x � 4,
0 � y � 1 and 0 � z � y;

(c) F = (x+ y, x− z, x2+ z2) where S is the surface
of a tetrahedron defined by the vertices (0,0,0),
(1,0,0), (0,1,0), and (0,0,1).
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19.1
Introduction

A graph consists of points, called vertices, and lines connecting them,
called edges. They can be used to represent many diverse situations, for
example five cities and five roads connecting them as in Figure 19.1. The
same graph could represent some people and the edge connections could
represent those people who do business with each other.

Sometimes the relationship is ‘one-way’, for instance, in the case of a
network of one-way streets, or a graph representing a circuit where the
arrows on the edges represent the current flow. In this case, the graph is
called a directed graph, shortened to ‘digraph’.

We will look at a few definitions and applications of different types
of graph and their matrix representations (which we also looked at in
Chapter 13). We also look applications to the solving of routing problems
through networks.

19.2 Definitions Graph
A graph G consists of a finite set of vertices V (G), which cannot be
empty and a finite set of edges, E(G), which connect pairs of vertices.
The number of vertices of G is called the order of G. The number of edges
in G is represented by |E| and the number of vertices by |V |.

The graph in Figure 19.2 has |V | = 6 and |E| = 9.

Figure 19.2 A graph with six
vertices and nine edges.

Incidence, adjacency, and neighbours
Two vertices are adjacent if they are joined by an edge. In Figure 19.2, v3
is adjacent to v4 and is also said to be a neighbour of v4. The edge which
joins the vertices is said to be incident to them. That is e3 is incident to
v3 and v4.

Multiple edges and loops, simple graphs
Two or more edges joining the same pair of vertices are multiple edges.
An edge joining a vertex to itself is called a loop. In Figure 19.2

Figure 19.1 Five cities with five roads connecting them represented
by a graph.
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edges e5 and e9 are multiple edges and e8 is a loop. A graph containing
no multiple edges or loops is called a simple graph. There is an example
of a simple graph in Figure 19.3.

Figure 19.3 A simple graph.

Figure 19.4 Some
isomorphic graphs.

Figure 19.5 A weighted
graph.

Figure 19.6 (a) A digraph;
and (b) its underlying graph.

Isomorphism
Graphs are isomorphic to each other if one can be obtained from a
redrawing of the other one. Some isomorphic graphs are shown in
Figure 19.4.

Weighted graph
A weighted graph has a number assigned to each of its edges, called its
weight. The weight can be used to represent distances or capacities. A
weighted graph is shown in Figure 19.5.

Digraphs
A digraph is a directed graph, that is, instead of edges in the definition of
graphs we have arcs join pairs of vertices in a specified order. A digraph
is shown in Figure 19.6(a).

Underlying graph
The underlying graph of a digraph D is the graph obtained by replacing
each arc by an (undirected) edge as in Figure 19.6(b).

Degrees
The number of times edges are incident to a vertex, v, is called its degree,
denoted by d(v). In Figure 19.2 vertex v5 has degree 3 and vertex v3 has
degree 4.

A vertex of a digraph has an in-degree d−(v) and an out-degree, d+(v).
In Figure 19.6(a) v5 has in-degree of 1 and out-degree of 2. Vertex v1 has
in-degree 1 and out-degree 1.

The sum of the values of the degree, d(v), over all the vertices of a
graph totals to twice the number of edges:

∑
i

d(vi ) = 2|E|

where |E| is the number of edges.
Checking this result for Figure 19.2, we find that the degrees are

d(v1) = 2, d(v2) = 5, d(v3) = 4, d(v4) = 2, d(v5) = 3, and d(v6) = 2.
Summing these gives 18, which is the same as twice the number of edges.

For a digraph we get

∑
i

d−(vi ) = |A| and
∑
i

d+(vi ) = |A|

where |A| is the number of arcs.
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Subgraph
A subgraph of G is a graph, H, whose vertex set is a subset of G’s vertex
set, and similarly its edge set is a subset of the edge set of G.

V (H) ⊆ V (G)
E(H) ⊆ E(G)

If it spans all of the vertices of G, that is, V (H) = V (G) then H is called a
spanning subgraph of G. A graph G, a subgraph, and a spanning subgraph
are shown in Figure 19.7.

Complete graph
A simple graph in which every pair of two vertices is adjacent is called
a complete graph. Kn is the complete graph with n vertices. Kn has
1
2n(n− 1) edges. Some examples of complete graphs are shown in
Figure 19.8.

Bipartite graph
This is a graph whose vertex set can be partitioned into two sets in such a
way that each edge joins a vertex of the first set to a vertex of the second
set. Some examples are given in Figure 19.9.

A complete bipartite graph is a bipartite simple graph in which every
vertex in the first set is adjacent to every vertex in the second set. Km,n is
the complete bipartite graph withm vertices in the first set and n vertices

Figure 19.7 (a) A graph G. (b) A subgraph of G.
(c) A spanning subgraph of G.

Figure 19.8 Complete graphs (a) K3;
(b) K4; (c) K5.

Figure 19.9 Bipartite
graphs. (b) and (c) are the
complete bipartite graphs K2,4
and K3,1.
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in the second set. Some examples of complete bipartite graphs are given
in Figure 19.9(b) and (c).

Walks, paths, and circuits
A sequence of edges of the form

vsvi, vivj, vjvk, vkvl, vlvt

is a walk of from vs to vt. If these edges are all distinct then the walk is
called a trail and if the vertices are also distinct then the walk is called a
path. A walk or trail is closed if vs = vt. A closed walk in which all the
vertices are distinct except vs and vt is called a cycle or circuit. Examples
are given in Figure 19.10.

Connected graph
A graph G is connected if there is a path from any one of its vertices to
any other vertex. A disconnected graph is said to be made up of com-
ponents. All the graphs we have drawn so far have been connected. In
Figure 19.11(a), there is a disconnected graph with two components and
in Figure 19.11(b) a disconnected graph with three components.

Figure 19.10 (a) A graph G with a walk marked. (b) A graph G with a trail marked. (c) A graph G with a path
marked. (d) A graph G with a circuit marked.
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Figure 19.11 (a) A disconnected graph with two
components. (b) A disconnected graph with three
components.

Figure 19.12 (a) A planar graph. (b) A
non-planar graph.

Planar graphs
A planar graph is one which can be drawn in the plane without any edges
intersecting except at vertices to which they are both incident. There is
an example of a planar graph in Figure 19.12(a) and a non-planar graph
in Figure 19.12(b).

19.3 Matrix
representation
of a graph

The incidence matrix and
adjacency matrix
The incidence matrix of a graph G is a |V | × |E| matrix. The element
aij = the number of times that vertex vi is incident with the edge ej .

The adjacency matrix of G is the |V |×|V |matrix. aij = the number of
edges joining vi and vj . The incidence matrix for the graph in Figure 19.2
is given by




e1 e2 e3 e4 e5 e6 e7 e8 e9

v1 1 0 0 0 0 0 1 0 0
v2 1 1 0 0 1 1 0 0 1
v3 0 1 1 0 0 0 0 2 0
v4 0 0 1 1 0 0 0 0 0
v5 0 0 0 1 1 0 0 0 1
v6 0 0 0 0 0 1 1 0 0




and the adjacency matrix by




v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 1
v2 1 0 1 0 2 1
v3 0 1 1 1 0 0
v4 0 0 1 0 1 0
v5 0 2 0 1 0 0
v6 1 1 0 0 0 0


.

19.4 Trees A tree is a connected graph with no cycles. A forest is a graph with no
cycles but may or may not be connected (i.e. a forest is a graph whose com-
ponents are trees). Figure 19.13(a) shows a tree, while Figure 19.12(b)
shows a forest.
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Figure 19.13 (a) A tree is a connected graph with no
cycles. (b) A forest has no cycles, but may or may not
be connected.

Figure 19.14 A parsing tree for the sentence
‘Fortune favours the brave’.

If T is a tree with at least two vertices, then it has the three properties
(T1), (T2), and (T3):

(T1) There is exactly one path from any vertex vi in T to any other
vertex vj .

(T2) The graph obtained from T by removing any edge has two
components, each of which is a tree.

(T3) |E| = |V | − 1.

Trees have many applications, particularly rooted trees. Decision trees
are used to represent the possible decisions at each stage of a problem
or algorithm. Probability trees can be used to analyse conditional prob-
abilities, which we shall see in Chapter 21. Another application is to
parsing of a sentence. The tree in Figure 19.14 represents the sentence
‘Fortune favours the brave’. The vertices, other than the terminal vertices,
represent grammatical categories and the terminal vertices represent the
words of the sentence. The same sort of idea can be used to analyse
allowed constructs of statements in programming languages and the syn-
tax of arithmetic expressions. We look at this application of trees in the
next chapter on language theory.

Spanning trees
A spanning tree of a graph G is a tree T which is a spanning subgraph
of G. That is, T has the same vertex set as G. Examples of graphs with
spanning trees marked are given in Figure 19.15.

How to grow a spanning tree
Take any vertex v of G as an initial partial tree. Add edges one by one so
each new edge joins a new vertex to the partial tree. If there are n vertices
in the graph G then the spanning tree will have n vertices and n−1 edges.
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Figure 19.15 Graphs with spanning trees shaded.

Figure 19.16 A weighted complete
graph. The vertices represent
offices and the edges represent
possible communication links. The
weights on the edges represent the
cost of construction of the link.

Minimum spanning tree
Supposing we have a group of offices which need to be connected by
a network of communication lines. The offices may communicate with
each other directly or through another office. In order to decide on which
offices to build links between we firstly work out the cost of all possible
connections. This will then give us a weighted complete graph as shown
in Figure 19.16.

The minimum spanning tree is then the spanning tree that represents
the minimum cost.

Figure 19.17 The graph of
Figure 19.16 with its minimum
spanning tree marked.

The greedy algorithm for the minimum
spanning tree
1. Choose any start vertex to form the initial partial tree (vi ).
2. Add the cheapest edge, ei , to a new vertex to form a new partial tree.
3. Repeat Step 2 until all vertices have been included in the tree.
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Example 19.1 Find the minimum spanning tree for the graph repre-
senting communication links between offices as shown in Figure 19.16.

Solution We start with any vertex and choose the one marked a. Add
the edge ab which is the cheapest edge of those incident to a.

Add a new edge in order to form a partial tree and choose bc, which is
one of the cheapest remaining edges incident either with a or b. Now we
add edge ad which is the cheapest remaining edge of those incident with
a or b or c. Continuing in this manner we find the minimum spanning
tree, as shown in Figure 19.17. The total cost of the communication links
in our solution is found to be 2+ 3+ 3+ 2+ 4 = 14.

19.5 The
shortest path
problem

The weights on a graph may represent delays on a communication net-
work or travel times along roads. A practical problem that we may wish
to solve is to find the shortest path from any two vertices. The algorithm
for solving this problem is illustrated in Example 19.2.

Example 19.2 The weighted graph in Figure 19.18 represents a com-
munication network with weights indicating the delays associated with
each edge. Find the minimum delay path from s to t.

Solution

Stage 1
To find the path we begin at the start vertex s. s is the reference vertex
for stage 1. Label all the adjacent vertices with the lengths of the paths
using only one edge. Mark all the other vertices with a very high number
(bigger than the sum of all the weights in the graph) in this case we choose
100. This is shown in Figure 19.19.

At the same time start to fill in a table as in Table 19.1.

Figure 19.18 The graph
representing a
communications network for
Example 19.2.

Figure 19.19 Stage 1 of solving the shortest
path problem of Example 19.2.

Table 19.1 The lengths of paths using one
edge from s

Reference a b c d e f t
vertex

s 4 11 7 100 100 100 100
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Figure 19.20 Stage 2 of solving the shortest
path problem.

Table 19.2 The lengths of paths using up to
two edges from s

Reference a b c d e f t
vertex

s ©4 11 7 100 100 100 100
a 11 7 12 100 14 100

Stage 2
Choose the vertex with the smallest label, that has not already been a
reference vertex, so that this becomes the new reference vertex. In this
case we choose vertex a. Once a vertex has been used as a reference
vertex it gains a permanent label and for this reason we circle the label in
bold, as in Figure 19.20 and circle the label in the table as in Table 19.2.
This label represents the length of the shortest path from s to the new
reference vertex. Consider any vertex adjacent to the new reference vertex
and calculate the length of the path via a to this vertex. If this is less than
the current temporary label on the vertex then change the label on the
vertex. For instance, b is adjacent to vertex a. The length of the path to b
via a is 4 + 9 = 13. This is not less than the current label of 11, so we
keep the current label. However, looking at vertex d, which is adjacent
to a, the length of the path via a is 4+ 8 = 12, which is shorter than the
current label of d, hence we change the current label. Considering also
the vertices b and f, we end up at the end of Stage 2, with the labels as
given in Figure 19.20 and in Table 19.2.

Stage 3
Choose the vertex with the smallest label that has not already been a
reference vertex; this becomes the new reference vertex. In this case we
choose vertex c, so this gains a permanent label which we circle in bold
as in Figure 19.21; we also circle the label as in Table 19.3. This label
represents the length of the shortest path from s to c. Consider any vertex
adjacent to c which does not have a permanent label, and calculate the
length of the path via c to this vertex. If this is less than the current
temporary label on the vertex then change the label on the vertex. For
instance, d is adjacent to vertex c. The length of the path to d via c is
7 + 4 = 11. This is less than the current label of 12 so we change the
label. However, looking at vertex b, which is adjacent to c, the length
of the path via c is 7 + 5 = 12 which is longer than the current label of
11, so we keep the current label. Considering also the vertex e we end
up, at the end of Stage 3, with the labels as given in Figure 19.21 and
Table 19.3.

Stage 4
Choose e as the new reference vertex and mark its label in bold. Compare
paths via e to the labels on any adjacent vertices and re-label the vertices
if the paths via e are found to be shorter. The result of this stage is shown
in Figure 19.22 and Table 19.4.

Stage 5
Choose b as the new reference vertex (we could choose d instead but this
would make no difference to the final result) and circle its label in bold.
Compare paths via b to the labels on any adjacent vertices and relabel the
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Figure 19.21 Stage 3 of solving the shortest
path problem.

Table 19.3 The lengths of paths using up to
three edges from s

Reference a b c d e f t
vertex

s ©4 11 7 100 100 100 100

a 11 ©7 12 100 14 100
c 11 11 10 14 100

Figure 19.22 Stage 4 of solving the shortest
path problem.

Table 19.4 The lengths of paths using up to
four edges from s

Reference a b c d e f t
vertex

s ©4 11 7 100 100 100 100

a 11 ©7 12 100 14 100

c 11 11 ©10 14 100
e 11 11 14 15

Figure 19.23 Stage 5 of solving the shortest
path problem.

Table 19.5 The lengths of paths using up to
five edges from s

Reference a b c d e f t
vertex

s ©4 11 7 100 100 100 100

a 11 ©7 12 100 14 100

c 11 11 ©10 14 100

e ©11 11 14 15
b 11 14 15

vertices if the paths via b are found to be shorter. The result of this stage
is shown in Figure 19.23 and Table 19.5.

Stage 6
Choose d as the new reference vertex and mark its label in bold. The only
vertices left without permanent labels are t and f. We find that the path
via d to t gives a smaller value than the current label of 15 and hence
we change the label to 11+ 2 = 13. The result of this stage is shown in
Figure 19.24 and Table 19.6.

Stage 7
The remaining vertex with the smallest label is t. We therefore give t the
permanent label of 13. As soon as t receives a permanent label we can
stop the algorithm as this must now represent the length of the shortest
path from s to t which is the result we set out to find. To find the actual
path that has this length we move backwards from t looking for consistent
labels. To get to t we must have gone through d as adding the label on
d to the length of edge dt gives the correct value of 13. Continuing this
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Figure 19.24 Stage 6 of solving the
shortest path problem.

Table 19.6 The lengths of paths using up to
six edges from s

Reference a b c d e f t
vertex

s ©4 11 7 100 100 100 100

a 11 ©7 12 100 14 100

c 11 11 ©10 14 100

e ©11 11 14 15
b 11 14 15
d 14 13

Figure 19.25 The solution to the
shortest path problem. Vertex t now has a
permanent label, showing that the length
of the shortest path from s to t is 13. By
working backwards from t to s we find that
the actual path must be scdt.

Table 19.7 The algorithm to find the shortest path
stops as soon as t receives a permanent label

Reference vertex a b c d e f t

s ©4 11 7 100 100 100 100

a 11 ©7 12 100 14 100

c 11 11 ©10 14 100

e ©11 11 14 15

b ©11 14 15

d 14 ©13

process, we find that the shortest path is scdt and is of length 13. The final
solution is shown in Figure 19.25 and Table 19.7.

19.6 Networks
and maximum
flow

A network is a digraph with a weight function. The weight function
represents the number of links between the vertices, for example the
units of traffic (channels) in a communication network, or the maximum
capacity of a network of one way streets in a busy town. This weight
function value is called the capacity of the arc. An example of a network
is shown in Figure 19.26. s is the source and t is the sink. The capacity
of an arc, ak will be referred to as c(ak). We wish to find the maximum
possible flow from s the source to the sink t. That is we want to find a
flow function f (ak) assigning a flow to each of the arcs which gives this
maximum flow.

Flow function
A valid flow function must be such that:

1. f (ak) � c(ak).
2. The out-flow at any vertex equals the in-flow except at the source or

the sink.

An arc is saturated if f (ak) = c(ak). The total flow is then the flow out
of s (which equals the flow into t).
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Figure 19.26 A network.
The weights on the arcs
represent the capacity of the
arc. s is the source and t is
the sink.

Finding a maximum flow
1. Assign an initial flow to each edge (this will probably be 0 flow on

each arc).
2. Find a flow-augmenting path from s to t. Any arc along this flow-

augmenting path may be either in the forward direction, that is,
in the same direction as the path, or in the backward direction,
that is, in the opposite direction to the path. If the arc along the
path is in the forward direction, then it must have some ‘extra’
capacity c(ak) � f (ak) then the extra capacity is represented by
�k = c(ak) − f (ak). If the arc along the path is in the backward
direction, then f (ak) must be greater than 0 and we assign the
possible increase in flow �k = f (ak). We can then calculate the
amount that this path can augment the flow by as � = minimum
(�k), where we consider all the values of along the path.

3. We can now change the value of the flow function along the flow-
augmenting path to f (ak) + � (for arcs in the forward direction
along the path) and f (ak) −� (for arcs in the backward direction
along the path). We then repeat the second stage and look for another
flow-augmenting path. If no more flow-augmenting paths exist, then
we have found the maximum flow. This algorithm is due to Ford
and Fulkerson. It can take a long while to terminate on complicated
networks and better algorithms have been developed, for example,
the Dinic algorithm which is not given here. We can check that we
have in fact found the maximum flow in the network by finding
the minimum cut. The max-flow, min-cut theorem states that the
maximum value of a flow from s to t in a network is equal to the
minimum capacity of a cut separating s and t.

Example 19.3 Find the maximum flow from s to t in the network shown
in Figure 19.27(a). The weights on the arcs represent their capacities.

Solution We begin by identifying a flow-augmenting path s, e, t. As
initially we consider the flow function to be zero then the spare capacities
along the arcs are 12 and 14, the minimum of which is 12. We therefore
assign a flow of 12 along the path to get Figure 19.27(b).
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We spot another flow-augmenting path, s, c, d, t with a possible flow
of 10 (the minimum of 14, 19, and 10). We add 10 to the flow function
along this path to give Figure 19.27(c).

We identify the flow-augmenting path s, a, b, t with a possible
flow of 8 (the minimum of the values of the spare capacities of 14,
8 and 15). We add 8 to the flow function along this path to give
Figure 19.27(d).

Another flow-augmenting path is s, a, c, d, b, t with a possible
flow of 6 (the minimum of the values of the spare capacities of 6,
14, 9, 6, 7). We add 6 to the flow function along this path to give
Figure 19.27(e).

There are no more entirely forward paths but we can see one that
involves an arc in the backward direction, that has a non-zero flow
function. This path is s, c, a, e, t where ca is in the backward direc-
tion. We take the minimum of the spare capacity in the forward direction
along with the value of the flow in the backward direction. This gives 2
as the minimum of 4, 6, 3, and 2. We add 2 to the flows on the arcs in
the forward direction and subtract 2 from the flow on ca which is in the
backward direction. Note that this process is equivalent to redirecting the
flow. We have now reached Figure 19.27(f). We are unable to identify
any more flow-augmenting paths. We can confirm that this is in fact a
solution to the maximum flow problem by using the max-flow, min-cut
theorem. If we look at the cut marked we see that this has a capacity of
38. To find this we add the capacities of all the arcs which cross the cut
from the ‘s end’ to the ‘t end’, that is, db, with a capacity of 6, dt with a
capacity of 10 and et with a capacity of 14. This cut has a capacity of 38
in total which is the value of the flow we have found.

Figure 19.27 (a) The
network for Example 19.3.
The solution is presented in
(b) – (f ). (f ) also shows the
minimum cut which confirms
that the maximum flow of 38
has been found.
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Figure 19.27 continued.

19.7 State
transition
diagrams

A state transition diagram is used to represent a finite state machine.
These are used to model objects which have a finite number of possible
states and whose interaction with the outside world can be described by
its state changes in response to a finite number of events. A state transition
diagram is a digraph whose nodes are states and whose directed arcs are
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Table 19.8 The states of a telephone

State (off-hook, connected, dialing, tone, bell) State name

(TRUE, TRUE, FALSE, none, OFF) Connected
(TRUE, FALSE, TRUE, none, OFF) In process of dialing
(TRUE, FALSE, FALSE, dial tone, OFF) Prepared for dialing
(TRUE, FALSE, FALSE, engaged, OFF) Engaged
(TRUE, FLASE, FALSE, ringing, OFF) Waiting to connect
(TRUE, FALSE, FALSE, error, OFF) Incorrect number or timeout
(TRUE, FALSE, FALSE, dead, OFF) Connection fault
(FALSE, FALSE, FALSE, none, OFF) Idle
(FALSE, FALSE, FALSE, none, ON) Incoming call
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Wait

Wait
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Figure 19.28 State transition diagram for the telephone as in Example 19.4.

transitions labelled by event names. A state is drawn as a rounded box
containing an optional name. A transition is drawn as an arc with the
arrow from the receiving state to the target state. The label on the arrow
is the name of the event causing the transition. State transition diagrams
have a number of applications. They are used in object-oriented modelling
techniques to represent the life cycle of an object. They can be used as
a finite state recognizer for a regular language, for instance, to describe
regular expressions used as variables in computer languages.

Example 19.4 A telephone has the attributes of off-hook (TRUE,
FALSE), connected (TRUE, FALSE), dialing (TRUE, FALSE), tone (dial
tone , engaged, ringing, error, dead or none), and bell (ON, OFF). These
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can be represented as a list (off-hook, connected, dialing, tone, bell)
which can take a selection of values to indicate the current state of the
telephone, for example, TRUE, FALSE, FALSE, engaged, OFF indicates
that the phone is off-hook, it is not connected, it is not dialing it has the
engaged tone, and the bell is OFF. Use your knowledge of the operation
of a telephone to give a full list of the possible states of the phone. Draw
a state transition diagram to represent the life-cycle of the phone.

Solution The possible states are given in Table 19.8.
The possible events are: Pick up receiver, replace receiver, wait, dial

a number, someone calls your number. The events that are possible and
the transitions that they cause depend on the current state of the phone.
The state transition diagram is shown in Figure 19.28.

S
a

b

b b c

c

A B H

Figure 19.29 A DFSR for
Example 19.5.

Example 19.5 Figure 19.29 shows a deterministic finite state recognizer
(DFSR) for a language consisting of strings of the letters a, b, and c. To
test whether a certain string is accepted by the DFSR:

1. Start at the start state, labelled as S.
2. Take a letter from the left of the string. If possible, move along a

transition arc labelled with that letter.
3. Repeat step 2 moving through the DFSR until either you find that

you cannot move because there is no appropriately labelled arc or the
string is exhausted. If, when the string is exhausted you have reached
the halt state (marked as H in a square box) then the string has been
accepted. If, when the string is exhausted you have not reached the
halt state, or if at any point there are no legal moves, then the string
is not accepted.
(a) show that abbc is an acceptable string,
(b) show that abbb is not an acceptable string,
(c) show that ababab is not an acceptable string.

