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PREFACE

Digital systems are created to perform data processing and control tasks. What distinguishes one
system from another is an architecture tailored to efficiently execute the tasks for which it was de-
signed. A desktop computer and an automobile’s engine controller have markedly different attributes
dictated by their unique requirements. Despite these differences, they share many fundamental
building blocks and concepts. Fundamental to digital system design is the ability to choose from and
apply a wide range of technologies and methods to develop a suitable system architecture. Digital
electronics is a field of great breadth, with interdependent topics that can prove challenging for indi-
viduals who lack previous hands-on experience in the field.

This book’s focus is explaining the real-world implementation of complete digital systems. In do-
ing so, the reader is prepared to immediately begin design and implementation work without being
left to wonder about the myriad ancillary topics that many texts leave to independent and sometimes
painful discovery. A complete perspective is emphasized, because even the most elegant computer
architecture will not function without adequate supporting circuits.

A wide variety of individuals are intended to benefit from this book. The target audiences include

* Practicing electrical engineers seeking to sharpen their skills in modern digital system design.
Engineers who have spent years outside the design arena or in less-than-cutting-edge areas often
find that their digital design skills are behind the times. These professionals can acquire directly
relevant knowledge from this book’s practical discussion of modern digital technologies and de-
sign practices.

* College graduates and undergraduates seeking to begin engineering careers in digital electronics.
College curricula provide a rich foundation of theoretical understanding of electrical principles
and computer science but often lack a practical presentation of how the many pieces fit together in
real systems. Students may understand conceptually how a computer works while being incapable
of actually building one on their own. This book serves as a bridge to take readers from the theo-
retical world to the everyday design world where solutions must be complete to be successful.

* Technicians and hobbyists seeking a broad orientation to digital electronics design. Some people
have an interest in understanding and building digital systems without having a formal engineer-
ing degree. Their need for practical knowledge in the field is as strong as for degreed engineers,
but their goals may involve laboratory support, manufacturing, or building a personal project.

There are four parts to this book, each of which addresses a critical set of topics necessary for
successful digital systems design. The parts may be read sequentially or in arbitrary order, depend-
ing on the reader’s level of knowledge and specific areas of interest.

A complete discussion of digital logic and microprocessor fundamentals is presented in the first
part, including introductions to basic memory and communications architectures. More advanced
computer architecture and logic design topics are covered in Part 2, including modern microproces-
sor architectures, logic design methodologies, high-performance memory and networking technolo-
gies, and programmable logic devices.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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Part 3 steps back from the purely digital world to focus on the critical analog support circuitry
that is important to any viable computing system. These topics include basic DC and AC circuit
analysis, diodes, transistors, op-amps, and data conversion techniques. The fundamental topics from
the first three parts are tied together in Part 4 by discussing practical digital design issues, including
clock distribution, power regulation, signal integrity, design for test, and circuit fabrication tech-
niques. These chapters deal with nuts-and-bolts design issues that are rarely covered in formal elec-
tronics courses.

More detailed descriptions of each part and chapter are provided below.

PART 1 DIGITAL FUNDAMENTALS

The first part of this book provides a firm foundation in the concepts of digital logic and computer
architecture. Logic is the basis of computers, and computers are intrinsically at the heart of digital
systems. We begin with the basics: logic gates, integrated circuits, microprocessors, and computer
architecture. This framework is supplemented by exploring closely related concepts such as memory
and communications that are fundamental to any complete system. By the time you have completed
Part 1, you will be familiar with exactly how a computer works from multiple perspectives: individ-
ual logic gates, major architectural building blocks, and the hardware/software interface. You will
also have a running start in design by being able to thoughtfully identify and select specific off-the-
shelf chips that can be incorporated into a working system. A multilevel perspective is critical to suc-
cessful systems design, because a system architect must simultaneously consider high-level feature
trade-offs and low-level implementation possibilities. Focusing on one and not the other will usually
lead to a system that is either impractical (too expensive or complex) or one that is not really useful.

Chapter 1, “Digital Logic,” introduces the fundamentals of Boolean logic, binary arithmetic, and
flip-flops. Basic terminology and numerical representations that are used throughout digital systems
design are presented as well. On completing this chapter, the awareness gained of specific logical
building blocks will help provide a familiarity with supporting logic when reading about higher-
level concepts in later chapters.

Chapter 2, “Integrated Circuits and the 7400 Logic Families,” provides a general orientation to in-
tegrated circuits and commonly used logic ICs. This chapter is where the rubber meets the road and
the basics of logic design become issues of practical implementation. Small design examples pro-
vide an idea of how various logic chips can be connected to create functional subsystems. Attention
is paid to readily available components and understanding IC specifications, without which chips
cannot be understood and used. The focus is on design with real off-the-shelf components rather
than abstract representations on paper.

Chapter 3, “Basic Computer Architecture,” cracks open the heart of digital systems by explaining
how computers and microprocessors function. Basic concepts, including instruction sets, memory,
address decoding, bus interfacing, DMA, and assembly language, are discussed to create a complete
picture of what a computer is and the basic components that go into all computers. Questions are not
left as exercises for the reader. Rather, each mechanism and process in a basic computer is discussed.
This knowledge enables you to move ahead and explore the individual concepts in more depth while
maintaining an overall system-level view of how everything fits together.

Chapter 4, “Memory,” discusses this cornerstone of digital systems. With the conceptual under-
standing from Chapter 3 of what memory is and the functions that it serves, the discussion
progresses to explain specific types of memory devices, how they work, and how they are applicable
to different computing applications. Trade-offs of various memory technologies, including SRAM,
DRAM, flash, and EPROM, are explored to convey an understanding of why each technology has its
place in various systems.
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Chapter 5, “Serial Communications,” presents one of the most basic aspects of systems design:
moving data from one system to another. Without data links, computers would be isolated islands.
Communication is key to many applications, whether accessing the Internet or gathering data from a
remote sensor. Topics including RS-232 interfaces, modems, and basic multinode networking are
discussed with a focus on implementing real data links.

Chapter 6, “Instructive Microprocessors and Microcomputer Elements,” walks through five ex-
amples of real microprocessors and microcontrollers. The devices presented are significant because
of their trail-blazing roles in defining modern computing architecture, as exhibited by the fact that,
decades later, they continue to turn up in new designs in one form or another. These devices are used
as vehicles to explain a wide range of computing issues from register, memory, and bus architectures
to interrupt vectoring and operating system privilege levels.

PART 2 ADVANCED DIGITAL SYSTEMS

Digital systems operate by acquiring data, manipulating that data, and then transferring the results as
dictated by the application. Part 2 builds on the foundations of Part 1 by exploring the state of the art
in microprocessor, memory, communications, and logic implementation technologies. To effectively
conceive and implement such systems requires an understanding of what is possible, what is practi-
cal, and what tools and building blocks exist with which to get started. On completing Parts 1 and 2,
you will have acquired a broad understanding of digital systems ranging from small microcontrollers
to 32-bit microcomputer architecture and high-speed networking, and the logic design methodolo-
gies that underlie them all. You will have the ability to look at a digital system, whether pre-existing
or conceptual, and break it into its component parts—the first step in solving a problem.

Chapter 7, “Advanced Microprocessor Concepts,” discusses the key architectural topics behind
modern 32- and 64-bit computing systems. Basic concepts including RISC/CISC, floating-point
arithmetic, caching, virtual memory, pipelining, and DSP are presented from the perspective of what
a digital hardware engineer needs to know to understand system-wide implications and design useful
circuits. This chapter does not instruct the reader on how to build the fastest microprocessors, but it
does explain how these devices operate and, more importantly, what system-level design consider-
ations and resources are necessary to achieve a functioning system.

Chapter 8, “High-Performance Memory Technologies,” presents the latest SDR/DDR SDRAM
and SDR/DDR/QDR SSRAM devices, explains how they work and why they are useful in high-per-
formance digital systems, and discusses the design implications of each. Memory is used by more
than just microprocessors. Memory is essential to communications and data processing systems. Un-
derstanding the capabilities and trade-offs of such a central set of technologies is crucial to designing
a practical system. Familiarity with all mainstream memory technologies is provided to enable a
firm grasp of the applications best suited to each.

Chapter 9, “Networking,” covers the broad field of digital communications from a digital hard-
ware perspective. Network protocol layering is introduced to explain the various levels at which
hardware and software interact in modern communication systems. Much of the hardware responsi-
bility for networking lies at lower levels in moving bits onto and off of the communications medium.
This chapter focuses on the low-level details of twisted-pair and fiber-optic media, transceiver tech-
nologies, 8B10B channel coding, and error detection with CRC and checksum logic. A brief presen-
tation of Ethernet concludes the chapter to show how a real networking standard functions.

Chapter 10, “Logic Design and Finite State Machines,” explains how to implement custom logic
to make a fully functional system. Most systems use a substantial quantity of off-the-shelf logic
products to solve the problem at hand, but almost all require some custom support logic. This chap-
ter begins by presenting hardware description languages, and Verilog in particular, as an efficient
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means of designing synchronous and combinatorial logic. Once the basic methodology of designing
logic has been discussed, common support logic solutions, including address decoding, control/sta-
tus registers, and interrupt control logic, are shown with detailed design examples. Designing logic
to handle asynchronous inputs across multiple clock domains is presented with specific examples.
More complex logic circuits capable of implementing arbitrary algorithms are built from finite state
machines—a topic explored in detail with design examples to ensure that the concepts are properly
translated into reality. Finally, state machine optimization techniques, including pipelining, are dis-
cussed to provide an understanding of how to design logic that can be reliably implemented.

Chapter 11, “Programmable Logic Devices,” explains the various logic implementation technolo-
gies that are used in a digital system. GALs, PALs, CPLDs, and FPGAs are presented from the per-
spectives of how they work, how they are used to implement arbitrary logic designs, and the
capabilities and features of each that make them suitable for various types of designs. These devices
represent the glue that holds some systems together and the core operational elements of others. This
chapter aids in deciding which technology is best suited to each logic application and how to select
the right device to suit a specific need.

PART 3 ANALOG BASICS FOR DIGITAL SYSTEMS

All electrical systems are collections of analog circuits, but digital systems masquerade as discrete bi-
nary entities when they are properly designed. It is necessary to understand certain fundamental top-
ics in circuit analysis so that digital circuits can be made to behave in the intended binary manner.
Part 3 addresses many essential analog topics that have direct relevance to designing successful digi-
tal systems. Many digital engineers shrink away from basic DC and AC circuit analysis either for fear
of higher mathematics or because it is not their area of expertise. This needn’t be the case, because
most day-to-day analysis required for digital systems can be performed with basic algebra. Further-
more, a digital systems slant on analog electronics enables many simplifications that are not possible
in full-blown analog design. On completing this portion of the book, you will be able to apply passive
components, discrete diodes and transistors, and op-amps in ways that support digital circuits.

Chapter 12, “Electrical Fundamentals,” addresses basic DC and AC circuit analysis. Resistors, ca-
pacitors, inductors, and transformers are explained with straightforward means of determining volt-
ages and currents in simple analog circuits. Nonideal characteristics of passive components are
discussed, which is a critical aspect of modern, high-speed digital systems. Many a digital system
has failed because its designers were unaware of increasingly nonideal behavior of components as
operating frequencies get higher. Frequency-domain analysis and basic filtering are presented to ex-
plain common analog structures and how they can be applied to digital systems, especially in mini-
mizing noise, a major contributor to transient and hard-to-detect problems.

Chapter 13, “Diodes and Transistors,” explains the basic workings of discrete semiconductors and
provides specific and fully analyzed examples of how they are easily applied to digital applications.
LEDs are covered as well as bipolar and MOS transistors. An understanding of how diodes and tran-
sistors function opens up a great field of possible solutions to design problems. Diodes are essential
in power-regulation circuits and serve as voltage references. Transistors enable electrical loads to be
driven that are otherwise too heavy for a digital logic chip to handle.

Chapter 14, “Operational Amplifiers,” discusses this versatile analog building block with many
practical applications in digital systems. The design of basic amplifiers and voltage comparators is
offered with many examples to illustrate all topics presented. All examples are thoroughly analyzed
in a step-by-step process so that you can learn to use op-amps effectively on your own. Op-amps are
useful in data acquisition and interface circuits, power supply and voltage monitoring circuits, and
for implementing basic amplifiers and filters. This chapter applies the basic AC analysis skills ex-
plained previously in designing hybrid analog/digital circuits to support a larger digital system.
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Chapter 15, “Analog Interfaces for Digital Systems,” covers the basics of analog-to-digital and
digital-to-analog conversion techniques. Many digital systems interact with real-world stimuli in-
cluding audio, video, and radio frequencies. Data conversion is a key portion of these systems, en-
abling continuous analog signals to be represented and processed as binary numbers. Several
common means of performing data conversion are discussed along with fundamental concepts such
as the Nyquist frequency and anti-alias filtering.

PART 4 DIGITAL SYSTEM DESIGN IN PRACTICE

When starting to design a new digital system, high-profile features such as the microprocessor and
memory architecture often get most of the attention. Yet there are essential support elements that
may be overlooked by those unfamiliar with them and unaware of the consequences of not taking
time to address necessary details. All too often, digital engineers end up with systems that almost
work. A microprocessor may work properly for a few hours and then quit. A data link may work fine
one day and then experience inexplicable bit errors the next day. Sometimes these problems are the
result of logic bugs, but mysterious behavior may be related to a more fundamental electrical flaw.
The final part of this book explains the supporting infrastructure and electrical phenomena that must
be understood to design and build reliable systems.

Chapter 16, “Clock Distribution,” explores an essential component of all digital systems: proper
generation and distribution of clocks. Many common clock generation and distribution methods are
presented with detailed circuit implementation examples including low-skew buffers, termination,
and PLLs. Related subjects, including frequency synthesis, DLLs, and source-synchronous clock-
ing, are presented to lend a broad perspective on system-level clocking strategies.

Chapter 17, “Voltage Regulation and Power Distribution” discusses the fundamental power infra-
structure necessary for system operation. An introduction to general power handling is provided that
covers issues such as circuit specifications and safety issues. Thermal analysis is emphasized for
safety and reliability concerns. Basic regulator design with discrete components and integrated cir-
cuits is explained with numerous illustrative circuits for each topic. The remainder of the chapter ad-
dresses power distribution topics including wiring, circuit board power planes, and power supply
decoupling capacitors.

Chapter 18, “Signal Integrity,” delves into a set of topics that addresses the nonideal behavior of
high-speed digital signals. The first half of this chapter covers phenomena that are common causes
of corrupted digital signals. Transmission lines, signal reflections, crosstalk, and a wide variety of
termination schemes are explained. These topics provide a basic understanding of what can go
wrong and how circuits and systems can be designed to avoid signal integrity problems. Electromag-
netic radiation, grounding, and static discharge are closely related subjects that are presented in the
second half of the chapter. An overview is presented of the problems that can arise and their possible
solutions. Examples illustrate concepts that apply to both circuit board design and overall system en-
closure design—two equally important matters for consideration.

Chapter 19, “Designing for Success,” explores a wide range of system-level considerations that
should be taken into account during the product definition and design phases of a project. Compo-
nent selection and circuit fabrication must complement the product requirements and available de-
velopment and manufacturing resources. Often considered mundane, these topics are discussed
because a successful outcome hinges on the availability and practicality of parts and technologies
that are designed into a system. System testability is emphasized in this chapter from several per-
spectives, because testing is prominent in several phases of product development. Test mechanisms
including boundary scan (JTAG), specific hardware features, and software diagnostic routines en-
able more efficient debugging and fault isolation in both laboratory and assembly line environments.
Common computer-aided design software for digital systems is presented with an emphasis on Spice
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analog circuit simulation. Spice applications are covered and augmented by complete examples that
start with circuits, proceed with Spice modeling, and end with Spice simulation result analysis. The
chapter closes with a brief overview of common test equipment that is beneficial in debugging and
characterizing digital systems.

Following the main text is Appendix A, a brief list of recommended resources for further reading
and self-education. Modern resources range from books to trade journals and magazines to web sites.

Many specific vendors and products are mentioned throughout this book to serve as examples and
as starting points for your exploration. However, there are many more companies and products than
can be practically listed in a single text. Do not hesitate to search out and consider manufacturers not
mentioned here, because the ideal component for your application might otherwise lie undiscovered.
When specific components are described in this book, they are described in the context of the discus-
sion at hand. References to component specifications cannot substitute for a vendor’s data sheet, be-
cause there is not enough room to exhaustively list all of a component’s attributes, and such
specifications are always subject to revision by the manufacturer. Be sure to contact the manufac-
turer of a desired component to get the latest information on that product. Component manufacturers
have a vested interest in providing you with the necessary information to use their products in a safe
and effective manner. It is wise to take advantage of the resources that they offer. The widespread
use of the Internet has greatly simplified this task.

True proficiency in a trade comes with time and practice. There is no substitute for experience or
mentoring from more senior engineers. However, help in acquiring this experience by being pointed
in the right direction can not only speed up the learning process, it can make it more enjoyable as
well. With the right guide, a motivated beginner’s efforts can be more effectively channeled through
the early adoption of sound design practices and knowing where to look for necessary information. I
sincerely hope that this book can be your guide, and I wish you the best of luck in your endeavors.

Mark Balch
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CHAPTER 1
Digital Logic

All digital systems are founded on logic design. Logic design transforms algorithms and processes
conceived by people into computing machines. A grasp of digital logic is crucial to the understand-
ing of other basic elements of digital systems, including microprocessors. This chapter addresses vi-
tal topics ranging from Boolean algebra to synchronous logic to timing analysis with the goal of
providing a working set of knowledge that is the prerequisite for learning how to design and imple-
ment an unbounded range of digital systems.

Boolean algebra is the mathematical basis for logic design and establishes the means by which a
task’s defining rules are represented digitally. The topic is introduced in stages starting with basic
logical operations and progressing through the design and manipulation of logic equations. Binary
and hexadecimal numbering and arithmetic are discussed to explain how logic elements accomplish
significant and practical tasks.

With an understanding of how basic logical relationships are established and implemented, the
discussion moves on to explain flip-flops and synchronous logic design. Synchronous logic comple-
ments Boolean algebra, because it allows logic operations to store and manipulate data over time.
Digital systems would be impossible without a deterministic means of advancing through an algo-
rithm’s sequential steps. Boolean algebra defines algorithmic steps, and the progression between
steps is enabled by synchronous logic.

Synchronous logic brings time into play along with the associated issue of how fast a circuit can
reliably operate. Logic elements are constructed using real electrical components, each of which has
physical requirements that must be satisfied for proper operation. Timing analysis is discussed as a
basic part of logic design, because it quantifies the requirements of real components and thereby es-
tablishes a digital circuit’s practical operating conditions.

The chapter concludes with a presentation of higher-level logic constructs that are built up from
the basic logic elements already discussed. These elements, including multiplexers, tri-state buffers,
and shift registers, are considered to be fundamental building blocks in digital system design. The
remainder of this book, and digital engineering as a discipline, builds on and makes frequent refer-
ence to the fundamental items included in this discussion.

1.1 BOOLEAN LOGIC

Machines of all types, including computers, are designed to perform specific tasks in exact well de-
fined manners. Some machine components are purely physical in nature, because their composition
and behavior are strictly regulated by chemical, thermodynamic, and physical properties. For exam-
ple, an engine is designed to transform the energy released by the combustion of gasoline and oxy-
gen into rotating a crankshaft. Other machine components are algorithmic in nature, because their
designs primarily follow constraints necessary to implement a set of logical functions as defined by
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human beings rather than the laws of physics. A traffic light’s behavior is predominantly defined by
human beings rather than by natural physical laws. This book is concerned with the design of digital
systems that are suited to the algorithmic requirements of their particular range of applications. Dig-
ital logic and arithmetic are critical building blocks in constructing such systems.

An algorithm is a procedure for solving a problem through a series of finite and specific steps. It
can be represented as a set of mathematical formulas, lists of sequential operations, or any combina-
tion thereof. Each of these finite steps can be represented by a Boolean logic equation. Boolean logic
is a branch of mathematics that was discovered in the nineteenth century by an English mathemati-
cian named George Boole. The basic theory is that logical relationships can be modeled by algebraic
equations. Rather than using arithmetic operations such as addition and subtraction, Boolean algebra
employs logical operations including AND, OR, and NOT. Boolean variables have two enumerated
values: true and false, represented numerically as 1 and 0, respectively.

The AND operation is mathematically defined as the product of two Boolean values, denoted A
and B for reference. Truth tables are often used to illustrate logical relationships as shown for the
AND operation in Table 1.1. A truth table provides a direct mapping between the possible inputs and
outputs. A basic AND operation has two inputs with four possible combinations, because each input
can be either 1 or 0 — true or false. Mathematical rules apply to Boolean algebra, resulting in a non-
zero product only when both inputs are 1.

TABLE 1.1 AND Operation Truth Table

A B A AND B
0 0 0
0 1 0
1 0 0

Summation is represented by the OR operation in Boolean algebra as shown in Table 1.2. Only
one combination of inputs to the OR operation result in a zero sum: 0 + 0 = 0.

TABLE 1.2 OR Operation Truth Table

A B AORB

0 0 0

AND and OR are referred to as binary operators, because they require two operands. NOT is a
unary operator, meaning that it requires only one operand. The NOT operator returns the comple-
ment of the input: 1 becomes 0, and 0 becomes 1. When a variable is passed through a NOT opera-
tor, it is said to be inverted.
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Boolean variables may not seem too interesting on their own. It is what they can be made to rep-
resent that leads to useful constructs. A rather contrived example can be made from the following
logical statement:

“If today is Saturday or Sunday and it is warm, then put on shorts.”

Three Boolean inputs can be inferred from this statement: Saturday, Sunday, and warm. One Bool-
ean output can be inferred: shorts. These four variables can be assembled into a single logic equation
that computes the desired result,

shorts = (Saturday OR Sunday) AND warm

While this is a simple example, it is representative of the fact that any logical relationship can be ex-
pressed algebraically with products and sums by combining the basic logic functions AND, OR, and
NOT.

Several other logic functions are regarded as elemental, even though they can be broken down
into AND, OR, and NOT functions. These are not-AND (NAND), not—-OR (NOR), exclusive—OR
(XOR), and exclusive-NOR (XNOR). Table 1.3 presents the logical definitions of these other basic
functions. XOR is an interesting function, because it implements a sum that is distinct from OR by
taking into account that 1 + 1 does not equal 1. As will be seen later, XOR plays a key role in arith-
metic for this reason.

TABLE 1.3 NAND, NOR, XOR, XNOR Truth Table

A B ANANDB ANORB AXORB AXNORB

0o 0 1 1 0 1
0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1

All binary operators can be chained together to implement a wide function of any number of in-
puts. For example, the truth table for a ten-input AND function would result in a 1 output only when
all inputs are 1. Similarly, the truth table for a seven-input OR function would result in a 1 output if
any of the seven inputs are 1. A four-input XOR, however, will only result in a 1 output if there are
an odd number of ones at the inputs. This is because of the logical daisy chaining of multiple binary
XOR operations. As shown in Table 1.3, an even number of 1s presented to an XOR function cancel
each other out.

It quickly grows unwieldy to write out the names of logical operators. Concise algebraic expres-
sions are written by using the graphical representations shown in Table 1.4. Note that each operation
has multiple symbolic representations. The choice of representation is a matter of style when hand-
written and is predetermined when programming a computer by the syntactical requirements of each
computer programming language.

A common means of representing the output of a generic logical function is with the variable Y.
Therefore, the AND function of two variables, A and B, can be writtenasY =A & BorY =A*B. As
with normal mathematical notation, products can also be written by placing terms right next to each
other, such as Y = AB. Notation for the inverted functions, NAND, NOR, and XNOR, is achieved by
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TABLE 1.4 Symbolic Representations of
Standard Boolean Operators

Boolean Operation Operators
AND * &
OR +, |, #
XOR @,
NOT L~A

inverting the base function. Two equally valid ways of representing NAND are Y =A & B and Y =
!(AB). Similarly, an XNOR might be written asY =A @ B.

When logical functions are converted into circuits, graphical representations of the seven basic
operators are commonly used. In circuit terminology, the logical operators are called gates. Figure
1.1 shows how the basic logic gates are drawn on a circuit diagram. Naming the inputs of each gate
A and B and the output Y is for reference only; any name can be chosen for convenience. A small
bubble is drawn at a gate’s output to indicate a logical inversion.

More complex Boolean functions are created by combining Boolean operators in the same way
that arithmetic operators are combined in normal mathematics. Parentheses are useful to explicitly
convey precedence information so that there is no ambiguity over how two variables should be
treated. A Boolean function might be written as

Y = (AB+C+D)&E®F

This same equation could be represented graphically in a circuit diagram, also called a schematic
diagram, as shown in Fig. 1.2. This representation uses only two-input logic gates. As already men-
tioned, binary operators can be chained together to implement functions of more than two variables.

NOT

1 >
AND OR XOR A_{>O_Y
1> ) >

NAND NOR XNOR

FIGURE 1.1 Graphical representation of basic logic gates.

{>c Y

mo |0 (®m>

@

FIGURE 1.2 Schematic diagram of logic function.
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An alternative graphical representation would use a three-input OR gate by collapsing the two-input
OR gates into a single entity.

1.2 BOOLEAN MANIPULATION

Boolean equations are invaluable when designing digital logic. To properly use and devise such
equations, it is helpful to understand certain basic rules that enable simplification and re-expression
of Boolean logic. Simplification is perhaps the most practical final result of Boolean manipulation,
because it is easier and less expensive to build a circuit that does not contain unnecessary compo-
nents. When a logical relationship is first set down on paper, it often is not in its most simplified
form. Such a circuit will function but may be unnecessarily complex. Re-expression of a Boolean
equation is a useful skill, because it can enable you to take better advantage of the logic resources at
your disposal instead of always having to use new components each time the logic is expanded or
otherwise modified to function in a different manner. As will soon be shown, an OR gate can be
made to behave as an AND gate, and vice versa. Such knowledge can enable you to build a less-
complex implementation of a Boolean equation.
First, it is useful to mention two basic identities:

A&A=0andA+A=1

The first identity states that the product of any variable and its logical negation must always be false.
It has already been shown that both operands of an AND function must be true for the result to be
true. Therefore, the first identity holds true, because it is impossible for both operands to be true
when one is the negation of the other. The second identity states that the sum of any variable and its
logical negation must always be true. At least one operand of an OR function must be true for the re-
sult to be true. As with the first identity, it is guaranteed that one operand will be true, and the other
will be false.
Boolean algebra also has commutative, associative, and distributive properties as listed below:

e Commutative: A& B=B&AandA+B=B+A
* Associative: ( A&B)&C=A& B &C)and A+B)+C=A+B +C)
¢ Distributive: A& (B+C)=A&B+A &C

The aforementioned identities, combined with these basic properties, can be used to simplify logic.
For example,

A&B&C+A&B&C
can be re-expressed using the distributive property as
A&B&(C+C)
which we know by identity equals
A&B&(1)=A&B

Another useful identity, A + AB = A + B, can be illustrated using the truth table shown in
Table 1.5.
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TABLE1.5 A + AB = A + B Truth Table

A B AB A+AB A+B
0 0 0 0 0
0 1 1 1 1
1 0 0 1 1
1 1 0 1 1

Augustus DeMorgan, another nineteenth century English mathematician, worked out a logical
transformation that is known as DeMorgan’s law, which has great utility in simplifying and re-ex-
pressing Boolean equations. Simply put, DeMorgan’s law states

A+B = A&B and A&B = A+B

These transformations are very useful, because they show the direct equivalence of AND and OR
functions and how one can be readily converted to the other. XOR and XNOR functions can be rep-
resented by combining AND and OR gates. It can be observed from Table 1.3 that A @ B = AB + AB
and that A ® B = AB + A B. Conversions between XOR/XNOR and AND/OR functions are helpful
when manipulating and simplifying larger Boolean expressions, because simpler AND and OR func-
tions are directly handled with DeMorgan’s law, whereas XOR/XNOR functions are not.

1.3 THE KARNAUGH MAP

Generating Boolean equations to implement a desired logic function is a necessary step before a cir-
cuit can be implemented. Truth tables are a common means of describing logical relationships be-
tween Boolean inputs and outputs. Once a truth table has been created, it is not always easy to
convert that truth table directly into a Boolean equation. This translation becomes more difficult as
the number of variables in a function increases. A graphical means of translating a truth table into a
logic equation was invented by Maurice Karnaugh in the early 1950s and today is called the Kar-
naugh map, or K-map. A K-map is a type of truth table drawn such that individual product terms can
be picked out and summed with other product terms extracted from the map to yield an overall Bool-
ean equation. The best way to explain how this process works is through an example. Consider the
hypothetical logical relationship in Table 1.6.

TABLE 1.6 Function of Three Variables

Y

_ = = = 0 O O o »
- - o O = = o o W
- o = ©O = © = o] N

1
1
0
1
1
1
0
0
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If the corresponding Boolean equation does not immediately become clear, the truth table can be
converted into a K-map as shown in Fig. 1.3. The K-map has one box for every combination of in-
puts, and the desired output for a given combination is written into the corresponding box. Each axis
of a K-map represents up to two variables, enabling a K-map to solve a function of up to four vari-
ables. Individual grid locations on each axis are labeled with a unique combination of the variables
represented on that axis. The labeling pattern is important, because only one variable per axis is per-
mitted to differ between adjacent boxes. Therefore, the pattern “00, 01, 10, 11 is not proper, but the
pattern “11, 01, 00, 10” would work as well as the pattern shown.

K-maps are solved using the sum of products principle, which states that any relationship can be
expressed by the logical OR of one or more AND terms. Product terms in a K-map are recognized by
picking out groups of adjacent boxes that all have a state of 1. The simplest product term is a single
box with a 1 in it, and that term is the product of all variables in the K-map with each variable either
inverted or not inverted such that the result is 1. For example, a 1 is observed in the box that corre-
sponds to A =0, B =1, and C = 1. The product term representation of that box would be ABC. A
brute force solution is to sum together as many product terms as there are boxes with a state of 1
(there are five in this example) and then simplify the resulting equation to obtain the final result. This
approach can be taken without going to the trouble of drawing a K-map. The purpose of a K-map is
to help in identifying minimized product terms so that lengthy simplification steps are unnecessary.

Minimized product terms are identified by grouping together as many adjacent boxes with a state
of 1 as possible, subject to the rules of Boolean algebra. Keep in mind that, to generate a valid prod-
uct term, all boxes in a group must have an identical relationship to all of the equation’s input vari-
ables. This requirement translates into a rule that product term groups must be found in power-of-
two quantities. For a three-variable K-map, product term groups can have only 1, 2, 4, or 8 boxes in
them.

Going back to our example, a four-box product term is formed by grouping together the vertically
stacked 1s on the left and right edges of the K-map. An interesting aspect of a K-map is that an edge
wraps around to the other side, because the axis labeling pattern remains continuous. The validity of
this wrapping concept is shown by the fact that all four boxes share a common relationship with the
input variables: their product term is B. The other variables, A and C, can be ruled out, because the
boxes are 1 regardless of the state of A and C. Only variable B is a determining factor, and it must be
0 for the boxes to have a state of 1. Once a product term has been identified, it is marked by drawing
a ring around it as shown in Fig. 1.4. Because the product term crosses the edges of the table, half-
rings are shown in the appropriate locations.

There is still a box with a 1 in it that has not yet been accounted for. One approach could be to
generate a product term for that single box, but this would not result in a fully simplified equation,
because a larger group can be formed by associating the lone box with the adjacent box correspond-
ingto A =0, B =0, and C = 1. K-map boxes can be part of multiple groups, and forming the largest
groups possible results in a fully simplified equation. This second group of boxes is circled in Fig.
1.5 to complete the map. This product term shares a common relationship where A=0,C =1, and B

AB AB
C 00 01 11 10 C 00 01 11 10

111]1]o]1 1) 1]o 4]

FIGURE 1.3 Karnaugh map for function of = FIGURE 1.4 Partially completed Karnaugh map
three variables. for a function of three variables.
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is irrelevant: AC . It may appear tempting to create a product term consisting of the three boxes on
the bottom edge of the K-map. This is not valid because it does not result in all boxes sharing a com-
mon product relationship, and therefore violates the power-of-two rule mentioned previously. Upon
completing the K-map, all product terms are summed to yield a final and simplified Boolean equa-
tion that relates the input variables and the output: Y = B+ AC.

Functions of four variables are just as easy to solve using a K-map. Beyond four variables, it is
preferable to break complex functions into smaller subfunctions and then combine the Boolean
equations once they have been determined. Figure 1.6 shows an example of a completed Karnaugh
map for a hypothetical function of four variables. Note the overlap between several groups to
achieve a simplified set of product terms. The lager a group is, the fewer unique terms will be re-
quired to represent its logic. There is nothing to lose and something to gain by forming a larger
group whenever possible. This K-map has four product terms that are summed for a final result:
Y = AC+BC+ABD+ABCD.

In both preceding examples, each result box in the truth table and Karnaugh map had a clearly de-
fined state. Some logical relationships, however, do not require that every possible result necessarily
be a one or a zero. For example, out of 16 possible results from the combination of four variables,
only 14 results may be mandated by the application. This may sound odd, but one explanation could
be that the particular application simply cannot provide the full 16 combinations of inputs. The spe-
cific reasons for this are as numerous as the many different applications that exist. In such circum-
stances these so-called don’t care results can be used to reduce the complexity of your logic.
Because the application does not care what result is generated for these few combinations, you can
arbitrarily set the results to Os or 1s so that the logic is minimized. Figure 1.7 is an example that
modifies the Karnaugh map in Fig. 1.6 such that two don’t care boxes are present. Don’t care values
are most commonly represented with “x” characters. The presence of one x enables simplification of
the resulting logic by converting it to a 1 and grouping it with an adjacent 1. The other x is set to 0 so
that it does not waste additional logic terms. The new Boolean equation is simplified by removing B
from the last term, yielding Y = A C+ B C+ ABD + ACD.. It is helpful to remember that x val-
ues can generally work to your benefit, because their presence imposes fewer requirements on the
logic that you must create to get the job done.

1.4 BINARY AND HEXADECIMAL NUMBERING

The fact that there are only two valid Boolean values, 1 and 0, makes the binary numbering system
appropriate for logical expression and, therefore, for digital systems. Binary is a base-2 system in

A,B
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FIGURE 1.5 Completed Karnaugh map for a  FIGURE 1.6 Completed Karnaugh map for
function of three variables. function of four variables.
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FIGURE 1.7 Karnaugh map for function of four vari-
ables with two “don’t care” values.

which only the digits 1 and 0 exist. Binary follows the same laws of mathematics as decimal, or
base-10, numbering. In decimal, the number 191 is understood to mean one hundreds plus nine tens
plus one ones. It has this meaning, because each digit represents a successively higher power of ten
as it moves farther left of the decimal point. Representing 191 in mathematical terms to illustrate
these increasing powers of ten can be done as follows:

191=1%x102+9%x 10" + 1 x 10°

Binary follows the same rule, but instead of powers of ten, it works on powers of two. The num-
ber 110 in binary (written as 110, to explicitly denote base 2) does not equal 110, (decimal).
Rather, 110, = 1 x 22 + 1 x 2! + 0 x 27 = 6,. The number 191, can be converted to binary by per-
forming successive division by decreasing powers of 2 as shown below:

191+27 =191+128 =1 remainder 63
63 +2° =63+ 64 = 0 remainder 63
63 +25 =63+32 = 1 remainder 31
31 +2% =31=16 =1 remainder 15
15+ 23 =158 =1 remainder 7
7 =22 =7+4 = 1 remainder 3
3:2! =322 = 1 remainder 1
1+20 =1=+1 = 1 remainder 0

The final result is that 191;, = 10111111,. Each binary digit is referred to as a bit. A group of N
bits can represent decimal numbers from 0 to 2N — 1. There are eight bits in a byre, more formally
called an octet in certain circles, enabling a byte to represent numbers up to 28 — 1 = 255. The pre-
ceding example shows the eight power-of-two terms in a byte. If each term, or bit, has its maximum
value of 1, the resultis 128 + 64 +32+ 16 +8 +4 + 2 + 1 = 255.

While binary notation directly represents digital logic states, it is rather cumbersome to work
with, because one quickly ends up with long strings of ones and zeroes. Hexadecimal, or base 16
(hex for short), is a convenient means of representing binary numbers in a more succinct notation.
Hex matches up very well with binary, because one hex digit represents four binary digits, given that
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2% = 16. A four-bit group is called a nibble. Because hex requires 16 digits, the letters “A” through
“F” are borrowed for use as hex digits beyond 9. The 16 hex digits are defined in Table 1.7.

TABLE 1.7 Hexadecimal Digits

Decimal value
Hex digit

Binary nibble

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

The preceding example, 191, = 10111111,, can be converted to hex easily by grouping the eight
bits into two nibbles and representing each nibble with a single hex digit:

1011, =(8 +2+ 1);g=11;5=By4
1111, =8 +4+2+1);5=15,0=Fy¢

Therefore, 191;o = 10111111, = BF,¢. There are two common prefixes, 0x and $, and a common
suffix, h, that indicate hex numbers. These styles are used as follows: BF ¢ = 0xBF = $BF = BFh. All
three are used by engineers, because they are more convenient than appending a subscript “16” to
each number in a document or computer program. Choosing one style over another is a matter of
preference.

Whether a number is written using binary or hex notation, it remains a string of bits, each of
which is 1 or 0. Binary numbering allows arbitrary data processing algorithms to be reduced to
Boolean equations and implemented with logic gates. Consider the equality comparison of two four-
bit numbers, M and N.

“If M = N, then the equality test is true.”

Implementing this function in gates first requires a means of representing the individual bits that
compose M and N. When a group of bits are used to represent a common entity, the bits are num-
bered in ascending or descending order with zero usually being the smallest index. The bit that rep-
resents 2° is termed the least-significant bit, or LSB, and the bit that represents the highest power of
two in the group is called the most-significant bit, or MSB. A four-bit quantity would have the MSB
represent 23. M and N can be ordered such that the MSB is bit number 3, and the LSB is bit number
0. Collectively, M and N may be represented as M[3:0] and N[3:0] to denote that each contains four
bits with indices from O to 3. This presentation style allows any arbitrary bit of M or N to be
uniquely identified with its index.

Turning back to the equality test, one could derive the Boolean equation using a variety of tech-
niques. Equality testing is straightforward, because M and N are equal only if each digit in M
matches its corresponding bit position in N. Looking back to Table 1.3, it can be seen that the XNOR
gate implements a single-bit equality check. Each pair of bits, one from M and one from N, can be
passed through an XNOR gate, and then the four individual equality tests can be combined with an
AND gate to determine overall equality,

Y = M[3]®N[3]&M[2] ® N[2]&M[1] © N[1]&M[0] © N[O0]

The four-bit equality test can be drawn schematically as shown in Fig. 1.8.
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FIGURE 1.8 Four-bit equality logic.

Logic to compare one number against a constant is simpler than comparing two numbers, because
the number of inputs to the Boolean equation is cut in half. If, for example, one wanted to compare
M[3:0] to a constant 1001, (9,(), the logic would reduce to just a four-input AND gate with two in-
verted inputs:

y = M[3]&M[2]&M[1]&M][0]

When working with computers and other digital systems, numbers are almost always written in
hex notation simply because it is far easier to work with fewer digits. In a 32-bit computer, a value
can be written as either 8 hex digits or 32 bits. The computer’s logic always operates on raw binary
quantities, but people generally find it easier to work in hex. An interesting historical note is that hex
was not always the common method of choice for representing bits. In the early days of computing,
through the 1960s and 1970s, octal (base-8) was used predominantly. Instead of a single hex digit
representing four bits, a single octal digit represents three bits, because 23 = 8. In octal, 1914 =
2774. Whereas bytes are the lingua franca of modern computing, groups of two or three octal digits
were common in earlier times.

Because of the inherent binary nature of digital systems, quantities are most often expressed in or-
ders of magnitude that are tied to binary rather than decimal numbering. For example, a “round num-
ber” of bytes would be 1,024 (210) rather than 1000 (103). Succinct terminology in reference to
quantities of data is enabled by a set of standard prefixes used to denote order of magnitude. Further-
more, there is a convention of using a capital B to represent a quantity of bytes and using a lower-
case b to represent a quantity of bits. Commonly observed prefixes used to quantify sets of data are
listed in Table 1.8. Many memory chips and communications interfaces are expressed in units of
bits. One must be careful not to misunderstand a specification. If you need to store 32 MB of data, be
sure to use a 256 Mb memory chip rather than a 32 Mb device!

TABLE 1.8 Common Binary Magnitude Prefixes

Prefix Definition Order of Magnitude Abbreviation Usage
Kilo  (1,024) = 1,024 S0 " 5
Mega  (1,024)* = 1,048,576 220 M MB
Giga  (1,024)° = 1,073,741,824 530 G GB
Tera  (1,024)* = 1,099,511,627,776 240 T B
Peta  (1,024)° = 1,125,899,906,842,624 250 P PB
Exa  (1,024) = 1,152,921,504,606,846,976 260 E EB
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The majority of digital components adhere to power-of-two magnitude definitions. However,
some industries break from these conventions largely for reasons of product promotion. A key exam-
ple is the hard disk drive industry, which specifies prefixes in decimal terms (e.g., 1 MB = 1,000,000
bytes). The advantage of doing this is to inflate the apparent capacity of the disk drive: a drive that
provides 10,000,000,000 bytes of storage can be labeled as “10 GB” in decimal terms, but it would
have to be labeled as only 9.31 GB in binary terms (10'? + 230 = 9.31).

1.5 BINARY ADDITION

Despite the fact that most engineers use hex data representation, it has already been shown that logic
gates operate on strings of bits that compose each unit of data. Binary arithmetic is performed ac-
cording to the same rules as decimal arithmetic. When adding two numbers, each column of digits is
added in sequence from right to left and, if the sum of any column is greater than the value of the
highest digit, a carry is added to the next column. In binary, the largest digit is 1, so any sum greater
than 1 will result in a carry. The addition of 111, and 011, (7 + 3 = 10) is illustrated below.

1 1 1 0 carry bits

In the first column, the sum of two ones is 2, or 10,, resulting in a carry to the second column.
The sum of the second column is 3, or 11,, resulting in both a carry to the next column and a one
in the sum. When all three columns are completed, a carry remains, having been pushed into a new
fourth column. The carry is, in effect, added to leading Os and descends to the sum line as a 1.

The logic to perform binary addition is actually not very complicated. At the heart of a 1-bit adder
is the XOR gate, whose result is the sum of two bits without the associated carry bit. An XOR gate
generates a 1 when either input is 1, but not both. On its own, the XOR gate properly adds 0 + 0, 0 +
1, and 1 + 0. The fourth possibility, 1 + 1 = 2, requires a carry bit, because 2, = 10,. Given that a
carry is generated only when both inputs are 1, an AND gate can be used to produce the carry. A so-
called half-adder is represented as follows:

sum = A® B
carry = AB

This logic is called a half-adder because it does only part of the job when multiple bits must be
added together. Summing multibit data values requires a carry to ripple across the bit positions start-
ing from the LSB. The half-adder has no provision for a carry input from the preceding bit position.
A full-adder incorporates a carry input and can therefore be used to implement a complete summa-
tion circuit for an arbitrarily large pair of numbers. Table 1.9 lists the complete full-adder input/out-
put relationship with a carry input (Cyy) from the previous bit position and a carry output (Cqyt) to
the next bit position. Note that all possible sums from zero to three are properly accounted for by
combining Cqyt and sum. When Cyy = 0, the circuit behaves exactly like the half-adder.
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TABLE 1.9 1-Bit Full-Adder Truth Table

Cin A B Cour Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0

Full-adder logic can be expressed in a variety of ways. It may be recognized that full-adder logic
can be implemented by connecting two half-adders in sequence as shown in Fig. 1.9. This full-adder
directly generates a sum by computing the XOR of all three inputs. The carry is obtained by combin-
ing the carry from each addition stage. A logical OR is sufficient for Cqyr, because there can never
be a case in which both half-adders generate a carry at the same time. If the A + B half-adder gener-
ates a carry, the partial sum will be 0, making a carry from the second half-adder impossible. The as-
sociated logic equations are as follows:

sum = A®B @CIN
Cout = AB+[(A®B)Cy]

Equivalent logic, although in different form, would be obtained using a K-map, because XOR/
XNOR functions are not direct results of K-map AND/OR solutions.

1.6 SUBTRACTION AND NEGATIVE NUMBERS

Binary subtraction is closely related to addition. As with many operations, subtraction can be imple-
mented in a variety of ways. It is possible to derive a Boolean equation that directly subtracts two
numbers. However, an efficient solution is to add the negative of the subtrahend to the minuend

O
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FIGURE 1.9 Full-adder logic diagram.
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rather than directly subtracting the subtrahend from the minuend. These are, of course, identical op-
erations: A —B = A + (-B). This type of arithmetic is referred to as subtraction by addition of the
two’s complement. The two’s complement is the negative representation of a number that allows the
identity A — B = A + (-B) to hold true.

Subtraction requires a means of expressing negative numbers. To this end, the most-significant
bit, or left-most bit, of a binary number is used as the sign-bit when dealing with signed numbers. A
negative number is indicated when the sign-bit equals 1. Unsigned arithmetic does not involve a
sign-bit, and therefore can express larger absolute numbers, because the MSB is merely an extra
digit rather than a sign indicator.

The first step in performing two’s complement subtraction is to convert the subtrahend into a neg-
ative equivalent. This conversion is a two-step process. First, the binary number is inverted to yield a
one’s complement. Then, 1 is added to the one’s complement version to yield the desired two’s com-
plement number. This is illustrated below:

0 1 0 1 Original number (5)

1 0 One’s complement

0
+ 0 0 O 1 Addone
0

1 1 Two’s complement (-5)

Observe that the unsigned four-bit number that can represent values from 0 to 15;, now represents
signed values from —8 to 7. The range about zero is asymmetrical because of the sign-bit and the fact
that there is no negative 0. Once the two’s complement has been obtained, subtraction is performed
by adding the two’s complement subtrahend to the minuend. For example, 7 — 5 = 2 would be per-
formed as follows, given the —5 representation obtained above:

1 1 1 1 0 Carrybits
0o 1 1 1 Minuend (7)

+ 1 0 1 1 “Subtrahend” (-5)

0 0 1 0 Result(2

Note that the final carry-bit past the sign-bit is ignored. An example of subtraction with a negative
resultis 3 —5=-2.

1 1 0 Carrybits
0 0 1 1 Minuend(3)
0 1 1 “Subtrahend” (-5)

1 1 1 0 Result(-2)

Here, the result has its sign-bit set, indicating a negative quantity. We can check the answer by calcu-
lating the two’s complement of the negative quantity.
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1 1 1 0 Original number (-2)
0 0 O 1 One’scomplement

+ 0 0 0 1 Addone

0 0 1 0 Two’scomplement (2)

This check succeeds and shows that two’s complement conversions work “both ways,” going back
and forth between negative and positive numbers. The exception to this rule is the asymmetrical case
in which the largest negative number is one more than the largest positive number as a result of the
presence of the sign-bit. A four-bit number, therefore, has no positive counterpart of —8. Similarly, an
8-bit number has no positive counterpart of —128.

1.7 MULTIPLICATION AND DIVISION

Multiplication and division follow the same mathematical rules used in decimal numbering. How-
ever, their implementation is substantially more complex as compared to addition and subtraction.
Multiplication can be performed inside a computer in the same way that a person does so on paper.
Consider 12 x 12 = 144.

2 4 Partial product x 10°

+ 1 2 Partial product x 10!

1 4 4 Final product

The multiplication process grows in steps as the number of digits in each multiplicand increases,
because the number of partial products increases. Binary numbers function the same way, but there
easily can be many partial products, because numbers require more digits to represent them in binary
versus decimal. Here is the same multiplication expressed in binary (1100 x 1100 = 10010000):

00 0 O Partial product x 2°

0 0 0 0 Partial product x 2!
11 0 0 Partial product x 22
+ 1 1 0 0 Partial product x 23

1 0 0 1 0 0 0 O Final product
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Walking through these partial products takes extra logic and time, which is why multiplication and,
by extension, division are considered advanced operations that are not nearly as common as addition
and subtraction. Methods of implementing these functions require trade-offs between logic com-
plexity and the time required to calculate a final result.

1.8 FLIP-FLOPS AND LATCHES

Logic alone does not a system make. Boolean equations provide the means to transform a set of in-
puts into deterministic results. However, these equations have no ability to store the results of previ-
ous calculations upon which new calculations can be made. The preceding adder logic continually
recalculates the sum of two inputs. If either input is removed from the circuit, the sum disappears as
well. A series of numbers that arrive one at a time cannot be summed, because the adder has no
means of storing a running total. Digital systems operate by maintaining state to advance through se-
quential steps in an algorithm. State is the system’s ability to keep a record of its progress in a partic-
ular sequence of operations. A system’s state can be as simple as a counter or an accumulated sum.

State-full logic elements called flip-flops are able to indefinitely hold a specific state (0 or 1) until
a new state is explicitly loaded into them. Flip-flops load a new state when triggered by the transition
of an input clock. A clock is a repetitive binary signal with a defined period that is composed of 0
and 1 phases as shown in Fig. 1.10. In addition to a defined period, a clock also has a certain duty cy-
cle, the ratio of the duration of its 0 and 1 phases to the overall period. An ideal clock has a 50/50
duty cycle, indicating that its period is divided evenly between the two states. Clocks regulate the
operation of a digital system by allowing time for new results to be calculated by logic gates and
then capturing the results in flip-flops.

There are several types of flip-flops, but the most common type in use today is the D flip-flop.
Other types of flip-flops include RS and JK, but this discussion is restricted to D flip-flops because of
their standardized usage. A D flip-flop is often called a flop for short, and this terminology is used
throughout the book. A basic rising-edge triggered flop has two inputs and one output as shown in
Fig. 1.11a. By convention, the input to a flop is labeled D, the output is labeled Q, and the clock is
represented graphically by a triangle. When the clock transitions from O to 1, the state at the D input
is propagated to the Q output and stored until the next rising edge. State-full logic is often described
through the use of a timing diagram, a drawing of logic state versus time. Figure 1.11b shows a basic
flop timing diagram in which the clock’s rising edge triggers a change in the flop’s state. Prior to the
rising edge, the flop has its initial state, Q, and an arbitrary O or 1 input is applied as D,. The rising
edge loads D into the flop, which is reflected at the output. Once triggered, the flop’s input can
change without affecting the output until the next rising edge. Therefore, the input is labeled as
“don’t care,” or “xxx” following the clock’s rising edge.

Finite transition time of
real clock signal

Period

A
\ 4

Logic 1

0 Phase 1 Phase 0 Phase 1 Phase

Logic 0

Time

FIGURE 1.10 Digital clock signal.
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Rising-edge flops are the norm, although some flops are falling-edge triggered. A falling-edge
triggered flop is indicated by placing an inversion bubble at the clock input as shown in Fig. 1.12.
Operation is the same, with the exception that the polarity of the clock is inverted. The remainder of
this discussion assumes rising-edge triggered flops unless explicitly stated otherwise.

There are several common feature enhancements to the basic flop, including clock-enable, set,
and clear inputs and a complementary output. Clock enable is used as a triggering qualifier each
time a rising clock edge is detected. The D input is loaded only if clock enable is set to its active
state. Inputs in general are defined by device manufacturers to be either active-low or active-high. An
active-low signal is effective when set to 0, and an active-high signal is effective when set to 1. Sig-
nals are assumed to be active-high unless otherwise indicated. Active-low inputs are commonly indi-
cated by the same inversion bubble used to indicate a falling-edge clock. When a signal is driven to
its active state, it is said to be asserted. A signal is de-asserted when driven to its inactive state. Set
and clear inputs explicitly force a flop to a 1 or O state, respectively. Such inputs are often used to ini-
tialize a digital system to a known state when it is first turned on. Otherwise, the flop powers up in a
random state, which can cause problems for certain logic. Set and clear inputs can be either synchro-
nous or asynchronous. Synchronous inputs take effect only on the rising clock edge, while asynchro-
nous inputs take effect immediately upon being asserted. A complementary output is simply an
inverted copy of the main output.

A truth table for a flop enhanced with the features just discussed is shown in Table 1.10. The truth
table assumes a synchronous, active-high clock enable (EN) and synchronous, active-low set and
clear inputs. The rising edge of the clock is indicated by the T symbol. When the clock is at either
static value, the outputs of the flop remain in their existing states. When the clock rises, the D, EN,
CLR, and SET inputs are sampled and acted on accordingly. As a general rule, conflicting infor-
mation such as asserting CLR and SET at the same time should be avoided, because unknown re-
sults may arise. The exact behavior in this case depends on the specific flop implementation and may
vary by manufacturer.

A basic application of flops is a binary ripple counter. Multiple flops can be cascaded as shown in
Fig. 1.13 such that each complementary output is fed back to that flop’s input and also used to clock
the next flop. The current count value is represented by the noninverted flop outputs with the first
flop representing the LSB. A three-bit counter is shown with an active-low reset input so that the
counter can be cleared to begin at zero. The counter circuit diagram uses the standard convention of

Clock /

D Initial Value = D, X XXX

Q Initial Value = Q, X__New Value = D,

(@) (b)

FIGURE 1.11 Rising-edge triggered flop.

I alo Clock —  \___

D Initial Value = D, X XXX

Q Initial Value = Q, X New Value = D,

(@) (b)

FIGURE 1.12 Falling-edge triggered flop.
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Q0] Q[1] Q[2]

CLK
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FIGURE 1.13 Three-bit ripple counter.

TABLE 1.10 Enhanced Flop Truth Table

Clock D EN CLR SET Q Q
0 X X X X Qstatic Qutaric
T 0 0 1 1 Qstatic Qstatic
T 0 1 1 1 0 1
T 1 1 1 1 1 0
T X X 0 1 0 1
T X X 1 0 1 0
T X X 0 0 ? ?
1 X X X X Qqtatic Qstatic

showing electrical connectivity between intersecting wires by means of a junction dot. Wires that
cross without a dot at their intersection are not electrically connected.

The ripple counter’s operation is illustrated in Fig. 1.14. Each bit starts out at zero if RESET is as-
serted. Counting begins on the first rising edge of CLK following the de-assertion of RESET. The
LSB, Q[0], increments from 0 to 1, because its D input is driven by the complementary output,
which is 1. The complementary output transitions to 0, which does not trigger the Q[1] rising-edge
flop, but IT does set up the conditions for a trigger after the next CLK rising edge. When CLK rises
again, Q[O] transitions back to 0, and Q[O0] transitions to 1, forming a rising edge to trigger Q[1],
which loads a 1. This sequence continues until the count value reaches 7, at which point the counter
rolls over to zero, and the sequence begins again.

An undesirable characteristic of the ripple counter is that it takes longer for a new count value to
stabilize as the number of bits in the counter increases. Because each flop’s output clocks the next
flop in the sequence, it can take some time for all flops to be updated following the CLK rising edge.
Slow systems may not find this burdensome, but the added ripple delay is unacceptable in most high-
speed applications. Ways around this problem will be discussed shortly.
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Q2]
Count: Q[2:0]

FIGURE 1.14 Ripple counter timing diagram.

A relative of the flop is the D-type latch, which is also capable of retaining its state indefinitely. A
latch has a D input, a Q output, and an enable (EN) signal. Whereas a flop transfers its input to its
output only on the active clock edge, a latch continuously transfers D to Q while EN is active.
Latches are level sensitive, whereas flops are edge sensitive. A latch retains its state while EN is in-
active. Table 1.11 shows the latch’s truth table. Latches are simpler than flops and are unsuited to
many applications in which flops are used. Latches would not substitute for flops in the preceding
ripple counter example because, while the enable input is high, a continuous loop would be formed
between the complementary output and input. This would result in rapid, uncontrolled oscillation at
each latch during the time that the enable is held high.

TABLE 1.11 D-Latch Truth Table

EN D Q
0 X Q
1 0 0

1 1 1

Latches are available as discrete logic elements and can also be assembled from simpler logic
gates. The Boolean equation for a latch requires feeding back the output as follows:

Q = (EN&D) + (EN&Q)

When EN is high, D is passed to Q. Q then feeds back to the second AND function, which maintains
the state when EN is low. Latches are used in designs based on older technology that was conceived
when the latch’s simplicity yielded a cost savings or performance advantage. Most state-full ele-
ments today are flops unless there is a specific benefit to using a latch.

1.9 SYNCHRONOUS LOGIC

It has been shown that clock signals regulate the operation of a state-full digital system by causing
new values to be loaded into flops on each active clock edge. Synchronous logic is the general term
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for a collection of logic gates and flops that are controlled by a common clock. The ripple counter is
not synchronous, even though it is controlled by a clock, because each flop has its own clock, which
leads to the undesirable ripple output characteristic previously mentioned. A synchronous circuit has
all of its flops transition at the same time so that they settle at the same time, with a resultant im-
provement in performance. Another benefit of synchronous logic is easier circuit analysis, because
all flops change at the same time.

Designing a synchronous counter requires the addition of logic to calculate the next count value
based on the current count value. Figure 1.15 shows a high-level block diagram of a synchronous
counter and is also representative of synchronous logic in general. Synchronous circuits consist of
state-full elements (flops), with combinatorial logic providing feedback to generate the next state
based on the current state. Combinatorial logic is the term used to describe logic gates that have no
state on their own. Inputs flow directly through combinatorial logic to outputs and must be captured
by flops to preserve their state.

An example of synchronous logic design can be made of converting the three-bit ripple counter
into a synchronous equivalent. Counters are a common logic structure, and they can be designed in a
variety of ways. The Boolean equations for small counters may be directly solved using a truth table
and K-map. Larger counters may be assembled in regular structures using binary adders that gener-
ate the next count value by adding 1 to the current value. A three-bit counter is easily handled with a
truth-table methodology. The basic task is to create a truth table relating each possible current state
to a next state as shown in Table 1.12.

TABLE 1.12 Three-Bit Counter Truth Table

Reset Current State Next State
1 XXX 000
0 000 001
0 001 010
0 010 011
0 011 100
0 100 101
0 101 110
0 110 111
0 111 000
Reset )
Next State |
Logic
A .
7| Count State Count Value .
Clock Flip-Flops =

FIGURE 1.15 Synchronous counter block diagram.
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Three Boolean equations are necessary, one for each bit that feeds back to the count state flops. If
the flop inputs are labeled D[2:0], the outputs are labeled Q[2:0], and an active-high synchronous re-
set is defined, the following equations can be developed:

D[0] = Q[0]&RESET

D[1] = {(Q[01&Q[1]) + (Q[01&Q[11)}&RESET = (Q[0] ® Q[1])&RESET

D[2] = {(Q[2]1&Q[11&Q[0]) + (Q[21&Q[1]) + (Q[2]1&Q[0]) } &RESET

Each equation’s output is forced to O when RESET is asserted. Otherwise, the counter increments on
each rising clock edge. Synchronous logic design allows any function to be implemented by chang-
ing the feedback logic. It would not be difficult to change the counter logic to count only odd or even
numbers, or to count only as high as 5 before rolling over to 0. Unlike the ripple counter, whose
structure supports a fixed counting sequence, next state logic can be defined arbitrarily according to
an application’s needs.

1.10 SYNCHRONOUS TIMING ANALYSIS

Logic elements, including flip-flops and gates, are physical devices that have finite response times to
stimuli. Each of these elements exhibits a certain propagation delay between the time that an input is
presented and the time that an output is generated. As more gates are chained together to create more
complex logic functions, the overall propagation delay of signals between the end points increases.
Flip-flops are triggered by the rising edge of a clock to load their new state, requiring that the input
to the flip-flop is stable prior to the rising edge. Similarly, a flip-flop’s output stabilizes at a new state
some time after the rising edge. In between the output of a flip-flop and the input of another flip-flop
is an arbitrary collection of logic gates, as seen in the preceding synchronous counter circuit. Syn-
chronous timing analysis is the study of how the various delays in a synchronous circuit combine to
limit the speed at which that circuit can operate. As might be expected, circuits with lesser delays are
able to run faster.

A clock breaks time into discrete intervals that are each the duration of a single clock period.
From a timing analysis perspective, each clock period is identical to the last, because each rising
clock edge is a new flop triggering event. Therefore, timing analysis considers a circuit’s delays over
one clock period, between successive rising (or falling) clock edges. Knowing that a wide range of
clock frequencies can be applied to a circuit, the question of time arises of how fast the clock can go
before the circuit stops working reliably. The answer is that the clock must be slow enough to allow
sufficient time for the output of a flop to stabilize, for the signal to propagate through the combinato-
rial logic gates, and for the input of the destination flop to stabilize. The clock must also be slow
enough for the flop to reliably detect each edge. Each flop circuit is characterized by a minimum
clock pulse width that must be met. Failing to meet this minimum time can result in the flop missing
clock events.

