132 Industrial Robots Programming

Consequently, the robot controller software works as a server, exposing to the
client a collection of RPC services that constitute its basic functionality. Those
services, offered by the RPC servers running on the robot controller, include the
variable access services, files and programs management services, and robot status
and controller-state management and information services. To access those
services, the remote computer (client) issues properly parameterized remote
procedure calls to the robot controller (server) through the network.

Considering, for example, the S4CPLUS robot controller from ABB Robotics, it’s
possible to extend the RPC services available in the robot controller adding user
functionality to the system. The ABB implementation is based on a messaging
protocol developed by ABB called RAP (remote application protocol) [8], which
is an application specific protocol (ASP) of the OSI application level. The
messaging protocol RAP defines the necessary data structures and message syntax
of the RPC calls used to explore the RPC services available in the controller.

These services were implemented using the standard and open source RPC
specification SUN RPC 4.0, a collection of tools developed by the SUN
Microsystems Open Network Group (ONC) [2]. Consequently, to implement the
client calls, the ONC SUN RPC 4.0 specification and tools were also used. This
package includes a compiler (rpcgen), a portmaper and a few useful tools like
rpcinfo. The Microsoft RPC implementation uses another standard defined by
Digital Corporation named OSF/DCE, which is not compatible with the SUN RPC
standard. The package used to build the client software was a port to Windows
NT/2000/XP, equivalent to the original version that was built to UNIX systems,
although a few functions were slightly changed to better suit the needs without
compromising compatibility with client and server programs developed with the
SUN RPC package. The port was compiled using the Microsoft Visual C++ .NET
2003 compiler.

From all the RPC services available in the robot controller, the ones really needed
to implement the software architecture depicted in Figure 3.10 are the variable
access services. Nevertheless, calls to the other services were implemented for
completeness. The procedure is simple and based on the XDR (extended data
representation) file obtained by defining the data structures, the service
identification numbers, and the service syntax specified by the RAP protocol. That
file is compiled by the rpcgen tool, generating the basic calls and data structure
prototypes necessary to invoke the RPC services available from the robot
controller. The necessary code was added to each basic function and packed into an
ActiveX software component named PCROBNET2003/5 [5-7]. The complete set of
functions included in this object is listed in Table 3.3.

Although this software component was built using the DCOM/OLE/ActiveX
object model, it does not run the Microsoft RPC implementation but instead the
already mentioned SUN RPC 4.0 port to the Win32 APL
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Table 3.3 Methods and properties of the software component PCROB NET2003/5

Function Brief description

open Opens a communication line with a robot (RPC client)
close Closes a communication line

motor_on Go to run state

motor_off Go to standby state

prog_stop Stop running program

prog_run Start loaded program

prog load Load named program

prog_del Delete loaded program

prog_set_mode

Set program mode

prog_get mode

Read actual program mode

prog_prep Prepare program to run (program counter to begin)

pgmstate Get program controller state

ctistate Get controller state

oprstate Get operational state

sysstate Get system state

ctlvers Get controller version

ctlid Get controller ID

robpos Get current robot position

read_xxxx Read variable of type xxxx (there are calls for each type of
variable defined in RAPID)

read_xdata Read user-defined variables

write_xxx Write variable of type xxxx (there are calls for each type of

variable defined in RAPID)

write xdata

Write user-defined variables

digin Read digital input
digout Set digital output

anain Read analog input
anaout Set analog output

To use a remote service, the computer running the client application needs to make
properly parameterized calls to the server computer, and receive the execution
result. Two types of services may be considered: synchronous and asynchronous.
The synchronous services return the execution result as the answer to the call.

Consequently, the general prototype of this type of call is:

short status call_service_i (struct parameters_i, struct answer_i)

where status returns the service error codes (zero if the service returns without
errors, and a negative number identifying the error otherwise), parameters i is the
data structure containing the service parameters and answer_i is the data structure
that returns the service execution results.
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The asynchronous services, when activated, return answers/results asynchronously,
i.e., the remote system should also make remote procedure calls to the client
system when the requested information becomes available or when the specified
event occurs (system and controller state changes, robot program execution state
change, IO and variable events, efc.). Those calls may be named events or
spontaneous messages, and are remote procedure calls issued to all client
computers that made the correspondent subscription, e, made a call to the
subscription service properly parameterized specifying the information wanted. To
receive those calls, any remote client must run RPC servers that implement a
service to receive them (Figure 3.13). The option adopted was to have that server
broadcast registered messages inside the operating system, enabling all open
applications to receive and process that information by filtering its message queue.

RPC Call

Message to the screen
Asynchronous answer g

™~

Win32 registered message

* The writing operation is done only on idle
) (broadcast)
periods.

Figure 3.13 Functionality of the RPC server necessary to receive spontaneous messages

As mentioned already, the variable access services allow access to all types of
variables defined in the robot controller. Using this service, and developing the
robot controller software in a convenient way, it is possible to add new services to
the system. In fact, that possibility may be achieved by using a simple SWITCH-
CASE-DO cycle driven by a variable controlled from the calling (client) remote
computer:

switch (decision_1)

{
case 0: call service 0; break;
case 1: call service_1; break;
case 2: call service 2; break;

case n; call service_n; break;
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This server runs on the robot controller, making the process of adding a new
service a simple task. The programmer should build the procedure (routine) that
implements the new functionality, and include the call to that procedure in the
server cycle by identifying it with the specific number of the control variable.

This is not far from what is done with any RPC server; the svc_run function, used
in those programs is a SWITCH-CASE-DO cycle that implements calls to the
functions requested by the remote client. With this type of structure it is
straightforward to build complex and customer functions that can be offered to the
remote client. Furthermore, with this approach it’s still possible to use the
advanced capabilities offered by the robot controller, namely the advanced
functions designed to control and setup the robot motion and operation. Examples
exploring this facility are presented and discussed in this chapter (sections 3.4 to
3.6).

3.3.2 TCP/IP Sockets

One of the most interesting ways to establish a network connection between
computer systems is by using TCP/IP sockets. This is a standard client-server
procedure, not dependent on the operating system technology used on any of the
computer systems, requiring only the definition of a proper messaging syntax to be
reliable and safe. The user-defined messaging protocol should specify the
commands and data structures adapted to the practical situation under study.

The TCP/IP protocol suite is based on a four-layer reference model. All protocols
that belong to the TCP/IP protocol suite are located in the top three layers of this
model.

As shown in Figure 3.14, each layer of the TCP/IP model corresponds to one or
more layers of the seven-layer Open Systems Interconnection (OSI) reference
model proposed by the International Standards Organization (ISO).
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OS5I Model TCF/IP Model
Application layer
Presentation layer Application layer
Session layer
Transpott layer Transpott layer
Network layer Internet layer
Data Link layer Network
Intetface
Physical layer layrer
Figure 3.14 Correspondence between the OSI Model and the TCP/IP Model in terms of
layers.
Table 3.4 Services performed at each layer of the TCP/IP Model
Layer Description
Application Defines the TCP/IP application protocols and how the host
programs interface with transport layer services to use the
network
Transport Provides communication session management between host
computers. Defines the level of service and the status of the
connection used when transporting data
Internet Packages data into IP datagrams, which contain source and

destination address information that is used to forward the
datagrams between hosts and across networks. Performs
routing of IP datagrams

Network interface

Specifies details of how data is physically sent through the
network, including how bits are electrically signaled by
hardware devices that interface directly with a network
medium, such as coaxial cable, optical fiber, or twisted-pair
copper wire
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The types of services performed at each layer within the TCP/IP model are
described in more detail in Table 3.4.