Solution

(a) We find a path from S to H along arcs labelled abbc. To do this, we
travel along arcs in the following order SS, SA, AB, BH. As this
path begins with S and ends with H we have shown that the DFSR
recognizes the string abbc.

(b) We look at the path labelled abbb beginning at S. The only possible
path is: SSAB. As this path does not end at H we have shown that
the DFSR does not recognize the string abbb.

(c) We look for a path labelled ababab. No such path exists as it would
begin with the arcs SS, SA and then there is no arc out of A labelled
‘b’. As there are no more legal moves we have shown that the string
is not accepted.

19.8 Summary 1. A graph consists of a set of vertices, V and a set of edges, E. A digraph
is a directed graph, with arcs instead of edges. Various definitions
for different types of graphs are given in Section 19.2.

2. Graphs can be represented by an incidence matrix or an adjacency
matrix.

3. Various optimization algorithms have been demonstrated in this
chapter, including the greedy algorithm for the minimum spanning
tree and the solution to the minimum path problem. For these two
examples, the weights on the graph represent lengths, costs, or delays.
We have also looked at one solution to the maximum flow problem.
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For this problem the weights on the arcs of a digraph represent the
maximum capacity of the arc and the problem is to maximise the
flow through the network.

4. A state transition diagram is used to represent a finite state machine.

19.9 Exercises

19.1. From the graphs in Figure 19.30 identify any that are
isomorphic.

19.2. The sequence of complete graphs K1, K2, K3, K4 . . .

can be drawn by adding a vertex to the previous mem-
ber of the sequence and drawing in all the edges
necessary to make the new graph complete. Using this
method, show that the number of edges in the complete
graph Kn can be found from the series

1+ 2+ 3+ · · · + n− 1

19.3. For what values of n is the complete graph Kn planar?
For what values ofm, n is the complete bipartite graph
Km,n planar?

19.4. (a) Find the incidence and adjacency matrices for the
graphs in Figure 19.31.

(b) Show that in each case the column sum of the
incidence matrix is 2 and explain this property.

(c) What are the column sums of A and what property
of the graph do they represent?

19.5. Find a minimum spanning tree for the weighted graph
in Figure 19.32. Is there more than one possible
minimum spanning tree for this graph?

19.6. Find the shortest path from s to t in the weighted graph
shown in Figure 19.33.

19.7. Find the maximum flow in the network shown in
Figure 19.34. The number next to each arc is its capac-
ity. Use the max-flow, min-cut theorem to check you
have found the maximum flow.

19.8. In the network in Figure 19.35, the arcs represent
communication channels which have the maximum
capacity indicated. The vertices represent switching
centres, which also have a maximum capacity as indi-
cated on the vertex. By replacing each of the vertices
by two vertices with a connecting arc with a capacity
equal to that of the original vertex, find the maximum

Figure 19.30 Graphs for Exercise 19.1.
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Figure 19.31 Graphs for Exercise 19.4.

Figure 19.32 Graph for Exercise 19.5.

Figure 19.33 Graph for Exercise 19.6.

Figure 19.34 The network for
Exercise 19.7.

flow from s to t. Use the max-flow, min-cut theorem
to check you have found the maximum flow.

19.9. A bank’s automatic telling machine (ATM) is charac-
terized by the following attributes {money available,
card, PIN number, authorization, display, money
issued}.

Figure 19.35 The network for
Exercise 19.8.

‘money available’ is (TRUE, FALSE) depending
on whether the cash available in the machine is
sufficient for the current request.
‘card’ is TRUE or FALSE.
‘PIN number’ is TRUE or FALSE indicating
whether any given pin number matches for the
current card
‘authorization’ is TRUE or FALSE.
‘display’ is ‘Insert card’, ‘Enter PIN’, ‘Enter
amount’, ‘Take card’, ‘Take Money’, ‘Sorry –
unable to complete request’.
‘money issued’ is TRUE or FALSE.

List all the possible states of the ATM and draw a state
transition diagram.

19.10. Figure 19.36 shows a deterministic finite state recog-
niser (DFSR) for a language consisting of strings of the
letters a, b, and c. Use the method of Example 19.5 to
determine whether the following strings are accepted
by the DFSR

B

A

S H

b

b

a c

c

Figure 19.36 A DFSR for Exercise 19.10.

(a) bbbc, (b) abc, (c) acb.
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20.1
Introduction

We all use natural language to communicate. In a natural language, there is
no strictly formal way of deciding exactly what is or is not an acceptable
sentence. This is because natural language is constantly evolving and
subject to cultural diversities. The meaning of a sentence in a natural
language is yet another problem. A sentence may have different meanings
in different parts of the world or because of ambiguities arising from its
structure. If I say ‘I locked my car keys in my boot’ in England I have
accidentally left my car keys in the boot (trunk) of my car. In America I
have cleverly forced them into a lockable shoe. If I say ‘Green fields like
a wet blanket’ I could be making a poetic reference to the covering of
dew or rain being helpful for keeping a field green or I could be making
disparaging comments about a cricket fielder called Green. Meanings
associated with language are called semantics whereas its structure forms
the syntax of the language.

There are reasons for requiring a simpler definition of language to use
in formal situations. For instance, there are programming languages used
for writing computer instructions. We would hope that the decision as
to whether a particular sequence of symbols forms a program could be
exactly determined. Also we would like to reduce any ambiguities as to its
meaning so that any computer faced with the same program might take
the same actions. Even in natural language it can be desirable to have
rules that can be applied to the language to produce a generally accepted
version of the language. This can be used for cross-cultural exchange
and such a formalized version of a language can also simplify translation
from one natural language to another.

A formal language consists of a set of sequences of symbols called
sentences. The membership of the language set is usually defined by
using grammar rules. Using the grammar rules to determine whether a
particular string of symbols constitutes a sentence is called parsing. One
way to do this would be to repeatedly use the grammar rules to list all
the sentences in the language and stop if our sentence appears. This is
not very practical because the number of sentences in a languages can
be very large or even infinite. A refinement of this approach would be to
use the grammar rules to find all sentences at least as long as the string
of symbols we are interested in and check whether our sentence appears.
These are called top-down approaches because we start with the rules
and derive sentences. Alternatively, we could try and start with a string
of symbols and test whether it obeys the grammar rules provided. This
is a bottom-up approach which involves applying the grammar rules in
reverse. We find that only certain sorts of grammars are easy, or possible,
to use in reverse in this manner. For these grammars, which are easier
to parse, we can define a procedure to test whether any given string is
a sentence. The procedure that is used is called a parser. Identifying
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grammars with simple parsing procedures is an important consideration
when designing a new computer language.

We look at eXtensible Markup Language (XML) as a method of
defining a markup language. There are many easily accessible tools for
checking whether an XML document is well formed and it is therefore
ideal as a way of communicating data.

20.2 Languages
and grammars

Definitions
A language is a set of sequences of symbols. A sequence of symbols is
called a string.

An element of the language set is called a sentence. Some texts refer
to the element of the language as a word or sometimes a well-formed
formula or well-formed document depending on the type of language
being discussed. For instance, logical expressions involving propositions
or predicates, which we looked at in Chapter 3, can be regarded as sen-
tences in the language of logic. In this case an expression which makes
sense is called a well-formed formula or wff (pronounced ‘woof’). An
example of a logical sentence or wff is ‘p∧q⇒p’ but ‘p⇔∧q’ is not
a sentence.

A symbol which forms part of a sentence is called a terminal symbol.
For instance, the terminal symbols in the sentence ‘The cat sat on the
mat’ are ‘The’, ‘cat’, ‘sat’, ‘on’, ‘the’ and ‘mat’. The terminal symbols
in ‘p ∧ q⇒p’ are ‘p’, ‘∧’, ‘q’ and ‘⇒’.

Other symbols are used to express the grammar rules for the language.
These symbols are called non-terminal symbols. In a natural language we
could say that a simple sentence is made up of a noun phrase followed
by a verb phrase possibly followed by a noun phrase. Then symbols
representing ‘simple sentence’, ‘noun phrase’ and ‘verb phrase’ would
be amongst our non-terminal symbols. In logic, we could say that a binary
operation consists of a proposition followed by a binary operator followed
by a proposition. Then symbols representing ‘proposition’ and ‘binary
operator’ would be amongst our non-terminal symbols.

The grammar rules for the language give rules for replacing symbols
by other symbols. For instance, in a natural language we might replace
‘noun phrase’ by ‘article’, ‘adjective’, and ‘noun’. These grammar rules
are called rewriting rules or productions.

When we write the rewriting rules or productions we will write
one symbol followed by another. This indicates the operation of
concatenation. Concatenation is the process of writing two or more
symbols as one.

We carry on using rewriting rules or productions to replace symbols
until we find a sequence of symbols that only contains terminal symbols.
Then we have found a sentence.

In order to use the rewriting rules we must have a starting point. The
starting point of the grammar is called the initial or start symbol. This is
a symbol which represents an entire sentence. For a computer program it
would represent the whole program.

We can now state that a grammar consists of four things:

1. A set of terminal symbols.
2. A set of non-terminal symbols.
3. A set of rewriting rules or productions. Every rule has a left-hand side

and right-hand side. The meaning of a rule is that you can substitute
its right-hand side for its left-hand side.

4. A designated start symbol.
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Terminal symbols are often represented by lowercase letters and
non-terminal symbols by uppercase letters.

A sentence is grammatical if it can be produced by a series of rewritings
such that

1. It starts with the start symbol.
2. It uses grammar rules to get from one rewriting to the next.
3. It does not contain any non-terminals.

A grammar rule or production is a pair of strings of terminal and
non-terminal symbols (P, Q). P is called the left-hand side of the rule
and Q the right-hand side. This means that P may be replaced by Q. This
is often represented as

P→Q

A derivation, of one string of symbols, Y, from another string of sym-
bols, X, is a sequence of application of productions which derives one
string from another. If Y can be derived from X then we can write X⇒∗Y.
The notation ‘⇒∗’ indicates zero or more steps and ‘⇒’ indicates a
single step.

A string of terminal symbols is a sentence if it can be derived from the
start symbol.

Example 20.1 A language, L, over the symbols a and b, is defined by
the following grammar rules, where S is the start symbol.

S→aSb

S→ab

Find a definition of the set L.

Solution We start with the symbol S and use either one of the grammar
rules to make a replacement. We choose the rule

S→aSb

to get

S⇒aSb

Using the rule S→aSb again to give

S⇒aSb⇒aaSbb

continuing using the same rule and we can see that we get

S⇒∗an−1S bn−1

after n−1 applications of the rule. Here, an−1 has been used as shorthand
for the repetition of ‘a’ n-1 times. There is still at least one non-terminal
symbol in the right-hand side. We would need to use the second rule

S→ab

to obtain

S⇒∗anbn

We can see that the language consists of a number of ‘a’s followed by the
same number of ‘b’s and so

L = {anbn where n > 0}.
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Example 20.2 The language of the Boolean expressions over the set
{0,1} with the binary operations of + and · with brackets, (,), can be
defined with the following grammar rules

S→ (S)B(S)

S→ (S)

S→ NBN

S→ (S)BN

S→ NB(S)

S→ N

N→ 0

N→ 1

B→+
B→ ·
(a) Show that 1 · 10 is not a sentence.
(b) Show that (1 · 1) is a sentence.

Solution (a) We will find all the sentences of four terminal symbols. To
do this, we repeatedly use the given grammar rules. For convenience, we
can summarize the grammar rules by using ‘|’ to represent ‘or’. Then we
can combine rules with the same left-hand side as follows:

S→ (S)B(S) | (S)BN | NB(S) | (S) | NBN | N
N→ 0 | 1
B→+ | ·

As none of the production rules have more symbols on the left than on
the right and as we are looking for sentences of four terminal symbols,
we only need to consider production rules with up to four symbols on the
right-hand side. For this reason we only need to consider:

S→ (S) |NBN |N
N→ 0 | 1
B→ + | ·
Substituting+ or · for B and 0 or 1 for N in S→ NBN gives the following
derivations:

S⇒∗ 0+ 0 S⇒∗ 0+ 1 S⇒∗ 1+ 0 S⇒∗ 1+ 1

S⇒∗ 0 · 0 S⇒∗ 0 · 1 S⇒∗ 1 · 0 S⇒∗ 1 · 1
Substituting for B and N in S→ N gives the following derivations:

S⇒∗ 0 S⇒∗ 1

If we start with the production S→ (S) and then apply S→ NBN to give
S⇒∗ (NBN) we can substitute for NBN as found above which gives:

S⇒∗ (0+ 0) S⇒∗ (0+ 1) S⇒∗ (1+ 0) S⇒∗ (1+ 1)

S⇒∗(0 · 0) S⇒∗(0 · 1) S⇒∗(1 · 0) S⇒∗(1 · 1)
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Similarly, we can start with S→ (S) and then substitute S→ N followed
by N→ 0 or N→ 1, to give:

S⇒∗(0) S⇒∗(1)
So the language consists of only the following sentences of length less
than or equal to 4

0+ 0 0+ 1 1+ 0 1+ 1 0 · 0 0 · 1 1 · 0 1 · 1
0 1 (0) (1)

We can see that the string 1 · 10 does not appear in this list of sentences
and so 1 · 10 is not a sentence.
(b) To show that (1.1) is a sentence we need to look at sentences of five
symbols. In our solution to (a) we already found (1.1) to be a sentence
as we derived S⇒∗(1.1) by using S→ (S) followed by S→ NBN with
N replaced by ‘1’ on both occurrences and B replaced by ‘·’ So we have
the derivation S⇒(S)⇒(NBN)⇒(1.1). We have shown that S⇒∗(1.1).
This string contains only terminal symbols and therefore (1.1) is a
sentence.

Context-free languages
Formal grammars were studied by a linguist, Noam Chomsky, in the
1950s. Chomsky proposed a classification of grammars of which the most
important classification, for our current interest, is that of context-free
languages. Grammars that allow only a single non-terminal and nothing
else on the left-hand side of the rule are called context free.

Chomsky proposed a transformation procedure to transform gram-
mars of context-free languages to Chomsky Normal Form. His work
influenced John Backus, who realized that programming languages are
mostly context free. He used context-free grammars to describe the syn-
tax of programs, and developed what is now called ‘Backus Normal
Form’ or ‘Backus Naur Form’. It has since been further revised and
extended so nowadays programming language specifications are written
in EBNF, Extended Backus-Naur Form. Before looking at EBNF we look
at derivation graphs and derivation trees.

20.3
Derivations and
derivation trees

A derivation can be represented using a digraph. We draw a vertex for the
start symbol, a vertex for each production at each step of the derivation
and a vertex for each symbol on the right-hand side of each step of the
derivation. The following example is for a context-sensitive language.

Example 20.3 A language is defined over the symbols {a,b} with the
following productions (labelled r1–r5):

r1 : S→ SBba

r2 : bBa→ aAb

r3 : bA→ AB

r4 : Bb→ bBa

r5 : S→ bB

r6 : B→ a
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Represent the derivation

S⇒SBba⇒SbBaa⇒SaAba⇒bBaAba

as a digraph.

Solution We draw a digraph with a vertex for the start symbol, for each
production used and for each symbol on the right-hand side of each step
of the derivation. The productions used in this case are

S⇒ SBba Using r1

SBba⇒ SbBaa Using r4

SbBaa⇒ SaAba Using r2

SaAba⇒ bBaAba Using r5

This is represented as a digraph in Figure 20.1.
Context-free grammars have a single symbol on the left-hand side of

each production. In this case the derivation graph is always a derivation
tree. We do not need to include a vertex for each rule, but just for the start
symbol and for each symbol on the right-hand side of each step of the
derivation.

S

S

B

BB

A b

b

bb

a

a

a

r4

r2

r5

r1

Figure 20.1 A digraph
representing the derivation of
Example 20.3.

S

S

N

1 1.

B N

)(

Figure 20.2 The derivation
tree for Example 20.4.

Example 20.4 Using the grammar of Example 20.1:

S→ (S)B(S) | (S)BN |NB(S) | (S) |NBN |N
N→ 0 | 1
B→+| ·
draw the derivation tree for

S⇒∗ (1 · 1).

Solution The derivation is as follows:

S⇒ (S)

(S)⇒ (NBN)

(NBN)⇒ (1 · 1)
The derivation tree is shown in Figure 20.2.

We are able to show that the derivation of a context-free grammar can
be represented as a derivation tree. However, we want to efficiently solve
the problem of deciding whether a particular string is a sentence in a
context-free language. At the end of Chapter 19, we looked at DFSRs
as an example of the use of state transition diagrams. These are able to
decide whether a string is a sentence in some regular language. Regular
languages are a sub-class of context-free languages where the right-hand
side of all productions are of the form of either a single terminal or
a terminal followed by a non-terminal. These languages are useful for
defining the syntax of regular expressions but are not powerful enough to
be used to define the syntax of a programming language. To build a parser
for a context-free language we use the idea of a pushdown recognizer.
This is a machine with a finite number of states, as before, but it also
has the use of a stack. A stack can be compared to a stack of plates.
You can only place plates on the top of the stack, when the operation is
called pushing, and remove them again from the top, called popping. The
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bottom of the pile is inaccessible. In this way, any number of symbols
can be pushed onto the top of the stack. When they are popped off again
the last one pushed will be the first one popped. Stacks are often referred
to as LIFOs (last in, first out).

Efficient parsers can be written if the grammar of the context-free
language is converted to Extended Backus-Naur Form.

20.4 Extended
Backus-Naur
Form (EBNF)

Any grammar in EBNF is context-free. Each rule of the grammar defines
one symbol of the form.

symbol ::= expression

In the above symbol and expression are non-terminals and represent
syntactic categories. Terminal symbols, or string literals, are given inside
quotes, for example “string” or ‘string’ is a literal string as given inside
the quotes. Brackets (. . .) can be used to group constituents.

Symbols may be combined to represent more complex patterns as in
Table 20.1.

Not all grammars can be converted to EBNF and a full description of
methods of conversion, when possible, is outside the scope of this book.
The following procedure works in simple cases.

To convert a grammar to EBNF:

1. Remove left recursion, that is

N ::= E |NF

replace by N ::= E |EF∗.
We can see that applying the rule N ::= NF twice gives N := NFF.

As this is a recursive rule we can continue applying it any number of
times, giving N ::= NFFF, N ::= NFFFF, N ::= NFFFFF, and so
on. The only way to have a right-hand side which does not include
N, that is, to remove the left recursion is to replace the N by E and
finally we get N ::= E |EF∗.

2. Left factor the grammar

N ::= EFG |EF′G

replace by N ::= E(F | F′)G.
3. If N ::= E is not recursive remove it and replace all occurrences of

N in the grammar with E.

Table 20.1 Symbol patterns and their meaning in
EBNF, where A and B are simple expressions

Symbols Represents

A? A or nothing and is referred to as ‘optional A’
A B A followed by B
A |B A or B but not both. This operator has lower

precedence than followed by thusA B | C D
is identical to (A B) | (C D)

A−B any string that matches A but does not
match B

A+ one or more repetitions of A
A* zero or more repetitions of A
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4. Reduce the grammar until there is a single production rule for each
non-terminal symbol, using optional expressions where necessary.

Example 20.5 Express the grammar of Example 20.1, that is

S→ (S)B(S) | (S)BN |NB(S) | (S) |NBN |N
N→ 0 | 1
B→ + | ·
in EBNF.

Solution First, we change the notation, using quotes for literals and the
::= instead of →
S ::= “(”S“)”B“(”S“)” | “(”S“)”BN |NB“(”S“)” | “(”S“)” |NBN |N
N ::= “0” | “1”

B ::= “+ ” | “ · ”
There is no left recursion. We left factor the grammar for the first

expression and use optional expressions to reduce it to a single production
rule. To do left factoring notice that three productions for S begin “(“S”)”
and another three begin with N so we have:

S ::= “(”S“)”(B(“(”S“)” |N))? |N(B(“(”S“)” |N))?
N ::= “0” | “1”

B ::= “+ ” | “ · ”
where the productions for N and B were already in EBNF.
We can see why this form is easy for a parser to use to develop an

algorithm for checking strings for validity by representing each of the
productions in EBNF as a directed tree so that the grammar forms a forest.
We use a different node for each of the non-terminals in the expression
and join following on non-terminal symbols with arcs. If the production
has one or more terminal symbols then label the arc with the terminal
symbols. The final symbol in an expression of the production has a halt
node attached. This is pictured in Figure 20.3.

Strings are checked for validity in the following manner. Start at the
start symbol with an ingoing arc and take a symbol from the left of the
string, which we call ‘t’. If there is an arc marked with ‘t’ then follow
that arc. If not then examine each of the possible nodes at the other end
of an unmarked arc, which we will call N, and check whether ‘t’ would
be accepted by N. To do this use the sub-tree which has a start symbol
N. Continue within that sub-tree until the halt state is reached and then
return to the main sub-tree at our previous position at the node with label
N. Continue in this manner until the string is exhausted or there are no
further legal moves. If, when the string is exhausted, there is an unmarked
arc leading to a halt state or we have already reached a halt state, then the
string is accepted.

Example 20.6 Use Figure 20.3 to show that (1 · 1) is a valid sentence
in the language.

Solution We begin at the start symbol marked S with an incoming arc.
Take the first symbol from “(1 ·1)” and this is “(”. There is an arc labelled
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Figure 20.3 Forest used for
parsing a context-free
grammar as in Example 20.6.
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“(” so we follow that to the node marked S. We enter the sub-graph for
S, back at the original incoming arc, and take the next symbol from the
string “1”. The only possibility is to follow the arc to N. We check that N
will accept “1” by going into its sub-graph. The sub-graph for N has an
arc labelled “1” leading to a halt state and therefore N accepts “1”. We
take the next symbol from the string “·” and move on from N to B. We
check that B accepts “·” which it does because the sub-graph for B has an
arc labelled “·” leading to a halt symbol. We take the next symbol from
the string “1” and move on from B to N. We check that N will accept
“1” by going into its sub-graph. We have now reached a halt state in S
so we have shown that the sub-string “1 · 1” has been accepted by S. We
are back into the main graph at the S node following the “(”. We take the
next symbol from the string “)” and this leads to a halt state. As we have
reached the end of the string we have shown that the string “(1 · 1)” is
accepted.

This parsing algorithm is called LR parsing where LR stands for ‘Left
to RightRightmost’. This is a bottom-up parsing technique which derives
the parsing tree for a string in reverse, reducing the string by replacing
right-hand sides of a production by its left-hand side until the string has
been reduced to the start symbol of the grammar. This particular example
is LR(1) because it is only ever necessary to lookahead by one symbol in
order to take the decision as to which production should be used for the
reduction.

There are programs that will take a context-free grammar as input
and output the code for the corresponding parser. Such parser genera-
tors are called compiler compilers. Some examples of these are YACC
(Yet Another Compiler Compiler) developed by Bell labs. The GNU
version is called Bison. The Java Compiler Compiler, JavaCC, origi-
nally developed by Sun Microsystems, can be downloaded free from
http://www.webgain.com/products/java_cc/ and runs on most systems.

20.5 Extensible
markup
language (XML)

Embedding mark-up in a document is not a new idea. Proof-
readers refer to marking up a document in order to indicate the
changes that are to be made. Using a precise set of symbols
makes the interpretation of the proofreaders instructions much eas-
ier. Early word processing languages made extensive use of mark-up
to define how the document was to be laid out. Markup became an
expression that entered into almost everyone’s (non-formal) vocabu-
lary with the introduction of Hypertext Markup Language (HTML)

TLFeBOOK



“chap20” — 2003/6/8 — page 488 — #10

488 Language theory

which allowed easy exchange of document information over the
Internet which could be displayed by browsers specially built to
interpret HTML.

eXtensible Markup Language (XML) is a meta-language, a tool for
defining markup languages using tags enclosed in angle brackets< · · · >
to start an element of the language and < / · · · > to close an ele-
ment. The elements may have properties, called attributes, and child
elements. The main reasons for the importance of the development
of XML is:

1. XML is a tool for defining markup languages.
2. XML languages can be used to develop standards for the interchange

of data.
3. There are many XML parsers available which will check an XML

document for well-formedness and validity.
4. The structure of XML lends itself easily to a tree representation –

showing the derivation tree of the document.