Timing analysis revolves around the basic timing parameters of a flop: input setup time (tg), in-
put hold time (ty), and clock-to-out time (tcp). Setup time specifies the time immediately preceding
the rising edge of the clock by which the input must be stable. If the input changes too soon before
the clock edge, the electrical circuitry within the flop will not have enough time to properly recog-
nize the state of the input. Hold time places a restriction on how soon after the clock edge the input
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may begin to change. Again, if the input changes too soon after the clock edge, it may not be prop-
erly detected by the circuitry. Clock-to-out time specifies how soon after the clock edge the output
will be updated to the state presented at the input. These parameters are very brief in duration and
are usually measured in nanoseconds. One nanosecond, abbreviated “ns,” is one billionth of a sec-
ond. In very fast microchips, they may be measured in picoseconds, or one trillionth or a second.

Consistent terminology is necessary when conducting timing analysis. Timing is expressed in
units of both clock frequency and time. Clock frequency, or speed, is quantified in units of hertz,
named after the twentieth century German physicist, Gustav Hertz. One hertz is equivalent to one
clock cycle per second—one transition from low to high and a second transition from high to low.
Units of hertz are abbreviated as Hz and are commonly accompanied by prefixes that denote an or-
der of magnitude. Commonly observed prefixes used to quantify clock frequency and their defini-
tions are listed in Table 1.13. Unlike quantities of bytes that use binary-based units, clock frequency
uses decimal-based units.

TABLE 1.13 Common Clock Frequency Magnitude Prefixes

Prefix  Definition  Order of Magnitude  Abbreviation ~ Usage

Kilo Thousand 103 K kHz
Mega  Million 10° M MHz
Giga Billion 10° G GHz
Tera Trillion 102 T THz

Units of time are used to express a clock’s period as well as basic logic element delays such as
the aforementioned tgy, fyy, and t;o. As with frequency, standard prefixes are used to indicate the
order of magnitude of a time specification. However, rather than expressing positive powers of ten,
the exponents are negative. Table 1.14 lists the common time magnitude prefixes employed in tim-
ing analysis.

TABLE 1.14 Common Time Magnitude Prefixes

Prefix Definition Order of Magnitude  Abbreviation ~ Usage
Milli One-thousandth 1073 m ms
Micro  One-millionth 10°° i us
Nano One-billionth 107 n ns
Pico One-trillionth 10712 p ps

Aside from basic flop timing characteristics, timing analysis must take into consideration the fi-
nite propagation delays of logic gates and wires that connect flop outputs to flop inputs. All real
components have nonzero propagation delays (the time required for an electrical signal to move
from an input to an output on the same component). Wires have an approximate propagation delay
of 1 ns for every 6 in of length. Logic gates can have propagation delays ranging from more than
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10 ns down to the picosecond range, depending on the technology being used. Newly designed logic
circuits should be analyzed for timing to ensure that the inherent propagation delays of the logic
gates and interconnect wiring do not cause a flop’s tgy; and ty specifications to be violated at a given
clock frequency.

Basic timing analysis can be illustrated with the example logic circuit shown Fig. 1.16. There are
two flops connected by two gates. The logic inputs shown unconnected are ignored in this instance,
because timing analysis operates on a single path at a time. In reality, other paths exist through these
unconnected inputs, and each path must be individually analyzed. Each gate has a finite propagation
delay, tprop Which is assumed to be 5 ns for the sake of discussion. Each flop has tcq =7 ns, tgy =3
ns, and ty; = 1 ns. For simplicity, it is assumed that there is zero delay through the wires that connect
the gates and flops.

The timing analysis must cover one clock period by starting with one rising clock edge and end-
ing with the next rising edge. How fast can the clock run? The first delay encountered is tcq of the
source flop. This is followed by tprop of the two logic gates. Finally, tg; of the destination flop must
be met. These parameters may be summed as follows:

tCLOCKZ tco +2X tPROP + tSU =20ns

The frequency and period of a clock are inversely related such that F= 1/f. A 20-ns clock period
corresponds to a 50-MHz clock frequency: 1/(20 x 10™) = 50 x 10°. Running at exactly the calcu-
lated clock period leaves no room for design margin. Increasing the period by 5 ns reduces the clock
to 40 MHz and provides headroom to account for propagation delay through the wires.

Hold time compliance can be verified following setup time analysis. Meeting a flop’s hold time is
often not a concern, especially in slower circuits as shown above. The 1 ns fy specification is easily
met, because the destination flop’s D-input will not change until {op + 2 X tpgop = 17 ns after the
rising clock edge. Actual timing parameters have variance associated with them, and the best-case
tco and tppop would be somewhat smaller numbers. However, there is so much margin in this case
that f; compliance is not a concern.

Hold-time problems sometimes arise in fast circuits where tsp and tpgop are very small. When
there are no logic gates between two flops, tpgop can be nearly zero. If the minimum fq is nearly
equal to the maximum t#y, the situation should be carefully investigated to ensure that the destination
flop’s input remains stable for a sufficient time period after the active clock edge.

1.11 CLOCK SKEW

The preceding timing analysis example is simplified for ease of presentation by assuming that the
source and destination flops in a logic path are driven by the same clock signal. Although a synchro-
nous circuit uses a common clock for all flops, there are small, nonzero variances in clock timing at
individual flops. Wiring delay variances are one source of this nonideal behavior. When a clock
source drives two flops, the two wires that connect to each flop’s clock input are usually not identical
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FIGURE 1.16 Hypothetical logic circuit.
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in length. This length inequality causes one flop’s clock to arrive slightly before or after the other
flop’s clock.

Clock skew is the term used to characterize differences in edge timing between multiple clock in-
puts. Skew caused by wiring delay variance can be effectively minimized by designing a circuit so
that clock distribution wires are matched in length. A more troublesome source of clock skew arises
when there are too many clock loads to be driven by a single source. Multiple clock drivers are nec-
essary in these situations, with small variations in electrical characteristics between each driver.
These driver variances result in clock skew across all the flops in a synchronous design. As might be
expected, clock skew usually reduces the frequency at which a synchronous circuit can operate.

Clock skew is subtracted from the nominal clock period for setup time analysis purposes, because
the worst-case scenario shown in Fig. 1.17 must be considered. This scenario uses the same logic
circuit in Fig. 1.16 but shows two separate clocks with 1 ns of skew between them. The worst timing
occurs when the destination flop’s clock arrives before that of the source flop, thereby reducing the
amount of time available for the D-input to stabilize. Instead of the circuit having zero margin with a
20-ns period, clock skew increases the minimum period to 21 ns. The extra 1 ns compensates for the
clock skew to restore a minimum source to destination period time of 20 ns. A slower circuit such as
this one is not very sensitive to clock skew, especially after backing off to 40 MHz for timing margin
as shown previously. Digital systems that run at relatively low frequencies may not be affected by
clock skew, because they often have substantial margins built into their timing analyses. As clock
speeds increase, the margin decreases to the point at which clock skew and interconnect delay be-
come important limiting factors in system design.

Hold time compliance can become more difficult in the presence of clock skew. The basic prob-
lem occurs when clock skew reduces the source flop’s apparent t-q from the destination flop’s per-
spective, causing the destination’s input to change before ty is satisfied. Such problems are more
prone in high-speed systems, but slower systems are not immune. Figure 1.18 shows a timing dia-
gram for a circuit with 1 ns of clock skew where two flops are connected by a short wire with nearly
zero propagation delay. The flops have tcg = 2 ns and ty = 1.5 ns. A scenario like this may be expe-
rienced when connecting two chips that are next to each other on a circuit board. In the absence of
clock skew, the destination flop’s input would change t-( after the rising clock edge, exceeding ty by
0.5 ns. The worst-case clock skew causes the source flop clock to arrive before that of the destination
flop, resulting in an input change just 1 ns after the rising clock edge and violating ty.

Solutions to skew-induced ty violations include reducing the skew or increasing the delay be-
tween source and destination. Unfortunately, increasing a signal’s propagation delay may cause tgy
violations in high-speed systems.

1 ns skew
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FIGURE 1.17 Clock skew influence on setup time analysis.
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FIGURE 1.18 Hold-time violation caused by clock skew.

Hold time may not be a problem in slower circuits, because slower circuits often have paths be-
tween flops with sufficiently long propagation delays to offset clock skew problems. However,
even slow circuits can experience hold-time problems if flops are connected with wires or compo-
nents that have small propagation delays. It is also important to remember that hold-time compli-
ance is not a function of clock period but of clock skew, tco, and ty. Therefore, a slow system that
uses fast components may have problems if the clock skew exceeds the difference between tcq
and ty.

1.12 CLOCK JITTER

An ideal clock signal has a fixed frequency and duty cycle, resulting in its edges occurring at the ex-
act time each cycle. Real clock signals exhibit slight variations in the timing of successive edges.
This variation is known as jitter and is illustrated in Fig. 1.19. Jitter is caused by nonideal behavior
of clock generator circuitry and results in some cycles being longer than nominal and some being
shorter. The average clock frequency remains constant, but the cycle-to-cycle variance may cause
timing problems.

Just as clock skew worsens the analysis for both tg; and ty, so does jitter. Jitter must be sub-
tracted from calculated timing margins to determine a circuit’s actual operating margin. Some sys-
tems are more sensitive to jitter than others. As operating frequencies increase, jitter becomes
more of a problem, because it becomes a greater percentage of the clock period and flop timing
specifications. Jitter specifications vary substantially. Many systems can tolerate 0.5 ns of jitter
and more. Very sensitive systems may require high-quality clock circuitry that can reduce jitter to
below 100 ps.

Ideal Clock Signal

I an WY an W

Edge Timing Variation: Jitter

FIGURE 1.19 Clock jitter.
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1.13 DERIVED LOGICAL BUILDING BLOCKS

Basic logic gates and flops can be combined to form more complex structures that are treated as
building blocks when designing larger digital systems. There are various common functions that an
engineer does not want to redesign from scratch each time. Some of the common building blocks are
multiplexers, demultiplexers, tri-state buffers, registers, and shift registers. Counters represent an-
other building block alluded to in the previous discussion of synchronous logic. A counter is a com-
bination of flops and gates that can count either up or down, depending on the implementation.

Multiplexers, sometimes called selectors, are combinatorial elements that function as a multiposi-
tion logical switches to select one of many inputs. Figure 1.20 shows a common schematic represen-
tation of a multiplexer, often shortened to mux. A mux has an arbitrary number of data inputs, often
an even power of two, and a smaller number of selector inputs. According to the binary state of the
selector inputs, a specific data input is transferred to the output.

Muxes are useful, because logic circuits often need to choose between multiple data values. A
counter, for example, may choose between loading a next count value or loading an arbitrary value
from external logic. A possible truth table for a 4-to-1 mux is shown in Table 1.15. Each selector in-
put value maps to one, and only one, data input.

TABLE 1.15 Four-to-One Multiplexer

Truth Table
S1 SO Y
0 0 A
0 1 B
1 0 C
1 1 D

A demultiplexer, also called a demux, performs the inverse operation of a mux by transferring a
single input to the output that is selected by select inputs. A demux is drawn similarly to a mux, as
shown in Fig. 1.21.

OO0 |m|>»
OO0 |m|[>

S1 80 S1 .80

FIGURE 1.20 Four-to-one multiplexer. FIGURE 1.21 One-to-four demultiplexer.
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A possible truth table for a 1-to-4 demux is shown in Table 1.16. Those outputs that are not se-
lected are held low. The output that is selected assumes the state of the data input.

TABLE 1.16 One-to-Four Demultiplexer

Truth Table
S1 SO A B C D
0 0 Din 0 0 0
0 1 0 Din 0 0
1 0 0 0 Din 0
1 1 0 0 0 Din

A popular use for a demux is as a decoder. The main purpose of a decoder is not so much to trans-
fer an input to one of several outputs but simply to assert one output while not asserting those that
are not selected. This function has great utility in microprocessor address decoding, which involves
selecting one of multiple devices (e.g., a memory chip) at a time for access. The truth table for a 2-
to-4 decoder is shown in Table 1.17. The decoder’s outputs are active-low, because most memory
and microprocessor peripheral chips use active-low enable signals.

TABLE 1.17 Two-to-Four Decoder Truth Table

S1 SO A B C D
0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Tri-state buffers are combinatorial elements that can drive three out-
EN put states rather than the standard O and 1 states. The third state is
off, often referred to as high-impedance, hi-Z, or just Z. Tri-state
buffers enable multiple devices to share a common output wire by
cooperatively agreeing to have only one device drive the wire at any
one time, during which all other devices remain in hi-Z. A tri-state
buffer is drawn as shown in Fig. 1.22.
A tri-state buffer passes its D-input to Y-output when enabled.
Otherwise, the output will be turned off as shown in Table 1.18.

Electrically, tri-state behavior allows multiple tri-state buffers to be connected to the same wire
without contention. Contention normally results when multiple outputs are connected together be-
cause some want to drive high and some low. This creates potentially damaging electrical contention
(a short circuit). However, if multiple tri-state buffers are connected, and only one at a time is en-
abled, there is no possibility of contention. The main advantage here is that digital buses in comput-

FIGURE 1.22 Tri-state buffer.
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TABLE 1.18 Tri-state Buffer Truth Table

EN D Y
0 X Z
1 0 0

1 1 1

ers can be arbitrarily expanded by adding more devices without the need to add a full set of input or
output signals each time a new device is added. In a logical context, a bus is a collection of wires that
serve a common purpose. For example, a computer’s data bus might be eight wires that travel to-
gether and collectively represent a byte of data. Electrical contention on a bus is often called a bus-
fight. Schematically, multiple tri-state buffers might be drawn as shown in Fig. 1.23.

Each tri-state buffer contains its own enable signal, which is usually driven by some type of de-
coder. The decoder guarantees that only one tri-state buffer is active at any one time, preventing con-
tention on the common wire.

Registers are collections of multiple flops arranged in a group with a common function. They are
a common synchronous-logic building block and are commonly found in multiples of 8-bit widths,
thereby representing a byte, which is the most common unit of information exchange in digital sys-
tems. An 8-bit register provides a common clock and clock enable for all eight internal flops. The
clock enable allows external control of when the flops get reloaded with new D-input values and
when they retain their current values. It is common to find registers that have a built-in tri-state
buffer, allowing them to be placed directly onto a shared bus without the need for an additional tri-
state buffer component.

Whereas normal registers simply store values, synchronous elements called shift registers manip-
ulate groups of bits. Shift registers exist in all permutations of serial and parallel inputs and outputs.
The role of a shift register is to somehow change the sequence of bits in an array of bits. This in-
cludes creating arrays of bits from a single bit at a time (serial input) or distributing an array of bits
one bit at a time (serial output). A serial-in, parallel-out shift register can be implemented by chain-
ing several flops together as shown in Fig. 1.24.
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FIGURE 1.23 Multiple tri-state buffers on a sin-
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FIGURE 1.24 Serial-in, parallel-out shift register.
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On each rising clock edge, a new serial input bit is clocked into the first flop, and each flop in suc-
cession loads its new value based on its predecessor’s value. At any given time, the parallel output of
an N-bit shift register reflects the state of the last N bits shifted in up to that time. In this example
(N =4), a serial stream of bits collected in four clock cycles can be operated upon as a unit of four
bits once every fourth cycle. As shown, data is shifted in MSB first, because Dout[3] is shown in the
last bit position. Such a simple transformation is useful, because it is often more practical to commu-
nicate digital data in serial form where only one bit of information is sent per clock cycle, but im-
practical to operate on that data serially. An advantage of serial communication is that fewer wires
are required as compared to parallel. Yet, parallel representation is important because arithmetic
logic can get overly cumbersome if it has to keep track of one bit at a time. A parallel-in, serial-out
shift register is very similar, as shown in Fig. 1.25, with the signals connected for MSB first opera-
tion to match the previous example.

Four flops are used here as well. However, instead of taking in one bit at a time, all flops are
loaded when the load signal is asserted. The 2-to-1 muxes are controlled by the load signal and de-
termine if the flops are loaded with new parallel data or shifted serial data. Over each of the next four
clock cycles, the individual bits are shifted out one at a time. If these two shift register circuits were
connected together, a crude serial data communications link could be created whereby parallel data
is converted to serial and then back to parallel at each end.

Din[0] Din[1] Din[2] Din[3]

Q Q Q qr—Rout

— — — >
Load ’7
Clk

FIGURE 1.25 Parallel-in, serial-out shift register.
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CHAPTER 2

Integrated Circuits and the
7400 Logic Families

Once basic logic design theory is understood, the next step is transferring that knowledge to a practi-
cal context that includes real components. This chapter explains what an integrated circuit is and
how off-the-shelf components can be used to implement arbitrary logic functions.

Integrated circuits, called chips by engineers and laymen alike, are what enable digital systems as
we know them. The chapter begins with an introduction to how chips are constructed. Familiarity
with basic chip fabrication techniques and terminology enables an engineer to comprehend the dis-
tinctions between various products so that their capabilities can be more readily evaluated.

A survey of packaging technology follows to provide familiarity with the common physical char-
acteristics of commercially available chips. Selecting a package that is appropriate for a particular
design can be as critical as selecting the functional parameters of the chip itself. It is important to un-
derstand the variety of available chip packages and why different types of packages are used for dif-
ferent applications.

The chapter’s major topic follows next: the 7400 logic families. These off-the-shelf logic chips
have formed the basis of digital systems for decades and continue to do so, although in fewer num-
bers as a result of the advent of denser components. 7400 family features are presented along with
complete examples of how the chips are applied in real designs. The purpose of this discussion is to
impart a practical and immediately applicable understanding of how digital system design can be ex-
ecuted with readily available components. Although these devices are not appropriate for every ap-
plication, many basic problems can be solved with 7400 chips once it is understood how to employ
them.

Having seen how real chips can be used to solve actual design problems, a closely related topic is
presented at the end of this chapter: the interpretation of data sheets. Manufacturers’ data sheets con-
tain critical information that must be understood to ensure a working design. An understanding of
how data sheets are organized and the types of information that they contain is a necessary knowl-
edge base for every engineer.

2.1 THE INTEGRATED CIRCUIT

Digital logic and electronic circuits derive their functionality from electronic switches called transis-
tors. Roughly speaking, the transistor can be likened to an electronically controlled valve whereby
energy applied to one connection of the valve enables energy to flow between two other connections.
By combining multiple transistors, digital logic building blocks such as AND gates and flip-flops are
formed. Transistors, in turn, are made from semiconductors. Consult a periodic table of elements in
a college chemistry textbook, and you will locate semiconductors as a group of elements separating
the metals and nonmetals. They are called semiconductors because of their ability to behave as both
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metals and nonmetals. A semiconductor can be made to conduct electricity like a metal or to insulate
as a nonmetal does. These differing electrical properties can be accurately controlled by mixing the
semiconductor with small amounts of other elements. This mixing is called doping. A semiconduc-
tor can be doped to contain more electrons (N-type) or fewer electrons (P-type). Examples of com-
monly used semiconductors are silicon and germanium. Phosphorous and boron are two elements
that are used to dope N-type and P-type silicon, respectively.

A transistor is constructed by creating a sandwich of differently doped semiconductor layers. The
two most common types of transistors, the bipolar-junction transistor (BJT) and the field-effect tran-
sistor (FET) are schematically illustrated in Fig. 2.1. This figure shows both the silicon structures of
these elements and their graphical symbolic representation as would be seen in a circuit diagram.
The BJT shown is an NPN transistor, because it is composed of a sandwich of N-P-N doped silicon.
When a small current is injected into the base terminal, a larger current is enabled to flow from the
collector to the emitter. The FET shown is an N-channel FET; it is composed of two N-type regions
separated by a P-type substrate. When a voltage is applied to the insulated gate terminal, a current is
enabled to flow from the drain to the source. It is called N-channel, because the gate voltage induces
an N-channel within the substrate, enabling current to flow between the N-regions.

Another basic semiconductor structure shown in Fig. 2.1 is a diode, which is formed simply by a
junction of N-type and P-type silicon. Diodes act like one-way valves by conducting current only
from P to N. Special diodes can be created that emit light when a voltage is applied. Appropriately
enough, these components are called light emitting diodes, or LEDs. These small lights are manufac-
tured by the millions and are found in diverse applications from telephones to traffic lights.

The resulting small chip of semiconductor material on which a transistor or diode is fabricated can
be encased in a small plastic package for protection against damage and contamination from the out-
side world. Small wires are connected within this package between the semiconductor sandwich and
pins that protrude from the package to make electrical contact with other parts of the intended circuit.
Once you have several discrete transistors, digital logic can be built by directly wiring these compo-
nents together. The circuit will function, but any substantial amount of digital logic will be very
bulky, because several transistors are required to implement each of the various types of logic gates.

At the time of the invention of the transistor in 1947 by John Bardeen, Walter Brattain, and Will-
iam Shockley, the only way to assemble multiple transistors into a single circuit was to buy separate
discrete transistors and wire them together. In 1959, Jack Kilby and Robert Noyce independently in-
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FIGURE 2.1 BIT, FET, and diode structural and symbolic representations.
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vented a means of fabricating multiple transistors on a single slab of semiconductor material. Their
invention would come to be known as the integrated circuit, or IC, which is the foundation of our
modern computerized world. An IC is so called because it integrates multiple transistors and diodes
onto the same small semiconductor chip. Instead of having to solder individual wires between dis-
crete components, an IC contains many small components that are already wired together in the de-
sired topology to form a circuit.

A typical IC, without its plastic or ceramic package, is a square or rectangular silicon die measur-
ing from 2 to 15 mm on an edge. Depending on the level of technology used to manufacture the IC,
there may be anywhere from a dozen to tens of millions of individual transistors on this small chip.
This amazing density of electronic components indicates that the transistors and the wires that con-
nect them are extremely small in size. Dimensions on an IC are measured in units of micrometers,
with one micrometer (1 um) being one millionth of a meter. To serve as a reference point, a human
hair is roughly 100 pm in diameter. Some modern ICs contain components and wires that are mea-
sured in increments as small as 0.1 um! Each year, researchers and engineers have been finding new
ways to steadily reduce these feature sizes to pack more transistors into the same silicon area, as in-
dicated in Fig. 2.2.

Many individual chemical process steps are involved in fabricating an IC. The process begins
with a thin, clean, polished semiconductor wafer — most often silicon — that is usually one of three
standard diameters: 100, 200, or 300 mm. The circular wafer is cut from a cylindrical ingot of solid
silicon that has a perfect crystal structure. This perfect crystal base structure is necessary to promote
the formation of other crystals that will be deposited by subsequent processing steps. Many dice are
arranged on the wafer in a grid as shown in Fig. 2.3. Each die is an identical copy of a master pattern
and will eventually be sliced from the wafer and packaged as an IC. An IC designer determines how
different portions of the silicon wafer should be modified to create transistors, diodes, resistors, ca-
pacitors, and wires. This IC design layout can then be used to, in effect, draw tiny components onto
the surface of the silicon. Sequential drawing steps are able to build sandwiches of differently doped
silicon and metal layers.

Engineers realized that light provided the best way to faithfully replicate patterns from a template
onto a silicon substrate, similar to what photographers have been doing for years. A photographer
takes a picture by briefly exposing film with the desired image and then developing this film into a
negative. Once this negative has been created, many identical photographs can be reproduced by
briefly exposing the light-sensitive photographic paper to light that is focused through the negative.
Portions of the negative that are dark do not allow light to pass, and these corresponding regions of
the paper are not exposed. Those areas of the negative that are light allow the paper to be exposed.
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FIGURE 2.2 Decreasing IC feature size over time. (Future data for years 2003 through 2005 compiled from The
International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2001.)
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When the paper is developed in a chemical bath, portions of the paper that were exposed change
color and yield a visible image.

Photographic processes provide excellent resolution of detail. Engineers apply this same principle
in fabricating ICs to create details that are fractions of a micron in size. Similar to a photographic
negative, a mask is created for each IC processing step. Like a photographic negative, the mask does
not have to be the same size as the silicon area it is to expose because, with lenses, light can be fo-
cused through the mask to an arbitrary area. Using a technique called photolithography, the silicon
surface is first prepared with a light-sensitive chemical called photoresist. The prepared surface is
then exposed to light through the mask. Depending on whether a positive or negative photoresist
process is employed, the areas of photoresist that have been either exposed or not exposed to light
are washed away in a chemical bath, resulting in a pattern of bare and covered areas of silicon. The
wafer can then be exposed to chemical baths, high temperature metal vapors, and ion beams. Only
the bare areas that have had photoresist washed away are affected in this step. In this way, specific
areas of the silicon wafer can be doped according to the IC designers’ specifications. Successive
mask layers and process steps can continue to wash away and expose new layers of photoresist and
then build sandwiches of semiconductor and metal material. A very simplified view of these process
steps is shown in Fig. 2.4. The semiconductor fabrication process must be performed in a clean-
room environment to prevent minute dust particles and other contaminants from disturbing the li-
thography and chemical processing steps.

In reality, dozens of such steps are necessary to fabricate an IC. The semiconductor structures that
must be formed by layering different metals and dopants are complex and must be formed one thin
layer at a time. Modern ICs typically have more than four layers of metal, each layer separated from
others by a thin insulating layer of silicon dioxide. The use of more metal layers increases the cost of
an IC, but it also increases its density, because more metal wires can be fabricated to connect more
transistors. This complete process from start to finish usually takes one to four weeks. The chemical
diffusion step (5) is an example of how different regions of the silicon wafer are doped to achieve
varying electrical characteristics. In reality, several successive doping steps are required to create
transistors. The metal deposition step (10) is an example of how the microscopic metal wires that
connect the many individual transistors are created. Hot metal vapors are passed over the prepared
surface of the wafer. Over time, individual molecules adhere to the exposed areas and form continu-
ous wires. Historically, most metal interconnects on silicon ICs are made from aluminum. However,
copper has become a common component of leading-edge ICs.

As IC feature sizes continue to shrink, the physical properties of light can become limiting factors
in the resolution with which a wafer can be processed. Shorter light wavelengths are necessary to
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meet the demands of leading-edge IC process technology. The human eye can detect electromag-
netic energy from about 700 nm (red) to 400 nm (violet). Whereas ultraviolet light (< 400 nm) was
once adequate for IC fabrication, deep UV wavelengths are now in use, and shorter wavelengths be-
low 200 nm are being explored.

Each of the process steps is applied to the entire wafer. The many dice on a single wafer are usu-
ally exposed to light through the same mask. The mask is either large enough to cover the entire wa-
fer and therefore expose all dice at once, or the mask is stepped through the dice grid (using a
machine appropriately called a stepper) such that each die location is exposed separately before the
next processing step. In certain cases, such as small-volume or experimental runs, different die loca-
tions on the same wafer will be exposed with different masks. This is entirely feasible but may not
be as efficient as creating a wafer on which all dice are identical.

When an IC is designed and fabricated, it generally follows one of two main transistor technolo-
gies: bipolar or metal-oxide semiconductor (MOS). Bipolar processes create BJTs, whereas MOS
processes create FETs. Bipolar logic was more common before the 1980s, but MOS technologies
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have since accounted the great majority of digital logic ICs. N-channel FETSs are fabricated in an
NMOS process, and P-channel FETs are fabricated in a PMOS process. In the 1980s, complemen-
tary-MOS, or CMOS, became the dominant process technology and remains so to this day. CMOS
ICs incorporate both NMOS and PMOS transistors.

2.2 IC PACKAGING

When the wafer has completed its final process step, it is tested and then sliced up to separate the in-
dividual dice. Dice that fail the initial testing are quickly discarded. Those that pass inspection are
readied for packaging. A package is necessary for several reasons, including protection of the die and
the creation of electromechanical connections with other circuitry. ICs are almost always mounted
onto a circuit board, and it is usually difficult to mount unpackaged ICs directly to the board. How-
ever, there are special situations in which ICs are not packaged and are directly attached to the board.
These cases are often at opposite ends of the technological spectrum. At the low end of technology,
ICs can be several process generations behind the current state of the art. Therefore, the relative com-
plexity of mounting them to a circuit board may not be as great. The savings of direct mounting are in
space and cost. A common quartz wristwatch benefits from direct mounting, because the small con-
fines of a watch match very well with the space savings achieved by not requiring a package for the
IC. These watch ICs use mature semiconductor process technologies. At the high end of technology,
some favorable electrical and thermal characteristics can be achieved by eliminating as much inter-
mediate bulk as possible between individual ICs and supporting circuitry. However, the technical dif-
ficulties of direct-mounting a leading-edge IC can be challenging and greatly increase costs.
Therefore, direct-mounting of all but very low-end electronics is relatively rare.

IC packaging technology has evolved dramatically from the early days, yet many mature package
types still exist and are in widespread use. Plastic and ceramic are the two most common materials
used in an IC package. They surround the die and its lead frame. The lead frame is a structure of metal
wires that fan out from the die and extend to the package exterior as pins for connection to a circuit
board. Plastic packages are generally lower in cost as compared to ceramics, but they have poorer
thermal performance. Thermal characteristics are important for ICs that handle large currents and dis-
sipate large quantities of heat. To prevent the IC from overheating, the heat must be conducted and ra-
diated away as efficiently as possible. Ceramic material conducts heat far better than plastic.

A very common package is the dual in-line package, or DIP, shown in Fig. 2.5. A DIP has two
parallel rows of pins that are spaced on 0.1-in centers. Each pin extends roughly 0.2 in below the
bottom of the plastic or ceramic body. Pins are numbered sequentially from 1 going left to right
along one side and resuming on the opposite side from right to left. There is usually at least one pin
1 marker at one end of the package. It is either a dot near pin 1 or a semicircular indentation on one
edge of the package.

DIPs are commonly manufactured in standard sizes ranging from 6 to 48 pins, and some manu-
facturers go beyond 48 pins. Smaller pin-count devices have 0.3-in wide packages, and larger de-
vices are 0.6 in wide. Because of the ubiquity of the DIP, there are many variations of pin counts and
package widths. For many years, the DIP accounted for the vast majority of digital logic packages.
Common logic ICs were manufactured in 14- and 16-pin DIPs. Memory ICs were manufactured in
16-, 18-, 24-, and 28-pin DIPs. Microprocessors were available in 40-, 44-, and 48-pin DIPs. DIPs
are still widely available today, but their use as a percentage of the total IC market has declined
markedly. However, the benefits of the DIP remain: they are inexpensive and easy to work with by
hand, eliminating the need for costly assembly tools.

If you were to carefully crack open a DIP, you would be able to see the mechanical assembly of
the die and lead frame. This is illustrated in Fig. 2.6. The die is cemented in the center of a stamped
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FIGURE 2.5 A 16-pin dual in-line package.

metal frame and is connected to the individual pins with extremely thin wires. Once the electrical
connections are made, the fragile assembly is encased in a plastic or ceramic body for protection and
the exterior portions of the pins are folded vertically.

All other IC packages are variations on this theme. Some packages use a similar lead-frame struc-
ture, whereas more advanced packages utilize very high-quality miniature circuit boards made from
either ceramic or fiberglass.

An oft-quoted attribute of ICs is that their density doubles every 18 months as a result of improve-
ments in process technology. This prediction was made in 1965 by Dr. Gordon Moore, a co-founder
of Intel. It has since come to be known as Moore’s law, because the semiconductor industry has
matched this prediction over time. Before to the explosion of IC density, the semiconductor industry
classified ICs into several categories depending on the number of logic gates on the device: small-
scale integration (SSI), medium-scale integration (MSI), large-scale integration (LSI), and, finally,
very large-scale integration (VLSI). Figure 2.7 provides a rough definition of these terms. As the
density of ICs continued to grow at a rapid pace, it became rather ridiculous to keep adding words
like “very” and “extra” to these categories, and the terms’ widespread use declined. ICs are now of-
ten categorized based on their minimum feature size and metal process. For example, one might re-
fer to an IC as “0.25 pm, three-layer metal (aluminum)” or “0.13 pm, six-layer copper.”
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FIGURE 2.6 DIP lead frame.
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FIGURE 2.7 Relative component count of ICs.

As IC densities grew at this tremendous pace, the number of pins on each IC and the speed at
which they operated began to increase as well. DIPs soon become a limiting factor in the perfor-
mance of ICs. First, the addition of more pins made the package longer, because there are only two
rows of pins. However, most chips are relatively square in shape to minimize on-chip interconnec-
tion distances. This creates a conflict: a long, narrow package that is unsuitable for increasing square
die sizes. Second, the lengths of some pins in the DIP lead frame, especially those near the corners,
are relatively long. This has an adverse impact on the quality of high-speed signals. Third, the 0.1-in
pin spacing on DIPs keeps them artificially large as circuit board technologies continue improving to
handle smaller contacts.

One solution to the pin density problem was the development of the pin grid array, or PGA, pack-
age. Shown in Fig. 2.8, the PGA is akin to a two-dimensional DIP with pins spaced on 0.1-in cen-
ters. Very high pin counts are achievable with a PGA, because all of its area is usable rather than just
the perimeter. Being a square, the PGA is compatible with large ICs, because it more closely
matches the proportions of a silicon chip.

The PGA provides high pin density, but its drawback is relatively high cost. Two lower-cost pack-
ages were developed for ICs that require more pins than DIPs but fewer pins than found on a PGA:
the small outline integrated circuit (SOIC) and the plastic leaded chip carrier (PLCC). Examples of
SOIC and PLCC packages are shown in Fig. 2.9. Both SOICs and PLCCs feature pins on a 0.05-in
pitch — half that of a DIP or PGA. The SOIC is basically a shrunken DIP with shorter pins that are
folded parallel to the plane of the package instead of protruding down vertically. This enables the
SOIC to be surface mounted onto the circuit board by soldering the pins directly to metal pads on the
board. By contrast, a DIP requires that holes be drilled in the board for the pins to be soldered into.
The SOIC represents an improvement in packaging density and ease of manufacture over DIPs, but
it is still limited to relatively simple ICs due to its one-dimensional pin arrangement.

PLCCs increase pin density and ease the design of the lead frame by utilizing a two-dimensional
pin arrangement. Higher pin counts (68, 84, and 96 pins) were enabled by the PLCC, and its square

FIGURE 2.8 Pin grid array package.
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FIGURE 2.9 SOIC and PLCC.

design is more capable of accepting larger silicon dice than either the DIP or SOIC. PLCC leads are
not bent outward, as in the case of a SOIC, but are curved inward in a “J” pattern. The more similar
aspect ratio of the PLCC package and the dice that are placed into them enabled lead frames with
shorter and more consistent pin lengths, reducing the degrading effects on high-speed signals.

A higher-density relative of the PLCC and SOIC is the quad flat pack, or QFP. A QFP resembles
a PLCC in terms of its square or rectangular shape but has leads that are bent outward like an SOIC.
Additionally, QFP leads are thinner and spaced at a smaller pitch to achieve more than twice the lead
density of a comparably sized PLCC.

Perhaps the most widely used package for high-density ICs is the ball grid array, or BGA. The
BGA is a surface mount analog to the PGA with significantly higher ball density. Contact is made
between a BGA and a circuit board by means of many small preformed solder balls that adhere to
contacts on the bottom surface of the BGA package. Figure 2.10 illustrates the general BGA form
factor, but numerous variants on aspect ratio and ball pitch exist. Typical ball pitch ranges from
1.27 mm down to 0.8 mm, and higher densities are on the way.

There are many variations of the packaging technologies already mentioned. Most packages com-
ply with industry standard dimensions, but others are proprietary. Semiconductor manufacturers pro-
vide detailed drawings of their packages to enable the proper design of circuit boards for their
products.

2.3 THE 7400-SERIES DISCRETE LOGIC FAMILY

With the advent of ICs in the early 1960s, engineers needed ready access to a library of basic logic
gates so that these gates could be wired together on circuit boards and turned into useful products.
Rather than having to design a custom microchip for each new project, semiconductor companies

==

FIGURE 2.10 Ball grid array.
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began to recognize a market for standard, off-the-shelf logic ICs. In 1963 and 1964, Sylvania and
Texas Instruments began shipment of the 7400-series discrete logic family and unknowingly started
a de facto industry standard that lasts to this day and shows no signs of disappearing anytime soon.
Using the 7400 family, an engineer can select logic gates, flip-flops, counters, and buffers in individ-
ual packages and wire them together as desired to solve a specific problem. Some of the most com-
mon members of the 7400 family are listed in Table 2.1.

TABLE 2.1 Common 7400 ICs

Number of Pins

Part Number Function

7400 Quad two-input NAND gates 14
7402 Quad two-input NOR gates 14
7404 Hex inverters 14
7408 Quad two-input AND gates 14
7432 Quad two-input OR gates 14
7447 BCD to seven-segment display decoder/driver 16
7474 Dual D-type positive edge triggered flip-flops 14
7490 Four-bit decade counter 14
74138 Three-to-eight decoder 16
74153 Dual 4-to-1 multiplexer 16
74157 Quad 2-to-1 multiplexers 16
74160 Four-bit binary synchronous counter 16
74164 Eight-bit parallel out serial shift registers 16
74174 Quad D-type flip-flops with complementary outputs 16
74193 Four-bit synchronous up/down binary counter 16
74245 Octal bus transceivers with tri-state outputs 20
74373 Octal D-type transparent latch 20
74374 Octal D-type flip-flops 20

These are just a few of the full set of 7400 family members. Many 7400 parts are no longer used,
because their specific function is rarely required as a separate chip in modern digital electronics de-
signs. However, the parts listed above, and many others that are not listed, are still readily available
today and are commonly found in a broad range of digital designs ranging from low-end to high-
tech devices. 7400-series logic has been available in DIPs for a long time, as well as (more recently)
SOICs and other high-density surface mount packages. All flavors of basic logic gates are available
with varying numbers of inputs. For example, there are 2-, 3-, and 4-input AND gates and 2-, 3-, 4-,
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8-, 12-, and 13-input NAND gates. There are numerous varieties of flip-flops, counters, multiplexers,
shift registers, and bus transceivers. Flip-flops exist with and without complementary outputs, pre-
set/clear inputs, and independent clocks. Counters are available in 4-bit blocks that can both incre-
ment and decrement and count to either 15 (binary counter) or 9 (decade counter) before restarting
the count at 0. Shift registers exist in all permutations of serial and parallel inputs and outputs. Bus
transceivers in 4- and 8-bit increments exist with different types of output enables and capabilities to
function in unidirectional or bidirectional modes. Bus transceivers enable the creation and expansion
of tri-state buses on which multiple devices can communicate.

One interesting IC is the 7447 seven-segment display driver. This component allows the creation
of graphical numeric displays in applications such as counters and timers. Seven-segment displays
are commonly seen in automobiles, microwave ovens, watches, and consumer electronics. Seven in-
dependent on/off elements can represent all ten digits as shown in Fig. 2.11. The 7447 is able to
drive an LED-based seven-segment display when given a binary coded decimal (BCD) input. BCD
is a four-bit binary number that has valid values from O through 9. Hexadecimal values from OxA
through OxF are not considered legal BCD values.

Familiarity with the 7400 series proves very useful no matter what type of digital system you are
designing. For low-end systems, 7400-series logic may be the only type of IC at your disposal to
solve a wide range of problems. At the high end, many people are often surprised to see a small 14-
pin 7400-series IC soldered to a circuit board alongside a fancy 32-bit microprocessor running at
100 MHz. The fact is that the basic logic functions that the 7400 series offers are staples that have di-
rect applications at all levels of digital systems design. It is time well spent to become familiar with
the extensive capabilities of the simple yet powerful 7400 family. Manufacturers’ logic data books,
either in print or on line, are invaluable references. It can be difficult to know ahead of time if a de-
sign may call for one more gate to function properly; that is when a 40-year old logic family can
save the day.

2.4 APPLYING THE 7400 FAMILY TO LOGIC DESIGN

Applications of the 7400 family are truly infinite, because the various ICs represent basic building
blocks rather than complete solutions. Up through the early 1980s, it was common to see computer
systems constructed mainly from interconnected 7400-series ICs along with a few LSI components
such as a microprocessor and a few memory chips. These days, most commercial digital systems are
designed using some form of higher-density logic IC, either fully custom or user programmable.
However, the engineer or hobbyist who has a relatively small-scale logic problem to solve, and who
may not have access to more expensive custom or programmable logic ICs, may be able to utilize
only 7400 logic in an efficient and cost-effective solution. Two examples follow to provide insight
into how 7400 building blocks can be assembled to solve logic design problems.

A hypothetical example is a logic circuit to examine three switches and turn on an LED if two and
only two of the three switches are turned on. The truth table for such a circuit is as follows in

a— —

FIGURE 2.11 Seven-segment display.
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Table 2.2, given that A, B, and C are the inputs, and an LED is the active-low output (assume that the
LED is turned on by driving a logic 0 rather than a logic 1).

TABLE 2.2 LED Driver Logic Truth Table

A B C LED
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

This LED driver truth table can be converted into the following Boolean logic equation with a Kar-
naugh map or simply by inspection:

LED = ABC+ABC+ABC

After consulting a list of available 7400 logic ICs, three become attractive for our application: the
7404 inverter, 7408 AND, and 7432 OR. The LED driver logic equation requires four inverters, six
two-input AND gates, and two 2-input OR gates. Four ICs are required, because a 7404 provides six
inverters, a 7408 provides four AND gates, and a 7432 contains four OR gates. These four ICs can
be connected according to a schematic diagram as shown in Fig. 2.12. A schematic diagram illus-
trates the electrical connectivity scheme of various components. Each component is identified by a
reference designator consisting of a letter followed by a number. ICs are commonly identified by
reference designators beginning with the letter “U”. Additionally, each component has numerous
pins that are numbered on the diagram. These pin numbers conform to the IC manufacturer’s num-
bering scheme. Each of these 7400-series ICs has 14 pins. Another convention that remains from bi-
polar logic days is the use of the label VCC to indicate the positive voltage supply node. GND
represents ground—the common, or return, voltage supply node.

All ICs require connections to a power source. In this circuit, +5 V serves as the power supply, be-
cause the 7400 family is commonly manufactured in a bipolar semiconductor process requiring a
+5-V supply. The four rectangular blocks at the top of the diagram represent this power connection
information. Because this schematic diagram shows individual gates, the gates’ reference designa-
tors contain an alphabetic suffix to identify unique instances of gates within the same IC. Not all
gates in each IC are actually used. Those that are unused are tied inactive by connecting their inputs
to a valid logic level—in this case, ground. It would be equally valid to connect the inputs of unused
gates to the positive supply voltage, +5 V.

This logic circuit would work, but a more efficient solution is available to those who are familiar
with the capabilities of the 7400 family. The 7411 provides three 3-input AND gates, which is per-
fect for this application, allowing a reduction in the part count to three ICs instead of four. This cir-
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FIGURE 2.12 LED driver logic implementation.

cuit is shown in Fig. 2.13 with alternative notation to illustrate varying circuit presentation styles.
Rather than drawing gates as separate elements, the complete 7400-series ICs are shown as mono-
lithic blocks. Either notation is commonly accepted and depends on the engineer’s preference.

2.5 SYNCHRONOUS LOGIC DESIGN WITH THE 7400 FAMILY

The preceding LED driver example shows how state-less logic (logic without flops and a clock) can
be designed to implement an arbitrary logic equation. State-full logic is almost always required in a
digital system, because it is necessary to advance one step at a time (one step each cycle) through an
algorithm. Some 7400 ICs, such as counters, implement synchronous logic within the IC itself by
combining Boolean logic gates and flops on the same die. Other 7400 ICs implement only flops that
may be combined externally with logic to create the desired function.

An example of a synchronous logic application is a basic serial communications controller. Serial
communications is the process of taking parallel data, perhaps a byte of information, and transmit-
ting or receiving that byte at a rate of one bit per clock cycle. The obvious downside of doing this is
that it will take longer to transfer the byte, because it would be faster to just send the entire byte dur-
ing the same cycle. The advantage of serial communications is a reduction in the number of wires re-
quired to transfer information. Being able to string only a few wires between buildings instead of
dozens usually compensates for the added serial transfer time. If the time required to serially transfer
bits is too slow, the rate at which the bits are sent can be increased with some engineering work to
achieve the desired throughput. Such speed improvements are beyond the scope of this presentation.

Real serial communications devices can get fairly complicated. For purposes of discussion, a
fairly simplistic approach is taken. Once the decision is made to serialize a data byte, the problem
arises of knowing when that byte begins and ends. Framing is the process of placing special patterns
into the data stream to indicate the start and end of data units. Without some means to frame the in-
dividual bits as they are transmitted, the receiver would have no means of finding the first and last
bits of each byte. In this example, a single start bit is used to mark the first bit. Once the first bit is
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FIGURE 2.13 LED driver logic using 74111 with fewer ICs.

detected, the last bit is found by knowing that there are eight bits in a byte. During periods of inactiv-
ity, an idle communications interface is indicated by a persistent logic 0. When the transmitter is
given a byte to send, it first drives a logic-1 start bit and then sends eight data bits. Each bit is sent in
its own clock cycle. Therefore, nine clock cycles are required to transfer each byte. The serial inter-
face is composed of two signals, clock and serial data, and functions as shown in Fig. 2.14.

The eight data bits are sent from least-significant bit, bit 0, to most-significant bit, bit 7, following
the start bit. Following the transmission of bit 7, it is possible to immediately begin a new byte by in-
serting a new start bit. This timing diagram does not show a new start bit directly following bit 7.
The corresponding output of the receiver is shown in Fig. 2.15. Here, data out is the eight-bit quan-
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FIGURE 2.14 Serial interface bit timing.
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FIGURE 2.15 Serial receive output timing.
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tity that has been reconstructed from the serialized bit stream of Fig. 2.14. Ready indicates when
data out is valid and is active-high.

All that is required of this receiver is to assemble the eight data bits in their proper order and then
generate a ready signal. This ready signal lasts only one cycle, and any downstream logic waiting for
the newly arrived byte must process it immediately. In a real system, a register might exist to capture
the received byte when ready goes active. This register would then pass the byte to the appropriate
destination. This output timing shows two bytes transmitted back to back. They are separated by
nine cycles, because each byte requires an additional start bit for framing.

In contemplating the design of the receive portion of the serial controller, the need for a serial-in/
parallel-out shift register becomes apparent to assemble the individual bits into a whole byte. Addi-
tionally, some control logic is necessary to recognize the start bit, wait eight clocks to assemble the
incoming byte, and then generate a ready signal. This receiver has two basic states, or modes, of op-
eration: idle and receiving. When idling, no start bit has yet been detected, so there is no useful work
to be done. When receiving, a start bit has been observed, incoming bits are shifted into the shift reg-
ister, and then a ready signal is generated. As soon as the ready signal is generated, the receiver state
may return to idle or remain in receiving if a new start bit is detected. Because there are two basic
control logic states, the state can be stored in a single flip-flop, forming a two-state finite state ma-
chine (FSM). An FSM is formed by one or more state flops with accompanying logic to generate a
new state for the next clock cycle based on the current cycle’s state. The state is represented by the
combined value of the state flops. An FSM with two state flops can represent four unique states.
Each state can represent a particular step in an algorithm. The accompanying state logic controls the
FSM by determining when it is time to transition to a new piece of the algorithm—a new state.

In the serial receive state machine, transitioning from idle to receiving can be done according to
the serial data input, which is 0 when inactive and 1 when indicating a start bit. Transitioning back to
idle must somehow be done nine cycles later. A counter could be used but would require some logic
to sense a particular count value. Instead, a second shift register can be used to delay the start bit by
nine cycles. When the start bit emerges from the last output bit in the shift register, the state machine
can return to the idle state. Consider the logic in Fig. 2.16. The arrow-shaped boxes indicate connec-
tion points, or ports, of the circuit.

Under an idle condition, the input to the shift register is zero until the start bit appears at the data
input, din. Nine cycles later, the ready bit emerges from the shift register. As soon as the start bit is
observed, the state machine transitions to the receiving state, changing the idle input to 0, effectively
masking further input to the shift register. This masking prevents nonzero data bits from entering the
ready delay logic and causing false results.

Delaying the start bit by nine cycles solves one problem but creates another. The transition of the
state machine back to idle is triggered by the emergence of ready from the shift register. Therefore,
this transition will actually occur ten cycles after the start bit, because the state flop, like all D flip-
flops, requires a single cycle of latency to propagate its input to its output. This additional cycle will
prevent the control logic from detecting a new start bit immediately following the last data bit of the
byte currently in progress. A solution is to design ready with its nine-cycle delay and ready_next
with an eight-cycle delay by tapping off one stage earlier in the shift register. In doing so, the state
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FIGURE 2.16 Serial receive ready delay.
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machine can look ahead one cycle into the future and return to idle in time for a new start bit that
may be arriving. With the logical details of the state machine now complete, the state machine can
be represented with the state transition diagram in Fig. 2.17.

A state transition diagram, often called a bubble diagram, shows all the states of an FSM and the
logical arcs that dictate how one state leads to another. When implemented, the arcs are translated
into the state logic to make the FSM function. With a clearly defined state transition diagram, the
logic to drive the state machine can be organized as shown in Table 2.3.

TABLE 2.3 Serial Receive State Machine Logic Truth Table

Current State din ready_next Next State
1 0 X 1
1 1 X 0
0 X 0 0
0 X 1 1

When in the idle state (1), a high on din (the start bit) must be observed to transition to the receiv-
ing state (0). Once in the receiving state, ready_next must be high to return to idle. This logic is rep-
resented by the Boolean equation,

Next = (State&]ﬁl) + (State&ready_next)

As with most problems, there exists more than one solution. Depending on the components avail-
able, one may choose to design the logic differently to make more efficient use of those components.
As a general rule, it is desirable to limit the number of ICs used. The 7451 provides two “AND-OR-
INVERT” gates, each of which implements the Boolean function,

Y = AB+CD

This function is tantalizingly close to what is required for the state machine. It differs in that the in-
version of two inputs (state and din) and a NOR function rather than an OR are necessary. Both dif-
ferences can be resolved using a 7404 inverter IC, but there is a more efficient solution using the
74175 quad flop. The 74175’s four flops each provide both true and inverted outputs. Therefore, a
separate 7404 is not necessary. An inverted version of din can be obtained by passing din through a
flip-flop before feeding the remainder of the circuit’s logic. For purposes of notation, we will refer to
this “flopped” din as din". Another flop will be used for the state machine. The inverted output of the
state flop will compensate for the NOR vs. OR function of the 7451. A third flop will form the ninth
bit of the ready delay shift register when combined with a 74164 eight-bit parallel-out shift register.
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Receive

(©)

ready_next

FIGURE 2.17 Serial receive state machine.
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Conveniently, the 74164 contains an internal AND gate at its input to implement the idle-enable of
the start bit into the shift register.

The total parts count for this serial receiver is four 7400-family ICs: two 74164 shift registers, one
7451 AND-OR-INVERT, and one 74175 quad flop. One flop and one-half of the 7451 are unused in
this application. Figure 2.18 shows how these ICs are connected to implement the serial receive
logic. Note that a mixed-style of IC representation is used: most ICs are shown in a single block, but
the 74175 is broken into separate flops for clarity. Even if an IC is represented as a single block, it is
not necessary to draw the individual pins in the order in which they physically appear. As with the
previous example, the graphical representation of logic depends on individual discretion. In addition
to being functionally and electrically correct, a schematic diagram should be easy to understand.

All synchronous elements, the shift registers and flops, are driven by an input clock signal, clk.
The synchronous elements involved in the control path of the logic are also reset at the beginning of
operation with the active-low reset_ signal. Reset_ is necessary to ensure that the state flop and the
ready_next delay logic begin in an idle state when power is first applied. This is necessary, because
flip-flops power up in a random, hence unknown, state. Once they are explicitly reset, they hold their
state until the logic specifically changes their state. The shift register in the data path, U3, does not
require a reset, because its contents are not used until eight valid data bits are shifted in, thereby
flushing the eight bits with random power-up states. It would not hurt to connect U3’s clr_ pin to
reset_, but this is not done to illustrate the option that is available. In certain logic implementations,
adding reset capability to a flop may incur a penalty in terms of additional cost or circuit size. When
a reset function is not free, it may be decided not to reset certain flops if their contents do not need to
be guaranteed at power up, as is the case here.
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FIGURE 2.18 Serial receive logic schematic diagram.
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In this logic circuit, the inverted output of the state flop, U1B, is used as the state bit to compen-
sate for the 7451’s NOR function. The unused clr_ and b pins of U3 are connected to +5 V to render
them neutral on the shift register’s behavior. The shift register will not clear itself, because clr_ is ac-
tive-low and, similarly, the internal input AND-gate that combines a and b, will be logically by-
passed by tying b to logic 1. The parallel byte output of this serial receiver is designated Dout[7:0]
and is formed by grouping the eight outputs of the shift register into a single bus. One common nota-
tion for assigning members of a bus is to connect each individual member to a thicker line with some
type of bus-ripper line. The bus ripper is often drawn in the schematic diagram as mitered or curved
at the bus end to make its function more visually apparent.

Designing an accompanying serial transmitter follows a very similar design process to the preced-
ing discussion. It is left as an exercise to the reader.

2.6 COMMON VARIANTS OF THE 7400 FAMILY

In the 1970s and 1980s, the 7400 family was commonly manufactured in a bipolar semiconductor
process that operated using a +5-V power supply and was known as transistor-transistor logic (TTL).
The discussion of the 7400 family thus far has included only the original +5-V bipolar type. The
7400’s popularity and broad application to digital design has kept it relevant through many improve-
ments in semiconductor process technology. As engineers learned to fabricate faster and more effi-
cient ICs, the 7400 was redesigned in many different process generations beginning in the late
1960s. Some of the more common 7400 variants are briefly discussed here.

The original 7400 discrete TTL logic family featured typical propagation delays of 10 ns per gate
and power consumption, also called power dissipation, of approximately 10 mW per gate. By mod-
ern standards, the 7400’s speed is relatively slow, and its power dissipation is relatively high. In-
creasing system complexity dictates deeper logic: more gates chained together to implement more
complex Boolean functions. Each added level of logic adds at least another gate’s worth of propaga-
tion delay. At the same time, power consumption also becomes a problem. Ten milliwatts may not
sound like a lot of power, but, when multiplied by several thousand gates, it represents a substantial
design problem in terms of both supplying a large quantity of power and cooling the radiated heat
from digital systems.

Two notable bipolar variants of the 7400 are the 74LS and 74F families. The 74LS, LS indicating
low-power Schottky, has speed comparable to that of the original 7400, but it dissipates roughly 20
percent of its power. The 74F, F indicating fast, is approximately 80 percent faster than the 7400 and
reduces power consumption by almost half. Whether the concern is reducing power or increasing
speed, these two families are useful for applications requiring 5-V bipolar technology.

CMOS technology began to emerge in the 1980s as a popular process for fabricating digital ICs
as a result of its lower power consumption as compared to bipolar. The low-power characteristics of
CMOS logic stem from the fact that a FET requires essentially no current to keep it in an on or off
state (unlike a BJT, which always draws some current when it is turned on). A CMOS gate, there-
fore, will draw current only when it switches. For this reason, the power consumption of a CMOS
logic gate is extremely low in an idle, or quiescent, state and increases with the frequency at which it
switches.

Several CMOS 7400 families were introduced, among them being the 74HCT and 74ACT, each
of which has power consumption orders of magnitude less than bipolar equivalents at low frequen-
cies. Earlier CMOS versions of the 7400 were not fully compatible with the bipolar devices, because
of voltage threshold differences between the CMOS and bipolar processes. A typical TTL output is
only guaranteed to rise above 2.5 V, depending on output loading. In contrast, a typical 5-V CMOS
input requires a minimum level of around 3 V to guarantee detecting a logic 1. This inconsistency in
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voltage range causes a fundamental problem in which a TTL gate driving an ordinary CMOS gate
cannot be guaranteed to operate in all situations. Both the 74HCT and 74ACT families possess the
low-power benefits of CMOS technology and retain compatibility with bipolar ICs. A 74HCT device
is somewhat slower than a 74LS equivalent, and the 74ACT is faster than a 74LS device.

There has been an explosion of 7400 variants. Most of the families introduced in the last decade
are based on CMOS technology and are tailored to a broad set of applications ranging from simple
speed to high-power bus drivers. Most types of 7400 devices share common pin-outs and functions,
with the exception of some proprietary specialized parts that may be produced by only a single man-
ufacturer. Most of the 7400 families still require +5-V supplies, but lower voltages such as 3.3 V,
2.5V, 1.8V, and 1.5V are available as well. These lower-voltage families are important because of
the general trend toward lower voltages for digital logic.

2.7 INTERPRETING A DIGITAL IC DATA SHEET

Semiconductor manufacturers publish data sheets for each of their products. Regardless of the spe-
cific family or device, all logic IC data sheets share common types of information. Once the basic
data sheet terminology and organization is understood, it is relatively easy to figure out other data
sheets even when their exact terminology changes. Data sheet structure is illustrated using the
74LS00 from Fairchild Semiconductor as an example. A page from its data sheet is shown in Fig.
2.19.

Digital IC data sheets should have at least two major sections: functional description and electri-
cal specifications. The functional description usually contains the device pin assignment, or pin-out,
as well as a detailed discussion of how the part logically operates. A simple IC such as the 74L.S00
will have a very brief functional description, because there is not much to say about a NAND gate’s
operation. More complex ICs such as microprocessors can have functional descriptions that fill doz-
ens or hundreds of pages and are broken into many chapters. Some data sheets add additional sec-
tions to present the mechanical dimensions of the package and its thermal properties. Digital 1C
electrical specifications are similar across most types of devices and often appear in the following
four categories:

* Absolute maximum ratings. ~As the term implies, these parameters specify the absolute extremes
that the IC may be subjected to without sustaining permanent damage. Manufacturers almost uni-
versally state that the IC should never be operated under these extreme conditions. These ratings
are useful, because they indicate how the device may be stored and express the quality of design
and manufacture of the physical chip. Manufacturers specify a storage temperature range within
which the semiconductor structures will not break down. In the case of Fairchild’s 74L.S00, this
range is —65 to 150°C. Maximum voltage levels are also specified, 7 V in the case of the 74L.S00,
indicating that the device may be subjected to a 7-V potential without destructing.

* Recommended operating conditions. These parameters specify the normal range of voltages and
temperatures that the IC should be operated within such that its functionality is guaranteed to meet
specifications set forth by the manufacturer. Two of the most important specifications in this sec-
tion are the supply voltage (commonly labeled as either V¢ or Vpp, depending on whether a bipo-
lar or MOS process) and the operating temperature. An IC may have multiple supply voltage
specifications, because an IC can actually operate on several different voltages simultaneously.
Each supply voltage may power a different portion of the chip. When the manufacturer specifies
supply voltage, it does so with a certain tolerance, usually either £5 or £10 percent. Many 5-V
logic ICs are guaranteed to operate only at a supply voltage from 4.75 to 5.25 V (£5 percent). Op-
erating temperature is very important, because it affects the timing of the device. As a semiconduc-
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Absolute Maximum Ratingsote 1)
Note 1: The “Absolute Maximum Ratings” are those values beyond which
Supply Voltage 7V the safety of the device cannot be guaranteed. The device should not be
operated at these limits. The parametric values defined in the Electrical

Inpm Voltage ™ Characteristics tables are not guaranteed at the absolute maximum ratings.

Operating Free Air Temperature Range 0°Cto +70°C The “Recorm ded Operating Conditions” table will define the conditions
for actual devi tion.

Storage Temperature Range -65°C to +150°C or actual device operation

Recommended Operating Conditions

Symbol Parameter Min Nom Max Units
Vee Supply Voltage 4.75 5 5.25 \Y
ViH HIGH Level Input Voltage 2 \
ViL LOW Level input Voltage 0.8 Vv
lon HIGH Level Output Current -0.4 mA
loL LOW Level Output Current 8 mA
Ta Free Air Operating Temperature 0 70 °C

Electrical Characteristics

over recommended operating free air temperature range {uniess otherwise noted)

Symbol Parameter Conditions Min vp Max Units
{Note 2)
Vi Input Clamp Voltage Vee = Min, i) = -18 mA -15 A
VOH HIGH Level Vcc = Min, |OH = Max, 27 34 v
Output Voltage V) = Max
VoL LOW Level Ve = Min, I, = Max,
Output Voltage Vi = Min 035 05 \%
loL = 4 A, Vce = Min 0.25 0.4
1y Input Current @ Max Input Voltage Veo =Max, V=7V 0.1 mA
i HIGH Level Input Current Vce = Max, V, = 2.7V 20 WA
I LOW Level Input Current Vce = Max, V= 0.4V -0.36 mA
los Short Circuit Output Current Ve = Max (Note 3) -20 -100 mA
lccH Supply Current with Outputs HIGH Vg = Max 0.8 1.6 mA
lecL Supply Current with Outputs LOW Vo = Max 24 4.4 mA
Note 2: All typicals are at Vg = 5V, T, = 25°C.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics
atVee =5V and Ty = 25°C
Ry =2kQ
Symbol Parameter C_=15pF C_ =50 pF Units
Min Max Min Max
trLH Propagation Delay Time
LOW-to-HIGH Level Output 8 1 4 1 ns
tPHL Propagation Delay Time
HIGH-to-LOW Level Output 8 10 4 1 ne

FIGURE 2.19 74LS00 manufacturer’s specifications. (Reprinted with permission from Fairchild Semiconductor and National
Semiconductor.)
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tor heats up, it slows down. As it cools, its speed increases. Outside of the recommended operating
temperature, the device is not guaranteed to function, because the effects of temperature become
so severe that functionality is compromised. There are four common temperature ranges for ICs:
commercial (0 to 70°C), industrial (—40 to 85°C), automotive (40 to 125°C), and military (=55 to
125°C). It is more difficult to manufacture an IC that operates over wider temperature ranges. As
such, more demanding temperature grades are often more expensive than the commercial grade.