Transmission control protocol (TCP) is a required TCP/IP standard defined in RFC
793, "Transmission Control Protocol (TCP)” that provides a reliable, connection-
oriented packet delivery service. The transmission control protocol:

¢  Guarantees delivery of IP datagrams

e Performs segmentation and reassembly of large blocks of data sent by
programs

o Ensures proper sequencing and ordered delivery of segmented data

e Performs checks on the integrity of transmitted data by using checksum
calculations

e Sends positive messages depending on whether data was received
successfully. By using selective acknowledgments, negative
acknowledgments for data not received are also sent

e Offers a preferred method of transport for programs that must use reliable
session-based data transmission, such as client/server database and e-mail
programs

TCP is based on point-to-point communication between two network hosts. TCP
receives data from programs and processes this data as a stream of bytes. Bytes are
grouped into segments that TCP then numbers and sequences for delivery.

Before two TCP hosts can exchange data, they must first establish a session with
each other. A TCP session is initialized through a process known as a three-way
handshake. This process synchronizes sequence numbers and provides control
information that is needed to establish a virtual connection between both hosts.

L IP datagram N

[~ 'l

IP header IP payioad

TCP segment

B
;

TCP header segment

Figure 3.15 TCP segment within an IP datagram

Once the initial three-way handshake completes, segments are sent and
acknowledged in a sequential manner between both the sending and receiving
hosts. A similar handshake process is used by TCP before closing a connection to
verify that both hosts are finished sending and receiving all data.
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TCP segments are encapsulated and sent within IP datagrams, as shown in Figure
3.15

3.3.2.1 TCP Ports

TCP ports use a specific program port for delivery of data sent by using the
transmission controlpProtocol. TCP ports are more complex and operate
differently from UDP ports.

While a UDP port operates as a single message queue and the network endpoint for
UDP-based communication, the final endpoint for all TCP communication is a
unique connection. Each TCP connection is uniquely identified by dual endpoints.
Each single TCP server port is capable of offering shared access to multiple
connections because all TCP connections are uniquely identified by two pairs of IP
address and T'CP ports (one address/port pairing for each connected host).

The server side of each program that uses TCP ports listens for messages arriving
on their well-known port number. All TCP server port numbers less than 1024 (and
some higher numbers) are reserved and registered by the Internet Assigned
Numbers Authority (IANA).

3.3.3 UDP Datagrams

The User Datagram Protocol (UDP) is a TCP/IP standard defined in RFC 768,
"User Datagram Protocol (UDP)". UDP is used by some programs instead of TCP
for fast, lightweight, unreliable transportation of data between TCP/IP hosts.

UDP provides a connectionless datagram service that offers best-effort delivery,
which means that UDP does not guarantee delivery or verify sequencing for any
datagrams. A source host that needs reliable communication must use either TCP
or a program that provides its own sequencing and acknowledgment services.

UDP messages are encapsulated and sent within IP datagrams, as shown in 3.16,
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Figure 3.16 UDP message within an IP datagram

3.3.3.1 UDP Ports

UDP ports provide a location for sending and receiving UDP messages. A UDP
port functions as a single message queue for receiving all datagrams intended for
the program specified by each protocol port number. This means UDP-based
programs can receive more than one message at a time.

The server side of each program that uses UDP listens for messages arriving on
their well-known port number. All UDP server port numbers less than 1024 (and
some higher numbers) are reserved and registered by the Internet Assigned
Numbers Authority 1ANA).

Each UDP server port is identified by a reserved or well-known port number.

3.4 Simple Example: Interfacing a CCD Camera

The example presented in this section demonstrates the utilization of TCP/IP
sockets (stream type or TCP sockets) to command an industrial robot and to
interface with a CCD camera (a common USB Webcam). The example will be
presented in detail with the objective of allowing the reader to explore further from
the concepts and ideas presented.

Basically the system is composed of the following components (Figure 3.17):

¢ Industrial robot manipulator ABB IRB140 equipped with the new IRCS
robot controller

¢ Pneumatic tool equipped with a vacuum cup

e  Working table and several working pieces

o Webcam used to obtain the number of pieces present in the scene and
their respective positions

e  Pocket PC running the Windows Mobile 2005 operating system
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Figure 3.17 Setup for this example showing: Robot manipulator, Webcam, laptop running
the Webcam TCP/IP server, and the commanding Pocket PC

The user is supposed to control the setup using the Pocket PC, namely:
e Change the robot state and start/stop program execution
e Interface with the Webcam, request the camera to identify the number of
objects present in the scene and return their actual positions (Figure 3.18)
e Command the robot to pick-and-place the selected objects
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Figure 3.18 Returning the position of the objects present in the working scene based on the
computed Cartesian position (x,y)

To build a solution to execute the above specified functions, it is necessary to
handle several different subjects:

e Build a TCP/IP socket server to run on the robot controller. The server
should implement a collection of services equivalent to the ones listed in
Table 3.3

*  Build an application to handle the webcam permitting to use it as a sensor
and return the number of objects in the scene and their position. That
application must run on a machine accessible from the network

e Build an application to command the setup offering a human-machine
interface (HMI) facility

The following section provides a closer look at these three software packages.

3.4.1 Robot Controller Software

The robot controller runs two very different types of applications:
e The socket server used to implement the remote services and offer them to
the remote clients
e The application that executes the commanded pick-and-place operations



142 Industrial Robots Programming
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Figure 3.19 View of the tasks available on the system using RobotStudio Online
(ABB)

The above mentioned applications are different applications in terms of objectives
and requirements. Consequently, since the robot control system is a multitasking
system, each of them was designed to run in their own task (process) — see Figure
3.19.

A TCP/P socket server can work like a switch-case-do cycle driven by the
received message. The first word of the received message, named “command”, can
be used to drive the cycle and discriminate the option to execute, implementing in
this way the services it was designed to offer. Consequently, the TCP/IP server
(sock_srv, running on task 2) should have a basic structure like the one represented
in Figure 3.20.