An XML document has an associated definition of the allowed
elements, element embeddings, that is, the possible parent-child relation-
ships, and attributes. This is called a document type definition (DTD).
The parser can check any XML document in two possible ways, either
simply for well-formedness or it can also validate it against its DTD. A
well-formed document must follow the general rules for any XML doc-
ument whereas a valid document must also agree with the constraints
defined in its DTD. We give an example here of a well-formed document
and not concern ourselves at present with the structure of a DTD.

We might want to represent the following information about books:
Publisher, Title, Author, ISBN, Category. As all books have a publisher
then we could say that a book is a child of the publisher. In this case, we
could represent some information in the following XML fragment.

<publisher name=“The Book Company”>
<book ISBN=“0–07–707975–2” category=“Engineering
Mathematics”>

Figure 20.4 Tree
representation of a
well-formed XML document.

<author>
<forename>Mary</forename>
<surname>Attenborough</surname>

</author>
<title>

Engineering Mathematics for All
</title>

</book>
<book ISBN=“1–873432–07–0” category=“Food Hygiene”>

<author>
<forename>John</forename>
<surname>O’Brien</surname>

</author>
<title>

Understanding Food Hygiene
</title>

</book>
</publisher>

This fragment would constitute a well-formed XML document. We have
indented it so it is clear the structure of document. We can see it as a tree
displayed with the root of the tree on the left-hand side – this is pictured
in Figure 20.4.
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20.6 Summary 1. A language is a set of sequences of symbols. A sequence of symbols
is called a string. An element of the language set is called a sentence.
A symbol which forms part of a sentence is called a terminal symbol.

2. Other symbols are used to express the grammar rules for the
language. These symbols are called non-terminal symbols.

3. A grammar consists of four things:
(a) A set of terminal symbols.
(b) A set of non-terminal symbols.
(c) A set of rewriting rules or productions. Every rule has a left-

hand side and right-hand side. The meaning of a rule is that
you can substitute its right-hand side for its left-hand side.

(d) A designated start symbol.
4. A sentence is grammatical if it can be produced by a series of

rewritings such that
(a) It starts with the start symbol.
(b) It uses grammar rules to get from one rewriting to the next.
(c) It does not contain any non-terminals.

5. A derivation, of one string of symbols, Y, from another string of
symbols, X, is a sequence of applications of productions which
derives one string from another. If Y can be derived from X then we
can write X⇒∗Y. The notation ‘⇒∗’ indicates zero or more steps
and ‘⇒’ indicates a single step.

6. Grammars that allow only a single non-terminal and nothing else
on the left-hand side of the rule are called context-free.

7. A derivation can be represented using a digraph. A derivation of a
context-free grammar can be represented as a directed tree called
the derivation tree.

8. Extended Backus-Naur Form (EBNF) is used to represent the syntax
of programming languages. Any grammar in EBNF is context-free.
This form of a grammar lends itself to the easy development of
a parser to check strings for validity.

9. To convert a grammar to EBNF then remove left recursion, left
factor the grammar, if a rule N ::= E is not recursive remove it
and replace all occurrences of N in the grammar with E. Reduce the
grammar until there is a single production rule for each non-terminal
symbol, using optional expressions where necessary.

10. eXtensible Markup Language (XML) is a tool for defining
markup languages. XML languages can be used to develop stan-
dards for the interchange of data and there are many XML
parsers available which will check an XML document for well-
formedness and validity. The structure of XML lends itself easily
to a tree representation – showing the derivation tree of the
document.

20.7 Exercises

20.1. A language, L, over the symbols a, b, and c, is defined
by the following grammar rules, where S is the start
symbol.

S→ aS

S→ aB

B→ bc

Find a definition of the set L.

20.2. The language of the Boolean expressions over the set
{0,1} with the binary operations of+ and ·with brack-
ets, (,), can be defined with the following grammar
rules

S→ (S)B(S) | (S)BN |NB(S) | (S) |NBN |N
N→ 0 | 1
B→ + | ·
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Use a top-down method to show that
(a) (1 · 0)+ 1 is a sentence
(b) 1 · 0+ 1 is not a sentence.

20.3. For the grammar

S→ a | b | c | aSa | bSb | cSc

find derivation trees for the following:
(a) aaa
(b) abbcbba.

20.4. Write the following grammar in EBNF

S→ Ab C→ c

A→ AC C→ a

A→ a

20.5. For the grammar in Exercise 20.4 use a bottom-up
parsing technique to show that
(a) accb is a sentence
(c) abc is not a sentence.

20.6. Represent the data given in the table below as a well-
formed XML document. (Note: there is no need to
define the DTD for your XML.) There are several pos-
sible ways of presenting this data in XML – presenting
one is sufficient.

Subject Student ID Marks

First Second
semester semester

Electronics 1 121 40 58
122 35 38
123 75 65

Engineering Maths 121 66 54
122 54 45
123 72 22

Communications 121 58 60
122 44 55
123 70 68
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21 Probability and
statistics

21.1
Introduction

Consider a system of computers and communication networks supporting
a bank’s cash dispensing machines. The machines provide instant money
on the street on production of a cash card and a personal identification
code with the only prerequisite being that of a positive bank balance.

The communication network must be reliable – that is, not subject too
often to break downs. The reliability of the system, or each part of the
system, will depend on each component part.

A very simple system, with only two components, can be configured
in series or in parallel. If the components are in series then the system
will fail if one component fails (Figure 21.1).

If the components are in parallel then only one component need func-
tion (Figure 21.2) and we have built in redundancy just in case one of the
components fails.

A network could be made up of tens, hundreds, or even thousands
of components. It is important to be able to estimate the reliability of
a complex system and therefore the rate of replacement of components
necessary and the overall annoyance level of our customers should the
system fail.

The reliability will depend on the reliability of each one of the com-
ponents but it is impossible to say exactly how long even one single
component will last.

We would like to be able to answer questions like:

1. What is the likely lifetime of any one element of the system?
2. How can we estimate the reliability of the whole system by

considering the interaction of its component parts?

Figure 21.1 Component A
and B must function for the
system to function.

Figure 21.2 Either
component A or component B
must function for the system
to function.
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This is just one example of the type of problem for which we need the
ideas of probability and statistics. Others are, a factory produces 1000
electronic components each day where we wish to be able to estimate how
many defective components are produced each day or a company with
eight telephone lines where we wish to say whether that is a sufficient
number, in general, for the number of calls likely to be received at any
one time.

All of these questions are those that need the ideas of probability and
statistics. Statistics is used to analyse data and produce predictions about
it . Probability is the theory upon which statistical models are built.

For the engineering situations in previous chapters we have considered
that we know all the factors that determine how a system will behave, that
is, we have modelled the system deterministically. This is not very realis-
tic. Any real situation will have some random element. Some problems,
as the one we have just introduced, contain a large random element so
that it is difficult to predict the behaviour of each part of the system. How-
ever, it is possible to say, for instance, what the average overall behaviour
would be.

21.2 Population
and sample,
representation
of data, mean,
variance and
standard
deviation

In statistics, we are generally interested in a ‘population’ that is too large
for us to measure completely. For instance, we could be interested in all
the light bulbs that are produced by a certain manufacturer. The manufac-
turer may claim that her light bulbs have a lifetime of 1500 h. Clearly this
cannot be exact but we might be satisfied to agree with the manufacturer
if most of the bulbs have a lifetime greater than 1500 h. If the factory
produces half a million light bulbs per year then we do not have the time
to test them all. In this case we test a ‘sample’. The larger the sample, the
more accurate will be the comparison with the whole population.

We have recorded the lifetimes of samples of light bulbs in Table 21.1.
We can build up a table to give information about our sample. Columns 8
and 9 are given for comparison with statistical modelling and columns 4,
6, and 7 are to help with the calculation. The following describes each
column of Table 21.1, beginning with a list of the ‘raw’ data.

Column 1: the class intervals
Find the minimum and the maximum of the data. The difference between
these gives the range of the data. Choose a number of class intervals
(usually up to about 20) so that the class range can be chosen as some
multiple of 10, 100, 1000, etc. (like the class range of 100 above). The
data range divided by the class range and then rounded up to the integer
above gives the number of classes. The class intervals are chosen so that
the lowest class minimum is less than the minimum data value. In our
example, the lowest class minimum has been chosen as 900. Add the class
range of 100 to find the class interval, for example, 900–1000. Carry on
adding the class range to find the next class interval until you pass the
maximum value.

Column 2: the class midpoint
The class midpoint is found by the maximum value in the class interval –
the minimum value in the class interval divided by 2. For the interval
1300–1400, the class midpoint is (1400− 1300)/2 = 1350.

The class midpoint is taken as a representative value for the class. That
is, for the sake of simplicity we treat the data in the class 1300–1400 as
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Table 21.1 Frequency distribution of the lifetimes of a sample of light bulbs showing method of calculating the mean and standard deviation.
N represents the number of classes, n the number in the sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Lifetime
(h)

Class
mid-point

xi

Class
frequency

fi

fi (x ) Cumulative
frequency

Fi

(xi − x̄ )2 fi (xi − x̄ )2 Relative
frequency

fi/n

Relative
cumulative
frequency

Fi/n

900–1000 950 2 1900 2 536 849 1 073 698 0.002 0.002
1000–1100 1050 0 0 2 400 309 0 0.002 0.002
1100–1200 1150 5 5750 7 283 769 1 418 845 0.005 0.007
1200–1300 1250 23 28 750 30 187 229 4 306 267 0.023 0.03
1300–1400 1350 47 63 450 77 110 689 5 202 383 0.047 0.077
1400–1500 1450 103 149 350 180 54 149 5 577 347 0.103 0.18
1500–1600 1550 160 248 000 340 17 609 2 817 440 0.16 0.34
1600–1700 1650 190 313 500 530 1069 203 110 0.19 0.53
1700–1800 1750 165 288 750 695 4529 747 285 0.165 0.695
1800–1900 1850 164 303 400 859 27 989 4 590 196 0.164 0.859
1900–2000 1950 92 179 400 951 71 449 6 573 308 0.092 0.951
2000–2100 2050 49 100 450 1000 134 909 6 610 541 0.049 1

1000 1 682 700 39 120 420 1

∑
i fi = n x̄ = 1 682 700

1000
FN = n σ 2 = 1

n

∑
i fi (xi − x̄ )2

∑
i

fi
n
= 1

FN

n
= 1

x̄ = 1
n

∑
i fi xi σ 2 = 39 120 420

1000
σ � 198
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though there were 47 values at 1350. This is an approximation that is not
too serious if the classes are not too wide.

Column 3: class frequency and the
total number in the sample
The class frequency is found by counting the number of data values that
fall within that class range. For instance, there are 47 values between
1300 and 1400. You have to decide whether to include values that fall
exactly on the class boundary in the class above or the class below. It
does not usually matter which you choose as long as you are consistent
within the whole data set.

The total number of values in the sample is given by the sum of the
frequencies for each class interval.

Column 4: fixi and the mean of the
sample, x̄
This is the product of the frequency and the class midpoint. If the class
midpoint is taken as a representative value for the class then fixi gives
the sum of all the values in that class. For instance, in the eighth class,
with class midpoint 1650, there are 190 values. If we say that each of the
values is approximately 1650 then the total of all the values in that class is
1650×190 = 313 500. Summing this column gives the approximate total
value for the whole sample = 1 682 700 h. If we only used one light bulb
at a time and changed it when it failed then the 1000 light bulbs would last
approximately 1 682 700 h. The mean of the sample is this total divided
by the number in the sample, 1000. Giving 1 682 700/1000 = 1682.7 h.
The mean is a measure of the central tendency. That is, if you wanted a
simple number to sum up the lifetime of these light bulbs you would say
that the average life was 1683 h.

Column 5: the cumulative frequency
The cumulative frequency gives the number that falls into the current
class interval or any class interval that comes before it. You could think
of it as ‘the number so far’ function. To find the cumulative frequency
for a class, take the number in the current class and add on the previous
cumulative frequency for the class below, for example, for 1900–2000
we have a frequency of 92. The cumulative frequency for 1800–1900 is
859. Add 859+ 92 to get the cumulative frequency of 951. That is, 951
light bulbs in the sample have a lifetime below 2000 h. Notice that the
cumulative frequency of the final class must equal the total number in the
sample. This is because the final class must include the maximum value
in the sample and all the others have lifetimes less than this.

Column 6: (xi − x̄ )2, the squared
deviation
This column is used in the process of calculating the standard deviation
(see column 7). (xi − x̄) represents the amount that the class midpoint
differs from the mean of the sample. If we want to measure how spread
out around the mean the data are, then this would seem like a useful
number. However, adding up (xi − x̄) for the whole sample will just give
zero, as the positive and negative values will cancel each other. Hence,
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we take the square, so that all the numbers are positive. For the sixth class
interval the class midpoint is 1450; subtracting the mean, 1682.7, gives
−232.7, which when squared is 54149.2. This value is the square of the
deviation from the mean, or just the squared deviation.

Column 7: fi (xi − x̄ )2, the variance and
the standard deviation
For each class we multiply the frequency by the squared deviation, cal-
culated in column 6. This gives an approximation to the total squared
deviation for that class. For the sixth class we multiply the squared devia-
tion of 54 149 by the frequency 103 to get 5 577 347. The sum of this
column gives the total squared deviation from the mean for the whole
sample. Dividing by the number of sample points gives an idea of the
average squared deviation. This is called the variance. It is found by sum-
ming column 7 and dividing by 1000, the number in the sample, giving a
variance of 39 120. A better measure of the spread of the data is given by
the square root of this number, called the standard deviation and usually
represented by σ . Here σ = √39 120 ≈ 198.

Column 8: the relative frequency
If instead of 1000 data values in the sample we had 2000, 10 000, or 500,
we might expect that the proportion falling into each class interval would
remain roughly the same. This proportion of the total number is called
the relative frequency and is found by dividing the frequency by the total
number in the sample. Hence, for the third class, 1100–1200, we find
5/1000 = 0.005.

Column 9: the cumulative relative
frequency
By the same argument as above we would expect the proportion with a
lifetime of less than 1900 h to be roughly the same whatever the sample
size. This cumulative relative frequency can be found by dividing the
cumulative frequency by the number in the sample. Notice that the cumu-
lative relative frequency for the final class interval is 1. That is, the whole
of the sample has a lifetime of less than 2000 h.

The data can be represented in a histogram as in Figure 21.3, which
gives a simple pictorial representation of the data. The right-hand side
has a scale equal to the left-hand scale divided by the number in the
sample. These readings, therefore, give the relative frequencies and the
cumulative relative frequency as given in Table 21.1.

We may want to sum up our findings with a few simple statistics.
To do this we use a measure of the central tendency and the dispersion
of the data, which are calculated as already described above. These are
summarized below.

Central tendency – the mean
The most commonly used measure of the central tendency is the mean, x̄

x̄ = 1

n

∑
i

fixi =
∑
i

fixi

n
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Figure 21.3 Histogram of the lifetimes of a sample of light bulbs

wherexi is a representative value for the class andfi is the class frequency.
The summation is over all classes.

If the data have not been grouped into classes then the mean is found
by summing all the individual data values and dividing by the number in
the sample:

x̄ = 1

n

∑
i

xi

where the summation is now over all sample values

Dispersion – the standard deviation
The variance is the mean square deviation given by

v = σ 2 = 1

n

∑
i

fi(xi − x̄)2 =
∑
i

fi

n
(xi − x̄)2

where x̄ is the sample mean, xi is a representative value for the class, fi
is the class frequency, and the summation is over all classes. This value
is the same as

v = σ 2 = 1

n

∑
i

fix
2
i − x̄2

which can some times be quicker to calculate.
For data not grouped into classes we have

v = σ 2 = 1

n

∑
i

(xi − x̄)2

or

v = σ 2 = 1

n

∑
i

x2
i − x̄2

where the summation is now over all sample values.
The standard deviation is given by the square root of the variance:

σ =
√

1

n

∑
i

fi(xi − x̄)2.

We have already calculated the average lifetime and the standard devia-
tion of the lifetimes of the sample of light bulbs. We repeat the calculation
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below. The mean is given by
class midpoint

↓
(2× 950+ 0× 1050+ 5× 1150+ 23× 1250+ 47× 1350+ 103× 1450
↑

class frequency

+ 160× 1550+ 190× 1650+ 165× 1750+ 164× 1850+ 92× 1950

+ 49× 2050)/1000 = 1682.7.

The variance is given by
class midpoint sample mean

↓ ↓
(2× (950− 1682.7)2 + 0× (1050− 1682.7)2 + 5× (1150− 1682.7)2
↑

class frequency

+ 23× (1250− 1682.7)2 + 47× (1350− 1682.7)2

+ 103× (1450− 1682.7)2 + 160× (1550− 1682.7)2

+ 190× (1650− 1682.7)2 + 165× (1750− 1682.7)2

+ 164× (1850− 1682.7)2 + 92× (1950− 1682.7)2

+ 49× (2050− 1682.7)2)/1000 = 39 120 420/1000 ≈ 39120.4.

Hence, the standard deviation is
√

39120.4 ≈ 198.

Can we agree with the manufacturer’s claim that the light bulbs have a
lifetime of 1500 h? The number with a lifetime of less than 1500 h is 180
(the cumulative frequency up to 1500 h). This represents only 0.18, less
than 20% of the sample. However, this is probably an unreasonable num-
ber to justify the manufacturers claim as nearly 20% of the customers will
get light bulbs that are not as good as advertised. We might accept a small
number, say 5%, failing to live up to a manufacturer’s promise. Hence,
it would be better to claim a lifetime of around 1350 h with a relative
cumulative frequency between 0.03 and 0.077. Approximately 0.053 or
just over 5% would fail to live up to the manufacturer’s amended claim.

Example 21.1 A sample of 2000-
 resistors were tested and their
resistances were found as below:
1997 1998 2004 2002 1999 2000 2001 2002 1999 1998 1997 1999 2001
2003 2005 1996 2000 2000 1998 1999 1998 2001 2003 2002 1996 2002
1995 2000 2000 1999 1997 2004 2001 1999 1999 1998 2002 2003 2002
2001 1999 1998 1997 2002 2001 2000 1999 2001 1999 1998 2000 1999
1998 2000 2002 1999 2001 2000 2001 2002 2004 1996 2000 2002 2000
1998 2000 2005 2000 1999 2000 2000 2001 1999 2001 1997 2002 2001
2004 2000 2000 1999 1998 2001 1998 2000 2002 1998 1998 1999 2002
1999 2001 2002 2006 2000 2001 2001 2002 2003

Group the data in class intervals and represent it using a table and a
histogram. Calculate the mean resistance and the standard deviation.

Solution We follow the method of building up the table as described
previously.

Column 1: class intervals. To decide on class intervals look at the range
of values presented. The minimum value is 1995 and the maximum is
2006. A reasonable number of class intervals would be around 10, and in
this case as the data are presented to the nearest whole number, the small-
est possible class range we could choose would be 1
. A 1-
 class range
would give 12 classes, which seems a reasonable choice. If we choose
the class midpoints to be the integer values then we get class intervals of
1994.5–1995.5, 1995.5–1996.5, etc. We can now produce Table 21.2.
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Table 21.2 Frequency distribution of resistances of a sample of resistors. N represents the number of classes, n the number in the sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Resistance (
) Class

mid-point
xi

Class
frequency

fi

fi (x ) Cumulative
frequency

Fi

(xi − x̄ )2 fi (xi − x̄ )2 Relative
frequency

fi/n

Relative
cumulative
frequency

Fi/n

1994.5–1995.5 1995 1 1995 1 26.52 26.52 0.01 0.01
1995.5–1996.5 1996 3 5988 4 17.22 51.66 0.03 0.04
1996.5–1997.5 1997 5 9985 9 9.92 49.6 0.05 0.09
1997.5–1998.5 1998 13 25 974 22 4.62 60.06 0.13 0.22
1998.5–1999.5 1999 17 33 983 39 1.32 22.44 0.17 0.39
1999.5–2000.5 2000 19 38 000 58 0.02 0.38 0.19 0.58
2000.5–2001.5 2001 16 32 016 74 0.72 11.52 0.16 0.74
2001.5–2002.5 2002 15 30 030 89 3.42 51.3 0.15 0.89
2002.5–2003.5 2003 4 8012 93 8.12 32.48 0.04 0.93
2003.5–2004.5 2004 4 8016 97 14.82 59.28 0.04 0.97
2004.5–2005.5 2005 2 4010 99 24.52 47.04 0.02 0.99
2005.5–2006.5 2006 1 2006 100 34.22 34.22 0.01 1

100 200 015 446.5 1

∑
i fi = n x̄ = 200 015

100
FN = n σ 2 = 1

n

∑
i fi (xi − x̄ )2

∑
i

fi
n
= 1

FN

n
= 1

x̄ = 1
n

∑
i fi xi σ 2 = 446.5

100
x̄ = 2000.15 σ = 2.11
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The other columns are filled in as follows:
Column 2. To find the frequency, count the number of data values in

each class interval. The sum of the frequencies gives the total number in
the sample; in this case 100.

Column 3. The cumulative frequency is given by adding up the fre-
quencies so far. The number of resistances up to 1995.5 is 1. As there
are three in the interval 1995.5–1996.5, add 1 + 3 = 4 to get the num-
ber up to a resistance of 1996.5. The number up to 1997.6 is given by
4+ 5 = 9, etc.

Column’s 4, 6, and 7 help us calculate the mean and standard devia-
tion. To find column 4 multiply the frequencies (column 3) by the class
midpoints (column 2) to get fixi .

The sum of this column is an estimate of the total if we added all the
values in the sample together. Therefore, dividing by the number of items
in the sample gives the mean:

Mean = (1× 1995+ 3× 1996+ 5× 1997+ 13× 1998

+ 17× 1999+ 19× 2000+ 16× 2001+ 15× 2002

+ 4× 2003+ 4× 2004+ 2× 2005+ 1× 2006)/100

= 200 015/100 = 2000.15.

To find the standard deviation we calculate the variance first. The variance
is the mean squared deviation. Find the difference between the mean and
each of the class intervals and square it. This gives column 6. Multiply by
the class frequency to get column 7. Finally, add them all up and divide
by the total number. This gives the variance:

σ 2 = 446.5

100
= 4.465

and the standard deviation

σ = √446.5 ≈ 2.11.

The relative frequency (given in column 8) is the fraction in each
class interval; that is, the frequency divided by the total number. For
example, the relative frequency in the class interval 2000.5–2001.5 is
16/100 = 0.16

The cumulative relative frequency is the cumulative frequency divided
by the total number n. The cumulative frequency up to 2000.5 is 58.
Divided by the total number gives 0.58 for the relative cumulative
frequency.

We can sum up this sample by saying that the mean resistance is
2000.15 with a standard deviation of 2.11. These simple figures can be
used to sum up how closely the claim that they are resistors of 2000

can be justified. We can also picture the frequency distribution using a
histogram as in Figure 21.4

Returning to the lifetimes of the light bulbs we might want to ask what
average lifetime and standard deviation might lead to less than 5% of the
light bulbs having a lifetime less than 1500 h?

To answer this sort of problem we need to build up a theory of statistical
models and use probability theory.

21.3 Random
systems and
probability

We are dealing with complicated systems with a number of random fac-
tors affecting its behaviour; for instance, those that we have already
seen, production of resistors, lifetimes of bulbs. We cannot determine
the exact behaviour of the system but using its frequency distribution we
can estimate the probabilities of certain events.
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Figure 21.4 Histogram of the frequency distribution of the resistances given in Table 21.2.

Relative frequency and probability
The probability of an event is related to its relative frequency. If I chose
a light bulb from the sample in Section 21.2, then the probability of its
lifetime being between 1400 and 1500 h is 0.103. This is the same as the
relative frequency for that class interval, that is, the number in the class
interval divided by the total number of light bulbs in the sample. Here,
we have assumed that we are no more likely to pick any one light bulb
than any other, that is, each outcome is equally likely. The histogram of
the relative frequencies (Figure 21.3 using the right-hand scale) gives the
probability distribution function (or simply the probability function) for
the lifetimes of the sample of light bulbs.

As an introduction to probability, examples are often quoted involving
throwing dice or dealing cards from a pack of playing cards. These are
used because the probabilities of events are easy to justify and not because
of any particular predilection on the part of mathematicians to a gambling
vocation!

Example 21.2 A die has the numbers one to six marked on its sides.
Draw a graph of the probability distribution function for the outcome
from one throw of the die, assuming it is fair.