Other parameters establish the safe operating limits for input signals as well as the applied volt-
age thresholds that represent logic 0 and 1 states. Minimum and maximum input levels are ex-
pressed as either absolute voltages or voltages relative to the supply voltage pins of the device.
Exceeding these voltages may damage the device. Logic threshold specifications are provided to
ensure that the logic input voltages are such that the device will function as intended and not con-
fuse a 1 for a 0, or vice versa. There is also a limit to how must current a digital output can drive.
Current output specifications should be known so that a chip is not overloaded, which could result
in either permanent damage to the chip or the chip’s failure to meet its published specifications.

* DC electrical characteristics. DC parameters specify the voltages and currents that the IC will
present to other circuitry to which it is connected. Whereas recommended operating conditions
specify the environment under which the chip will properly operate, DC electrical characteristics
specify the environment that the chip itself will create. Output voltage specifications define the
logic 0 and 1 thresholds that the chip is guaranteed to drive under all legal operating conditions.
These specifications confirm that the chip is compatible with other chips in the same family and
also allow an engineer to determine if the output levels are compatible with another chip that it
may be driving.

Input current specifications characterize the load that the chip presents to whatever circuit is
driving it. When either logic state is applied to the chip, a small current flows between the driver
and the chip in question. Quantifying these currents enables an engineer to ensure compatibility
between multiple ICs. When one IC drives several other ICs, the sum of the input currents should
not exceed the output current specification of the driver.

* AC electrical characteristics or switching characteristics). AC parameters often represent the
greatest complexity and level of detail in a digital IC’s specifications. They are the guaranteed
timing parameters of inputs and outputs. If the IC is purely combinatorial (e.g., 74LS00), timing
may just be matter of specifying propagation delays and rise and fall times. Logic ICs with syn-
chronous elements (e.g., flops) have associated parameters such as setup, hold, clock frequency,
and output valid times.

Keep in mind that each manufacturer has a somewhat different style of presenting these specifica-
tions. The necessary information should exist, but data sheet sections may be named differently; they
may include certain information in different groupings, and terminology may be slightly different.

Specifications may be provided in mixed combinations of minimum, typical/nominal, and
maximum. When a minimum or maximum limit is not specified, it is understood to be self-evi-
dent or subject to a physical limitation that is beyond the scope of the device. Using Fairchild’s
74LS00 as an example, no minimum output current is specified, because the physical minimum
is very near zero. The actual output current is determined by the load that is being driven, assum-
ing that the load draws no more than the specified maximum. Other specifications are shown un-
der certain operating conditions. A well written data sheet provides guaranteed specifications
under worst-case conditions. Here, the logic 1 output voltage (Vqy) is specified as a minimum of
2.5 V under conditions of minimum supply voltage (Vc), maximum output current (I5y), and
maximum logic-low input voltage (Vi ). These are worst-case conditions. When V¢ decreases,
so will Voy. When Iy increases, it places a greater load on the output, dragging it down to its
lowest level.
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Timing specifications may also be incomplete. Manufacturers do not always guarantee minimum
or maximum parameters, depending on the specific type of device and the particular specification.
As with DC voltages, worst-case parameters should always be specified. When a minimum or maxi-
mum delay is not specified, it is generally because that parameter is of secondary importance, and
the manufacturer was unable to control its process to a sufficient level of detail to guarantee that
value. In many situations where incomplete specifications are given, there are acceptable reasons for
doing so, and the lack of information does not hurt the quality of the design.

Typical timing numbers are not useful in many circumstances, because they do not represent a
limit of the device’s operation. A thorough design must take into account the best and worst perfor-
mance of each IC in the circuit so that one can guarantee that the circuit will function under all con-
ditions. Therefore, worst-case timing parameters are usually the most important to consider first,
because they are the dominant limit of a digital system’s performance in most cases. In more ad-
vanced digital systems, minimum parameters can become equally as important because of the need
to meet hold time and thereby ensure that a signal does not disappear too quickly before the driven
IC can properly sense the signal’s logic level.

Output timing specifications are often specified with an assumed set of loading conditions, be-
cause the current drawn by the load has an impact on the output driver’s ability to establish a valid
logic level. A small load will enable the IC to switch its output faster, because less current is de-
manded of the output. A heavier load has the opposite effect, because it draws more current, which
places a greater strain on the output driver.



CHAPTER 3
Basic Computer Architecture

Microprocessors are central components of almost all digital systems, because combinations of
hardware and software are used to solve design problems. A computer is formed by combining a mi-
croprocessor with a mix of certain basic elements and customized logic. Software runs on a micro-
processor and provides a flexible framework that orchestrates the behavior of hardware that has been
customized to fit the application. When many people think about computers, images of desktop PCs
and laptops come to their minds. Computers are much more diverse than the stereotypical image and
permeate everyday life in increasing numbers. Small computers control microwave ovens, tele-
phones, and CD players.

Computer architecture is fundamental to the design of digital systems. Understanding how a basic
computer is designed enables a digital system to take shape by using a microprocessor as a central
control element. The microprocessor becomes a programmable platform upon which the major com-
ponents of an algorithm can be implemented. Digital logic can then be designed to surround the mi-
croprocessor and assist the software in carrying out a specific set of tasks.

The first portion of this chapter explains the basic elements of a computer, including the micro-
processor, memory, and input/output devices. Basic microprocessor operation is presented from a
hardware perspective to show how instructions are executed and how interaction with other system
components is handled. Interrupts, registers, and stacks are introduced as well to provide an overall
picture of how computers function. Following this basic introduction is a complete example of how
an actual eight-bit computer might be designed, with detailed descriptions of bus operation and ad-
dress decoding.

Once basic computer architecture has been discussed, common techniques for improving and
augmenting microprocessor capabilities are covered, including direct memory access and bus expan-
sion. These techniques are not relegated to high-end computing but are found in many smaller digital
systems in which it is more economical to add a little extra hardware to achieve feature and perfor-
mance goals instead of having to use a microprocessor that may be too complex and more expensive
than desired.

The chapter closes with an introduction to assembly language and microprocessor addressing
modes. Writing software is not a primary topic of this book, but basic software design is an insepara-
ble part of digital systems design. Without software, a computer performs no useful function. As-
sembly language basics are presented in a general manner, because each microprocessor has its own
instruction set and assembly language, requiring specific reading focused on that particular device.
Basic concepts, however, are universal across different microprocessor implementations and serve to
further explain how microprocessors actually function.
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3.1 THE DIGITAL COMPUTER

A digital computer is a collection of logic elements that can execute arbitrary algorithms to perform
data calculation and manipulation functions. A computer is composed of a microprocessor, memory,
and some input/output (I/O) elements as shown in Fig. 3.1. The microprocessor, often called a mi-
croprocessor unit (MPU) or central processing unit (CPU), contains logic to step through an algo-
rithm, called a program, that has been stored in the computer’s program memory. The data used and
manipulated by that program is held in the computer’s data memory. Memory is a repository for data
that is usually organized as a linear array of individually accessible locations. The microprocessor
can access a particular location in memory by presenting a memory address (the index of the desired
location) to the memory element. I/O elements enable the microprocessor to communicate with the
outside world to acquire new data and present the results of its programmed computations. Such ele-
ments can include a keyboard or display controller.

Programs are composed of many very simple individual operations, called instructions, that spec-
ify in exact detail how the microprocessor should carry out an algorithm. A simple program may
have dozens of instructions, whereas a complex program can have tens of millions of instructions.
Collectively, the programs that run on microprocessors are called software, in contrast to the hard-
ware on which they run. Each type of microprocessor has its own instruction set that defines the full
set of unique, discrete operations that it is capable of executing. These instructions perform very nar-
row tasks that, on their own, may seem insignificant. However, when thousands or millions of these
tiny instructions are strung together, they may create a video game or a word processor.

A microprocessor possesses no inherent intelligence or capability to spontaneously begin per-
forming useful work. Each microprocessor is constructed with an instruction set that can be invoked
in arbitrary sequences. Therefore, a microprocessor has the potential to perform useful work but will
do nothing of the sort on its own. To make the microprocessor perform useful work, it requires ex-
plicit guidance in the form of software programming. A task of even moderate complexity must be
broken down into many tiny steps to be implemented on a microprocessor. These steps include basic
arithmetic, Boolean operations, loading data from memory or an input element such as a keyboard,
and storing data back to memory or an output element such as a printer.

Memory structure is one of a computer’s key characteristics, because the microprocessor is al-
most constantly accessing it to retrieve a new instruction, load new data to operate on, or store a cal-
culated result. While program and data memory are logically distinct classifications, they may share
the same physical memory resource. Random access memory (RAM) is the term used to describe a
generic memory resource whose locations can be accessed, or addressed, in an arbitrary order and
either read or written. A read is the process of retrieving data from a memory address and loading it
into the microprocessor. A write is the process of storing data to a memory address from the micro-
processor. Both programs and data can occupy RAM. Consider your desktop computer. When you

Microprocessor

A A A A A

y A 4 A 4 A 4 A 4
Program Data Keyboard Display Printer
Memory Memory Controller Controller Controller

FIGURE 3.1 Generic computer block diagram.
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execute a program that is located on the disk drive, that program is first loaded into the computer’s
RAM and then executed from a region set aside for program memory. As on a desktop computer,
RAM is most often volatile—meaning that it loses its contents when the power is turned off.

Some software cannot be stored in volatile memory, because basic initialization instructions, or
boot code, must be present when the computer is turned on. Remember that a microprocessor can do
nothing useful without software being readily available. When power is first applied to a computer,
the microprocessor must be able to quickly locate boot code so that it can get itself ready to accept
input from a user or load a program from an input device. This startup sequence is called booting,
hence the term boot code. When you turn your computer on, the first messages that it displays on the
monitor are a product of its boot code. Eventually, the computer is able to access its disk drive and
begins loading software into RAM as part of its normal operation. To ensure that boot code is ready
at power-up, nonvolatile memory called read only memory (ROM) exists. ROM can be used to store
both programs as well as any data that must be present at power-up and immediately accessible.
Software contained in ROM is also known as firmware. As its name implies, ROM can only be read
but not written. More complex computers contain a relatively small quantity of ROM to hold basic
boot code that then loads main operating software from another device into RAM. Small computers
may contain all of their software in ROM. Figure 3.2 shows how ROM and RAM complement each
other in a typical computer architecture.

A microprocessor connects to devices such as memory and I/O via data and address buses. Col-
lectively, these two buses can be referred to as the microprocessor bus. A bus is a collection of wires
that serve a common purpose. The data bus is a bit array of sufficient size to communicate one com-
plete data unit at a time. Most often, the data bus is one or more bytes in width. An eight-bit micro-
processor, operating on one byte at time, almost always has an eight-bit data bus. A 32-bit
microprocessor, capable of operating on up to 4 bytes at a time, can have a data bus that is 32, 16, or
8 bits wide. The exact data bus width is implementation specific and varies according to the intended
application of the microprocessor. A narrower bus width means that it will take more time to com-
municate a quantity of data as compared to a wider bus. Common notation for a data bus is D[7:0]
for an 8-bit bus and D[31:0] for a 32-bit bus, where 0 is the least-significant bit.

The address bus is a bit array of sufficient size to fully express the microprocessor’s address
space. Address space refers to the maximum amount of memory and I/O that a microprocessor can
directly address. If a microprocessor has a 16-bit address bus, it can address up to 2! = 65,536
bytes. Therefore, it has a 64 kB address space. The entire address space does not have to be used; it
simply establishes a maximum limit on memory size. Common notation for a 16-bit address bus is
A[15:0], where 0 is the least-significant bit. Figure 3.3 shows a typical microprocessor bus configu-
ration in a computer. Note that the address bus is unidirectional (the microprocessor asserts re-
quested addresses to the various devices), and the data bus is bidirectional (the microprocessor
asserts data on a write and the devices assert data on reads).

Microprocessor

A A A
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ROM RAM
! Boot Code | Program Region | | Data Region i e EerEes

FIGURE 3.2 Basic ROM/RAM memory complement.
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FIGURE 3.3 Microprocessor buses.

A microprocessor’s entire address space is never occupied by a single function; rather, it is
shared by ROM, RAM, and various 1I/Os. Each device is mapped into its own region of the address
space and is enabled only when the microprocessor asserts an address within a device’s mapped re-
gion. The process of recognizing that an address is within a desired region is called decoding. Ad-
dress decoding logic is used to divide the overall address space into smaller sections in which
memory and I/O devices can reside. This logic generates individual signals that enable the appropri-
ate device based on the state of the address bus so that the devices themselves do not need any
knowledge of the specific computer’s unique address decoding.

3.2 MICROPROCESSOR INTERNALS

The multitude of complex tasks performed by computers can be broken down into sequences of sim-
ple operations that manipulate individual numbers and then make decisions based on those calcula-
tions. Certain types of basic instructions are common across nearly every microprocessor in
existence and can be classified as follows for purposes of discussion:

* Arithmetic: add or subtract two values
* Logical: Boolean (e.g., AND, OR, XOR, NOT, etc.) manipulation of one or two values
¢ Transfer: retrieve a value from memory or store a value to memory

¢ Branch: jump ahead or back to a particular instruction if a specified condition is satisfied

Arithmetic and logical instructions enable the microprocessor to modify and manipulate specific
pieces of data. Transfer instructions enable these data to be saved for later use and recalled when
necessary from memory. Branch operations enable instructions to execute in different sequences, de-
pending on the results of arithmetic and logical operations. For example, a microprocessor can com-
pare two numbers and take one of two different actions if the numbers are equal or unequal.

Each unique instruction is represented as a binary value called an opcode. A microprocessor
fetches and executes opcodes one at a time from program memory. Figure 3.4 shows a hypothetical
microprocessor to serve as an example for discussing how a microprocessor actually advances
through and executes the opcodes that form programs.

A microprocessor is a synchronous logic element that advances through opcodes on each clock
cycle. Some opcodes may be simple enough to execute in a single clock cycle, and others may take
multiple cycles to complete. Clock speed is often used as an indicator of a microprocessor’s perfor-
mance. It is a valid indicator but certainly not the only one, because each microprocessor requires a
different number of cycles for each instruction, and each instruction represents a different quantity
of useful work.
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FIGURE 3.4 Simple microprocessor.

When an opcode is fetched from memory, it must be briefly examined to determine what needs to
be done, after which the appropriate actions are carried out. This process is called instruction decod-
ing. A central logic block coordinates the operation of the entire microprocessor by fetching instruc-
tions from memory, decoding them, and loading or storing any data as required. The accumulator is
a register that temporarily holds data while it is being processed. Execution of an instruction to load
the accumulator with a byte from memory would begin with a fetch of the opcode that represents
this action. The instruction decoder would then recognize the opcode and initiate a memory read via
the same microprocessor bus that was used to fetch the opcode. When the data returns from memory,
it would be loaded into the accumulator. While there may be multiple distinct logical steps in decod-
ing an instruction, the steps may occur simultaneously or sequentially, depending on the architecture
of the microprocessor and its decoding logic.

The accumulator is sized to hold the largest data value that the microprocessor can handle in a
single arithmetic or logical instruction. When engineers talk of an 8-bit or 32-bit microprocessor,
they are usually referring to the internal data-path width—the size of the accumulator and the arith-
metic logic unit (ALU). The ALU is sometimes the most complex single logic element in a micro-
processor. It is responsible for performing arithmetic and logical operations as directed by the
instruction decode logic. Not only does the ALU add or subtract data from the accumulator, it also
keeps track of status flags that tell subsequent branch instructions whether the result was positive,
negative, or zero, and whether an addition or subtraction operation created a carry or borrow bit.
These status bits are also updated for logical operations such as AND or OR so that software can
take different action if a logical comparison is true or false.

For ease of presentation, the microprocessor in Fig. 3.4 is shown having a single general-purpose
accumulator register. Most real microprocessors contain more than one internal register that can be
used for general manipulation operations. Some microprocessors have as few as one or two such
registers, and some have dozens or more than a hundred. It is the concept of an accumulator that is
discussed here, but there is no conceptual limitation on how many accumulators or registers a micro-
processor can have.

A microprocessor needs a mechanism to keep track of its place in the instruction sequence. Like a
bookmark that saves your place as you read through a book, the program counter (PC) maintains the
address of the next instruction to be fetched from program memory. The PC is a counter that can be
reloaded with a new value from the instruction decoder. Under normal operation, the microprocessor
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moves through instructions sequentially. After executing each instruction, the PC is incremented,
and a new instruction is fetched from the address indicated by the PC. The major exception to this
linear behavior is when branch instructions are encountered. Branch instructions exist specifically to
override the sequential execution of instructions. When the instruction decoder fetches a branch in-
struction, it must determine the condition for the branch. If the condition is met (e.g., the ALU zero
flag is asserted), the branch target address is loaded into the PC. Now, when the instruction decoder
goes to fetch the next instruction, the PC will point to a new part of the instruction sequence instead
of simply the next program memory location.

3.3 SUBROUTINES AND THE STACK

Most programs are organized into multiple blocks of instructions called subroutines rather than a
single large sequence of instructions. Subroutines are located apart from the main program segment
and are invoked by a subroutine call. This call is a type of branch instruction that temporarily jumps
the microprocessor’s PC to the subroutine, allowing it to be executed. When the subroutine has com-
peted, control is returned to the program segment that called it via a return from subroutine instruc-
tion. Subroutines provide several benefits to a program, including modularity and ease of reuse. A
modular subroutine is one that can be relocated in different parts of the same program while still per-
forming the same basic function. An example of a modular subroutine is one that sorts a list of num-
bers in ascending order. This sorting subroutine can be called by multiple sections of a program and
will perform the same operation on multiple lists. Reuse is related to modularity and takes the con-
cept a step farther by enabling the subroutine to be transplanted from one program to another with-
out modification. This concept greatly speeds the software development process.

Almost all microprocessors provide inherent support for subroutines in their architectures and in-
struction sets. Recall that the program counter keeps track of the next instruction to be executed and
that branch instructions provide a mechanism for loading a new value into the PC. Most branch in-
structions simply cause a new value to be loaded into the PC when their specific branch condition is
satisfied. Some branch instructions, however, not only reload the PC but also instruct the micropro-
cessor to save the current value of the PC off to the side for later recall. This stored PC value, or sub-
routine return address, is what enables the subroutine to eventually return control to the program
that called it. Subroutine call instructions are sometimes called branch-to-subroutine or jump-to-
subroutine, and they may be unconditional.

When a branch-to-subroutine is executed, the PC is saved into a data structure called a stack. The
stack is a region of data memory that is set aside by the programmer specifically for the main pur-
pose of storing the microprocessor’s state information when it branches to a subroutine. Other uses
for the stack will be mentioned shortly. A stack is a last-in, first-out memory structure. When data is
stored on the stack, it is pushed on. When data is removed from the stack, it is popped oft. Popping
the stack recalls the most recently pushed data. The first datum to be pushed onto the stack will be
the last to be popped. A stack pointer (SP) holds a memory address that identifies the top of the stack
at any given time. The SP decrements as entries are pushed on and increments at they are popped off,
thereby growing the stack downward in memory as data is pushed on as shown in Fig. 3.5.

By pushing the PC onto the stack during a branch-to-subroutine, the microprocessor now has a
means to return to the calling routine at any time by restoring the PC to its previous value by simply
popping the stack. This operation is performed by a return-from-subroutine instruction. Many mi-
croprocessors push not only the PC onto the stack when calling a subroutine, but the accumulator
and ALU status flags as well. While this increases the complexity of a subroutine call and return
somewhat, it is useful to preserve the state of the calling routine so that it may resume control
smoothly when the subroutine ends.
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FIGURE 3.5 Generic stack operation.

The stack can store multiple entries, enabling multiple subroutines to be active at the same time.
If one subroutine calls another, the microprocessor must keep track of both subroutines’ return ad-
dresses in the order in which the subroutines have been called. This subroutine nesting process of
one calling another subroutine, which calls another subroutine, naturally conforms to the last-in,
first-out operation of a stack.

To implement a stack, a microprocessor contains a stack pointer register that is loaded by the pro-
grammer to establish the initial starting point, or top, of the stack. Figure 3.6 shows the hypothetical
microprocessor in more complete form with a stack pointer register.

Like the PC, the SP is a counter that is automatically modified by certain instructions. Not only do
subroutine branch and return instructions use the stack, there are also general-purpose push/pop in-
structions provided to enable the programmer to use the stack manually. The stack can make certain
calculations easier by pushing the partial results of individual calculations and then popping them as
they are combined into a final result.

The programmer must carefully manage the location and size of the stack. A microprocessor will
freely execute subroutine call, subroutine return, push, and pop instructions whenever they are en-
countered in the software. If an empty stack is popped, the microprocessor will oblige by reading
back whatever data value is present in memory at the time and then incrementing the SP. If a full
stack is pushed, the microprocessor will write the specified data to the location pointed to by the SP
and then decrement it. Depending on the exact circumstances, either of these operations can corrupt
other parts of the program or data that happens to be in the memory location that gets overwritten. It
is the programmer’s responsibility to leave enough free memory for the desired stack depth and then
to not nest too many subroutines simultaneously. The programmer must also ensure that there is
symmetry between push/pop and subroutine call/return operations. Issuing a return-from-subroutine
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FIGURE 3.6 Microprocessor with stack pointer register.
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instruction while already in the main program would lead to undesirable results when the micropro-
cessor fetches reloads the PC with an incorrect return address.

3.4 RESET AND INTERRUPTS

Thus far, the steady-state operation of a microprocessor has been discussed in which instructions are
fetched, decoded, and executed in an order determined by the PC and branch instructions. There are
two special cases in which the microprocessor does not follow this regular pattern of operation. The
first case is at power-up, when the microprocessor must transition from an idle state to executing in-
structions. This transition sequence is called reset and involves the microprocessor fetching its boot
code from memory to begin the programmed software sequence. Reset is triggered by asserting a
particular logic level onto a microprocessor pin and can occur either at power-up or at any arbitrary
time when it is desired to restart, or reboot, the microprocessor from a known initial state. Some mi-
croprocessors have special instructions that can actually trigger a soft reset.

The question arises of how the microprocessor determines which instruction to execute first when
it has just been reset. To solve this problem, each microprocessor has a reset vector that points it to a
fixed, predetermined memory address where the programmer must locate the first instruction of the
boot sequence. The reset vector is specified by the microprocessor’s designer. Some microprocessors
locate the reset vector at the beginning of memory and some place it toward the end of the address
space. Sometimes the main body of the program will be located in another portion of memory, and
the first instruction at the reset vector will contain a branch instruction to jump to the desired loca-
tion.

The second case in which the microprocessor does not follow the normal instruction sequence is
during normal operation when an event occurs and the programmer wishes the microprocessor to
pause what it is currently doing and handle the event with a special software routine. Such an event
is called an interrupt. A common application for an interrupt is the implementation of a periodic,
timed operation such as monitoring the temperature of a room. Because the room temperature does
not change often, the microprocessor can handle other tasks during normal operation. A timer can be
set to expire every few seconds, causing an interrupt event. When the interrupt triggers, the micro-
processor can read the room temperature, take any appropriate action (e.g., turn on a ventilation fan),
and then resume its normal operation.

An interrupt can be triggered by asserting a special-purpose microprocessor interrupt signal. In-
terrupt events can also be triggered from within a microprocessor via special instructions. When an
interrupt occurs, the microprocessor saves its state by pushing the PC and other registers onto the
stack, and then the PC is loaded with an interrupt vector that points to an interrupt service routine
(ISR) in memory. In this way, the interrupt process is similar to a branch-to-subroutine. However,
the interrupt may be triggered by an external hardware event instead of by software. Like reset, each
interrupt pin on the microprocessor has an interrupt vector associated with it. The programmer
knows that an ISR is to be located at a specific memory location to service a particular interrupt.
When the ISR has completed, a return-from-interrupt instruction is executed that restores the micro-
processor’s prior state by popping it from the stack. Control is then returned to the routine that was
interrupted and normal execution proceeds.

As the interrupt mechanism executes, the program that gets interrupted does not necessarily have
any knowledge of the event. Because the state of the microprocessor is saved and then restored dur-
ing the return-from-interrupt, the main routine has no concept that somewhere along the way its exe-
cution was paused for an arbitrary period. The programmer may choose to make such knowledge
available by sharing information between the ISR and other routines, but this is left to individual
software implementations.
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Multiple interrupt sources are common in microprocessors. Depending on the complexity of the
microprocessor, there may be one, two, ten, or dozens of separate interrupt sources, each with its
own vector. Conflicts in which multiple interrupt sources are activated at the same time are handled
by assigning priorities to each interrupt. Interrupt priorities may be predetermined by the designer of
the microprocessor or programmed by software. In a microprocessor with multiple interrupt priori-
ties, once a higher-priority interrupt has taken control and its ISR is executing, lower-priority inter-
rupts will remain pending until the current higher-priority ISR issues a return-from-interrupt.

Interrupts can usually be turned off, or masked, by writing to a control register within the micro-
processor. Masking an interrupt is useful, because an interrupt should not be triggered before the
program has had a chance to set up the ISR or otherwise get ready to handle the interrupt condition.
If the program is not yet ready and the microprocessor takes an interrupt by jumping to the interrupt
vector, the microprocessor will crash by executing invalid instructions.

Masking is also useful when performing certain time-critical operations. A task may be pro-
grammed into an ISR that must complete within 10 ps. Under normal circumstances, the task is eas-
ily accomplished in this period of time. However, if a competing interrupt is triggered during the
time-critical ISR, there may be no guarantee of meeting the 10-us requirements. One solution to this
problem is to mask subsequent interrupts when the time-critical interrupt is triggered and then un-
mask interrupts when the ISR has completed. If an interrupt arrives while masked, the microproces-
sor will remember the interrupt request and trigger the interrupt when it is unmasked.

Certain microprocessors have one or more interrupts that are classified as nonmaskable. This
means that the interrupt cannot be disabled. Therefore, the hardware design of the computer must
ensure that such an interrupt is not activated unless the software is able to respond to it. Non-
maskable interrupts are generally used for low-level error recovery or debugging purposes where it
must be guaranteed that the interrupt will be taken regardless of what the microprocessor is doing at
the time. Nonmaskable ISRs are sometimes implemented in nonvolatile memory to ensure that they
are always ready for execution.

3.5 IMPLEMENTATION OF AN EIGHT-BIT COMPUTER

Having discussed some of the basic principles of microprocessor architecture and operation, we can
examine how a microprocessor fits into a system to form a computer. Microprocessors need external
memory in which to store their programs and the data upon which they operate. In this context, ex-
ternal memory is viewed from a logical perspective. That is, the memory is always external to the
core microprocessor element. Some processor chips on the market actually contain a certain quantity
of memory within them, but, logically speaking, this memory is still external to the actual micropro-
cessor core.

In the general sense, a computer requires a quantity of nonvolatile memory, or ROM, in which to
store the boot code that will be executed on reset. The ROM may contain all or some of the micro-
processor’s full set of software. A small embedded computer, such as the one in a microwave oven,
contains all its software in ROM. A desktop computer contains very little of its software in ROM. A
computer also requires a quantity of volatile memory, or RAM, that can be used to store data associ-
ated with the various tasks running on the computer. RAM is where the microprocessor’s stack is lo-
cated. Additionally, RAM can be used to hold software that is loaded from an external source.

For purposes of discussion, consider the basic eight-bit computer shown in Fig. 3.7 with a small
quantity of memory and a serial port with which to communicate with the outside world. Eight kilo-
bytes of ROM is sufficient to store boot code and software, including a serial communications pro-
gram. Eight kilobytes of RAM is sufficient to hold data associated with the ROM software, and it
also enables loading additional software not already included in the ROM. The control signals in this
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FIGURE 3.7 Eight-bit computer block diagram.

hypothetical computer are active-low, as are the control signals in most computer designs that, ac-
cording to convention, have been in widespread use for the past few decades. Active-low signal
names have some type of symbol as a prefix or suffix to the signal name that distinguishes them from
active-high signals. Common symbols used for this purpose include #, *, —, and _. From a logical
perspective, it is perfectly valid to use active-high signaling. However, because most memory and
peripheral devices conform to the active-low convention, it is often easier to go along with the estab-
lished convention.

While hypothetical, the microprocessor shown contains characteristics that are common in off-
the-shelf eight-bit microprocessors. It contains an 8-bit data bus and a 16-bit address bus with a total
address space of 64 kB. The combined MPU bus, consisting of address, data, and control signals, is
asynchronous and is enabled by the assertion of read and write enable signals. When the micropro-
cessor wants to read a location in memory, it asserts the appropriate address along with RD* and
then takes the resulting value driven onto the data bus. As shown in the diagram, memory chips usu-
ally have output enable (OE*) signals that can be connected to a read enable. Such devices continu-
ously decode the address bus and will emit data whenever OE* is active.

Not all 64 kB of address space is used in this computer. Address decoding logic breaks the single
64-kB space into four 16-kB regions. According to the state of A[15:14], one and only one of the
chip select signals is activated. The address decoding follows the truth table shown in Table 3.1 and
establishes four address ranges.

Once decoded into regions, A[13:0] provides unique address information to the memory and I/O
devices connected to the MPU bus. One memory region, the upper 16 kB, is currently left unused. It
may be used in the future if more memory or another I/O device is added. Each memory and I/O de-
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TABLE 3.1 Address Decoding Truth Table

A[15]  A[l14]  Chip Select Address Range

0 0 CSo* 0x0000-0x3FFF
0 1 CS1* 0x4000-0x7FFF
1 0 CS2* 0x8000-0xBFFF
1 1 none 0xC000-0xFFFF

vice has a chip select input and will respond to a read or write command only when that select signal
is active. Furthermore, each chip, including the microprocessor, contains internal tri-state buffers to
prevent contention on the bus. The tri-state buffers are not enabled unless the chip’s select signal is
active and a read is being performed (a write, in the case of the microprocessor). Without external
address decoding, none of these chips can share an address region with any other devices, because
they do not have enough address bits to fully decode the entire 16-bit address bus.

Not all address bits are used by the memory and serial port chips. The ROM and RAM are each
only 8k in size. Therefore, only 13 address bits, A[12:0], are required and, as a result, A[13] is left
unconnected. The serial port has far fewer memory locations and therefore uses only A[3:0], for a
maximum of 16 unique addresses.

When a device does not utilize all of the address bits that have been allocated for its particular ad-
dress region, the potential for aliasing exists. The ROM occupies only 8k (13 bits) of the 16k (14
bits) address region. Therefore, the ROM has no knowledge of any additional addresses above 8k:
the region from 0x2000 to Ox3FFFF. What happens if the MPU tries to read location 0x2000?
0x2000 differs from 0x0000 only in the state of A[13]. Because the ROM does not have any knowl-
edge of A[13], it interprets 0x2000 to be 0x0000. In other words, 0x2000 aliases to 0x0000. Simi-
larly, the entire upper 8k of the address region aliases to the lower 8k. In the case of the serial port
controller, there is a greater degree of aliasing, because the serial port only uses A[3:0]. This means
that there can be only 16 unique address locations in the entire 16k region. These 16 locations will
therefore appear to be replicated 2'° = 1,024 times as indicated by the ten unused address bits,
A[13:4].

As long as the software is properly written to understand the computer’s memory map, it will
properly access the memory locations that are available and will avoid aliased portions of the mem-
ory map. Aliasing is not a problem in itself but can lead to problems if software does not access
memory and peripherals in the way in which the hardware engineer intended. If software is written
for the hypothetical computer with the incorrect assumption that 16 kB of RAM is present, data may
be unwittingly corrupted when addresses between 0x6000 and Ox7FFF are written, because they will
alias to 0x4000-0x5FFF and overwrite any existing data.

When the MPU wants to read data from a particular memory location, it asserts that address onto
A[15:0]. This causes the address decoder to update its chip select outputs, which enables the appro-
priate memory chip or the serial port. After allowing time for the chip select to propagate, the RD*
signal is asserted, and the WR* signal is left unasserted. This informs the selected device that a read
is requested. The device is then able to drive the data bus, D[7:0], with the requested data. After al-
lowing some time for the read data to be driven, the MPU captures the data and releases the RD* sig-
nal, ending the read request. The sequence of events, or timing, for the read transaction is shown in
Fig. 3.8.

This type of MPU bus is asynchronous, because its sequence of events is not driven by a clock but
rather by the assertion and removal of the various signals that are timed relative to one another by the
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FIGURE 3.8 MPU read timing.

MPU and the devices with which it is communicating. For this interface to work properly, the MPU
must allow enough time for the read to occur, regardless of the specific device with which it is com-
municating. In other words, it must operate according to the capabilities of the slowest device—the
least common denominator.

Write timing is very similar, as seen in Fig. 3.9. Again, the MPU asserts the desired address onto
A[15:0], and the appropriate chip select is decoded. At the same time, the write data is driven onto
D[7:0]. Once the address and data have had time to stabilize, and after allowing time for the chip se-
lect to propagate, the WR* enable signal is asserted to actually trigger the write. The WR* signal is
de-asserted while data, address, and chip select are still stable so that there is no possibility of writ-
ing to a different location and corrupting data. If the WR* signal is de-asserted at the same time as
the others, a race condition could develop wherein a particular device may sense the address (or data
or chip select) change just prior to WR* changing, resulting in a false write to another location or to
the current location with wrong data. Being an asynchronous interface, the duration of all signal as-
sertions must be sufficient for all devices to properly execute the write.

An MPU interrupt signal is asserted by the serial port controller to enable easier programming of
the serial port communication routine. Rather than having software continually poll the serial port to
see if data are waiting, the controller is configured to assert INTR* whenever a new byte arrives. The
MPU is then able to invoke an ISR, which can transfer the data byte from the serial port to the RAM.
The interrupt also helps when transmitting data, because the speed of the typical serial port (often
9,600 to 38,400 bps) is very slow as compared to the clock speed of even a slow MPU (1 to
10 MHz). When the software wants to send a set of bytes out the serial port, it must send one byte
and then wait a relatively long time until the serial port is ready for the next byte. Instead of polling
in a loop between bytes, the serial port controller asserts INTR* when it is time to send the next
byte. The ISR can then respond with the next byte and return control to the main program that is run-
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FIGURE 3.9 MPU write timing.
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ning at the time. Each time INTR* is asserted and the ISR responds, the ISR must be sure to clear
the interrupt condition in the serial port. Depending on the exact serial port device, a read or write to
a specific register will clear the interrupt. If the interrupt is not cleared before the ISR issues a return-
from-interrupt, the MPU may be falsely interrupted again for the same condition.

This computer contains two other functional elements: the clock and reset circuits. The 1-MHz
clock must be supplied to the MPU continually for proper operation. In this example design, no
other components in the computer require this clock. For fairly simple computers, this is a realistic
scenario, because the buses and memory devices operate asynchronously. Many other computers,
however, have synchronous buses, and the microprocessor clock must be distributed to other compo-
nents in the system.

The reset circuit exists to start the MPU when the system is first turned on. Reset must be applied
for a certain minimum duration after the power supply has stabilized. This is to ensure that the digi-
tal circuits properly settle to known states before they are released from reset and allowed to begin
normal operation. As the computer is turned on, the reset circuit actively drives the RST* signal.
Once power has stabilized, RST* is de-asserted and remains in this state indefinitely.

3.6 ADDRESS BANKING

A microprocessor’s address space is normally limited by the width of its address bus, but supple-
mental logic can greatly expand address space, subject to certain limitations. Address banking is a
technique that increases the amount of memory a microprocessor can address. If an application re-
quires 1 MB of RAM for storing large data structures, and an 8-bit microprocessor is used with a
64-kB address space, address banking can enable the microprocessor to access the full 1 MB one
small section at a time.

Address banking, also known as paging, takes a large quantity of memory, divides it into multiple
smaller banks, and makes each bank available to the microprocessor one at a time. A bank address
register is maintained by the microprocessor and determines which bank of memory is selected at
any given time. The selected bank is accessed through a portion of the microprocessor’s fixed ad-
dress space, called a window, set aside for banked memory access. As shown in Fig. 3.10a, the upper
16 kB of address space provides direct access to one of many 16-kB pages in the larger banked
memory structure. Figure 3.10b shows the logical implementation of this banked memory scheme. A
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FIGURE 3.10 Address banking.



68

Digital Fundamentals

22-bit combined address is sent to the 4-MB banked memory structure: 256 pages x 16 kB per page
=4 MB. These 22 bits are formed through the concatenation of the 8-bit bank address register and
14 of the microprocessor’s low-order address bits, A[13:0]. The eight bank-address bits are changed
infrequently whenever the microprocessor is ready for a new page in memory. The 14 microproces-
sor-address bits can change each time the window is accessed.

The details of a banking scheme can be modified according to the application’s requirements. The
bank access window can be increased or decreased, and more or fewer pages can be defined. If an
application operates on many small sets of data, a larger number of smaller pages may be suitable. If
the data or software set is widely dispersed, it may be better to increase the window size as much as
possible to minimize the bank address register update rate.

While address banking can greatly increase the memory available to a microprocessor, it does so
with the penalties of increased access time on page switches and more complexity in managing the
segmented address space. Each time the microprocessor wants to access a location in a different
page, it must update the bank address register. This penalty is acceptable in some applications. How-
ever, if the application requires both consistently fast access time and large memory size, a faster,
more expensive microprocessor may be required that suits these needs.

The complexity of managing the segmented address space dissuades some engineers from em-
ploying address banking. Software usually bears the brunt of recognizing when necessary data re-
sides in a different page and then updating the bank address register to access that page. It is easier
for software to deal with a large, continuous address space. With the easy availability and low cost of
32-bit microprocessors, address banking is not as common as it used to be. However, if an 8-bit mi-
croprocessor must be used for cost reduction or other limitations, address banking may be useful
when memory demands increase beyond 64 kB.

3.7 DIRECT MEMORY ACCESS

Transferring data from one region of memory to another is a common task performed within a com-
puter. Incoming data may be transferred from a serial communications controller into memory, and
outgoing data may be transferred from memory to the controller. Memory-to-memory transfers are
common, too, as data structures are moved between subprograms, each of which may have separate
regions of memory set aside for its private use. The speed with which memory is transferred nor-
mally depends on the time that the microprocessor takes to perform successive read and write opera-
tions. Each byte transferred requires several microprocessor operations: load accumulator, store
accumulator, update address for next byte, and check if there is more data. Instead of simply moving
a stream of bytes without interruption, the microprocessor is occupied mostly by the overhead of
calculating new addresses and checking to see if more data is waiting. Computers that perform a
high volume of memory transfers may exhibit performance bottlenecks as a result of the overhead of
having the microprocessor spend too much of its time reading and writing memory.

Memory transfer performance can be improved using a technique called direct memory access, or
DMA. DMA logic intercedes at the microprocessor’s request to directly move data between a source
and destination. A DMA controller (DMAC) sits on the microprocessor bus and contains logic that is
specifically designed to rapidly move data without the overhead of simultaneously fetching and de-
coding instructions. When the microprocessor determines that a block of data is ready to move, it
programs the DMAC with the starting address of the source data, the number of bytes to move, and
the starting address of the destination data. When the DMAC is triggered, the microprocessor tem-
porarily relinquishes control of its bus so the DMAC can take over and quickly move the data. The
DMAC serves as a surrogate processor by directly generating addresses and reading and writing
data. From the microprocessor bus perspective, nothing has changed, and data transfers proceed nor-
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mally despite being controlled by the DMAC rather than the microprocessor. Figure 3.11 shows the
basic internal structure of a DMAC.

A DMA transfer can be initiated by either the microprocessor or an I/O device that contains logic
to assert a request to the DMAC. DMA transfers are generally broken into two categories: periph-
eral/memory and memory/memory. Peripheral/memory transfers move data to a peripheral or re-
trieve data from a peripheral. A peripheral/memory transfer can be triggered by a DMA-aware I/O-
device when it is ready to accept more outgoing data or incoming data has arrived. These are called
single-address transfers, because the DMAC typically controls only a single address—that of the
memory side of the transfer. The peripheral address is typically a fixed offset into its register set and
is asserted by supporting control logic that assists in the connectivity between the peripheral and the
DMAC.

DMA transfers do not have to be continuous, and they are often not in the case of a peripheral
transfer. If the microprocessor sets up a DMA transfer from a serial communications controller to
memory, it programs the DMAC to write a certain quantity of data into memory. However, the trans-
fer does not begin until the serial controller asserts a DMA request indicating that data is ready.
When this request occurs, the DMAC arbitrates for access to the microprocessor bus by asserting a
bus request. Some time later, the microprocessor or its support logic will grant the bus to the DMAC
and temporarily pause the microprocessor’s bus activity. The DMAC can then transfer a single unit
of data from the serial controller into memory. The unit of data transfer may be any number of bytes.
When finished, the DMAC relinquishes control of the bus back to the microprocessor.

Memory/memory transfers move data from one region in memory to another. These are called
dual-address transfers, because the DMAC controls two addresses into memory—source and desti-
nation. Memory/memory transfers are triggered by the microprocessor and can execute continu-
ously, because the data block to be moved is ready and waiting in memory.

Even when DMA transfers execute one byte at a time, they are still more efficient than the micro-
processor, because the DMAC is capable of transferring a byte or word (per the microprocessor’s
data bus width) in a single bus cycle rather than the microprocessor’s load/store mechanism with ad-
ditional overhead. There is some initial overhead in setting up the DMA transfer, so it is not efficient
to use DMA for very short transfers. If the microprocessor needs to move only a few bytes, it should
probably do so on its own. However, the DMAC initialization overhead is more than compensated
for if dozens or hundreds of bytes are being moved.
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Source Address
Register
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Destination < bus request/grant >
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Logic >
Transfer Length W data bus >
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FIGURE 3.11 DMA controller block diagram.
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A typical DMAC supports multiple channels, each of which controls a different DMA transfer.
While only one transfer can execute at any given moment, multiple transfers can be interleaved to
prevent one peripheral from being starved for data while another is being serviced. Because a typical
peripheral transfer is not continuous, each DMA channel can be assigned to each active peripheral.
A DMAC can have one channel configured to load incoming data from a serial controller, another to
store data to a disk drive controller, and a third to move data from one region of memory to another.
Once initialized by the microprocessor, the exact order and interleaving of multiple channels is re-
solved by the individual DMA request signals, and any priority information is stored in the DMAC.

When a DMAC channel has completed transferring the requested quantity of data, the DMAC as-
serts an interrupt to the microprocessor to signal that the data has been moved. At this point, the mi-
croprocessor can restart a new DMA transfer if desired and invoke any necessary routines to process
data that has been moved.

External DMA support logic may be necessary, depending on the specific DMAC, microproces-
sor, and peripherals that are being used. Some microprocessors contain built-in DMAC arbitration
logic. Some peripherals contain built-in DMA request logic, because they are specifically designed
for these high-efficiency memory transfers. Custom arbitration logic typically functions by waiting
for the DMAC to request the bus and then pausing the microprocessor’s bus transfers until the
DMALC relinquishes the bus. This pause operation is performed according to the specifications of the
particular microprocessor. Custom peripheral control logic can include DMAC read/write interface
logic to assert the correct peripheral address when a transfer begins and perform any other required
mapping between the DMAC’s transfer enable signaling and the peripheral’s read/write interface.

3.8 EXTENDING THE MICROPROCESSOR BUS

A microprocessor bus is intended to directly connect to memory and I/O devices that are in close
proximity to the microprocessor. As such, its electrical and functional properties are suited for rela-
tively short interconnecting wires and relatively simple device interfaces that respond with data soon
after the microprocessor issues a request. Many computers, however, require some mechanism to ex-
tend the microprocessor bus so that additional hardware, such as plug-in expansion cards or memory
modules, can enhance the system with new capabilities. Supporting these modular extensions to the
computer’s architecture can be relatively simple or quite complex, depending on the required degree
of expandability and the physical distances across which data must be communicated.

Expansion buses are generally broken into two categories, memory and I/O, because these
groups’ respective characteristics are usually quite different. General-purpose memory is a high-
bandwidth resource to which the microprocessor requires immediate access so that it can maintain a
high level of throughput. Memory is also a predictable and regular structure, both logically and
physically. If more RAM is added to a computer, it is fairly certain that some known number of
chips will be required for a given quantity of memory. In contrast, I/O by nature is very diverse, and
its bandwidth requirements are usually lower than that of memory. I/O expansion usually involves
cards of differing complexity and architecture as a result of the wide range of interfaces that can be
supported (e.g., disk drive controller versus serial port controller). Therefore, an I/O expansion bus
must be flexible enough to interface with a varying set of modules, some of which may not have
been conceived of when the computer is first designed.

Memory expansion buses are sometimes direct extensions of the microprocessor bus. From the
preceding 8-bit computer example, the upper 16 kB of memory could be reserved for future expan-
sion. A provision for future expansion could be as simple as adding a connector or socket for an ex-
tra memory chip. In this case, no special augmentation of the microprocessor bus is required.
However, in a larger system with more address space, provisions must be made for more than one
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additional memory chip. In these situations, a simple buffered extension of the microprocessor bus
may suffice. A buffer, in this context, is an IC that passes data from one set of pins to another,
thereby electrically separating two sections of a bus. As shown in Fig. 3.12, a buffer can extend a mi-
croprocessor bus so that its logical functionality remains unchanged, but its electrical characteristics
are enhanced to provide connectivity across a greater distance (to a multichip memory expansion
module). A unidirectional address buffer extends the address bus from the microprocessor to expan-
sion memory devices. A bidirectional data buffer extends the bus away from the microprocessor on
writes and toward the microprocessor on reads. The direction of the data buffer is controlled accord-
ing to the state of read/write enable signals generated by the microprocessor.

More complex memory structures may contain dedicated memory control logic that sits between
the microprocessor and the actual memory devices. Expanding such a memory architecture is gener-
ally accomplished by augmenting the “back-side” memory device bus as shown in Fig. 3.13 rather
than by adding additional controllers onto an extended microprocessor bus. Such an expansion
scheme may or may not require buffers, depending on the electrical characteristics of the bus in
question.

1/0 buses may also be direct extensions of the microprocessor bus. The original expansion bus in
the IBM PC, developed in the early 1980s, is essentially an extended Intel 8088 microprocessor bus
that came to be known as the Industry Standard Architecture (ISA) bus. Each 1/O card on the ISA
bus is mapped in a unique address range in the microprocessor’s memory. Therefore, when software
wants to read or write a register on an I/O card, it simply performs an access to the desired location.
The ISA bus added a few features beyond the raw 8088 bus, including DMA and variable wait states
for slow I/O devices. A wait state results when a device cannot immediately respond to the micro-
processor’s request and asserts a signal to stretch the access so that it can respond properly.
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Direct extensions such as the ISA bus are fairly easy to implement and serve well in applications
where 1/0 response time does not unduly restrict microprocessor throughput. As computers have
gotten faster, the throughput of microprocessors has rapidly outstripped the response times of all but
the fastest I/O devices. In comparison to a modern microprocessor, a hard-disk controller is rather
slow, with response times measured in microseconds rather than nanoseconds. Additionally, as bus
signals become faster, the permissible length of interconnecting wires decreases, limiting their ex-
pandability. These and other characteristics motivate the decoupling of the microprocessor’s local
bus from the computer’s I/O bus.

An /0 bus can be decoupled from the microprocessor bus by inserting an intermediate bus con-
troller between them that serves as an interface, or translator, between the two buses. Once the buses
are separated, activity on one bus does not necessarily obstruct activity on the other. If the micropro-
cessor wants to write a block of data to a slow device, it can rapidly transfer that data to the bus con-
troller and then continue with other operations at full speed while the controller slowly transfers the
data to the I/0 device. This mechanism is called a posted-write, because the bus controller allows the
microprocessor to complete, or post, its write before the write actually completes. Separate buses
also open up the possibility of multiple microprocessors or logic elements performing 1/O operations
without conflicting with the central microprocessor. In a multimaster system, a specialized DMA
controller can transfer data between two peripherals such as disk controllers while the microproces-
sor goes about its normal business.

The Peripheral Component Interconnect (PCI) bus is the industry-standard follow-on to the ISA
bus, and it implements such advanced features as posted-writes, multiple-masters, and multiple bus
segments. Each PCI bus segment is separated from the others via a PCI bridge chip. Only traffic that
must travel between buses crosses a bridge, thereby reducing congestion on individual PCI bus seg-
ments. One segment can be involved in a data transfer between two devices without affecting a si-
multaneous transfer between two other devices on a different segment. These performance-
enhancing features do not come for free, however. Their cost is manifested by the need for dedicated
PCI control logic in bridge chips and in the I/O devices themselves. It is generally simpler to imple-
ment an [/O device that is directly mapped into the microprocessor’s memory space, but the overall
performance of the computer may suffer under demanding applications.

3.9 ASSEMBLY LANGUAGE AND ADDRESSING MODES

With the hardware ready, a computer requires software to make it more than an inactive collection of
components. Microprocessors fetch instructions from program memory, each consisting of an op-
code and, optionally, additional operands following the opcode. These opcodes are binary data that
are easy for the microprocessor to decode, but they are not very readable by a person. To enable a
programmer to more easily write software, an instruction representation called assembly language
was developed. Assembly language is a low-level language that directly represents each binary op-
code with a human-readable text mnemonic. For example, the mnemonic for an unconditional
branch-to-subroutine instruction could be BSR. In contrast, a high-level language such as C++ or
Java contains more complex logical expressions that may be automatically converted by a compiler
to dozens of microprocessor instructions. Assembly language programs are assembled, rather than
compiled, into opcodes by directly translating each mnemonic into its binary equivalent.

Assembly language also makes programming easier by enabling the usage of text labels in place
of hard-coded addresses. A subroutine can be named FOO, and when BSR FOO is encountered by
the assembler, a suitable branch target address will be automatically calculated in place of the label
FOO. Each type of assembler requires a slightly different format and syntax, but there are general as-
sembly language conventions that enable a programmer to quickly adapt to specific implementations
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once the basics are understood. An assembly language program listing usually has three columns of
text followed by an optional comment column as shown in Fig. 3.14. The first column is for labels
that are placeholders for addresses to be resolved by the assembler. Instruction mnemonics are lo-
cated in the second column. The third column is for instruction operands.

This listing uses the Motorola 6800 family’s assembly language format. Though developed in the
1970s, 68xx microprocessors are still used today in embedded applications such as automobiles and
industrial automation. The first line of this listing is not an instruction, but an assembler directive
that tells the assembler to locate the program at memory location $100. When assembled, the listing
is converted into a memory dump that lists a range of memory addresses and their corresponding
contents—opcodes and operands. Assembler directives are often indicated with a period prefix.

The program in Fig. 3.14 is very simple: it counts to 30 ($1E) and then sends the “Z” character
out the serial port. It continues in an infinite loop by returning to the start of the program when the
serial port routine has completed its task. The subroutine to handle the serial port is not shown and is
referenced with the SEND_CHAR label. The program begins by clearing accumulator A (the 6800
has two accumulators: ACCA and ACCB). It then enters an incrementing loop where the accumula-
tor is incremented and then compared against the terminal count value, $1E. The # prefix tells the as-
sembler to use the literal value $1E for the comparison. Other alternatives are possible and will soon
be discussed. If ACCA is unequal to $1E, the microprocessor goes back to increment ACCA. If
equal, the accumulator is loaded with the ASCII character to be transmitted, also a literal operand.
The assumption here is that the SEND_CHAR subroutine transmits whatever is in ACCA. When the
subroutine finishes, the program starts over with the branch-always instruction.

Each of the instructions in the preceding program contains at least one operand. CLRA and INCA
have only one operand: ACCA. CMPA and LDAA each have two operands: ACCA and associated
data. Complex microprocessors may reference three or more operands in a single instruction. Some
instructions can reference different types of operands according to the requirements of the program
being implemented. Both CMPA and LDAA reference literal operands in this example, but a pro-
grammer cannot always specify a predetermined literal data value directly in the instruction sequence.

Operands can be referenced in a variety of manners, called addressing modes, depending on the
type of instruction and the type of operand. Some types of instructions inherently use only one ad-
dressing mode, and some types have multiple modes. The manners of referencing operands can be
categorized into six basic addressing modes: implied, immediate, direct, relative, indirect, and in-
dexed. To fully understand how a microprocessor works, and to efficiently utilize an instruction set,
it is necessary to explore the various mechanisms used to reference data.

* Implied addressing specifies the operand of an instruction as an inherent property of that instruc-
tion. For example, CLRA implies the accumulator by definition. No additional addressing infor-
mation following the opcode is needed.

.ORIG $100

BEGIN CLRA

INC_LOOP INCA
CMPA #S1E ; compare ACCA = S$S1E
BNE INC_LOOP ; if not equal, go back
LDAA #'7Z" ; else, load ASCII 'Z'
BSR SEND_CHAR ; send ACCA to serial port
BRA BEGIN ; start over again

FIGURE 3.14 Typical assembly language listing.
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* Immediate addressing places an operand’s value literally into the instruction sequence. LDAA

#7Z’ has its primary operand immediately available following the opcode. An immediate oper-
and is indicated with the # prefix in some assembly languages. Eight-bit microprocessors with
eight-bit instruction words cannot fit an immediate value into the instruction word itself and,
therefore, require that an extra byte following the opcode be used to specify the immediate value.
More powerful 32-bit microprocessors can often fit a 16-bit or 24-bit immediate value within the
instruction word. This saves an additional memory fetch to obtain the operand.

Direct addressing places the address of an operand directly into the instruction sequence. Instead
of specifying LDAA #'Z ', the programmer could specify LDAA $1234. This version of the in-
struction would tell the microprocessor to read memory location $1234 and load the resulting
value into the accumulator. The operand is directly available by looking into the memory address
specified just following the instruction. Direct addressing is useful when there is a need to read a
fixed memory location. Usage of the direct addressing mode has a slightly different impact on var-
ious microprocessors. A typical 8-bit microprocessor has a 16-bit address space, meaning that two
bytes following the opcode are necessary to represent a direct address. The 8-bit microprocessor
will have to perform two additional 8-bit fetch operations to load the direct address. A typical 32-
bit microprocessor has a 32-bit address space, meaning that 4 bytes following the opcode are nec-
essary. If the 32-bit microprocessor has a 32-bit data bus, only one additional 32-bit fetch opera-
tion is required to load the direct address.

Relative addressing places an operand’s relative address into the instruction sequence. A relative
address is expressed as a signed offset relative to the current value of the PC. Relative addressing
is often used by branch instructions, because the target of a branch is usually within a short dis-
tance of the PC, or current instruction. For example, BNE INC_LOOP results in a branch-if-not-
equal backward by two instructions. The assembler automatically resolves the addresses and cal-
culates a relative offset to be placed following the BNE opcode. This relative operation is per-
formed by adding the offset to the PC. The new PC value is then used to resume the instruction
fetch and execution process. Relative addressing can utilize both positive and negative deltas that
are applied to the PC. A microprocessor’s instruction format constrains the relative range that can
be specified in this addressing mode. For example, most 8-bit microprocessors provide only an 8-
bit signed field for relative branches, indicating a range of +127/~128 bytes. The relative delta
value is stored into its own byte just after the opcode. Many 32-bit microprocessors allow a 16-bit
delta field and are able to fit this value into the 32-bit instruction word, enabling the entire instruc-
tion to be fetched in a single memory read. Limiting the range of a relative operation is generally
not an excessive constraint because of software’s locality property. Locality in this context means
that the set of instructions involved in performing a specific task are generally relatively close to-
gether in memory. The locality property covers the great majority of branch instructions. For
those few branches that have their targets outside of the allowed relative range, it is necessary to
perform a short relative branch to a long jump instruction that specifies a direct address. This re-
duces the efficiency of the microprocessor by having to perform two branches when only one is
ideally desired, but the overall efficiency of saving extra memory accesses for the majority of
short branches is worth the trade-off.

* [ndirect addressing specifies an operand’s direct address as a value contained in another register.

The other register becomes a pointer to the desired data. For example, a microprocessor with two
accumulators can load ACCA with the value that is at the address in ACCB. LDAA (ACCB)
would tell the microprocessor to put the value of accumulator B onto the address bus, perform a
read, and put the returned value into accumulator A. Indirect addressing allows writing software
routines that operate on data at different addresses. If a programmer wants to read or write an arbi-
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trary entry in a data table, the software can load the address of that entry into a microprocessor
register and then perform an indirect access using that register as a pointer. Some microprocessors
place constraints on which registers can be used as references for indirect addressing. In the case
of a 6800 microprocessor, LDAA (ACCB) is not actually a supported operation but serves as a
syntactical example for purposes of discussion.

* Indexed addressing is a close relative (no pun intended) of indirect addressing, because it also re-
fers to an address contained in another register. However, indexed addressing also specifies an off-
set, or index, to be added to that register base value to generate the final operand address: base +
offset = final address. Some microprocessors allow general accumulator registers to be used as
base-address registers, but others, such as the 6800, provide special index registers for this pur-
pose. In many 8-bit microprocessors, a full 16-bit address cannot be obtained from an 8-bit accu-
mulator serving as the base address. Therefore, one or more separate index registers are present
for the purpose of indexed addressing. In contrast, many 32-bit microprocessors are able to spec-
ify a full 32-bit address with any general-purpose register and place no limitations on which regis-
ter serves as the index register. Indexed addressing builds upon the capabilities of indirect
addressing by enabling multiple address offsets to be referenced from the same base address.
LDAA (X+$20) would tell the microprocessor to add $20 to the index register, X, and use the
resulting address to fetch data to be loaded into ACCA. One simple example of using indexed ad-
dressing is a subroutine to add a set of four numbers located at an arbitrary location in memory.
Before calling the subroutine, the main program can set an index register to point to the table of
numbers. Within the subroutine, four individual addition instructions use the indexed addressing
mode to add the locations X+0, X+1, X+2, and X+3. When so written, the subroutine is flexible
enough to be used for any such set of numbers. Because of the similarity of indexed and indirect
addressing, some microprocessors merge them into a single mode and obtain indirect addressing
by performing indexed addressing with an index value of zero.

The six conceptual addressing modes discussed above represent the various logical mechanisms
that a microprocessor can employ to access data. It is important to realize that each individual micro-
processor applies these addressing modes differently. Some combine multiple modes into a single
mode (e.g., indexed and indirect), and some will create multiple submodes out of a single mode. The
exact variation depends on the specifics of an individual microprocessor’s architecture.

With the various addressing modes modifying the specific opcode and operands that are presented
to the microprocessor, the benefits of using assembly language over direct binary values can be ob-
served. The programmer does not have to worry about calculating branch target addresses or resolv-
ing different addressing modes. Each mnemonic can map to several unique opcodes, depending on
the addressing mode used. For example, the LDAA instruction in Fig. 3.14 could easily have used ex-
tended addressing by specifying a full 16-bit address at which the ASCII transmit-value is located.
Extended addressing is the 6800’s mechanism for specifying a 16-bit direct address. (The 6800’s di-
rect addressing involves only an eight-bit address.) In either case, the assembler would determine the
correct opcode to represent LDAA and insert the correct binary values into the memory dump. Addi-
tionally, because labels are resolved each time the program is assembled, small changes to the pro-
gram can be made that add or remove instructions and labels, and the assembler will automatically
adjust the resulting addresses accordingly.

Programming in assembly language is different from using a high-level language, because one
must think in smaller steps and have direct knowledge about the microprocessor’s operation and ar-
chitecture. Assembly language is processor-specific instead of generic, as with a high-level lan-
guage. Therefore, assembly language programming is usually restricted to special cases such as boot
code or routines in which absolute efficiency and performance are demanded. A human programmer
will usually be able to write more efficient assembly language than a high-level language compiler
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can generate. In large programs, the slight inefficiency of the compiler is well worth the trade-off for
ease of programming in a high-level language. However, time-critical routines such as I/O drivers or
ISRs may benefit from manual assembly language coding.



CHAPTER 4
Memory

Memory is as fundamental to computer architecture as any other element. The ability of a system’s
memory to transact the right quantity of data in the right span of time has a substantial impact on
how that system fulfills its design goals. Digital engineers struggle with innovative ways to improve
memory density and bandwidth in a way that is tailored to a specific application’s performance and
cost constraints.

Knowledge of prevailing memory technologies’ strengths and weaknesses is a key requirement for
designing digital systems. When memory architecture is chosen that complements the rest of the sys-
tem, a successful design moves much closer to fruition. Conversely, inappropriate memory architecture
can doom a good idea to the engineering doldrums of impracticality brought on by artificial complexity.

This chapter provides an introduction to various solid-state memory technologies and explains
how they work from an internal structural perspective as well as an interface timing perspective. A
memory’s internal structure is important to an engineer, because it explains why that memory might
be more suited for one application over another. Interface timing is where the rubber meets the road,
because it defines how other elements in the system can access memory components’ contents. The
wrong interface on a memory chip can make it difficult for external logic such as a microprocessor
to access that memory and still have time left over to perform the necessary processing on that data.