PROC sock_srv()
SocketCreate server_socket;
SocketBind server_socket, '"172.16.0.89", 2004;
SocketListen server_socket;
WHILE TRUE DO
SocketAccept server_socket, client_socket;
SocketReceive client_socket \Str := receive_string;
extract_INFO_from_message (command, parameter{i});
TEST command
Case “motor_on”
motor_on(result);
SocketSend client_socket, result;
Case “motor_off”
motor_off(result);
SocketSend client_socket, result;
Case “write_num”
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write_num(parameterl, parameter2, result);
SocketSend client_socket, result;
Case “read_num”
read_num(parameterl, result);
SocketSend client_socket, result;

ENDTEST
SocketClose client_socket;
ENDWHILE
ERROR_HANDLER;
ENDPROC

Figure 3.20 Basic structure of the TCP/IP socket server running on the robot controller

The server briefly presented in Figure 3.20 implements basically the same
functionality listed in Table 3.3. Furthermore, the command strings have a simple
structure:

command parameter_1 parameter 2 ... parameter N

i.e., the command string starts with a word representing the “command” (used by
the server to discriminate what is the service the user wants to execute), followed
by other words corresponding to the “parameters™ associated with the “command”.
For example:

Action Command String

Motor_ON “motor_on”

Motor_OFF “motor_off”

Read num “read_num variable_name”
Write_num “write_num variable_name value”
Program_start “program_start module”
Program_stop “program_stop module”

where “variable_name” is the name of the variable to read, “value” is the new
value to assign to the variable, and “module” is the name of the module to start or
stop.

3.4.2 Webcam Software

The application designed to handle the Webcam (Figure 3.17) also works as a
TCP/IP server. The reason is simple, the Webcam works here as a sensor used to
obtain two types of information: the number of objects and their respective
position. Consequently, it is important to be able to address the sensor as an
independent entity on the network, and simply command it to return the required
information. One simple way to do that is to also adopt a client-server model for



144 Industrial Robots Programming

the Webcam software, using TCP/IP sockets to implement it. The software
development package used here to add image processing capabilities to the
developed software was LabView from National Instruments. Consequently, the
complete application was built on Labview, including the TCP/IP socket

implementation (Figure 3.21).
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The Webcam used here is a simple commercial USB Webcam (Figure 3.22) which
must be installed on the machine running the above Labview mentioned Webcam
application,
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Figure 3.22 Webcam used in this application (i-C@AM from Liftech Inc.)

The TCP/IP server handling the Webcam software listens for commands on a
specified IP address and port number. When a connection is accepted, the server
responds to the following command:

Command - “camera get objects”™
After receiving the command correctly the server acquires a frame from the
Webcam and runs the image processing routine developed for this application. The

routine identifies the objects in the captured frame, and for each object computes
the center of mass. The TCP/IP client receives the following information:

e Number of objects identified
o  Center of mass of each of the identified objects

The answer is sent through the open socket on a string with the following syntax:
number_#x1_yl#x2 y2#. #xN_yN#

where “number” is the number of objects identified and (xi, yi) is the position of
each of the objects. For example, for the scene presented in Figure 3.18:

command from client: “camera get objects”
answer from server: 4_#x]_yl#x2_y2#x3_y3#x4_y4#
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3.4.3 Remote Client

The objective of this application is to implement the human-machine interface with
the user, providing the resources to enable the user/programmer to command the
robot to pick-and-place the existing objects identified by the software associated
with the Webcam. Basically, the application can run on any machine with access to
the network. For this particular application, a Pocket PC (PPC) running Windows
Mobile 2005 was chosen since the PPC platform is powerful and very interesting
for portable HMI applications, namely when a wireless network is available
(Figure 3.23).

\ k\\_ Computer

\\\\ Wireless AP WebCem

D8 | pocket PC

Robot
Manipulator

Controller

Figure 3.23 Overview of the setup used in this application

In the following material, the code of the client application will be briefly
presented, showing in detail a few selected and representative functions. Figure
3.24 shows the screen of the developed PPC application used to connect to the
TCP/IP server running on the robot controller and change the robot operating state.



148 Industrial Robots Programming

’n:é“pﬂbﬁ.s'chp'm‘ » R _.._.-:,‘@f‘

Init | Seipt | Joint | Cam |10 | PLC |

IP/Port: I 172.16.0.89 |ZDD4

] Prog. RUN
0] _pros 510 |

Program State:  Program RUN

Controller State: Motors ON

Options:

|Option 2: PDA Demo ~| Select I
Answer Robot:

Program Run, master,

Figure 3.24 PPC screen to initialize robot operation and select program option
This is the code associated with the action “Motors ON” (Figure 3.24):
server_name = ip.Text

server_port = port. Text
sock = ConnectSocket(server_name, server_port)

If sock Is Nothing Then
ans_robot.Text() = "Error connecting to robot, master."
Else

Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("motor_on")
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
ans_robot.Text() = Encoding. ASCILGetString(bytesReceived, 0, bytes)
moff.Enabled = True
mon.Enabled = False
prun.Enabled = True
pstop.Enabled = True
sel.Enabled = True
sock.Close()
If Encoding.ASCIL GetString(bytesReceived, 0, bytes) = "0" Then
ans_robot.Text() = "Motor on, master."
cstate. Text() = "Motors ON"
Else
ans_robot.Text() = "Error executing, master."
End If
End If
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The code presented above simply opens the socket, sends the commanding string,
and processes the answer. This code is associated with the software button “Motor
ON” in Figure 3.24.

To give another example, the code associated with the action “Program RUN”
(Figure 3.24) is presented below:

Server_name = ip.Text
server_port = port. Text
sock = ConnectSocket(server_name, server_port)
If s Is Nothing Then
ans_robot.Text() = "Error connecting, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("program_start_main")
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
ans_robot. Text() = Encoding. ASCII. GetString(bytesReceived, 0, bytes)
sock.Close()
If Encoding. ASCIIL.GetString(bytesReceived, 0, bytes) = "0" Then
ans_robot. Text() = "Program Run, master."
pstate. Text() = "Program RUN"
Else
ans_robot.Text() = "Error executing, master."
End If
End If

The interface with the Webcam is done through the screen window represented in
Figure 3.25. Using this window, the user can command the camera to return the
information about the objects in the scene. All the returned positions are listed in
the list-box present in the interface (Figure 3.25) for the user to select the one he
wants to use for the pick-and-place operation.

The code below details the implementation of the action “Get Webcam Picture”
(Figure 3.25):

Dim msg_received As String
Dim indx As Integer
Dim num_obj As Integer
Dim index As Integer
sock = ConnectSocket(ip2.Text.ToString, port2.Text.ToString)
If sock Is Nothing Then
ans_robot_3.Text() = "Error connecting to CCD, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("camera get objects')
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If s.Available <> 0 Then
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
MsgBox("ok, buffer cleared.")
End If
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock.Receive(bytesReceived, bytesReceived.Length, 0)
list_cam.Items.Clear()
msg_received = Encoding. ASCIL GetString(bytesReceived, 0, bytes)
If msg_received <> "0_#no objects" Then
indx = msg_received.IndexOf("#")
num_obj = msg_received.Substring(0, indx - 1)
n_obj.Text() = num_obj
msg_received = msg_received.Substring(indx + 1)
For index = 1 To (num_obj - 1) Step 1
indx = msg_received.IndexOf("#")
object_cam(index) = msg_received.Substring(0, indx - 1)
list_cam.Jtems.Item(index - 1) = object_cam(index)
msg_received = msg_received.Substring(indx + 1)
Next
index = num_obj
indx = msg_received.IndexOf("#")
object_cam(index) = msg_received.Substring(0, indx - 1)
list_cam.Items.Item(index - 1) = object_cam(index)
Else
ans_robot_3.Text() = "no objects"
End If
sock.Close()
End If