Solution If we throw the die 10 000 times we would expect the number
of times each number appeared face up to be roughly the same. Here, we
have assumed that the die is fair; that is, any one number is as likely to
be thrown as any other. The relative frequencies would be approximately
1/6. The probability distribution function, therefore, is a flat function with
a value of 1/6 for each of the possible outcomes of 1, 2, 3, 4, 5, 6. This is
shown in Figure 21.5

Notice two important things about the probabilities in the probability
distribution for the die:

1. each probability is less than 1;
2. the sum of all the probabilities is 1:

1/6+ 1/6+ 1/6+ 1/6+ 1/6+ 1/6 = 1.

Example 21.3 A pack of cards consists of four suits, hearts, diamonds,
spades, and clubs. Each suit has 13 cards; that is, cards for the numbers
1 (the ace) to 10 and a Jack, Queen, and King. Draw a graph of the
probability distribution function for the outcome when dealing one card
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Figure 21.5 Probability
distribution for a fair die

Figure 21.6 The probability
distribution for suits from a
pack of cards.

from the pack, where only the suit is recorded. Assume the card is replaced
each time and the pack is perfectly shuffled.

Solution If a card is selected, the suit recorded hearts, spades, clubs, or
diamonds, the card is placed back in the pack and the pack is shuffled.
If this is repeated (say 10 000 times) then we might expect that each suit
will occur as often as any other, that is, 1/4 of the time. The probability
distribution function again is a flat distribution, and has the value of 1/4
for each of the possible four outcomes. The probability distribution for
suits is given in Figure 21.6.

Notice again that in Example 21.3 each probability is less than 1 and
that the sum of all the probabilities is 1:

1
4 + 1

4 + 1
4 + 1

4 = 1.

We have seen that a probability distribution can be represented using a
graph. Each item along the x-axis has an associated probability. Prob-
ability is a function defined on some set. The set is called the sample
space, S, and contains all possible outcomes of the random system. The
probability distribution function is often abbreviated to p.d.f.

Some definitions
A trial is a single observation on the random system, for example,
one throw of a die, one measurement of a resistance in the example
in Section 21.2.

The sample space is the set of all possible outcomes, for example, for
the die it is the set {1, 2, 3, 4, 5, 6}, and for the resistance problem it is
the set of all possible measured resistances. This set may be discrete or
continuous. An event is a set of outcomes. For instance, A is the event
of throwing less than 4 and B is the event of throwing a number greater
than or equal to 5.

An event is a subset of the sample space S.
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Notice that in the case of a continuous sample space an event is also
a continuous set, represented by an interval of values. For example, C is
the event that the resistance lies in the interval 2000± 1.5.

Probability
The way that probability is defined is slightly different for the case of a
discrete sample space or a continuous sample space.

Discrete sample space
The outcome of any trial is uncertain; however, in a large number of trials
the proportion showing a particular outcome approaches a certain number.
We call this the probability of that outcome. The probability distribution
function, or simply probability function, gives the value of the probability
that is associated with each outcome. The probability function obeys two
important conditions:

1. all probabilities are less than, or equal to 1, that is, 0 � p(x) � 1,
where x is any outcome in the sample space;

2. the probabilities of the individual outcomes sum to 1, that is,∑
p(x) = 1.

Continuous sample space
Considering a continuous sample space. We assign probabilities to inter-
vals. We find the probability of, for instance, the resistance being in the
interval 2000 ± 0.5. Hence, we assign probabilities to events and not to
individual outcomes. In this case, the function that gives the probabilities
is called the probability density function and we can find the probability of
some event by integrating the probability density function over the inter-
val. For instance, if we have a probability density function f (x), where
x can take values from a continuous sample space, then the probability
of x being in the interval a to b is given by, for example,

P(a < x < b) =
∫ b

a

f (x) dx.

The probability density function obeys the condition:

∫ ∞
−∞

f (x) dx = 1

that is, the total area under the graph of the probability density function
must be 1.

Equally likely events
If all outcomes are equally likely then the probability of an event E from
a discrete sample set is given by

The number of outcomes in E

The total number of outcomes in S
.
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That is, the probability of E is equal to the proportion of the whole sample
space that is in E, when each of the outcomes are equally likely.

Example 21.4 What is the probability on one throw of a die getting a
number less than 3?

Solution Give this event the name A. Then A = {1, 2} and S =
{1, 2, 3, 4, 5, 6}. The number in A is 2 and the number in S is 6. There-
fore, as each outcomes is equally likely, p(A), the probability of A is
2/6 = 1/3.

This particular result leads to another way of representing probability –
by using area.

If we use a rectangle to represent the set of all possible outcomes, S,
then an event is a subset of S, that is, one section of the rectangle and if
all outcomes are equally likely then its probability can be pictured by the
proportion of S that is in A. We will put a dotted line around the picture
representing the set A to indicate the number in A or the area of A (see
Figure 21.7).

Figure 21.7 A ⊆ S (A is a
subset of S) where all the
outcomes in S are equally
likely. The probability of A can
be pictured as the proportion
of S than is in A: the ratios of
the areas.

This way of picturing the probability of an event can help in
remembering some of the probabilities of combined events.

21.4 Addition
law of
probability

Disjoint events
Disjoint events are events with no outcomes in common. They cannot
happen simultaneously.

Example 21.5 A is the event that a card chosen from a playing pack is
under 6 (counting ace as low, i.e. = 1) and B is the event of choosing
a picture card (Jack, Queen, or King). Find the probability that a card
chosen from the pack is under 6 or is a picture card.

Solution

A = {1�, 2�, 3�, 4�, 5�, 1�, 2�, 3�, 4�, 5�, 1�, 2�, 3�, 4�, 5�,

1�, 2�, 3�, 4�, 5�}
B = {J�, Q�, K�, J�, Q�, K�, J�, Q�, K�, J�, Q�, K�}.
A and B are disjoint. As each outcome is considered to be equally likely
the probabilities are easy to find:

p(A) = Number in A

Number in S
.

There are 52 cards; therefore, 52 possible outcomes in S, so

p(A) = 20
52 = 5

13 .

Also

p(B) = Number in B

Number in S
= 12

52
= 3

13
.

We want to find the probability of A or B happening; that is, the probability
that the card is either under 6 or is a picture card:

A ∪ B = {1�, 2�, 3�, 4�, 5�, 1�, 2�, 3�, 4�, 5�,

1�, 2�, 3�, 4�, 5�, 1�, 2�, 3�, 4�, 5�, J�, Q�, K�,

J�, Q�, K�, J�, Q�, K�, J�, Q�, K�}
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Figure 21.8 The two events A and B are disjoint; that is, they have no outcomes in common. On a Venn
diagram, as in (a), they do not intersect. The probability of either A or B can be found by
P(A ∪ B) = P(A)+ P(B), as in (b).

Figure 21.9
p(A′) = 1− p(A).

We can see that:

p(A ∪ B) = Number in A ∪ B

Number in S
= 32

52
= 8

13
Number in A+ number in B

Number in S
= Number in A

Number in S
+ Number in B

Number in S

p(A ∪ B) = p(A)+ p(B)

8
13 = 5

13 + 3
13 .

We can also see this by using the idea of area to picture it, as in Figure 21.8.
We can also consider the probability of A not happening; that is, the

probability of the complement of A, which we represent by A′. As A and
A′ are disjoint.

p(A′)+ p(A) = 1

p(A′) = 1− p(A).

This is shown in Figure 21.9.

Non-disjoint events

Example 21.6 Consider one throw of a die

A = {a | a is an even number}
B = {b | b is a multiple of 3}.

TLFeBOOK



“chap21” — 2003/6/8 — page 507 — #17

Probability and statistics 507

Find the probability that the result of one throw of the die is either an
even number or a multiple of 3.

Solution

A = {a | a is an even number}
B = {b | b is a multiple of 3}

then

A = {2, 4, 6}
B = {3, 6}

A ∪ B = {2, 3, 4, 6}

and

p(A) = 3
6 = 1

2

p(B) = 2
6 = 1

3

p(A ∪ B) = 4
6 = 2

3

and

p(A ∪ B) �= p(A)+ p(B).

Looking at the problem and using the idea of areas in the set, we can see
from Figure 21.10 that the rule becomes

p(A ∪ B) = p(A)+ p(B)− p(A ∩ B)

Figure 21.10 (a) A ∪ B.
(b) p(A ∪ B) =
p(A)+ p(B)− p(A ∩ B).
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21.5 Repeated
trials,
outcomes, and
probabilities

Supposing we start to consider more complicated situations, like throw-
ing a die twice. Then the outcomes can be found by considering all the
possible outcomes of throwing the die the first time combined with all
the possible outcomes of throwing the die the second time. As there are
six possible outcomes for the first throw and six possible outcomes for
the second throw, then there are 6 × 6 = 36 outcomes of throwing the
die twice.

If we would like to find the probability that the first throw is a 5 and the
second throw is a 5 or 6 then we can do this by listing all the 36 outcomes
and finding the proportion that fall into our event.

The set S of all possible outcomes has 36 elements:

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4),

(2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2),

(4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
and each has an equally likely outcome. E = the first throw is a 5 and the
second is a 5 or 6. Hence

E = {(5, 5), (5, 6)}

p(E) = Number in A

Number in S
= 2

36
= 1

18
.

This sort of problem can be pictured more easily using a probability tree.

21.6 Repeated
trials and
probability trees

Repeatedly tossing a coin
The simplest sort of trial to consider is one with only two outcomes;
for instance, tossing a coin. Each trial has the outcome of head or tail
and each is equally likely.

We can picture repeatedly tossing the coin by drawing a probability
tree. The tree works by drawing all the outcomes and writing the proba-
bilities for the trial on the branches. Let us consider tossing a coin three
times. The probability tree for this is shown in Figure 21.11.

There are various rules and properties we can notice.

Rules of probability trees and
repeated trials
1. The probabilities of outcomes associated with each of the vertices

can be found by multiplying all the probabilities along the branches
leading to it from the top of the tree. HTH has the probability

1
2 × 1

2 × 1
2 = 1

8

2. At each level of the tree, the sum of all the probabilities on the vertices
must be 1.

3. The probabilities along branches out of a single vertex must sum to 1.
For example, after getting a head on the first trial we have a probability
of 1/2 of getting a head on the second trial and a probability of 1/2
of getting a tail. Together they sum to 1.
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Figure 21.11 A probability tree for three tosses of a coin.

The fourth property is one that is only true when the various repeated
trials are independent, that is, the result of the first trial has no effect on
the possible result of the second trial, etc.

4. For independent trials, the tree keeps repeating the same structure
with the same probabilities associated with the branches. Here, the
event of getting a head on the third toss is independent of the event
of getting a head on the first or second toss.

Using the tree we can find various probabilities, as we see in
Example 21.7.

Example 21.7 What is the probability on three tosses of the coin that
exactly two of them will be heads?

Solution Count up all the ways that we could have two heads and one
tail, looking at the foot of the probability tree in Figure 21.11. We find
three possibilities:

HHT, HTH, THH

each of these has probability of 1
8 . Therefore, the probability of exactly

two heads is 3
8 .

Picking balls from a bag without
replacement
We have 20 balls in a bag. Ten are red and ten are black. A ball is picked
out of the bag, its colour recorded and then it is not replaced into the bag.
There are two possible outcomes of each trial, red (R) or black (B). Let us
consider three trials and their associated outcomes in a probability tree,
as shown in Figure 21.12.

To find the probabilities we consider how many balls remain in each
case. If the first ball chosen is red then there are only 19 balls left of which 9
are red and 10 are black; therefore, the probability of picking a red ball on
the second trial is only 9/19 and the probability of picking black is 10/19.

TLFeBOOK



“chap21” — 2003/6/8 — page 510 — #20

510 Probability and statistics

Figure 21.12 Probability tree for three trials of picking a ball out of a bag without replacement.

The first three rules given in the last example apply.

1. The probabilities of outcomes associated with each of the vertices
can be found by multiplying all the probabilities along the branches
leading to it from the top of the tree. BRB has the probability:

10

20
× 10

19
× 9

18
= 900

6840
= 1

76
.

2. At each level of the tree the sum of all the probabilities on the vertices
must be 1; for example, at the second level we have

90

380
+ 100

380
+ 100

380
+ 90

380
= 9+ 10+ 10+ 9

38
= 38

38
= 1.

3. The probabilities along branches out of a single vertex must sum to 1;
for example, after picking red on the first trial we have a probability
of 9/19 of picking red and 10/19 of picking black. Together they sum
to 1.

The fourth property is no longer true as the various repeated trials are
not independent. The result of the first trial has an effect on the possible
result of the second trial, etc.

Using the tree we can find the probability of various events as in
Example 21.8.

Example 21.8 Of 20 balls in a bag 10 are red and 10 are black. A ball
is picked out of the bag, its colour recorded and then it is not replaced
into the bag. What is the probability that of the first three balls chosen
exactly two will be red?

Solution We can use the probability tree in Figure 21.12 to solve this
problem. We look at the foot of the tree, which gives all the possible
outcomes after three balls have been selected.

The ways of getting two red are RRB, RBR, BRR and the associated
probabilities are

900

6840
,

900

6840
,

900

6840

or

10

76
,

10

76
,

10

76
.

Summing these gives the probability of exactly two reds being chosen
out of the three as 30/76.
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21.7
Conditional
probability and
probability trees

The probabilities we have been writing along the branches of the
probability tree are called conditional probabilities.

Example 21.9 What is the probability that the first throw of a die will
be a 5 and the second throw will be a 5 or 6?

Solution A is the set of those outcomes with the first throw a 5 and B
is the set of those outcomes with the second throw a 5 or 6. We can use a
probability tree in the following way. After the first throw of the die either
A is true or not, that is, we have only two possibilities, A or A′. After
that, we are interested in whether B happens or not. Again we either get
B or B′. We get the probability tree as in Figure 21.13.

Here, p(B|A) means the probability of B given A, similarly p(B|A′)
means the probability of B given (not A). We can fill in the probabilities
using our knowledge of the fair die. The probability of A is 1/6. The
second throw of the die is unaffected by the throw first throw of the die;
therefore

p(B) = p(throwing a 5 or a 6 on one throw of the die) = 2
6 = 1

3 .

Working out the other probabilities gives the probability tree in
Figure 21.14.

The probability that the first throw of a die will be a 5 and the second
throw will be a 5 or 6 is p(B∩A), given from the tree in Figure 21.14 as

2
6 × 1

3 = 1
18 .

Notice that the probability we have calculated is the intersection of the two
events A and B, that is, we calculated the probability that both occurred.
When multiplying the probabilities on the branches of the probability tree
we are using the following:

p(A ∩ B) = p(A)p(B|A).
Furthermore, because of independence we have used the fact that
p(B|A) = p(B). That is, the probability of B does no depend on whether
A has happened or not: B is independent of A. We, therefore, have the
following important results.

Figure 21.13 A probability tree showing conditional probabilities.

Figure 21.14 The
probability for Example 21.9.
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Figure 21.15 Probability tree for Example 21.10.

Multiplication law of probability
p(A ∩ B) = p(A)p(B|A)
This law applies for any two events A and B. It is the law used in finding
the probabilities of the vertices of the probability trees.

Example 21.10 It is known that 10% of a selection of 100 elec-
trical components are faulty. What is the probability that the first
two components selected are faulty if the selection is made without
replacement?

Solution The probability we are looking for is:

p(first faulty ∩ second faulty)

= p(first faulty)p(second faulty | first faulty)

Here there are only two possibilities at each stage, faulty or not faulty.
The probability tree is as shown in Figure 21.15.

Notice that their are only 99 components left after the first trial and
whether the first was faulty or not changed the probability that the second
is faulty or otherwise. Each branch of the tree, after the first layer,
represents a conditional probability.

The answer to our problem is therefore

p(first faulty ∩ second faulty)

= p(first faulty)p(second faulty | first faulty)

= 10

100
× 9

99
= 1

110
.

Condition of independence
If two events A and B are independent then

p(B|A) = p(B).

Notice that the multiplication law changes in this case, as described below.

Multiplication law of probability for
independent events
p(A ∩ B) = p(A)p(B).

There is one other much-quoted law of probability that completes all the
basic laws from which probabilities can be worked out. That is Bayes’s
theorem and it comes from the multiplication law.
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Bayes’s theorem
As p(A ∩ B) = p(A)p(B|A) then as A ∩ B = B ∩ A we can also
write p(B ∩ A) = p(B)p(A|B) and putting the two together gives
p(A)p(B|A) = p(B)p(A|B) or

p(B|A) = p(A|B)p(B)
p(A)

.

Bayes’s theorem is important because it gives a way of swapping condi-
tional probabilities that may be useful in diagnostic situations where not
all of the conditional probabilities can be found directly.

Example 21.11 In a certain town there are only two brands of ham-
burgers available, Brand A and Brand B. It is known that people who eat
Brand A hamburger have a 30% probability of suffering stomach pain and
those who eat Brand B hamburger have a 25% probability of suffering
stomach pain. Twice as many people eat Brand B compared to Brand A
hamburgers. However, no one eats both varieties. Supposing one day you
meet someone suffering from stomach pain who has just eaten a ham-
burger, what is the probability that they have eaten Brand A and what is
the probability that they have eaten, Brand B?

Solution First we define the sample space S, and the other simple events.

S = people who have just eaten a hamburger

A = people who have eaten a Brand A hamburger

B = people who have eaten a Brand B hamburger

C = people who are suffering stomach pains

We are given that:

p(A) = 1
3

p(B) = 2
3

p(C|A) = 0.3

p(C|B) = 0.25.

Note also that S = A ∪ B.
As those who have stomach pain have either eaten Brand A or B,

then A ∩ B = ∅
p(C) = p(C ∩ S) = p(C ∩ A)+ p(C ∩ B)

= p(C|A)p(A)+ p(C|B)p(B)

= 0.3× 1

3
+ 0.25× 2

3
= 8

30
.

Then

p(A|C) = p(C|A)p(A)
p(C)

= 0.3× (1/3)

8/30
= 3

8

and

p(B|C) = p(C|B)p(B)
p(C)

= 0.25× (2/3)

8/30
= 5

8
.

Hence, if they have stomach pain the probability that they have eaten
Brand A is 3/8 and the probability that they have eaten Brand B is 5/8.
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21.8
Application of
the probability
laws to the
probability of
failure of an
electrical circuit

Components in series
We denote ‘The probability that A does not fail’ as p(A). Then the
probability that S fails is p(S′) = 1− p(S).

As they are in series (see Figure 21.16), S will function if both A and
B function: S = A ∩ B. Therefore

p(S) = p(A ∩ B)

as A and B are independent

p(S) = p(A)p(B)

p(S′) = 1− p(A)p(B).

Example 21.12 An electrical circuit has three components in series (see
Figure 21.17). One has a probability of failure within the time of operation
of the system of 1/5; the other has been found to function on 99% of
occasions and the third component has proved to be very unreliable with
a failure once for every three successful runs. What is the probability that
the system will fail on a single operation run.

Solution Using the method of reasoning above we call the components
A, B, and C. The information we have is

p(A′) = 1
5

p(B) = 0.99

p(C′):p(C) = 1 : 3.

The probability we would like to find is p(S′), the probability of failure
of the system and we know that the system is in series so S = A∩B∩C;
that is, all the components must function for the system to function. We
can find the probability that the system will function and subtract it from
1 to find the probability of failure:

p(S′) = 1− p(S).

As all the components are independent,

p(A ∩ B ∩ C) = p(A)p(B)p(C).

We can find p(A),p(B), and p(C) from the information we are given:
p(A) = 1− p(A′) = 1− 1/5 = 0.8 and p(B) is given as 0.99.

Given that p(C′) : p(C) = 1 : 3, C fails once in every 1+3 occasions,
so p(C′) = 1/4 = 0.25 and p(C) = 1− p(C′) = 0.75.

We can now find p(A)p(B)p(C) = 0.8× 0.99× 0.75 = 0.594. This
is the probability that the system will function, so the probability it will
fail is given by 1− 0.594 = 0.406.

Figure 21.16 Components in
series. S fails if either A or B fails.

Figure 21.17 Three components in series.
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Components in parallel
If a system S consists of two components A and B in parallel, as in
Figure 21.18, then S fails if both A and B fail.

Figure 21.18 Two
components in parallel. S fails
if both A and B fail.

Again denote ‘The probability that A does not fail’ as p(A). Then the
probability that S fails is

p(S′) = 1− p(S).

As they are in parallel, S will function if either A or B functions: S =
A ∪ B. Therefore

p(S) = p(A ∪ B).

A and B are independent, but not disjoint. They are not disjoint because
both A and B can function simultaneously. From the addition law of
probabilities given in Section 21.4

p(A ∪ B) = p(A)+ p(B)− p(A ∩ B).

As A and B are independent,

p(A ∩ B) = p(A)p(B).

Therefore

p(S) = p(A ∪ B) = p(A)+ p(B)− p(A)p(B)

p(S′) = 1− (p(A)+ p(B)− p(A)p(B))

= 1− p(A)− p(B)+ p(A)p(B).

As this is a long-winded expression it may be more useful to look at the
problem the other way round. S fails only if both A and B fail: S′ =
A′ ∩ B′. So

p(S′) = p(A′ ∩ B′) = p(A′)p(B′)

as A and B are independent. Finally, p(S′) = p(A′)p(B′).
This is a simpler form that we may use in preference to the previous

expression we derived. It must be equivalent to our previous result, so we
should just check that by substituting p(A′) = 1 − p(A) and p(B′) =
1− p(B). Hence

p(S′) = p(A′)p(B′)

p(S′) = (1− p(A))(1− p(B))

p(S′) = 1− p(A)− p(B)+ p(A)p(B)

which is the same as we had before.
Let us try a mixed example with some components in series and others

in parallel.

Example 21.13 An electrical circuit has three components, two in par-
allel, components A and B, and one in series, component C. They are
arranged as in Figure 21.19. Component’s A and B are identical com-
ponents with a 2/3 probability of functioning and C has a probability of
failure of 0.1%. Find the probability that the system fails.
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Figure 21.19 Two
components in parallel and
one in series (Example
21.12).

Solution We denote ‘The probability that A functions’ as p(A).
The information we have is

p(A) = 2
3

p(B) = 2
3

p(C′) = 0.001 ⇒ p(C) = 0.999.

The probability we would like to find is p(S′), the probability of failure
of the system and we know that the system will function if (either A or
B function) and C functions. So

S = (A ∪ B) ∩ C.

From the multiplication law for independent events we have:

p((A ∪ B) ∩ C) = p(A ∪ B)p(C).

From the addition law for non-disjoint events (A and B are not disjoint
because both A and B can occur), we have:

p(A ∪ B) = p(A)+ p(B)− p(A)p(B)

p(A ∪ B) = 2

3
+ 2

3
− 2

3
× 2

3
= 8

9
≈ 0.8889.

So p(S) = p(A ∪ B)p(C) = 0.8889 × 0.999 = 0.888. Hence, the
probability that the system functions is 0.888.

21.9 Statistical
modelling

Suppose, as in Example 21.2, we have tested 5000 resistors and recorded
the resistance of each one to an accuracy of 0.01
. We may wish to
quickly decide whether the manufacturers claim of producing 2000-

resistors is correct. One way of doing this is to divide our resistors into
class intervals and draw up a table and a histogram. We can then count the
percentage of resistors that are outside of acceptable limits and assume
that the population behaviour is the same as the sample behaviour. Hence,
if 98% of the resistors lie between 2000± 0.1% we may be quite happy.

A quicker way of doing this is to use a statistical model. That is, we can
guess what the histogram would look like based on our past experience.
To use such a model we probably only need to know the population mean,
µ, and the population standard deviation, σ .

In the rest of this chapter, we will look at four possible ways of
modelling data, the normal distribution, the exponential distribution,
both continuous models, and the binomial distribution and the Poisson
distribution which are discrete models.
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21.10 The
normal
distribution

The normal distribution is symmetric about its mean. It is bell-shaped
and the fatness of the bell depends on its standard deviation. Examples
are given in Figure 21.20 and 21.21.

The normal distribution is very important because of the following
points:

1. Many practical distributions approximate to the normal distribution.
Look at the histograms of lifetimes given in Figure 21.3 and of resis-
tances given in Figure 21.4 and you will see that they resemble the
normal distribution. Another common example is the distribution
of errors. If you were to get a large group of students to measure
the diameter of a washer to the nearest 0.1 mm, then a histogram of
the results would give an approximately normal distribution. This is
because the errors in the measurement are normally distributed.