Basic memory organization and terminology are introduced first. This is followed by a discussion
of the prevailing read-only memory technologies: EPROM, flash, and EEPROM. Asynchronous
SRAM and DRAM technologies, the foundations for practically all random-access memories, are
presented next. These asynchronous RAMs are no longer on the forefront of memory technology but
still find use in many systems. Understanding their operation not only enables their application, it
also contributes to an understanding of the most recent synchronous RAM technologies. (High-per-
formance synchronous memories are discussed later in the book.) The chapter concludes with a dis-
cussion of two types of specialty memories: multiport RAMs and FIFOs. Multiport RAMs and
FIFOs are found in many applications where memory serves less as a storage element and more as a
communications channel between distinct logic blocks.

4.1 MEMORY CLASSIFICATIONS

Microprocessors require memory resources in which to store programs and data. Memory can be
classified into two broad categories: volatile and nonvolatile. Volatile memory loses its contents
when power is turned off. Nonvolatile memory retains its contents indefinitely, even when there is no
power present. Nonvolatile memory can be used to hold the boot code for a computer so that the mi-
croprocessor can have a place to get started. Once the computer begins initializing itself from non-
volatile memory, volatile memory is used to store dynamic variables, including the stack and other
programs that may be loaded from a disk drive. Figure 4.1 shows that a general memory device con-
sists of a bit-storage array, address-decode logic, input/output logic, and control logic.
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FIGURE 4.1 General memory device.

Despite the logical organization of the device, the internal bit array is usually less rectangular and
more square in its aspect ratio. For example, a 131,072 X 8 memory (128 kB) may be implemented
as 512 x 256 x 8. This aspect ratio minimizes the complexity of the address-decode logic and also
has certain manufacturing process benefits. It takes more logic to generate 131,072 enable signals in
one pass than to generate 512 and then 256 enables in two passes. The first decode is performed up-
front in the memory array, and the second decode is performed by a multiplexer to pass the desired
memory location.

Nonvolatile memory can be separated into two subcategories: devices whose contents are pro-
grammed at a factory without the expectation of the data changing over time, and devices whose
contents are loaded during system manufacture with anticipation of in-circuit updates during the life
of the product. The former devices are, for all practical purposes, write-once devices that cannot be
erased easily, if at all. The latter devices are designed primarily to be nonvolatile, but special cir-
cuitry is designed into the devices to enable erasure and rewriting of the memory contents while the
devices are functioning in a system. Most often, these circuits and their associated algorithms cause
the erase/write cycle to be more lengthy and complex than simply reading the existing data out of the
devices. This penalty on write performance reflects both the desire to secure the nonvolatile memory
from accidental modification as well as the inherent difficulty in modifying a memory that is de-
signed to retain its contents in the absence of power.

Volatile memory can also be separated into two subcategories: devices whose contents are non-
volatile for as long as power is applied (these devices are referred to as static) and devices whose
contents require periodic refreshing to avoid loss of data even while power is present (these devices
are referred to as dynamic). On first thought, the category of dynamic devices may seem absurd.
What possible benefit is there to a memory chip that cannot retain its memory without assistance?
The benefit is significantly higher density of memory per unit silicon area, and hence lower cost of
dynamic versus static memory. One downside to dynamic memory is somewhat increased system
complexity to manage its periodic update requirement. An engineer must weight the benefits and
complexities of each memory type when designing a system. Some systems benefit from one mem-
ory type over the other, and some use both types in different proportions according to the needs of
specific applications.

Memory chips are among the more complex integrated circuits that are standardized across multi-
ple manufacturers through cooperation with an industry association called the Joint Electron Device
Engineering Council (JEDEC). Standardization of memory chip pin assignments and functionality is
important, because most memory chips are commodities that derive a large portion of their value by
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being interoperable across different vendors. Newer memory technologies introduced in the 1990s
resulted in more proprietary memory architectures that did not retain the high degree of compatibil-
ity present in other mainstream memory components. However, memory devices still largely con-
form to JEDEC standards, making their use that much easier.

4.2 EPROM

Erasable-programmable read-only-memory, EPROM, is a basic type of nonvolatile memory that has
been around since the late 1960s. During the 1970s and into the 1990s, EPROM accounted for the
majority of nonvolatile memory chips manufactured. EPROM maintained its dominance for decades
and still has a healthy market share because of its simplicity and low cost: a typical device is pro-
grammed once on an assembly line, after which it functions as a ROM for the rest of its life. An
EPROM can be erased only by exposing its die to ultraviolet light for an extended period of time
(typically, 30 minutes). Therefore, once an EPROM is assembled into a computer system, its con-
tents are, for all practical purposes, fixed forever. Older ROM technologies included programmable-
ROMs, or PROMs, that were fabricated with tiny fuses on the silicon die. These fuses could be
burned only once, which prevented a manufacturer from testing each fuse before shipment. In con-
trast, EPROMs are fairly inexpensive to manufacture, and their erasure capability allows them to be
completely tested by the semiconductor manufacturer before shipment to the customer. Only a full-
custom mask-programmed chip, a true ROM, is cheaper to manufacture than an EPROM on a bit-
for-bit basis. However, mask ROMs are rare, because they require a fixed data image that cannot be
changed without modifying the chip design. Given that software changes are fairly common, mask
ROMs are relatively uncommon.

An EPROM’s silicon bit structure consists of a special MOSFET structure whose gate traps a
charge that is applied to it during programming. Programming is performed with a higher than nor-
mal voltage, usually 12 V (older generation EPROMs required 21 V), that places a charge on the
floating gate of a MOSFET as shown in Fig. 4.2.

When the programming voltage is applied to the control gate, a charge is induced on the floating
gate, which is electrically isolated from both the silicon substrate as well as the control gate. This
isolation enables the floating gate to function as a capacitor with almost zero current leakage across
the dielectric. In other words, once a charge is applied to the floating gate, the charge remains almost
indefinitely. A charged floating gate causes the silicon that separates the MOSFET’s source and
drain contacts to electrically conduct, creating a connection from logic ground to the bit output. This
means that a programmed EPROM bit reads back as a 0. An unprogrammed bit reads back as a 1, be-
cause the lack of charge on the floating gate does not allow an electrical connection between the
source and drain.
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FIGURE 4.2 EPROM silicon bit structure.
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Once programmed, the charge on the floating gate cannot be removed electrically. UV photons
cause the dielectric to become slightly conductive, allowing the floating gate’s charge to gradually
drain away to its unprogrammed state. This UV erasure feature is the reason why many EPROMs are
manufactured in ceramic packages with transparent quartz windows directly above the silicon die.
These ceramic packages are generally either DIPs or PLCCs and are relatively expensive. In the late
1980s it became common for EPROMs to be manufactured in cheaper plastic packages without
transparent windows. These EPROM devices are rendered one-time programmable, or OTP, because
it is impossible to expose the die to UV light. OTP devices are attractive, because they are the least
expensive nonmask ROM technology and provide a manufacturer with the flexibility to change soft-
ware on the assembly line by using a new data image to program EPROMs.

The industry standard EPROM family is the 27xxx, where the “xxx” indicates the chip’s memory
capacity in kilobits. The 27256 and 27512 are very common and easily located devices. Older parts
include the 2708, 2716, 2732, 2764, and 27128. There are also newer, higher-density EPROMs such
as the 27010, 27020, and 27040 with 1 Mb, 2 Mb, and 4 Mb densities, respectively. 27xxx EPROM
devices are most commonly eight bits wide (a 27256 is a 32,768 x 8 EPROM). Wider data words,
such as 16 or 32 bits, are available but less common.

Older members of the 27xxx family, such as early NMOS 2716 and 2732 devices, required 21-V
programming voltages, consumed more power, and featured access times of between 200 and
450 ns. Newer CMOS devices are designated 27Cxxx, require a 12-V programming voltage, con-
sume less power, and have access times as fast as 45 ns, depending on the manufacturer and device
density.

EPROMs are very easy to use because of their classic asynchronous interface. In most applications,
the EPROM is treated like a ROM, so writes to the device are not an issue. Two programming control
pins, Vpp and PGM*, serve as the high-voltage source and program enable, respectively. These two
pins can be set to inactive levels and forgotten. What remains are a chip enable, CE*, an output en-
able, OE*, an address bus, and a data output bus as shown in Fig. 4.3, using a 27C64 (8K x 8) as an
example.

When CE* is inactive, or high, the device is in a powered-down mode in which it consumes the
least current—measured in microamps due to the quiescent nature of CMOS logic. When CE* and
OE* are active simultaneously, D[7:0] follows A[12:0] subject to the device’s access time, or propa-
gation delay. This read timing is shown in Fig. 4.4.

When OE* is inactive, the data bus is held in a high-impedance state. A certain time after OE*
goes active, tgg, the data word corresponding to the given address is driven—assuming that A1l has
been stable for at least tycc. If not, tycc will determine how soon D1 is available rather than tgg.
While OE* is active, the data bus transitions tycc ns after the address bus. As soon as OE* is re-
moved, the data bus returns to a high-impedance state after togz.
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FIGURE 4.3 27C64 block diagram.
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FIGURE 4.4 EPROM asynchronous read timing.

Many microprocessors are able to directly interface to an EPROM via this asynchronous bus be-
cause of its ubiquity. Most eight-bit microprocessors have buses that function solely in this asyn-
chronous mode. In contrast, some high-performance 32-bit microprocessors may initially boot in a
low-speed asynchronous mode and then configure themselves for higher performance operation af-
ter retrieving the necessary boot code and initialization data from the EPROM.

4.3 FLASH MEMORY

Flash memory captured the lion’s share of the nonvolatile memory market from EPROMs in the
1990s and holds a dominant position as the industry leader to this day. Flash is an enhanced EPROM
that can both program and erase electrically without time-consuming exposure to UV light, and it
has no need for the associated expensive ceramic and quartz packaging. Flash does cost a small
amount more to manufacture than EPROM, but its more flexible use in terms of electronic erasure
more than makes up for a small cost differential in the majority of applications. Flash is found in ev-
erything from cellular phones to automobiles to desktop computers to solid-state disk drives. It has
enabled a whole class of flexible computing platforms that are able to upgrade their software easily
and “on the fly” during normal operation. Similar to EPROMs, early flash devices required separate
programming voltages. Semiconductor vendors quickly developed single-supply flash devices that
made their use easier.

A flash bit structure is very similar to that of an EPROM. Two key differences are an extremely
thin dielectric between the floating gate and the silicon substrate and the ability to apply varying bias
voltages to the source and control gate. A flash bit is programmed in the same way that an EPROM
bit is programmed—by applying a high voltage to the control gate. Flash devices contain internal
voltage generators to supply the higher programming voltage so that multiple external voltages are
not required. The real difference appears when the bit is erased electrically. A rather complex quan-
tum-mechanical behavior called Fowler-Nordheim tunneling is exploited by applying a negative
voltage to the control gate and a positive voltage to the MOSFET’s source as shown in Fig. 4.5.

The combination of the applied bias voltages and the thin dielectric causes the charge on the float-
ing gate to drain away through the MOSFET’s source. Flash devices cannot go through this pro-
gram/erase cycle indefinitely. Early devices were rated for 100,000 erase cycles. Modern flash chips
are often specified up to 1,000,000 erase cycles. One million cycles may sound like a lot, but remem-
ber that microprocessors run at tens or hundreds of millions of cycles per second. When a processor
is capable of writing millions of memory locations each second, an engineer must be sure that the
flash memory is used appropriately and not updated too often so as to maximize its operational life.
Products that utilize flash memory generally contain some a management algorithm to ensure that
the erasure limit is not reached during the product’s expected lifetime. This algorithm can be as sim-
ple as performing software updates only several times per year. Alternatively, algorithms can be
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FIGURE 4.5 Flash bit erasure.

smart enough to track how many times each portion of a flash device has been erased and dynami-
cally make decisions about where to place new data accordingly.

Flash chips are offered in two basic categories, NOR and NAND, named according to the circuits
that make up each memory bit. NOR flash is a random access architecture that often functions like
an EPROM when reading data. NOR memory arrays are directly accessed by a microprocessor and
are therefore well suited for storing boot code and other programs. NAND flash is a sequential ac-
cess architecture that segments the memory into many pages, typically 256 or 512 bytes. Each page
is accessed as a discrete unit. As such, NAND flash does not provide the random access interface of
a NOR flash. In return for added interface complexity and slower response time, NAND flash pro-
vides greater memory density than NOR flash. NAND’s greater density makes it ideal for bulk data
storage. If programs are stored in NAND flash, they must usually be loaded into RAM before they
can be executed, because the NAND page architecture is not well suited to a microprocessor’s read/
write patterns. NAND flash is widely used in consumer electronic memory cards such as those used
in digital cameras. NAND flash devices are also available in discrete form for dense, nonvolatile data
storage in a digital system.

NOR flash is discussed here because of its direct microprocessor interface capability. When oper-
ating in read-only mode, many NOR flash devices function similarly to EPROMs with a simple
asynchronous interface. More advanced flash devices implement high-performance synchronous
burst transfer modes that increase their bandwidth for special applications. Most NOR flash chips,
however, are used for general processor boot functions where high memory bandwidth is not a main
concern. Therefore, an inexpensive asynchronous interface a la 27xxx is adequate.

Writing to flash memory is not as simple as presenting new data to the chip and then applying a
write enable, as is done with a RAM. Like an EPROM, an already programmed bit must first be
erased before it can be reprogrammed. This erasure process takes longer than a simple read access.
As Fig. 4.5 shows, the programming and source contacts of each flash bit must be switched to spe-
cial voltage levels for erasure. Instead of building switches for each individual bit, the complexity of
the silicon implementation is reduced by grouping many bits together into blocks. Therefore, a flash
device is not erased one bit or byte at a time, but rather a block at a time. Flash chips are segmented
into multiple blocks, depending on the particular device and manufacturer. This block architecture is
beneficial in that the whole device does not have to be erased, allowing sensitive information to be
preserved. A good system design takes the flash block structure into account when deciding where to
locate certain pieces of data or sections of software, thereby requiring the erasure of only a limited
number of blocks when performing an update of system software or configuration. The block era-
sure process takes a relatively long time when measured in microprocessor clock cycles. Given that
the erase procedure clears an entire range of memory, special algorithms are built into the chips to
protect the blocks by requiring a special sequence of flash accesses before the actual erase process is
initiated.
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Flash chips are not as standard as EPROMs, because different manufacturers have created their
own programming algorithms, memory organizations, and pin assignments. Many conventional par-
allel data-bus devices have part numbers with “28F” or “29F” prefixes. For example, Advanced Mi-
cro Devices’ flash memory family is the 29Fxxx. Intel’s family is the 28Fxxx. Aside from
programming differences, the size and organization of blocks within a flash device is a key func-
tional difference that may make one vendor’s product better than another for a particular application.
Two main attributes of flash chips are uniformity of block size and hardware protection of blocks.

Uniform-block devices divide the memory array into equally sized blocks. Boot-block devices di-
vide the memory array into one or more small boot blocks and then divide the remainder of memory
into equally sized blocks. Boot-block devices are popular, because the smaller boot blocks can be
used to hold the rarely touched software that is used to initialize the system’s microprocessor when it
first turns on. Boot code is often a small fraction of the system’s overall software. Due to its critical
nature, boot code is often kept simple to reduce the likelihood of errors. Therefore, boot code is sel-
dom updated. In contrast, other flash ROM contents, such as application code and any application
data, may be updated more frequently. Using a boot-block device, a microprocessor’s boot code can
be stored away into its own block without wasting space and without requiring that it be disturbed
during a more general software update. Applications that do not store boot code in flash may not
want the complexity of dealing with nonuniform boot blocks and may therefore be better suited to
uniform-block devices.

Hardware protection of blocks is important when some blocks hold very sensitive information
whose loss could cause permanent damage to the system. A common example of this is boot code
stored in a boot block; if the boot code is corrupted, the CPU will fail to initialize properly the next
time it is reset. A flash device can implement a low-level protection scheme whereby write/erase op-
erations to certain blocks can be disabled with special voltage levels and data patterns presented to
the device.

Examples of real flash devices serve well to explain how this important class of nonvolatile mem-
ory functions. Advanced Micro Devices (AMD) manufactures two similar flash devices: the
29LVO010B and the 29LVO01B. Both devices are 3.3-V, 1-MB, 128k x 8 parts that offer hardware
sector protection. The 29LVO10B is a uniform-sector device, and the 29LVOO1B is a boot-sector de-
vice. AMD uses the term sector instead of block. Both chips have the same basic functional bock di-
agram shown in Fig. 4.6.

Present on 29LV001B only
ESET*

CE* Read, Write, Program VCC (+3.3 V)
OE* > Erase .| and Erase <«

—_ 3] Control | Voltage VSS (GND)
WE* Logic Generators

—>

\ y
A[18:0] 128k x 8 > Data D[7:0]
Flash Array Latch/Buffer

FIGURE 4.6 AMD 29LV010B/29LV001B block diagram.
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Modern flash devices require only a single supply voltage and contain on-chip circuitry to create
the nonstandard programming and erasure voltages required by the memory array. Control logic de-
termines which block is placed into erase or program mode at any given time as requested by the mi-
croprocessor with a predefined flash control algorithm. AMD’s algorithm consists of six special
write transactions to the flash: two unlock cycles, a setup command, two more unlock cycles, and the
specific erase command. This sequence is detailed in Table 4.1. If interrupted, the sequence must be
restarted to ensure integrity of the command.

TABLE 4.1 29LV010B/29LV001B Erase Sequence’

Cycle Write Address Write Data
1 0x555 0xAA
2 0x2AA 0x55
3 0x555 0x80
4 0x555 0xAA
5 0x2AA 0x55
6 Erase address Erase command

*Source: Am29LVO001B, Pub#21557, and Am29LVO010B, Pub #22140,
Advanced Micro Devices, 2000.

For a whole-chip erase, the address/data in cycle 6 is 0x555/0x10. For a single-sector erase, the
address/data in cycle 6 is the sector address/0x30. Multiple erase commands may be queued together
to reduce the total time spent by the internal control logic erasing its sectors. While executing com-
mands, the data bus is converted into a status communication mechanism. The microprocessor is
able to periodically poll the device by reading from any valid address. While the erase is in progress,
a value other than OxFF will be returned. As soon as the erase has completed, the microprocessor
will read back OxFF.

Writes to previously erased flash memory locations are accomplished with a similar technique.
For each location to be programmed, a four-cycle program command sequence is performed as
shown in Table 4.2. Again, the microprocessor polls for command completion by reading from the
device. This time, however, the address polled must be the write address. When the microprocessor
reads back the data that it has written, the command is known to have completed.

TABLE 4.2 29LV010B/29LV001B Programming Sequence

Cycle Write Address Write Data
1 0x555 0xAA
2 0x2AA 0x55
3 0x555 0xA0
4 Write address Write data

Other ancillary commands are supported, including device reset and identification operations.
The 29LVO001B includes a hardware-reset signal in addition to the soft reset command. Identification
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enables the microprocessor to verify exactly which flash device it is connected to and which sectors
have been hardware protected. Identification is useful for a removable flash module that can be built
with different parts for specific capacities. Protection status is useful so that software running on the
microprocessor can know if it is possible to program certain areas of the memory.

Hardware sector protection is accomplished during the time of system manufacture by applying a
higher than normal voltage to designated pins on the flash device using special equipment. The des-
ignated pins on the 29L.V0O10B/29LV001B are address bit 9, A9, and the output enable, OE*. These
pins are driven to 12 V while the address of the sector to be protected is applied to other address
pins. During normal operation, there is no way for 12 V to be driven onto these signals, preventing
the protected sectors from being unprotected while in circuit. The exception to this is a feature on the
29LV001B that AMD calls temporary sector unprotect. Previously protected sectors can be tempo-
rarily unprotected by driving 12 V onto the RESET* pin with specific circuitry for this purpose. Tak-
ing advantage of this feature makes it possible to modify the most sensitive areas of the flash by
locating a hardware unprotect enable signal in a logic circuit separate from the flash chip itself.

The major difference between the 29LV0O10B and 29LV001B is their sector organization. The
29LV010B contains 8 uniform sectors of 16 kB each. The 29L.V001B contains 10 sectors of nonuni-
form size. Two variants of the 29L.V010B are manufactured by AMD, top and bottom boot sector ar-
chitectures, and their sector organization is listed in Table 4.3.

TABLE 4.3 29LVO10B Sector Organization

Sector Number ~ Top Boot Sector ~ Bottom Boot Sector

0 16 kB 8 kB
1 16 kB 4kB
2 16 kB 4kB
3 16 kB 16 kB
4 16 kB 16 kB
5 16 kB 16 kB
6 16 kB 16 kB
7 4kB 16 kB
8 4kB 16 kB
9 8 kB 16 kB

The reason for these mirrored architectures is that some microprocessors contain reset vectors to-
ward the top of their address space and some toward the bottom. It is a better fit to locate the boot
sectors appropriately depending on a system’s CPU. As with any complex IC, there are many details
relating to the operation of these flash ICs. Refer to AMD’s data sheets for more information.

4.4 EEPROM

Electrically erasable programmable ROM, or EEPROM, is flash’s predecessor. In fact, some people
still refer to flash as “flash EEPROM,” because the underlying structures are very similar. EEPROM,
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sometimes written as EZPROM, is more expensive to manufacture per bit than EPROM or flash, be-
cause individual bytes may be erased randomly without affecting neighboring locations. Because of
the complexity and associated cost of making each byte individually erasable, EEPROM is not com-
monly manufactured in large densities. Instead, it has served as a niche technology for applications
that require small quantities of flexible reprogrammable ROM. Common uses for EEPROM are as
program memory in small microprocessors with embedded memory and as small nonvolatile mem-
ory arrays to hold system configuration information. Serial EEPROM devices can be found in eight-
pin DIP or SOIC packages and provide up to several kilobytes of memory. Their serial interface,
small size, and low power consumption make them very practical as a means to hold serial numbers,
manufacturing information, and configuration data.

Parallel EEPROM devices are still available from manufacturers as the 28xx family. They are pin
and function compatible (for reads) with the 27xxx EPROM family that they followed. Some appli-
cations requiring reprogrammable nonvolatile memory may be more suited to EEPROM than flash,
but flash is a compelling choice, because it is the more mainstream technology with the resultant
benefit of further cost reduction.

Serial EEPROMs, however, are quite popular due to their very small size and low power con-
sumption. They can be squeezed into almost any corner of a system to provide small quantities of
nonvolatile storage. Microchip Technology is a major manufacturer of serial EEPROMs and offers
the 24xx family. Densities range from 16 bytes to several kilobytes. Given that serial interfaces use
very few pins, these EEPROMs are manufactured in packages ranging from eight-pin DIPs to five-
pin SOT-23s that are smaller than a fingernail. Devices of this sort are designed to minimize system
impact rather than for speed. Their power consumption is measured in nanoamps and microamps in-
stead of milliamps, as is the case with standard flash, parallel EEPROM, and EPROM devices.

Microchip’s 24LCO00 is a 16-byte serial EEPROM with a two-wire serial bus. It requires only four
pins: two for power and two for data communication. Like most modern flash devices, the 24L.C0O0
is rated for one million write cycles. When not being accessed, the 24L.C0O0 consumes about 250 nA!
When active, it consumes only 500 pA. For added flexibility, the 24L.C0O0 can operate over a variety
of supply voltages from 2.5 to 6.0 V. Speed is not a concern here: writes take up to 4 ms to complete,
which is not a problem when writing only a few bytes on rare occasions.

4.5 ASYNCHRONOUS SRAM

Bit Bit Static RAM, or SRAM, is the most basic and easy to use
type of volatile memory and is found in almost every com-
J_ J_ puter in one form or another. An SRAM device is concep-
tually easy to understand, consisting of an array of latches
along with control and decode logic to resolve the address
that is being read or written at any given time. Each latch is
FIGURE 4.7 SRAM bit feedback latch. a feedback circuit that traps and maintains a particular
logic state. A typical SRAM bit implementation is shown

in Fig. 4.7.

An SRAM latch is created by connecting two inverters in a loop. One side of the loop remains sta-
ble at the desired logic state, and the other remains stable at the opposite state. Inverters are used
rather than noninverting buffers, because an inverter is the simplest logic element to construct. The
two pass transistors on either side of the latch enable both writing and reading. When writing, the
transistors turn on and force each half of the loop to whatever state is driven on the vertical bit lines.
When reading, the transistors also turn on, but the bit lines are sensed rather than driven. Typical
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SRAM implementations require six transistors per bit of memory: two transistors for each inverter
and the two pass transistors. Some implementations use only a single transistor per inverter, requir-
ing only four transistors per bit.

Discrete asynchronous SRAM devices have been around for decades. In the 1980s, the 6264 and
62256 were manufactured by multiple vendors and used in applications that required simple RAM
architectures with relatively quick access times and low power consumption. The 62xxx family is
numbered according to its density in kilobits. Hence, the 6264 provides 65,536 bits of RAM ar-
ranged as 8k x 8. The 62256 provides 262,144 bits of RAM arranged as 32k x 8. Being manufac-
tured in CMOS technology and not using a clock, these devices consume very little power and draw
only microamps when not being accessed.

The 62xxx family pin assignment is virtually identical to that of the 27xxx EPROM family, en-
abling system designs where either EPROM or SRAM can be substituted into the same location with
only a couple of jumpers to set for unique signals such as the program-enable on an EPROM or
write-enable on an SRAM. Like an EPROM or basic flash device, asynchronous SRAMs have a sim-
ple interface consisting of address, data, chip select, output enable, and write enable. This interface
is shown in Fig. 4.8.

Writes are performed whenever the WE* signal is held low. Therefore, one must ensure that the
desired address and data are stable before asserting WE* and that WE* is removed while address
and data remain stable. Otherwise, the write may corrupt an undesired memory location. Unlike an
EPROM, but like flash, the data bus is bidirectional during normal operation. The first two transac-
tions shown are writes as evidenced by the separate assertions of WE* for the duration of address
and data stability. As soon as the writes are completed, the microprocessor should release the data
bus to the high-impedance state. When OE* is asserted, the SRAM begins driving the data bus and
the output reflects the data contents at the locations specified on the address bus.

Asynchronous SRAMs are available with access times of less than 100 ns for inexpensive parts
and down to 10 ns for more expensive devices. Access time measures both the maximum delay be-
tween a stable read address and its corresponding data and the minimum duration of a write cycle.
Their ease of use makes them suitable for small systems where megabytes of memory are not re-
quired and where reduced complexity and power consumption are key requirements. Volatile mem-
ory doesn’t get any simpler than asynchronous SRAM.

Prior to the widespread availability of flash, many computer designs in the 1980s utilized asyn-
chronous SRAM with a battery backup as a means of implementing nonvolatile memory for storing
configuration information. Because an idle SRAM draws only microamps of current, a small battery
can maintain an SRAM’s contents for several years while the main power is turned off. Using
SRAM in this manner has two distinct advantages over other technologies: writes are quick and
easy, because there are no complex EEPROM or flash programming algorithms, and there is no limit
to the number of write cycles performed over the life of the product. The downsides to this approach
are a lack of security for protecting valuable configuration information and the need for a battery to

OE* \
wE O\ [\ /
A[12:0] A1 X A2 X A1 X A2 X

DQ[7:0] D1 X D2 — D1 X D2

FIGURE 4.8 62xxx SRAM interface.
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maintain the memory contents. Requiring a battery increases the complexity of the system and also
begs the question of what happens when the battery wears out. In the 1980s, it was common for a
PC’s BIOS configuration to be stored in battery-backed CMOS SRAM. This is how terms like “the
CMOS” and “CMOS setup” entered the lexicon of PC administration.

SRAM is implemented not only as discrete memory chips but is commonly found integrated
within other types of chips, including microprocessors. Smaller microprocessors or microcontrollers
(microprocessors integrated with memory and peripherals on a single chip) often contain a quantity
of on-board SRAM. More complex microprocessors may contain on-chip data caches implemented
with SRAM.

4.6 ASYNCHRONOUS DRAM

SRAM may be the easiest volatile memory to use, but it is not the
least expensive in significant densities. Each bit of memory re-
quires between four and six transistors. When millions or billions
of bits are required, the complexity of all those transistors be-
comes substantial. Dynamic RAM, or DRAM, takes advantage of
FIGURE 4.9 DRAM bit structure. @ very simple yet fragile storage component: the capacitor. A ca-

pacitor holds an electrical charge for a limited amount of time as
the charge gradually drains away. As seen from EPROM and flash devices, capacitors can be made
to hold charge almost indefinitely, but the penalty for doing so is significant complexity in modifying
the storage element. Volatile memory must be both quick to access and not be subject to write-cycle
limitations—both of which are restrictions of nonvolatile memory technologies. When a capacitor is
designed to have its charge quickly and easily manipulated, the downside of rapid discharge
emerges. A very efficient volatile storage element can be created with a capacitor and a single tran-
sistor as shown in Fig. 4.9, but that capacitor loses its contents soon after being charged. This is
where the term dynamic comes from in DRAM—the memory cell is indeed dynamic under steady-
state conditions. The solution to this problem of solid-state amnesia is to periodically refresh, or up-
date, each DRAM bit before it completely loses its charge.

As with SRAM, the pass transistor enables both reading and writing the state of the storage ele-
ment. However, a single capacitor takes the place of a multitransistor latch. This significant reduc-
tion in bit complexity enables much higher densities and lower per-bit costs when memory is
implemented in DRAM rather than SRAM. This is why main memory in most computers is imple-
mented using DRAM. The trade-off for cheaper DRAM is a degree of increased complexity in the
memory control logic. The number one requirement when using DRAM is periodic refresh to main-
tain the contents of the memory.

DRAM is implemented as an array of bits with rows and columns as shown in Fig. 4.10. Unlike
SRAM, EPROM, and flash, DRAM functionality from an external perspective is closely tied to its
row and column organization.

SRAM is accessed by presenting the complete address simultaneously. A DRAM address is pre-
sented in two parts: a row and a column address. The row and column addresses are multiplexed
onto the same set of address pins to reduce package size and cost. First the row address is loaded, or
strobed, into the row address latch via row address strobe, or RAS*, followed by the column address
with column address strobe, or CAS*. Read data propagates to the output after a specified access
time. Write data is presented at the same time as the column address, because it is the column strobe
that actually triggers the transaction, whether read or write. It is during the column address phase
that WE* and OE* take effect.
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FIGURE 4.10 DRAM architecture.

Sense amplifiers on the chip are necessary to detect the minute charges that are held in the
DRAM’s capacitors. These amplifiers are also used to assist in refresh operations. It is the memory
controller’s responsibility to maintain a refresh timer and initiate refresh operations with sufficient
frequency to guarantee data integrity. Rather than refreshing each bit separately, an entire row is re-
freshed at the same time. An internal refresh counter increments after each refresh so that all rows,
and therefore all bits, will be cycled through in order. When a refresh begins, the refresh counter
enables a particular memory row. The contents of the row are detected by the sense amplifiers and
then driven back into the bit array to recharge all the capacitors in that row. Modern DRAMs typi-
cally require a complete refresh every 64 ms. A 64-Mb DRAM organized as 8,388,608 words x 8
bits (8 MB) with an internal array size of 4,096 x 2,048 bytes would require 4,096 refresh cycles
every 64 ms. Refresh cycles need not be evenly spaced in time but are often spread uniformly for
simplicity.

The complexity of performing refresh is well worth the trouble because of the substantial cost and
density improvements over SRAM. One downside of DRAM that can only be partially compensated
for is its slower access time. A combination of its multiplexed row and column addressing scheme
plus its large memory arrays with complex sense and decode logic make DRAM significantly slower
than SRAM. Mainstream computing systems deal with this speed problem by implementing SRAM-
based cache mechanisms whereby small chunks of memory are prefetched into fast SRAM so that
the microprocessor does not have to wait as long for new data that it requests.

Asynchronous DRAM was the prevailing DRAM technology until the late 1990s, when synchro-
nous DRAM, or SDRAM, emerged as the dominant solution to main memory. At its heart, SDRAM
works very much like DRAM but with a synchronous bus interface that enables faster memory trans-
actions. It is useful to explore how older asynchronous DRAM works so as to understand SDRAM.
SDRAM will be covered in detail later in the book.

RAS* and CAS* are the two main DRAM control signals. They not only tell the DRAM chip
which address is currently being asserted, they also initiate refresh cycles and accelerate sequential
transactions to increase performance. A basic DRAM read works as shown in Fig. 4.11. CE* and
OE* are both assumed to be held active (low) throughout the transaction.

A transaction begins by asserting RAS* to load the row address. The strobes are falling-edge sen-
sitive, meaning that the address is loaded on the falling edge of the strobe, sometime after which the
address may change. Asynchronous DRAMs are known for their myriad detailed timing require-
ments. Every signal’s timing relative to itself and other signals is specified in great detail, and these
parameters must be obeyed for reliable operation. RAS* is kept low for the duration of the transac-
tion. Assertion of CAS* loads the column address into the DRAM as well as the read or write status
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FIGURE 4.11 Basic DRAM read (CE* = 0, OE* = 0).

of the transaction. Some time later, the read data is made available on the data bus. After waiting for
a sufficient time for the DRAM to return the read data, the memory controller removes RAS* and
CAS¥* to terminate the transaction.

Basic writes are similar to single reads as shown in Fig. 4.12. Again, CE* is assumed to be held
active, and, being a write, OE* is assumed to be held inactive throughout the transaction.

Like a read, the write transaction begins by loading the row address. From this it is apparent that
there is no particular link between loading a row address and performing a read or a write. The iden-
tity of the transaction is linked to the falling edge of CAS*, when WE* is asserted at about the same
time that the column address and write data are asserted. DRAM chips require a certain setup and
hold time for these signals around the falling edge of CAS*. Once the timing requirements are met,
address can be deasserted prior to the rising edge of CAS*.

A read/write hybrid transaction, called a read-modify-write, is also supported to improve the effi-
ciency of the memory subsystem. In a read-modify-write, the microprocessor fetches a word from
memory, performs a quick modification to it, and then writes it back as part of the same original
transaction. This is an afomic operation, because it functions as an indivisible unit and cannot be in-
terrupted. Figure 4.13 shows the timing for the read-modify-write. Note that CAS* is held for a
longer period of time, during which the microprocessor may process the read-data before asserting
WE* along with the new data to be written.

Original DRAMs were fairly slow. This was partly because older silicon processes limited the de-
code time of millions of internal addresses. It was also a result of the fact that accessing a single lo-
cation required a time-consuming sequence of RAS* followed by CAS*. In comparison, an SRAM
is quick and easy: assert the address in one step and grab the data. DRAM went through an architec-
tural evolution that replaced the original devices with fast-page mode (FPM) devices that allow more
efficient accesses to sequential memory locations. FPM DRAMs provide a substantial increase in
usable memory bandwidth for the most common DRAM application: CPU memory. These devices
take advantage of the tendency of a microprocessor’s memory transactions to be sequential in nature.

RAS* \

CAS* \

WE* \

T

Address Row Address X Column AddressX

Data Write Data

FIGURE 4.12 Basic DRAM write (CE* =0, OE* = 1).
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FIGURE 4.13 Read-modify-write transaction.

Software does occasionally branch back and forth in its memory space. Yet, on the whole, software
moves through portions of memory in a linear fashion. FPM devices enable a DRAM controller to
load a row-address in the normal manner using RAS* and then perform multiple CAS* transactions
using the same row-address. Therefore, DRAMs end their transaction cycles with the rising edge of
RAS#*, because they cannot be sure if more reads or writes are coming until RAS* rises, indicating
that the current row-address can be released.

FPM technology, in turn, gave way to extended-data out (EDO) devices that extend the time read
data is held valid. Unlike its predecessors, an EDO DRAM does not disable the read data when
CAS* rises. Instead, it waits until either the transaction is complete (RAS* rises), OE* is deasserted,
or until CAS* begins a new page-mode access. While FPM and EDO DRAMs are distinct types of
devices, EDO combines the page-mode features of FPM and consequently became more attractive to
use. The following timing discussion uses EDO functionality as the example.

Page-mode transactions hold RAS* active and cycle CAS* multiple times to perform reads and
writes as shown in Figs. 4.14 and 4.15. Each successive CAS* falling edge loads a new column ad-
dress and causes either a read or write to be performed. In the read case, EDO’s benefit can be properly
observed. Rather than read data being removed when CAS* rises, it remains asserted until just after the
next falling edge of CAS* or the rising edge of RAS* that terminates the page-mode transaction.

—

CAS* \ / \ / \ /
Address  Row Address X  Col Addr1 X Col Addr 2 X Col Addr 3 X
Data Read Data 1 X Read Data 2 X Read Data 3 >—

FIGURE 4.14 Page-mode reads.
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FIGURE 4.15 Page-mode writes.
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There are some practical limits to the duration of a page-mode transaction. First, there is an abso-
lute maximum time during which RAS* can remain asserted. The durations of RAS* and CAS* are
closely specified to guarantee proper operation of the DRAM. Operating the DRAM with a mini-
mum CAS* cycle time and a maximum RAS* assertion time will yield a practical limitation on the
data burst that can be read or written without reloading a new row address. In reality, a common
asynchronous DRAM can support over 1,000 back-to-back accesses for a given row-address.
DRAM provides its best performance when operated in this manner. The longer the burst, the less
overhead is experienced for each byte transferred, because the row-address setup time is amortized
across each word in the burst. Cache subsystems on computers help manage the bursty nature of
DRAM by swallowing a set of consecutive memory locations into a small SRAM cache where the
microprocessor will then have easy access to them later without having to wait for a lengthy DRAM
transaction to execute.

The second practical limitation on page-mode transactions, and all DRAM transactions in gen-
eral, is refresh overhead. The DRAM controller must be smart enough to execute periodic refresh
operations at the required frequency. Even if the microprocessor is requesting more data, refresh
must take priority to maintain memory integrity. At any given instant in time, a scheduled refresh op-
eration may be delayed slightly to accommodate a CPU request, but not to the point where the con-
troller falls behind and fails to execute the required number of refresh operations. There are a variety
ways to initiate a refresh operation, but most involve a so-called CAS-before-RAS signaling where
the normal sequence of the address strobes is reversed to signal a refresh. Asserting CAS* before
RAS#* signals the DRAM’s internal control logic to perform a row-refresh at the specific row indi-
cated by its internal counter. Following this operation, the refresh counter is incremented in prepara-
tion for the next refresh event.

DRAM has numerous advantages over SRAM, but at the price of increased controller complexity
and decreased performance in certain applications. DRAMs use multiplexed address buses, which
saves pins and enables smaller, less expensive packaging and circuit board wiring. Most DRAMs are
manufactured with data bus widths smaller than what is actually used in a computer to save pins. For
example, when most computers used 8- or 16-bit data buses, most DRAMs were 1 bit wide. When
microprocessors grew to 32 and 64 bit data buses, mainstream DRAMs grew to 4- and then 8-bit
widths. This is in contrast to SRAMs, which have generally been offered with wide buses, starting
out at 4 bits and then increasing to 72 bits in more modern devices. This width disparity is why most
DRAM implementations in computers involve groups of four, eight, or more DRAMS on a single
module. In the 1980s, eight 64k x 1 DRAMs created a 64 kB memory array. Today, eight 32M x 8
DRAMs create a 256 MB memory array that is 64 bits wide to suit the high-bandwidth 32- or 64-bit
microprocessor in your desktop PC.

A key architectural attribute of DRAM is its inherent preference for sequential transactions and, ac-
cordingly, its weakness in handling random single transactions. Because of their dense silicon struc-
tures and multiplexed address architecture, DRAMs have evolved to provide low-cost bulk memory
best suited to burst transactions. The overhead of starting a burst transaction can be negligible when
spread across many individual memory words in a burst. However, applications that are not well
suited to long bursts may not do very well with DRAM because of the constant startup penalty in-
volved in fetching 1 word versus 1,000 words. Such applications may work better with SRAM. Plan-
ning memory architecture involves making these trade-offs between density/cost and performance.

4.7 MULTIPORT MEMORY

Most memory devices, whether volatile or nonvolatile, contain a single interface through which their
contents are accessed. In the context of a basic computer system with a single microprocessor, this
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single-port architecture is well suited. There are some architectures in which multiple microproces-
sors or logic blocks require access to the same shared pool of memory. A shared pool of memory can
be constructed in a couple of ways. First, conventional DRAM or SRAM can be combined with ex-
ternal logic that takes requests from separate entities (e.g., microprocessors) and arbitrates access to
one requestor at a time. When the shared memory pool is large, and when simultaneous access by
multiple requesters is not required, arbitration can be an efficient mechanism. However, the com-
plexity of arbitration logic may be excessive for small shared-memory pools, and arbitration does
not enable simultaneous access. A means of sharing memory without arbitration logic and with si-
multaneous access capability is to construct a true multiport memory element.

A multiport memory provides simultaneous access to multiple external entities. Each port may
be read/write capable, read-only, or write-only depending on the implementation and application.
Multiport memories are generally kept relatively small, because their complexity, and hence their
cost, increases significantly as additional ports are added, each with its own decode and control
logic. Most multiport memories are dual-port elements as shown in Fig. 4.16.

A true dual-port memory places no restrictions on either port’s transactions at any given time. It is
the responsibility of the engineer to ensure that one requester does not conflict with the other. Con-
flicts arise when one requester writes a memory location while the other is either reading or writing
that same location. If a simultaneous read/write occurs, what data does the reader see? Is it the data
before or after the write? Likewise, if two writes proceed at the same time, which one wins? While
these riddles could be worked out for specific applications with custom logic, it is safer not to worry
about such corner cases. Instead, the system design should avoid such conflicts unless there is a
strong reason to the contrary.

One common application of a dual-port memory is sharing information between two micropro-
cessors as shown in Fig. 4.17. A dual-port memory sits between the microprocessors and can be par-
titioned into a separate message bin, or memory area, for each side. Bin A contains messages written
by CPU A and read by CPU B. Bin B contains messages written by CPU B and read by CPU A.

Notification of a waiting message is accomplished via a CPU interrupt, thereby releasing the
CPUs from having to constantly poll the memory as they wait for messages to arrive. The entire pro-
cess might work as follows:

1. CPU A writes a message for CPU B into Bin A.

2. CPU A asserts an interrupt to CPU B indicating the a message is waiting in Bin A.
3. CPU B reads the message in Bin A.

4. CPU B acknowledges the interrupt from CPU A.

5. CPU A releases the interrupt to CPU B.

An implementation like this prevents dual-port memory conflicts because one CPU will not read a
message before it has been fully written by the other CPU and neither CPU writes to both bins.

Port A Dual-Port Port B
Control «» Memory [€» Control
Logic Array Logic

FIGURE 4.16 Dual-port memory.
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Dual-Port Memory
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FIGURE 4.17 Dual microprocessor message passing architecture.

4.8 THE FIFO

Write Data )

Write Enable 3

¢ Full

The memory devices discussed thus far are essentially linear arrays of bits surrounded by a minimal
quantity of interface logic to move bits between the port(s) and the array. First-in-first-out (FIFO)
memories are special-purpose devices that implement a basic queue structure that has broad applica-
tion in computer and communications architecture. Unlike other memory devices, a typical FIFO
has two unidirectional ports without address inputs: one for writing and another for reading. As the
name implies, the first data written is the first read, and the last data written is the last read. A FIFO
is not a random access memory but a sequential access memory. Therefore, unlike a conventional
memory, once a data element has been read once, it cannot be read again, because the next read will
return the next data element written to the FIFO. By their nature, FIFOs are subject to overflow and
underflow conditions. Their finite size, often referred to as depth, means that they can fill up if reads
do not occur to empty data that has already been written. An overflow occurs when an attempt is
made to write new data to a full FIFO. Similarly, an empty FIFO has no data to provide on a read re-
quest, which results in an underflow.

A FIFO is created by surrounding a dual-port memory array—generally SRAM, but DRAM
could be made to work as well for certain applications—with a write pointer, a read pointer, and con-
trol logic as shown in Fig. 4.18.

|y Write data Dual-Port Memory Array read data |y
write address read address Read Data
—
Write T T Read ERead Enable
Control q q Control
Write Comparison Read
Interface —» Pointer > Logic [ €— Pointer [ €— Interface Emot
| EMpy,y,
Full | | Empty
< >

FIGURE 4.18 Basic FIFO architecture.
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A FIFO is not addressed in a linear fashion; rather, it is made to form a continuous ring of mem-
ory that is addressed by the two internal pointers. The fullness of the FIFO is determined not by the
absolute values of the pointers but by their relative values. An empty FIFO begins with its read and
write pointers set to the same value. As entries are written, the write pointer increments. As entries
are read, the read pointer increments as well. If the read pointer ever catches up to the write pointer
such that the two match, the FIFO is empty again. If the read pointer fails to advance, the write
pointer will eventually wrap around the end of the memory array and become equal to the read
pointer. At this point, the FIFO is full and cannot accept any more data until reading resumes. Full
and empty flags are generated by the FIFO to provide status to the writing and reading logic. Some
FIFOs contain more detailed fullness status, such as signals that represent programmable fullness
thresholds.

The interfaces of a FIFO can be asynchronous (no clock) or synchronous (with a clock). If syn-
chronous, the two ports can be designed to operate with a common clock or different clocks. Al-
though older asynchronous FIFOs are still manufactured, synchronous FIFOs are now more
common. Synchronous FIFOs have the advantage of improved interface timing, because flops
placed at a device’s inputs and outputs reduce timing requirements to the familiar setup, hold, and
clock-to-out specifications. Without such a registered interface, timing specifications become a func-
tion of the device’s internal logic paths.

One common role that a FIFO fills is in clock domain crossing. In such an application, there is a
need to communicate a series of data values from a block of logic operating on one clock to another
block operating on a different clock. Exchanging data between clock domains requires special atten-
tion, because there is normally no way to perform a conventional timing analysis across two differ-
ent clocks to guarantee adequate setup and hold times at the destination flops. Either an
asynchronous FIFO or a dual-clock synchronous FIFO can be used to solve this problem, as shown
in Fig. 4.19.

The dual-port memory at the heart of the FIFO is an asynchronous element that can be accessed
by the logic operating in either clock domain. A dual-clock synchronous FIFO is designed to handle
arbitrary differences in the clocks between the two halves of the device. When one or more bytes are
written on clock A, the write-pointer information is carried safely across to the clock B domain
within the FIFO via inter-clock domain synchronization logic. This enables the read-control inter-
face to determine that there is data waiting to be read. Logic on clock B can read this data long after
it has been safely written into the memory array and allowed to settle to a stable state.

Another common application for a FIFO is rate matching where a particular data source is bursty
and the data consumer accepts data at a more regular rate. One example is a situation where a se-
quence of data is stored in DRAM and needs to be read out and sent over a communications inter-
face one byte at a time. The DRAM is shared with a CPU that competes with the communications
interface for memory bandwidth. It is known that DRAMs are most efficient when operated in a
page-mode burst. Therefore, rather than perform a complete read-transaction each time a single byte

Write Data > Dual-Port Read Data
Write Enable | | Write »  Memory » Read | Read Enable Read
Ll Y H

Full Control Array Control Empty o Logic
)

Clock A q Clock A [« inter-clock domain » Clock B P Clock B Clock B

synchronization I
signals

FIGURE 4.19 Clock domain crossing with synchronous FIFO.
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is needed for the communications interface, a burst of data can be read and stored in a FIFO. Each
time the interface is ready for a new byte, it reads it from the FIFO. In this case, only a single-clock
FIFO is required, because these devices operate on a common clock domain. To keep this process
running smoothly, control logic is needed to watch the state of the FIFO and perform a new burst
read from DRAM when the FIFO begins to run low on data. This scheme is illustrated in Fig. 4.20.

For data-rate matching to work properly, the average bandwidth over time of the input and output
ports of the FIFO must be equal, because FIFO capacity is finite. If data is continuously written
faster than it can be read, the FIFO will eventually overflow and lose data. Conversely, if data is con-
tinuously read faster than it can be written, the FIFO will underflow and cause invalid bytes to be in-
serted into the outgoing data stream. The depth of a FIFO indicates how large a read/write rate
disparity can be tolerated without data loss. This disparity is expressed as the product of rate mis-
match and time. A small mismatch can be tolerated for a longer time, and a greater rate disparity can
be tolerated for a shorter time.

In the rate-matching example, a large rate disparity of brief duration is balanced by a small rate
disparity of longer duration. When the DRAM is read, a burst of data is suddenly written into the
FIFO, creating a temporarily large rate disparity. Over time, the communications interface reads one
byte at a time while no writes are taking place, thereby compensating with a small disparity over
time.

DRAM reads to refill the FIFO must be carefully timed to simultaneously prevent overflow and
underflow conditions. A threshold of FIFO fullness needs to be established below which a DRAM
read is triggered. This threshold must guarantee that there is sufficient space available in the FIFO to
accept a full DRAM burst, avoiding an overflow. It must also guarantee that under the worst-case re-
sponse time of the DRAM, enough data exists in the FIFO to satisfy the communications interface,
avoiding an underflow. In most systems, the time between issuing a DRAM read request and actu-
ally getting the data is variable. This variability is due to contention with other requesters (e.g., the
CPU) and waiting for overhead operations (e.g., refresh) to complete.

Rate N
DRAM : Read i Communications
CPU &> Controller g VEETTE > Logic Interface
FIFO
A A FIFO fullness
A 4
Read/Write DRAM
Request Request
Read Logic
Request

FIGURE 4.20 Synchronous FIFO application: data rate matching.



CHAPTER 5
Serial Communications

Serial communication interfaces are commonly used to exchange data with other computers. Serial
interfaces are ubiquitous, because they are economical to implement over long distances as a result
of their requirement of relatively few wires. Many types of serial interfaces have been developed,
with speeds ranging to billions of bits per second. Regardless of the bit rate, serial communication
interfaces share many common traits. This chapter introduces the fundamentals of serial communi-
cation in the context of popular data links such as RS-232 and RS-485 in which bandwidths and
components lend themselves to basic circuit fabrication techniques.

The chapter first deals with the basic parallel-to-serial-to-parallel conversion process that is at the
heart of all serial communication. Wide buses must be serialized at the transmitter and reconstructed
at the receiver. Techniques for accomplishing this vary with the specific type of data link, but basic
concepts of framing and error detection are universal.

Two widely deployed point-to-point serial communication standards, RS-232 and RS-422, are
presented, along with the standard ASCII character set, to see how theory meets practice. Standards
are important to communications in general because of the need to connect disparate equipment.
ASCII is one of the most fundamental data representation formats with global recognition. RS-232
has traditionally been found in many digital systems, because it is a reliable standard. Understanding
RS-232, its relative RS-422, and ASCII enables an engineer to design a communication interface
that can work with an almost infinite range of complementary equipment ranging from computers to
modems to off-the-shelf peripherals.

Systems may require more advanced communication schemes to enable data exchange between
many nodes. Networks enable such communication and can range in complexity according to an ap-
plication’s requirements. Networking adds a new set of fundamental concepts on top of basic serial
communication. Topics including network topologies and packet formats are presented to explain
how networks function at a basic hardware and software level. Once networking fundamentals have
been discussed, the RS-485 standard is introduced to show how a simple and fully functional net-
work can be constructed. A complete network design example using RS-485 is offered with explana-
tions of why various design points are included and how they contribute to the network’s overall
operation.

The chapter closes with a presentation of small-scale networking employed within a digital sys-
tem to economically connect peripherals to a microprocessor. Interchip networks are of such narrow
scope that they are usually not referred to as networks, but they can possess many fundamental prop-
erties of a larger network. Peripherals with low microprocessor bandwidth requirements can be con-
nected using a simple serial interface consisting of just a few wires, as compared to the full
complexity of a parallel bus.
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5.1 SERIAL VS. PARALLEL COMMUNICATION

Most logical operations and data processing occur in parallel on multiple bits simultaneously. Mi-
croprocessors, for example, have wide data buses to increase throughput. With wide buses comes a
requirement for more wires to connect the logical elements in a system. The interconnection penalty
increases as distances increase. Within a chip, the penalty is small, and wide buses are common. Im-
plementing wide buses on a circuit board is also common because of the relatively short distances
involved.

The economics and technical context of interconnect changes as soon as the distances grow from
centimeters to meters to kilometers. Communication is primarily concerned with transporting data
from one location to another rather than processing that information as it is carried on a wire. With
distance comes the expensive problem of stringing a continuous wire between two locations.
Whether the wire is threaded through a conduit between floors in an office, buried under the street
between buildings, or virtually constructed via radio transmission to a satellite, the cost and com-
plexity of connecting multiple wires is many orders of magnitude greater than on a circuit board. Se-
rial communication is well suited to long distances, because fewer wires are used as compared to a
parallel bus. A serial data link implies a single-wire medium, but there can be multiwire serial links
as well.

Figure 5.1 illustrates several logical components in a serial data link. At either end are the sources
and consumers of the data that operate using a parallel bus. A transceiver converts between a parallel
bus and a serial stream and handles any link-level timing necessary to properly send and receive
data. A transducer, or modulator in wireless links, converts between the medium’s electromagnetic
signaling characteristics and the transceiver’s logic-level signals. Finally, a conductive path joins the
two transducers. This path can be copper wire, glass fiber optic cable, or free space. These logical
components may be integrated in arbitrary physical configurations in different implementations, so
not all serial links will consist of three specific discrete pieces. Simple links may have fewer pieces,
and complex links may have more.

The total cost of a data link is the sum of the cost of the transceiver/transducer subsystems at each
end and the cost of the physical medium itself. A serial port on a desktop computer is inexpensive
because of its relatively simple electronic circuits and because the medium over which it communi-
cates, a short copper wire, is fairly cheap. In contrast, a satellite link is very expensive as a result of
the greater complexity of the ground-based transmission equipment, the high cost of the satellite it-
self, and the licensing costs of using the public airwaves.

If only one bit is transferred per clock cycle in a serial link, it follows that either the serial bit
clock has to be substantially faster than the parallel bus, or the link’s bandwidth will be significantly

Data Processor Data Processor
A\AAAA/ AAAAAA
-{--------- arallel data ---------1 t
YYVYYVYY - P . YYVYYVYY
Transceiver Transceiver
A ) A
-{--------- serial data ---------1 t
\ 4 - . A 4
Transducer |« 44 »  Transducer
communications medium

FIGURE 5.1 Components of a serial data link.
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below that of the parallel bus. Bandwidth in a communication context refers to the capacity of the
communications channel, often expressed either in bits-per-second (bps) or bytes-per-second (Bps).
Serial links are available in a broad spectrum of bandwidths, from thousands of bits per second
(kbps) to billions of bits per second (Gbps) and are stretching toward trillions of bits per second
(Tbps)!

Most implementations in the kbps range involve applications where relatively small quantities of
data are exchanged, so the cost of deploying an advanced data link is not justified. These serial links
are able to run at low frequencies (several hundred kilohertz and below) and therefore do not require
complex circuitry. Of course, some low-bandwidth data links can be very expensive if the medium
over which they operate presents extreme technical difficulties, such as communicating across inter-
planetary distances. Implementations in the Gbps range serve applications such as high-end com-
puter networks where huge volumes of data are carried. Such links are run at gigahertz frequencies
and are relatively costly due to this high level of performance. Gigahertz serial transfer rates do not
translate into similar logic clock frequencies. When a transceiver converts a serial data stream into a
parallel bus, it contains the very high frequency complexity within itself. A 1-Gbps link requires
only a 31.25 MHz clock when using a 32-bit data path.

5.2 THE UART

The universal asynchronous receiver/transmitter (UART) is a basic transceiver element that serial-
izes a parallel bus when transmitting and deserializes the incoming stream when receiving. In addi-
tion to bus-width conversion, the UART also handles overhead and synchronization functions
required to transport data. Data bits cannot simply be serialized onto a wire without some additional
information to delineate the start and end of each unit of data. This delineation is called framing. The
receiver must be able to recognize the start of a byte so that it can synchronize its shift registers and
receive logic to properly capture the data. Basic framing is accomplished with a start bit that is as-
signed a logic state opposite to that of the transmission medium’s idle state, often logic 1 for histori-
cal reasons. When no data is being sent, the transmission medium, typically a wire, may be driven to
logic 1. A logic O start bit signals the receiver that data is on the way. The receiving UART must be
configured to handle the same number of data bits sent by the transmitter. Either seven or eight data
bits are supported by most UARTSs. After seven or eight data bits have been captured following the
start bit, the UART knows that the data unit has completed and it can resume waiting for a new start
bit. One or more stop bits follow to provide a minimum delay between successive data units so that
the receiver can complete processing of the current datum before receiving the next one.

Many UART: also support some form of error detection in the form of a parity bit. The parity bit
is the XOR of the data bits and is sent along with data so that it can be recalculated and verified at
the receiver. Error detection is considered more important on a long-distance data link, as compared
to on a circuit board, because errors are more prone over longer distances. A parity bit is added to
each data unit, most often each byte, that tells the receiver if an odd or even number of 1s are in the
data word. The receiver and transmitter must be configured to agree on whether even or odd parity is
being implemented. Even parity is calculated by XORing all data bits, and odd parity is calculated
by inverting even parity. The result is that, for even parity, the parity bit will be set if there are an odd
number of 1s in the byte. Conversely, the parity bit will be cleared if there are an odd number of 1s
present. Odd parity is just the opposite, as shown in Fig. 5.2.

Handshaking is another common feature of UARTSs. Handshaking, also called flow control, is the
general process whereby two ends of a data link confirm that each is ready to exchange data before
the actual exchange occurs. The process can use hardware or software signaling. Hardware hand-
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FIGURE 5.2 Odd and even parity.

shaking involves a receiver driving a ready signal to the transmitter. The transmitter sends data only
when the receiver signals that it is ready. UARTs may support hardware handshaking. Any software
handshaking is the responsibility of the UART control program.

Software handshaking works by transmitting special binary codes that either pause or resume the
opposite end as it sends data. XON/XOFF handshaking is a common means of implementing soft-
ware flow control. When one end of the link is ready to accept data, it transmits a standard character
called XON (0x11) to the opposite device. When the receiver has filled a buffer and is unable to ac-
cept more data, an XOFF character (0x13) is transmitted. It is by good behavior that most flow con-
trol schemes work: the device that receives an XOFF must respect the signal and pause its
transmission until an XON is received. It is not uncommon to see an XON/XOFF setting in certain
serial terminal configurations.

A generic UART is shown in Fig. 5.3. The UART is divided into three basic sections: CPU inter-
face, transmitter, and receiver. The CPU interface contains various registers to configure parity, bit rate,
handshaking, and interrupts. UARTSs usually provide three parity options: none, even, and odd. Bit rate
is selectable well by programming an internal counter to arbitrarily divide an external reference clock.
The range of usable bit clocks may be from several hundred bits per second to over 100 kbps.

Interrupts are used to inform the CPU when a new byte has been received and when a new byte is
ready to be transmitted. This saves the CPU from having to constantly poll the UART’s status regis-
ters for this information. However, UARTSs provide status bits to aid in interrupt status reporting, so
a simple serial driver program could operate by polling rather than implementing an interrupt service
routine. Aside from general control and status registers, the CPU interface provides access to trans-
mit and receive buffers so that data can be queued for transmission and retrieved upon arrival. De-
pending on the UART, these buffers may be only one byte each, or they may be several bytes
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FIGURE 5.3 Generic UART block diagram.
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implemented as a small FIFO. Typically, these serial ports run slow enough to not require deep buff-
ers, because even a slow CPU can easily respond to a transmit/receive event before the data link
underruns the transmit buffer or overruns the receive buffer.

The transmit section implements a parallel-to-serial shift register, parity generator, and framing
logic. UARTS support framing with a start bit and one or two stop bits where the start bit is a logic 0
and stop bits are logic 1s. It is also common to transmit data LSB first. With various permutations of
framing options, parity protection, and seven or eight data bits, standard configuration notation is of
the form <parity:N/E/O>-<width:8/7>-<stop-bits:1/2>. For example, N-8-1 represents no parity, 8
data bits, and 1 stop bit. E-8-2 represents even parity, 8 data bits, and 2 stop bits. To help understand
the format of bytes transmitted by a UART, consider Fig. 5.4. Here, two data bytes are transmitted:
0xAQ and 0x67. Keep in mind that the LSB is transmitted first.

Receiving the serial data is a bit trickier than transmitting it, because there is no clock accompa-
nying the data with which the data can be sampled. This is where the asynchronous terminology in
the UART acronym comes from. The receiver contains a clock synchronization circuit that detects
the start-bit and establishes a timing reference point from which all subsequent bits in the byte will
be sampled. This reference point is created using a higher-frequency receive clock. Rather than run-
ning the receiver at 1x the bit rate, it may be run at 16x the bit rate. Now the receive logic can de-
compose a bit into 16 time units and slide a 16-clock window according to where the start bit is
observed. It is advantageous to sample each subsequent bit halfway through its validity window for
maximum timing margin on either side of the sampling event. This allows maximum flexibility for
settling time around the edges of the electrical pulse that defines each bit.