In the code above, the information about the number and position of the identified
objects is extracted from the returned string and listed in the list-box and other
output textboxes. The user can then select one of the obtained positions and
command the robot to pick that object and place it on the output container box. The
code below is the implementation of the “Pick” action (Figure 3.25):

sock = ConnectSocket(ip2.Text. ToString, port2.Text.ToString)
Pick.Enabled = False
If sock Is Nothing Then
ans_robot_3.Text() = "Error connecting, master."
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes(''command_str 5000_" +
object_cam(list_cam.SelectedIndex + 1))
sock.Send(bytesSent, bytesSent.Length, 0)
bytes = sock Receive(bytesReceived, bytesReceived.Length, 0)
ans_robot.Text() = Encoding. ASCIL.GetString(bytesReceived, 0, bytes)
sock.Close()
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If Encoding. ASCIILGetString(bytesReceived, 0, bytes) = "0" Then
ans_robot_3.Text() = "Pick command, master."
list_cam.Items.Item(list_cam.SelectedIndex) = "no object"

Else
ans_robot_3.Text() = "Error executing, master."

End If

End If

The “Pick” action is associated with a robot subroutine driven by the variable
“command_str”. The action is identified with the number 5000, and requires the
user to specify also the parameters X and Y, referring to the position of the object.
Consequently, the command from the client application to successfully trigger the
“Pick” action is,

bytesSent = ascii.GetBytes("command _str 5000_" +
object_cam(list_cam.SelectedIndex + 1))

which translates to,

command_str 5000 XY

Al::cess] Catlesian] Joint Cam _l_

SRR . 0 ©

178.95_136.14
113.62_159.72

IP/Port: [172.16.3.151 [2005

Figure 3.25 PPC screen designed to interface the Webcam
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The robot subroutine handles these commands in the way presented below:

IF index = receive_lent+1 THEN
command_str:=receive_stringl;
ENDIF
IF (index > 1) and (index < receive_len) THEN
command_str:=StrPart(receive_stringl,1,index-1);
str_aux1:=StrPart(receive_stringl,index+1,receive_len-index);
receive_len:=StrLen(str_aux1);
index:=StrMatch(str_aux1,1," "),
IF index = (receive_len + 1) THEN
parameterla:=str_auxl;
ENDIF
IF (index > 1) and (index < receive len) THEN
parameterla:=StrPart(str_aux1,1,index-1);
str_aux2:=StrPart(str_aux1,index+1,receive_len-index);
receive_len:=StrLen(str_aux2);
index:=StrMatch(str_aux2,1," ");
IF index = (receive_len + 1) THEN
parameter2a:=str_aux2;
ENDIF
ENDIF
IF (index > 1) and (index < receive_len) THEN
parameter2a:=StrPart(str_aux2,1,index-1);
str_aux3:=StrPart(str_aux2,index+1,receive_len-index);
receive_len:=StrLen(str_aux3);
index:=StrMatch(str_aux3,1," ");
IF index = (receive_len + 1) THEN
parameter3a:=str_aux3;
ENDIF
IF (index > 1) and (index < receive_len) THEN
parameter3a:=StrPart(str_aux3,1,index-1);
ENDIF
ENDIF
ENDIF
TEST command_str
case "190": movecontact;
case "200": open_g;
case "201"™ close_g;
case "301": move_P1;
case "401": go_home;
case "501": movejlp;
case "502": movejlm;
case "503": movej2p;
case "504": movej2m;
case "505": movej3p;
case "506": movej3m;
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case "507": movejdp;
case "508": movej4m,;
case "509": movejSp;
case "510": movejSm;
case "511": movej6p;
case "512": movejém,;
case "520": jammountl;
case "530"; cammountl;
case "540": pick pen;
case "550": release_pen;
case "1000": save_pos;
case "2000": move_table;
case "3000": exe_script;
case "5000": cam_pick;
case "5001": cam_go;
ENDTEST

Basically, the routine extracts the information from the command string sent
through the socket connection, and feeds the controlling variables with the
commanded values. The TEST cycle (similar to a switch-case-do cycle)
discriminates the function to call, which executes the functionality commanded by
the user.

This example shows in some detail the procedure to explore TCP/IP socket servers
for industrial manufacturing systems. It also shows that there are several platforms
available to simplify the HMI and the setup, making the overall application easier
to use.

3.4.4 Using UDP Datagrams

Using UDP datagrams (socket datagrams) is not fundamentally different than using
TCP sockets (stream datagrams). Consequently, a simple implementation is
mentioned here with the objective of pointing out the practical. The selected
implementation uses a MOTOMAN robot (model HP6) equipped with the new
NX100 robot controller. This controller offers remote services available from a
UDP socket server, which are similar in functionality to the ones listed in Table
3.3. Several client applications were developed by the author to access those
services, including the secondary services built based on those available from the
UDP server, using the Microsoft Visual Studio .NET 2005 programming suite. In
the following, a simple application developed to run on Pocket PC (running
Windows Mobile 2005) will be briefly introduced.

When using UDP datagrams, which are unreliable connections, the user should not
use blocking calls, i.e., connections that block the application while waiting on the
socket for the answer to the call. Consequently, after opening a socket and sending
a UDP datagram, the user program shouldn’t wait forever for an answer on the
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socket or thread. Instead, it should close the socket based on a timeout event, The
following application (Figure 3.26) runs on PPC and makes a few UDP datagram
calls to the UDP socket server running on the robot controller.

Figure 3.26 PPC application designed for a Motoman robot to explore UDP services from
its NX100 controller

The program running on the robot controller, to implement operational (or
secondary) services, is a switch-case-do type cycle driven by a numeric variable
(type 1, index 0 — in the motoman notation). The simple server for this application
moves the robot to five fixed positions, depending on the value of the above
mentioned variable:

WHILE never_end
WAIT B00 <> 05
TEST B00
Case 399
MOVE P1, VEL, 0, TO;
Case 499
MOVE P2, VEL, 0, T0;
Case 599
MOVE P3, VEL, 0, TO0;
Case 699
MOVE P4, VEL, 0, T0;
Case 799
MOVE P35, VEL, 0, T0;
ENDTEST
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B00 =0;
RETURN

Writing, for example, the value 399 in the variable BOO makes the robot move to
position P1. The code associated with requesting that action remotely is:

Dim remotelP As New IPEndPoint(IPAddress.Parse("172.16.0.93"), 10006)
Dim Socket send As New Socket(remotelP.AddressFamily, SocketType.Dgram,
Protocol Type.Udp)
Dim Socket_receive As New UdpClient(10006)
Dim ENQ() As Byte = {&H6, &H0, &H1, &H0, &H5}
Dim EOT() As Byte = {&H6, &H0, &H1, &HO, &H4}
Dim ACKO0() As Byte = {&H6, & H0, &H2, &H0, &H10, &H30}
Dim ACKI1() As Byte = {&H6, &HO0, &H2, &H0, &H10, &H31}
Socket_send.Connect(remotelP)
Socket_receive.Connect(remotelP)
Dim str_temp As String
Socket_send.Send(ENQ)
Dim receiveBytes As {Byte]() = Socket_receive.Receive(remotelP)
recb = receiveBytes.Length()
Fori As Integer = 0 To recb - 1
str_temp = str_temp + Hex(receiveBytes(i))
Next i
If str_temp <> "60201030" Then
MessageBox.Show("Erro na resposta ao ENQ: " + str_temp)
Socket_send.Close()
Socket_receive.Close()
Return
End If

Dim str_temp As String
Socket_send.Send(Comando)
Dim receiveBytes As [Byte]() = Socket_receive.Receive(remotelP)
recb = receiveBytes.Length()
For1 As Integer = 0 To recb - 1
str_temp = str_temp + Hex(receiveBytes(i))
Next i
If str_temp <> "60201031" Then
MessageBox.Show("Erro na resposta ao comando: " + str_temp)
Socket_send.Close()
Socket_receive.Close()
Return
End If

Send End Of Transmission
Send ACKO0
Send ACKI1
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Socket_send.Close()

Socket_receive.Close()

This code is rather complex, since all the details about the protocol, including the
negotiation phases, are explicitly programmed in the function. Basically, to send a
command the protocol adopted by Motoman requires a command start, followed by
the command itself, and then an end-of-command sequence.

The reader should remember that the sockets named “socket_receive” have a pre-
defined timeout that prevents the application from blocking. When a timeout
occurs, the routine returns immediately.
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Figure 3.27 Control panel application events (“messages™) received from the robot
controller

3.5 Simple Example: Control Panel

The “Control Panel” is rather different from the previous examples. First, it uses
remote procedure calls (RPCs) to access the services available from the remote
server, which is a standard way to offer services and to support client-server
programming environments. Other than that, the application works also as an RPC
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server, because it is capable of receiving events from the robot controller. The
events are RPC calls made by the controller to the machines that made
subscriptions to receive those events.

The application was built using PCROBNET2003/5 [5-7], an ActiveX software
component that offers the methods, properties, and data structures necessary to
explore the RPC services from the robot controller (ABB S4 robot controllers).The
code for some selected actions is briefly explored below. For example, the code
(developed in C++ using methods from the above mentioned ActiveX component)
for the actions “MOTOR ON”, “MOTOR OFF”, “PROGRAM RUN”, and
“PROGRAM STOP” is presented below:

void CCtrpanelDlg::Onmotoron()
{

nresult = m_pon.MotorON();

if (nresult == -8999) no_comms

}

void CCtrpanelDlg::Onmotoroff()

{
nresult = m_pon.MotorOFF(); < Call method
if (nresult == -8§999) no_comms = TRUE;

}

void CCtrpanelDlg::Onrunprogramcon()
{
long cycles =-1;
long mode = 1;
nresult = m_pon.ProgStart("main",&cycles, &mode); 4 Call method
if (nresult == -8999) no_comms = TRUE,;

}

void CCtrpanelDlg::Onhaltprogramim()

{
short mode = 3;
nresult = m_pon.ProgStop(&mode); < Call method
if (nresult == -8999) no_comms = TRUE;

b

To receive events, a specially developed RPC server must be running on the client
computer to receive those RPC calls. That server broadcasts the received events as
registered operating system user messages (Figure 3.13). Consequently, to be able
to receive those events, each application just needs to watch its message queue and
filter the relevant messages. The code below was designed to operate on the
message queue to identify events and present the information to the user (see
“messages” in Figure 3.27).

Call method

A

TRUE;
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void CCtrpanelDlg::OnSponMsgPcroB.C.trl1(long FAR* msg number, long
FAR* msg_lParam, long FAR* msg_wParam)
{
BSTR msg;
m_pon.ReadMsg(&msg, msg_IParam, msg_wParam);
CString Msg(msg);
m_logtext.SetWindowText(Msg);
SysFreeString(msg);
switch (*msg_IParam)
{
case 1: m_description.SetWindowText("State Changed."); break;
case 2: m_description.SetWindowText('""Warning."); break;
case 3: m_description.SetWindowText("Error."); break;
default: m_description.SetWindowText("Invalid log_type."); break;
}
Msg.Format("%d",*msg_wParam);
m_error.SetWindowText(Msg);
CCltrpanelDig::info(};
}

Using software components (ActiveX, JAVA, etc.) is a way to hide from the user
the tricky details about how to make RPC calls (for example, compare this code
with the one presented for the UDP datagram example), allowing her to focus
immediately on the application.

3.6 Simple Example: S4Misc — Data Access on a Remote
Controller

The “S4Misc” application (Figure 3.28) also uses RPC to access the robot services.
Like the previous example, it was designed to be used with the ABB S4 robot
controllers (running option RAP [8]).
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Figure 3.28 S4Misc application designed to access program and system variables from a
remote computer

This application enables the user to access program and system variables from a
remote computer online, i.e., even when the robot is in automatic mode and the
loaded program is executing. The user can utilize this software for debugging
purposes, checking and changing (when needed) the actual value of any variable.
In the following, the code for the actions READ/WRITE a numeric variable, WRITE
a speed variable, and READ the actual robot position is showed (C# .Net 2005 was
used here):

private void OnReaNum()

{
String msg;
msg = txt VarName.Text;
if (msg.Length > 0)
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}
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nresult = PcRob.ReadNum(msg, ref val); €————— Call method
if (nresult < 0)
{
MessageBox.Show("Error Reading Num!");
}
else
{
msg = Convert. ToString(val);
txt_VarValue.Text = msg;

}

else MessageBox.Show("Error: You must specify variable name!");

private void OnWriteNum()

{

String msg;

String msg1;

msg = txt_VarName.Text;

msgl = txt_VarValue.Text;

if (msg.Length > 0 || msgl.Length > 0)

val = Convert. ToSingle(msg1);
nresult = PcRob.WriteNum(msg, ref val); <«——— Call method
if (nresult < 0) MessageBox.Show("Error Wrinting Num!");

else MessageBox.Show("Error: You must specify variable name and value!™);

private void OnWriteSpeed()

{

String msg;
msg = txt_VarName.Text;
if (msg.Length > 0)

RobVelocity.vtep = Convert. ToSingle(txt VTcp.Text);

RobVelocity.vori = Convert. ToSingle(txt_VOri.Text),

RobVelocity.vleax = Convert. ToSingle(txt_VLeax.Text);
RobVelocity.vreax = Convert. ToSingle(txt VReax.Text);

PcRob.vtep = RobVelocity.vtcp;

PcRob.vori = RobVelocity.vori;

PcRob.vleax = RobVelocity.vleax;

PcRob.vreax = RobVelocity.vreax;

nresult = PcRob.WriteSpeedDataVB(msg); <«—— Call method

if (nresult<0) MessageBox.Show("Error: You must specify variable name");
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else MessageBox.Show("Error: You must specify variable name");