2. The central limit theorem. If we take a large number of samples from
a population and calculate the sample means then the distribution of
the sample means will behave like the normal distribution for all pop-
ulations (even those populations which are not distributed normally).
This is as a result of what is called the central limit theorem. There
is a project exploring the behaviour of sample means given in the
Projects and Investigations available on the companion website for
this book.

3. Many other common distributions become like the normal distribu-
tion in special cases. For instance, the binomial distribution, which
we shall look at in Section 21.12, can be approximated by the normal
when the number of trials is very large.

Finding probabilities from
a continuous graph
Before we look at the normal distribution in more detail we need to find
out how to relate the graph of a continuous function to our previous idea
of probability. In Section 21.3, we identified the probability of a class
with its relative frequency in a frequency distribution. That was all right
when we had already divided the various sample values into classes.
The problem with the normal distribution is that is has no such divisions
along the x-axis and no individual class heights, just a nice smooth curve.

Figure 21.20 A normal
distribution with µ = 0 and
σ = 1 (called the standard
normal distribution N(0,1)).

Figure 21.21 Normal
distribution with µ = 2 and
σ = 3.
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Figure 21.22 A continuous
probability density function
and the probability that the
outcome lies in the interval a
� x � b.

Figure 21.23 The value of
the cumulative distribution
F(a) marked as an area on
the graph of the probability
density function, f(x), of a
continuous distribution.

To overcome this problem we define the probability of the outcome lying
in some interval of values, as the area under the graph of the probability
function between those two values as shown in Figure 21.22.

As we found in Chapter 7, the area under a curve is given by the integral;
therefore, for a continuous probability distribution, f (x), we define

p(x lies between a and b) =
∫ b

a

f (x) dx.

The cumulative distribution function gives us the probability of this value
or any previous value (it is like the cumulative relative frequency). A
continuous distribution thus becomes the ‘the area so far’ function and
therefore becomes the integral from the lowest possible value that can
occur in the distribution up to the current value.

The cumulative distribution up to a value a is represented by

F(a) =
∫ a

−∞
f (x) dx

and it is the total area under to graph of the probability function up to a;
this is shown in Figure 21.23.

We can also use the cumulative distribution function to represent prob-
abilities of a certain interval. The area between two values can be found
by subtracting two values of the cumulative distribution function as in
Figure 21.24.

However, there is a problem with the normal distribution function in
that is not easy to integrate! The probability density function for x, where
x is N(µ, σ 2) is given by

f (x) = 1√
2πσ

e−(x−µ)2/2σ 2
.
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Figure 21.24 The
probability p(a < x < b) can
be found by the difference
between two values of the
cumulative distribution
function F (b)− F (a).
Compare the difference in
areas with Figure 21.22.

Figure 21.25 The area in
tail of the standardized normal
curve

∫∞
u f (z) dz tabulated in

Table 21.3.

It is only integrated by using numerical methods. Hence, the values of
the integrals can only be tabulated. The values that we have tabulated are
the areas in the tail of the standardized normal distribution; that is∫ ∞
u

f (z) dz

where f (z) is the probability distribution with 0 mean (µ = 0) and
standard deviation of 1 (σ = 1). This is shown in Figure 21.25 and
tabulated in Table 21.3. In order to use these values we need to use ideas
of transformation of graphs from Chapter 2 to transform any normal
distribution into its standardized form.

The standardized normal curve
The standardized normal curve is obtained from the normal curve by the
substitution z = (x − µ)/σ and it converts the original distribution into
one with zero mean and standard deviation 1. This is useful because we
can use a table of values for z given in Table 21.3 to perform calculations.

Finding the probability that x lies
between a given range of values
Supposing we have decided that a sample of resistors have a mean of
10.02 and a standard deviation of 0.06, then what percentage lie inside
an acceptable tolerance of 10± 0.1?

We want to find the area under the normal curve N(10.02, 0.062)

between x = 9.9 and x = 10.1, that is, the shaded area in Figure 21.26.
First, convert the x values to z values, by using z = (x − µ)/σ :

x = 9.9 ⇒ z = 9.9− 10.02

0.06
= −2

x = 10.1 ⇒ z = 10.1− 10.02

0.06
= 1.3333

So we now want to find the shaded area for z values (which will be the
same area as above), shown in Figure 23.27.
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Table 21.3 Areas in the tail of the standardized normal distribution. P(z > u) values are given where z is
a variable with distribution N(0, 1)

u 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207

0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760
0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109

1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226
1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811

1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330

2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639

2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264
2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139

3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100
3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071
3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050
3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035
3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024

3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017
3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011
3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008
3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005
3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003

Figure 21.26 The area
under the normal curve of
mean 10.02 and standard
deviation 0.06 between 9.9
and 10.1.
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Figure 21.27 The area
under the standardized
normal curve of mean 0 and
standard deviation 1 between
z = −2 and z = 1.333. The
area is equivalent to that
shown in Figure 21.26.

Figure 21.28 The area outside
of the tolerance limits as given in
Figure 21.27.

In order to use Table 21.3, we need to express the problem in terms of
the proportion that lies outside of the tolerance limits, as in Figure 21.28.

We use the table of the standardized normal distribution to find the
proportion less than z = −2. As the curve is symmetric this will be the
same as the proportion greater than z = 2. From the table this gives
0.02275.

The proportion greater than z = 1.33 from the table is 0.09176. Hence,
the proportion that lies outside of our limits is

0.02275+ 0.09176 = 0.11451.

As the total area is 1, the proportion within the limits is 1 − 0.11451 =
0.88549.

21.11 The
exponential
distribution

The exponential distribution is also named as the failure rate function, as
it can be used to model the rate of failure of components.

Consider a set of 1000 light bulbs, a similar make to those tested in
Section 21.1. However, now consider a batch of bulbs at random that
have already been in use for some, unknown time. They are, therefore,
of mixed ages. On measuring the time of failure we get Table 21.4.

These data are represented in a histogram given in Figure 21.29, giving
the frequencies and relative frequencies, and Figure 21.30, giving the
cumulative frequencies and relative cumulative frequencies.

Notice that Figure 21.29 looks like a dying exponential. This is not
unreasonable as we might expect failure rates to be something like the
problem of radioactive decay of Chapter 8, that is, a dying exponential.

We could think of it in a similar way to a population problem. The pro-
portion that have failed after time t is given by the cumulative distribution
function F . The proportion that are still functioning is therefore 1 − F .
The increase in the total proportion of failures is given by the failure rate
multiplied by the number still functioning, if λ is the failure rate this gives

dF

dt
= λ(1− F).

This differential equation can be solved to give:

F = 1− A e−λt .

Using the fact that at time 0 there are no failures then we find A = 1.
This gives the cumulative distribution of the exponential distribution as

F = 1− e−λt
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Table 21.4 Time to failure of a sample of light bulbs

Time of failure (h) Class Frequency Cumulative fi xi
mid-point frequency

0–200 100 260 260 26 000
200–400 300 194 454 58 200
400–600 500 154 608 77 000
600–800 700 100 708 70 000

800–1000 900 80 788 72 000
1000–1200 1100 60 848 66 000
1200–1400 1300 38 886 49 400
1400–1600 1500 33 919 49 500
1600–1800 1700 23 942 39 100
1800–2000 1900 14 956 26 600
2000–2200 2100 12 968 25 200
2200–2400 2300 10 978 23 000
2400–2600 2500 9 987 22 500
2600–2800 2700 13 1000 33 800

1000 638 300

Figure 21.29 Histogram of frequencies given in Table 21.4.

Figure 21.30 Cumulative frequency of time to failure of a sample of 1000 light bulbs.
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where λ is the failure rate, that is, the proportion that will fail in unit time.
The probability distribution can be found from the cumulative distribution
by differentiating, giving

f = dF

dt
= λ e−λt

Mean and standard deviation of
a continuous distribution
We can find the mean and standard deviation of a continuous distribution
by using integration to replace the summation over all values. The mean
is given by

µ =
∫

xf (x) dx

where the integration is over all values in the sample space for x. For the
exponential distribution this gives

µ =
∫

xλ e−λx dx.

which can be found by using integration by parts (Chapter 7) to be 1/λ.
The standard deviation is given by

σ =
√∫

(x − µ)2f (x) dx

where the integration is over all values of x. For the exponential
distribution this gives

σ =
√∫ ∞

0
(x − 1/λ)2 λ e−λx dx.

Again using integration by parts, we obtain σ = 1/λ.
So we see that the mean is 1/λ, as is the standard deviation for the

exponential distribution.

Comparison of the data with the model
We can now compare a statistical model with the data given in Table 21.4.
To do this we calculate the cumulative frequencies for the maximum
value in each of the class intervals. The mean of the sample is 638.3.
We calculated that the mean of the exponential distribution is given by
1/λ the inverse of the failure rate.

638.3 = 1

λ
⇒ λ = 1.567× 10−3.

Using F(t) = 1− e−λt

F (200) = 1− e−1.567×10−3×200 ≈ 0.269

P(0 < x < 200) = F(200)− F(0) = 0.269

F(400) = 1− e−1.567×10−3×400 ≈ 0.466

P(200 < x < 400) = F(400)− F(200) = 0.197

and so on, giving the values as in Table 21.5. The model’s predictions
agree quite well with the data. To find the model predicted frequencies
and cumulative frequencies we multiply by the number in the sample,
1000.
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Table 21.5 Time to failure of a sample of light bulbs compared with values obtained by modelling with the
exponential distribution

Data Model predictions

Time of
failure (h)

Class
mid-point

Frequency Cumulative
frequency

fi xi F (x ) Probabilities Cumulative
frequency

Frequency

0–200 100 260 260 26 000 0.269 0.269 269 269
200–400 300 194 454 58 200 0.466 0.197 466 197
400–600 500 154 608 77 000 0.609 0.143 609 143
600–800 700 100 708 70 000 0.714 0.105 714 105

800–1000 900 80 788 72 000 0.791 0.077 719 77
1000–1200 1100 60 848 66 000 0.847 0.056 847 56
1200–1400 1300 38 886 49 400 0.888 0.041 888 41
1400–1600 1500 33 919 49 500 0.918 0.03 918 30
1600–1800 1700 23 942 39 100 0.940 0.022 940 22
1800–2000 1900 14 956 26 600 0.956 0.016 956 16
2000–2200 2100 12 968 25 200 0.968 0.012 968 12
2200–2400 2300 10 978 23 000 0.977 0.009 977 9
2400–2600 2500 9 987 22 500 0.983 0.006 983 6
2600–2800 2700 13 1000 33 800 0.988 0.005 988 5

638 300

21.12 The
binomial
distribution

Consider a random system with a sequence of trials, the trials being
such that:

1. Each trial has two possible outcomes (e.g. non-defective, defective),
which we assign the outcomes of 1 (success) and 0 (failure). This
type of trial is called a Bernoulli trial.

2. On each trial p(1) = θ and p(0) = 1 − θ and θ is the same on all
trials.

3. The outcome of the n trails are mutually independent.

pn(r) is the outcome of r successes in n trials and

pn(r) =
(
n

r

)
θr(1− θ)n−r

where(
n

r

)
= nCr = n!

(n− r)!r! =
n(n− 1) . . . (n− r + 1)

r! .

Setting α = 1 − θ , the probability of r successes in n trials is given by
the rth term in the binomial expansion:

(θ + α)n = αn + nθαn−1 + n(n− 1).

2! θ2αn−2

+ n(n− 1) . . . (n− r + 1)

r! θrαn−r . . .+ θn.

Hence, the term binomial distribution.

Example 21.14 In five tosses of a coin find the probability of obtaining
three heads.
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Solution Assign the outcome of obtaining a head to 1 and tail to 0.
Assume that the coin is fair and therefore θ = 1

2 , 1 − θ = 1
2 . The

probability of obtaining three heads in five tosses of a coin is given by
the binomial probability:

p5(3) = 5!
3!2!θ

3(1− θ)2 = 5× 4

2!
(

1

2

)3 (1

2

)2

= 0.3125.

Mean and variance of a single trial
The mean of a discrete distribution can be found by using µ =∑ xp(x)

and the variance is

σ 2 =
∑

(x − µ)2p(x)

where the summation is over the sample space.
We can use these to find the mean and variance of a single trial with only

two outcomes, success or failure. The outcome of success has the value 1
and occurs with probability θ and the outcome of failure has the value 0
with probability 1−θ . Then, the mean is given by 1×θ+(1−θ)×0 = θ .

The variance of a single trial is given by

(1− θ)2θ + (0− θ)2(1− θ) = θ − 2θ2 + θ3 + θ2 − θ3 = θ(1− θ).

↑ ↑ ↑ ↑ ↑ ↑
x µ p(1) x µ p(0)

The standard deviation is the square root of the variance:

σ = √θ(1− θ).

The mean and standard deviation of
the binomial distribution
The expressions involving a summation over the entire sample space
can be used to find the mean and standard deviation of the binomial
distribution but they take a bit of manipulation to find. Instead, we can
take a short cut and use the fact that each trial is independent. The mean
of the union of n trials is given by the sum of the means of the n trials.
Similarly (for independent trials only), the variance of the union of the n
trials is given by the sum of the variances.

Therefore, the mean of the binomial distribution for n trials is given
by the number of trials × mean for a single trial = nθ . The variance is
given by nθ(1− θ) and therefore the standard deviation is

σ = √nθ(1− θ).

Example 21.15 A file of data is stored on a magnetic tape with a parity
bit stored with each byte (8 bits) making 9 bits in all. The parity bit is set
so that the 9 bits add up to an even number. The parity bit allows errors
to be detected, but not corrected. However, if there are two errors in the
9 bits then the errors will go undetected, three errors will be detected,
four errors undetected, etc. A very poor magnetic tape was tested for the
reproduction of 1024 bits and 16 errors were found. If on one record on
the tape there are 4000 groups of 9 bits, estimate how many bytes will
have undetected errors.
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Solution Call 1 the outcome of a bit being in error and 0 that it is correct.
We are given that in 1024 (n) trials there were 16 errors. Taking 16 as the
mean over 1024 trials and using

1024θ = 16

θ = 16

1024
= 1

64
.

Errors go undetected if there are 2, 4, 6, etc. The probability of two errors
in 9 bits is given by

P9(2) =
(

9

2

)
θ2(1− θ)7 = 9!

7!2!
(

1

64

)2 (63

64

)7

= 0.0078717.

Multiplying by the number of data bytes of 4000 gives approximately 31
undetected errors.

The probability of four errors will obviously be much less.

P9(4) =
(

9

4

)
θ4(1− θ)5 = 9!

4!5!
(

1

64

)4 (63

64

)5

= 0.0000008.

This probability is too small to show up only 4000 bytes. As the prob-
ability of six or eight errors is even smaller then they can safely be
ignored.

The probable number of undetected errors is 31.

21.13 The
Poisson
distribution

The Poisson distribution is used to model processes where the distribution
of the number of incidents occurring in any interval depends only on the
length of that interval. Examples of such systems are:

1. incoming telephone calls to an exchange during a busy period;
2. customers arriving at a checkout counter in a supermarket from 4 to

6 p.m.;
3. accidents on a busy stretch of the M1;
4. number of misprints in a book.

When modelling situations in a Poisson process we use four assump-
tions:

1. If A is the event of n incidents in an interval and B the event of
m incidents in another non-overlapping interval then A and B are
independent, that is, p(A ∩ B) = p(A)p(B).

2. If A is the event of n incidents in an interval then P (A) depends only
on the length of the interval – not on the starting point of the interval.

3. The probability of exactly one incident in a small interval is approx-
imately proportional to the length of that interval, that is, P1(t) ≈ λt

for small t .
4. The probability of more than one incident in a small interval is

negligible. Thus, for small t ,P2(t) ≈ 0 and we can also say that

lim
t→0

Pn(t)

t
= 0 for n > 1.

It follows that P0(t)+ P1(t) ≈ 1 and as by assumption (3), P1(t) ≈ λt ,
we get P0(t) ≈ 1 − λt . We now think about the number of incidents in
an interval of time of any given length, (0, t), where t is no longer small.
We can divide the interval into pieces of length h, where h is small, and
use the assumptions above. We can see that in each small interval of
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length h there is either no event or a single event. Therefore, each small
interval is approximately behaving like a Bernoulli trial. This means that
we can approximate the events in the interval (0, t) by using the Binomial
distribution for the number of successes r in n trials. The probability of
r incidents in n intervals, where the probability of an incident in any one
interval is λh, is given by

Pr(t) = lim
h→0

(
n

r

)
(λh)r(1− λh)n−r .

Substituting h = t/n gives

Pr(t) = lim
n→∞

n!
(n− r)!r!

λr tr

nr

(
1− λt

n

)n−r
.

We can reorganize this expression, by taking out of the limit terms not
involving n

Pr(t) = (λt)r

r! lim
n→∞

n!
(n− r)!nr

(
1− λt

n

)n (
1− λt

n

)−r
.

We can rewrite the first term inside the limit to give

Pr(t) = (λt)r

r! lim
n→∞

n

n

n− 1

n
· · · n− r

n

(
1− λt

n

)n (
1− λt

n

)−r
.

Now we notice that the first term inside the limit is made up of the product
of r fractional expressions, which each have a term in n on the top and
bottom lines. These will all tend to 1 as n tends to∞. The last term is
similar to the limit that we saw in Chapter 7 when calculating the value
of e. There, we showed that

lim
n→∞

(
1+ 1

n

)n
= e

and by a similar argument we could show that

lim
n→∞

(
1+ x

n

)n = ex .

It, therefore follows that

lim
n→∞

(
1− λt

n

)n
= e−λt .

The last expression involves a negative power of (1− λt/n), which will
tend to 1 as n tends to∞.

This gives the Poisson distribution as

Pr(t) = (λt)r

r! e−λt .

This is an expression in both r and t where r is the number of events and
t is the length of the time interval being considered. We usually consider
the probability of r events in an interval of unit time, which gives the
Poisson distribution as

Pr = λr

r! e
−λ

where λ is the expected number of incidents in unit time.
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The mean and variance of
the Poisson distribution
The Poisson distribution was introduced by considering the probability
of a single event in a small interval of length h as (λh). We then used
the binomial distribution, with θ = λh and h = t/n and n tending to
∞, to derive the expression for the Poisson distribution. As the mean of
the binomial distribution is nθ , it would make sense that the mean of the
Poisson distribution is nλh. Using n = t/h we get the mean as λt over
an interval of length t and therefore the mean is λ over an interval of unit
length.

By a similar argument we know that the variance of the Binomial
distribution is nθ(1 − θ). Substituting θ = λh we get the variance as
nλh(1 − λh). As n tends to infinity and h to 0 we get the limit λt .
Therefore, the variance in unit time is λ.

Example 21.16 The average number of ‘page not found’ errors on a
web server is 36 in a 24-h period. Find the probability in a 60-min period
that:

(a) there are no errors;
(b) there is exactly one error;
(c) There are at most two errors;
(d) there are more than three errors.

Solution Assuming that the above process is a Poisson process, then
we have that the average number of errors in 24 h is 36 and therefore the
average is 1.5 in 1 h. As the mean isλ, we can now assume that the number
of errors in 1 h follows a Poisson distribution with λ = 1.5, giving

Pr = (1.5)r

r! e−1.5.

(a) We want to find P (no errors) = P0 = ((1.5)0/0!)e−1.5 = e−1.5 ≈
0.2231.

(b) We want to find P (exactly one error) = P1 = (1.5)1/1! e−1.5 =
1.5e−1.5 ≈ 0.3347.

(c) P (at most two errors) = P0 + P1 + P2 = 0.2231 + 0.3347 +
(1.5)2/2! e−1.5 = 0.8088.

(d) P (more than three errors) = 1 − P (at most three errors) =
1− (P0 + P1 + P2 + P3).

Using the result from Part (c) we get

P (more than three errors) = 1− 0.8808− (1.5)3/3! e−1.5

≈ 1− 0.8808− 0.1255 = 0.0657.

21.14 Summary 1. The mean of a sample of data can be found by using

x̄ = 1

n

∑
i

xi

where the summation is over all sample values and n is the number
of values in the sample. If the sample is divided into class intervals
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then

x̄ = 1

n

∑
i

fixi

where xi is a representative value for the class, fi is the class
frequency, and the summation is over the all classes.

2. The standard deviation of a sample of data can be found by using

σ =
√

1

n

∑
i

(xi − x̄)2

where the summation is over all sample values, n is the number of
values in the sample, and x̄ is the sample mean. If the sample is
divided into class intervals then

σ =
√

1

n

∑
i

fi(xi − x̄)2

where xi is a representative value for the class, fi is the class fre-
quency, x̄ is the sample mean, and the summation is over all classes.
The square of the standard deviation is called the variance.

3. The cumulative frequency is found by summing the values of the
current class and all previous classes. It is the ‘number so far’.

4. The relative frequency of a class is found by dividing the frequency
by the number of values in the data sample – this gives the proportion
that fall into that class. The cumulative relative frequency is found
by dividing the relative frequency by the number in the sample.

5. In probability theory the set of all possible outcomes of a random
experiment is called the sample space. The probability distribution
function, for a discrete sample space, is a function of the outcomes
that obeys the conditions:

0 � p(xi) � 1

where xi is any outcome in the sample space and

∑
i

p(xi) = 1

where the summation is over all outcomes in the sample space.
6. An event is a subset of the sample space. The probability of an event

(if all outcomes are equally likely) is

p(E) = The number of outcomes in the event

The number of outcomes in the sample space
.

7. The addition law of probability is given by P(A ∪ B) = P(A) +
P(B)− (A ∩ B) for non-disjoint events.

If A∩B = ∅ this becomesP(A∪B) = P(A)+P(B) for disjoint
events.

8. Multiplication law of probabilities: p(A ∩ B) = p(A)p(B|A) if
events A and B are not independent.

9. The definition of independence is that B is independent of A if
the probability of B does not depend on A: p(B|A) = p(B) if B
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is independent of A. In this case the multiplication law becomes
p(A ∩ B) = p(A)p(B), where A and B independent events.

10. Bayes’s theorem is

p(B|A) = p(A|B)p(B)
p(A)

.

11. The normal, or Gaussian, distribution is a bell-shaped distribu-
tion. Many things, particularly involving error distributions, have a
probability distribution that is approximately normal.

12. To calculate probabilities using a normal distribution we use areas
of the standard normal distribution in table form, so the variable
must be standardized by using the transformation

z = x − µ

σ

whereµ is the mean and σ the standard deviation of the distribution.
13. The exponential distribution is used to model times to failure.
14. The probability density function of the exponential distribution is

f (t) = λ e−λt and the cumulative density function is given by
F = 1− e−λt .

15. The mean and standard deviation of a continuous distribution can
be found by

µ =
∫

xf (x) dx and σ =
√∫ ∞

0
(x − µ)2f (x) dx

where the integration is over the sample space. For the exponential
distribution these give µ = 1/λ, that is, the mean time to failure is
the reciprocal of the failure rate. Also σ = 1/λ.

16. The binomial distribution is a discrete distribution that models
repeated trials where the outcome of each trial is either success
or failure and each trial is independent of the others. Its probability
function is

pn(r) =
(
n

r

)
θr(1− θ)n−r

where(
n

r

)
= nCr = n!

(n− r)!r! =
n(n− 1) . . . (n− r + 1)

r!
and r is the number of successes in n trials.

17. The mean of a discrete distribution is given by µ = ∑ xp(x) and
the variance is σ 2 = ∑ (x − µ)2p(x). The mean of the binomial
distribution, for n trials, is nθ , the variance is nθ(1 − θ), and the
standard deviation σ = √nθ(1− θ).

18. For the Poisson distribution the number of incidents occurring in any
interval depends only on the length of that interval. Its probability
function is

Pr = λr

r! e
−λ

where λ is the expected number of incidents in unit time. The mean
and the variance are λ.
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21.15 Exercises

21.1. An integrated circuit design includes a capacitor of
100 pF (picofarads). After manufacture, 80 samples
are tested and the following capacitances found for
the nominal 100-pF capacitor (the data are expressed
in pF)

90 100 115 80 113 114 99 105 90 99 106 103
95 105 95 101 87 91 101 102 103 90 96 97
99 86 105 107 93 118 94 113 92 110 104 104
95 93 95 85 96 99 98 83 97 96 98 84

102 109 98 111 119 110 108 102 100 101 104 105
93 104 97 83 98 91 85 92 100 91 101 103

101 86 120 96 101 102 112 119

Express the data in table form and draw a histogram.
Find the mean and standard deviation.