Consider the waveform in Fig. 5.5. When the start bit is detected, the sampling window is reset,
and a sampling point halfway through is established. Subsequent bits can have degraded rising and
falling edges without causing the receiver to sample an incorrect logic level.
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FIGURE 5.4 Common byte framing formats.
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FIGURE 5.5 UART receive clock synchronization.
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5.3 ASCII DATA REPRESENTATION

Successful communication requires standardized data representation so that people and computers
around the world can share the same information. Alphanumeric characters are represented by a
seven-bit standard representation known as the American Standard Code for Information Inter-
change, or ASCII. ASCII also includes punctuation marks and invisible control codes used to help in
the display and transfer of data. ASCII was first published in 1968 by the American National Stan-
dards Institute, or ANSI. The original ASCII standard lacked provisions for many commonly used
grammatical symbols in languages other than English. Since 1968, there have been many extensions
to ASCII that have varying support throughout the world according to the prevalent language in each
country. In the United States, an eight-bit ASCII variant is commonly supported that adds graphical
symbols and some of the more common foreign language punctuation symbols. The original seven-
bit ANSI standard ASCII mapping is shown in Table 5.1. The mappings below 0x20 are invisible
control codes such as tab (0x09), carriage return (0xOD), and line-feed (0x0A). Some of the control
codes are not in widespread use anymore.

5.4 RS-232

Aside from a common data representation format, communication signaling such as framing or error
detection also requires standardization so that equipment manufactured by different companies can
exchange information. When one begins discussing communications, an unstoppable journey into
the sometimes mysterious world of industry standards begins. Navigating these standards can be
tricky because of subtle differences in terminology between related standards and the everyday jar-
gon to which the engineering community has grown accustomed. Standards are living documents
that are periodically updated, revised, or replaced. This shifting base of documentation can add other
challenges to fully complying with a standard.

One of the most ubiquitous serial communications schemes in use is defined by the RS-232 fam-
ily of standards. Most UARTS are designed specifically to support RS-232. Standards purists may
balk at the common reference to RS-232 in the modern context, for several reasons. First, the origi-
nal RS-232 document has long since been superseded by multiple revisions. Second, its name was
changed first to EIA-232, then to EIA/TIA-232. And third, RS-232 is but one of a set of related stan-
dards that address asynchronous serial communications. These standards have been developed under
the auspices of the Electronics Industry Alliance (formerly the Electronics Industry Association) and
Telecommunications Industry Association. Technically, EIA/TIA-232 (first introduced in 1962 as
RS-232) standardizes the 25-pin D-subminiature (DB25) connector and pin assignment along with
an obsolete electrical specification that had limited range. EIA/TIA-423 standardizes the modern
electrical characteristics that enable communication at speeds up to 100 kbps over short distances
(10 m). EIA/TIA-574 standardizes the popular nine-pin DE9 connector that is used on most new
“RS-232” equipped devices. These days, when most people talk about an RS-232 port, they are re-
ferring to the overall RS-232 family of related serial interfaces. In fairness to standards purists, this
loose terminology is partially responsible for confusion among those who implement and use RS-
232. From a practical perspective, however, it is most common to use the term RS-232 with addi-
tional qualifiers (e.g., 9-pin or 25-pin) to convey your point. In fact, if you start mentioning EIA/
TIA-574 and 423, you will probably be met by blank stares from most engineers. This somewhat
shady practice is continued here because of its widespread acceptance in industry.

RS-232 specifies that the least-significant bit of a byte is transmitted first and is framed by a sin-
gle start bit and one or two stop bits. Common RS-232 data rates are known to many computer users.
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TABLE 5.1 Seven-bit ASCIl Character Mapping
Decimal Hex Value Decimal Hex Value | Decimal Hex Value | Decimal Hex Value
0 0x00 NUL 32 0x20 SP 64 0x40 @ 96 0x60 )
1 0x01 SOH 33 0x21 ! 65 0x41 A 97 0x61 a
2 0x02 STX 34 0x22 " 66 0x42 B 98 0x62 b
3 0x03 ETX 35 0x23 # 67 0x43 C 99 0x63 c
4 0x04 EOT 36 0x24 $ 68 0x44 D 100 0x64 d
5 0x05 ENQ 37 0x25 % 69 0x45 E 101 0x65 e
6 0x06 ACK 38 0x26 & 70 0x46 F 102 0x66 f
7 0x07 BEL 39 0x27 ' 71 0x47 G 103 0x67 g
8 0x08 BS 40 0x28 ( 72 0x48 H 104 0x68 h
9 0x09 HT 41 0x29 ) 73 0x49 I 105 0x69 i
10 0x0A LF 42 0x2A * 74 0x4A J 106 0x6A j
11 0x0B VT 43 0x2B + 75 0x4B K 107 0x6B k
12 0x0C FF 44 0x2C s 76 0x4C L 108 0x6C 1
13 0x0D CR 45 0x2D - 77 0x4D M 109 0x6D m
14 0x0E SO 46 0x2E 78 0x4E N 110 0x6E n
15 0xOF SI 47 0x2F / 79 0x4F (0} 111 0x6F 0
16 0x10 DLE 48 0x30 0 80 0x50 P 112 0x70 p
17 0x11 DC1/XON 49 0x31 1 81 0x51 Q 113 0x71 q
18 0x12 DC2 50 0x32 2 82 0x52 R 114 0x72 r
19 0x13 | DC3/XOFF 51 0x33 3 83 0x53 S 115 0x73 s
20 0x14 DC4 52 0x34 4 84 0x54 T 116 0x74 t
21 0x15 NAK 53 0x35 5 85 0x55 U 117 0x75 u
22 0x16 SYN 54 0x36 6 86 0x56 \Y 118 0x76 v
23 0x17 ETB 55 0x37 7 87 0x57 w 119 0x77 w
24 0x18 CAN 56 0x38 8 88 0x58 X 120 0x78 X
25 0x19 EM 57 0x39 9 89 0x59 Y 121 0x79 y
26 Ox1A SUB 58 0x3A 90 0x5A 4 122 0x7A z
27 0x1B ESC 59 0x3B ; 91 0x5B [ 123 0x7B {
28 0x1C FS 60 0x3C < 92 0x5C \ 124 0x7C |
29 0x1D GS 61 0x3D = 93 0x5D ] 125 0x7D }
30 0x1E RS 62 0x3E > 94 0xSE A 126 0x7E ~
31 Ox1F Us 63 0x3F ? 95 0x5F _ 127 0x7F | DEL
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Standard bit rates are 2 multiples of 300 bps. In the 1970s, 300 bps serial links were common. Dur-
ing the 1980s, links went from 1,200 to 2,400, to 9,600 bps. RS-232 data links now operate at speeds
from 19.2 to 153.6 kbps. Standard RS-232 bit rates are typically divided down from reference clocks
such as 1.843, 3.6864, 6.144, and 11.0592 MHz. This explains why many microprocessors operate
at oddball frequencies instead of even speeds such as 5, 10, or 12 MHz.

RS-232 defines signals from two different perspectives: data communications equipment (DCE)
and data terminal equipment (DTE). DCE/DTE terminology evolved in the early days of computing
when the common configuration was to have a dumb terminal attached to a modem of some sort to
enable communication with a mainframe computer in the next room or building. A person would sit
at the DTE and communicate via the DCE. Therefore, in the early 1960s, it made perfect sense to
create a communication standard that specifically addressed this common configuration. By defining
a set of DTE and DCE signals, not only could terminal and modem engineers design compatible sys-
tems, but cabling would be very simple: just wire each DTE signal straight through to each DCE sig-
nal. To further reduce confusion, the DTE was specified as a male DB-25 and the DCE as a female
DB-25. Aside from transmit and receive data, hardware handshaking signals distinguish DCE from
DTE. Some signals are specific to modems such as carrier detect and ring indicator and are still
used today in many modem applications.

The principle behind RS-232 hardware handshaking is fairly simple: the DTE and DCE indicate
their operational status and ability to accept data. The four main handshaking signals are request to
send (RTS), clear to send (CTS), data terminal ready (DTR), and data set ready (DSR). DTR/DSR
enable the DTE and DCE to signal that they are both operational. The DTE asserts DTR, which is
sensed by the DCE and vice versa with DSR. RTS/CTS enable actual data transfer. RTS is asserted
by the DTE to signal that the DCE can send it data. CTS is asserted by the DCE to signal the DTE
that it can send data. In the case of a modem, carrier detect is asserted to signal an active connection,
and ring indicator is asserted when the telephone line rings, signaling that the DTE can instruct the
modem to answer the phone.

In a null-modem configuration, two DTEs are connected, and each considers DTR and RTS out-
puts and DSR and CTS inputs. This is solved by swapping DTR/DSR and RTS/CTS so that one
DTE’s DTR drives the other’s DSR, and so on. The unidirectional carrier detect is also connected to
the DTR signal at the other end (DSR at the local end) to provide positive “carrier detect” when the
terminal ready signal is asserted.

Table 5.2 lists the full set of RS-232 signals with the convention that signals are named relative to
the DTE. Most of the original 25 defined RS-232 signals are rarely used, as evidenced by the popu-
larity of the smaller DE9 connector. Furthermore, a minimal RS-232 serial link can be implemented
with only three wires: transmit, receive, and ground. In more recent times, the DTE/DCE distinction
has created confusion in more than one engineering department, because the definitions of terminal
and modem do not always hold in the more varied modern digital systems context. Often, all RS-232
ports are configured as DTE, and special crossover, or null-modem, cables are used to properly con-
nect two DTEs. While varying subsets of the DTE pin assignment can be found in many systems,
there is still a place for the original DTE/DCE configuration. It is rare, however, to find the DB25
pins that are not implemented in the DE9 actually put to use.

Not all RS-232 interfaces are configured for hardware handshaking. Some may ignore these sig-
nals entirely, and others require that these signals be tied off to the appropriate logic levels so that
neither end of the link gets confused and believes that the other is preventing it from sending data.
Using a software flow control mechanism can eliminate the need for the aforementioned hardware
handshaking signals and reduce the RS-232 link to its three basic wires: transmit, receive, and
ground. These many permutations of DTE/DCE and various degrees of handshaking are what cause
substantial grief to many engineers and technicians as they build and set up RS-232 equipment.
There is a healthy industry built around the common RS-232 configuration problems. Breakout
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DB25 DTE DE9 DTE Signal Direction: DTE/DCE Description
1 - Shield = Shield/chassis ground
2 3 TXD = Transmit data
3 2 RXD = Receive data
4 7 RTS = Request to send
5 8 CTS = Clear to send
6 6 DSR &= Data set ready
7 5 Ground = Signal ground
8 1 DCD = Data carrier detect
9 - +V = Power
10 - -V = Power return
11 - Unused
12 - SCF = Secondary line detect
13 - SCB = Secondary CTS
14 - SBA = Secondary TXD
15 - DB &= DCE element timing
16 - SBB = Secondary RXD
17 - DD &= Receiver element timing
18 - Unused/local-loopback
19 - SCA = Secondary RTS
20 4 DTR = Data terminal ready
21 - CQ = Signal quality detect
22 9 RI = Ring indicator
23 - CH/CI = Data rate detect
24 - DA = Transmitter element timing
25 - Unused/test-mode

boxes can be purchased that consist of jumper wires, switches, and LEDs to help troubleshoot RS-
232 connectivity problems by reconfiguring interfaces on the fly as the LEDs indicate which signals
are active at any given moment. As a result of the male/female gender differences of various DB25/
DED9 connectors, there are often cabling problems for which one needs to connect two males or two
females together. Once again, the industry has responded by providing a broad array of gender-
matching cables and adapters. On a conceptual level, these problems are simple; in practice, the per-
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mutations of incompatibilities are so numerous that debugging a 1960s-era RS-232 connection may
not be a quick task.

Male DB25 and DE9 connectors consist of a dual row of staggered pins surrounded by a metal
rim that serves as an electrical shield. The female connectors consist of matching staggered pin-
sockets mounted in a solid frame whose edge forms a shield that mates with the male shield. These
connectors are illustrated in Fig. 5.6.

The D-subminiature connector family uses a three-element nomenclature to specify the size of
the connector housing, or shell, and the number of pins within the shell. There are five standard shell
designations—A, B, C, D, E—that were originally specified with varying numbers of pins as shown
in Table 5.3. DE9 connectors are commonly misrepresented as DB9, a connector configuration that
is not defined. A modern D-subminiature connector that was not originally specified is the common
HDEI1S5, a high-density 15-pin connector using the E-size shell. The HDE1S5 is commonly used to
connect monitors to desktop computers.

TABLE 5.3 Standard D-Subminiature

Shell Sizes
Shell Size Pins
A 15
B 25
C 37
D 50
E 9

Logical transceiver-level characteristics such as bit rate, error detection, and framing are accom-
panied by electrical transducer-level characteristics, more commonly referred to as the physical
layer of a communications link. RS-232 refers to the logic 1 state as a mark and assigns it a negative
potential from -3 to —25 V. The logic-0 state is a space and is assigned a positive potential from +3
to +25 V. Since RS-232 inverts the logic levels, an idle link is held at negative voltage, logic 1.

While RS-232 is specified with a transmitter voltage range of +3 to 25 V, most modern transmit-
ters operate well below the 25-V upper bound. Many systems have been based around the ubiquitous
and inexpensive 1488/1489 transmitter/receiver chipset that operate at +12 V. These chips require an
external *12-V source for power. RS-232 circuitry was fundamentally simplified when Maxim
Semiconductor created their MAX232 line of single-supply 5-V line interface ICs. These chips con-
tain internal circuitry that generates +8 V. Today, a variety of flexible RS-232 interface ICs are avail-

Male Female
Pin 1 Pin 13 Pin 13 Pin 1
Pin 14 Pin 25 Pin 25 Pin 14
Front View
Pin1 Pin5 Pin5 Pin1
Pin6 Pin9 Pin9 Pin6

FIGURE 5.6 DB25 and DE9 connectors.
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able from other manufacturers including Linear Technology, National Semiconductor, and Texas
Instruments. RS-232 ports work quite well on even lower voltage ranges, because modern receivers
are sensitive to smaller absolute voltages, and most RS-232 links are several meters or less in length.
RS-232 was never intended to serve in truly long-distance applications.

5.5 RS-422

For crossing distances greater than several meters, RS-232 is supplemented by the RS-422 standard.
RS-422 can provide communications across more than 1.2 km at moderate bit rates such as 9.6 kbps.
It is a differential, or balanced, transmission scheme whereby each logical signal is represented by
two wires rather than one. RS-232 signals are single-ended, or unbalanced, signals that drive a par-
ticular voltage onto a single wire. This voltage is sensed at the receiver by measuring the signal volt-
age relative to the ground potential of the interface. Over long distances or at very high speeds,
single-ended transmission lines are more subject to degradation resulting from ambient electrical
noise. A partial explanation of this characteristic is that the electrical noise affects the active signal
wire unequally with respect to ground. Differential signals, as in RS-422, drive opposing, or mir-
rored, voltages onto two wires simultaneously (RS-422 is specified from +2 to +6 V). The receiver
then compares the voltages of the two wires together rather than to ground. Ambient noise tends to
affect the two wires equally, because they are normally twisted together to follow the same path.
Therefore, if noise causes a 1-V spike on one-half of the differential pair, it causes the same spike on
the other half. When the two voltages are electrically subtracted at the receiver, the 1-V of common-
mode noise cancels out, and the original differential voltage remains intact (subject, of course to nat-
ural attenuation over distance). The difference between RS-232 and RS-422 transmission is illus-
trated in Fig. 5.7.

Because of the longer distances involved in RS-422 interfaces, it is not common to employ the
standard set of hardware handshaking signals that are common with RS-232. Therefore, some form
of software handshaking must be implemented by the end devices to properly communicate. Some
applications may not require any flow control, and some may use the XON/XOFF method. RS-422
does not specify a standard connector. It is not uncommon to see an RS-422 transmission line’s bare
wire ends connected to screw terminals.

Another common difference between RS-422 and RS-232 is transmission line termination. Trans-
mission line theory can get rather complicated and is outside the scope of this immediate discussion.

Vgense = +Vrx - ground

RS-232 T
+V. +V,
T TX /- R | R;
—

X
RS-422 Vsense = +Vrx - ~Vhx
+Vix /. T +Vix
Tx > Vi ?7 I ) ~Vex Rx

FIGURE 5.7 RS-232 vs. RS-422 signaling.
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The basic practical result of transmission line theory is that, as the speed-distance product of an elec-
trical signal increases, the signal tends to reflect off the ends of wires and bounce back and forth on
the wire. When slow signals travel relatively moderate distances, the speed-distance product is not
large enough to cause this phenomenon to any noticeable degree. Fast signals traveling over very
short distances may also be largely immune to such reflections. However, when RS-422 signals
travel over several kilometers, the speed-bandwidth product is great enough to cause previously
transmitted data signals to reflect and interfere with subsequent data. This problem can be largely
solved by properly terminating the receiving end of the transmission line with the line’s characteris-
tic impedance, Z,. Typical coaxial and twisted-pair transmission lines have Zg = 50, 75, or 110 Q.
Briefly put, Zg is the impedance, or electrical resistance, that would be observed between both con-
ductors of a balanced transmission line of infinite length. Again, there is substantial theory lurking
here, but the practical result is that, by placing a resistor equal to Z, at the far end of the line be-
tween both conductors, the transmission line will appear to be continuous and not exhibit reflections.
A typical schematic diagram of a terminated RS-422 serial link is shown in Fig. 5.8.

5.6 MODEMS AND BAUD RATE

Information is conveyed by varying the electromagnetic field of a particular medium over time. The
rate at which this field (e.g., voltage) changes can be represented by a certain bandwidth that charac-
terizes the information. Transducers such as those that facilitate RS-232/RS-422 serial links place
the information that is presented to them essentially unmodified onto the transmission medium. In
other words, the bandwidth of the information entering the transducer is equivalent to that leaving
the transducer. Such a system operates at baseband: the bandwidth inherent to the raw information.
Baseband operation is relatively simple and works well for a transmission medium that can carry
raw binary signals with minimal degradation (e.g., various types of wire, or fiber optic cable, strung
directly from transmitter to receiver). However, there are many desirable communications media that
are not well suited to directly carrying bits from one point to another. Two prime examples are free-
space and acoustic media such as a telephone.

To launch raw information into the air or over a telephone, the bits must be superimposed upon a
carrier that is suited to the particular medium. A carrier is a frequency that can be efficiently radi-
ated from a transmitter and detected by a remote receiver. The process of superimposing the bits on
the carrier is called modulation. The reverse process of detecting the bits already modulated onto the
carrier is demodulation. For the purposes of this discussion, one of the simplest forms of modula-
tion, binary amplitude modulation (AM), is presented as an example. More precisely, this type of
AM is called amplitude shift keying (ASK). With two states, it is called 2-ASK and is illustrated in
Fig. 5.9. Each time a 1 is to be transmitted, the carrier (shown as a sine wave of arbitrary frequency)
is turned on with an arbitrary amplitude. Each time a O is to be transmitted, the carrier is turned off
with an amplitude of zero. If transmitting over free space, the carrier frequency might be anywhere
from hundreds of kilohertz to gigahertz. If communicating over a fiber optic cable, the carrier is
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FIGURE 5.8 RS-422 transmission line termination.
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FIGURE 5.9 2-ASK modulation.

light. If an acoustic medium such as a telephone is used to send the data, the carrier is audible in the
range of several kilohertz.

Frequency shift keying (FSK), a type of frequency modulation (FM) is a scheme that can be used
to transmit multiple bits simultaneously without resorting to multiple levels of amplitude by using
AM. FSK represents multiple bits by varying the frequency rather than the amplitude of the carrier.
This constant amplitude approach is less susceptible to noise. Figure 5.10 shows 4-FSK modulation,
in which each of the four frequency steps represents a different two-digit binary value.

A general term for a modulated data unit is a baud. If 2-ASK is used, each baud corresponds to
one bit. Therefore, the baud rate matches the bit rate. However, the 4-FSK example shows that each
baud represents two bits, making the bit rate twice that of the baud rate. This illustrates that baud
rate and bit rate are related but not synonymous, despite common misuse in everyday conversation.
Engineers who design modulation circuitry care about the baud rate, because it specifies how many
unique data units can be transmitted each second. They also try to squeeze as many bits per baud as
possible to maximize the overall bit rate of the modulator. Engineers who use modulators as black-
box components do not necessarily care about the baud rate; rather, it is the system’s bit rate that
matters to the end application.

Enter the modem. A modem is simply a device that incorporates a modulator and demodulator for
a particular transmission medium. The most common everyday meaning of modem is one that en-
ables a computer to transfer bits over an analog telephone line. These modems operate using differ-
ent modulation schemes depending on their bit rate. Early 300- and 1,200-bps modems operate
using FSK and phase shift keying (PSK). Later modems, including today’s 33.6- and 56-kbps mod-
els, operate using variations of quadrature amplitude modulation (QAM).

While modem often refers to telephone media, it is perfectly correct to use this term when refer-
ring to a generic modulator/demodulator circuit that operates on another medium. Digital wireless
communication is increasingly common in such applications as portable cellular phones and unteth-
ered computer networking. These devices incorporate radio frequency (RF) modems in addition to
digital transceivers that frame the data as it travels from one point to another.

5.7 NETWORK TOPOLOGIES

The communications schemes discussed thus far are point-to-point connections—they involve one
transmitter and one receiver at either end of a given medium. Many applications require multidrop
communications whereby multiple devices exchange data over the same medium. The general term
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FIGURE 5.10 4-FSK modulation.
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for a multidrop data link is a nerwork. Networks can be constructed in a variety of topologies: buses,
rings, stars, and meshes, as shown in Fig. 5.11.

A bus structure is the most basic network topology in which all nodes share the same physical me-
dium. When one node wishes to transmit data, it must wait for another node to finish and release the
bus before it can begin. The ring topology implements a daisy-chained set of connections where each
node connects to its two nearest neighbors, and information usually flows in one direction (although
bidirectional rings are a variation on this theme). A benefit of the ring is that a single long wire does
not have to travel between all nodes. One disadvantage is that each node is burdened with the require-
ment of passing on information that is not destined for it to keep the message from being lost.

Mesh networks provide ultimate connectivity by connecting each node to several of its neighbors.
A mesh can provide increased bandwidth as well as fault tolerance as a result of its multiple connec-
tions. Properly designed, a mesh can route traffic around a failed link, because multiple paths exist
between each node in the network. The downside to these benefits is increased wiring and communi-
cations protocol complexity.

Star networks connect each node to a common central hub. The benefits of a physical star topol-
ogy include ease of management, because adding or removing nodes does not affect the wiring of
other nodes. A downside is that more wiring is necessary to provide a unique physical connection
between each node and the central hub. A starred network may send data only to the node for which
it is destined. Unlike a ring, the node does not have to pass through information that is not meant for
it. And unlike a bus, the node does not have to ignore messages that are not meant for it. The require-
ment for a central hub increases the complexity of a star network. As more nodes are added to the
network, the hub must add ports at the same rate.

A network may be wired using a physical star topology, but it may actually be a bus or ring from
a logical, or electrical, perspective. Implementing differing physical and logical topologies is illus-
trated in Fig. 5.12. Some types of networks inherently favor bus or ring topologies, but the flexible
management of star wiring is an attractive alternative to a strictly wired bus or ring. Star wiring en-
ables nodes to be quickly added or disconnected from the central hub without disrupting other
nodes. Bus and ring topologies may require the complete or partial disruption of the network me-
dium to add or remove nodes. A star’s hub typically contains electronics to include or bypass indi-
vidual segments as they are added or removed from the network without disrupting other nodes.

5.8 NETWORK DATA FORMATS

Common data formats and protocols are necessary to regulate the flow of data across a network to
ensure proper addressing, delivery, and access to that common resource. Several general terms for
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FIGURE 5.11 Basic network topologies.
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FIGURE 5.12 Physical vs. logical network topologies.

message elements on a network are frame, packet, and cell. Frames are sets of data that are framed at
the beginning and end by special delimiters. Packets are sets of data that are not fully framed but that
have some other means of determining their size, such as an embedded length field. Cells are fixed-
length frames or packets. Frames and packets usually imply variable length data sets, but this is not a
strict rule. As with many terms and classifications in digital systems, specific definitions are context
specific and are often blurred: one system’s cells may be another’s frames. Frames, packets, and
cells are composed of headers, payloads, and trailers, as shown in Fig. 5.13. The header is a collec-
tion of data fields that handle network overhead functions such as addressing and delineation. The
actual data to be transmitted is placed into the payload. If present, a trailer is commonly used to im-
plement some form of error checking and/or delineation. Not all packet formats specify the inclusion
of trailers. When present, a trailer is usually substantially smaller in length than the header.

Networking is an aspect of digital systems design that directly involves hardware—software inter-
action at a basic level. One cannot really design networking hardware without keeping in mind the
protocol, or software, support requirements. One key example is packet format. Hardware must have
knowledge of the packet format so that it can properly detect a packet that is sent to it. At the same
time, software must have this same knowledge so that it can properly parse received packets and
generate new ones to be transmitted.

As soon as more than two nodes are connected to form a network, issues such as addressing and
shared access arise. When there is only one transmitter and one receiver, it is obvious that data is in-
tended for the only possible recipient. Likewise, the lone transmitter can begin sending data at any
time it chooses, because there are no other transmitters competing for network access.

Network addressing is the mechanism by which a transmitting node indicates the destination for
its packet. Each node on the network must therefore have a unique address to prevent confusion over
where the packet should be delivered. In a bus topology, each node watches all the data traffic that is
placed onto the network and picks out those packets that are tagged with its unique address. In a ring
topology, each node passes packets on to the next node if the destination address is not matched with
that node’s address. If the address is matched, the node absorbs the packet and does not forward it on
to the next node in the ring. Logical star and mesh topologies function a bit differently. Nodes on

Header Payload Trailer

FIGURE 5.13 Generic packet structure.
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these types of networks do not observe all traffic that traverses the network; rather, the network itself
contains some intelligence when it comes to delivering a packet. A node in a logically starred net-
work sends a packet to a central hub that examines the destination address and then forwards the
message to only the specified node. A mesh network routes traffic partly like a ring and partly like a
star; however, multiple paths between nodes exist to complicate the delivery process. Based on the
destination address, the originating node sends a packet to one of its neighbors, which in turn for-
wards the message to one of its neighbors. This process continues until the path has been completed
and the packet arrives at its intended destination. The presence of multiple valid paths between
nodes requires the mesh network to use knowledge about the location of nodes to select an optimal
path through the network.

Access sharing is necessary on networks to ensure that each node eventually has an opportunity to
send a message. Numerous methods of access sharing have been implemented over the years. Gen-
erally speaking, the length of messages is bounded to prevent a node from transmitting an infinitely
long set of data and preventing anyone else from gaining access to the shared medium. Sharing algo-
rithms differ according to the specific network topology involved. Networks that are a collection of
point-to-point links (e.g., ring, star, mesh) do not have to worry about multiple nodes fighting for ac-
cess to the same physical wire, but do have to ensure that one node does not steal all the bandwidth
from others. Bus networks require sharing algorithms that address both simultaneous physical con-
tention for the same shared wire in addition to logical contention for the network’s bandwidth. Arbi-
tration schemes can be centralized (whereby a single network master provides permission to each
node to transmit) or distributed (whereby each node cooperates on a peer-to-peer level to resolve si-
multaneous access attempts).

After deciding on a network topology, one of the first issues to resolve is the network packet for-
mat. If the network type is already established (e.g., Ethernet), the associated formats and protocols
are already defined by industry and government standards committees. If an application benefits from
a simple, custom network, the packet format can be tailored to suit the application’s specific needs.

Delineation and addressing are the two most basic issues to resolve. Delineation can be accom-
plished by sending fixed-size packets, embedding a length field in the packet header, or by reserving
unique data values to act as start/stop markers. Framing with unique start/stop codes places a restric-
tion on the type of data that a packet can contain: it cannot use these unique codes without causing
false start or end indications. Referring back to Table 5.1, notice that start-of-header (SOH) and end-
of-transmission (EOT) are represented by 0x01 and 0x04. These (or other pairs of codes) can be
used as delimiters if the packet is guaranteed to contain only alphanumeric ASCII values that do not
conflict with these codes.

Addressing is normally achieved by inserting both the destination and source addresses into the
header. However, some networking schemes may send only a single address. Sending both addresses
enables recognition of the destination as well as a determination of which node sent the packet. Since
most data exchanges are bidirectional to a certain degree, a destination node will probably need to send
some form of reply to the source node of a particular packet. Many networks include a provision known
as broadcast addressing whereby a packet is sent to all nodes on the network rather than just one. This
broadcast is often indicated using a reserved broadcast address. In contrast to a unicast address that is
matched by only one node, a broadcast address is matched by all nodes on the network. Some networks
also have multicast addresses that associate multiple nodes with a single destination address.

5.9 RS-485

Whereas RS-232 and RS-422 enable point-to-point serial links, the RS-485 standard enables multi-
ple-node networks. Like RS-422, RS-485 provides differential signaling to enable communications
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across spans of twisted-pair wire exceeding 1.2 km. Unlike RS-422, the RS-485 standard allows up
to 32 transmit/receive nodes on a single twisted pair that is terminated at each end as shown in Fig.
5.14. Modern low-load receivers that draw very little current from the RS-485 bus can be used to in-
crease the number of nodes on an RS-485 network well beyond the original 32-node limit to 256
nodes or more. A single pair of wires is used for both transmit and receive, meaning that the system
is capable of half-duplex (one-way) operation rather than full-duplex operation (both directions at
the same time). Half-duplex operation restricts the network to one-way exchange of information at
any given time. When node A is sending a packet to node B, node B cannot simultaneously send a
packet to node A.

RS-485 directly supports the implementation of bus networks. Bus topologies are easy to work
with, because nodes can directly communicate with each other without having to pass through other
nodes or semi-intelligent hubs. However, a bus network requires provisions for sharing access to be
built into the network protocol. In a centralized arbitration scheme, a master node gives permission
for any other node to transmit data. This permission can be a request-reply scheme whereby slave
nodes do not respond unless a request for data is issued. Alternatively, slave nodes can be periodi-
cally queried by the master for transmit requests, and the master can grant permissions on an indi-
vidual-node basis. There are many centralized arbitration schemes that have been worked out over
the years.

A common distributed arbitration scheme on a bus network is collision detection with random
back-off. When a node wants to transmit data, it first waits until the bus becomes idle. Once idle, the
node begins transmitting data. However, when the node begins transmitting, there is a chance that
one or more nodes have been waiting for an opportunity to begin transmitting and that they will be-
gin transmitting at the same time. Collision detection circuits at each node determine that more than
one node is transmitting, and this causes all active transmitters to stop. Figure 5.15 shows the imple-
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FIGURE 5.14 RS-485 bus topology.
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mentation of an RS-485 transceiver with external collision detection logic. A transmit enable signal
exists to turn off the transmitter when the UART is not actively sending data. Unlike an RS-422
transmitter that does not have to share access with others, the RS-485 transmitter must turn itself off
when not sending data to enable others to transmit.

When transmitting, the receiver returns the logical state of the twisted-pair bus. If the bus is not at
the same state as the transmitted data, a collision is most likely being caused by another transmitter
trying to drive the opposite logic state. An XOR gate implements this collection detect, and the XOR
output must be sampled only after allowing adequate time for the bus to settle to a stable state fol-
lowing the assertion of each bit from the transmitter.

Once a collision has been detected by each node and the transmitters are disabled, each node
waits a different length of time before retransmitting. If all delays were equal, multiple nodes would
get caught in a deadlock situation wherein each node keeps trying to transmit after the same delay
interval. Random back-off delays are pseudo-random so as to not unfairly burden some nodes with
consistently longer delays than other nodes. At the end of the delay, one of the nodes begins trans-
mitting first and gains control of the bus by default. The other waiting nodes eventually exit from
their delays and observe that the bus is already busy, indicating that they must wait their turn until
the current packet has been completed. If, by coincidence, another node begins transmitting at the
same time that the first node begins, the back-off process begins again. It is statistically possible for
this process to occur several times in a row, although the probability of this being a frequent event is
small in a properly designed network. A bus network constructed with too many nodes trying to send
too much data at the same time can exhibit very poor performance, because it would be quite prone
to collisions. In such a case, the solution may be to either reduce the network traffic or increase the
network’s bandwidth.

5.10 A SIMPLE RS-485 NETWORK

An example of a simple but effective network implemented with RS-485 serves as a vehicle to dis-
cuss how packet formats, protocols, and hardware converge to yield a useful communications me-
dium. The motivation to create a custom RS-485 network often arises from a need to deploy remote
actuators and data-acquisition modules in a factory or campus setting. A central computer may be lo-
cated in a factory office, and it may need to periodically gather process information (e.g., tempera-
ture, pressure, fluid-flow rate) from a group of machines. Alternatively, a security control console
located in one building may need to send security camera positioning commands to locations
throughout the campus. Such applications may involve a collection of fairly simple and inexpensive
microprocessor-based modules that contain RS-485 transceivers. Depending on the exact physical
layout, it may or may not be practical to wire all remote nodes together in a single twisted-pair bus.
If not, a logical bus can be formed by creating a hybrid star/bus topology as shown in Fig. 5.16. A
central hub electrically connects the individual star segments so that they function electrically as a
large bus but do not require a single wire to be run throughout the entire campus.

As shown, the hub does not contain any intelligent components—it is a glorified junction box.
This setup is adequate if the total length of all star segments does not exceed 1.2 km, which is within
the electrical limitations of the RS-485 standard. While simple, this setup suffers from a lack of fault
tolerance. If one segment of the star wiring is damaged, the entire network may cease operation be-
cause, electrically, it is a single long pair of wires. Both the distance and fault-tolerance limitations
can be overcome by implementing an active hub that contains repeaters on each star segment and
smart switching logic to detect and isolate a broken segment. A repeater is an active two-port device
that amplifies or regenerates the data received on one port and transmits it on the other port. An RS-
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FIGURE 5.16 Hybrid star/bus network topology.

485 repeater needs a degree of intelligence, because both ports must be bidirectional. Therefore, the
repeater must be able to listen for traffic on both sides, detect traffic on one side, and then transmit
that traffic on the other side. A hub that detects and isolates segment failures would be well designed
to report this fault information to a central control node to alert the human operator that repairs are
necessary. These possible improvements in the network hub do not affect the logical operation of the
network and, consequently, are not a focus of this discussion.

With a topology chosen and a general application in mind, the next step is to decide on the net-
work’s operational requirements from among the following:

1. Support for roughly 200 nodes provides flexibility for a variety of control applications.

2. Central arbitration handled by master control node for simplicity of network design. A facility
control network is often a master-slave application, because all data transfers are at the request
of the central controller. Central arbitration removes the need for collision-detect hardware and
random back-off algorithms.

3. Broadcast capability enables easy distribution of network status information from the master
control node.

4. Data rate of 9600 bps provides adequate bandwidth for small control messages without burden-
ing the network with high frequencies that can lead to excessive noise and signal degradation.

5. Basic error handling prevents processing incorrect data and network lock-up conditions when
occasional noise on the RS-485 twisted-pairs causes data bits to change state.

Many aspects of network functionality are directly influenced by a suitable network packet for-
mat. Other aspects are addressed by the protocol that formats data on the network, by the transceiver
and UART hardware, or by a combination of these three elements.

In considering the packet format, 8-bit destination and source addresses are chosen to support
more than 200 nodes on the network. A special destination address value of OxFF represents a broad-
cast address, meaning that all nodes should accept the packet automatically. Such broadcast packets
are useful for system-wide initialization whereby, for example, the control computer can send the
current time to all nodes. This multicast address cannot be used as a normal node address, thereby
limiting the network to 255 unique nodes.

It is desirable to employ variable-length packets so that a message does not have to be longer than
necessary, thereby conserving network bandwidth. Variable-length packets require some mechanism
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to determine the length: either reserved framing codes or an explicit length count. A length count is
chosen to keep the system simple. Framing codes would require that certain data values be off limits
to the contents of the message. The payload length is bounded at a convenient binary threshold: 255
bytes. For simple control and data-acquisition applications, this is probably more than enough.

Based on these basic requirements and a couple of quick decisions, a packet format quickly
emerges. A three-byte, fixed-length header shown in Table 5.4 is followed by a variable-length pay-
load. No trailer is necessary in this network.

TABLE 5.4 Hypothetical Packed Header Format

Field Name  Byte Bits Description
DA 0 [7:0]  Destination address (OxFF = multicast)
SA 1 [7:0] Source address
LEN 2 [7:0]  Payload length (0x0 = no payload present)

The eight-bit destination address field, DA, comes first to enable the receiving hardware to
quickly determine whether the packet should be accepted by the node or ignored. A packet will be
accepted if DA matches the receiver’s node address, or if DA equals OxFF, indicating a broadcast
packet. At the end of the header is an eight-bit length field that indicates how many payload bytes are
present after the fixed-length header. This limits the maximum packet size to 255 payload bytes plus
the 3-byte header. A value of zero means that there is no payload, only a header in the packet.

Error detection can be handled by even parity. Each byte of the header and payload is sent with an
accompanying parity bit. When an error is detected, the network’s behavior must be clearly defined
to prevent the system from either ceasing to function or acting on false data. Parity errors can mani-
fest themselves in a variety of tricky ways. For example, if the length field has a parity error, how
will the receiver know the true end of the frame? Without proper planning, a parity error on the
length field can permanently knock the receivers out of sync and make automatic recovery impossi-
ble. This extreme situation can occur when an invalid length causes the receiver to either skip over
the next frame header or prematurely interpret the end of the current frame as a new header. In both
cases, the receiver will falsely interpret a bogus length field, and the cycle of false header detection
can continue indefinitely.

If a parity error is detected on either the destination or source addresses, the receivers will not lose
synchronization, but the packet should be ignored, because it cannot be known who the true recipi-
ent or sender of the packet is.

Fault tolerance in the case of an invalid payload length can be handled in a relatively simple man-
ner. Requirements of no intrapacket gaps and a minimum interpacket gap assist in recovery from
length-field parity errors. The absence of intrapacket gaps means that, once a packet has begun trans-
mission, its bytes must be continuous without gaps. Related to this is the requirement of a minimum
interpacket gap which forces a minimum idle period between the last byte of one packet and the start
of the next packet. These requirements help each receiver determine when packets are starting and
ending. Even if a packet has been subjected to parity errors, the receiver can wait until the current
burst of traffic has ended, wait for the minimum interpacket gap, and then begin looking for the next
packet to begin.

The parity error detection and accompanying recovery scheme greatly increases the probability
that false data will not be acted upon as correct data and that the entire network will not stop func-
tioning when it encounters an arbitrary parity error. However, error detection is all about probability.
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A single parity bit cannot guarantee the detection of multiple errors in the same byte, because such
errors can mask themselves. For example, two bit errors can flip a data bit and the parity bit itself,
making it impossible for the receiver to detect the error. More complex error detection schemes are
available and are more difficult to fool. Although no error detection solution is perfect, some
schemes reduce the probability of undetected errors to nearly zero.

If a packet is received with an error, it cannot be acted upon normally, because its contents are
suspect. For the purposes of devising a useful error-handling scheme, packet errors can be divided
into two categories: those that corrupt the destination/source address information and those that do
not. Parity errors that corrupt the packet’s addresses must result in the packet being completely ig-
nored, because the receiving node is unable to generate a reply message to the originator indicating
that the packet was corrupted. If the source address is corrupted, the receiver does not know to whom
to reply. If the destination address is corrupted, the receiver does not know whether it is the indented
recipient.

In the case of an address error in which the received packet is ignored, the originator must imple-
ment some mechanism to recover from the packet loss rather than waiting indefinitely for a reply
that will never arrive. A reply timeout can be implemented by an originator each time a packet is sent
that requires a corresponding reply. A timeout is an arbitrary delay during which an originating node
waits before giving up on a response from a remote node. Timeouts are common in networks be-
cause, if a packet is lost due to an error, the originator should not wait indefinitely for a response that
will never come. Establishing a timeout value is a compromise between not giving up too quickly
and missing a slower-than-normal reply and waiting too long and introducing unacceptable delays in
system functionality when a packet is lost. Depending on the time it takes to send a packet on a net-
work and the nodes’ typical response time, timeouts can range from microseconds to minutes. Typi-
cal timeouts are often expressed in milliseconds.

When an originator times-out and concludes that its requested data somehow got lost, it can re-
send the request. If, for example, a security control node sends a request for a camera to pan across a
room, and that request is not acknowledged within half a second, the request can be retransmitted.

In the case of a non-address error, the receiving node has enough information to send a reply back
to the originator, informing it that the packet was not correctly received. Such behavior is desirable
to enable the originator to retransmit the packet rather than waiting for a timeout before resending
that data.

The preceding details of a hypothetical RS-485 network must be gathered into network driver
software to enable proper communication across the network. While hardware controls the detection
of parity errors and the flow of bits, it is usually software that generates reply messages and counts
down timeouts. Figure 5.17 distills this information into a single flowchart from which software rou-
tines could be written.

As seen from this flowchart, transmit and receive processes run concurrently and are related. The
transmit process does not complete until a positive acknowledgement is received from the destina-
tion node. This network control logic implemented in software is simple by mainstream networking
standards, yet it is adequate for networks of limited size and complexity. Issues such as access shar-
ing are handled inherently by the request/reply nature of this network, greatly simplifying the traffic
patterns that must be handled by the software driver.

5.11 INTERCHIP SERIAL COMMUNICATIONS

Serial data links are not always restricted to long-distance communications. Within a single com-
puter system, or even a single circuit board, serial links can provide attractive benefits as compared
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FIGURE 5.17 Hypothetical network driver flowchart.

to traditional parallel buses. Computer architectures often include a variety of microprocessor pe-
ripheral devices with differing bandwidth requirements. Main memory, both RAM and ROM, is a
central part of computer architecture and is a relatively high-bandwidth element. The fact that the
CPU must continually access main memory requires a simple, high-bandwidth interface—a parallel
bus directly or indirectly driven by the CPU. Other devices may not be accessed as often as main
memory and therefore have a substantially lower bandwidth requirement. Peripherals such as data
acquisition ICs (e.g., temperature sensors), serial number EEPROMs, or liquid crystal display
(LCD) controllers might be accessed only several times each second instead of millions of times per
second. These peripherals can be directly mapped into the CPU’s address space and occupy a spot
on its parallel bus, but as the number of these low-bandwidth peripherals increases, the complexity
of attaching so many devices increases.

Short-distance serial data links can reduce the cost and complexity of a computer system by re-
ducing interchip wiring, minimizing address decoding logic, and saving pins on IC packages. In
such a system, the CPU is connected to a serial controller via its parallel bus, and most other periph-
erals are connected to the controller via several wires in a bus topology as shown in Fig. 5.18.

Such peripherals must be specifically designed with serial interfaces, and many are. It is common
for low-bandwidth peripheral ICs to be designed in both parallel and serial variants. In fact, some
devices are manufactured with only serial interfaces, because their economics overwhelmingly fa-
vors the reduction in logic, wiring, and pins of a serial data link. A temperature sensor with a serial
interface can be manufactured with just one or two signal pins plus power. That same sensor might
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FIGURE 5.18 Generic interchip serial bus topology.

require 16 or more signal pins with a byte-wide parallel interface. Not only is the package cost re-
duced, its greatly reduced size enables the IC to be located in very confined spaces. Products includ-
ing cell phones and handheld computers benefit tremendously from small IC packages that enable
small, consumer-friendly form factors.

Interchip serial interfaces must be kept fairly simple to retain their advantages of low cost and
ease of use. Industry standard interfaces exist so that semiconductor manufacturers can incorporate
mainstream interfaces into their ICs, and engineers can easily connect multiple manufacturers’ ICs
together without redesigning the serial interface for each application. Many of these standard inter-
faces are actually proprietary solutions, developed by individual semiconductor manufacturers, that
have gained wide acceptance. Two of the most commonly used industry standards for interchip se-
rial communications are Philips’ inter-IC bus (I>C) and Motorola’s serial peripheral interface (SPI).
Both Philips and Motorola have long been leaders in the field of small, single-chip computers called
microcontrollers that incorporate microprocessors, small amounts of memory, and basic peripherals
such as UARTS. It was therefore a natural progression for these companies to add inexpensive inter-
chip serial data links to their microcontrollers and associated peripheral products.

I°C and SPI support moderate data rates ranging from several hundred kilobits to a few megabits
per second. Because of their target applications, these networks usually involve a single CPU master
connected to multiple slave peripherals. 1>C supports multiple masters and requires only two wires,
as compared to SPI’s four-plus wires.

I2C consists of a clock signal, SCL, and a data signal,

+ SDA. Both are open-collector signals, meaning that the

ICs do not actively drive the signals high, only low. An

open-collector driver is similar to a tri-state buffer, al-

shared bus wire Fhough no active hlgh stat.e is driven. Instead, the output

| is at either a low- or high-impedance state. The open-col-

lector configuration is schematically illustrated in Fig.

AQ AE _|E 5.19. The term open-collector originates from the days

= = = of bipolar logic when NPN output transistors inside the

open- open- open- chips had no element connected to their collectors to as-
collector collector drain . . . . . .

driver driver driver sert a logic high. This terminology is still used for

CMOS logic, although open-drain is the technically cor-
FIGURE 5.19 I’C open-collector schematic  rect term when working with MOSFETS. A pullup resis-
representation. tor is required on each signal (e.g., SCL and SDA) to

pull it to a logic 1 when the ICs release the actively
driven logic 0. This open-collector arrangement enables multiple IC drivers to share the same wire
without concern over electrical contention.

Under an idle condition, SCL and SDA are pulled high by their pullup resistors. When a particu-
lar IC wants to communicate, it drives a clock onto SCL and a pattern of data onto SDA. SCL may
be as fast as 100 kHz for standard I>C and up to 400 kHz for fast I>C buses. I°C is a real network that
assigns a unique node address to each chip connected to the bus. As such, each transfer begins with a
start sequence followed by seven-bit destination address. A read/write flag and data follow the ad-
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dress. There is a carefully defined protocol that provides for acknowledgement of write transactions
and returning data for read transactions. In a multimaster configuration, collision detection can be
implemented along with an appropriate access arbitration algorithm.

I°C is implemented using only two wires, but this apparent simplicity belies its flexibility. The
protocol is rich in handling special situations such as multiple masters, slow slaves that cannot re-
spond to requests at the master’s SCL frequency, and error acknowledgements. Some manufacturers
that incorporate 1°C into their products pay Philips a licensing fee and are therefore able to use the
trademark name in their documentation. Other manufacturers try to save some money by designing
what is clearly an I2C interface but referring to it by some generic or proprietary name such as “stan-
dard two-wire serial interface.” If you come across such a product, spend a few minutes reading its
documentation to make sure whether a true I>C interface is supported.

Motorola’s SPI consists of a clock signal, SCK, two unidirectional data signals, and multiple
slave select signals, SS* as shown in Fig. 5.20. One data signal runs from the master to each slave
and is called MOSI: master-out, slave-in. The other data signal is shared by the slaves to send data
back to the master and is called MISO: master-in, slave-out. SCK is always driven by the master and
can be up to several megahertz. Rather than assigning a unique address to each slave, the master
must assert a unique SS* to the particular device with which it wants to exchange data. On observing
SS* being asserted, a slave loads the bits on the MOSI signal into an internal shift register. If a read
is being performed, the slave can reply with data shifted out onto the MISO signal. Because MISO is
shared by multiple slaves, they must implement some type of contention-avoidance mechanism such
as tri-state or open-collector outputs.

Each of these interchip buses proves extremely useful in simplifying many system designs. It is
beyond the scope of this discussion to explain the detailed workings of either I’C or SPI. For more
information, consult the technical resources available from Philips and Motorola on their web sites
or in their printed data sheets.

ss2*
ss1*
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SPI Master y A 4 Y
SS* SS* SS*
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FIGURE 5.20 SPI bus organization.



CHAPTER 6

Instructive Microprocessors and
Microcomputer Elements

Microprocessors, the heart of digital computers, have been in a constant state of evolution since Intel
developed the first general-purpose microprocessors in the early 1970s. Intel’s four-bit 4004 made
history, because it was a complete microprocessor on a single chip at a time when processor modules
for minicomputers filled multiple circuit boards. Over the past three decades, the complexity and
throughput of microprocessors has increased dramatically as semiconductor technology has im-
proved by leaps and bounds. Hundreds of microprocessors have come and gone over the years.
There are many different architectures on the market today, each with its own claims of superior per-
formance, lower cost, and reduced power in its intended applications.

When looking back on three decades’ worth of development and the state of microprocessors to-
day, several microprocessor families are especially worth exploring as instructional examples of ba-
sic computer architecture. Some of these families are the ancestors of very popular and widespread
designs that are used to this day. Familiarity with these classic microprocessors can make it easier to
learn about contemporary products that are either improved versions of the originals or members of
other families that share common traits. Alternatively, some of these families are worthy of note be-
cause of their important role in permeating everyday life with microprocessors in places that most
people rarely think of as computerized: cars, microwave ovens, dishwashers, and VCRs.

This chapter provides information that is both historical and directly relevant to contemporary
digital systems design. Five classic microprocessor architectures are presented: Motorola 6800, Intel
8051, Microchip PIC, Intel 8086, and Motorola 68000. All of these architectures are in use today in
varying forms, and each represents a different perspective on how microprocessors can accomplish
similar tasks. A future design challenge may be addressed directly by one of these devices, or the so-
lution may employ architectural concepts that they have helped to bring about.

6.1 EVOLUTION

Following the 4004’s introduction in 1971, Intel enhanced the four-bit architecture by releasing the
4040 and 8008 in rapid succession. The 4040 added several instructions and internal registers, and
the 8008 extended the basic architecture to eight bits. These processors ran at speeds from 100 to
200 kHz and were packaged in 16 (4004/4040) and 18 (8008) pin DIPs. While significant for their
time, they had limited throughput and could address only 4 kB (4004/4040) or 16 kB (8008) of
memory. In 1974, Intel made substantial improvements in microprocessor design and released the
8080, setting the stage for modern microprocessors. Whereas Intel’s earlier microprocessors look
like relics of a bygone era, the 8080 is architecturally not far off from many microprocessors that ex-
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ist today. The 8080 was housed in a 40-pin DIP, featured a 16-bit address bus and an 8-bit data bus,
and ran at 2 MHz. It also implemented a conventional stack pointer that enabled deep stacks in exter-
nal memory (Intel’s earlier microprocessors had internal stacks with very limited depth). The 8080
became extremely popular as a result of its performance and rich, modern instruction set. This popu-
larity was evidenced two years later, in 1976, with Intel’s enhanced 8085 and competitor Zilog’s fa-
mous Z80. Designed by former Intel engineers, the Z80 was based heavily on the 8080 to the point
of having a partially compatible instruction set.

Both the 8085 and Z80 were extremely popular in a variety of computing platforms from hobby-
ists to mainstream commercial products to video arcade games. The 8085 architecture influenced the
famous 16-bit 8086 family whose strong influence continues to this day in desktop PCs. The Z80
eventually lost the mainstream microprocessor war and migrated to microcontrollers that are still
available for new designs from Zilog.

As microprocessors progress, technologies that used to be leading edge first become mainstream
and then appear quite pedestrian. Along the way, some microprocessor families branch into multiple
product lines to suit a variety of target applications. The high-end computing market gets most of the
publicity and accounts for the major technology improvements over time. Lower-end microproces-
sors are either made obsolete after some time or find their way into the embedded market. Embedded
microprocessors and systems are those that may not appear to the end user as a computer, or they
may not be visible at all. Instead, embedded microprocessors typically serve a control function in a
machine or another piece of equipment. This is in contrast to the traditional computer with a key-
board and monitor that is clearly identified as a general-purpose computer.

Integrated microprocessor products are called microcontrollers, a term that has already been in-
troduced. A microcontroller is a microprocessor integrated with a varying mix of memory and pe-
ripherals on a single chip. Microcontrollers are almost always found in embedded systems. As with
many industry terms, microcontrollers can mean very different things to different people. In general,
a microcontroller contains a relatively inexpensive microprocessor core with a complement of on-
board peripherals that enable a very compact, yet complete, computing system—either on a single
chip or relatively few chips. There is a vast array of single-chip microcontrollers on the market that
integrate quantities of both RAM and ROM on the same chip along with basic peripherals including
serial communications controllers, timers, and general I/O signal pins for controlling LEDs, relays,
and so on. Some of the smallest microcontrollers can cost less than a dollar and are available in
packages with as few as eight pins. Such devices can literally squeeze a complete computer into the
area of a fingernail. More complex microcontrollers can cost tens of dollars and provide external mi-
croprocessor buses for memory and I/O expansion. At the very high end, there are microcontrollers
available for well over $100 that include 32-bit microprocessors running at hundreds of megahertz,
with integrated Ethernet controllers and DMA. Manufacturers typically refer to these high-end
microcontrollers with unique, proprietary names to differentiate them from the aforementioned class
of inexpensive devices.

6.2 MOTOROLA 6800 EIGHT-BIT MICROPROCESSOR FAMILY

As the microprocessor market began to take off, Motorola jumped into the fray and introduced its
eight-bit 6800 in 1974, shortly after the 8080 first appeared. While no longer available as a discrete
microprocessor, the 6800 is significant, because it remains in Motorola’s successful 68HC05/
68HCO08 and 68HC11 microcontroller families and also serves as a vehicle with which to learn the
basics of computer architecture. Like the 8080, the 6800 is housed in a 40-pin DIP and features a 16-
bit address bus and an 8-bit data bus. All of the basic register types of a modern microprocessor are
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implemented in the 6800, as shown in Fig. 6.1: a program counter (PC), stack pointer (SP), index
register (X), two general-purpose accumulators (ACCA and ACCB), and status flags set by the ALU
in the condition code register (CCR). ACCA is the primary accumulator, and some instructions oper-
ate only on this register and not ACCB. A half-carry flag is included to enable efficient binary coded
decimal (BCD) operations. After adding two BCD values with normal binary arithmetic, the half-
carry is used to convert illegal results back to BCD. The 6800 provides a special instruction, decimal
adjust ACCA (DAA), for this specific purpose. A somewhat out-of-place interrupt mask bit is also
implemented in the CCR, because this was an architecturally convenient place to locate it. Bits in the
CCR are modified through either ALU operations or directly by transferring the value in ACCA to
the CCR.

The 6800 supports three interrupts: one nonmaskable, one maskable, and one software interrupt.
More recent variants of the 6800 support additional interrupt sources. A software interrupt can be
used by any program running on the microprocessor to immediately jump to some type of mainte-
nance routine whose address does not have to be known by the calling program. When the software
interrupt instruction is executed, the 6800 reads the appropriate interrupt vector from memory and
jumps to the indicated address. The 6800’s reset and interrupt vectors are located at the top of mem-
ory, as listed in Table 6.1, which generally dictates that the boot ROM be located there as well. For
example, an 8-kB 27C64 EPROM (8,192 bytes = 0x2000 bytes) would occupy the address range
0xE000 through OxFFFF. Each vector is 16 bits wide, enough to specify the full address of the asso-
ciated routine. The MSB of the address, A[15:8], is located in the low, or even, byte address, and the
LSB, A[7:0] is located in the high, or odd, byte address.

TABLE 6.1 6800 Reset and Interrupt Vectors

Vector Address Purpose
O0xFFFE/OxFFFF Reset
0xFFFC/0xFFFD Nonmaskable interrupt
0xFFFA/OxFFFB Software interrupt
0xFFF8/0xFFF9 Maskable interrupt
7 0

| Accumulator A

[7] = Reserved

| Accumulator B | [6] = Reserved
[5] = Half-carry
| ALU Condition Code Register | {g} - :\rllctazg?is;m%k
s [2] = Zero
| Index Register | [1] = Overflow
[0] = Carry

| Program Counter |

| Stack Pointer |

FIGURE 6.1 6800 registers.
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An external clock driver circuit that provides a two-phase clock (two clock signals 180° out of
phase with respect to each other) is required for the original 6800. Motorola simplified the design of
6800-based computer systems by introducing two variants, the 6802 and 6808. The 6802 includes an
on-board clock driver circuit of the type that is now standard on many microprocessors available to-
day. Such clock drivers require only an external crystal to create a stable, reliable oscillator with
which to clock the microprocessor. A crystal is a two-leaded component that contains a specially cut
quartz crystal. The quartz can be made to resonate at its natural frequency by electrical stimulus cre-
ated within the microprocessor’s on-board clock driver circuitry. A crystal is necessary for this pur-
pose, because its oscillation frequency is predictable and stable. The 6802 also includes 128 bytes of
on-board RAM to further simplify certain systems that have small volatile memory requirements.
For customers who wanted the simplified clocking scheme of the 6802 without paying for the on-
board RAM, Motorola’s 6808 kept the clocking and removed the RAM.

Using a 6802 with its internal RAM, a functional computer could be constructed with only two
chips: the 6802 and an EPROM. Unfortunately, such a computer would not be very useful, because it
would have no I/O with which to interact with the outside world. Motorola manufactured a variety of
peripheral chips intended for direct connection to the 6800 bus. Among these were the 6821 periph-
eral interface adapter (PIA) and the 6850 asynchronous communications interface adapter (ACIA), a
type of UART. The PIA provides 20 I/O signals arranged as two 8-bit parallel ports, each with two
control signals. Applications including basic pushbutton sensing and LED driving are easy with the
6821. The 6800 bus uses asynchronous control signals, meaning that memory and I/O devices do not
explicitly require access to the microprocessor clock to communicate on the bus. However, many of
the 6800 peripherals require their own copy of the clock to run internal logic.

As with all synchronous logic, the 6800’s bus is internally controlled by the microprocessor
clock, but the nature of the control signals enables asynchronous read and write transactions without
referencing that clock, as shown in Fig. 6.2. An address is placed onto the bus along with the proper
state of the R/W select signal (read = 1, write = 0) and a valid memory address (VMA) enable that
indicates an active bus cycle. In the case of a write, the write data is driven out some time later. For
reads, the data must be returned fast enough to meet the microprocessor’s timing specifications. The
6802/6808 were manufactured in 1-, 1.5-, and 2-MHz speed grades. At 2 MHz, a peripheral device
has to respond to a read request with valid data within 210 ns after the assertion of address, R/W, and
VMAL. A peripheral has up to 290 ns from the assertion of these signals to complete a write transac-
tion.” In a real system, VMA, combined with address decoding logic, would drive the individual
chip select signals to each peripheral.

In some situations, slow peripherals may be used that cannot execute a bus transaction in the time
allowed by the microprocessor. The 6800 architecture deals with this by stretching the clock during

VMA
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>

Write: 290 ns at 2 MHz Read: 210 ns at 2 MHz

FIGURE 6.2 6802/6808 basic bus timing.

* 8-Bit Microprocessor and Peripheral Data, Motorola, 1983, pp. 3—182.
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a slow bus cycle. A clock cycle can be stretched as long as 10 ps, enabling extremely slow peripher-
als by delaying the next clock edge that will advance the microprocessor’s internal state and termi-
nate a pending bus cycle. This stretching is performed by an external clock circuit for a 6800, or by
the internal clock of the 6802/6808. As with many modern microprocessors, the 6802/6808 provides
a pin that delays the end of the current bus cycle. This memory ready (MR) signal is normally high,
signaling that the addressed device is ready. When brought low, the clock is internally stretched until
MR goes high again. Early microprocessors such as the 6800 used clock stretching to delay bus cy-
cles. Most modern microprocessors maintain a constant clock frequency and, instead, insert discrete
wait states, or extra clock cycles, into a bus transaction when a similar type of signal is asserted. This
latter method is usually preferable in a synchronous system because of the desire to maintain a sim-
ple clock circuit and to not disrupt other logic that may be running on the microprocessor clock.

Motorola’s success with the 6800 motivated it to introduce the upgraded 6809 in 1978. The 6809
is instruction set compatible with the 6800 but includes several new registers that enable more flexi-
ble access to memory. Two stack pointers are present: the existing hardware controlled register for
subroutine calls and interrupts, and another for user control. The user stack pointer can be used to ef-
ficiently pass parameters to subroutines as they are called without conflicting with the microproces-
sor’s push/pop operations involving the program counter and other registers. A second index register
and the ability to use any of the four 16-bit pointer registers as index registers were added to enable
the simultaneous handling of multiple data structure pointers without having to continually save and
recall index register values. The 6809’s two accumulators can be concatenated to form a 16-bit accu-
mulator that enables 16-bit arithmetic with an enhanced ALU. This ALU is also capable of eight-bit
unsigned multiplication, which made the 6809 one of the first integrated microprocessors with mul-
tiplication capability.

Other improvements in the 6809 included a direct page register (DPR) for a more flexible eight-
bit direct addressing mode. The 8-bit DPR, representing A[15:8], is combined with an 8-bit direct
address, representing A[7:0], to form a 16-bit direct address, thereby enabling an 8-bit direct address
to reference any location in the complete 64-kB address space. The 6809 also included a more ad-
vanced bus interface with direct support for an external DMA controller. Several desktop computers,
including the Tandy/Radio Shack TRS-80 Color Computer, and various platforms, including arcade
games, utilized the 6809.

While still available from odd-lot retail outlets, the original 6800 family members are no longer
practical to use in many computing applications. Their capabilities, once leading edge, are now
available in smaller, more integrated ICs at lower cost and with lower power consumption. However,
the 6800 architecture is alive and well in the 68HC05/68HCO08 and 68HC11 microcontroller families
that are based on the 6800/6802/6808 and 6809 architectures, respectively. These microcontrollers
are available with a wide range of integrated features with on-board RAM, ROM (mask ROM, EE-
PROM, or EPROM)), serial ports, timers, and analog-to-digital converters.