}

private void OnReadCurrRoboTarget()

{

nresult =PcRob.ReadCurrRobTVB(); <—— Call method
if (nresult < 0)

{

MessageBox.Show("Error Reading Current RobT");

} else

{

!
}

RobT_Read.x = PcRob.x;

RobT_Read.y = PcRob.y;

RobT_Read.z = PcRob.z;

RobT_Read.ql = PcRob.ql;

RobT Read.q2 = PcRob.q2;
RobT_Read.q3 = PcRob.q3;
RobT_Read.q4 = PcRob.g4;
RobT_Read.exa = PcRob.exa;
RobT_Read.exb = PcRob.exb;
RobT_Read.exc = PcRob.exc;
RobT_Read.exd = PcRob.exd,
RobT_Read.exe = PcRob.exe;
RobT_Read.exf = PcRob.exf;

txt_x.Text = RobT_Read.x.ToString();
txt_y.Text = RobT Read.y.ToString();
txt_z.Text=RobT Read.z.ToString();
txt_ql.Text = RobT_Read.ql.ToString();
txt_q2.Text=RobT_ Read.q2.ToString();
txt_q3.Text = RobT_Read.q3.ToString();
txt_q4.Text = RobT_Read.q4.ToString();
txt_exa.Text=RobT Read.exa.ToString();
txt_exb.Text = RobT_Read.exb.ToString();
txt_exc.Text = RobT Read.exc. ToString(),
txt_exd.Text = RobT Read.exd.ToString();
txt_exe.Text = RobT_Read.exe.ToString();
txt_exf.Text = RobT_ Read.exf. ToString();
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This application demonstrates the usefulness of having remote services that can
communicate with the running applications. With it, users can influence the
behavior of running applications for controlling, monitoring, or debugging
purposes. It also demonstrates the usefulness of software components for the
process of developing distributed applications that necessarily use several types of
radically different equipment. With these components, users and programmers can
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focus on the applications under development without worrying about the technical
details of remote procedure calling, network communications, and so on.

3.7 Industrial Example: Semi-autonomous Labeling System

In this section, an industrial example that explores the previous material is
presented and discussed. This example corresponds to an actual implementation
resulting from a cooperation effort between the author and a Portuguese company.
The system presented here was designed to operate almost without operator
intervention, showing that concepts like flexibility and agility are fundamental to
manufacturing plants and require much more from the systems used on the shop
floor. Flexible manufacturing systems take advantage of being composed of
programmable equipment to implement most of its characteristics, which are
supported by reconfigurable mechanical parts. Industrial robots are, consequently,
good examples of flexible manufacturing systems.

The robotic industrial system presented here was designed to execute
parameterized labeling tasks on paper rolls. The system is commanded directly
from the manufacturing tracking and control software. This software is based on
dynamic databases that register the situation of each item produced in the factory, a
simple way to track them see what is happening on the shop floor. Since all
information about each item is available in the manufacturing tracking software, it
is logical to use it to command some of the shop floor manufacturing systems,
namely the ones that require only simple parameterization to work properly. This
procedure would take advantage of the available information and infrastructure,
avoiding unnecessary operator interfaces to command the system. Also, potential
gains in terms of flexibility and productivity are evident.
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3.7.1 Robotic Labeling System

The industrial system introduced here is a labeling system (Figure 3.29) composed
of:
e  One robot manipulator ABB IRB4400, with the S4C+ controller [10]
e  One electro-pneumatic gripper, properly equipped to grab one or two A4-
size paper sheets
s  One office laser printer, with several trays of paper
e One gluing machine with spray injectors controlled from the robot
controller IO system
® One industrial PLC (Siemens S7-300) that controls the rolls conveyer
belt, providing information to the robot controller about its state

In general, the labeling robotic system works as follows: When a roll is released
from the previous system (wrapping machine), one or two labels are printed on the
laser printer. At the same time, the robot receives the order to pick those labels
from the ramp placed at the end of the printer, and immediately prepositions near
the printer. The picking operation happens when the required number of sheets are
available at the ramp (two optical sensors detect the presence of paper). After that,
the robot waits for the roll to enter the working zone, i.e., waits for the
corresponding optical sensor, named sensor 1 in Figure 3.29, to detect the roll.
When the roll is detected, the robot moves to the gluing machine to add glue on the
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side of each label. When the operation is finished, the roll should be already
stopped, waiting for the robot to insert the labels on the top and on the right side of
the roll. The robot performs that operation when the roll is detected by sensor 2
(Figure 3.29) and when the PL.C confirms that the conveyor has stopped. When the
operation is finished, the robot signals it using a flag, accessible remotely, and
moves to a neutral position to wait for a new command.

3.7.2 System Software

Designing software for the system, which needed to be commanded from the
network, was an interesting challenge. The industrial robot is the central element of
the manufacturing cell, and is connected to the factory network, which makes it
easily accessible from the UNIX station running the manufacturing tracking
software.

To exchange information between computer systems, in a safe and guaranteed
way, a client-server approach using TCP/IP sockets may be used. That is a simple
and straightforward thing to do, with the UNIX computer acting as the client. A
TCP/IP server should then be available to receive client calls, and a properly
designed messaging protocol must be used. The decision here was to make the
TCP/IP server the only interface to the robotic manufacturing cell, so that any
command or request of information is done by connecting to the server and
sending the appropriate messages. Since there is a network on the shop floor, the
TCP/IP server can be installed in any shop floor computer, making it really easy to
install the interface and have it running. In the factory under consideration, the
majority of the shop floor computers are running the Windows NT4 and Windows
2000 operating systems. Consequently, we decided to use BSD compatible TCP/IP
sockets, which are also compatible with the Microsoft TCP/IP implementation
(winsock2).

The next challenge was how to manage the communication with the robot
controller, since it is well known that actual robot controllers are closed industrial
systems not allowing installation of any user software apart from robot programs.
ABB robot controllers [10] have internal Remote Procedure Call (RPC) [2,8]
servers that can be used to exchange variables, files, etc. Those servers are SUN
RPC 4.0 [2] compatible, and can be used to our purposes if the TCP/IP server
interface can issue RPC calls to the robot controller, Consequently, a library of
functions implementing calls for all the services on the ABB robot controller was
built [5,7], along with a port of the SUN RPC 4.0 to operating systems based on the
Win32 API This environment enables a complete access to the robot controller
RPC services making it possible to command the robot from the network. The
robot controller software must then be built in a way to expose all system
capabilities to the remote client. This means building it like a SWITCH-CASE-DO
server, with the switching variable controlled by the remote client.
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Figure 3.30 Software interface to the industrial robotic system