21.2. What is the probability of throwing a number over 4
on one throw of a die?

21.3. What is the probability of throwing a number less than
4 or a 6 on one throw of a die?

21.4. What is the probability of throwing an odd number or
a number over 4 on one throw of a die?

21.5. What is the probability of drawing any Heart or a King
from a well shuffled pack of cards?

21.6. On two throws of a die, what is the probability of a 6
on the first throw followed by an even number on the
second throw?

21.7. Throwing two dice, what is the probability that the
sum of the dice is 7?

21.8. What is the probability that the first two cards dealt
from a pack will be clubs.

21.9. A component in a communication network has a 1%
probability of failure over a 24-h period. To guard
against failure an identical component is fitted in par-
allel with an automatic switching device should the
original component fail. If that also has a 1% prob-
ability of failure what is the probability that despite
this precaution the communication will fail?

21.10. Find the reliability of the system, S, in Figure 21.31.
Each component has its reliability marked in the
figure. Assume that each of the components is
independent of the others.

21.11. A ball is chosen at random out of a bag containing two
black balls and three red balls and then a selection is
made from the remaining four balls. Assuming all

outcomes are equally likely, find the probability that
a red ball will be selected:

(a) at the first time;
(b) the second time;
(c) both times.

21.12. A certain brand of compact disc (CD) player has an
unreliable integrated circuit (IC), which fails to func-
tion on 1% of the models as soon as the player is
connected. On 20% of these occasions the light dis-
plays fail and the buttons fail to respond, so that it
appears exactly the same as if the power connection is
faulty. No other component failure causes that symp-
tom. However, 2% of people who buy the CD player
fail to fit the plug correctly, in such a way that they
also experience a complete loss of power. A customer
rings the supplier of the CD player saying that the light
displays and buttons are not functioning on the CD.
What is the probability that the fault is due to the IC
failing as opposed to the poorly fitted plug?

21.13. If a population, which is normally distributed, has
mean 6 and standard deviation 2, then find the
proportion of values greater than the following:

(a) 9 (b) 10 (c) 12 (d) 7

21.14. If a population, which is normally distributed, has
mean 3 and standard deviation 4, find the proportion
of values less than the following:

(a) 1 (b) −5 (c) −1 (d) 0

21.15. If a population, which is normally distributed, has
mean 10 and standard deviation 3, find the proportion
of values that satisfy the following:

(a) x > 3 (b) x < 12 (c) x > 9

(e) x < 11 (f) 9 < x < 11 (g) 3 < x < 12

21.16. A car battery has a mean life of 4.2 years and a
standard deviation of 1.3 years. It is guaranteed for
3 years. Estimate the percentage of batteries that will
need replacing under the guarantee.

21.17. A certain component has a failure rate of 0.3 per hour.
Assuming an exponential distribution calculate the
following:

(a) the probability of failure in a 4-h period;
(b) the probability of failure in a 30-min period;
(c) the probability that a component functions for 1 h

and then fails to function in the second hour;

Figure 21.31 A system for Exercise 21.10.
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Table 21.6 Data for Exercise 21.20

Number of defects in
74 min of recording time

Number of CDs with r
defects

Chosen model
probabilities

Chosen model
frequencies

0 23
1 32
2 26
3 12
4 5
5 2
6+ 0

(d) of a group of five components the probability that
exactly two fail in an hour.

21.18. A certain town has 50 cash dispenser machines but
due to inaccessibility is only visited for repairs once
a week after which all the machines are working. The
failure rate of the machines is approximately 0.05 per
24 h. A town councillor makes a public complaint in
a newspaper that on average at least one in 10 of the
machines does not function. Assume an exponential
model and calculate the number that are not function-
ing 1 day, 2 days, . . . , 7 days after the day of the visit.
Take the mean of these results to assess whether the
councillor is correct.

21.19. A bag contains two red balls and eight green balls. A
ball is repeatedly chosen at random from the bag, its
colour recorded and then replaced. Find the following
probabilities:

(a) the first three picked were green;
(b) in a selection of five there were exactly two red

balls;
(c) there were no more than three red balls out of the

first 10.

21.20. One hundred CDs, each containing 74 min of record-
ing time, were tested for defects. The frequency
of defects is given in Table 21.6. Calculate the
mean number of defects per 74 min of recording
time and choose an appropriate probability model.
Using your model copy, complete the two empty
columns of the table. Comment on the agreement
between the number of incidents and the chosen
model frequencies.

21.21. Telephone calls are received at a call centre at a rate of
0.2 per second on average. Calculate the probability
that more than 11 calls are received in 1 min.

21.22. Tankers arrive at a dock at a rate of four per day.
Assume that the arrivals are a Poisson process and
find the following:

(a) the probability that less than five tankers arrive
during 1 day;

(b) the probability that there are over five arrivals;
(c) the probability that there is exactly five arrivals;
(d) The probability that there are between two and

five inclusive, arrivals.
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Answers to exercises

Chapter 1
1.1. (a) {b}, (b) {a, b, c, d, e, f}, (c) {a, b}, (d) {c, d, e},

(e) {c, d, e}, (f) {b, c, d, e}, (g) {b, c, d, e},
(h) {a, b, c, d, f, g}, (i) {a, b, c, d, f, g}.

1.3. (a) {0, 1, 2, 3, 4}, (b) {3, 4, 5, 6, 7, 8, 9},
(c) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, (d) {5, 6, 7, 8, 9},
(e) {5, 6, 7, 8, 9}.

1.4. (a) False, (b) False, (c) True, (d) False.

1.5. (a) A, (b) A ∪ B, (c) A ∩ B.

1.6. (a) {(x, y)|0 � x � 79 and 0 � y � 24},
(b) (i) {(x, y)|0 � x � 79 and 13 � y � 24}

(ii) {(x, y)|0 � x � 79 and 0 � y � 24 and
y � (79/24)x}

1.7. 1

1.9. (a) (i) 3, (ii) 3, (iii) 3/5 (iv) 2 5
6 , (v) 9/125, (vi) 2,

(vii) 2 1
4 , (viii) 3.

(b) (i) f og : x �→ 2
3x

2 − 1,
(ii) gof : x �→ 1

3 (2x − 1)2,
(iii) f og : x �→ 9/x2,
(iv) f −1 : x �→ (x + 1)/2,
(v) h−1 : x �→ 3/x.

(d) (i) 1, (ii) 9/25, (iii) 16 1
3 .

Chapter 2
2.1. (a) 3, (b) 2, (c) −5, (d) 1/2.

2.2. (a) 3, (b) −5, (c) 4/7, (d) 0.

2.3. (a) y = −5x + 11.

2.4. (a) y = −3.1x + 2, (b) y = 2x, (c) y = −x + 0.7.

2.5. (a) y = −3x + 1, (b) 3y = 5x − 2, (c) 5y = 2x + 3,
(d) y = −4.

2.6. (a) 2,−2 (b) 1/2,−l (c) 3 (d) 4,−4 (e) 2,−3.
(f) −3,−4, (g) 4,−3.

2.8. (a) Even, (b) Neither, (c) Odd.

2.9. (a) Even, (b) Even, (c) Neither, (d) Odd, (e) Even,
(f) Even.

2.10. (a) Yes, (b) No, (c) Yes.

2.11. (a) t � 3.3, (b) x > −2/7, (c) y > −8/5,
(d) t < −3.

2.12. (a) x > −11, (b) t � 2, (c) u > 2 or u < −5.

2.13. (a) −3 � x � 3, (b) −1 < x < 3/2 or x > 5,
(c) −7 � t � 3. (d) −3 1

2 � w � 2 1
2 .

2.14. (a) A = 119, k = −0.2, (b) A = l, k = 3.1.

2.15. y = 1.52, c = 1.38, volume = 1.23 m3.

Chapter 3
3.1. (a) F, (b) F, (c) T, (d) T, (e) F, (f) F, (g) T, (h) T.

(i) T for all t , (j) T for t = 3, F for all other values of
t , (k) F.

3.2. (a) 2, (b) 0, 5, (c) −2 1
5 , 1

5 , (d) 3 1
4 , 1

2 , (e) t � 1/10,
(f) x < −1/2.

3.3. (a) x � 2 ∨ x < −1, (b) t > l, (c) x > 3.

3.4. (a)⇐, (b)⇔, (c) No implication, (d)⇔, (e)⇒,
(f)⇔, (g)⇐, (h)⇔, (i) No implication, (j)⇒, (k)⇔.

3.5. (a) F, (b) F, (c) T, (d) T, (e) F.

3.6. (a) x/3 /∈ Z, (b) 3 � y � 60, (c) w/2 ∈ Z ∧ w > 20,
(d) |t − tn−l | < 0.001.

3.7. (a) (0,6), (1,4), (2,3), (3,1), (4,0), (b) 5 m.

3.8. 13.15 m s−1.

Chapter 4
4.2. (b) (i) F, (ii) T, (iii) F, (iv) T, (v) T, (vi) T.

4.4. (a) a, (b) abc, (c) a, (d) ab̄,

4.5. (b) (i) 1, (ii) 1, (iii) 0, (iv) 0.

4.6. (a) a(b̄,+c), (b) a+ b+ c, (c) a(b+ c̄), (d) āb̄d̄ + ab.

4.7. (a) (ab + c) · c, (b) abc̄ + c̄d + cd̄.

4.8. r = c̄ + cd + āb.
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Chapter 5
5.1. (a) 120◦, (b) 720◦, (c) 108◦, (d) 360◦, (e) 90◦.

5.2. (a) π/4, (b) 3π/4, (c) π/18, (d) 5π/6.

5.3. (a)
√

3/2, (b)
√

3, (c) −1/2, (d)
√

3/2. (e)
√

3.

5.5. (a) −π/4, 2,2, 1/2, (b) −π/8, 1/2, 4, 1/4.

5.6. (a) 3, π/2, 4, π/2, (b) 1, 2π/377, 377, 0.4− (π/2),
(c) 40, π/1500, 3000, −0.8.

5.7. (a) 0.5,π , 1/π , 2, (b) 2,π/36, 36/π , 2,
(c) 52,π/40, 40/π , 80.

5.8. (c) 0.4 m s−1.

5.9. 110 dB.

5.10. −5.74 dB.

5.12. 0.025/π Hz.

5.14. (a) 1.5 m, 0.75 m, 0.5 m, (b) 442 Hz.

5.15. C = 2 cos(π/3), d = −2 sin(π/3).

5.16. (a) sin(104◦), (b) sin(4◦), (c) cos(52◦),
(d) − cos(63◦), (e) sin(3x), (f) cos(2x).

5.17. cos(x) cos(y) cos(z)− sin(x) sin(y) cos(z)
− sin(x) cos(y) sin(z)− cos(x) sin(y) sin(z).

5.18. (a) π + 0.5236, 2π − 0.5236, 3π + 0.5236,
4π − 0.5236, 5π + 0.5236, 6π − 0.5236,

(b) 0.3218, π + 0.3218, 2π + 0.3218, 3π + 0.3218,
4π + 0.3218, 5π + 0.3218,

(c) 2.4981, 2π − 2.4981, 2π + 2.4981,
4π − 2.4981, 4π + 2.4981, 6π − 2.4981,

(d) 0.5236,π − 0.5236, π + 0.5236, 2π − 0.5236,
2π + 0.5236, 3π − 0.5236, 3π + 0.5236,
4π − 0.5236, 4π + 0.5236, 5π − 0.5236,
5π + 0.5236, 6π − 0.5236,

(e) π/2, 3π/2, 2.0944, 2π − 2.0944, 5π/2,
7π/2, 2π + 2.0944, 4π − 2.0944, 9π/2,
11π/2, 4π + 2.0944, 6π − 2.0944,

(f) No solutions.

Chapter 6
6.1. (a) 8.667 m s−1.

(b)

v =
{

1
5 t

2 + 2 for 0 � t � 10

22 for t � 10.

(c) (i) 7 m s−1, (ii) 22 m s−1, (iii) 22 m s−1,
(d) 2 m s−2, (e) 0 m s−2,
(f)

a =
{

2
5 t for 0 � t � 10

0 for t � 10

(g) (i) 2 m s−2, (ii) 0 m s−2, (iii) 0 m s−2.

6.2. (1) 6x + 6, (2) 1
2x
−1/2 + 1

2x
−3/2, (3) 3

2

√
2x + 5

3x3 ,

(4) (9x2 + 1) cos(3x3 + x), (5) −12 sin(6x − 2),

(6) 2x sec2(x2), (7) −2/(2x − 3)2, (8) 24(4x − 5)5,

(9) −x/√(x2 − 1)3, (10) −2/
√

1− (5− 2x)2,

(11) − sec2(1/x)/x2,

(12) x/
√
x2 + 2, (13) − 3

2 (x + 4)5/2,

(14) 2 sin(x) cos(x),

(15) −15 cos2(x) sin(x), (16) −3 cos(x)/ sin4(x),

(17) −10 cos(5x) sin(5x),

(18) 3x2
√
x + 1+ 1

2x
3/
√
x + 1,

(19) 5 cos(x)− 5 x sin(x),

(20) 12x sin(x)+ 6x2 cos(x),

(21) 3 tan(5x)+ (15x + 5) sec2(5x),

(22) 3x cos−1(x)− (x3/
√

1− x3
)
,

(23) (3x2 cos(x)+ x3 sin(x))/ cos2(x),

(24) −2 cos(x)/ sin3(x),

(25)
(
(2x + 10) cos(x)− 2 sin(x)

)
/(2x + 10)2,

(26) (2x tan(x)− x2 sec2(x))/ tan2(x),

(27) (6x/
√
x − 1)− (3x2/2

√
(x − 1)3),

(28) 20x/(5x2 + 1)2,

(29) (− cos(x)/(x + 1)2)− (sin(x)/(x + 1)),

(30) 2x/
√

1− x4,

(31) [( 5
2x − 2)x sin(x)+ x2 cos(x)]/√x − 1,

(32) −4 x cos(x2) sin(x2),

(33) [5 tan(
√

5x − 1) sec2(
√

5x − 1)]/√5x − 1

6.3. −(9.475× 105 cos(20πt)+ 3.553 cos(30πt))

Chapter 7
7.1. (a) (x2/4)+ (x3/3)+ c, (b)−2 cos(x)+ tan(x)+ c,

(c) −1
2x2 + c, (d) x + (x3/3)+ 3x4

4 + c,

(e) x − (5x2/2)+ c, (f) − 1
4 sin(2− 4x)+ c,

(g)
(√

(2x − 1)3/3
)+ c, (h) 2

√
x + 2+ c,

(i) [(x2 − 4)4/8] + c, (j)
(√

(1+ x2)3/3
)+ c,

(k) [−1/(1+ sin(x))] + c (l)
( 1

2

)
(x2 + x − 6)2 + c,

(m)
−4

3(x3 − 7)
+ c, (n) 0.0207,

(o) x2 sin(x)+ 2x cos(x)− 2 sin(x)+ c, (p) 8.633,
(q) (2x − 3)5(10x + 3)/120+ c,
(r) − cos(x)+ (2 cos3(x)/3)− (cos5(x)/5)+ c,
(s) (sin(4x)/32)+ 1

4 sin(2x)+ (3x/8)+ c,
(t) −(cos(8x)/16)+ 1

2 cos(2x)+ c.

7.2. s = 3t − 1
2 t

2 + 5; when t = 2 s, s = 9 m.

7.3. y = −5t

7.4. y = x − (2x3/3)+ 1.

7.5. 0.0187 A.

7.6. F = (1− cos(3πt))/π .

7.8. 28 1
2

7.9. 9
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7.10. 2

7.11. 4.76

7.12. 1.382

7.13. (a) 0.9450788, 0.94583209, (b) 0.9461459,
0.94608693

7.14. (a) 1.106746, (b) 1.098942

7.15. 0.1667

Chapter 8
8.2. Po = 1, k = 1/1200.

8.3. No = 5× 10−6, k = −4.3× 10−4.

8.4. A = 100, k = −0.1

8.7. (a) 4.14431, (b) 0.99505, (c) 0.56882,
(d) Not defined, (e) Not defined.

8.8. (a) 2t et
2−2, (b) e−t (2 sinh(2t)− cosh(2t)),

(c) (2x sinh(x)− (x2 − 1) cosh(x))/(sinh2(x)),
(d) (3x3 − 3)/(x3 − 3x),
(e) 1/(ln(2)x), (f) 4 ln(a)a4t , (g) 2t (ln(2)t2 + 2t),
(h) −2/(et−1)2.

8.9. (a) 1
4 e4t−3 + c, (b) 0.113, (c) 1

4 cosh(2x2)+ C,
(d) − 1

2x
2 ln(x)− (x2/4)+ c, (e) 0.7182824,

(f) ln(cosh(t))+ c, (g) ln(x2 − 2x − 4)+ c,
(h) 2 ln(t − 3)− ln(t − 1)+ c, (i) −0.40547.

8.10. I = −0.01 e−10t , 0.0693 s

8.11. (a) −0.0025 A, (b) −1.684× 10−5 A,
(c) −1.135× 10−7 A.

Chapter 9
9.1. (a) b− a, (b) a − b, (c) a + b, (d) −b,

(e) −a, (f) b− a, (g) a − b, (h) 2a, (i) −2b,
(j) a + b.

9.2. (a) (0,5), (b) (2,1), (c) (−2,−1),
(d) (2,1), (e) (−2, 4), (f) (−1, 7),
(g) (4,7), (h) (−3, 2, 3), (i) (30,60,20),
(j) (39, 30,−4), (k) (12,32,19).

9.3. (a) 3.162∠1.249, (b) 3.162∠− 0.322,
(c) 3.162∠− 1.893, (d) 7.810∠− 0.876.

9.4. (a) (−5, 0), (b) (−1, 0), (c) (0.354,−0.354),
(d) (1.5,2.598).

9.5. (a) −1.248 cos(3t)+ 2.728 sin(3t),
(b) 2.837 cos(20t)+ 9.589 sin(20t).

9.6. (a) 5 cos(10t + 0.644), (b) 10.20 cos(157t − 1.768).

9.7. (a) 13.040 cos(2t + 2.457), (b) 0,
(c) 6.325 cos(628t − 2.820).

9.8. (a) (0.6,0.8), (b) (5/13,12/13), (c) (5/12,−12/13),
(d) (0.707,0.707), (e) (0.832,0.555), (f) (1,0),
(g) (0,−1), (h) (1/3, 2/3,2/3),
(i) (0.408,−0.408, 0.816),
(j) (0.707, 0,−0.707).

9.9. (a) 5i+ 2j, (b) −i− 2j, (c) −6i+ 2j,
(d) −i+ 2j− 3k, (e) 0.2i− 1.6j+ 3.3k.

9.10. (a) −3, (b) 3, (c) −3.

9.11. (a) 1.305, (b) π/2, (c) 1.616.

9.13. (a) 1.107 radians to x-axis and 0.4636 radians to
y-axis;

(b) 1.726 radians to x-axis, 2.236 radians to y-axis,
and 2.452 radians to z-axis.

9.14. (a) (i) 2.828, (ii) −4.243, (iii) 1.961, (iv) −5.099,
(v) 0.2425;

(b) (i) 4.619, (ii) 1.265,

9.16. (a) 7, (b) 10, (c) 11.

9.17. (a) (−λ, 1+ 3λ), λ ∈ R, (b) (1− 3λ, 1− 5λ),
λ ∈ R, (c) (1+ 5λ, 1+ 2λ), λ ∈ R,
(d) (−1− 2λ,−4), λ ∈ R.

Chapter 10
10.1. (b) (i) 4+ j , (ii) −2+ j6, (iii) 1+ j2;

(c) (i) 3+ j5, (ii) 5− j3, (iii) 5, (iv) − 1
6 − j

2 ,
(v) 7+ j6.

10.2. (a) 1, (b) −j , (c) 1.

10.3. (a) 34− j2, (b) −3− j4, (c) 23
26 − j 11

26 ,
(d) 57

97 + j5 95
97 .

10.4. j3/2.

10.5. x = 3, y = 5.

10.6. (a) 1,2, (b) 1+ j
√

5, 1− j
√

5,
(c) (1/6)+ j

√
11/6, (1/6)− j

√
11/6,

(d) −(1/4), 2 (e) j
√

3
2 , −j

√
3
2 ;

10.7. (a) −1− j3, (b) b = 2, c = 10.

10.8. (a) 4.899∠1.030, (b) 6.708∠2.678,
(c) 6.403∠− 2.246, (d) 4.899∠− 2.601.

10.9. (a) −3.536− j3.536, (b) 3.464− j2,
(c) −1.827+ j0.813, (d) 3.992− j3.010.

10.10. x = 5 1
4 , y = 4 1

4 .

10.11. (a) 36∠23π/20, (b) 4∠7π/20, (c) 13.626∠2.159,
(d) 10.968∠− 0.539, (e) 12∠− 3π/4, (f) 9∠4π/5.

10.12. 16∠3.083.

10.13. Z = 409174∠− 0.212, V = 2.046× 106 V,
relative phase = −0.212.

10.14. Y = 3.916× 10−4∠− 1.561, I = 3.916× 10−3 A,
relative phase = −1.561.

10.15. (a) 313∠32.4◦, (b) 9.7347× 10−4∠106.5◦.

10.16. (a) 4.899 e1.030j, (b) 6.708 e2.678j, (c) 6.403 e−2.246j,
(d) 8 e0.384j, (e) 3 e2.13j, (f) 6 e1.9j.

10.17. (a) 4∠2,−1.665+ 3.637j, (b) 1∠− π/2, −j
(c) 2∠π ,−2, (d) 6∠0.858, 3.922+ j4.541,
(e) 1

2 ∠1.283, 0.142+ j0.479, (f) 3∠11π/12,
−2.898+ j0.776,
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(g) 2.906∠2.017,−1.255+ j2.621.

10.18. (a) −2, 0, (b) −2.633,−1.438, (c) 0.183, 0.285,
(d) −1.821, 0.260, (e) −3.539, −12.133.

10.19. (a) 36 ej23π/20, (b) 4 ejπ7/20, (c) 13.627 ej2.159,
(d) 10.969 e−j0.539, (e) 12 e−j3π/4, (f) 4 e−j23π/20,
(g) 144 ej0.

10.20. 27∠1.38, 27 ej1.38.

10.21. (a) 1, j,−1,−j,
(b) 0.866+ j0.5, j,−0.866+ j0.5,
−0.866− j0.5,−j, 0.866− j0.5,

(c) 1.618+ j1.176,−0.618+ j1.902,−2,
−0.618− j1.902, 1.618− j1.176,

(d) 0.437+ j0.757,−0.874, 0.437− j0.757,

10.22. cos3(θ)− 3 cos(θ) sin2(θ).

10.23. 3
4 sin(θ)− 1

4 sin(3θ).

10.24. 1.174+ j0.540,−0.151+ j1.284,−1.267+ j0.252,
−0.631−j1.128, 0.877− j0.949.

10.25. (a) 1− j,−1− j,
(b) 0.327+ j3.035,−0.327− j0.035.

10.26. (a) 4, (b) 0.5

Chapter 11
11.1. (a) (5/2,−17/4) is a local minimum,

(b) (2/3,4/3) is a local maximum,
(c) (1/3,−2/9) is a local minimum and

(−1/3, 2/9) is a local maximum,
(d) (10,40) is a local minimum and (−10,−40) is

a local maximum,
(e) (−4,−126) is a local minimum, (0,2) is a local

maximum and (1,−1) is a local minimum.

11.2. 1/(2
√

2),−1/(2
√

2).

11.5. 8,−27/256.

11.6. 1.193 m, 2.384 m.

11.8. 0.21ω2,−0.106875ω2.

11.9. 1/2, 1
2 (1+ cos(θ)).

11.10.
√
h/3c, 66 2

3 %.

Chapter 12
12.1. (a) 21, 25, 29, an+1 = an + 4, a1 = −3,

(b) 0.25, 0.125, 0.0625, an+1 = 1
2an, a1 = 8,

(c) 0,−3,−6, an+1 = an − 3, a1 = 18,
(d) 6,−6, 6, an+1 = −an, a1 = 6,
(e) 2, 0,−2, an+1 = an − 2, a1 = 10,
(f) 29, 37, 46, an+1 = an + n, a1 = 1,
(g) 21, 28, 36, an+1 = an + n+ 1, a1 = 1.