6.3 INTEL 8051 MICROCONTROLLER FAMILY

Following their success in the microprocessor market, Intel began manufacturing microcontrollers in
1976 with the introduction of the 8048 family. This early microcontroller contains 64 bytes of RAM,
1 kB of ROM, a simple 8-bit microprocessor core, and an 8-bit timer/counter as its sole on-board pe-
ripheral. (Subsequent variants, the 8049 and 8050, include double and four times the memory of the
8048, respectively.) The microprocessor consists of a 12-bit program counter, an 8-bit accumulator
and ALU, and a 3-bit stack pointer. The 8048 is a complete computer on a single chip and gained a
certain amount of fame in the 1980s when it was used as the standard keyboard controller on the
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IBM PC because of its simplicity and low cost. The 8048 was manufactured in a 40-pin DIP and
could be expanded with external memory and peripherals via an optional external address/data bus.
However, when operated as a nonexpanded single-chip computer, the pins that would otherwise
function as its bus were available for general I/O purposes—a practice that is fairly standard on
microcontrollers.

Motivated by the popularity of the 8048, Intel introduced the 8051 microcontroller in 1980, which
is substantially more powerful and flexible. The 8051’s basic architecture is shown in Fig. 6.3. It
contains 128 bytes of RAM, 4 kB of ROM, two 16-bit timer/counters, and a serial port. Registers
within the microprocessor are 8 bits wide except for the 16-bit data pointer (DPTR) and program
counter (PC). Memory is divided into mutually exclusive program and data sections that each can be
expanded up to 64 kB in size via an external bus. Expansion is accomplished by borrowing pins
from two of the four 8-bit I/O ports. Intel manufactured several variants of the 8051. The 8052 dou-
bled the amount of on-chip memory to 256 bytes of RAM and 8 kB of ROM and added a third timer.
The 8031/8032 are 8051/8052 chips without on-board ROM. The 8751/8752 are 8051/8052 devices
with EPROM instead of mask ROM. As time went by and the popularity of the 8051 family in-
creased, other companies licensed the core architecture and developed many variants with differing
mixes of memory and peripherals.

Ports 0 through 3 are each eight-bit bidirectional I/O structures that can be used as either general-
purpose signals or as dedicated interface signals according to the system configuration. In a single-
chip configuration where all memory is contained on board, the four ports may be assigned freely.
Some peripheral functions use these I/O pins, but if a specific function is not required, the pins may
be used in a generic manner. Port 3 is the default peripheral port where pins are used for the serial
port’s transmit and receive, external interrupt request inputs, counter increment inputs, and external
bus expansion control signals. Port 1 is a general-purpose port that is also assigned for additional pe-
ripheral support signals when an 8051 variant contains additional peripheral functions beyond what
can be supported on port 3 alone.

In a multichip configuration where memory and/or additional peripherals are added externally,
ports O and 2 are used for bus expansion. Port O implements a multiplexed address/data bus where
the 8051 first drives the lower eight address bits and then either drives write-data or samples read-
data in a conventional bidirectional data bus scheme. In this standard configuration, the lower ad-
dress bits, A[7:0], are latched externally by a discrete logic chip (generally a 74LS373 or similar),
and the 8051 drives an address latch enable (ALE) signal to control this latch as shown in Fig. 6.4.
This multiplexed address/data scheme saves precious pins on the microcontroller that can be used

Special Peripherals: Clock Driver
ROM RAM Function Timers,
Registers Serial, etc.
A A internal control/data bus
v v h 4 A A Port 0 (Addr+Data)
| B Register | | Accumulator |—>| ALU | | Data Pointer | »|  Port 2 (Address)
| Stack Pointer | | Status Word l(— | Program Counter | Ports 1 & 3
L
4 microprocessor section A Generl 0

FIGURE 6.3 8051 overall architecture.
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FIGURE 6.4 8051 system with external address latch.

for valuable I/O functions. Some applications may suffice with just an eight-bit external address bus.
For example, if the only expansion necessary were a special purpose I/O device, 256 bytes would
probably be more than enough to communicate with the device. However, some applications de-
mand a fully functional 16-bit external address bus. In these situations, port 2 is used to drive the up-
per address bits, A[15:8].

The 8051°s microprocessor is very capable for such an early microcontroller. It includes integer
multiply and divide instructions that utilize eight-bit operands in the accumulator and B register, and
it then places the result back into those registers. The stack, which grows upward in memory, is re-
stricted to on-board RAM only (256 bytes at most), so only an eight-bit stack pointer is imple-
mented. Aside from the general-purpose accumulator and B registers, the 8051 instruction set can
directly reference 8 byte-wide general-purpose registers, numbered RO through R7, that are mapped
as 4 banks in the lower 32 bytes of on-board RAM. The active register bank can be changed at any
time by modifying two bank-select bits in the status word. The map of on-board data memory is
shown in Table 6.2. At reset, register bank 0 is selected, and the stack pointer is set to 0x07, meaning
that the stack will actually begin at location 0x08 when the first byte is eventually pushed. Above the
register banks is a 16-byte (128-bit) region of memory that is bit addressable. Microcontroller appli-
cations often involve reading status information, checking certain bits to detect particular events, and
then triggering other events. Using single bits rather than whole bytes to store status information
saves precious memory in a microcontroller. Therefore, the 8051’s bit manipulation instructions can
make efficient use of the chip’s resources from both instruction execution and memory usage per-
spectives. The remainder of the lower 128-byte memory region contains 80 bytes of general-purpose
memory.

The upper 128 bytes of data memory are split into two sections: special-function registers and
RAM. Special-function registers are present in all 8051 variants, but their definitions change ac-
cording to the specific mix of peripherals in each variant. Some special-function registers are stan-
dard across all 8051 variants. These registers are typically those that were implemented on the
original 8051/8052 devices and include the accumulator and B registers; the stack pointer; the data
pointer; and serial port, timer, and I/O port control registers. Each time a manufacturer adds an on-
board peripheral to the 8051, accompanying control registers are added into the special-function
memory region.

On variants that incorporate 256 bytes of on-board RAM, the upper 128 bytes are also mapped
into a parallel region alongside the special-function registers. Access between RAM and special-
function registers is controlled by the addressing mode used in a given instruction. Special-function
registers are accessed with direct addressing only. Therefore, such an instruction must follow the op-
code with an eight-bit address. The upper 128 bytes of RAM are accessed with indirect addressing
only. Therefore, such an instruction must reference one of the eight general-purpose registers (RO
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TABLE 6.2 Memory Map of On-Board Data Memory

Memory Range  Range Size Purpose Addressing Mode(s)

0x80-0xFF 128 bytes General-purpose RAM (except 8051)  Indirect only

0x80—0xFF 128 bytes Special-function registers Direct only

0x30-0x7F 80 bytes General-purpose RAM Direct/indirect
0x20-0x2F 16 bytes Bit-addressable RAM/general Direct/indirect
0x18-0x1F 8 bytes Register bank 3/general Direct/indirect
0x10-0x17 8 bytes Register bank 2/general Direct/indirect
0x08-0x0F 8 bytes Register bank 1/general Direct/indirect
0x00-0x07 8 bytes Register bank 0/general Direct/indirect

through R7 in the currently selected bank) whose value is used to index into that portion of RAM.
The lower 128 bytes of RAM are accessible via both direct and indirect addressing.

The 8051 is a good study in maximizing the capabilities of limited resources. Access to external
memory is supported through a variety of indirect and indexed schemes that provide an option to the
system designer of how extensive an external bus is implemented. Indirect access to external data
memory is supported in both 8- and 16-bit address configurations. In the 8-bit mode, RO through R7
are used as memory pointers, and the resulting address is driven only on I/O port O, freeing port 2 for
uses other than as an address bus. The DPTR functions as a pointer into data memory in 16-bit
mode, enabling a full 64-kB indirect addressing range. Indexed access to external program memory
is supported by both the DPTR and the PC. Being program memory (ROM), only reads are sup-
ported. Both DPTR and PC can serve as index base address registers, and the current value in the ac-
cumulator serves as an offset to calculate a final address of either DPTR+A or PC+A.

The 8051’s external bus interface is asynchronous and regulated by four basic control signals:
ALE, program storage enable (PSEN*), read enable (RD*), and write enable (WR*). Figure 6.5
shows the interaction of these four control signals and the two bus ports: ports 0 and 2. Recall that
ALE causes an external latch to retain A[7:0] that is driven from port O during the first half of the ac-
cess and prior to port O transitioning to a data bus role. The timing delays noted are for a standard
12-MHz operating frequency (the highest frequency supported by the basic 8051 devices, although
certain newer devices can operate at substantially faster frequencies).”

AE 7 N

Port 0 A[7:0] Din[7:0] A[7:0] Din[7:0] A7 X Dout[7:0]
Port 2 A[5:8] A[15:8] A[5:8]
PSEN* \ / [L

RD* // /

WR*

> >
Address to valid instruction in: 302 ns Address to valid data in: 585 ns Address to write complete: 603 ns

FIGURE 6.5 8051 bus interface timing.

* Embedded Controller Handbook, Vol. 1, Intel, 1988, pp. 10-6 through 10-9.
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Although the specific timing delays of program memory and data memory reads are different,
they exhibit the same basic sequence of events. (More time is allowed for data reads than for instruc-
tion reads from program memory.) Therefore, if the engineer properly accounts for the timing varia-
tions by selecting memory and logic components that are fast enough to satisfy the PSEN* and RD*
timing specifications simultaneously, program and data memory can actually be merged into a uni-
fied memory space external to the chip. Such unification can be performed by generating a general
memory read enable, MRE¥*, that is the AND function of PSEN* and RD*. In doing so, whenever ei-
ther read enable is driven low by the 8051, MRE* will be low. This can benefit some applications by
turning the 8051 into a more general-purpose computing device that can load a program into its
“data memory” and then execute that same program from “program memory.” It also enables in-
dexed addressing to operate on data memory, which normally is restricted to indirect addressing as
discussed previously.

Timers such as those found in the 8051 are useful for either counting external events or triggering
low-frequency events themselves. Each timer can be configured in two respects: whether it is a timer
or counter, and how the count logic functions. The selection of timer versus counter is a decision be-
tween incrementing the count logic based on the microcontroller’s operating frequency or on an ex-
ternal event sensed via an input port pin. The 8051’s internal logic runs in a repetitive pattern of 12
clock cycles in which 1 machine cycle consists of 12 clock cycles. Therefore, the count logic incre-
ments once each machine cycle when in timer mode. When in counter mode, a low-to-high transi-
tion (rising edge) on a designated input pin causes the counter to increment. The counter can be
configured to generate an interrupt each time it rolls over from its maximum count value back to its
starting value. This interrupt can be used to either trigger a periodic maintenance routine at regular
intervals (timer mode) or to take action once an external event has occurred a set number of times
(counter mode). If not configured to generate an interrupt, the software can periodically poll the
timer to see how many events have occurred or how much time has elapsed.

The timers inherently possess two 8-bit count registers that can be configured in a variety of ways
as shown in Fig. 6.6. A timer can be configured as a conventional 16-bit counter, as two 8-bit

signal pin 3 signal pin ’
(Counter Mode) 5-bit (Counter Mode) 16-bit
—» interrupt
internal clock +12 | Prescaler internal clock +12 Countor
(Timer Mode) ™| (Timer Mode) ™|
A 4
8-bit .
Counter —» interrupt
Mode 0 Mode 1
signal pin ) signal pin ’
(Counter Mode) 8-bit (Counter Mode) 8-bit
—>» interrupt — interrupt
internal clock +12 | Counter internal clock +12 oL
(Timer Mode) ™| A (Timer Mode) [”|
8-bit Reload 8-bit .
Value > Counter #2 Interrupt
Mode 2 Mode 3

FIGURE 6.6 8051 timer configurations.
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counters, as a single 8-bit counter with a 5-bit prescaler, and as a single 8-bit counter with an 8-bit
reload value. The first two modes mentioned are straightforward: the timers count from O to either
65,535 (16-bit) or 255 (8-bit) before rolling over and perhaps generating an interrupt. The third
mode is similar, but the 8-bit counter increments only once every 32 machine cycles. The 5-bit (2° =
32) prescaler functions as a divider ahead of the main counter. Apparently, the main reason for in-
cluding this mode was to retain function compatibility with the 8048’s prescaled timer. The fourth
mode is interesting, because the 8-bit counter is reloaded with an arbitrary 8-bit value rather than 0
after reaching its terminal count value (255). When operated in timer mode, this feature enables the
timer to synthesize a wide range of low-frequency periodic events. One very useful periodic event is
an RS-232 bit-rate generator. A commonly observed 8051 operating frequency is 11.0592 MHz.
When this frequency is divided by 12, a count increment rate of 921.6 kHz is obtained. Further di-
viding this frequency by divisors such as 96 or 384 yields the standard RS-232 bit rates 9.6 kbps and
2.4 kbps. A divisor of 384 cannot be implemented in an 8-bit counter. Instead, a selectable +16 or
+32 counter is present in the serial port logic that generates the final serial bit rate.

The 8051’s on-board serial port implements basic synchronous or asynchronous transmit and re-
ceive shift-register functionality but does not incorporate hardware handshaking of the type used in
RS-232 communications. Serial transmission is initiated by writing the desired data to a transmit
register. Incoming data is placed into a receive register, and an interrupt can be triggered to invoke a
serial port ISR. The serial port can be configured in one of four modes, two of which are higher-fre-
quency fixed bit rates, and two of which are lower-frequency variable bit rates established by the
rollover characteristics of an on-board timer. Mode O implements a synchronous serial interface
where the “receive data” pin is actually bidirectional and a transmit clock is emitted on the “transmit
data” pin. This mode operates on 8-bit data and a fixed bit rate of 1/12 the operating frequency.

Mode 1 implements an asynchronous transmit/receive serial port where ten bits are exchanged for
every byte: a start bit, eight data bits, and a stop bit. The bit-rate is variable according to a timer roll-
over rate. Mode 3 is very similar to mode 1, with the added feature that a ninth data bit is added to
each byte. This extra data bit can be used for parity in an RS-232 configuration or for another appli-
cation-specific purpose. These two modes can be used to implement an RS-232 serial port without
hardware handshaking. Software-assisted hardware handshaking could be added using general I/O
pins on the 8051. Mode 2 is identical to mode 3 except for its fixed bit rate at either 1/32 or 1/64 the
operating frequency. Modes 1 and 3 can be made to operate at standard RS-232 bit rates from
19.2 kbps on downward with the aforementioned 11.0592 MHz operating frequency. A selectable
+16 or +32 counter within the serial port logic combines with the timer rollover to achieve the de-
sired serial bit rate.

Intel’s 8051 architecture has been designed into countless applications in which a small, embed-
ded computer is necessary to regulate a particular process. The original 40-pin devices are still com-
monly used and found in distributors’ warehouses, but a host of newer devices are popular as well.
Some of these variants are larger and more capable than the original and include more I/O ports, on-
board peripherals, and memory. Some variants have taken the opposite direction and are available in
much smaller packages (e.g., 20 pins) with low power consumption for battery-powered applica-
tions. There are even special versions of the 8051 that are radiation hardened for space and military
applications. Companies that manufacture 8051 variants include Atmel, Maxim (formerly Dallas
Semiconductor), and Philips. Atmel manufactures a line of small, low-power 8051 products. Maxim
offers a selection of high-speed 8051 microcontrollers that run at up to 33 MHz with a 4-cycle archi-
tecture, as compared to 12 in the original 8051. Philips has a broad 8051 product line with a variety
of peripherals to suit many individual applications.

The mature ROM-less 8031/8032 members of the 8051 family can be ordered through many mail
order retail electronics outlets for only a few dollars apiece. The equally mature 8751/8752 EPROM
devices can also be found from many of these same sources, though at a higher price as a result of
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the expense of the ceramic DIP in which they are most often found. More specialized 8051 variants
may be available only through manufacturers’ authorized distributors.

6.4 MICROCHIP PIC® MICROCONTROLLER FAMILY

By the late 1980s, microcontrollers and certain microprocessors were well established in embedded
control applications. Despite advances in technology, not many devices could simultaneously ad-
dress the needs for low power, moderate processing throughput, very small packages, and diverse in-
tegrated peripherals. Microchip Technology began offering a family of small peripheral interface
controller (PIC®)* devices in the early 1990s that addressed all four of these needs. Microchip
developed the compact PIC architecture based on a reduced instruction set core (RISC)
microprocessor. The chips commonly run at up to 20 MHz and execute one instruction every
machine cycle (four clock cycles)—except branches that consume two cycles. The key concept
behind the PIC family is simplicity. The original 16C5x family, shown in Fig. 6.7, implements a 33-
instruction microprocessor core with a single working register (accumulator), W, and only a two-
entry subroutine stack. These devices contain as little as 25 bytes of RAM and 512 bytes of ROM,
and some are housed in an 18-pin package that can be smaller than a fingernail. The PIC devices are
not expandable via an external bus, further saving logic. This minimal architecture is what enables
relatively high performance processing with low power consumption in a tiny package. Low-power
operation is also coupled with a wide operating voltage range (2 to 6.25 V), further simplifying
certain systems by not always requiring voltage regulation circuits.

No interrupt feature is included, which is a common criticism of the architecture; this was fixed in
subsequent PIC microcontroller variants. PIC devices are, in general, fully static, meaning that they
can operate at an arbitrarily low frequency; 32 kHz is sometimes used in very power-sensitive appli-
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FIGURE 6.7 PIC microcontroller 16C5x architecture.

* The Microchip name, PIC, and PICmicro are registered trademarks of Microchip Technology Inc. in the U.S.A. and other

countries.
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cations in which only microamps of current are consumed. To further reduce cost and complexity,
the microcontrollers contain on-board clock drivers that work with a variety of external frequency-
reference components. Quartz crystals are supported, as they are very accurate references. In very
small systems wherein cost and size are absolutely paramount concerns, and absolute frequency ac-
curacy is not a concern, less-expensive and smaller frequency references can be used with a PIC
microcontroller. One step down from a crystal is a ceramic resonator, which functions on a similar
principle but with lower accuracy and cost. Finally, if the operating frequency can be allowed to vary
more substantially with temperature, voltage, and time, a resistor/capacitor (RC) oscillator, the
cheapest option, is supported. Tiny surface mount RC components take up very little circuit board
area and cost pennies.

The original 16C5x family incorporates only the most basic of peripherals: power-on-reset, an
eight-bit timer/counter, and a watchdog timer. A power-on reset circuit ensures that the microcon-
troller reliably begins operation when power is applied by automatically controlling an internal reset
signal. On most microprocessors, reset is purely an external function. A watchdog timer can be con-
figured to automatically reset the microcontroller if the system develops an unforeseen fault that
causes the software to “crash.” The watchdog functions by continuously counting, and software
must periodically reset the counter to prevent it from reaching its terminal count value. If this value
is reached, the internal reset signal is asserted. Under normal circumstances where software is func-
tioning properly, it resets the watchdog timer with plenty of time to spare. However, if the software
crashes, it will presumably not be able to reset the watchdog, and a system reset will soon follow.
The watchdog timeout period is configurable from milliseconds to seconds. When using a watchdog,
the timeout period is chosen to be long enough so that software can reliably reset the counter to pre-
vent accidental reset, yet short enough to catch a fault and reset the system before serious problems
result.

The PIC microcontroller’s RISC instruction set obeys the tenets of the general RISC style: ac-
complish the same task with more simple instructions instead of fewer complex ones. Fewer types of
simple instructions require less processing logic within the chip. As an example, there are just two
branch instructions: CALL and GOTO. CALL is an unconditional branch-to-subroutine that places
the current PC onto the stack. It is the programmer’s responsibility to not nest subroutines more than
two deep to avoid overflowing the stack. GOTO simply loads a new value into the PC. To implement
conditional branches, these instructions are paired with one of four instructions that perform an ac-
tion and then skip the following instruction if a particular result is true. INCFSZ and DECFSZ incre-
ment or decrement a designated register, respectively, and then skip the following instruction if the
result is zero. BTFSC and BTFSS test a specified bit in a register and then skip the following in-
struction if the bit is O or 1, respectively. Using the first pair of instructions, a loop could be written
as shown in Fig. 6.8.

Assembly languages commonly offer the programmer a means of representing numeric values
with alphanumeric labels for convenience. Here, the loop variable COUNT is set to address O with an
equate directive that is recognized and processed by the assembler. MOVWEF transfers the value in the

COUNT EQU 0 ; define COUNT at address 0
MOVLW 0x09 ; 9 loop iterations
MOVW F COUNT ; iteration tracking register
LOOP_START <loop instructions> ; body of loop
DECFSZ COUNT, 1 ; done with loop yet?
GOTO LOOP_START ; non-zero, keep going...
<more instructions> ; zero, loop is done...

FIGURE 6.8 16C5x assembly language loop.
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working register into a particular location in the register file. In this example, the GOTO instruction is
executed each time through the loop until COUNT is decremented to 0. (The operand “1” following
COUNT in DECFSZ tells the microcontroller to place the decremented result back into COUNT rather
than into the working register.) At this point, GOTO is skipped, because the result is 0, causing the
microcontroller to continue executing additional instructions outside of the loop.

The second pair of skip instructions, BTFSC and BTFSS, directly supports the common situation
in which the microcontroller reads a set of flag bits in a single byte and then takes action based on
one of those bits. Such bit-testing instructions are common in microcontrollers by virtue of their in-
tended applications. Some generic microprocessors do not contain bit-testing instructions, requiring
software to isolate the bit of interest with a logical mask operation. A mask operation works as fol-
lows with an AND function, assuming that we want to isolate bit 5 of a byte so as to test its state:

1 0 1 1 0 1 1 1 Byteto test

o 0 1 0 0 0 0 0 Mask

AND 0 0 1 0 0 0 0 0 Bit5isolated

Here, the mask prevents any bit other than bit 5 from achieving a 1 state in the final result. This
masking operation could then be followed with a conditional branch testing whether the overall re-
sult was O or non-0. In the PIC architecture, and most other microcontrollers, this process is per-
formed directly with bit-test instructions.

Masking also works to set or clear individual bits but, here again, the PIC architecture contains
special instructions to optimize this common microcontroller function. Using the above example, bit
5 can be set, regardless of its current state, by ORing the data byte with the same mask.

1 0 1 1 0 1 1 1 Starting byte

o o0 1 0 0 0 0 0 Mask

OR 0 O 1 O O O O O Result

The mask ensures that only bit 5 is set, regardless of its current state. All other bits propagate
through the OR process without being changed. Similarly, an individual bit can be cleared, regard-
less of its current state, with an inverse AND mask:.

1 0 1 1 0 1 1 1 Startngbyte

1 1 0 1 1 1 1 1 Mask

AND 1 0 0 1 0 1 1 1 Result

Here, all bits other than bit 5 are ANDed with 1, propagating them through to the result. Bit 5 is
ANDed with 0, unconditionally forcing it to a 0. Rather than having to load a mask and then execute
a logical instruction, the PIC architecture contains two instructions to clear and set arbitrary bits in a
specified register: BCF and BSF, respectively.
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Microchip extended the 16C5x’s architecture and features with the 16C6x and 16C7x families.
The 16C5x’s advantages of low power consumption, wide operating voltage range, and small size
are retained. Improvements include more memory (up to 368 bytes of RAM and 8 kB of ROM), a
more versatile microprocessor core with interrupt capability, an eight-level stack, and a wider selec-
tion of on-board peripherals including additional timers, serial ports, and analog-to-digital (A/D)
converters. (An A/D converter is a circuit that converts an analog voltage range into a range of binary
values. An 8-bit A/D converter covering the range of 0 to 5 V would express voltages in that range as
a byte value with a resolution of 5V + (28 — 1) increments = 19.6 mV per increment.) Between four
and eight A/D converters are available in *C7x devices.

Some PIC microcontrollers contain two serial ports on the same chip: an asynchronous port suit-
able for RS-232 applications and a synchronous port capable of SPI or I’C operation in conjunction
with other similarly equipped ICs in a system. At the other end of the spectrum, very small PIC de-
vices are available in eight-pin packages—small enough to fit almost anywhere.

6.5 INTEL 8086 16-BIT MICROPROCESSOR FAMILY

Intel moved up to a 16-bit microprocessor, the 8086, in 1978—just two years after introducing the
8085 as an enhancement to the 8080. The “x86” family is famous for being chosen by IBM for their
original PC. As PCs developed during the past 20 years, the x86 family grew with the industry—first
to 32 bits (80386, Pentium) and more recently to 64 bits (Itanium). While the 8086 was a new archi-
tecture, it retained certain architectural characteristics of the 8080/8085 such that assembly language
programs written for its predecessors could be converted over to the 8086 with little or no modifica-
tion. This is one of the key reasons for its initial success.

The 8086 contains various 16-bit registers as shown in Fig. 6.9, some of which can be manipu-
lated one byte at a time. AX, BX, CX, and DX are general-purpose registers that have alternate func-
tions and that can be treated as single 16-bit registers or as individual 8-bit registers. The
accumulator, AX, and the flags register serve their familiar functions. BX can serve as a general
pointer. CX is a loop iteration count register that is used inherently by certain instructions. DX is
used as a companion register to AX when performing certain arithmetic operations such as integer
division or handling long integers (32 bits).

The remaining registers are pointers of various types that index into the 8086’s somewhat awk-
ward segmented memory structure. Despite being a 16-bit microprocessor with no register exceed-
ing 16 bits in size, Intel recognized the need for more than 64 kB of addressable memory in more
advanced computers. One megabyte of memory space was decided upon as a sufficiently large ad-
dress space in the late 1970s, but the question remained of how to access that memory with 16-bit
pointers. Intel’s solution was to have programmers arbitrarily break the 1 MB address space into
multiple 64-kB special-purpose segments—one for instructions (code segment), two for data (pri-
mary data and “extra” data), and one for the stack. Memory operations must reference one of these
defined segments, requiring only a 16-bit pointer to address any location within a given segment.
Segments can be located anywhere in memory, as shown in Fig. 6.10, and can be moved at will to
provide flexibility for different applications. Additionally, there is no restriction on overlapping of
segments.

Each segment register represents the upper 16 bits of a 20-bit pointer (22 = 1 MB) where the
lower 4 bits are fixed at 0. Therefore, a segment register directly points to an arbitrary location in
1 MB of memory on a 16-byte boundary. A pointer register is then added to the 20-bit segment ad-
dress to yield a final 20-bit address, the effective address, with which to fetch or store data. Algebra-
ically, this relationship is expressed as: effective address = (segment pointer X 16) + offset pointer.
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Inside the microprocessor, this math is performed by shifting the segment pointer (0x135F) left by
four bits and then adding the offset pointer (0x0102) as shown below.

1 3 5 F 0 Segment pointer

+ 0 1 0 2 Offset pointer

1 3 6 F 2  Effective address

This segmented addressing scheme has some awkward characteristics. First, programs must orga-
nize their instructions and data into 64-kB chunks and properly keep track of which portions are be-
ing accessed. If data outside of the current segments is desired, the appropriate segment register
must be updated. Second, the same memory location can be represented by multiple combinations of
segment and offset values, which can cause confusion in sorting out which instruction is accessing
which location in memory. Nonetheless, programmers and the manufacturers of their development
tools have figured out ways to avoid these traps and others like them.

Instructions that reference memory implicitly or explicitly determine which offset pointer is
added to which segment register to yield the desired effective address. For example, a push or pop
instruction inherently uses the stack pointer in combination with the stack segment register. How-
ever, an instruction to move data from memory to the accumulator can use one of multiple pointer
registers relative to any of the segment registers.

The 8086’s reset and interrupt vectors are located at opposite ends of the memory space. On reset,
the instruction pointer is set to 0xXFFFFO0, and the microprocessor begins executing instructions from
this address. Therefore, rather than being a true vector, the 16-byte reset region contains normal exe-
cutable instructions. The interrupt vectors are located at the bottom of the memory space starting
from address 0, and there are 256 vectors, one for each of the 256 interrupt types. Each interrupt vec-
tor is composed of a 2-byte segment address and a 2-byte offset address, from which a 20-bit effec-
tive address is calculated. When the 8086’s INTR pin is driven high, an interrupt acknowledge
process begins via the INTA* output pin. The 8086 pulses INTA* low twice and, on the second
pulse, the interrupting peripheral drives an interrupt type, or vector number, onto the eight lower bits
of the data bus. The vector number is used to index into the interrupt vector table by multiplying it
by 4 (shifting left by two bits), because each vector consists of four bytes. For example, interrupt
type 0x03 would cause the microprocessor to fetch four bytes from addresses 0xOC through 0xOF.
Interrupts triggered by the INTR pin are all maskable via an internal control bit. Software can also
trigger interrupts of various types via the INT instruction. A nonmaskable interrupt can be triggered
by external hardware via the NMI pin. NMI initiates the type-2 interrupt service routine at the ad-
dress indicated by the vector at 0x08-0x0B.

Locating the reset boot code at the top of memory and the interrupt vectors at the bottom often
leads to an 8086 computer architecture with ROM at the top and some RAM at the bottom. ROM
must be at the top, for obvious reasons. Placing the interrupt vector table in RAM enables a flexible
system in which software applications can install their own ISRs to perform various tasks. On the
original IBM PC platform, it was not uncommon for programs to insert their own ISR addresses into
certain interrupt vectors located in RAM. The system timer and keyboard interrupts were common
objects of this activity. Because the PC’s operating system already implemented ISRs for these inter-
rupts, the program could redirect the interrupt vector to its own ISR and then call the system’s de-
fault ISR when its own ISR completed execution. If properly done, this interrupt chaining process
could add new features to a PC without harming the existing housekeeping chores performed by the
standard ISRs. Chaining the keyboard interrupt could enable a program that is normally dormant to
pop up each time a particular key sequence is pressed.
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Despite its complexity and 16-bit processing capability, the 8086 was originally housed in a 40-
pin DIP—the same package used for most 8-bit processors of the time. Intel chose to use a multi-
plexed address/data scheme similar to that used on the 8051 microcontroller, thereby saving 16 pins.
The 8086’s 20-bit address bus is shared by the data bus on the lower 16 bits and by status flags on the
upper 4 bits. Combined with additional signals, these status flags control the microprocessor’s bus
interface. As with Intel’s other microprocessors, the 8086 contains separate address spaces for mem-
ory and I/O devices. A control pin on the chip indicates whether a transaction is memory or 1/O.
While the memory space is 1 MB in size, the I/O space is only 64 kB. The 8086 bus interface oper-
ates in one of two modes, minimum and maximum, determined by a control pin tied either high or
low, respectively. In each of these two modes, many of the control and status pins take on different
functions. In minimum mode, the control signals directly drive a standard “Intel-style” bus similar to
that of the 8080 and 8051, with read and write strobes and address latch enable. Other signals in-
clude a READY signal for inserting wait states for slow peripherals and a bus grant/acknowledge
mechanism for supporting DMA or similar bus-sharing peripherals. Minimum mode is designed for
smaller systems in which little address decoding logic is necessary to interface the 8086 to memory
and peripherals devices. Maximum mode is designed for larger systems where an Intel companion
chip, the 8288 bus controller, integrates more complex bus control logic onto an off-the-shelf IC. In
maximum mode, certain status and control pins communicate more information about what type of
transaction is being performed at any given time, enabling the 8288 to take appropriate action.

The 8086’s 16-bit data bus is capable of transacting a single byte at a time for purposes of access-
ing byte-wide peripherals. One early advantage of the 8086 was its backward bus compatibility with
the 8080/8085. In the 1970s, Intel manufactured a variety of I/O peripherals such as timers and par-
allel I/O devices for their eight-bit microprocessors. The 8086’s ability to perform byte-wide trans-
actions enabled easy reuse of existing eight-bit peripheral products. Two signals, byte high enable
(BHE¥*) and address bit zero (A[0]), communicate the width and active byte of each bus transaction
as shown in Table 6.3.

TABLE 6.3 8086 Bus Sizing

BHE* AJ0] Transaction Type
0 0 16-bit transaction
0 1 8-bit transaction: high byte (odd address)
1 0 8-bit transaction: low byte (even address)
1 1 Undefined

Intel’s microprocessors follow the little-endian byte ordering convention. Little-endian refers to
the practice of locating the LSB of a multibyte quantity in a lower address and the MSB in a higher
address. In a little-endian 16-bit microprocessor, the value 0x1234 would be stored in memory by lo-
cating 0x12 into address 1 and 0x34 into address 0. Big-endian is the opposite: locating the LSB in
the higher address and the MSB in the lower address. Therefore, a big-endian 16-bit microprocessor
would store 0x12 into address 0 and 0x34 into address 1. To clarify the difference, Table 6.4 shows
little-endian versus big-endian for 16- and 32-bit quantities as viewed from a memory chip’s per-
spective. Here, ADDR represents the base address of a multibyte data element.

Proponents of little-endian argue that it makes better sense, because the low byte goes into the
low address. Proponents of big-endian argue that it makes better sense, because data is stored in
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TABLE 6.4 Little-Endian vs. Big-Endian

Value Endianness ADDR+0 ADDR+1 ADDR+2 ADDR+3
0x1234 Little 0x34 0x12 X X
0x1234 Big 0x12 0x34 X X

0x12345678 Little 0x78 0x56 0x34 0x12
0x12345678 Big 0x12 0x34 0x56 0x78

memory as you would read and interpret it. The choice of “endianness” is rather religious and comes
down to personal preference. Of course, if you are designing with a little-endian microprocessor, life
will be made simpler to maintain the endianness consistently throughout the system.

At the time of the 8086’s introduction, 16-bit desktop computer systems were almost unheard of
and could be substantially more expensive than 8-bit systems as a result of the increased memory size
required to support the larger bus. To alleviate this problem and speed market acceptance of its archi-
tecture, Intel introduced the 8088 microprocessor in 1979, which was essentially an 8086 with an
eight-bit data bus. A lower-cost computer system could be built with the 8088, because fewer EPROM
and RAM chips were necessary, system logic did not have to deal with two bytes at a time, and less
circuit board wiring was required. A tremendous benefit to Intel in designing the 8088 was the fact
that it was chosen by IBM as the low-cost 16-bit heart of the original PC/XT desktop computer,
thereby locking the x86 microprocessor family into the IBM PC architecture for decades to come.

A variety of companion chips were developed by Intel to supplement the 8086/8088. Among
these was the 8087 math coprocessor that enhanced the 8086’s computational capabilities with float-
ing-point arithmetic operations. Floating-point arithmetic refers to a computer’s handling of real
numbers as compared to integers. The task of adding or multiplying two real numbers of arbitrary
magnitude is far more complex than similar integer operations. Certain applications such as scien-
tific simulations and realistic games that construct a virtual reality world make significant use of
floating-point operations. The 8087 is a coprocessor rather than a peripheral, because it sits on the
microprocessor bus in parallel with the 8086 and watches for special floating-point instructions.
These instructions are then executed automatically by the 8087 rather than having to wait for the
8086 to request an operation. The 8086 was designed with the 8087’s existence in mind and ignores
instructions destined for the 8087. Therefore, software must specifically know if a math coprocessor
is installed to run correctly. Many programs that ran on older systems with or without a coprocessor
would first test to see if the coprocessor was installed and then execute either an optimized set of
routines for the 8087 or a slower set of routines that emulated the floating-point operations via con-
ventional 8086 instructions.

As the x86 family developed, the optional math coprocessor was eventually integrated alongside
the integer processor on the same silicon chip. The 8087 gave way to the 80287 and 80387 when the
80286 and 80386 microprocessors were produced. When Intel introduced the 80486, the coproces-
sor, or floating-point unit (FPU), was integrated on chip. This integration resulted in a somewhat
more expensive product, so Intel released a lower-cost 80486SX microprocessor without the copro-
cessor. An 80487SX was made available to upgrade systems originally sold with the 80486SX chips,
but the overall situation proved somewhat chaotic with various permutations of microprocessors and
systems with and without coprocessors. Starting with the Pentium, all of Intel’s high-end micropro-
cessors contain integrated FPUs. This trend is not unique to Intel. High-performance microproces-
sors in general began integrating the FPU at roughly the same time because of the performance
benefits and the overall simplicity of placing the microprocessor and FPU onto the same chip.
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6.6 MOTOROLA 68000 16/32-BIT MICROPROCESSOR FAMILY

Motorola followed its 6800 family by leaping directly to a hybrid 16/32-bit microprocessor architec-
ture. Introduced in 1979, the 68000 is a 16-bit microprocessor, due to its 16-bit ALU, but it contains
all 32-bit registers and a linear, nonsegmented 32-bit address space. (The original 68000 did not
bring out all 32 address bits as signal pins but, more importantly, there are no architectural limita-
tions of using all 32 bits.) That the register and memory architecture is inherently 32 bits made the
68000 family easily scalable to a full 32-bit internal architecture. Motorola upgraded the 68000 fam-
ily with true 32-bit devices, including the 68020, 68040, and 68060, until switching to the PowerPC
architecture in the latter portion of the 1990s for new high-performance computing applications. Ap-
ple Computer used the 68000 family in their popular line of Macintosh desktop computers. Today,
the 68000 family lives on primarily as a mid-level embedded-processor core product. Motorola man-
ufacturers a variety of high-end microcontrollers that use 32-bit 68000 microprocessor cores. How-
ever, in recent years Motorola has begun migrating these products, as well as their general-purpose
microprocessors, to the PowerPC architecture, reducing the number of new designs that use the
68000 family.

The 68000 inherently supports modern software operating systems (OSs) by recognizing two
modes of operation: supervisor mode and user mode. A modern OS does not grant unlimited access
to application software in using the computer’s resources. Rather, the OS establishes a restricted op-
erating environment into which a program is loaded. Depending on the specific OS, applications
may not be able to access certain areas of memory or I/O devices that have been declared off limits
by the OS. This can prevent a fault in one program from crashing the entire computer system. The
OS kernel, the core low-level software that keeps the computer running properly, has special privi-
leges that allow it unrestricted access to the computer for the purposes of establishing all of the rules
and boundaries under which programs run. Hardware support for multiple privilege levels is crucial
for such a scheme to prevent unauthorized programs from freely accessing restricted resources. As
microprocessors developed over the last few decades, more hardware support for OS privileges was
added. That the 68000 included such concepts in 1979 is a testimony to its scalable architecture.

Sixteen 32-bit general-purpose registers, one of which is a user stack pointer (USP), and an 8-bit
condition code register are accessible from user mode as shown in Fig. 6.11. Additionally, a supervi-
sor stack pointer (SSP) and eight additional status bits are accessible from supervisor mode. Com-
puter systems do not have to implement the two modes of operation if the application does not
require it. In such cases, the 68000 can be run permanently in supervisor mode to enable full access
to all resources by all programs. The SSP is used for stack operations while in supervisor mode, and
the USP is used for stack operations in user mode. User mode programs cannot change the USP, pre-
venting them from relocating their stacks. Most modern operating systems are multitasking, mean-
ing that they run multiple programs simultaneously. In reality, a microprocessor can only run one
program at a time. A multitasking OS uses a timer to periodically interrupt the microprocessor, per-
haps 20 to 100 times per second, and place it into supervisor mode. Each time supervisor mode is in-
voked, the kernel performs various maintenance tasks and swaps the currently running program with
the next program in the list of running programs. This swap, or context switch, can entail substantial
modifications to the microprocessor’s state when it returns from the kernel timer interrupt. In the
case of an original 68000 microprocessor, the kernel could change the return value of the PC, USP,
the 16 general-purpose registers, and the status register. When normal execution resumes, the micro-
processor is now executing a different program in exactly the same state at which it was previously
interrupted, because all of its registers are in the same state in which they were left. In such a
scenario, each program has its own private stack, pointed to by a kernel-designated stack pointer.

The eight data registers, DO-D7, can be used for arbitrary ALU operations. The eight address reg-
isters, AO—A7, can all be used as base addresses for indirect addressing and for certain 16- and 32-bit
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< 32 bits > < 32 bits >
DO A0
D1 A1
D2 A2
D3 A3
D4 A4
D5 A5
D6 A6
D7 USP/A7 User stack pointer
| PC |
I | SSP | Supervisor stack pointer

Supervisor access only
\>Supervisor status flags CCR | ALU/user status flags
8 bits 8 bits
FIGURE 6.11 68000 register set.

ALU operations. All 16 registers can be used as index registers. While operating in user mode, it is
illegal to access the SSP or the supervisor portion of the status register, SR. Such instructions will
cause an exception, whereby a particular interrupt is asserted, which causes the 68000 to enter su-
pervisor mode to handle the fault. (Exception and interrupt are often used synonymously in com-
puter contexts.) Very often, the OS kernel will terminate an application that causes an exception to
be generated. The registers shown above are present in all 68000 family members and, as such, are
software is compatible with subsequent 68xxx microprocessors. Newer microprocessors contain ad-
ditional registers that provide more advanced privilege levels and memory management. While the
68000 architecture fundamentally supports a 4-GB (32-bit) address space, early devices were lim-
ited in terms of how much physical memory could actually be addressed as a result of pin limitations
in the packaging. The original 68000 was housed in a 64-pin DIP, leaving only 24 address bits us-
able, for a total usable memory space of 16 MB. When Motorola introduced the 68020, the first fully
32-bit 68000 microprocessor, all 32 address bits were made available. The 68000 devices are big-en-
dian, so the MSB is stored in the lowest address of a multibyte word.

The 68000 supports a 16-MB address space, but only 23 address bits, A[23:1], are actually
brought out of the chip as signal pins. A[0] is omitted and is unnecessary, because it would specify
whether an even (A[0] = 0) or odd (A[0] = 1) byte is being accessed; and, because the bus is 16 bits
wide, both even and odd bytes can be accessed simultaneously. However, provisions are made for
byte-wide accesses in situations where the 68000 is connected to legacy eight-bit peripherals or
memories. Two data strobes, upper (UDS*) and lower (LDS*), indicate which bytes are being ac-
cessed during any given bus cycle. These strobes are generated by the 68000 according to the state
of the internal AO bit and information on the size of the requested transaction. Bus transactions are
triggered by the assertion of address strobe (AS*), the appropriate data strobes, and R/W* as shown
in Fig. 6.12. Prior to AS*, the 68000 asserts the desired address and a three-bit function code bus,
FC[2:0]. The function code bus indicates which mode the processor is in and whether the transaction
is a program or data access. This information can be used by external logic to qualify transactions to
certain sensitive memory spaces that may be off limits to user programs. When read data is ready,
the external bus interface logic asserts data transfer acknowledge (DTACK¥*) to inform the micro-
processor that the transaction is complete. As shown, the 68000 bus can be operated in a fully asyn-
chronous manner. When operated asynchronously, DTACK* is removed after the strobes are
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FIGURE 6.12 68000 asynchronous bus timing.

removed, ensuring that the 68000 detected the assertion of DTACK*. If DTACK* is removed prior
to the strobes, there is a chance of marginal timing where the 68000 may not properly detect the ac-
knowledge, and it may wait forever for an acknowledge that has now passed. Writes are very similar
to reads, with the obvious difference that R/-W* is brought low, and data is driven by the 68000. An-
other difference is that the data strobe assertion lags that of AS*.

Advanced microprocessors such as the 68000 are designed to recognize fault conditions wherein
the requested bus transaction cannot be completed. A bus fault can be caused by a variety of problems,
including unauthorized access (e.g., user mode tries to write to a protected supervisor data space) or
an access to a section of memory that is not filled by a memory or peripheral device. Software should
never access areas of memory that are off limits, because the results are unpredictable. Therefore,
rather than simply issuing a false DTACK* and continuing with normal operation, the 68000 contains
a bus error signal (BERR*) that behaves like DTACK* but triggers an exception rather than continu-
ing normal execution. It is the responsibility of external logic to manage the DTACK* and BERR*
signals according to the specific configuration and requirements of the particular system.

Operating the 68000 bus in an asynchronous manner is easy, but it reduces its bandwidth, because
delays must be built into the acknowledge process to guarantee that both the 68000 and the interface
logic maintain synchronization. Figure 6.12 shows read data being asserted prior to DTACK* and an
arbitrary delay between the release of AS* and that of DTACK¥*. The data delay is necessary to guar-
antee that the 68000 will see valid data when it detects a valid acknowledge. The second delay is
necessary to ensure that the 68000 completes the transaction, as noted previously. These delays can
be eliminated if the bus is operated synchronously by distributing the microprocessor clock to the in-
terface logic and guaranteeing that various setup and hold timing requirements are met as specified
by Motorola. In such a configuration, it is known from Motorola’s data sheet that the 68000 looks
for DTACK* each clock cycle, starting at a fixed time after asserting the strobes, and then samples
the read-data one cycle after detecting DTACK* being active. Because synchronous timing rules are
obeyed, it is guaranteed that the 68000 properly detects DTACK* and, therefore, DTACK* can be
removed without having to wait for the removal of the strobes. 68000 synchronous bus timing is
shown in Fig. 6.13, where each transaction lasts a minimum of four clock cycles. A four-cycle trans-
action is a zero wait state access. Wait states can be added by simply delaying the assertion of
DTACK* to the next cycle. However, to maintain proper timing, DTACK* (and BERR* and read-
data) must always obey proper setup and hold requirements. As shown in the timing diagram, each
signal transition, or edge, is time-bounded relative to a clock edge.

Read timing allows a single clock cycle between data strobe assertion and the return of DTACK*
for a zero wait-state transaction. However, zero wait-state writes require DTACK* assertion at
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FIGURE 6.13 68000 synchronous bus timing.

roughly the same time as the data strobes. Therefore, the bus interface logic must make its decision
on asserting DTACK¥* based on the requested address when AS* is asserted. If the requested device
is operational, DTACK* can be immediately asserted for a fast transaction. Unlike reads, where the
microprocessor must wait for a device to return data, writes can be acknowledged before they are ac-
tually transferred to the device. In such a scheme, writes are posted within the bus interface logic.
One or two cycles later, when the device accepts the posted write data, the bus interface logic finally
completes the transaction without having delayed the microprocessor. If completion of the posted-
write transaction takes longer than a few cycles, it could force a subsequent access to the same de-
vice to incur wait states. Either a read or a write would be blocked until the original write was able to
complete, thus freeing the device to handle the next transaction.

In addition to the basic bus interface, the 68000 supports bus arbitration to enable DMA or other
logic to use the microprocessor bus for arbitrary applications. A bus request (BR*) signal is asserted
by a device that wants to temporarily gain control of the bus. On the next clock cycle, when the mi-
croprocessor is not inhibited by other operations, it asserts a bus grant (BG*) signal and places its
address, data, and control signals into tri-state so that they may be driven by the other device. The re-
questing device then asserts bus grant acknowledge (BGACK¥*) to signal that it is controlling the
bus, and it is then free to assert its own strobes, address, and data signals.

A variety of interrupts and exceptions are supported by the 68000. Some are triggered as a result
of instruction execution and some by external signals (e.g., BERR* or an interrupt request). Exam-
ples of instruction exceptions are illegal user mode register accesses or a divide-by-zero error. Most
microprocessors that provide division capability contain some type of divide-by-zero error handling,
because the result of such an operation is mathematically undefined and is usually the result of a
fault in the program. The 68000 contains an exception vector table that is 1,024 bytes long and re-
sides at the beginning of memory at address 0. In a multitasking system, the bus interface logic may
restrict access to the vector table to supervisor mode only. In such a case, a bus error could be trig-
gered if a user mode program, indicated by FC[2:0], tried to write the table. Each of the 256 vector
entries is four bytes long and provides the starting address of the associated ISR. The one deviation
from this rule is the reset vector, which actually consists of two entries at word addresses 0 and 4.
Upon reset, the 68000 fetches an initial PC value from address 4 and an initial SSP value from ad-
dress 0. Vectors 0 through 63 are assigned or reserved by Motorola for various hardware exceptions.
Vectors 64 through 255 are assigned as user interrupt vectors. Like other microprocessors in its cate-
gory, the 68000 supports bus vectoring of user interrupts where an external interrupt controller as-
serts an interrupt number onto the data bus during an interrupt acknowledge cycle performed by the
68000 in response to an interrupt request. This interrupt number is multiplied by four and used to in-
dex into the exception table to fetch the address of the appropriate ISR.
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CHAPTER 7

Advanced Microprocessor
Concepts

Computer architecture is central to the design of digital systems, because most digital systems are, at
their core, computers surrounded by varying mixes of interfaces to the outside world. It is difficult to
know at the outset of a project how advanced architectural concepts may figure into a design, be-
cause advanced does not necessarily mean expensive or complex. Many technologies that were orig-
inally developed for high-end supercomputers and mainframes eventually found their way into
consumer electronics and other less-expensive digital systems. This is why a digital engineer bene-
fits from a broad understanding of advanced microprocessor and computing concepts—a wider pal-
ette of potential solutions enables a more creative and effective design process.

This chapter introduces a wide range of technologies that are alluded to in many technical specifi-
cations but are often not understood sufficiently to take full advantage of their potential. What is a
200-MHz superscalar RISC processor with a four-way set associative cache? Some people hear the
term RISC and conjure up thoughts of high-performance computing. Such imagery is not incorrect,
but RISC technology can also be purchased for less than one dollar. Caching is another big computer
term that is more common than many people think.

An important theme to keep in mind is that microprocessors and the systems that they plug into
are inextricably interrelated, and more so than simply by virtue of their common physical surround-
ings. The architecture of one directly influences the capabilities of the other. For this reason, the two
need to be considered simultaneously during the design process. Among many other factors, this
makes computer design an iterative process. One may begin with an assumption of the type of mi-
croprocessor required and then use this information to influence the broader system architecture.
When system-level constraints and capabilities begin to come into focus, they feed back to the mi-
croprocessor requirements, possibly altering them somewhat. This cycle can continue for several it-
erations until a design is realized in which the microprocessor and its supporting peripherals are well
matched for the application.

7.1 RISC AND CISC

One of the key features used to categorize a microprocessor is whether it supports reduced instruc-
tion set computing (RISC—pronounced “risk”) or complex instruction set computing (CISC—pro-
nounced “sisk”). The distinction is how complex individual instructions are and how many
permutations exist for the same basic instruction. In practical terms, this distinction directly relates
to the complexity of a microprocessor’s instruction decoding logic; a more complex instruction set
requires more complex decoding logic. Some engineers believe that a microprocessor should exe-
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cute simple instructions at a high rate—perhaps one instruction per cycle. Others believe that a mi-
croprocessor should execute more complex instructions at a lower rate.

Operand types add complexity to an instruction set when a single general operation such as addi-
tion can be invoked with many different addressing modes. Motorola’s CISC 68000 contains a basic
addition instruction, among other addition operations, that can be decoded in many different ways
according to the specified addressing mode. Table 7.1 shows the format of the basic ADD/ADDA/
ADDX instruction word. ADD is used for operations primarily on data registers. ADDA is used for op-
erations primarily on address registers. ADDX is used for special addition operations that incorporate
the ALU extended carry bit, X, into the sum. The instruction word references Register] directly and
an effective address (EA) that can represent another register or various types of indirect and indexed
addressing modes.

TABLE 7.1 68000 ADD/ADDA/ADDX Instruction Word

Bit Position | 15 14 | 13 12 | 11 1019|8765 |4|3]|2 1|0
Effective Address
Field Opcode = 1101 Registerl Opmode
Mode Register2

As listed in Table 7.2, the opmode field defines whether the operands are 8-, 16-, or 32-bit quanti-
ties and identifies the source and destination operands. In doing so, it also implies certain subclasses
of instructions: ADD, ADDA, or ADDX.

TABLE 7.2 68000 ADD/ADDA/ADDX Instruction Opmode Field

Opmode Value  Operand Width  Definition of Register1l Operation Instruction Mapping
000 8 Dn EA +Dn = Dn ADD
001 16 Dn EA +Dn = Dn ADD
010 32 Dn EA +Dn = Dn ADD
100 8 Dn Dn+EA = EA ADD/ADDX
101 16 Dn Dn+EA = EA ADD/ADDX
110 32 Dn Dn +EA = EA ADD/ADDX
011 16 An EA + An = An ADDA
111 32 An EA + An = An ADDA

The main complexity is introduced by the EA fields as defined in Table 7.3. For those modes that
map to multiple functions, additional identifying fields and operands are identified by one or more
extension words that follow the instruction word. One of the more complex modes involves using an
address register as a base address, adding a displacement to that base to calculate a fetch address,
fetching the data at that address, adding another register to the retrieved value, adding another dis-
placement, and then using the resulting address to fetch a final operand value. ADD/ADDA /ADDX is



Advanced Microprocessor Concepts 147

a powerful instruction that requires significant decode logic behind it. Additionally, when opmode
indicates an ADD or ADDX instruction, the two mode values that normally indicate simple register
references now map to one of two special ADDX operations.

TABLE 7.3 68000 Effective Address Field Definition

Mode Field Definition of Register2 Operand Value Function
000 Data register N Dn Data register value
001 Address register N An Address register value
010 Address register N (An) Indirect address register
011 Address register N (An)+ Indirect with post-increment
100 Address register N —(An) Indirect with pre-decrement
101 Address register N (An +dgg,) Indirect with 16-bit displacement
110 Address register N (An + Xn + dg) Indirect with index register and 8-bit displacement (exten-
sion word follows)
(An + Xn +dj6 37) Indirect with index register and 32- or 16-bit displacement
(extension words follow)
((An +dg3) + Xn +d;g3) Indirect with displacement to fetch pointer added to index
register and displacement (extension words follow)
((An+ Xn +djg3,) +djg3) Indirect with displacement and index register to fetch
pointer added to displacement (extension words follow)
111 000 dig 16-bit direct address (extension word follows)
111 001 ds, 32-bit direct address (extension words follow)
111 100 #data Immediate follows in extension words
111 010 (PC +dy¢) Indirect with 16-bit displacement
111 011 <multiple> Same as mode=110, but with PC instead of address regis-

ters

Shaded modes are invalid when EA is specified as the destination by opmode and change their meaning as follows:

000

Data register N

Dn

ADDX: Dregister2 + Dregister] + X = Dregisterl

001

Address register N

—(An)

ADDX: —(Aregister2) + —(Aregisterl) + X = (Aregister])

As can be readily observed, decoding an addition instruction on the 68000 is not as simple as add-
ing two registers. For the most complex addressing modes, multiple registers must be added together
to create an address from which another address is fetched that is added with an offset to yield a final
address at which the true operand is located. This sounds complicated, and it is. There is really no
succinct way to explain the operation of such instructions. The impact of these complex addressing
modes on decoding logic is substantial, especially when it is realized that the 68000 contains dozens
of instructions, each with its own permutations.
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In contrast to the 68000’s CISC architecture, the MIPS family of microprocessors is one of the
commercial pioneers of RISC. MIPS began as a 32-bit architecture with 32-bit instruction words and
32 general-purpose registers. In the 1990s the architecture was extended to 64 bits. MIPS instruction
words are classified into three basic types: immediate (I-type), jump (J-type), and register (R-type).
The original MIPS architecture supports four 32-bit addition instructions without any addressing
mode permutations: add signed (ADD), add unsigned (ADDU), add signed immediate (ADDI), and
add unsigned immediate (ADDIU). These instructions are represented by two types of instruction
words, I-type and R-type, as shown in Table 7.4.

TABLE 7.4 MIPS Addition Instruction Words

I-type bits 31:26 25:21 20:16 15:0
Field Opcode Source Register Target Register Immediate data
ADDI 001000 Rn Rn Data
ADDIU 001001 Rn Rn Data
R-type bits 31:26 25:21 20:16 15:11 10:6 5:0
Field Opcode Source Register Target Register Destination Register Shift Amount Function
ADD 000000 Rn Rn Rn 00000 100000
ADDU 000000 Rn Rn Rn 00000 100001

The immediate operations specify two registers and a 16-bit immediate operand: Rt = Rg + Im-
mediate. The other instructions operate on registers only and allow the programmer to specify three
registers: Rp = Rg + Ry. If you want to add data that is in memory, that data must first be loaded into
a register. Whereas a single 68000 instruction can fetch a word from memory, increment the associ-
ated pointer register, add the word to another register, and then store the result back into memory, a
MIPS microprocessor would require separate instructions for each of these steps. This is in keeping
with RISC concepts: use more simpler instructions to get the job done.

Instruction decode logic for a typical RISC microprocessor can be much simpler than for a CISC
counterpart, because there are fewer instructions to decode and fewer operand complexities to recog-
nize and coordinate. Generally speaking, a RISC microprocessor accesses data memory only with
dedicated load/store instructions. Data manipulation instructions operate solely on internal registers
and immediate operands. Under these circumstances, microprocessor engineers are able to heavily
optimize their design in favor of the reduced instruction set that is supported. It turns out that not all
instructions in a CISC microprocessor are used with the same frequency. Rather, there is a core set
of instructions that are called most of the time, and the rest are used infrequently. Those that are used
less often impose a burden on the entire system, because they increase the permutations that the de-
code logic must handle in any given clock cycle. By removing the operations that are not frequently
used, the microprocessor’s control logic is simplified and can therefore be made to run faster. The re-
sult is improved throughput for the most commonly executed operations, which translates directly
into greater performance overall.

The fundamental assumption that RISC microprocessors rely on to maintain their throughput is
high memory bandwidth. For a RISC microprocessor to match or outperform a CISC microproces-
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sor, it must be able to rapidly fetch instructions, because several RISC instructions are necessary to
match the capabilities of certain CISC instructions. An older computer architecture with an asyn-
chronous memory interface may not be able to provide sufficient instruction bandwidth to make a
RISC microprocessor efficient. CISC architectures dominated off-the-shelf microprocessor offerings
until low-latency memory subsystems became practical at a reasonable cost. Modern computer ar-
chitectures implement very fast memory interfaces that are able to provide a steady stream of in-
structions to RISC microprocessors.

One fundamental technique for improving the instruction fetch bandwidth is to design a micro-
processor with two memory interfaces—one for instructions and one for data. This is referred to as a
Harvard architecture, as compared to a conventional von Neumann architecture in which instruction
and data memory are unified. Using a Harvard architecture, instruction fetches are not disrupted by
load/store operations. Unfortunately, a Harvard architecture presents numerous system-level prob-
lems of how to split program and data memory and how to load programs into memory that cannot
be accessed by load/store operations. Most microprocessors that implement a Harvard architecture
do so with smaller on-chip memory arrays that can store segments of program and data that are
fetched from and written back to a unified memory structure external to the microprocessor chip.
While this may sound so complex as to only be in the realm of serious number-crunchers, the small
but powerful 8-bit PIC™ RISC microcontrollers from Microchip Technology implement a Harvard
architecture with mutually exclusive program and data memory structures located on chip. This il-
lustrates the point that advanced microprocessor concepts can be applied to any level of performance
if a problem needs to be solved.

The RISC concept appears to have won the day in the realm of high-performance computing.
With memory bandwidth not being much of a hindrance, streamlined RISC designs can be made fast
and efficient. In embedded computing applications, the victor is less clear. CISC technology is still
firmly entrenched in a market where slow memory subsystems are still common and core micropro-
cessor throughput is not always a major design issue. What is clear is that engineers and marketers
will continue to debate and turn out new products and literature to convince others why their ap-
proach is the best available.

7.2 CACHE STRUCTURES

Microprocessor and memory performance have improved asymmetrically over time, leading to a
well recognized performance gap. In 1980, a typical microprocessor ran at under 10 MHz, and a typ-
ical DRAM exhibited an access time of about 250 ns. Two decades later, high-end microprocessors
were running at several hundred megahertz, and a typical DRAM exhibited an access time of 40 ns.
Microprocessors’ appetites for memory bandwidth has increased by about two orders of magnitude
over 20 years while main memory technology, most often DRAM, has improved by less than an or-
der of magnitude during that same period. To make matters worse, many microprocessors shifted
from CISC to RISC architectures during this same period, thereby further increasing their demand
for instruction memory bandwidth. The old model of directly connecting main memory to a micro-
processor has broken down and become a performance-limiting bottleneck.

The culprits for slow main memory include the propagation delays through deep address decod-
ing logic and the high random access latency of DRAM—the need to assert a row address, wait
some time, assert a column address, and wait some more time before data is returned. These prob-
lems can be partially addressed by moving to SRAM. SRAM does not exhibit the latency penalty of
DRAM, but there are still the address decoding delays to worry about. It would be nice to build main
memory with SRAM, but this is prohibitively expensive, as a result of the substantially lower den-
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sity of SRAM as compared to DRAM. An SRAM-based main memory requires more devices, more
circuit board area, and more connecting wires—all requirements that add cost and reduce the reli-
ability of a system. Some supercomputers have been built with main memory composed entirely of
SRAM, but keep in mind that these products have minimal cost constraints, if any.

If software running on microprocessors tended to access every main memory location with equal
probability, not much could be done to improve memory bandwidth without substantial increases in
size and cost. Under such circumstances, a choice would have to be made between a large quantity
of slow memory or a small quantity of fast memory. Fortunately, software tends to access fairly con-
strained sets of instructions and data in a given period of time, thereby increasing the probability of
accessing sequential memory locations and decreasing the probability of truly random accesses.
This property is generally referred to as locality. Instructions tend to be executed sequentially in the
order in which they are stored in memory. When branches occur, the majority are with small dis-
placements for purposes of forming loops and local “if...then...else” logical decisions. Data also
tend to be grouped into sequential elements. For example, if a string of characters forming a person’s
name in a database is being processed, the characters in the string will be located in sequential mem-
ory locations. Furthermore, the entire database entry for the person will likely be stored as a unit in
nearby memory locations.