The basic idea, depicted in Figure 3.30, is simple. The interface to the industrial
robotic cell is a TCP/IP server running on a specified IP and port number. The
following procedure is used in a way to guarantee safety and avoid data loss:

e The server should respond to ID-calls with a pre-determined string, which
is used to identify the TCP/IP server with name, version, and date. The
string is actually “robot_server@v2Im11y03”. The ID-call is the first call
issued by the client after establishing a new connection. A wrong answer
to the ID-call should tell the client to send a reset-call and close the
connection

o  The client makes frequent A-calls, in periods of two seconds, to find out if
the server is alive and healthy, and to get its actual state (busy or ready)

e The client uses B-calls to send execution commands, properly
parameterized, to the robotic labeling system. When a B-call is received
and accepted by the server, the system enters the busy state and any
subsequent A-call will return that the system is busy

e  When the robotic labeling system completes a task, i.e., when it inserts the
requested number of labels on the roll in use, the system enters the ready
state and any subsequent A-ca/l will return that state

The TCP/IP server is the only operational interface to the robotic system.
Basically, it is a simple single channel TCP/IP server, completely coded in C++,
which waits for connections on a pre-determined port, accepting only the ones
coming from only a few IPs (the ones where the manufacturing tracking software
may be running). Connection is established only if the calling machine makes an
ID-call, properly parameterized, including a password. The server is a state
machine that implements answers to the four different messages that can be sent by
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the connected client (Figure 3.30). The connection between the TCP/IP server and
the industrial robot is handled using RPC sockets, compatible with the SUN RPC
4.0 definition.

In the following section, the developed software will be further explained, starting
with the software designed to run on the robot controller.

3.7.3 Robot Controller Software

Considering that the system was designed to be commanded remotely using the
factory computer network, it was decided to have the robot controller software
working as a server, exposing to the remote client all of its operational
functionalities. This capability is very interesting also for other applications, and
because of that it will be discussed in a general way.

When building an industrial robotic cell, it is certainly possible, and very useful, to
identify all the system capabilities and requirements, i.e., the system engineer
should state clearly all the functions it is supposed to perform and write the code
necessary to implement them. If that code is developed as general as possible, and
used to build a server that can be explored remotely with properly parameterized
calls, then the complete system functionality can be requested remotely from the
network.

Technically, to implement the remote calls, it was decided to use remote procedure
calls (RPC) compatible with the SUN RPC 4.0 suite, an open standard in the public
domain. The ABB S4 robot control system implements a collection of RPC
services that enable users to access programs, system data, and robot configuration,
as well as to share files, etc. These services are part of the robot controller’s
operating system. Using those services from the TCP/IP server designed to
interface the system [2, 5-8], it is certainly possible to set up an RPC-driven server
like:

switch service decision_variable
case 1: call function_1; break;
case 2: call function_2; break;
case 3: call function_3; break;

case n: call function_n; break;
default: call invalid_function; break;
end_switch

where the service_decision_variable is a numerical variable whose value can be
changed remotely, making an RPC call to the change_numerical_value service. In
this way, the robot’s operation is completely controlled from the remote client.
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Since the robotic system is to be operated without human intervention, a few
services were added to allow maintenance and error recovery operations.
Sometimes, due to errors in the manufacturing tracking database (usually
introduced by human intervention), invalid or badly parameterized commands are
sent to the robot. In those situations, depending on the dimensions of the roll in
use, the robot may crash with the surface of the roll, because it uses the
commanded dimensions to approach the surface of the roll in a more efficient way.
Also, failure in the conveyor sensors or actuators may cause problems with roll
placement. In any case, an operator is required to solve the problems and put the
system in production again. The program shown in Figure 3.31 is used to put the
robot in a known position and resume automatic operation.
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Figure 3.31 Operator interface used to solve error situations

Basically, the operator interface makes RPC calls to the above mentioned services
designed to solve erroneous situations. Those services enable the operator to
resume local program execution from an actual point or from the beginning, move
the robot to well-known positions, enter maintenance routines, and so on. The
program usually runs on a laptop that maintenance personnel carry to the setup
when a problem arises, plugging it to the network.

3.7.4 TCP/IP Server

As already explained, this TCP/IP server (Figure 3.32) was developed as the only
interface to the robotic labeling system. It is a simple TCP/IP server that accepts
connections coming from the machine that runs the manufacturing tracking
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software (client). After connecting, it implements a state-machine that listens for
messages coming from the client, acting accordingly. The TCP/IP server monitors
the connection to the robot and the robot state, so that proper answers are given to
every A-call received from the client. Also, the server does not accept any
command in the periods where the robot state is busy, forcing the client to wait
until the previous commanded operation finishes.
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Figure 3.32 TCP/IP server operation
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3.7.5 Discussion

The example presented in this section explores the use of software interfaces for
remote command of shop floor industrial robotic cells. This involves network
interfaces based on the TCP/IP protocol and remote procedure calls, enabling
direct command of shop floor manufacturing setups from anywhere in the factory.
This idea is particularly useful with systems that require minor parameterization to
perform a predefined task. This can easily be done from the manufacturing
tracking software, used to follow and manage production, where the require
information is available.

In many industries, like the one presented in this example, production is closely
tracked in any part of the manufacturing cycle. The manufacturing cycle can be
interpreted as a collection of operations and processes that transform the raw
materials into finished products. This jourmney of products between the raw
materials warehouse and the finished products warehouse, is composed of several
manufacturing systems that perform the necessary operations on the product under
processing, and intermediate buffers used to temporarily store semi-finished
products in several stages of their production cycle. These buffers are fundamental
for a well balanced production planning, achieving high rates of efficiency and
agility. In many cases, the manufacturing systems require only minor
parameterization to execute their tasks. If that parameterization can be commanded
remotely from where it is available (using manufacturing tracking software), then
the system becomes almost autonomous in the sense that operator intervention is
minimal and related only with maintenance and error situations. A system like this
will improve manufacturing efficiency and agility, since the operation becomes
less dependent on operators. Also, because the system was built to be explored
remotely, which requires a collection of general software routines designed to
implement all of the system functionalities, it is easier to change production by
changing parameterization, a software task, which also contributes to agility.

This robotic manufacturing system uses a simple TCP/IP server as the
commanding interface. The server sends remote procedure calls to the robot
control system, which is the system main computer. The robot controller interfaces
with the system PLC that controls the conveyor, and manages the information
coming from manual controls and sensors. Consequently, any client connected to
the TCP/IP server is able to command the system and get production information,
This feature adds flexibility and agility to the manufacturing setup. This setup was
installed in a Portuguese paper factory and is being used without problems for
almost three years, which demonstrates its robustness and simplicity.

Finally it is worthwhile to stress that:
e The system interface was implemented in C++ using available
programming tools: Visual C++ 6.0 first, and Visual .NET 2003 when an
update was necessary [11]
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e The system was implemented using standard operating systems, namely,
UNIX from Digital to run the manufacturing tracking software, and
Windows 2000 to run the robotic cell TCP/IP interface

o The Microsoft TCP/IP socket implementation was used to program the
TCP/IP server, since it is BSD-compatible

o  The system uses RPC’s compatible with SUN RPC 4.0, an open standard
not compatible with the Microsoft implementation, which required a
complete port to Windows 2000 (the operating system used on the shop
floor of the partner factory). That effort was completely done by the
author

Consequently, no special tools were used to build the presented solution, which
proves that these techniques are available to build smart interfaces enabling more
efficient applications, or at least to build other ways to exploit shop floor
equipment. In fact, actual manufacturing systems have a lot of flexibility inside
because they rely on programmable equipment, like robots and PLCs, to
implement their functions. System engineers need to find ways to explore that
flexibility when designing manufacturing systems, exposing it to the advanced user
in more efficient ways.