12.2. (a) 2, 5, 8, 11, 14, (b) 720, 360, 240, 180, 144,
(c) 0,−3,−8,−15,−24, (d) 6, 8, 10, 12, 14,
(e) 2, 6, 18, 54, 162,
(f) −1, 2,−4, 8,−16, (g) 1

2 , 1, 1 1
2 , 2, 2 1

2 ,
(h) 2,5,8,11,14, (i) 1,3,9,27,81.

12.3. (a)
n=10∑
n=0

xn, (b)
n=8∑
n=1

(−2)n, (c)
n=6∑
n=1

n3,

(d)
n=8∑
n=1

(
−1

3

)n

,

(e)
n=10∑
n=2

1

n2
, (f)

n=8∑
n=1

(−4)

(
1

4

)n−1

.

12.4. (a) 0, 0.1987, 0.3894, 0.5646, 0.7174, 0.8415,
0.9320, 0.9854, 0.9996, 0.9738,

(b) 1,0.9553, 0.8253, 0.6216, 0.3624, 0.0707,
−0.2272, −0.5048, −0.7374, −0.9041,

(c) 0, 2, 4, 6, 8, 6, 4, 2, 0, −2,
(d) 1, 1, 1, 1,−1,−1,−1,−1, 1, 1, 1.

12.5. (a) 22, 42, 6+ (n− 1)4,
(b) 1,−1.5, 3+ (n− 1)(−0.5),
(c) 17, 47,−7+ (n− 1)6.

12.6. (a) −10+ (n− 1)4, 560, (b) −5+ (n− 1)0.5,−5,
(c) 25+ (n− 1)(−3),−70.

12.7. 2/3, 2+ (n− 1) 2
3 , 2, 2 2

3 , 3 1
3 , 4, 4 2

3 , 5 1
3 .

12.8. 32

12.9. (a) 8, 128, 2n−1, (b) 1/192, 1/49152, 1
3 (

1
4 )

n−1,
(c) 1/3, 1/243, −9(− 1

3 )
n−1, (d) 29.296 875,

71.525574, 15(3/4)n−1.

12.10. (a) (8/25)5n−1, 31249.92,
(b) (−1.3867)(−2.0801)n−1, 157.3377,
(c) 64(−1/2)n−1, 42.5.

12.11. 8

12.12. 17

12.13. (a) 30, (b) 1.99609375, (c) −2.2499619.

12.14. (a)
1− zn

1− z
, (b)

1− (−1)ny2n

1+ y2
, (c)

2(1− (2/x)n)

1− 2/x

12.15. (a) Convergent, 4 (b) Not convergent,
(c) Convergent, 20.25, (d) Convergent, 1/3.

12.16. (a) 4/9, (b)1/6, (c) 1/45.

12.17. (a) 1+ 3x/2+ 3x2/4+ (x3/8),
(b) 1− 4x + 6x2 − 4x3 + x4,
(c) x3 − 3x2 + 3x − 1
(d) 1− 8y + 24y2 − 32y3 + 16y4,
(e) 1+ 8x + 28x2 + 56x3 + 70x4 + 56x5

+28x6 + 8x7 + x8,
(f) 8x3 + 12x2 + 6x + 1,
(g) 8a3 + 12a2b + 6ab2 + b3,
(h) x7 + 7x5 + 21x3 + 35x + (35/x)+ (21/x3)

+(7/x5)+ (1/x7),
(i) a4 − 8a3b + 24a2b2 − 32ab3 + 16b4.

12.18. (a) 1.331, (b) 0.6561, (c) 8.120601,

12.19. (a) 1+ 10x + 40x2 + 80x3 + · · · ,
(b) 1− 24x + 252x2 − 1512x3 + · · ·
(c) 64− 192z+ 240z2 + 160z3 + · · · ,
(d) 1+ 8x + 30x2 + 70x3 + · · ·
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(e) 1− 6x + 15x2 − 20x3 + · · ·
(f) (1/32)− (5x/8)+ 5x2 − 20x3 + · · · .

12.20. 5 cos4(θ) sin(θ)− 10 cos2(θ) sin3(θ)+ sin5(θ).

12.21. (a) 0, 8, (b) −7,−24, (c) −12, 316.

12.22. (a) 0.9227, (b) 1.0721, (c) 74.2204.

12.23. (a) 1− x2/2! + (x4/4!)− (x6/6!)+ · · · , all x
(b) 1+ x2/2! + (x4/4!)+ (x6/6!)+ · · · , all x
(c) x − (x2/2)+ (x3/3)− (x4/4)+ · · · , |x| < 1
(d) 1+ 1.5x + (0.75x2/2!)− (0.375x3/3!)+ · · · ,
|x| < 1,

(e) 1− 2x + 3x2 − 4x3 + · · · , |x| < 1.

12.24. (a) 1− x2 + (x4/3)− (17x6/6!)+ · · · ,
(b) 1− (x3/3)+ (x5/5)− (x7/7)+ · · · ,
(c) x + x2 + (x3/3)− (4x5/5!)+ · · · ,
(d) 1− 2.5x + 2.875x2 − 2.8125x3 + · · · .

12.25. (a) 1.025, (b) 0.09967, (c) 0.03, (d) 0.9713.

12.26. (a) 0.1951, (b) 2.005.

12.27. (a) 3/25, (b) 6, (c) 0, (d) 1, (e) 1, (f) −0.2273.

12.28. (a) −0.618034, (b) 1.49535, (c) 0.450 184.

12.29. (a) |xn − xn−1| < 0.0000005,
(b) |xn − xn−1| < 0.0000005|xn|.

Chapter 13
13.1. (a)(

2 0 0
3 −4 2

)
(b)(

4 −2 0
2 −21 4

)
(c) Not possible
(d)
4 10

2 −19
0 −4




(e)
 4

0
−1




(f) Not possible, (g) (8 10), (h) (8− 7− 4),
(i) (24 30)
(j)(

3 5
−2 3 1

3

)
(k)(−3/2 8
−5/2 37/3

)
(l) Not possible,

(m)


3 −8 −1

8 38 10
3 30 19




(n)

(
16 1

3 , 10 8
9 ,

−5 4
9 −3 17

27

)

(o) Not possible
(p)

(
16
4

)

13.3.

(
0 0
0 0

)

13.4. (a)



−1 1 0 0 0 0 0
1 0 −1 0 0 1 0
0 0 0 0 0 −1 1
0 −1 1 1 −1 0 −1
0 0 0 −1 1 0 0






−1 1 0 0 0 −1 0 0
0 −1 1 0 0 0 −1 0
0 0 −1 −1 0 0 0 −1
1 0 0 1 −1 0 0 0
0 0 0 0 1 1 1 1




13.5. (a) (0,0), (−0.5, 0.866), (−1.366, 0.366),
(−0.866,−0.5),

(b) (−4, 1), (−3, 1), (−3, 2), (−4, 2),
(c) (0,0), (1,0), (1,−1), (0,−1),
(d) (0, 0), (1, 0), (1, 5), (0, 5),
(e) (−2, 3), (−2.5, 3.866), (−3.366, 3.366),

(−2.866, 2.5),
(f) (−2.098,−2.366), (−2.598,−1.5),

(−3.464,−2), (−2.964,−2.866),
(g) (0, 0), (−0.5, 4.33), (−1.366, 1.83),

(−0.866,−2.5),
(h) (0, 0), (0, 1), (1, 1), (1, 0),
(i) (0, 0), (3.25, 1.299), (4.549, 3.049),

(1.299, 1.75),
(j) (a) Rotation through −120◦ about the origin,

(b) Translation by (4,−1),
(c) Reflection in the x-axis,
(e) Translation by (2,−3) followed by rotation

through −120◦ about the origin,
(g) Scaling by 1/5 in the y-direction followed by

rotation through −120◦ about the origin,
(i) Scaling along a line at an angle of 30◦ to the

x-axis by a factor of 1/4.
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13.6. (a) Determined, x = 0, y = 3,
(b) Determined, x = 5, y = −2,
(c) Inconsistent, (d) Indeterminate,
(e) Determined, x = 1, y = −10,
(f) Inconsistent,
(g) Inconsistent, (h) Determined, x = 6, y = 4.

13.7. (a) Determined, x = −2, y = −3, z = 1,
(b) Determined x = 400/21, y = 430/7,

z = −265/51,
(c) Indeterminate,
(d) Inconsistent.

13.8. (a)(
1 2
0 1

)

(b)(
2/5 −1/5
1/15 2/15

)

(c) No inverse,
(d)
 3/4 1/4 −1/4
−1/4 1/4 −1/4
5/4 1/4 1/4




(e)
 1/3 −1/3 1/3

4/15 −1/15 −1/30
−1/3 1/3 1/6




(f) No inverse.

13.9. (a) −9, (b) 16, (c) 0, (d) 50.

13.10. (a) −6i− 8j+ 5k, (b) 3
2 i− 3

2 j.

13.11. (a) (i) 10, (ii) 0

13.12. (a)
σxσy
σz


 = E

1− 3ν2 − 2ν3


1− ν2 ν + ν2 ν + ν2

ν + ν2 1− ν2 ν + ν2

ν + ν2 ν + ν2 1− ν2




13.13. (a) 6,

(
1
0

)
, 2,

(
1
4

)
,

(b) 2,

(
5
1

)
,−4,

(
1
−1

)
,

(c) 1,

(
1
−1

)
, 4,

(
2
1

)
,

13.14. vR = 4.905I + 1.147.

13.15. (a) Length = 9.882+ 1.905× load,
(b) (i) 14.6 cm, (ii) 19.4 cm.

13.16. P = 11.327− 0.0556T .

13.17. (a) y = (1/70)(−82+ 123x + 215x2),
(b) y = 1.29− 2.22333x + 2.03333x2.

Chapter 14

14.1. (a) Linear, 1, (b) Linear, 2, (c) Linear, 2,
(d) Not linear, 1, (e) Not linear, 2.

14.2. (a) 1.6 cos(3t)+ 1.2 sin(3t)+ t2 − 1
2 t + 1

2
(b) 0.8 cos(3(t − 10))+ 0.6 sin(3(t − 10))

14.3. (a) (t2 − 2 sin(t))/ cos(t)

14.4. (a) y = e3t (b) y = 2 et/4 − 4,
(c) y = (12/169)e−3t − (12/169) cos(12t)
+(5/169) sin(12t),

(d) y = 4 e−2t/3 − e−t , (e) y = 3t2 + 3,
(f) y = (18/169)e−12t + (18/169) cos(5t)
+(92/169) sin(5t).

14.5. (a) x = −0.064 e−5t/2 − 0.56 e−t
+0.624− 0.56t + 0.2t2

(b) x = (−0.2t + 0.08)e−2t − 0.08 cos(6t)
+0.06 sin(6t),

(c) x = e−2t (−0.5 cos(t)− 0.5 sin(t))+ 0.5 e−t .

14.6. (a) q = − 5
13 × 10−3 cos(1000t)+

12
13 × 10−3 sin(1000t)
VC = − 50

13 cos(1000t)+ 120
13 sin(1000t)

VR = 600
13 sin(1000t)+ 1440

13 cos(1000t)

VL = 300
13 cos(1000t)− 720

13 sin(1000t)

(b) q = −10−9 + 10−6t ,Vc = t − 10−3,
VR = 10−3, VL = 0.

14.7. (a) q = cvi

Rcjω + 1
ejωt , (b) (i) vc = vi

Rcjω + 1
ejωt ,

(ii) VR = Rcvi jω

Rcjω + 1
ejωt ,

(c) 0.99995, 0.995, 0.707, 0.0995, 0.0099995,
0.001, fhc = 103/(2π).

14.8. (a) x1 = −(e−t /10)− (e−11t /90)− (e−2t /9),
(b) x1 = (8 e−5t/2/15)− (5 e−4t /24)
−(13/40)+ (1/2)t .

14.9. (a) yn = 4(1/2)n − 3
(b) yn = 49(−1/4)n/25+ (1/25)+ (n/5)
(c) yn = (−22− 49n/3)(0.6)n + 25
(d) yn = (767/390)(0.2)n − (209/130)(−0.8)n

+(25/39)(0.5)n.
(e) yn = (3/5)(−(1/2))n + (2/5) cos(πn/2)
−(1/5) sin(πn/2).

Chapter 15

15.1. (a) Re(s) > 4, (b) Re(s) > −2, (c) Re(s) > 0,
(d) Re(s) > 0.

15.2. (a) 15/(s2 + 9), (b) s/(s2 + (1/4)), (c) 8/s5,
(d) 1/(2(s + 5)).

15.3. (a) e4t , (b) 3 e−t , (c) 4u(t), (d) 2 sin(
√

3t)/
√

3,
(e) (4/9) cos((2/3)t),
(f) t2/2, (g) 5t3/6.
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15.4. (a) 1/(s + 3)2, (b)
4

(s + 2)2 + 1
, (c)

8s

(s2 − 16)2
,

(d)
e−s

s
, (e)

e−πs

s2 + 1
.

15.5. (a) (1/3)e2t sin(3t), (b) e−4t cos(t),
(c) e−(t−2) u(t − 2), (d) et cos(3t).

15.6. (a) u(t)− e−t , (b) (1/2)u(t)− (1/2) cos(
√

2t),
(c) −(1/3) cosh(2t)+ (2/3) sinh(2t)+ (1/3)e−t ,
(d) −(2/5) cos(t)− (6 sin(t)/5)+ 2 e3t /5.

15.7. (a) 3 e−5t , (b) −1+ t + e−t ,
(c) 19 sin(2t)/8+ (9t/4), (d) 4 e2t + 4 t e2t − 7et ,
(e) cos(t)− 3 sin(t)+ t ,

(f) 2− 2 e−t/2 cos

(√
7

2
t

)
− 2√

7
et/2 sin

(√
7

2
t

)
.

15.8. Voc e−t/RC .

15.9. 1
2 e−t − e−2t + 1

2 e−3t .

15.10. (a) (3u(t)/4)− (3 e−4t /4),
(c) (i) −(4/3)− (s/(s + 2))− [2s/(3(s + 3))],

(ii) −2 e−2t − e−3t .

15.11. 0.08δ(t)+ t

15.12. (a) (−17− 20j)ej5t /689,
(b) (−17 cos(5t)+ 20 sin(5t))/689,

(−20 cos(5t)− 17 sin(5t))/689.

15.13. (a) All z, (b) |z| > 1, (c) |z| > 3.

21.14. (a)
2z

z− 1
− z

2(z− 1)2

(b)
z2 − z cos(3)+ 2z sin(3)

z2 − 2z cos(3)+ 1

(c)
4z

z− 0.2
− 6z

z− 2
, (d)

2z

z− ej4
.

15.15. (a) 2un + 2δn, (b) 1
2n+ (−3)n,

(c) (3/2)n + 2(−3/2)n,
(d) cos(n)+ sin(n).

15.16. (a)
z3

z− 3
− (z2 + 3z+ 9), (b)

z

2(z− ( 1
2 ))

2
,

(c)
z ej

(z− ej)2
, (d)

z3 + 4z2 + z

(z− 1)4
.

15.17. (a) n4n−1, (b) 2n ej4n, (c) n(0.4)n−1, (d) 2n+2 − 2.

15.l8. (a) un2+ (−1)n/2,
(b) −un + (−√2)n/(2+√2)+ (

√
2)n/(2−√2),

(c) −(0.1)n/15+ (0.4)n/15,
(d) 2un/9+ [n/3] − 2(−2)n/9,
(e) (j)n/2+ (−j)n/2.

15.19. (a) 3(−5)n+1 (b) (1/4)un + (1/2)n− (1/4)(−1)n

(c) (9un/5)+ 16(−4)n/5,
(d) 17un − 32(2)n + 8n(2)n,
(e) (1/2)un + (1/2)n− (1/2) cos(πn/2),
(f) (1/3)un + (1/2)n/14− 11(−1/5)n/105.

15.20. 3 3
4 (0.3)n − (0.1)n + 5(−0.5)n/4.

15.21. (a) 5un − 4(0.8)n (c)
z− 1

24(z− 0.2)
− 5

24

(ii) (5(0.5)n/6)+ 2(0.2)n/3

15.22. δn + 0.5n

15.23. (a)
ej5n(n+1)

10 ej5 − 3
,

(b)
cos(5(n+1))(10 cos(5)−3)+ sin(5(n+1)) sin(5)

(10 cos(5)−3)2+ sin2(5)
,

sin(5(n+1))(10 cos(5)−3)− cos(5(n+1)) sin(5)

(10 cos(5)−3)2+ sin2(5)
.

Chapter 16
16.1. 1

4
+
∞∑
n=1

(
sin(nπ/2) cos(nπt/2)

nπ

+ (1− cos(nπ/2)) sin(nπt/2)

nπ

)
1

4
+

∞∑
n=−∞

n�=0

(
sin(nπ/2)

2nπ
+ j

cos(nπ/2)− 1

nπ

)
ejnπt/2.

16.2. 1

6
+
∞∑
n=1

(
2

n2π2
(−1)n cos(nπt)

+
(−(−1)n

nπ
+ 2((−1)n − 1)

n3π3

)
sin(nπt)

)

1

6
+

∞∑
n=−∞

n�=0

(
(−1)n

n2π2

+j

(
(−1)n

2nπ
− ((−1)n − 1)

n3π3

))
ejnπtn .

16.3. 1
2 + 1

2 cos(2t) 1
2 + 1

4 ejπt

16.4. 1

4
+
∞∑
n=1

((
(−1)n − 1

n2π2

)
cos(nπt)

− (−1)n

nπ
sin(nπt)

)
1

4
+

∞∑
n=−∞

n�=0

(
(−1)n − 1

2n2π2
+ j(−1)n

2nπ

)
ejnπt

16.5. 1

2
+
∞∑
n=1

((
2((−1)n − 1)

n2π2

)
cos(nπt)

−4((−1)n − 1)

n3π3
sin(nπt)

)
1

2
+

∞∑
n=−∞

n�=0

(
(−1)n − 1

n2π2
+ j

(
2(1− (−1)n

n3π3

))
ejnπt
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16.6. 0+ 1
2 cos(2πt)+

∞∑
n=1
n�=2

n(1− (−1)n)

π(n2 − 4)
sin(nπt)

16.7. 0+ 1
4 (e

j2πt + e−j2πt )

+
∞∑

n=−∞
n�=0,2,−2

nj((−1)n − 1)

2π(n2 − 4)
ejnπt

0+
∞∑
n=1

2

(
((−1)n − 1)

n2π2
cos(nπt)

)

0+
∞∑

n=−∞
n�=0

((−1)n − 1)

n2π2
ejnπt

16.8. (a) Odd, (b) Even, (c) Odd.

16.9. (a) 2π , c1 = 1, c3 = 1, cn = 0 for all other n,
φ1 = π/2,φ3 = −π/2,φn = 0 for all other n,
(b) π , c1 = 1/

√
2, cn = 0 for all other n,

φ1 = π/4,φn = 0 for all other n,
(c) 2π , cn = 2/n2, n �= 0, c0 = 0,φn = 0 for all n.

16.10. (16.1)

cn =




0 when n = 4m for some m√
2/nπ when n = 4m+ 1 or

n = 4m+ 3 for some m

2/πn when n = 4m+ 2 for some m

φn =




0 when n = 4m for some m

−π/4 when n = 4m+ 1 for some m

−π/2 when n = 4m+ 2 for some m

−3π/4 when n = 4m+ 3 for some m

(16.3) c1 = 1/2, cn = 0 for all other n,φn = 0
for all n.

(16.7)

cn =
{

0 when n is even

4/(πn)2 when n is odd

φn =
{

0 when n is even

π when n is odd

16.12. (1/4)+ (1/8)(cos(2t)+ sin(2t)).

Chapter 17

17.1. ∂f /∂x = ln(y2), ∂f /δy = 2xy/y2.

17.2. (a) ∂u/δx = −2yx/(x2 + y2)2,
∂u/∂y = −x2 − y2/(x2 + y2)2;

(b) ∂u/δx = 2x − y/x2, ∂u/∂y = 2y + (1/x)

17.3. (a) 3, (b) 0, (c) 0, (d) 1, (e) 3/8.

17.4. ∂z/∂r = 2t , ∂z/∂θ = 0.

17.5. 6+ 24t

17.6. ∂u/∂t = −8 e−8t (A cos(2x)+ B sin(2x)),
∂2u/∂x2 = e−8t (−4A cos(2x)− 4B sin(2x)).

17.7. 10.048.

17.8. 2.315× 10−4.

17.9. 3%.

Chapter 18

18.1. (a) (2x,−z,−y + 15z2), (b) (0,0,0.26),
(c) ∇·F = y + 3xz− 1, (d) (0,3,4),
(e) k(2xy2z− z), (f) 6xy2z2 + 8x3yz+ 2x2y2,
(g) maximum slope is 4 in direction (0,0,1).

18.3. (a) −2, (b) 13 1
3 .

18.4. 31 1
2 .

18.5. (a) 0, (b) 0, (c) 2.644.

18.6. (a) (a4/2)− (a3/2), (b) −8/3, (c) 1/12.

Chapter 19

19.1. (a), (e), and (g) are isomorphic; (d) and (i) are
isomorphic.

19.3. Kn is planar for n � 4.
Kmn is planar for m � 2 or n � 2.

19.4. (a)

Incidence matrix Adjacency matrix


1 0 0 1 0 1
1 1 1 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 1 1







0 1 0 1 1
1 0 1 1 0
0 1 0 0 0
1 1 0 0 1
1 0 0 1 0







1 1 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 0







0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0







1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0
0 1 0 1 0 1







0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0




(c) (3 3 1 3 2), (3 3 3 3), (2 2 2 3 3)
These represent the degrees of the vertices.

19.5. A minimum spanning tree has total weight 21.
There are more than one.

19.6. The shortest path is sbdt. It has length 15.

19.7. Maximum flow is 18.

19.8. Maximum flow is 6.

19.10. (a) Path SB, BB, BB, BH accepted; (b) Path begins
SA, then no more legal moves. Not accepted;

(c) Path begins with arcs SA, AH. No more legal

TLFeBOOK



“exercise” — 2003/6/8 — page 541 — #9

Answers to exercises 541

moves and string is not exhausted. Not
accepted.

Chapter 20

20.1. L = {anbc|n � 2}
20.3. (a) S⇒ aSa⇒ aaa

(b) S⇒ aSa⇒ abSba⇒ abbSbba⇒ abbcbba

20.4. S ::= A“b” A ::= aC∗ C ::= “c”|“a”

20.6. <marks>
<subject name="Electronics 1">

<student id="121">
<semester1>40</semester1>
<semester2>58</semester2>

</student>
<student id="122">

<semester1>35</semester1>
<semester2>38</semester2>

</student>
<student id="123">

<semester1>75</semester1>
<semester2>65</semester2>

</student>
</subject>
<subject name="Engineering Maths">

<student id="121">
<semester1>66</semester1>
<semester2>54</semester2>

</student>
<student id="122">

<semester1>54</semester1>
<semester2>45</semester2>

</student>
<student id="123">

<semester1>72</semester1>
<semester2>22</semester2>

</student>
</subject>
<subject name="Communications">

<student id="121">
<semester1>58</semester1>
<semester2>60</semester2>

</student>
<student id="122">

<semester1>44</semester1>
<semester2>55</semester2>

</student>

<student id="123">
<semester1>70</semester1>
<semester2>68</semester2>

</student>
</subject>

</marks>

Chapter 21

21.1. 99.5625, 8.9496

21.2. 1/3

21.3. 2/3

21.4. 2/3

21.5. 4/13

21.6. 1/12

21.7. 1/6

21.8. 3/51

21.9. 1/(10000)

21.10. 0.9362

21.11. (a) 3/5, (b)3/5, (c) 3/10

21.12. 0.091

21.13. (a) 0.06681, (b) 0.02275, (c) 0.00135, (d) 0.30854

21.14. (a) 0.30854, (b) 0.02275, (c) 0.15866, (d) 0.22663

21.15. (a) 0.99018, (b) 0.74751, (c) 0.63056, (d) 0.63056,
(e) 0.26112, (f) 0.73769

21.16. 17.8%

21.17. (a) 0.699, (b) 0.139, (c) 0.192, (d) 0.273

21.18. 8.858, the councillor is correct.