Caches largely overcome main memory latency problems. A cache, pronounced “cash,” is a small
quantity of fast memory that is used to temporarily store portions of main memory that the micro-
processor accesses often or is predicted to access in the near future. Being that cache memory is rel-
atively small, SRAM becomes practical to use in light of its substantial benefits of fast access time
and simplicity—a memory controller is not needed to perform refresh or address multiplexing oper-
ations. As shown in Fig. 7.1, a cache sits between a microprocessor and main memory and is com-
posed of two basic elements: cache memory and a cache controller.

The cache controller watches all memory transactions initiated by the microprocessor and selects
whether read data is fetched from the cache or directly from main memory and whether writes go
into the cache or into main memory. Transactions to main memory will be slower than those to the
cache, so the cache controller seeks to minimize the number of transactions that are handled directly
by main memory.

Locality enables a cache controller to increase the probability of a cache hit—that data requested
by the microprocessor has already been loaded into the cache. A 100 percent hit rate is impossible,
because the controller cannot predict the future with certainty, resulting in a cache miss every so of-
ten. Temporal and spatial locality properties of instructions and data help the controller improve its
hit rate. Temporal locality says that, if a memory location is accessed once, it is likely to be accessed
again in the near future. This can be readily observed by considering a software loop: instructions in
the body of the loop are very likely to be fetched again in the near future during the next loop itera-
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FIGURE 7.1 Computer with cache.
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tion. Spatial locality says that, if a memory location is accessed, it is likely that nearby locations will
be accessed in the near future. When a microprocessor fetches an instruction, there is a high proba-
bility that it will soon fetch the instructions immediately following that instruction. Practically
speaking, temporal locality tells the cache controller to attempt to retain recently accessed memory
locations in the expectation that they will be accessed again. Spatial locality tells the cache control-
ler to preload additional sequential memory locations when a single location is fetched by the micro-
processor, in the expectation that these locations will be soon accessed.

Given the locality properties, especially spatial locality, that need to be incorporated into the
cache controller, a basic cache organization emerges in which blocks of data rather than individual
bytes are managed by the controller and held in cache memory. These blocks are commonly called
lines, and they vary in size, depending on the specific implementation. Typical cache line sizes are
16, 32, or 64 bytes. When the microprocessor reads a memory location that is not already located
in the cache (a miss), the cache controller fetches an entire line from main memory and stores it as
a unit. To maintain the simplicity of power-of-two logic, cache lines are typically mapped into
main memory on boundaries defined by the line size. A 16-byte cache line will always hold mem-
ory locations at offsets represented by the four least-significant address bits. Main memory is
therefore effectively divided into many small 16-byte lines with offsets from 0x0 to OxF. If a micro-
processor with a 32-bit address bus fetches location 0x1000800C and there is a cache miss, the
controller will load locations 0x10008000 through 0x1000800F into a designated cache line. If the
cache is full, and a miss occurs, the controller must flush a line that has a lower probability of use
so as to make room for the new data. If the flushed line has been modified by writes that were not
already reflected in main memory, the controller must store the line to prevent losing and corrupt-
ing the memory contents.

As more cache lines are implemented, more sections of main memory can be simultaneously held
in the cache, increasing the hit rate. However, a cache’s overall size must be bounded by a system’s
target size and cost constraints. The size of a cache line is a compromise between granularity, load/
store time, and locality benefits. For a fixed overall size, larger lines reduce the granularity of unique
blocks of main memory that can be simultaneously held in the cache. Larger cache lines increase the
time required to load a new line and update main memory when flushing an old line. Larger cache
lines also increase the probability that a subsequent access will result in a hit.

Cache behavior on reads is fairly consistent across different implementations. Writes, however,
can be handled in one of three basic manners: no-write, write-through, and write-back. A no-write
cache does not support the modification of its contents. When a write is performed to a block of
memory held in a cache line, that line is flushed, and the write is performed directly into main mem-
ory. This scheme imposes two penalties on the system: writes are always slowed by the longer la-
tency of main memory, and locality benefits are lost because the flush forces any subsequent
accesses to that line to result in a miss and reload of the entire line that was already present in the
cache.

Write-through caches support the modification of their contents but do not support incoherency
between cache memory and main memory. Therefore, a write to a block of memory held in a cache
line results in a parallel write to both the cache and main memory. This is an improvement over a no-
write cache in that the cache line is not forcibly flushed, but the write is still slowed by a direct ac-
cess to main memory.

A write-back cache minimizes both penalties by enabling writes to valid cache lines but not im-
mediately causing a write to main memory. The microprocessor does not have to incur the latency
penalty of main memory, because the write completes as fast as the cache can accept the new data.
This scheme introduces complexity in the form of incoherency between cache and main memory:
each memory structure has a different version of the same memory location. To solve the incoher-
ency problem, a write-back cache must maintain a status bit for each line that indicates whether the
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line is clean or dirty. When the line is eventually flushed, dirty lines must be written back to main
memory in their entirety. Clean lines can be flushed without further action. While a write-back cache
cannot absolutely eliminate the longer write latency of main memory, it can reduce the overall sys-
tem impact of writes, because the microprocessor can perform any number of writes to the same
cache line, and only a fixed write-back penalty results upon a flush.

The central problem in designing a cache is how to effectively hold many scattered blocks from a
large main memory in a small cache memory. In a standard desktop PC, main memory may consist
of 256 MB of DRAM, whereas the microprocessor’s cache is 256 kB—a difference of three orders
of magnitude! The concept of cache lines provides a starting point with a defined granularity to min-
imize the problem somewhat. Deciding on a 16-byte line size, for example, indicates that a 32-bit
address space needs to be handled only as 228 units rather than 232 units. Of course, 228 is still a very
large number! Each cache line must have an associated tag and/or index that identifies the higher-or-
der address bits that its contents represent (28 bits in this example). Different cache architectures
handle these tags and indices to balance cache performance with implementation expense. The three
standard cache architectures are fully associative, direct mapped, and n-way set associative.

A fully associative cache, shown in Fig. 7.2, breaks the address bus into two sections: the lower
bits index into a selected cache line to select a byte within the line, and the upper bits form a tag that
is associated with each cache line. Each cache line contains a valid bit to indicate whether it contains
real data. Upon reset, the valid bits for each line are cleared to 0. When a cache line is loaded with
data, its tag is set to the high-order address bits that are driven by the microprocessor. On subsequent
transactions, those address bits are compared in parallel against every tag in the cache. A hit occurs
when one tag matches the requested address, resulting in that line’s data advancing to a final multi-
plexer where the addressed bytes are selected by the low-order address bits. A fully associative
cache is the most flexible type, because any cache line can hold any portion of main memory. The
disadvantage of this scheme is its complexity of implementation. Each line requires address match-
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FIGURE 7.2 Fully associative cache.



Advanced Microprocessor Concepts 153

ing logic, and each match signal must be logically combined in a single location to generate a final
hit/miss status flag.

A direct mapped cache, shown in Fig. 7.3, breaks the address bus into three sections; the lower
bits retain their index function within a selected line, the middle bits select a single line from an ar-
ray of uniquely addressable lines, and the upper bits form a tag to match the selected cache line. As
before, each cache line contains a valid bit. The difference here is that each block of memory can
only be mapped into one cache line—the one indexed by that block’s middle address bits, A[15:4] in
this example (indicating a 64-kB total cache size). During a cache miss, the controller determines
which line is selected by the middle address bits, loads the line, sets the valid bit, and loads the line
tag with the upper address bits. On subsequent accesses, the middle address bits select a single line
whose tag is compared against the upper address bits. If they match, there is a cache hit. A direct
mapped cache is much easier to implement as compared to a fully associative cache, because paral-
lel tag matching is not required. Instead, the cache can be constructed with conventional memory
and logic components using oft-the-shelf RAM for both the tag and line data. The control logic can
index into the RAM, check the selected tag for a match, and then take appropriate action. The disad-
vantage to a direct mapped cache is that, because of the fixed mapping of memory blocks to cache
lines, certain data access patterns can cause rapid thrashing. Thrashing results when the micropro-
cessor rapidly accesses alternate memory blocks. If the alternate blocks happen to map to the same
cache line, the cache will almost always miss, because each access will result in a flush of the alter-
nate memory block.

Given the simplicity of a direct mapped cache, it would be nice to strike a compromise between
an expensive fully associative cache and a thrashing-sensitive direct mapped cache. The n-way set
associative cache is such a compromise. As shown in Fig. 7.4, a two-way set associative cache is
basically two direct mapped cache elements connected in parallel to reduce the probability of
thrashing. More than two sets can be implemented to further reduce thrashing potential. Four-way
and two-way set associative caches are very common in modern computers. Beyond four ele-
ments, the payback of thrashing avoidance to implementation complexity declines. The term set
refers to the number of entries in each direct mapped element, 4,096 in this example. Here, the
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cache has expanded to 128 kB in size using two 64 kB elements. If cost constraints dictate keeping
a 64 kB cache, it would be preferable to reduce the set size to 2,048 rather than halve the line size,
which is already at a practical minimum of 16 bytes. Reducing the set size to 2! would increase
the line tag to 17 bits to maintain a 32-bit address space representation. In a cache of this type, the
controller can choose which of two (or four, or n) cache line locations to flush when a miss is en-
countered.

Deciding which line to flush when a cache miss occurs can be done in a variety of ways, and dif-
ferent cache architectures dictate varying approaches to this problem. A fully associative cache can
place any main memory block into any line, while a direct mapped cache has only one choice for
any given memory block. Three basic flush, or replacement, algorithms are as follows:

* First-in-first-out (FIFO). Track cache line ages and replace the oldest line.

* Least-recently-used (LRU). Track cache line usage and replace the line that has not been ac-
cessed longest.

* Random. Replace a random line.

A fully associative cache has the most flexibility in selecting cache lines and therefore the most
complexity in tracking line usage. To perform either a FIFO or LRU replacement algorithm on a
fully associative cache, each line would need a tracking field that could be updated and checked in
parallel with all other lines. N-way set associative caches are the most interesting problems from a
practical perspective, because they are used most frequently. Replacement algorithms for these
caches are simplified, because the number of replacement choices is restricted to N. A two-way set
associative cache can implement either FIFO or LRU algorithms with a single bit per line entry.
For a FIFO algorithm, the entry being loaded anew has its FIFO bit cleared, and the other entry has
its FIFO bit set, indicating that the other entry was loaded first. For an LRU algorithm, the entry be-
ing accessed at any given time has its LRU bit cleared, and the other has its LRU bit set, indicating
that the other entry was used least recently. These algorithms and associated hardware are only
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slightly more complex for a four-way set associative cache that would require two status bits per
line entry.

7.3 CACHES IN PRACTICE

Basic cache structures can be applied and augmented in different ways to improve their efficacy. One
common manner in which caches are implemented is in pairs: an I-cache to hold instructions and a
D-cache to hold data. It is not uncommon to see high-performance RISC microprocessors with inte-
grated I/D caches on chip. Depending on the intended application, these integrated caches can be
relatively small, each perhaps 8 kB to 32 kB in size. More often than not, these are two-way or four-
way set associative caches. There are two key benefits to integrating two separate caches. First, in-
struction and data access patterns can combine negatively to cause thrashing on a single normal
cache. If a software routine operates on a set of data whose addresses happen to overlap with the I-
cache’s index bits, alternate instruction and data fetch operations could cause repeated thrashing on
the same cache lines. Second, separate caches can effectively provide a Harvard memory architec-
ture from the microprocessor’s local perspective. While it is often not practical to provide dual in-
struction and data memory interfaces at the chip level, as a result of excessive pin count, such
considerations are much less restrictive within a silicon die. Separate I/D caches can feed from a
shared chip-level memory interface but provide independent interfaces to the microprocessor core it-
self. This dual-bus arrangement increases the microprocessor’s load/store bandwidth by enabling it
to simultaneously fetch instructions and operands without conflict.

Dual I/D caches cannot guarantee complete independence of instruction and data memory, be-
cause, ultimately, they are operating through a shared interface to a common pool of main memory.
The performance boost that they provide will be dictated largely by the access patterns of the appli-
cations running on the microprocessor. Such application-dependent performance is fundamental to
all types of caches, because caches rely on locality to provide their benefits. Programs that scatter in-
structions and data throughout a memory space and alternately access these disparate locations will
show less performance improvement with the cache. However, most programs exhibit fairly benefi-
cial locality characteristics. A system with dual I/D caches can show substantial throughput im-
provement when a software routine can fit its core processing instructions into the instruction cache
with minimal thrashing and its data sets exhibit good locality properties. Under these circumstances,
the data cache can have more time to pull in data via the common memory interface, enabling the
microprocessor to simultaneously access instruction and data memory with a low miss rate.

Computer systems with caches require some assistance from the operating system and applica-
tions to maximize cache performance benefits and to prevent unexpected side effects of cached
memory. It is helpful to cache certain areas of memory, but it is performance degrading or even
harmful to cache other areas. Memory-mapped I/O devices are generally excluded from being
cached, because 1/O is a class of device that usually responds with some behavior when a control
register is modified. Likewise, I/O devices frequently update their status registers to reflect condi-
tions that they are monitoring. If a cache prevents the microprocessor from directly interacting with
an /O device, unexpected results may appear. For example, if the microprocessor wants to send
data out a serial port, it might write a data value to a transmit register, expecting that the data will be
sent immediately. However, a write-back cache would not actually perform the write until the asso-
ciated cache line is flushed—a time delay that is unbounded. Similarly, the serial port controller
could reflect handshaking status information in its status registers that the microprocessor wants to
periodically read. An unknowing cache would fetch the status register memory location once and
then continue to return the originally fetched value to the microprocessor until its cache line was
flushed, thereby preventing the microprocessor from reading the true status of the serial port. /O
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registers are unlike main memory, because memory just holds data and cannot modify it or take ac-
tions based on it.

Whereas caching an I/O region can cause system disruption, caching certain legitimate main mem-
ory regions can cause performance degradation due to thrashing. It may not be worth caching small
routines that are infrequently executed, because the performance benefit of caching a quick mainte-
nance routine may be small, and its effect on flushing more valuable cache entries may significantly
slow down the application that resumes execution when the maintenance routine completes. A perfor-
mance-critical application is often composed of a processing kernel along with miscellaneous initial-
ization and maintenance routines. Most of the microprocessor time is spent executing kernel
instructions, but sometimes the kernel must branch to maintenance routines for purposes such as load-
ing or storing data. Unlike I/O regions that are inherently known to be cache averse, memory regions
that should not be cached can only be known by the programmer and explicitly kept out of the cache.

Methods of excluding certain memory locations from the cache differ across system implementa-
tions. A cache controller will often contain a set of registers that enable the lockout of specific
memory regions. On those integrated microprocessors that contain some address decoding logic as
well as a cache controller, individual memory areas are configured into the decoding logic with pro-
grammable registers, and each is marked as cacheable or noncacheable. When the microprocessor
performs a memory transaction, the address decoder sends a flag to the cache controller that tells it
whether to participate in the transaction.

On the flip side of locking certain memory regions out of the cache, some applications can benefit
from explicitly locking certain memory regions into the cache. Locking cache entries prevents the
cache controller from flushing those entries when a miss occurs. A programmer may be able to lock
a portion of the processing kernel into the cache to prevent arbitrary maintenance routines from dis-
turbing the most frequently accessed sets of instructions and data.

Cache controllers perform burst transactions to main memory because of their multiword line ar-
chitecture. Whether the cache is reading a new memory block on a cache miss or writing a dirty block
back to main memory, its throughput is greatly increased by performing burst transfers rather than
reading or writing a single word at a time. Normal memory transfers are executed by presenting an ad-
dress and reading or writing a single unit of data. Each type of memory technology has its own associ-
ated latency between the address and data phases of a transaction. SRAM is characterized by very low
access latency, whereas DRAM has a higher latency. Because main memory in most systems is com-
posed of DRAM, single-unit memory transfers are inefficient, because each byte or word is penalized
by the address phase overhead. Burst transfers, however, return multiple sequential data units while
requiring only an initial address presentation, because the address specifies a starting address for a set
of memory locations. Therefore, the overhead of the address phase is amortized across many data
units, greatly increasing the efficiency of the memory system. Modern DRAM devices support burst
transfers that nicely complement the cache controllers that often coexist in the same computer system.

As a result of cache subsystems being integrated onto the same chip along with high-performance
microprocessors, the external memory interface is less a microprocessor bus and more a burst-mode
cache bus. The microprocessor needs to be able to bypass the cache controller while accessing non-
cacheable memory locations or during boot-up when peripherals such as the cache controller have
not yet been initialized. However, the external bus is often optimized for burst transfers, and absolute
efficiency or simplicity when dealing with noncacheable locations may be a secondary concern to
the manufacturer. If overall complexity can be reduced by giving up some performance in nonburst
transfers, it may be worth the trade-off, because high performance microprocessors spend relatively
little of their time accessing external memory directly. If they do, then something is wrong with the
system design, because the microprocessor’s throughput is sure to suffer.

Many microprocessors are designed to support multiple levels of caching to further improve per-
formance. In this context, the cache that is closest to the microprocessor core is termed a level-one
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(L1) cache. The L1 cache is fairly small, anywhere from 2 kB to 64 kB, with its benefit being speed.
Because it is small and close to the microprocessor, it can be made to run as fast as the microproces-
sor can fetch instructions and data. Instruction and data caches are implemented at 1. Line sizes for
L1 caches vary but are often 16 or 32 bytes. The line size needs to be kept to a practical minimum to
maximize the number of unique memory blocks that can be stored in a small RAM structure.

Level two (L2) caches may reside on the same silicon chip as the microprocessor and L1 cache or
externally to the chip, depending on the implementation. L2 caches are generally unified instruction
and data caches to minimize the complexity of the interface between the L1 cache and the rest of the
system. These caches run somewhat slower than L1 but, consequently, they can be made larger:
128 kB, 256 kB, or more. Line sizes of 64 bytes and greater are common in L2 caches to increase ef-
ficiency of main memory burst transfers. Because the L2 cache has more RAM, it can expand both
the number of lines and the line size in the hope that, when the L1 cache requests a block of memory,
the next sequential block will soon be requested as well. Beyond L2, some microprocessors support
L3 and even L4 caches. Each successive level increases its latency of response to the cache above it
but adds more cache RAM (sometimes megabytes) and sometimes larger line sizes to increase burst-
mode transfer efficiency to main memory.

As core microprocessor clock frequencies commonly top several hundred megahertz, and the
most advanced microprocessors exceed 1 GHz, the bandwidth disparity between the microprocessor
and main memory increases. Cache misses impose severe penalties on throughput, because the ef-
fective clock speed of the microprocessor is essentially reduced to that of the memory subsystem
when data is fetched directly from memory. The goal of a multilevel cache structure is to substan-
tially reduce the probability of a cache miss that leads directly to main memory. If the L1 cache
misses, hopefully, the L2 cache will be ready to supply the requested data at only a moderate
throughput penalty.

Caching as a concept is not restricted to the context of microprocessors and hardware implemen-
tation. Caches are found in hard disk drives and in Internet caching products. Some high-end hard
drives implement several megabytes of RAM to prefetch data beyond that which has already been
requested. While the hard drive’s cache, possibly implemented using DRAM, is not nearly as fast as
a typical microprocessor, it is orders of magnitude faster than the drive mechanism itself. Internet
caching products routinely copy commonly accessed web sites and other data onto their hard drives
so that subsequent accesses do not have to go all the way out to the remote file server. Instead, the re-
quested data is sitting locally on a cache system. Caching is the general concept of substituting a
small local storage resource that is faster than the larger more remote resource. Caches can be ap-
plied in a wide variety of situations.

Caching gets somewhat more complex when the data that is being cached can be modified by an-
other entity outside of the cache memory. This is possible in the Internet caching application men-
tioned above or in a multiprocessor computer. Cache coherency is the subject of many research
papers and is a problem that needs to be addressed by each implementation. Simply put, how does
the Internet cache know when a web site that is currently stored has been updated? A news web site,
for example, may update its contents every few hours. In a multiprocessor context, multiple micro-
processors may have access to the same pool of shared memory. Here, the multiple cache controllers
must somehow communicate to know when memory has been modified so that the individual caches
can update themselves and maintain coherency.

Determining the optimal size of a cache so that its performance improvement merits its cost has
been the subject of much study. Cache performance is highly application dependent and, in general,
meaningful performance improvements decline after a certain size threshold, which varies by appli-
cation. A typical PC runs programs that are not very computationally intensive and that operate on
limited sets of data over short time intervals. In short, they exhibit fairly good locality properties.
Typical desktop PCs contain 256 kB of L2 cache and a smaller quantity of L1 cache. Computers that
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often operate on larger sets of data or that must run many applications simultaneously may merit
larger caches to offset less optimal locality properties. Computers meant to function as computation
engines and network file servers can include several megabytes of L2 cache. Smaller embedded sys-
tems may suffice with only several kilobytes of L1 cache.

7.4 VIRTUAL MEMORY AND THE MMU

Multitasking operating systems execute multiple programs at the same time by assigning each pro-
gram a certain percentage of the microprocessor’s time and then periodically changing which in-
struction sequence is being executed. This is accomplished by a periodic timer interrupt that causes
the OS kernel to save the state of the microprocessor’s registers and then reload the registers with
preserved state from a different program. Each program runs for a while and is paused, after which
execution resumes without the program having any knowledge of having been paused. In this re-
spect, the individual programs in a multitasking environment appear to have complete control over
the computer, despite sharing the resources with others. Such a perspective makes programming for
a multitasking OS easier, because the programmer does not have to worry about the infinite permuta-
tions of other applications that may be running at any given time. A program can be written as if it is
the only application running, and the OS kernel sorts out the run-time responsibilities of making sure
that each application gets fair time to run on the microprocessor.

Aside from fair access to microprocessor time, conflicts can arise between applications that acci-
dentally modify portions of each other’s memory—either program or data. How does an application
know where to locate its data so that it will not disturb that of other applications and so that it will
not be overwritten? There is also the concern about system-wide fault tolerance. Even if not mali-
cious, programs may have bugs that cause them to crash and write data to random memory locations.
In such an instance, one errant application could bring down others or even crash the OS if it over-
writes program and data regions that belong to the OS kernel. The first problem can be addressed
with the honor system by requiring each application to dynamically request memory allocations at
run time from the kernel. The kernel can then make sure that each application is granted an exclusive
region of memory. However, the second problem of errant writes requires a hardware solution that
can physically prevent an application from accessing portions of memory that do not belong to it.

Virtual memory is a hardware enforced and software configured mechanism that provides each
application with its own private memory space that it can use arbitrarily. This virtual memory space
can be as large as the microprocessor’s addressing capability—a full 4 GB in the case of a 32-bit mi-
croprocessor. Because each application has its own exclusive virtual memory space, it can use any
portion of that space that is not otherwise restricted by the kernel. Virtual memory frees the program-
mer from having to worry about where other applications may locate their instructions or data, be-
cause applications cannot access the virtual memory spaces of others. In fact, operating systems that
support virtual memory may simplify the physical structure of programs by specifying a fixed start-
ing address for instructions, the local stack, and data. UNIX is an example of an OS that does this.
Each application has its instructions, stack, and data at the same virtual addresses, because they have
separate virtual memory spaces that are mutually exclusive and, therefore, not subject to conflict.

Clearly, multiple programs cannot place different data at the same address or each simultaneously
occupy the microprocessor’s entire address space. The OS kernel configures a hardware memory
management unit (MMU) to map each program’s virtual addresses into unique physical addresses
that correspond to actual main memory. Each unique virtual memory space is broken into many
small pages that are often in the range of 2 to 16 kB in size (4 kB is a common page size). The OS
and MMU refer to each virtual memory space with a process ID (PID) field. Virtual memory is han-
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dled on a process basis rather than an application basis, because it is possible for an application to
consist of multiple semi-independent processes. The high-order address bits referenced by each in-
struction form the virtual page number (VPN). The PID and VPN are combined to uniquely map to
a physical address set aside by the kernel as shown in Fig. 7.5. Low-order address bits represent off-
sets that directly index into mapped pages in physical memory. The mapping of virtual memory
pages into physical memory is assigned arbitrarily by the OS kernel. The kernel runs in real memory
rather than in virtual memory so that it can have direct access to the computer’s physical resources to
allocate memory as individual processes are executed and then terminated.

Despite each process having a 4-GB address space, virtual memory can work on computers with
just megabytes of memory, because the huge virtual address spaces are sparsely populated. Most
processes use only a few hundred kilobytes to a few megabytes of memory and, therefore, multiple
processes that collectively have the potential to reference tens of gigabytes can be mapped into a
much smaller quantity of real memory. If too many processes are running simultaneously, or if these
processes start to consume too much memory, a computer can exhaust its physical memory re-
sources, thereby requiring some intervention from the kernel to either suspend a process or handle
the problem in some other way.

When a process is initiated, or spawned, it is assigned a PID and given its own virtual memory
space. Some initial pages are allocated to hold its instructions and whatever data memory the pro-
cess needs available when it begins. During execution, processes may request more memory from
the kernel by calling predefined kernel memory management routines. The kernel will respond by
allocating a page in physical memory and then returning a pointer to that page’s virtual mapping.
Likewise, a process can free a memory region when it no longer needs it. Under this circumstance,
the kernel will remove the mapping for the particular pages, enabling them to be reallocated to an-
other process, or the same process, at a later time. Therefore, the state of memory in a typical multi-
tasking OS is quite dynamic, and the routines to manage memory must be implemented in software
because of their complexity and variability according to the platform and the nature of processes
running at any given time.

Not all mapped virtual memory pages have to be held in physical RAM at the same time. Instead,
the total virtual memory allocation on a computer can spill over into a secondary storage medium
such as a hard drive. The hard drive will be much slower than DRAM, but not every memory page in
every process is used at the same time. When a process is first loaded, its entire instruction image is
typically loaded into virtual memory. However, it will take some time for all of those instructions to
reach their turn in the execution sequence. During this wait time, the majority of a process’s program
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FIGURE 7.5 32-bit virtual memory mapping.
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memory can be stored on the hard drive without incurring a performance penalty. When those in-
structions are ready to be executed, the OS kernel will have to transfer the data into physical mem-
ory. This slows the system down but makes it more flexible without requiring huge quantities of
DRAM. Part of the kernel’s memory management function is to decide which virtual pages should
be held in DRAM and which should be swapped out to the disk. Pages that have not been used for a
while can be swapped out to make room for new pages that are currently needed. If a process subse-
quently accesses a page that has been moved to the disk, that page can be swapped back into DRAM
to replace another page that is not needed at the time. A computer with 256 MB of DRAM could, for
example, have a 512-MB swap file on its hard drive, enabling processes to share a combined
768 MB of used virtual memory.

This scheme of expanding virtual memory onto a disk effectively turns the computer’s DRAM
into a large cache for an even larger disk-based memory. As with all caches, certain behavioral char-
acteristics exist. A virtual memory page that is not present in DRAM is effectively a cache miss
with a large penalty, because hard disks are much slower than DRAM. Such misses are called page

faults. The MMU detects that the requested virtual memory address from a particular PID is not

present in DRAM and causes an exception that must be handled by the OS kernel. Instead of per-
forming a cache line fill and flush, it is the kernel’s responsibility to swap pages to and from the
disk. For a virtual memory system to function with reasonable performance, the working set of
memory across all the processes running should be able to fit into the computer’s physical memory.
The working set includes any instructions and data that are accessed within a local time interval.
This is directly analogous to a microprocessor cache’s exploitation of locality. Processes with good
locality characteristics will do well in a cache and in a virtual memory system. Processes with poor
locality may result in thrashing as many sequential page faults are caused by random accesses
throughout a large virtual memory space.

The virtual to physical address mapping process is guided by the kernel using a page table,
which can take various forms but must somehow map each PID/VPN combination to either a phys-
ical memory page or one located on the disk drive’s swap area. Virtual page mapping is illustrated
in Fig. 7.6, assuming 4-kB pages, a 32-bit address space, and an 8-bit PID. In addition to basic map-
ping information, the page table also contains status information, including a dirty bit that indicates
when a page held in memory has been modified. If modified, the page must be saved to the disk be-
fore being flushed to make room for a new virtual page. Otherwise, the page can be flushed without
further action.

Given a 4-kB page size and a 32-bit address space, each process has access to 220 = 1,048,576
pages. With 256 PIDs, a brute-force page table would contain more than 268 million entries! There
are a variety of schemes to reduce page table size, but there is no escaping the fact that a page table
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FIGURE 7.6 Virtual page mapping.
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will be large. Page table management schemes are largely an issue of OS architecture and are out-
side the scope of this discussion. The fact that the page table is large and is parsed by software
means that the mapping process will be extremely slow without hardware assistance. Every access to
virtual memory, in other words almost every access performed on the computer, requires mapping,
which makes hardware acceleration critical to the viability of virtual memory.

Within the MMU is a translation lookaside buffer (TLB), a small, fully associative cache that al-
lows the MMU to rapidly locate recently accessed virtual page mappings. Typical sizes for a TLB
are just 16 to 64 entries because of the complexity of implementing a fast fully associative cache.
When a process is first spawned, it has not yet performed virtual memory accesses, so its first access
will result in a TLB miss. When a TLB miss occurs, an exception is generated that invokes the ker-
nel’s memory management routine to parse the page table in search of the correct physical address
mapping. The kernel routine loads a TLB entry with the mapping information and exits. On subse-
quent memory accesses, the TLB will hit some and miss some. It is hoped that the ratio of hits to
misses will decline rapidly as the process executes. Once again, locality of reference is key to a well
performing application, but the TLB and MMU are not as sensitive to locality as a normal cache, be-
cause they map multiple-kilobyte pages rather than 16 or 32 byte lines. Yet, as more processes ac-
tively vie for resources in a multitasking system, they may begin to fight each other for scarce TLB
entries. The resources and architecture of a computer must be properly matched to its intended appli-
cation. A typical desktop or embedded computer may get along fine with a small TLB, because it
may not have many demanding processes running concurrently. A more powerful computer de-
signed to simultaneously run many memory-intensive processes may require a larger TLB to take
full advantage of its microprocessor and memory resources. The ever-present trade-off between per-
formance and cost does not go away!

The TLB is usually located between the microprocessor and its cache subsystem as shown in Fig.
7.7, such that physical addresses are cached rather than virtual addresses. Such an arrangement adds
latency to microprocessor transactions, because the virtual-to-physical mapping must take place be-
fore the L1 cache can respond. A TLB can be made very fast because of its small size, thereby limit-
ing its time penalty on transactions. Additionally, microprocessors may implement a pipelined
interface where addresses are presented each clock cycle, but their associated data are returned one
or more clock cycles later, providing time for the TLB lookup.

7.5 SUPERPIPELINED AND SUPERSCALAR ARCHITECTURES

MPU

At any given time, semiconductor process technology presents an intrinsic limitation on how fast a
logic gate can switch on and off and at what frequency a flip-flop can run. Other than relying on
semiconductor process advances to improve microprocessor and system throughput, certain basic
techniques have been devised to extract more processing power from silicon with limited switching
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FIGURE 7.7 Location of TLB.
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delays. Throughput can be enhanced in a serial manner by trying to execute a desired function faster.
If each function is executed at a faster clock frequency, more functions can be executed in a given
time period. An alternative parallel approach can be taken whereby multiple functions are executed
simultaneously, thereby improving performance over time. These two approaches can be comple-
mentary in practice. Different logic implementations make use of serial and parallel enhancement
techniques in the proportions and manners that are best suited to the application at hand.

A logic function is represented by a set of Boolean equations that are then implemented as dis-
crete gates. During one clock cycle, the inputs to the equations are presented to a collection of gates
via a set of input flops, and the results are clocked into output flops on the next rising edge. The
propagation delays of the gates and their interconnecting wires largely determine the shortest clock
period at which the logic function can reliably operate.

Pipelining, called superpipelining when taken to an extreme, is a classic serial throughput en-
hancement technique. Pipelining is the process of breaking a Boolean equation into several smaller
equations and then calculating the partial results during sequential clock cycles. Smaller equations
require fewer gates, which have a shorter total propagation delay relative to the complete equation.
The shorter propagation delay enables the logic to run faster. Instead of calculating the complete re-
sult in a single 40 ns cycle, for example, the result may be calculated in four successive cycles of
10 ns each. At first glance, it may not seem that anything has been gained, because the calculation
still takes 40 ns to complete. The power of pipelining is that different stages in the pipeline are oper-
ating on different calculations each cycle. Using an example of an adder that is pipelined across four
cycles, partial sums are calculated at each stage and then passed to the next stage. Once a partial sum
is passed to the next stage, the current stage is free to calculate the partial sum of a completely new
addition operation. Therefore, a four-stage pipelined adder takes four cycles to produce a result, but
it can work on four separate calculations simultaneously, yielding an average throughput of one cal-
culation every cycle—a four-times throughput improvement.

Pipelining does not come for free, because additional logic must be created to handle the com-
plexity of tracking partial results and merging them into successively more complete results. Pipelin-
ing a 32-bit unsigned integer adder can be done as shown in Fig. 7.8 by adding eight bits at a time
and then passing the eight-bit sum and carry bit up to the next stage. From a Boolean equation per-
spective, each stage only incurs the complexity of an 8-bit adder instead of a 32-bit adder, enabling it
to run faster. An array of pipeline registers is necessary to hold the partial sums that have been calcu-
lated by previous stages and the as-yet-to-be-calculated portions of the operands. The addition re-
sults ripple through the pipeline on each rising clock edge and are accumulated into a final 32-bit
result as operand bytes are consumed by the adders. There is no feedback in this pipelined adder,
meaning that, once a set of operands passes through a stage, that stage no longer has any involve-
ment in the operation and can be reused to begin or continue a new operation.

Pipelining increases the overall throughput of a logic block but does not usually decrease the cal-
culation latency. High-performance microprocessors often take advantage of pipelining to varying
degrees. Some microprocessors implement superpipelining whereby a simple RISC instruction may
have a latency of a dozen or more clock cycles. This high degree of pipelining allows the micropro-
cessor to execute an average of one instruction each clock cycle, which becomes very powerful at
operating frequencies measured in hundreds of megahertz and beyond.

Superpipelining a microprocessor introduces complexities that arise from the interactions be-
tween consecutive instructions. One instruction may contain an operand that is calculated by the pre-
vious instruction. If not handled correctly, this common circumstance can result in the wrong value
being used in a subsequent instruction or a loss of performance where the pipeline is frequently
stalled to allow one instruction to complete before continuing with others. Branches can also cause
havoc with a superpipelined architecture, because the decision to take a conditional branch may nul-
lify the few instructions that have already been loaded into the pipeline and partially executed. De-
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FIGURE 7.8 Four-stage pipelined adder.

pending on how the microprocessor is designed, various state information that has already been
modified by these partially executed instructions may have to be rolled back as if the instructions
were never fetched. Branches can therefore cause the pipeline to be flushed, reducing the throughput
of the microprocessor, because there will be a gap in time during which new instructions advance
through the pipeline stages and finally emerge at the output.

Traditional microprocessor architecture specifies that instructions are executed serially in the or-
der explicitly defined by the programmer. Microprocessor designers have long observed that, within
a given sequence of instructions, small sets of instructions can be executed in parallel without chang-
ing the result that would be obtained had they been executed in the traditional serial manner. Super-
scalar microprocessor architecture has emerged as a means to execute multiple instructions
simultaneously within a single microprocessor that is operating on a normal sequence of instruc-
tions. A superscalar architecture contains multiple independent execution units, some of which may
be identical, that are organized and replicated according to statistical studies of which instructions
are executed more often and how easily they can be made parallel without excessive restrictions and
dependencies. Arithmetic execution units are prime targets for replication, because calculations with
floating-point numbers and large integers require substantial logic and time to fully complete. A su-
perscalar microprocessor may contain two integer ALUs and separate FPUs for floating-point addi-
tion and multiplication operations. Floating-point operations are the most complex instructions that
many microprocessors execute, and they tend to have long latencies. Most floating-point applica-
tions contain a mix of addition and multiplication operations, making them well suited to an archi-
tecture with individual FPUs that each specialize in one type of operation.
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Managing parallel execution units in a superscalar microprocessor is a complex task, because the
microprocessor wants to execute instructions as fast as they can be fetched—yet it must do so in a
manner consistent with the instructions’ serial interdependencies. These dependencies can become
more complicated to resolve when superscalar and superpipelining techniques are combined to cre-
ate a microprocessor with multiple execution units, each of which is implemented with a deep pipe-
line. In such chips, the instruction decode logic handles the complex task of examining the pipelines
of the execution units to determine when the next instruction is free of dependencies, allowing it to
begin execution.

Related to superpipelining and superscalar methods are the techniques of branch prediction, specu-
lative execution, and instruction reordering. Deep pipelines are subject to performance-degrading
flushes each time a branch instruction comes along. To reduce the frequency of pipeline flushes due to
branch instructions, some microprocessors incorporate branch prediction logic that attempts to make a
preliminary guess as to whether the branch will be taken. These guesses are made based on the history
of previous branches. The exact algorithms that perform branch prediction vary by implementation
and are not always disclosed by the manufacturer, to protect their trade secrets. When the branch pre-
diction logic makes its guess, the instruction fetch and decode logic can speculatively execute the in-
struction stream that corresponds to the predicted branch result. If the prediction logic is correct, a
costly pipeline flush is avoided. If the prediction is wrong, performance will temporarily degrade until
the pipeline can be restarted. Hopefully, a given branch prediction algorithm improves performance
rather than degrading it by having a worse record than would exist with no prediction at all!

The problem with branch prediction is that it is sometimes wrong, and the microprocessor must
back out of any state changes that have resulted from an incorrectly predicted branch. Speculative
execution can be taken a step farther in an attempt to eliminate the penalty of a wrong branch predic-
tion by executing both possible branch results. To do this, a superscalar architecture is needed that
has enough execution units to speculatively execute extra instructions whose results may not be
used. It is a foregone conclusion that one of the branch results will not be valid. There is substantial
complexity involved in such an approach because of the duplicate hardware that must be managed
and the need to rapidly swap to the correct instruction stream that is already in progress when the re-
sult of a branch is finally known.

A superscalar microprocessor will not always be able to keep each of its execution units busy, be-
cause of dependencies across sequential instructions. In such a case, the next instruction to be
pushed into the execution pipeline must be held until an in-progress instruction completes. Instruc-
tion reordering logic reduces the penalty of such instruction stalls by attempting to execute instruc-
tions outside the order in which they appear in the program. The microprocessor can prefetch a set of
instructions ahead of those currently executing, enabling it to look ahead in the sequence and deter-
mine whether a later instruction can be safely executed without changing the behavior of the instruc-
tion stream. For such reordering to occur, an instruction must not have any dependencies on those
that are being temporarily skipped over. Such dependencies include not only operands but branch
possibilities as well. Reordering can occur in a situation in which the ALUs are busy calculating re-
sults that are to be used by the next instruction in the sequence, and their latencies are preventing the
next instruction from being issued. A load operation that is immediately behind the stalled instruc-
tion can be executed out of order if it does not operate on any registers that are being used by the in-
structions ahead of it. Such reordering boosts throughput by taking advantage of otherwise idle
execution cycles.

All of the aforementioned throughput improvement techniques come at a cost of increased design
complexity and cost. However, it has been widely noted that the cost of a transistor on an IC is asymp-
totically approaching zero as tens of millions of transistors are squeezed onto chips that cost only sev-
eral hundred dollars. Once designed, the cost of implementing deep pipelines, multiple execution
units, and the complex logic that coordinates the actions of both continues to decrease over time.
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7.6 FLOATING-POINT ARITHMETIC

Conventional arithmetic logic units operate on signed and unsigned integer quantities. Integers suf-
fice for many applications, including loop count variables and memory addresses. However, our
world is inherently analog and is best represented by real numbers as compared to discrete integers.
Floating-point arithmetic enables the representation and manipulation of real numbers of arbitrary
magnitude and precision. Historically, floating-point math was pertinent only to members of the sci-
entific community who regularly perform calculations on large data sets to model many types of nat-
ural phenomena. Almost every area of scientific research has benefited from computational analysis,
including aerodynamics, geology, medicine, and meteorology. More recently, floating-point math
has become more applicable to the mainstream community in such applications as video games that
render realistic three-dimensional scenes in real-time as game characters move around in virtual en-
vironments.

General mathematics represents numbers of arbitrary magnitude and precision using scientific no-
tation, consisting of a signed mantissa multiplied by an integer power of ten. The mantissa is greater
than or equal to one and less than ten. In other words, the decimal point of the mantissa is shifted left
or right until a single digit remains in the 1s column. The number 456.8 would be represented as
4.568 x 107 in scientific notation. All significant digits other than the first one are located to the right
of the decimal point. The number —0.000089 has only two significant digits and is represented as
-8.9 x 107. Scientific notation enables succinct and accurate representation of very large and very
small numbers.

Floating-point arithmetic on a computer uses a format very similar to scientific notation, but bi-
nary is used in place of decimal representation. The Institute of Electrical and Electronics Engineers
(IEEE) has standardized floating-point representation in several formats to express numbers of in-
creasing magnitude and precision. These formats are used by most hardware and software imple-
mentations of floating-point arithmetic for the sake of compatibility and consistency. Figure 7.9
shows the general structure of an IEEE floating point number.

The most significant bit is defined as a sign bit where zero is positive and one is negative. The
sign bit is followed by an n-bit exponent with values from 1 to 27 — 2 (the minimum and maximum
values for the exponent field are not supported for normal numbers). The exponent represents pow-
ers of two and can represent negative exponents by means of an exponent bias. The bias is a fixed,
standardized value that is subtracted from the actual exponent field to yield the true exponent value.
It is generally 2"V — 1. Following the exponent is the binary significand, which is a mantissa or
modified mantissa. Similar to scientific notation, the mantissa is a number greater than or equal to 1
and less than the radix (2, in this case). Therefore, the whole number portion of the binary mantissa
must be 1. Some IEEE floating-point formats hide this known bit and use a modified mantissa to
provide an additional bit of precision in the fractional portion of the mantissa. Table 7.5 lists the ba-
sic parameters of the four commonly used floating-point formats. The IEEE-754 standard defines
several formats including single and double precision. The extended and quadruple precision for-
mats are not explicitly mentioned in the standard, but they are legal derivations from formats that
provide for increased precision and exponent ranges.

It is best to use a single-precision example to see how floating-point representation actually
works. The decimal number 25.25 is first converted to its binary equivalent: 11001.01. The mantissa
and exponent are found by shifting the binary point four places to the left to yield 1.100101 x 2%, Us-
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FIGURE 7.9 General IEEE floating-point structure.
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TABLE 7.5 |EEE/Industry Floating-Point Formats

Format thal Expgnent Expgnent Smallest Largest Si gniﬁcant Mantissa

Bits Bits Bias Exponent  Exponent Bits MSB

Single precision 32 8 127 -126 +127 23 Hidden
Double precision 64 11 1,023 -1022 +1023 52 Hidden
Extended precision 80 15 16,383 -16382 +16383 64 Explicit
Quadruple precision 128 15 16,383 -16382 +16383 112 Hidden

ing the single-precision format, the exponent field is calculated by adding the true exponent value to
the bias, 127, to get a final value of 131. Expressing these fields in a 32-bit word yields the floating
point value 0x41CA0000 as shown in Fig. 7.10.

Note that the sign bit is 0 and that the mantissa’s MSB has been omitted. This example is conve-
nient, because the binary representation of 25.25 is finite. However, certain numbers that have finite
representations in decimal cannot be represented as cleanly in binary, and vice versa. The number
0.23 clearly has a finite decimal representation but, when converted to binary, it must be truncated at
whatever precision limitation is imposed by the floating-point format in use. The number 0.23 can be
converted to a binary fraction by factoring out successive negative powers of 2 and expressing the re-
sult with 24 significant figures (leading Os do not count), because the single precision format sup-
ports a 24-bit mantissa,

0.0011_1010_1110_0001_0100_0111_11

This fraction is then converted to a mantissa and power-of-two representation,

1.1101_0111_0000_1010_0011_111 x 273

A single-precision floating-point exponent value is obtained by adding the bias, 127+(-3) = 124, for
a final representation of

0011_1110_0110_1011_1000_0101_0001_1111 (0x3E6B851F)

These conversions are shown only to explain the IEEE formats and almost never need to be done
by hand. Floating-point processing is performed either by dedicated hardware or software algo-
rithms. Most modern high-performance microprocessors contain on-chip floating-point units
(FPUs), and their performance is measured in floating-point operations per second (FLOPS). High-
end microprocessors can deliver several gigaFLOPS (GFLOPS) of throughput on benchmark tests.
Computers without hardware FPUs must emulate floating-point processing in software, which can
be a relatively slow process. However, if a computer needs to perform only a few hundred floating-
point operations per second, it may be worth saving the cost and space of a dedicated hardware FPU.
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FIGURE 7.10 Single-precision floating-point expression of 25.25.
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As can be readily observed from Table 7.5, very large and very small numbers can be represented
because of the wide ranges of exponents provided in the various formats. However, the representa-
tion of 0 seems rather elusive with the requirement that the mantissa always have a leading 1. Values
including 0 and infinity are represented by using the two-exponent values that are not supported for
normal numbers: 0 and 2" — 1. In the case of the single-precision format, these values are 0x00 and
OxFF.

An exponent field of 0x00 is used to represent numbers of very small magnitude, where the inter-
preted exponent value is fixed at the minimum for that format: —126 for single precision. With a 0
exponent field, the mantissa’s definition changes to a number greater than or equal to 0 and less than
1. Smaller numbers can now be represented, though with decreasing significant figures, because
magnitude is now partially represented by the significand field. For example, 101 x 27130 is ex-
pressed as 0.0101 x 2712°. Such special-case numbers are denormalized, because their mantissas
defy the normalized form of being greater than or equal to 1 and less than 2. Zero can now be ex-
pressed by setting the significand to 0 with the result that 0 x 27126 = 0. The presence of the sign bit
produces two representations of zero, positive and negative, that are mathematically identical.

Setting the exponent field to OXxFF (in single precision) is used to represent either infinity or an
undefined value. Positive and negative infinity are represented by setting the significand field to 0
and using the appropriate sign bit. When the exponent field is OxFF and the significand field is non-
zero, the representation is “not a number,” or NaN. Examples of computations that may return NaN
are 0 + 0 and oo + oo,

7.7 DIGITAL SIGNAL PROCESSORS

Microprocessor architectures can be optimized for increased efficiency in certain applications
through the inclusion of special instructions and execution units. One major class of application-spe-
cific microprocessors is the digital signal processor, or DSP. DSP entails a microprocessor mathe-
matically manipulating a sampled analog signal in a way that emulates transformation of that signal
by discrete analog components such as filters or amplifiers. To operate on an analog signal digitally,
the analog signal must be sampled by an analog-to-digital converter, manipulated, and then recon-
structed with a digital-to-analog converter. A rough equivalency of digital signal processing versus
conventional analog transformation is shown in Fig. 7.11 in the context of a simple filter.

Analog Digital Digital — Analog
Input Signal ) Ag?é?tglto Samplei DSP Samplei ?&%ﬁ?ééo Output Signal,
Converter Converter
Analog Analog
Input Signal ) II Output Signal )

Analog Filter

FIGURE 7.11 Digital signal processing.
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In this example of a lowpass filter (the amplitude of frequencies above a certain threshold are at-
tenuated), the complexity of digital sampling and a microprocessor appears unjustified. The power
of DSP comes when much more complex analog transformations are performed that would require
excessively complex analog circuit topologies. Some examples of applications in which DSPs are
used include modems, cellular telephones, and radar. While sensitive analog circuits may degrade or
fall out of calibration over time, digital instructions and sequences maintain their integrity indefi-
nitely. Major manufacturers of DSPs include Analog Devices, Motorola, and Texas Instruments.
Many books have been written on DSP algorithms and techniques, which are extremely diverse and
challenging topics.

DSP algorithms are characterized by repetitive multiplication and addition operations carried out
on the sampled data set. Multiply and addition operations are also known as multiply and accumu-
late, or MAC, operations in DSP parlance. These calculations involve the sampled data as well as
coefficients that, along with the specific operations, define the transformation being performed. For
DSP to be practical, it must be performed in real time, because the signals cannot be paused while
waiting for the microprocessor to finish its previous operation. For DSP to be economical, this
throughput must be achieved at an acceptable cost. A general-purpose microprocessor can be used to
perform DSP functions, but in most cases, the solution will not be economical. This is because the
microprocessor is designed to execute general programs for which there is less emphasis on specific
types of calculations. A DSP is designed specifically to rapidly execute multiply and accumulate op-
erations, and it contains additional hardware to efficiently fetch sequential operands from tables in
memory. Not all of the features discussed below are implemented by all DSPs, but they are pre-
sented to provide an understanding of the overall set of characteristics that differentiates a DSP from
a generic microprocessor.

At their core, DSPs contain one or more ALUs that are capable of multiplication and addition in a
single cycle. This rapid calculation capability ensures that throughput can be maintained as long as
operands are fed to the ALUs. DSPs are manufactured with a variety of ALU capabilities ranging
from 16-bit integer to IEEE floating-point support. As with a generic microprocessor, the number of
ALUs influences how many simultaneous operations can be carried out at a given time. To keep the
ALUs supplied with operands, DSPs contain hardware structures called address generators that au-
tomatically calculate the addresses of the next operands to be used in a calculation. Sampled data is
stored in a memory array, and algorithmic coefficients are stored in a separate array. Depending on
the algorithm, the array entries may not be accessed sequentially. On a generic microprocessor, the
software would have to add an arbitrary offset value to an index register each time a new operand
was desired. Additionally, as a result of fixed array sizes, the pointer eventually wraps around from
the end to the beginning, thereby requiring additional instructions to check for the wrap condition.
This index register overhead slows the computation process. Address generators offload this over-
head to hardware by associating additional registers with the index registers. These registers define
the increment to be applied to an index register following a load or store operation and also define
the start and end addresses of the memory array. Therefore, software is able to execute load/store
and calculation operations without spending time on routine pointer arithmetic.

The specialized ALU and address generation hardware within the DSP core place a high demand
on memory to maintain a steady flow of instructions and data. DSPs commonly implement a Har-
vard memory architecture in which separate buses connect to program and data memory. Most DSPs
contain separate program and data memory structures integrated onto the same chip as the DSP core
for minimal access latency to small repetitive DSP algorithm kernels. Program memory may be im-
plemented as ROM or RAM, depending on whether an external interface is available from which to
load programs. These on-chip memories may be as small as several kilobytes each for less expensive
DSPs or hundreds of kilobytes for more powerful products. To mitigate the complexity of a Harvard
architecture on the overall system design, most DSPs contain a unified external memory bus for con-
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nection to external ROM and RAM. A DSP application can boot from external ROM, then load its
kernel into on-chip program memory and perform the majority of its execution without fetching ad-
ditional instructions from external memory.

7.8 PERFORMANCE METRICS

Evaluating the throughput potential of a microprocessor or a complete computer is not as simple as
finding out how fast the microprocessor’s clock runs. System performance varies widely according
to the applications being used and the computing hardware on which they run. Applications vary
widely in their memory and I/O usage, both being properties whose performance is directly tied to
the hardware architecture. We can consider three general sections of a computer and how each influ-
ences the speed at which an application is executed: the microprocessor, the memory system, and the
1/O resources.

The usable address space of a microprocessor is an important consideration, because applications
vary in their memory needs. Some embedded applications can fit into several kilobytes of memory,
making an 8-bit computer with 64 kB or less of address space quite adequate. More complex embed-
ded applications start to look like applications that run on desktop computers. If large data arrays are
called for, or if a multitasking system is envisioned whereby multiple tasks each contain megabytes
of program memory and high-level data structures, a 32-bit microprocessor with hundreds of mega-
bytes of usable address space may be necessary. At the very high end, microprocessors have transi-
tioned to 64-bit architectures with gigabytes of directly addressable memory. A microprocessor’s
address space can always be expanded externally by banking methods, but banking comes at a pen-
alty of increased time to switch banks and the complexity of making an application aware of the
banking scheme.

Any basic type of application can run on almost any microprocessor. The question is how fast and
efficiently a particular microprocessor is able to handle the application. The instruction set is an im-
portant attribute that should be considered when designing a computer system. If a floating-point in-
tensive application is envisioned, it should probably be run on a microprocessor that contains an
FPU, and the number of floating-point execution units and their execution latencies is an important
attribute to investigate. An integer-only microprocessor could most likely run the floating-point ap-
plication by performing software emulation of floating-point operations, but its performance would
probably be rather dismal. For smaller-scale computers and applications, these types of questions are
still valid. If an application needs to perform frequent bit manipulations for testing and setting vari-
ous flags, a microprocessor that directly supports bit manipulation may be better suited than a ge-
neric architecture with only logical AND/OR type instructions.

Once a suitable instruction set has been identified, a microprocessor’s ability to actually fetch and
execute the instructions can become an important part of system performance. On smaller systems,
there are few variables in instruction fetch and execution: each instruction is fetched and executed
sequentially. Superscalar microprocessors, however, must include effective instruction analysis logic
to properly utilize all the extra logic that has been put onto the chip and that you are paying for. If the
multiple execution units cannot be kept busy enough of the time, your application will not enjoy the
benchmark performance claims of the manufacturer. Vendors of high-performance microprocessors
devote much time to instruction profiling and analysis of instruction sequences. Their results im-
prove performance on most applications, but there are always a few niche applications that have un-
common properties that can cause certain microprocessors to fall off in performance. It pays to keep
in mind that common industry benchmarks of microprocessor performance do not always tell the
whole story. These tests have been around for a long time, and microprocessor designers have
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learned how to optimize their hardware to perform well on the standard benchmarks. An application
that behaves substantially differently from a benchmark test may not show the same level of perfor-
mance as advertised by the manufacturer.

The microprocessor’s memory interface is a critical contributor to its performance. Whether a
small 8-bit microprocessor or a 64-bit behemoth, the speed with which instructions can be fetched
and data can be loaded and stored affects the execution time of an application. The necessary band-
width of a memory interface is relative and is proportional to the sum of the instruction and data
bandwidths of an application. From the instruction perspective, it is clear that the microprocessor
needs to keep itself busy with a steady stream of instructions. Data bandwidth, however, is very
much a function of the application. Some applications may perform frequent load/store operations,
whereas others may operate more on data retained within the microprocessor’s register set. To the
extent that load/store operations detract from the microprocessor’s ability to fetch and execute new
instructions, they will reduce overall throughput.

Clock frequency becomes a defining attribute of a microprocessor once its instruction set, exe-
cution capabilities, and memory interface are understood from a performance perspective. Without
these supporting attributes, clock speed alone does not define the capabilities of a microprocessor.
A 500-MHz single-issue, or nonsuperscalar, microprocessor could be easily outperformed by a
200-MHz four-issue superscalar design. Additionally, there may be multiple relevant clocks to con-
sider in a complex microprocessor. Microprocessors whose internal processing cores are decoupled
from the external memory bus by an integrated cache are often specified with at least two clocks:
the core clock and the bus interface clock. It is necessary to understand the effect of both clocks on
the processing core’s throughput. A fast core can be potentially starved for instructions and data by
a slow interface. Once a microprocessor’s resources have been quantified, clock frequency be-
comes a multiplier to determine how many useful operations per second can be expected. Metrics
such as instructions per second (IPS) or floating-point operations per second (FLOPS) are specified
by multiplying the average number of instructions executed per cycle by how many cycles occur
each second. Whereas high-end microprocessors were once measured in MIPS and MFLOPS,
GIPS and GFLOPS performance levels are now attainable.

As already mentioned, memory bandwidth and, consequently, memory architecture hold key
roles in determining overall system performance. Memory system architecture encompasses all
memory external to the microprocessor’s core, including any integrated caches that it may contain.
When dealing with an older-style microprocessor with a memory interface that does not stress cur-
rent memory technologies, memory architecture may not be subject to much variability and may not
be a bottleneck at all. It is not hard to find flash, EPROM, and SRAM devices today with access
times of 50 ns and under. A moderately sized memory array constructed from these components
could provide an embedded microprocessor with full-speed random access as long as the memory
transaction rate is 20 MHz or less. Many 8-, 16-, and even some 32-bit embedded microprocessors
can fit comfortably within this performance window. As such, computers based on these devices can
have simple memory architectures without suffering performance degradation.

Memory architecture starts to get more complicated when higher levels of performance are de-
sired. Once the microprocessor’s program and data fetch latency becomes faster than main mem-
ory’s random access latency, caching and bandwidth improvement techniques become critical to
sustaining system throughput. Random access latency is the main concern. A large memory array
can be made to deliver adequate bandwidth given a sufficient width. As a result of the limited operat-
ing frequency of SDRAM devices, high-end workstation computers have been known to connect
multiple memory chips in parallel to create 256-bit and even 512-bit wide interfaces. Using 512 Mb
DDR SDRAMs, each organized as 32M X 16 and running at 167 MHz, 16 devices in parallel would
yield a 1-GB memory array with a burst bandwidth of 167 MHz X 2 words/hertz X 256 bits/word =
85.5 Gbps! This is a lot of bandwidth, but relative to a microprocessor core that operates at 1 GHz or
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more with a 32- or 64-bit data path, such a seemingly powerful memory array may just barely be
able to keep up.

While bandwidth can be increased by widening the interface, random access latency does not go
away. Therefore, there is more to a memory array than its raw size. The bandwidth of the array,
which is the product of its interface frequency and width, and its latency are important metrics in un-
derstanding the impact of cache misses, especially when dealing with applications that exhibit poor
locality.

Caching reduces the negative effect of high random access latencies on a microprocessor’s
throughput. However, caches and wide arrays cannot completely balance the inequality between the
bandwidth and latency that the microprocessor demands and that which is provided by SDRAM tech-
nology. Cache size, type, and latency and main memory bandwidth are therefore important metrics
that contribute to overall system performance. An application’s memory characteristics determine
how costly a memory architecture is necessary to maintain adequate performance. Applications that
operate on smaller sets of data with higher degrees of locality will be less reliant on a large cache and
fast memory array, because they will have fewer cache misses. Those applications with opposite
memory characteristics will increase the memory architecture’s effect on the computer’s overall per-
formance. In fact, by the nature of the application being run, caching effects can become more signif-
icant than the microprocessor’s core clock frequency. In some situations, a 500-MHz microprocessor
with a 2-MB cache can outperform a 1-GHz microprocessor with a 256-kB cache. It is important to
understand these considerations because money may be better spent on either a faster microprocessor
or a larger cache according to the needs of the intended applications.

1/0 performance affects system throughput in two ways: the latency of executing transactions and
the degree to which such execution blocks the microprocessor from performing other work. In a
computer in which the microprocessor operates with a substantially higher bandwidth than individ-
ual I/O interfaces, it is desirable to decouple the microprocessor from the slower interface as much
as possible. Most I/O controllers provide a natural degree of decoupling. A typical UART, for exam-
ple, absorbs one or more bytes in rapid succession from a microprocessor and then transmits them at
a slower serial rate. Likewise, the UART assembles one or more whole incoming bytes that the mi-
croprocessor can read at an instantaneous bandwidth much higher than the serial rate. Network and
disk adapters often contain buffers of several kilobytes that can be rapidly filled or drained by the
microprocessor. The microprocessor can then continue with program execution while the adapter
logic handles the data at whatever lower bandwidth is inherent to the physical interface.

Inherent decoupling provided by an I/O controller is sufficient for many applications. When deal-
ing with very I/O-intensive applications, such as a large server, multiple I/O controllers may interact
with each other and memory simultaneously in a multimaster bus configuration. In such a context,
the microprocessor sets up block data transfers by programming multiple I/O and DMA controllers
and then resumes work processing other tasks. Each I/0 and DMA controller is a potential bus mas-
ter that can arbitrate for access to the memory system and the I/O bus (if there is a separate I/O bus).
As the number of simultaneous bus masters increases, contention can develop, which may cause per-
formance degradation resulting from excessive waiting time by each potential bus master. This con-
tention can be reduced by modifying the I/O bus architecture. A first step is to decouple the I/O bus
from the memory bus into one or more segments, enabling data transfers within a given I/O segment
to proceed without conflicting with a memory transfer or one contained within other I/O segments.
PCI is an example of such a solution. At a more advanced level, the I/O system can be turned into a
switched network in which individual I/O controllers or small segments of I/O controllers are con-
nected to a dedicated port on an I/O switch that enables each port to communicate with any other
port simultaneously insofar as multiple ports do not conflict for access to the same port. This is a
fairly expensive solution that is implemented in high-end servers for which I/O performance is a key
contributor to overall system throughput.
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The question of how fast a computer performs does not depend solely on how many megahertz
the microprocessor runs at or how much RAM it has. Performance is highly application specific and
is dominated by how many cycles per second the microprocessor is kept busy with useful instruc-
tions and data.



CHAPTER 8

High-Performance Memory
Technologies

Memory is an interesting and potentially challenging portion of a digital system design. One of the
benefits of decades of commercial solid-state memory development is the great variety of memory
products available for use. Chances are that there is an off-the-shelf memory product that fits your
specific application. A downside to the modern, ever-changing memory market is rapid obsolescence
of certain products. DRAM is tied closely to the personal computer market. The best DRAM values
are those devices that coincide with the sweet spot in PC memory configurations. As the high-vol-
ume PC market moves on to higher-density memory ICs, that convenient DRAM that you used in
your designs several years ago may be discontinued so that the manufacturer can retool the factory
for parts that are in greater demand.

Rapid product development means that memory capabilities improve dramatically each year.
Whether it’s higher density or lower power that an application demands, steady advances in technol-
ogy put more tools at an engineer’s disposal. SRAM and flash EPROM devices have more stable
production lives than DRAM. In part, this is because they are less dependent on the PC market,
which requires ever increasing memory resources for ever more complex software applications.

Memory is a basic digital building block that is used for much more than storing programs and
data for a microprocessor. Temporary holding buffers are used to store data as it is transferred from
one interface to another. There are many situations in networking and communication systems where
a block of data arrives and must be briefly stored in a buffer until the logic can figure out exactly
what to do with it. Lookup tables are another common use for memory. A table may store precom-
puted terms of a complex calculation so that a result can be rapidly determined when necessary. This
chapter discusses the predominant synchronous memory technologies, SDRAM and SSRAM, and
closes with a presentation of CAM, a technology that is part RAM and part logic.

No book can serve as an up-to-date reference on memory technology for long, as a result of the
industry’s rapid pace. This chapter discusses technologies and concepts that are timeless, but specif-
ics of densities, speeds, and interface protocols change rapidly. Once you have read and understood
the basics of high-performance memory technologies, you are encouraged to browse through the lat-
est manufacturers’ data sheets to familiarize yourself with the current state of the art. Corporations
such as Cypress, Hynix, Infineon, Micron, NEC, Samsung, and Toshiba provide detailed data sheets
on their web sites that are extremely useful for self-education and selecting the right memory device
to suit your needs.

8.1 SYNCHRONOUS DRAM

As system clock frequencies increased well beyond 50 MHz, conventional DRAM devices with
asynchronous interfaces became more of a limiting factor in overall system performance. Asynchro-
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nous DRAMs have associated pulse width and signal-to-signal delay specifications that are tied
closely to the characteristics of their internal memory arrays. When maximum bandwidth is desired
at high clock frequencies, these specifications become difficult to meet. It is easier to design a sys-
tem in which all interfaces and devices run synchronously so that interface timing becomes an issue
of meeting setup and hold times, and functional timing becomes an issue of sequencing signals on
discrete clock edges.

Synchronous DRAM, or SDRAM, is a twist on basic asynchronous DRAM technology that has
been around for more than three decades. SDRAM can essentially be considered as an asynchronous
DRAM array surrounded by a synchronous interface on the same chip, as shown in Fig. 8.1. A key
architectural feature in SDRAMEs is the presence of multiple independent DRAM arrays—usually
either two or four banks. Multiple banks can be activated independently and their transactions inter-
leaved with those of other banks on the IC’s synchronous interface. Rather than creating a bottle-
neck, this functionality allows higher efficiency, and therefore higher bandwidth, across the
interface. One factor that introduces latency in random accesses across all types of DRAM is the row
activation time: a row must first be activated before the column address can be presented and data
read or written. An SDRAM allows a row in one bank to be activated while another bank is actively
engaged in a read or write, effectively hiding the row activation time in the other bank. When the
current transaction completes, the previously activated row in the other bank can be called upon to
perform a new transaction without delay, increasing the device’s overall bandwidth.

The synchronous interface and internal state logic direct interleaved multibank operations and
burst data transfers on behalf of an external memory controller. Once a transaction has been started,
one data word flows into or out of the chip on every clock cycle. Therefore, an SDRAM running at
100 MHz has a theoretical peak bandwidth of 100 million words per second. In reality, of course,
this number is somewhat lower because of refresh and the overhead of beginning and terminating
transactions. The true available bandwidth for a given application is very much dependent on that
application’s data transfer patterns and the capabilities of its memory controller.

Rather than implementing a DRAM-style asynchronous interface, the SDRAM’s internal state
logic operates on discrete commands that are presented to it. There are still familiar sounding signals
such as RAS* and CAS¥*, but they function synchronously as part of other control signals to form
commands rather than simple strobes. Commands begin and terminate transactions, perform refresh
operations, and configure the SDRAM for interface characteristics such as default burst length.

SDRAM can provide very high bandwidth in applications that exploit the technology’s burst
transfer capabilities. A conventional computer with a long-line cache subsystem might be able to
fetch 256 words in as few as 260 cycles: 98.5 percent efficiency! Bursts amortize a fixed number of
overhead cycles across the entire transaction, greatly improving bandwidth. Bandwidth can also be
improved by detecting transactions to multiple banks and interleaving them. This mode of operation
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FIGURE 8.1 Basic SDRAM architecture.
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allows some new burst transfers to be requested prior to the current burst ending, thereby hiding the
initial startup latency of the subsequent transaction.

Most of the input signals to the state logic shown in Fig. 8.1 combine to form the discrete com-
mands listed in Table 8.1. A clock enable, CKE, must be high for normal operation. When CKE is
low, the SDRAM enters a low-power mode during which data transactions are not recognized. CKE
can be tied to logic 1 for applications that are either insensitive to power savings or require continual
access to the SDRAM. Interface signals are sampled on the rising clock edge. Many SDRAM de-
vices are manufactured in multibyte data bus widths. The data mask signals, DQM[ ], provide a con-
venient way to selectively mask individual bytes from being written or being driven during reads.
Each byte lane has an associated DQM signal, which must be low for the lane to be written or to en-
able the lane’s tri-state buffers on a read.

TABLE 8.1 Basic SDRAM Command Set

Command CS* RAS* CAS* WE* Address AP/A10

Bank activate L L H H Bank, row Al10
Read L H L H Bank, column L
Read with auto-precharge L H L H Bank, column H
Write L H L L Bank, column L
Write with auto-precharge L H L L Bank, column H
No operation L H H H X X
Burst terminate L H H L X X
Bank precharge L L H L X L
Precharge all banks L L H L X H
Mode register set L L L L Configuration  Configuration
Auto refresh L L L H X X
Device deselect H X X X X X

Some common functions include activating a row for future access, performing a read, and pre-
charging a row (deactivating a row, often in preparation for activating a new row). For complete de-
scriptions of SDRAM interface signals and operational characteristics, SDRAM manufacturers’ data
sheets should be referenced directly. Figure 8.2 provides an example of how these signals are used to
implement a transaction and serves as a useful vehicle for introducing the synchronous interface.
CS* and CKE are assumed to be tied low and high, respectively, and are not shown for clarity.

The first requirement to read from an SDRAM is to activate the desired row in the desired bank.
This is done by asserting an activate (ACTV) command, which is performed by asserting RAS* for
one cycle while presenting the desired bank and row addresses. The next command issued to con-
tinue the transaction is a read (RD). However, the controller must wait a number of cycles that trans-
lates into the DRAM array’s row-activate to column-strobe delay time. The timing characteristics of
the underlying DRAM array is expressed in nanoseconds rather than clock cycles. Therefore, the in-
teger number of delay cycles is different for each design, because it is a function of the clock period
and the internal timing specification. If, for example, an SDRAM’s RAS* to CAS* delay is 20 ns,
and the clock period is 20 ns or slower, an RD command could be issued on the cycle immediately
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FIGURE 8.2 Four-word SDRAM burst read (CL =2, BL =4).

following the ACTV. Figure 8.2 shows an added cycle of delay, indicating a clock period less than
20 ns but greater than 10 ns (a 50-100 MHz frequency range). During idle cycles, a no-operation
(NOP) command is indicated by leaving RAS*, CAS*, and WE* inactive.

The RD command is performed by asserting CAS* and presenting the desired bank select and
column address along with the auto-precharge (AP) flag. A particular bank must be selected, be-
cause the multibank SDRAM architecture enables reads from any bank. AP is conveyed by address
bit 10 during applicable commands, including reads and writes. Depending on the type of command,
AP has a different meaning. In the case of a read or write, the assertion of AP tells the SDRAM to
automatically precharge the activated row after the requested transaction completes. Precharging a
row returns it to a quiescent state and also clears the way for another row in the same bank to be ac-
tivated in the future. A single DRAM bank cannot have more than one row active at any given time.
Automatically precharging a row after a transaction saves the memory controller from explicitly pre-
charging the row after the transaction. If, however, the controller wants to take full advantage of the
SDRAM’s back-to-back bursting capabilities by leaving the same row activated for a subsequent
transaction, it may be worthwhile to let the controller decide when to precharge a row. This way, the
controller can quickly reaccess the same row without having to issue a redundant ACTV command.
AP also comes into play when issuing separate precharge commands. In this context, AP determines
if the SDRAM should precharge all of its banks or only the bank selected by the address bus.

Once the controller issues the RD command (it would be called RDA if AP is asserted to enable
auto-precharge), it must wait a predetermined number of clock cycles before the data is returned by
the SDRAM. This delay is known as CAS latency, or CL. SDRAMSs typically implement two latency
options: two and three cycles. The example in Fig. 8.2 shows a CAS latency of two cycles. It may
sound best to always choose the lower latency option, but as always, nothing comes for free. The
SDRAM trades off access time (effectively, tcq) for CAS latency. This becomes important at higher
clock frequencies where fast tq is crucial to system operation. In these circumstances, an engineer
is willing to accept one cycle of added delay to achieve the highest clock frequency. For example, a
Micron Technology MT48LC32M8A2-7E 256-Mb SDRAM can operate at 143 MHz with a CAS la-
tency of three cycles, but only 133 MHz with a CAS latency of two cycles.” One cycle of additional
delay will be more than balanced out by a higher burst transfer rate. At lower clock rates, it is often
possible to accept the slightly increased access time in favor of a shorter CAS latency.

* 256MSDRAM_D.p65-RevD; Pub. 1/02, Micron Technologies, 2001, p. 11.
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Once the CAS latency has passed, data begins to flow on every clock cycle. Data will flow for as
long as the specified burst length. In Fig. 8.2, the standard burst length is four words. This parameter
is configurable and adds to the flexibility of an SDRAM. The controller is able to set certain param-
eters at start-up, including CAS latency and burst length. The burst length then becomes the default
unit of data transfer across an SDRAM interface. Longer transactions are built from multiple back-
to-back bursts, and shorter transactions are achieved by terminating a burst before it has completed.
SDRAMs enable the controller to configure the standard burst length as one, two, four, or eight
words, or the entire row. It is also possible to configure a long burst length for reads and only single-
word writes. Configuration is performed with the mode register set (MRS) command by asserting
the three primary control signals and driving the desired configuration word onto the address bus.

As previously mentioned, DQM signals function as an output disable on a read. The DQM bus (a
single signal for SDRAMs with data widths of eight bits or less) follows the CAS* timing and,
therefore, leads read data by the number of cycles defined in the CAS latency selection. The preced-
ing read can be modified as shown in Fig. 8.3 to disable the two middle words.

In contrast, write data does not have an associated latency with respect to CAS*. Write data be-
gins to flow on the same cycle that the WR/WRA command is asserted, as shown in Fig. 8.4. This
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FIGURE 8.3 Four-word SDRAM burst read with DQM disable (CL = 2, BL = 4).
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FIGURE 8.4 Four-word SDRAM burst write with DQM masking (BL = 4).
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example also shows the timing of DQM to prevent writing the two middle words. Since DQM fol-
lows the CAS* timing, it is also directly in line with write data. DQM is very useful for writes, espe-
cially on multibyte SDRAM devices, because it enables the uniform execution of a burst transfer
while selectively preventing the unwanted modification of certain memory locations. When working
with an SDRAM array composed of byte-wide devices, it would be possible to deassert chip select
to those byte lanes that you don’t want written. However, there is no such option for multibyte de-
vices other than DQM.

When the transaction completes, the row is left either activated or precharged, depending on the
state of AP during the CAS* assertion. If left activated, the controller may immediately issue a new
RD or WR command to the same row. Alternatively, the row may be explicitly precharged. If auto-
matically precharged, a new row in that bank may be activated in preparation for other transactions.
A new row can be activated immediately in most cases, but attention must be paid to the SDRAM’s
specifications for minimum times between active to precharge commands and active to active com-
mands.

After configuring an SDRAM for a particular default burst length, it will expect all transactions to
be that default length. Under certain circumstances, it may be desirable to perform a shorter transac-
tion. Reads and writes can be terminated early by either issuing a precharge command to the bank
that is currently being accessed or by issuing a burst-terminate command. There are varying restric-
tions and requirements on exactly how each type of transaction is terminated early. In general, a read
or write must be initiated without automatic precharge for it to be terminated early by the memory
controller.

The capability of performing back-to-back transactions has been already mentioned. In these situ-
ations, the startup latency of a new transaction can be accounted for during the data transfer phase of
the previous transaction. An example of such functionality is shown in Fig. 8.5. This timing diagram
uses a common SDRAM presentation style in which the individual control signals are replaced by
their command equivalent. The control signals are idle during the data portion of the first transac-
tion, allowing a new request to be asserted prior to the completion of that transaction. In this exam-
ple, the controller asserts a new read command for the row that was previously activated. By
asserting this command one cycle (CAS latency minus one) before the end of the current transaction,
the controller guarantees that there will be no idle time on the data bus between transactions. If a the
second transaction was a write, the assertion of WR would come the cycle after the read transaction
ended to enable simultaneous presentation of write data in phase with the command. However, when
following a write with a read, the read command cannot be issued until after the write data com-
pletes, causing an idle period on the data bus equivalent to the selected CAS latency.

This concept can be extended to the general case of multiple active banks. Just as the controller is
able to assert a new RD in Fig. 8.5, it could also assert an ACTV to activate a different bank. There-
fore, any of an SDRAM’s banks can be asserted independently during the idle command time of an
in-progress transaction. When these transactions end, the previously activated banks can be seam-
lessly read or written in the same manner as shown. This provides a substantial performance boost
and can eliminate most overhead other than refresh in an SDRAM interface.

YAV AW A AW AV A AV AVAVAVAVAWA

(command):x ACTVX NOP X RD, X NOP X RD, X NOP
Address :X BR X X XB,AP,CXX X XB,AP,CYX X

Data

< DO, X D1y X D2, X D3, X Do, X D1, X D2, X D3, >7

FIGURE 8.5 Back-to-back read transactions (CL =2, BL = 4).
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Periodic refresh is a universal requirement of DRAM technology, and SDRAMs are no exception.
An SDRAM device may contain 4,096 rows per bank (or 8,192, depending on its overall size) with
the requirement that all rows be refreshed every 64 ms. Therefore, the controller has the responsibil-
ity of ensuring that 4,096 (or 8,192) refresh operations are carried out every 64 ms. Refresh com-
mands can be evenly spaced every 15.625 ps (or 7.8125 ps), or the controller might wait until a
certain event has passed and then rapidly count out 4,096 (or 8,192) refresh commands. Different
SDRAM devices have slightly differing refresh requirements, but the means of executing refresh op-
erations is standardized. The first requirement is that all banks be precharged, because the auto-re-
fresh (REF) command operates on all banks at once. An internal refresh counter keeps track of the
next row across each bank to be refreshed when a REF command is executed by asserting RAS* and
CAS* together.

It can be easy to forget the asynchronous timing requirements of the DRAM core when designing
around an SDRAM’s synchronous interface. After a little time spent studying state transition tables
and command sets, the idea that an asynchronous element is lurking in the background can become
an elusive memory. Always be sure to verify that discrete clock cycle delays conform to the nanosec-
ond timing specifications that are included in the SDRAM data sheet. The tricky part of these timing
specifications is that they affect a system differently, depending on the operating frequency. At
25 MHz, a 20-ns time delay is less than one cycle. However, at 100 MHz, that delay stretches to two
cycles. Failure to recognize subtle timing differences can cause errors that may manifest themselves
as intermittent data corruption problems, which can be very time consuming to track down.

SDRAM remains a mainstream memory technology for PCs and therefore is manufactured in
substantial volumes by multiple manufacturers. The SDRAM market is a highly competitive one,
with faster and denser products appearing regularly. SDRAMs are commonly available in densities
ranging from 64 to 512 Mb in 4, 8, and 16-bit wide data buses. Older 16-Mb parts are becoming
harder to find. For special applications, 32-bit wide devices are available, though sometimes at a
slight premium as a result of lower overall volumes.

8.2 DOUBLE DATA RATE SDRAM

Conventional SDRAM devices transfer one word on the rising edge of each clock cycle. At any
given time, there is an upper limit on the clock speed that is practical to implement for a board-level
interface. When this level of performance proves insufficient, double data rate (DDR) SDRAM de-
vices can nearly double the available bandwidth by transferring one word on both the rising and fall-
ing edges of each clock cycle. In doing so, the interface’s clock speed remains constant, but the data
bus effectively doubles in frequency. Functionally, DDR and single data rate (SDR) devices are very
similar. They share many common control signals, a common command set, and a rising-edge-only
control/address interface. They differ not only in the speed of the data bus but also with new DDR
data control signals and internal clocking circuitry to enable reliable circuit design with very tight
timing margins. Figure 8.6 shows the DDR SDRAM structure.

A DDR SDRAM contains an internal data path that is twice the width of the external data bus.
This width difference allows the majority of the internal logic to run at a slower SDR frequency
while delivering the desired external bandwidth with half as many data pins as would be required
with a conventional SDRAM. Rather than supplying a 2x clock to the SDRAM for its DDR inter-
face, a pair of complementary clocks, CLK and CLK¥*, are provided that are 180° out of phase with
each other. Input and output signals are referenced to the crossings of these two clocks, during which
a rising edge is always present in either clock. Commands and addresses are presented to a DDR
SDRAM as they would be for an SDR device: on the rising edge of CLK. It is not necessary to dou-
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FIGURE 8.6 Basic DDR SDRAM architecture.

ble the speed of the control interface, because an SDRAM is almost always used in burst mode
where the rate of commands is significantly less than the rate of data transferred.

The data interface contains a mask that has been renamed to DM and a new data strobe signal,
DQS. DM functions as DQM does in an SDR device but operates at DDR to match the behavior of
data. DQS is a bidirectional clock that is used to help time the data bus on both reads and writes. On
writes, DQS, DM, and data are inputs and DQS serves as a clock that the SDRAM uses to sample
DM and data. Setup and hold times are specified relative to both the rising and falling edges of DQS,
so DQS transitions in the middle of the data valid window. DQS and data are outputs for reads and
are collectively timed relative to CLK/CLK*. DQS transitions at roughly the same time as data and
so it transitions at the beginning of the data valid window.

When reading, 2n bits are fetched from the DRAM array on the CLK domain and are fed into a
2:1 multiplexer that crosses the SDR/DDR clock domain. In combination with a DQS generator, the
multiplexer is cycled at twice the CLK frequency to yield a double rate interface. This scheme is il-
lustrated schematically in Fig. 8.7. Because DQS and data are specified relative to CLK/CLK* on
reads, the memory controller can choose to clock its input circuitry with any of the strobe or clock
signals according to the relevant timing specifications. Writes function in a reverse scheme by stack-
ing two n-bit words together to form a 2n-bit word in the DRAM’s CLK domain. Two registers are
each clocked alternately on the rising and falling edges of DQS, and their contents are then trans-
ferred to a shallow write FIFO. A FIFO is necessary to cross from the DQS to CLK domains reliably
as a result of skew between the two signals.

Tight timing specifications characterize DDR SDRAM because of its high-speed operation: a
333-MHz data rate with a 167-MHz clock is not an uncommon operating frequency. For reliable op-
eration, careful planning must be done at the memory controller and in printed circuit board design
to ensure that data is captured in as little as 1.5 ns (for a 333/167-MHz DDR SDRAM). These high-
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FIGURE 8.7 SDR-to-DDR data conversion scheme.
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speed data buses are treated as source-synchronous rather than synchronous. A source-synchronous
bus is one where a local clock is generated along with data and routed on the circuit board with the
data signals. The clock and data signals are length-matched to a certain tolerance to greatly reduce
the skew between all members of the bus. In doing so, the timing relationships between clock and
data are preserved almost exactly as they are generated by the sending device. A source-synchronous
bus eliminates system-level skew problems that result from clocks and data signals emanating from
different sources and taking different paths to their destinations. Treating the DDR SDRAM data bus
source-synchronously as shown in Fig. 8.7 guarantees that the data valid window provided by the
driver will be available to the load. Likewise, because DQS is bidirectional, the SDRAM will obtain
the same timing benefit when accepting write-data from the memory controller.

Methods vary across DDR SDRAM implementations. While the SDRAM requires a fixed rela-
tionship between DQS and data for writes, the memory controller may use either DQS or a source-
synchronous version of CLK with which to time read data. DQS must be used for the fastest applica-
tions, because it has a closer timing relationship relative to data. The usage of DQS adds some com-
plexity, because it is essentially a bidirectional clock. There are also multiple DQS signals in most
applications, because one DQS is present for every eight bits of data.

Some applications may be able to use CLK/CLK* to register read data. The memory controller
typically drives CLK/CLK* to the SDRAM along with address and control signals in a source-syn-
chronous fashion. To achieve a source-synchronous read data bus, a skewed version of CLK/CLK*
is necessary that is in phase with the returned data so that the memory controller sees timing as
shown in Fig. 8.7. This skew is the propagation delay through the wires that carry the clocks from
the memory controller to the SDRAM. These skews are illustrated in Fig. 8.8a, and the associated
wiring implementation is shown in Fig. 8.8b. CLK” and CLK"* are the clocks that have been skewed
by propagation delay through the wiring. A source-synchronous read-data bus is achieved by gener-
ating a second pair of clocks that are identical to the main pair and then by matching their lengths to
the sum of the wire lengths to and from the SDRAM. The first length component cancels out the
propagation delay to the SDRAM, and the second length component maintains timing alignment, or
phase, with the data bus.

With the exception of a faster data bus, a DDR SDRAM functions very much like a conventional
SDRAM. Commands are issued on the rising edge of CLK and are at a single data rate. Because of
the internal 2n-bit architecture, a minimum burst size of two words is supported. The other burst
length options are four or eight words. To read or write a single word, DM must be used to mask or
inhibit the applicable word. Two CAS latency options are supported for reads: 2 and 2.5 cycles. Two
CL =2 reads are shown in Fig. 8.9. DQS transitions from input (tri-state) to output one cycle (1.5 cy-
cles for CL = 2.5) after the assertion of the read command. It is driven low for one full cycle (two
DDR periods) and then transitions on each half of CLK for the duration of the burst, after which it

CLK/CLK* (length=L)

Data (length=L)

X X X X Memory DDR

Controller | CLK/CLK™ (length=L_+L) SDRAM
D S G —

cwemc [\ [\ <

(a) (b)

FIGURE 8.8 Source-synchronous read data with CLK/CLK*.
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:X ACTV X NOP X RD, X NOP X RD,, X NOP
:X B,R X X X B,AP,Cy X X X B,AP,C, X X
DQS \_/—\_/—\_/_\_/_\_/_

Data

FIGURE 8.9 Consecutive DDR SDRAM reads (CL =2, BL =4).

returns to tri-state. Reads may be executed consecutively to achieve high bus utilization by hiding
row activation and CAS latency delays, as with an SDR SDRAM.

Unlike an SDR SDRAM, writes are subject to a brief latency between assertion of the write com-
mand and delivery of write data. The first write data is presented on the first rising edge of DQS fol-
lowing the write command. DQS is not driven to the SDRAM until just after the write command is
presented. This restriction prevents a collision between the SDRAM and the memory controller
when a write follows a read by giving time for the SDRAM to turn off its DQS driver. Following the
write, DQS can remain driven until a read command is asserted, at which time the SDRAM will
need to drive the strobe. Write timing is shown in Fig. 8.10. Writes may also be executed consecu-
tively to more effectively utilize the device interface.

When transitioning between reading and writing, minimum delays are introduced in a situation
unlike that of a conventional SDRAM. Because write data lags the write command by a clock cycle,
a cycle is lost when following a read with a write, because the write command cannot be issued until
the read burst is complete (as with an SDR SDRAM). Going the other way, an explicit single-cycle
delay is imposed on issuing a read command following a write burst, thereby incurring a data bus
idle time equal to the selected CAS latency plus the single cycle write/read delay.

DDR SDRAM has taken the place of conventional SDRAM in many PC applications. Like SDR
SDRAM, DDR devices are commonly available in densities ranging from 64 to 512 Mb in 4-, 8-,
and 16-bit wide data buses. Thirty-two-bit devices are also available, although they are not the sweet
spot for the industry as a whole.

8.3 SYNCHRONOUS SRAM

Like DRAM, high-performance SRAM transitioned to a synchronous interface to gain performance
improvements. Several basic types of synchronous SRAM (SSRAM) devices appeared and became

(command):x ACTV X NOP X WRy X NOP X WRy X NOP
Address :X B,R X X XB,AP,CXX X XB,AP,CYX X

Data

FIGURE 8.10 Consecutive DDR SDRAM writes (BL = 4).
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standard offerings of numerous semiconductor vendors. SSRAMs are well suited for applications
that require rapid access to random memory locations, as compared to SDRAMs that are well suited
to long bursts from sequential memory locations. Many SSRAM devices can be sourced from multi-
ple vendors with identical pinouts and functionality. An SRAM is made synchronous by registering
its interface. Two basic types of SSRAMs are flow-through and pipelined. Flow-through devices reg-
ister only the input signals and are therefore able to return read data immediately after the requested
address is registered on a rising clock edge. Pipelined devices register both the input and output sig-
nals, incurring an added cycle of latency when returning read data. These differences are illustrated
in Fig. 8.11.

As with SDRAM, there is a trade-off between access latency and clock speed. Pipelined devices
can run at substantially faster clock frequencies than flow-through devices, because the SSRAM has
a full clock cycle to decode the presented address once it is registered. In applications where clock
speeds are under 100 MHz, flow-through SSRAMs may be preferable because of their lower latency.
However, a flow-through device exhibits relatively high clock-to-data-valid timing, because the out-
puts are not registered. This large tc( directly impacts the overall memory system design by placing
tighter constraints on the interconnection delays and input register performance of the device that is
reading from the SSRAM. For example, a Micron Technology MT55L512L18F-10 8-Mb flow-
through SSRAM runs up to 100 MHz and exhibits a 7.5 ns access delay and a 3.0 ns data hold time
after the next clock edge.” At a 10-ns clock period, there are 2.5 ns of setup budget to the next clock
edge for an input register that is sampling the returned data. This 2.5-ns budget must account for in-
terconnect delay, clock skew, and the setup time of the input flops. Alternatively, the 3 ns of hold
time can help increase this timing budget, but special considerations must then be made to shift the
data valid window of the input flops more in favor of hold time and less in favor of setup time. This
is not always practical. In contrast, Micron’s MT55L512L18P-10 8-Mb pipelined SSRAM is rated
for the same 100-MHz clock but exhibits a 5.0-ns clock-to-valid delay and a 1.5-ns hold time." For
the added cycle of latency, the setup budget increases to a much more comfortable 5 ns with the
same 10-ns clock period. Pipelining also allows the SSRAM to run at a much faster clock frequency:
166 MHz versus 100 MHz for the 8-Mb flow-through SSRAM. By using a pipelined SSRAM, you
can choose between more favorable timing margins or increased memory bandwidth over flow-
through technology.

An application in which SSRAM devices are used is a cache, which typically performs burst
transactions. Caches burst data a line at a time to improve main memory bandwidth. Standard SS-
RAM devices support four-word bursts by means of a loadable two-bit internal counter to assist

cs* \ / \

L —

Address Valid X \ X
Flow-Through Data ( Valid l
Pipelined Data Valid /\

FIGURE 8.11 Flow-through vs. pipelined SSRAM reads.

* MTS5L512L18F_2.p65-Rev. 6/01, Micron Technologies, 2001, p. 25.
T MT55L512L18P_2.p65-Rev. 6/01, Micron Technologies, 2001, p. 25.
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caches and other applications that operate using bursts. An SSRAM contains one or more control
signals that defines whether a memory cycle uses an externally supplied address or an internally
latched address and counter. When a burst transfer is desired, the memory controller asserts a control
signal to load the internal burst counter and then directs the SSRAM to use that incrementing count
value for the three subsequent cycles. Bursts are supported for both reads and writes. The two-bit
burst counter can be configured in one of two increment modes: linear and interleaved. Linear incre-
ment is a simple binary counter that wraps from a terminal value of 11 back to 00. Bursts can be ini-
tiated at any address, so, if the burst begins at A[1:0] = 10, the counter will count 10, 11, 00, and 01
to complete the burst. Interleaved mode forces the data access pattern into two pairs where each pair
contains an odd and even address with A[1] held constant as shown in Table 8.2. Interleaving can
benefit implementations that access words in specific pairs.

TABLE 8.2 SSRAM Interleaved Burst Addressing

Initial Value of A[1:0] Second Address Third Address Fourth Address
Supplied Externally Generated Internally ~ Generated Internally ~ Generated Internally
00 01 10 11
01 00 11 10
10 11 00 01
11 10 01 00

Flow-through and pipelined SSRAMs fall into two more categories: normal and zero-bus turn-
around ®(ZBT)". Normal SSRAMs exhibit differing read and write latencies: write data can be as-
serted on the same cycle as the address and write enable signals, but reads have one to two cycles of
latency, depending on the type of device being used. Under conditions of extended reads or writes,
the SSRAM can perform a transfer each clock cycle, because the latency of sequential commands
(all reads or all writes) remains constant. When transitioning from writing to reading, however, the
asymmetry causes idle time on the SSRAM data bus because of the startup latency of a read com-
mand. The read command is issued in the cycle immediately following the write, and read data be-
comes available one or two cycles later. If an application performs few bus turnarounds because its
tends to separately execute strings of reads followed by writes, the loss of a few cycles here and
there is probably not a concern. However, some applications continually perform random read/write
transactions to memory and may lose necessary bandwidth each time a bus turnaround is performed.

ZBT devices solve the turnaround idle problem by enforcing symmetrical delays between address
and data, regardless of whether the transaction is a read or write. This fixed relationship means that
any command can follow any other command without forced idle time on the data bus. Flow-through
ZBT devices present data on the first clock edge following the corresponding address/command.
Pipelined ZBT SSRAMs present data on the second clock edge following the corresponding address/
command as shown in Fig. 8.12. As with normal SSRAMs, higher clock frequencies are possible
with pipelined versus flow-through ZBT devices, albeit at the expense of additional read latency.

ZBT SSRAMs provide an advantage for applications with frequent read/write transitions. One ex-
ample is a single-clock domain FIFO implemented using a discrete SSRAM and control logic. A ge-

* ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc., and the architecture is supported by Micron
Technology, Inc. and Motorola Inc.



High-Performance Memory Technologies 185

o T\ T
e T\ O\
Addl’eSS:X RA1 X RA2 X WA3 X RA4 X WA5 X WA6 X X

Data 4< RD1 X RD2 X WD3 X RD4 X WD5 X WD6 >—

FIGURE 8.12 Pipelined ZBT SSRAM read/write timing.

neric FIFO must be capable of sustained, interleaved reads and writes, which results in frequent bus
turnaround delays when using a normal SSRAM. ZBT SSRAM devices are manufactured by com-
panies including Integrated Device Technology, Micron Technology, and Motorola. Cypress Semi-
conductor manufactures functionally equivalent SSRAMs under the trademark NoBL. Other
manufacturers offer equivalent devices with differing naming schemes.

SSRAMs are very popular in high-performance computing and networking applications. Com-
puters with large secondary and tertiary caches use SSRAM to hold lines of data. Networking equip-
ment makes extensive use of SSRAMs for buffering and lookup table applications. SSRAM devices
are commonly available in densities ranging from 2 to 16 Mb in 16-, 18-, 32-, and 36-bit wide data
buses. The nine-bit bus multiples are used in place of eight-bit multiples for such purposes as the
storage of parity and flag bits.

8.4 DDR AND QDR SRAM

SSRAM transitioned to a DDR interface to increase bandwidth in the same general manner as
SDRAM. DDR SRAM devices are fully pipelined and feature fixed burst transfer lengths of two or
four words to enable a less complex single-rate address/control interface. With the data bus running
at twice the effective frequency of the address bus, a burst size of two guarantees that random access
transfers can be issued in any order without falling behind the data interface’s higher bandwidth.
Burst length is fixed by the particular device being used. A burst length of four words simplifies ap-
plications such as some caches that operate using four-word transactions, although no inherent
throughput advantage is gained. As with a DDR SDRAM, special clocking techniques must be em-
ployed to enable the design of reliable interfaces at effective data rates in the hundreds of megahertz.
A DDR SRAM accepts a primary pair of complementary clocks, K and K*, that are each 180° out of
phase with each other. Address and control signals are registered on the rising edge of K, and write-
data is registered on the rising edges of both clocks. An optional secondary pair of clocks, C and C*,
must be same frequency as K/K* but can be slightly out of phase to skew the timing of read-data ac-
cording to an application circuit’s requirements. A small degree of skewing can ease the design of
the read capture logic. If such skewing is not necessary, C/C* are tied high, and all output (read) tim-
ing is referenced relative to K/K*. The SRAM automatically recognizes the inactivity on C/C* and
chooses K/K* as the causal output clock. A pair of output echo clocks, CQ and CQ*, are driven by
the SRAM in phase with read data such that both the echo clocks and read data are timed relative to
C/C* or K/K*. These echo clocks are free running and do not stop when read activity stops. This
combined clocking scheme is illustrated in Fig. 8.13. The read capture logic may choose to use the
echo clocks as source-synchronous read clocks, or it may use an alternate scheme and not use the
echo clocks at all. An alternative scheme could be to skew C/C* such that returning read data is in
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FIGURE 8.13 DDR SSRAM clocking.
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proper phase with the memory controller’s K/K*, thus saving it the complexity of dealing with a
separate read clock domain. Such decisions are implementation specific and depend on the circuits
and resources available.

Because of the high frequency of the DDR interface, bus turnaround time becomes an important
design point. Idle time must be inserted onto a bidirectional data bus to enable the SRAM and mem-
ory controller time to disable their tri-state drivers when transitioning from reading to writing or vice
versa. DDR SRAMs are manufactured in both single and common I/0 (SIO and CIO) configurations
to address turnaround timing. SIO DDR SRAMs feature two data buses—one dedicated for incom-
ing write data and the other dedicated for outgoing read data. CIO devices feature a common bidi-
rectional data bus. The latencies between address and data are identical between SIO and CIO
devices. Write data begins on the first rising edge following the write command, and read data is re-
turned beginning on the second falling edge following the read command. An LD* signal indicates
an active read or write command. Figure 8.14 shows the timing for an SIO device in which bus turn-
around is not an issue because of the dual unidirectional buses. Note that read data can overlap write
data in the same clock cycle.

Commands can be issued continuously on an SIO device, because there is no possibility for data
bus conflicts. A CIO device, however, requires at least one explicit idle cycle when transitioning
from reading to writing, as shown in Fig. 8.15, because of the difference in data latencies for these
two transactions. Without the idle cycle, write data would occur in the same cycle at the last two read
words. CIO data sheets also warn that, at high frequencies, a second idle cycle may be necessary to
prevent a bus conflict between the SRAM and the write data. The concern at high frequencies is that

we /0 \_/ \_/ \_/ \_/ \_/ \_
/
X

Address :X

RA, X WA, X RA,

R/W* \ /
Data Out RDO, Y RD1, RDO, Y RD1,
Data In x X wpo, X wp1, X X

FIGURE 8.14 Separate I/O DDR SRAM read/write timing (burst length = 2).
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FIGURE 8.15 Common I/O DDR SRAM read/write timing (burst length = 2).

the SRAM may not be able to turn off its tri-state drivers in time for write data being driven immedi-
ately on the next cycle.

High data transfer rates are possible with CIO DDR SRAM in purely random transactions.
Grouping multiple reads and writes into separate groups increases the available bandwidth by mini-
mizing bus turnaround delays associated with read/write transitions. CIO devices have a distinct ad-
vantage in reduced signal count because of a single data bus. Balancing this out is the complexity of
handling bus turnaround and somewhat reduced bandwidth in truly random transfer patterns.

SIO DDR SRAM provides a definite performance advantage in certain applications at the cost of
additional signal and pin count. The concept of dual data interfaces was taken a step farther with the
development of quad data rate ™ (QDR) SRAM technology, where the goal is to enable full utiliza-
tion of the read and write data interfaces.” QDR devices are manufactured with fixed two- or four-
word bursts. The address/control interface is designed so that enough commands can be issued to
keep both data interfaces fully utilized. A four-word burst QDR SRAM is very similar to an SIO
DDR SRAM if one were to be made with a four-word burst size. The difference is that, rather than
having a R/W* select signal and an activation signal (LD*), the QDR devices implement separate
read and write enables. A new command is presented during each clock cycle such that it takes two
cycles to issue both a read and a write command. This frequency of commands matches perfectly
with the four-word burst nature of the dual data interfaces. Each read or write command transfers
four words at DDR, thereby occupying two whole clock cycles. Therefore, a read command can be
issued once every two cycles, and it takes two cycles to execute. The same holds true for a write
command. A two-word burst QDR SRAM differs from the four-word variety in that its address/
control interface is dual rate to allow commands to be issued twice as fast to keep up with the shorter
transfer duration of one cycle (two words at DDR complete in one whole cycle). Figure 8.16 shows
the timing for a four-word burst QDR SRAM. If an application can make efficient use of a four-word

Y A VY s VY S WD S WY A VY A VD S W
Address X RA, X wa, X R, X wa, X

e T\ [\
Data Out RDO,, { RD1,, X RD2,, X RD3, X RDO, X RD1, X RD2, X RD3, »—
Data In x XWDOXXWD1XXWD2XXWDSXXWDOZXWD1ZXWD2ZXWDSZXZ

FIGURE 8.16 QDR SRAM read/write timing (burst length = 4).

* QDR is a trademark of Cypress, IDT, Micron Technology, NEC, and Samsung.
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burst, the overall system design is likely to be easier, because tight DDR timing on the address/
control interface is not required as it would be with a two-word burst QDR device.

As can be readily observed, a QDR device can truly provide four times the bandwidth of a con-
ventional SDR SRAM, but only when the read and write bandwidths are symmetrical. If an applica-
tion requires very high bandwidth for a long set of writes and then the same equivalent bandwidth
for a long read, QDR technology will not provide any real advantage over a DDR SRAM. QDR is
useful in many communications applications where it serves as an in-line buffer or FIFO between
two data processing elements. Such applications exhibit symmetrical bandwidth, because they can-
not store data for long and must rapidly drain data buffer as fast as data is stored to prevent an over-
flow or underflow.

85 CONTENT ADDRESSABLE MEMORY

Most types of memory are constructed from an array of data storage locations, each of which is in-
dexed with a unique address. The set of addresses supported by the memory array is a continuous,
linear range from O to some upper limit, usually a power of 2. For a memory array size, W, the re-
quired address bus width, N, is determined by rounding up N = log, W to the next whole number.
Therefore, W < 2N. Memory arrays usually store sets of data that are accessed in a sequential man-
ner. The basic paradigm is that the microprocessor requests an arbitrary address that has no special
meaning other than the fact that it is a memory index, and the appropriate data is transferred. This
scheme can be modified to implement a lookup table by presenting an index that is not an arbitrary
number but that actually has some inherent meaning. If, for example, a network packet arrives with
an eight-bit identification tag (perhaps a source address), that tag can be used to index into a memory
array to retrieve or store status information about that unique type of packet. Such status information
could help implement a filter, where a flag bit indicates whether packets with certain tags should be
discarded or allowed through. It could also be used to implement a unique counter for each tag to
maintain statistics of how many packets with a particular tag have been observed. As shown in Fig.
8.17, when the packet arrives, its relevant eight-bit tag is used to access a single memory location
that contains a filter bit and a count value that gets incremented and stored back into the memory ar-
ray. This saves logic, because 256 unique counters are not required. Instead, a single +1 adder ac-
complishes the task with the assistance of the memory’s built-in address decoding logic.

256 x 16
Memory Array Data Out
o [14:0] +1
Dataln | "1 Adder
[14:0]
Packet
Data Out[15]' Filter
A 8.Bit Tag Index Logic
into Lookup Table
Packet |Eg——| Payload Packet
Input Megglar Output

FIGURE 8.17 Using a memory array as a lookup table.
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Such lookup tables are common in communication systems where decisions are made and statis-
tics gathered according to the unique tags and network addresses present in each packet’s header.
When the size of a tag is bounded at a manageable width, a conventional memory array can be used
to implement a lookup table. However, as tags grow to 16, 32, 64, 128, or more bits, the required
memory size becomes quite impractical. The example in Fig. 8.17 would require 8 GB of memory if
the tag width increased from 8 to 32 bits! If all 23? tag permutations need to be accounted for inde-
pendently, there would be no avoiding a large memory array. However, the majority of such lookup
table applications handle a small fraction of the total set of permutations. The working set of tags
sparsely populates the complete defined set of tags. So the question becomes how to rapidly index
into a memory array with an N-bit tag where the array size is much less than 2N,

A content addressable memory (CAM) solves this problem with an array of fully associative tags
and optional corresponding data entries as shown in Fig. 8.18. Instead of decoding 2N unique loca-
tions based on an N-bit tag, each CAM entry simultaneously matches its own tag to the one pre-
sented. The entry whose tag matches is the one that presents its associated data at the output and the
one that can have its data modified as well. Alternatively, a CAM may simply return the index of the
matched or winning entry in the array, if the specific device does not have any data associated with
each entry. There is substantial overhead in providing each entry with a unique tag and matching
logic, making CAMs substantially more expensive than conventional memories on a per-bit basis.
Their increased cost is justified in those applications that require rapid searching of large yet
sparsely populated index ranges.

Unlike a conventional memory, a CAM must be managed by the system’s hardware and/or soft-
ware to function properly. The system must load the CAM entries with relevant tags and data. Care
should be taken to keep tags unique, because there is no standard means of resolving the case in
which two entries’ tags match the tag input. Individual CAM implementations may specify how
such conflicts are resolved. Some CAMs handle read/write maintenance functions through the same
interface that tags are presented and matched. Other implementations provide a separate mainte-
nance port. Having a separate maintenance port increases the number of pins on the CAM, adding
complexity to the circuit board wiring, but it may decrease overall system complexity, because main-
tenance logic and data logic paths do not have to be shared.

CAM tags and matching logic can be constructed in either a binary or ternary manner. A binary
CAM implements a standard tag of arbitrary width and a valid bit. These CAMs are well suited to
situations in which exact tag matches are desired. A ternary CAM doubles the number of tag bits to
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FIGURE 8.18 Basic CAM architecture.
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associate a pair of tag bits with each actual tag bit. This two-bit structure allows the creation of a
third “don’t care” state, X. A ternary CAM is more flexible than a binary CAM, because it can match
portions of a tag rather than all bits. In networking applications, this is very useful, because similar
operations are often performed on groups of addresses (tags) from common destinations. It is as if
the post office wanted to sort out all letters being sent to ZIP codes 11230 through 11239. A ternary
CAM would be able to match the pattern 1123X with a single entry. In contrast, a binary CAM
would require ten redundant entries to perform the same job.

A ternary CAM is often used to implement rather complex lookup tables with searches prioritized
according to the number of X bits in each tag. Using the ZIP code example, it is possible that a post
office would want to perform two overlapping searches. It may want to sort all ZIP codes from
11230 through 11239 into a particular bin, except for 11234, which should be sorted into its own
bin. A ternary CAM could be setup with two overlapping entries: 11234 and 1123X. To ensure that
the 11234 entry always matched ahead of the 1123X entry, it would be necessary to verify proper
setup of the specific CAM being used. A ternary CAM may have a rule that the lowest or highest
winning entry in the array wins. While this example is simple, the concept can be extended with
many levels of overlap and priority.

Managing a ternary CAM with overlapping entries is more complex than managing a binary
CAM, because the winning entry priority must be kept in sync with the application’s needs, even as
the CAM is updated during operation. A CAM is rarely initialized once and then left alone for the
remainder of system operation. Its contents are modified periodically as network traffic changes.
Let’s say that the ZIP code CAM was initialized as follows in consecutive entries: 1121X, 11234,
1123X, 112XX. Where would a new special-case entry 11235 be placed? It would have to precede
the 1123X entry for it to match before 1123X. Therefore, the system would have to temporarily
move CAM entries to insert 11235 into the correct entry. If there is enough free space in the CAM,
the system could initialize it and reserve free entries in between valid entries. But, sooner or later,
the CAM will likely become congested in a local area, requiring it to be reorganized. How the data is
arranged and how the CAM is reorganized will affect system performance, because it is likely that
the CAM will have to be temporarily paused in its search function until the reorganization is com-
plete. Solutions to this pause include a multibank CAM architecture whereby the system reorganizes
the lookup table in an inactive bank and then quickly swaps inactive and active banks.

A CAM often does not associate general data bits with each entry, because the main purpose of a
CAM is to match tags, not to store large quantities of data. It is therefore common to couple a CAM
with an external SRAM that actually holds the data of interest and that can be arbitrarily expanded
according to application requirements as shown in Fig. 8.19. In this example, the CAM contains
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FIGURE 8.19 CAM augmentation with external SRAM.
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4,096 entries and returns a 12-bit index when a tag has been successfully matched. This index serves
as the address of an SRAM that has a 32-bit data path as required by the application.

When combined with conventional memory and some control logic, a CAM subsystem is some-
times referred to as a search engine. A search engine is differentiated from a stand-alone CAM by
being capable of semi-autonomous lookups on behalf of another entity such as data processing logic
in either hardware or software. A search engine’s control logic can be as simple as accepting a search
tag and then returning data along with a success flag. It can get more complex to include specific ta-
ble maintenance functions so that CAM overhead operations are completely offloaded from the data
processing logic. Search engines are especially useful when interfacing with special-purpose net-
work processor devices. These processors run software to parse packets and make decisions about
how each packet should be handled in the system. The tag lookup function is offloaded to a search
engine when there is not enough time for a software algorithm to search a large table.
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CHAPTER 9
Networking

Data communications is an essential component of every digital system. Some systems realize com-
munications by direct interaction with the environment and some with the exchange of removable
storage media such as tapes, disks, or memory modules. Many systems engage in data transfer that is
more real-time in nature. When these communications begin to involve multiple end-points, high-
speed transfers, and the need for reliable carriage of that data, the set of technologies that are broadly
known as networking become directly relevant.

There is probably no single definition of networking that can always identify when it is or is not
needed—the universe of applications is too diverse for such rigid definitions. The purpose of this
chapter is to introduce mainstream networking concepts so that you can make the decision of
whether a particular application demands networking or a simpler exchange of bits and bytes. Net-
working technologies blend hardware and software into algorithms that are implemented by either or
both resources, depending on the specific context. Because of limitations of space and scope, this
chapter concentrates on the hardware aspect of networking and how hardware is used to support the
formats, protocols, and algorithms that make networking the flexible technology that it is.

The discussion begins with protocol layers to understand the separate logical functions that com-
pose a network. Ethernet is frequently used as an example to further clarify networking concepts be-
cause of its ubiquity. Hardware support for networking most commonly resides at the lower layers of
the protocol stack. The bulk of the chapter is concerned with transmission, recovery, and verification
of data on the wire—essential tasks that serve as the foundation of data transfer. A brief presentation
of Ethernet closes the chapter to provide an illustration of how networking technology functions in
the real world.

9.1 PROTOCOL LAYERS ONE AND TWO

Networking systems can be highly complex and include many different hardware and software com-
ponents. To facilitate the analysis and design of such systems, major functional sections are sepa-
rated into layers whose definitions are reasonably standardized across the industry. Multiple layers
are arranged from the lowest level on the bottom to the highest level on the top in a conceptual pro-
tocol stack. To transfer data from an application running on one computer to that on another, the data
descends the stack’s layers on one computer and then ascends the stack on the destination computer.
The industry standard network stack definition is the Open System Interconnection (OSI) reference
model shown in Fig. 9.1.

As with most conceptual classifications, it is important to recognize that not all networking
schemes and implementations adhere strictly to the OSI seven-layer model. Some schemes may
merge one or more layers together, thereby reducing the number of formally defined layers. Others
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Application (Layer 7)
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Session (Layer 5)

Transport (Layer 4)
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Data Link (Layer 2)

Physical (Layer 1)

FIGURE 9.1 OSI seven-layer model.

may segment an OSI layer into multiple sublayers. The consistency of definitions decreases as one
moves up the stack, because of functional protocol variations.

Layer one, the physical layer, comprises the electromechanical characteristics of the medium
used to convey bits of information. The use of twisted pair cable, the amplitude of 1s and Os, and as-
sociated connectors and transducers are examples of that which is specified in the physical layer.
Channel coding, how the bits are represented on the physical medium, is usually classified as part of
the physical layer.

The data link layer, layer two, encompasses the control logic and frame formatting that enables
data to be injected into the network’s physical layer and retrieved at the destination node. Layer-two
functions are usually handled by a media access controller (MAC), a hardware device that contains
all of the logic necessary to gain access to the network medium, properly format and transmit a
frame, and properly detect and process an incoming frame. Network frame formats specify data link
layer characteristics. Link level error detection mechanisms such as checksums and CRCs (more on
these later) are generated and verified by the MAC. Node addresses, called MAC addresses in Ether-
net networks, are layer-two constructs that uniquely identify individual nodes. Layer-two functions
are usually handled in hardware, because they are repetitive, high-frequency, and time-critical oper-
ations. The data link layer is closely tied to the topology of the network because of its handling of
access control functions and unique node addresses. Network switches operate at layer two by know-
ing which node address is connected to which port and then directing traffic to the relevant port. If
port 20 of a switch is connected to node 87, all frames that enter the switch destined for node 87 will
be sent out port 20. Because it is necessary to maintain unique layer-two addresses, they are gener-
ally not under the control of the user but rather are configured by the manufacturer. In the case of
Ethernet, each manufacturer of equipment licenses an arbitrary range of MAC addresses from the
IEEE and then assigns them one at a time as products roll off the assembly lines.

9.2 PROTOCOL LAYERS THREE AND FOUR

More flexible communications are possible when a protocol is not tied too closely to network topol-
ogy or even the type of network accomplishing the exchange of information. The network layer,
layer three, enables nodes to establish end-to-end connections without strict knowledge of the net-
work topology. Layer-three packets are encapsulated within the payload of a layer-two frame. The
packets typically contain their own header, payload, and sometimes a trailer as well. Perhaps the
most common example of a layer-three protocol is Internet Protocol (IP). IP packets consist of a
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header and payload. Included within the header are 32-bit layer-three destination and source IP ad-
dresses. A separate set of network addresses can be implemented at layer three that is orthogonal to
layer-two addresses. This gives network nodes two different addresses: one at layer three and one at
layer two. For a simple network, this may appear to be redundant and inefficient. Yet modern net-
working protocols must support complex topologies that span buildings and continents, often with a
mix of data links connecting many smaller subnetworks that may cover a single office or floor of a
building. The benefit of layer-three addressing and communication is that traffic can be carried on a
variety of underlying communications interfaces and not require the end points to know the exact
characteristics of each interface.

Network routers operate at layer three by separating the many subnetworks that make up a larger
network and only passing traffic that must travel between the subnetworks. Network addresses are
typically broken into subnets that correlate to physically distinct portions of the network. A router
has multiple ports, each of which is connected to a different subnetwork that is represented by a
range of network addresses. A frame entering a router port will not be sent to another particular port
on that router unless its network address matches a subnet configuration on that particular port.
Strictly speaking, this separation could be performed by layer-two addressing, but the practical real-
ity is that layer-two addresses are often not under the user’s control (e.g., Ethernet) and therefore
cannot be organized in a meaningful way. In contrast, layer-three addresses are soft properties of
each network installation and are not tied to a particular type of network medium.

Layer-three functions are performed by both hardware and software according to the specific im-
plementation and context. Layer-three packets are usually first generated by software but then ma-
nipulated by hardware as they flow through the network. A typical router processes layer-three
packets in hardware so that it does not fall behind the flow of traffic and cause a bottleneck.

The bottom three layers cumulatively move data from one place to another but sometimes do not
have the ability to actually guarantee that the data arrived intact. Layers one and two are collectively
responsible for moving properly formatted frames onto the network medium and then recovering
those in transit. The network layer adds some addressing flexibility on top of this basic function. A
true end-to-end guarantee of data delivery is missing from certain lower-level protocols (e.g., Ether-
net and IP) because of the complexity that this guarantee adds.

The transport layer, layer four, is responsible for ensuring end-to-end communication between
software services running on each node. Transport layer complexity varies according to the demands
of the application. Many applications are written with the simplifying assumption that once data is
passed to the transport layer for transmission, it is guaranteed to arrive at the destination. Transmis-
sion control protocol (TCP) is one of the most common layer-four protocols, because it is used to
guarantee the delivery of data across an unreliable IP network. When communicating via TCP, an
application can simply transfer the desired information and then move on to new tasks. TCP is
termed a stateful protocol, because it retains information about packets after they are sent until their
successful arrival has been acknowledged. TCP operates using a sliding data transmission window
shown in Fig. 9.2 and overlays a 32-bit range of indices onto the data that is being sent. Pointers are
referenced into this 32-bit range to track data as it is transmitted and received.

The basic idea behind TCP is that the transmitter retains a copy of data that has already been sent
until it receives an acknowledgement that the data was properly received at the other end. If an ac-
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FIGURE 9.2 TCP transmission window.
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knowledgement message is not received after a certain amount of time, the data is retransmitted.
TCP moves the complexity of guaranteeing end-to-end data delivery into software instead of into the
underlying network hardware, which is often Ethernet. When Ethernet was developed in the 1970s,
the cost of logic gates was much higher than it is now, and there was a strong incentive to simplify
hardware wherever possible.

The transmission window size is established by the receiver via messages that are sent to the
transmitter during connection negotiation and subsequent communications. For a receiver to adver-
tise a certain window size, it must have sufficient buffering to hold the entire contents of the window.
Once the transmitter is informed of the available transmission window, it may begin sending as
much data that can fit within the window. Each time the transmitter sends data, it marks that packet
with a 32-bit sequence number. This sequence number identifies the 32-bit index that corresponds to
the first data byte in the payload and enables the receiver to reconstruct the original data in its proper
sequence. When the receiver has successfully received a contiguous block of data starting from the
left side of the window, it sends an acknowledgement message with a 32-bit acknowledgement num-
ber marking the next highest expected sequence number of data. In other words, the acknowledge-
ment number corresponds to the index of the highest byte successfully received plus 1. Upon
receiving this message, the transmitter is able to slide the left side of the window up to the acknowl-
edgment number and discard the data in its buffer that now falls outside the window on the left side.
The receiver must continually extend the right side of the window to maintain data flow. If the re-
ceiver does not slide the right side of the window open, the left side will continue to advance until
the window closes, preventing new data from being transmitted.

Guaranteeing end-to-end delivery of data on an inherently unreliable network adds substantial
complexity to transport protocol drivers. These functions were traditionally handled by software.
However, certain high-performance applications benefit from accelerating TCP in hardware—a task
that is decidedly nontrivial.

There are also applications that do not require a transport protocol to guarantee delivery of data.
The reason for this may be that the TCP driver is too cumbersome to implement, a proprietary mech-
anism is preferable, or the underlying network is, in fact, reliable. In such cases, it is unnecessary
and often undesired to implement a complex protocol such as TCP. TCP’s companion protocol for
nonguaranteed transmission is called user datagram protocol (UDP). UDP is used along with IP net-
works to send simple messages over unreliable networks or critical data over reliable networks. It is
a stateless protocol, because it simply wraps the data in a header and sends it to the network layer
without retaining any information about delivery. As such, there is no sliding transmission window
concept and no need for bidirectional communication at the transport layer.

Aside from guaranteeing delivery, many transport protocols implement a higher level of address-
ing, often referred to as ports or sockets. An individual node has a single network address associated
with it. However, each application on that node can have its own associated port or socket number.
These constructs allow the transport layer to direct data flows to the appropriate application on the
destination node. Rather than sending each packet that arrives to each application, an application es-
tablishes a port or socket number and, henceforth, all network traffic destined for that application is
marked with the correct port or socket number.

Layers five, six, and seven are more context specific and principally involve application and net-
work driver software as part of a computer’s operating system and network interface subsystem.
From a design perspective, the degree of hardware responsibility decreases as one ascends the stack.
Less-expensive systems will often try to use as little hardware as possible, resulting in the bare es-
sentials of the physical and data link layers being implemented in hardware. Such systems offload as
many functions as possible onto software to save cost, albeit at the expense of reducing the through-
put of the network interface. As higher levels of throughput are desired, more hardware creeps into
the bottom layers. On general-purpose computers, the network and transport layers are usually im-
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plemented in network driver software. However, on special-purpose platforms where high band-
width is critical, many layer-three and layer-four functions are accelerated by hardware. How these
trade-offs are made depends on the exact type of networking scheme being implemented.

9.3 PHYSICAL MEDIA

Most wired networking schemes use high-speed unidirectional serial data channels as their physical
communication medium. A pair of unidirectional channels is commonly used to provide bidirec-
tional communications between end points. Despite the fact that it is technically feasible to use a sin-
gle channel in a bidirectional mode, it is easier to design electronics and associated physical
apparatus that implement either a transmitter or receiver at each end of a cable, but not both. The
cost of mandating a pair of cables instead of a single cable is not very burdensome, because cables
are commonly manufactured as a bundle and are handled as a single unit in wiring conduits and con-
nection points. Two ubiquitous types of media are twisted-pair wiring and fiber optic cable. It is
common to find a single cable bundle containing two or more twisted pairs or a pair of fiber optic
strands. Twisted-pair and fiber can often be used interchangeably by a network transceiver as long as
the appropriate transducer properly converts between the transceiver’s electrical signaling and the
medium’s signaling. In the case of twisted pair, this conversion may consist of only amplification
and noise filtering. A fiber optic cable is somewhat more complex in that it requires an electro-opti-
cal conversion.

Twisted pair wiring is used in conjunction with differential signaling to provide improved noise
immunity versus a single-ended, or unbalanced, transmission medium. As network data rates have
increased, twisted pair wiring technology has kept pace with improved quality of manufacture to
support higher bandwidths. When the majority of Ethernet connections ran at 10 Mbps (10BASE-
T), unshielded twisted pair (UTP) category-3 (CAT3) was a common interconnect medium. UTP
wiring does not contain any surrounding grounded metal shield for added noise protection. As
100BASE-T emerged, wiring technology moved to CATS, and this has remained the most common
UTP medium for some time. CATS has largely replaced CAT3, because the cost differential is slim,
and it exhibits better performance as a result of more twists per unit length and improved structural
integrity to maintain the desired electrical characteristics over time and handling. Enhanced UTP
products including CAT5e and CAT6 are emerging because of the popularity of gigabit Ethernet
over twisted pair (1000BASE-T). While most twisted pair is unshielded, shielded varieties (STP)
are used in specific applications. UTP is a favored wiring technology because of its relatively low
cost and ease of handling: connections can be made by crimping or punching the wires onto con-
nector terminals. The disadvantage of copper media is their susceptibility to noise and attenuation
of signals over moderate distances. These characteristics limit total UTP cable length to 100 m in
common Ethernet applications.

Bandwidth and distance are inversely related by the inherent characteristics of a given transmis-
sion medium. As distances increase, signal degradation increases, which reduces the available band-
width of the channel. Fiber optic cabling is used to overcome the bandwidth and distance limitations
of twisted pair wiring because of its immunity to electrical noise and very low optical attenuation
over distance. Fiber optic cable is generally constructed from high-purity glass, but plastic cables
have been used for special short-distance applications. Rather than being a simple extrusion of glass,
a fiber optic cable contains two optical elements surrounded by a protective sheath as shown in Fig.
9.3a. The inner glass core is differentiated from the outer glass cladding by the fact that one or both
have been doped with certain molecules to change their indices of refraction. The cladding has a
lower index of refraction than the core, which causes the great majority of light injected into the core
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FIGURE 9.3 Fiber optic cable: (a) cross section and (b) propagation.

to bounce off the core/cladding boundary as shown in Fig. 9.3b, thereby trapping the light over very
long distances.

Light is injected into the core using either an LED or laser, depending on the required quality of
the signal. A laser can generate light that is coherent, meaning that its photons are at the same fre-
quency and phase. Injecting coherent light into a fiber optic cable reduces the distortion that accu-
mulates over distance as photons of different frequency travel through the medium at slightly
different velocities. Noncoherent photons that are emitted simultaneously as part of a signal pulse
will arrive at the destination spread slightly apart in time. This spreading makes reconstructing the
signal more difficult at very high frequencies, because signal edges are distorted.

Even when coherent light is used, photons can take multiple paths in the core as they bounce off
the core/cladding boundary at different angles. These multiple propagation modes cause distortion
over distance. To deal with this phenomenon, two types of fiber optic cable are commonly used: sin-
gle-mode and multimode. Single-mode fiber contains a very thin core of approximately 8 to 10 pm in
diameter that constrains light to a single propagation mode, thereby reducing distortion. Multimode
fiber contains a larger core, typically 62.5 pm, that allows for multiple propagation modes and hence
increased distortion. Single-mode fiber is more expensive than multimode and is used in longer-dis-
tance and higher-bandwidth applications as necessary.

Fiber optic cabling is more expensive than copper wire, and the handling of optical connec