21.19. (a) 0.512, (b) 0.2048, (c) 0.879

21.20. Model probabilities: 0.2231, 0.3347, 0.2510,
0.1255, 0.0471, 0.0141, 0.0045;
Model frequencies: 22, 33, 25, 13, 5, 1, 1
There is good agreement between the model and
the actual number of incidents.

21.21. 0.5402

21.22. (a) 0.4823, (b) 0.3614, (c) 0.1563, (d) 0.6936
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0 and 1 Laws:
Boolean Algebra, 78–80

A
Acceleration, 238

circular motion, 219–23
Absorption Laws:

Boolean Algebra, 78–80, 82
Addition:

of complex numbers, 209
of matrices, 296–7
of vectors, 191

Adjacency matrix, 465
Adjoint matrix, 333–4
Admittance, 218
Algebra, 76–7
Aliasing, 257
Amplitude, 94, 97, 100–1, 102–3
Amplitude modulation, 114
AND gate, 81
And, operation on propositions and

predicates, 62–3
Angle between two vectors, 199
Angular frequency, 418
Anti-differentiation, 133
Approximations, 441–2
Area function, 150–1
Area of a parallelogram, 202
Argand diagram, 208
Argument, of a complex number, 215–17,

222–6, 229–31
Arithmetic progressions, 259–62

common difference, 260–1
general term, 261
sum of n terms, 261–2

Array, 295
Arrow diagrams, 8–9
Assignment operator, 283
Associative laws,

Boolean Algebra, 78–80
Asymptotes, vertical, 242, 245
Augmented matrix, 325, 327
Auxiliary equation, 359, 364, 376
Average:

rate of change, 117
speed, 116
velocity, 117

B
Back-substitution, 328
Backus Naur Form, 483
Basis vectors, 198–9
Bayes’s theorem, 556–7
Bernoulli trial, 524
Best fit line, 341
Bias, 418, 423
Binary operations, 482
Binomial:

distribution, 524, 533–4
mean, 525
single trial: mean, 525; variance, 525

expansion, 271–2, 275
series, 267–72, 275–6
theorem, 270–2, 275–6

Bison, 487
Boolean:

Algebra, 76–88
operators, 79
Set, 77

Bound Laws:
Boolean Algebra, 78–80

Boundary conditions, 352

C
Capacity of a network, 471–3
Cardinality of a finite set, 7
Cartesian basis vectors, 198–9
Cartesian form:

conversion of complex numbers:
from polar form, 216
to exponential form, 223, 224

of vectors, 189
Central limit theorem, 517
Central tendency, 496
Centripetal force, 222
Chain rule, 124–6, 438–40
Characteristic equation, 360
Chord, gradient of, 117–18
Circuits, in a graph, 464
Circular motion, 220–5
Class:

frequency, 496, 498
interval, 494, 499
midpoint, 494, 496, 499

Codomain, 8
Cofactors, 333–4
Column vector, 303
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Commutative Laws:
Boolean Algebra, 78–80

Complement, 5
Complement Laws:

Boolean Algebra, 78–80
Complementary function, 363–5, 368–70
Complex conjugate, 210–12, 214, 226
Complex equations, 229–31
Complex numbers, 206–36

addition, 209
application to a.c linear circuits, 218–20
argument, 215–17, 222–6, 229–31
division, 211–12, 217, 226
equality, 208
exponential form, 223–31
imaginary part, 208–11, 218, 221, 224,

225, 229
modulus, 215–16, 222–30
multiplication, 209, 217, 225
polar form, 215–7, 226–7
powers, 225–6, 228
real part, 208–11, 218, 221, 224–5

Complex plane, 208
Complex variable, 403
Composite function, derivative of, 124–6
Composite functions, 18
Composition of functions, 18
Compound angle identities, 104–5
Computer graphics, 306
Conditional probability, 511–13
Conditions, 72
Conjugate, 210–12
Consistent system, 315, 318–20, 322
Constant of integration, 133
Continuous function, 47–8
Convergence, 282, 284–5

criterion, 285
Convolution, 387, 391, 398–400, 405–6,

412–13
Cosecant (cosec), 90
cosech, hyperbolic cosecant, 174
cosh, hyperbolic cosine, 173
Cosine (cos), 90

graph, 91
relationship with sine, 92, 93
symmetry of, 92

Cotangent (cotan), 90
coth, hyperbolic cotangent, 174
Cover up rule, 393–4, 396, 399, 401, 408,

409, 410, 413
Cross product, 198
Cumulative distribution function, 517, 522
Cumulative frequency, 496
Cumulative relative frequency, 496
Curl, 449–50
Curve fitting, 51–3, 341–2
Cycle, 418

length, 96, 99
rate, 97, 100

D
De Moivre’s theorem, 230–1
De Morgan’s Laws:

Boolean Algebra, 78–80

Decay of charge on a capacitor, 164
Decibels, 102–3
Decomposing functions, 20–1
Degrees, 89–90
Del operator, 448–50
Delta, 117, 261
Delta function, 385–6, 405
Dependent variable, 8
Derivation:

of symbols, 481
tree, 483

Derivative, 118
function, 118–20
of a composite function, 122–4
of a product, 126–7
of a quotient, 127
of a sum, 123
of af(x), 122
of inverse trigonometric functions,

125–6
of simple functions, 120–3, 126, 181
of the derivative, 220, 239
partial, 436–45
second, 239, 240
total, 440

Determinants, 304–5, 321
Determined system, 322, 336
Deviation, 499
Diagonal matrices, 301
Difference equations, 163, 376–80

general solution, 376
homogeneous, 376–8
linear with constant coefficients,

solution of, 376–8, 408–10
particular solution, 377
trial solutions, 377

Difference operator, 261, 264
Differential equations, 133, 153–66,

346–75
boundary conditions, 364
complementary function, 363–5, 368–70
d2x/dt2 = −ω2 x, 220
dy/dt = ky, 170
homogeneous, 358–60, 362, 363–5,

367, 371–2
initial conditions, 352
linear, 354–5
linear with constant coefficients, 356

solution of, 358–68, 394–6
general, 353, 357–8, 360–1, 364, 366,

368
particular, 133, 353, 355, 358, 360–5,

367
order of, 352
steady state solution, 369–70
systems of, 347–51, 372–5
solving, 372–5
time invariance, 356–8
transient solution, 369–70
trial solutions, 360

Differential operator, 354
Differentiating

vector fields, 449–50
Differentiation, 110–33, 180–1

applications, 134–6
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Digital:
circuits, 81
signals, 257–9
ramp, 11
signals, 10, 12, 14
square wave, 11
wave, 11

Digraphs, 462
underlying graph, 462
see also arcs, vertices

Dimension of matrices, 298
Direct current (dc) component of a signal,

423
Discontinuities, infinite, 245–6
Discrete functions, 10, 16
Discrete systems, 375
Distributive Law:

Boolean Algebra, 78–80
Divergence, 286
Divide by zero, 246
Division of complex numbers, 211–12,

217, 226
Document Type Definition (DTD), 488
Domain:

of a function, 9, 13
of a predicate, 62

E
e, 162, 166–9
Echelon form, 325
Edges, incidence with a vertex, 461
Edges, multiple, 461
Eigenvalues and eigenvectors, 335–8,

372–3
Electrical circuits, 349–61
Elements, 4
Empty set, 4
Equality:

of complex numbers, 208
Equations:

matrix, 305–6
quadratic, 32
trigonometric, 110–11
see also Differential equations, Systems

of linear equations
Equivalence, of predicates, 64–5
Even functions, 42, 92, 172, 424–5
Even permutation, 332
Events, 501–2, 504–5

disjoint, 504
non-disjoint, 505

EXOR gate, 81
exp, 167
Exponent, 226
Exponential:

conversion to rectangular, 225
derivative of, 170–1
distribution, 521–3
form of complex numbers, 223–31
function, The, 166–72
functions, 32–4, 162–89

growth and decay, 162–6
mean, 523
standard deviation, 523
relationships, 51–2

Extended Backus Naur Form (EBNF),
485–7

Extensible Markup Language (XML),
487–8

F
Failure rate, 521, 523
Fibonacci sequence, 256
Finite impulse response (FIR), 377
Finite state machine, 474
Finite state recognisers, 476
Flow augmenting path, 473
Flow function of a network, 473
For all, 70
Forcing function, 347, 348, 360, 367,

370–3
Fourier:

amplitude and phase form, 426–7
analysis, 418
complex form, 428–30
partial sums, 421
series, 418–32
sine and cosine form, 419–21

Frequency analysis, 418
Frequency distribution, 500–2, 517
Frequency response, 401–2, 414
Function of a function, 123
Functions, 1, 8–23

codomain of, 7
combining, 17–22
composite:

derivative of, 123–5
composition, 18
decomposing, 20–1
difference, 117
domain of, 8, 13
exponential, 33–4, 162–89
image under, 8
inverse, 21–3

existence of, 40–1
linear, 22–3
many-to-one, 40–1
mean value of, 155–6
modulus, 41
of more than one variable, 435–5
one-to-one, 40–1
periodic, 418–19
product of, 17

derivative of, 126
integral of, 139–43

quadratic, 31–3
quotient of, 17

derivative of, 127
range, 23
real, 9
r.m.s. value of, 155
sum, 17

derivative of, 123
integral of, 135
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symmetry, 41–3
trigonometric, 88–117
unit step, 384–5, 405

Fundamental period, 91–2, 94, 96, 97, 99

G
Gauss-Jordan elimination, 332–4
Gaussian elimination, 326–31, 344–5

partial pivoting, 331
pivotal equation, 326–31

Generalized functions, 385
Geometric growth, 163
Geometric progressions, 263–9

common ratio, 264–5
general term, 264
sum of n terms, 265–7
sum to infinity, 267–9

Geometrical vectors, 198
Gibb’s phenomenon, 421–2
Gradient, 26–30

of a chord, 117–18
of the tangent, 238

Grammar, 480
classification, 483
context free, 484

Graph sketching:
by analysing the function’s behaviour,

244–52
linear functions, 30–1
using transformations, 34–40, 94–6

Graphical user interface (GUI), 306
Graphs of functions, 8–13, 26–43

area bounded by, 154–5
area under, 147–51
hyperbolic functions, 274
inverse hyperbolic functions, 177

Graphs, 461–78
bipartite, 463
complete, 463
connected, 464
definition, 461
directed, see digraphs
isomorphism of, 462
matrix representation of, 465
planar, 465
simple, 461
subgraph, 463
weighted, 462
see also Edges; Trees; Vertices

Greedy algorithm for the minimum
spanning tree, 467–8

Growth:
constant, 163
exponential, 162–6
geometric, 163

H
Half-wave symmetry, 424–5
Harmonics, 418
Hermitian matrix, 302–3
Homogeneous equation, 358–60, 362,

363–5, 367, 371–2, 376–8
HTML, 488
Hyperbola, 33, 173

Hyperbolic functions, 172–4
cosech, 174
cosh, 173
coth, 174
graphs of, 175
identities, 175
relationship with Trigonometric

functions, 230
sech, 174
sinh, 173
tanh, 174

I
Idempotent Law, 78–80
Identity Laws:

Boolean Algebra, 78–80
Image, under a function, 8
Imaginary part, of a complex number,

208–11, 218, 221, 224, 225, 229
Impedance, 219–21
Implication, 67–9
Impulse function, 384–5, 404
Impulse response function, 397–400,

411–14
Incidence matrix, 461
Inconsistent system, 319–20, 322–3, 329
Independent variable, 8
Indeterminate point, 279
Indeterminate system, 314, 316, 324
Inequalities, 43–8

combining, 45–6
solving, 43–4, 47–8

Infinite impulse response (IIR), 376, 412
Infinity:

sum to, 267–9
tending to, 245–6, 286

Initial conditions, 352, 358, 360, 361, 364,
366, 375–6, 378

Instantaneous velocity, 118
Integers, 4
Integral operator, 354
Integral:

round a closed curve, 453–4
scalar line, 451–3
surface, 454–6

Integrals:
definite, 147–53
indefinite, 132
of the form ∫ f(ax+ b)dx, 138
of the form ∫ f(u)du/dx dx, 139
standard, 134, 181

Integrating vector fields, 451–6
Integration, 132–61, 181–5,

applications of, 145–7
as the inverse of differentiation, 133
by parts, 142, 183, 383
changing the variable of, 135–8
constant of, 133
numerical, 156–9
of a composite function, 136–42
of a product, 139–43
of a sum, 135
of af(x), 135
using partial fractions, 183–5
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Integration (continued)
using substitution, 135–41, 182–4
using trigonometric identities, 143–4

Intersection, 6
Inverse differentiation, 132–3
Inverse function, 21–3

existence of, 40–2
derivatives of, 125–6
graphs, 109, 110
of linear functions, 22
of hyperbolic functions, 176

graphs, 176
logarithmic equivalences, 176

of trigonometric functions, 109–11
Inverse:

of a matrix, 303–5, 322–3, 330–1, 333–5
of a power, 51

J
j, 206–7
JavaCC (Java Compiler Compiler), 487

K
Karnaugh maps, 82–7
Kirchhoff’s current law (KCL), 315
Kirchhoff’s voltage law (KVL), 314

L
L’Hopital’s rule, 279–81
Languages, 479–90

context-free, 483–5
Laplace transforms, 382–402

and systems theory, 397–402
application to solving differential

equations, 394–6
convolution property, 387, 391, 398–9
definition, 382–3
existence, 383
inverse, 386–9
poles of, 394
properties of, 386–91
table of, 386
using partial fractions, 392–4

Least squares data fitting, 338–42
LIFO, 485
Limits, 259, 266–7, 282–3

finite, 287
Line fitting, 40–1, 338
Linear differential equations, 353–4
Linear relationships, 40–1
Linear time invariant systems (LTI), 356
Linearity:

of Laplace transforms, 386–7, 390
of z transforms, 405–6

Linear functions, 22–3
Logarithms:

Napierian, 169
natural, 169

Logarithmic functions, derivative of,
172–3

Logic circuits, 81
Logic gates, 81–2
Loop, 462
LRC circuits, 349–51

M
Maclaurin series, 273–5

definition, 273–5
Many-to-one functions, 38, 42
Mapping, 306
Markup, 487
Mathematical model, 57–8
Matrices, 295–314

addition, 296
adjoint, 334
diagonal, 301
dimension of, 296–7
eigenvalues and eigenvectors, 338–41
Hermitian, 302–3
inverse of, 303–5, 322–3, 330–1, 333–5

a 2x2 matrix, 303–5
existence of, 303
finding:

by elimination, 330–1
by using the adjoint, 333–5

lower triangular, 302
multiplication, 297–9
notation, 296
skew-symmetric, 302
solving equations, 305–6
square, 301
subtraction, 296
symmetric, 302
to represent graphs, 466
transpose of, 302
unit, 300
upper triangular, 302
used for transformations, 306–16

Max-flow, min-cut theorem, 472
Maxima, 237–44
Maximum power, 243
Mean value, 155
Mean, 496–9, 501, 516–17, 519, 520, 523,

525, 528
of a continuous distribution, 523
of a single trial, 525
of binomial distribution, 525
of Poisson distribution, 528

Mechanical system:
damped oscillations, 370–2
rotational, 351–2

Minima, 237–44
Minimization, 82
Minimum spanning tree, 467
Minimum squared error, 338
Minors, 332–4
Models of growth, 163
Modulus:

function, 41
of a complex number, 212, 216, 225

Multiplication:
of complex numbers, 210, 219, 228
of matrices, 297–9
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N
NAND gate, 81–2
Napierian logarithm, 169
Natural logarithm, 169
Natural numbers, 4
Networks, 468–72

capacity of, 471
flow function, 471
maximum flow, 472–4
shortest path, 468–71

Newton’s law of cooling, 165
Newton’s second law, 224, 347
Newton-Raphson method of solving

equations, 283–6
Non-terminal symbol, 480
NOR gate, 81
Normal distribution, 516–21

standardized, 519
area in the tail, 518, 519

Normal equations, 343
NOT gate, 81
Null set, 2
Number line, 44–7, 49–50
Numbers:

sets of:
integers, 4
natural, 4
rationals, 4
reals, 4

see also Complex numbers
Numerical methods:

for solving equations, 282–5
of integration, 156–7

O
Odd functions, 42–3, 92–3, 173, 424
Odd permutation, 334
One-to-one functions, 40–1
Operations:

propositions and predicates, 62–4
sets, 5–7

Operators:
Boolean, 78–81
linear, 354–6

OR gate, 81
Or:

exclusive, 63, 81
non-exclusive, 63
operation on propositions and

predicates, 63
Orthogonal axes, 198
Oscillating sequence, 287
Outcome, 502

P
Parallel vectors, 202
Parsers, 484
Partial differentiation, 339, 436–45
Partial fractions, 184–6
Particular solution, 134
Pascal’s triangle, 269–72
Paths, in a graph, 465
Period, fundamental, 418
Periodic functions, 418

Permutations, 332
Phase, 98
Phasors, 195–6, 207

rotation by π/2, 206–8
Piecewise continuous functions 10
Point of inflexion, 238
Polar coordinates, conversion to

rectangular, 194–5
Polar form of complex numbers, 216–19

conversion to rectangular, 217–18
Poles of the Laplace transform, 392–3
Poisson distribution, 526–8
Population growth, 163–4
Population, 494
Position vectors, 203
Power relationships, 53–4
Power series, 274–9
Powers of complex numbers, 225–6, 228
Predicates, 61–72

applications, 72
domain of, 62

Principal root, 232
Probability, 501–15

addition law of, 504–6
of failure of an electrical circuit, 514–16
multiplication law of, 512
independent events, 512
using a probability density function, 504
using the cumulative distribution

function, 518
where outcomes are equally likely,

504–5
Probability density function, 504, 518
Probability distribution, 502–3
Probability function, 502
Probability trees, 508–11
Problem solving, 57–61
Productions, 480
Products of vectors, 198–201
Progressive waves, 100–1

velocity, 100–1
Proper subsets, 5
Propositions, 61–72

as a Boolean Algebra, 78–9
Pushdown recognizer, 484
Pythagoras’s theorem, 90

Q
Quadratic equations, 32–3

formula, 32
complex solutions, 207–8, 212–15
roots of, 32–3

Quadratic functions, 32–3

R
Radians, 88–9
Radioactive decay, 164
Ramp functions, 10–11
Rationals, 4
Reactance, 218
Real part, of a complex number, 208–11,

218, 221, 224, 225
Real numbers, 4
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Rectangular coordinates, conversion to
polar, 193

Rectangular form:
conversion to exponential, 223–4
conversion to polar, 215–16
of vectors, 190

Rectangular pulse functions, 386
Recurrence relations, 16, 255–7, 261, 264
Recursion, 485
Reflection, 309
Reflection, of graphs, 36, 37
Relations, 7
Relative frequency, 496
Resonance, 370
Resultant:

admittance, 218
impedance, 218
of vectors, 191

Rewriting rules, 480
Right-angles, 198–9
Root mean squared (r.m.s.) value, 156
Roots:

of a quadratic equation, 32–3
of unity, 229–30

Rotation:
of axes, 307, 310–11, 314
of coordinates, 307

Row vector, 303

S
Sample, 494
Sample mean, 498
Sample space, 500
Sampling:

interval, 10, 258
theorem, 258

Scalar:
product, 198–9
quantities, 188, 191

Scalar line integral, 451–4
Scaling, 310, 312–14, 335–7

of graphs, 38–9
Scatter diagram, 341
Secant (sec), 90
sech, hyperbolic secant, 174
Sentence, 480–3

grammatical, 481–3
Sequences, 11, 254–9

general term, 255
see also Arithmetic progressions and

Geometric progressions
Series, 259–60

binomial, 267–72
see also Fourier series

Sets, 4–7
as a Boolean Algebra, 77–8
cardinality, 7
complement, 5
intersection, 6
union, 6
see also Algebra and Functions

Shortest path problem, 468–71
Sigma notation, 259
Signals, 9
Simple harmonic motion, 222

Simpson’s rule, 156–7
Sine:

graph, 87
relationship with cosine, 87, 89
symmetry of, 88, 89

Single input, single output system (SISO),
343

sinh, hyperbolic sine, 173
Sinusoidal functions, 100–3

of distance, 100–1
of time, 100

Sine (sin), 90
Slope:

direction of maximum, 447
of a curve, 240
of a surface, 447

Spring, damped forced motion of, 248–9,
347–9

Square matrices, 301
Square numbers, 255
Square wave, 10–11
Stack, 485
Standard deviation, 496, 499

of a continuous distribution, 523
Standing waves, 107–8
Start symbol, 480
State transition diagrams, 474–6
State variables, 347–53
Stationary points, 238–42, 249–51
Statistical modelling, 516, 517

see also Binomial, Exponential, Normal
and Poisson distribution

Straight line, 26–30, 50–3
String, 480
Subsets, 5
Subtraction:

of matrices, 296–7
of vectors, 191

Sum of products, Boolean algebra, 82
Superposition of solutions, 354–5
Superposition of waves, 107–9
Surface integrals, 454–6
Surfaces, 435–6
Symmetry:

of functions, 41–3, 423–4
of matrices, 302

System, 346–7
resonance, 370
response, 346–7
stability, 368–9

Systems of linear equations, 314–29
consistent, 318–22
in three unknowns, 323
in two unknowns, 323
inconsistent, 318–22
indeterminate, 318–22
matrix form, 320
solving using elimination, 324–6
solving using substitution, 316–17
see also Gaussian elimination

T
Tangent, gradient of, 118
Tangent function (tan), 90

symmetry of, 92
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tanh, hyperbolic tangent, 174
Taylor series, 278–80

definition, 278
Terminal symbol, 480
There exists, 72
Three dimensional (3d) vectors, 197–8,

200
Time to failure, 522, 524
Total derivative, 440
Transfer function, 397–9, 401–2, 411–14
Transformations:

combined, 310–14
of axes, 307, 310–14
of coordinates, 307
of graphs, 34–40, 94–6
of the plane, 307

Translation:
of axes, 309
of coordinates, 309
of graphs, 35–6
vectors, 190

Transpose of a matrix, 300, 302–3, 334
Trapezoidal rule, 156–7
Trees, 465–7

parsing, 466, 487
properties of, 465
spanning, 466–7

Trials, 546
independent, 509
not independent, 510
repeated, 508–10

Triangular wave, 258
Trigonometric equations, 110–11
Trigonometric functions, 88–115

complex expressions, 227–8
inverses of, 109–12
relationship with Hyperbolic functions,

228
Trigonometric identities, 103–5

compound angle, 105
use in integration, 143–4

Truth table, 63, 79
Turning points, 239–40, 246–7
Two dimensional (2d) vectors, 189–90

U
Undefined function values, 13, 279
Undersampling, 257
Union, 6
Unit matrix, 300, 322, 330, 335
Unit step function, 384–5, 389, 404, 409
Unit vectors, 197
Universal Set, 6
Upper triangular matrix, 302, 325, 330

V
Valid document, 488
Variable, 61
Variance, 494, 497–9, 501, 525, 528
Vector calculus, 447–58

Vector equation of a line, 202–3
Vector field:

differentiating, 449–50
divergence of, 449

Vector product, 201–2
Vector quantities, 188–9
Vectors, 188–205

addition of, 191
angle between, 199
at right angles, 199–200
basis, 198–9
Cartesian form, 189
dimension of, 188–9
direction cosines, 200
direction of, 192–3
geometrical, 189, 198
magnitude of, 192–3
multiplication by a scalar, 197
parallel, 202
polar coordinates, 192
rectangular form, 189
scalar product, 198–9
subtraction of, 191
unit, 197

Vector product, 201–2
Velocity, 237

average, 117
circular motion, 219–23
instantaneous, 116
of a progressive wave, 101

Venn diagrams, 4, 76–8
Vertices, 461

adjacent, 461
degree of, 462
in-degree, 462
neighbours, 461
out-degree, 462

W
Walks, in a graph, 464–5
Waves, 97–103, 107–9

functions of time, 100
functions of distance, 100
progressive, 101
standing, 107
superposition, 107–8
triangular, 258

Well-formed document, 488
wff (well formed formula), 480

X
XML, 487–9

Y
YACC (Yet Another Compiler Compiler),

487
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550 Index

Z
z transforms, 403–17

and systems theory, 411–15
application to solving difference

equations, 408–10
convolution property, 405–6, 412–13

definition, 403–4
existence of, 405–8
properties, 405–8

table of, 404
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