In terms of operational results, it is important that a system like the one presented
here does not add any production delay to the manufacturing system, or become a
production bottleneck. This means that the cycle time should be lower than the
cycle time of the previous station. In our example, the system takes around 11
seconds to perform the labeling operation, which is at least 20 seconds lower than
the previous roll wrapping operation.

3.7.6 Conclusion

In describing an industrial application designed for labeling applications, this
section discussed and detailed a software interface designed to command shop
floor manufacturing systems remotely from the manufacturing tracking software.
This interface added flexibility and agility to the manufacturing system, since all
available operations were implemented in a very general way requiring only simple
parameterization to specify the individual operations. The interface to the system is
a simple TCP/IP server installed in one of the shop floor computers. To command
the system, the client needs to connect to the server and, if allowed, send properly
parameterized commands as simple messages over the open socket. The server
uses SUN RPC 4.0 compatible sockets to access the robotic system, place the
received commands, and monitor the system operation. Since the TCP/IP server is
a general implementation, using the BSD compatible TCP/IP socket
implementation from Microsoft, it can receive commands from virtually any client.
This makes the presented robotic cell interface an interesting way to command
shop floor manufacturing systems.
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4

Interface Devices and Systems

4.1 Introduction

The success of using robots with flexible manufacturing systems especially
designed for small and medium enterprises (SME) depends on the human-machine
interfaces (HMI) and on the operator skills. In fact, although many of these
manufacturing  systems are semi-autonomous, requiring only minor
parameterization to work, many other systems working in SMEs require heavy
parameterization and reconfiguration to adapt to the type of production that
changes drastically with time and product models. Another difficulty is the average
skill of the available operators, who usually have difficulty adapting to robotic
and/or computer-controlled, flexible manufacturing systems.

SMEs are special types of companies. In dimension (with up to 250 permanent
collaborators), in economic strength (with net sales up to SOM€) and in installed
technical expertise (not many engineers). Nevertheless, the European economy
depends on these types of company units since roughly they represent 95% of the
European companies, more than 75% of the employment, and more than 60% of
the overall net sales [1]. This reality configures a scenario in which flexible
automation, and robotics in particular, play a special and unique role requiring
manufacturing cells to be easily used by regular non-skilled operators, and easier to
program, control and monitor. One way to this end is the exploitation of the
consumer market’s input-output devices to operate with industrial robotic
equipment. With this approach, developers can benefit from the availability, and
functionality of these devices, and from the powerful programming packages
available for the most common desktop and embedded platforms. On the other
hand, users could benefit from the operational gains obtained by having the normal
tasks performed using common devices, and also from the reduction in prices due
to the use of consumer products.



174 Industrial Robots Programming

Industrial manufacturing systems would benefit greatly from improved interaction
devices for human-machine interface even if the technology is not so advanced.
Gains in autonomy, efficiency, and agility would be evident. The modern world
requires better products at lower prices, requiring even more efficient
manufacturing plants because the focus is on achieving better quality products,
using faster and cheaper procedures. This means having systems that require less
operator intervention to work normally, better human-machine interfaces, and
cooperation between humans and machines sharing the same workspace as real
coworkers.

Also, the robot and robotic cell programming task would benefit very much from
improved and easy-to-use interaction devices. This means that availability of SDKs
and programming libraries supported under common programming environments is
necessary. Application development depends on that.

Working on future SMEs means considering humans and machines as coworkers,
in environments where humans have constant access to the manufacturing
equipment and related control systems.

Several devices are available for the user interface (several types of mice,
Jjoysticks, gamepads and controls, digital pens, pocket PCs and personal assistants,
cameras, different types of sensors, etc.) with very nice characteristics that make
them good candidates for industrial use. Integrating these devices with current
industrial equipment requires the development of a device interface, which exhibits
some basic principles in terms of software, hardware and interface to commercial
controllers.

This scenario can be optimized in the following concurrent ways:

1. Develop user-friendly and highly graphical HMI applications to run on the
available interface devices. Those environments tend to hide the complexity of
the system from operators, allowing them to focus on controlling and
operating the system. Figure 4.1 shows the main window of an application
used to analyze force/torque data coming from a robotic system that uses a
force/torque sensor to adjust the programmed trajectories (this system will not
be further explored in this book)

2. Explore the utilization of consumer input/output devices that could be used to
facilitate operator access to the system. In fact, there is a considerable amount
of different devices on the market developed for personal computers on
different input/output tasks. Such devices are usually programmable, with the
manufacturers providing suitable SDKs to make them suitable for integrating
with industrial manufacturing systems. Figure 4.2 shows a few of these
devices, some of them covered in this book
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Figure 4.1 HMI interface used with an industrial robotic system to further analyze
force/torque sensor data

3 Explore the functionality of the available software packages commonly used
for engineering. Good examples of those packages are the CAD packages used
by engineers to develop, optimize, and improve their designs (Figure 4.3).
Since the vast majority of companies use CAD software packages to design
their products, it would be very interesting if the information from CAD files
could be used to generate robot programs. That is, the CAD application could
be the environment used for specifying how robots should execute the required
operations on the specified parts. Furthermore, since most engineers are
familiar with CAD packages, exploring CAD data for robot programming and
parameterization seems a good way to proceed [2].
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(- 3 |
Figure 4.2 Input/output devices used for HMI applications: (from top to bottom) joystick,
headset with noise reduction, pocket PC and digital pen
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Figure 4.3 Using 3D CAD software packages to project and design mechanical parts: a —
welding torch and laser camera (SolidWorks),; b — welding trajectories specified using
AutoCad

This chapter uses industrial and laboratory test-cases to provide the necessary
details and insight to complement the above presented claims and design options.
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4.2 Speech Interfaces

4.2.1 Introduction

Talking to machines is a thing normally associated with science fiction movies and
cartoons and less with current industrial manufacturing systems. In fact, most of
the papers about speech recognition start with something related to artificial
intelligence, a science fiction movie, or a robot used in a movie, etc., where
machines talk like humans, and understand the complex human speech without
problems. Nevertheless, industrial manufacturing systems would benefit very much
from speech recognition for human-machine interface (HMI) even if the
technology is not so advanced. Gains in terms of autonomy, efficiency and agility
seem evident. The modern world requires better products at lower prices, requiring
even more efficient manufacturing plants because the focus is in achieving better
quality products, using faster and cheaper procedures. This means autonomy,
having systems that require less operator intervention to operate normally, better
human-machine interfaces and cooperation between humans and machines sharing
the same workspace as real coworkers.

The final objective is to achieve, in some cases, semi-autonomous systems [3], i.e.,
highly automated systems that require only minor operator intervention. In many
industries, production is closed tracked in any part of the manufacturing cycle,
which is composed by several in-line manufacturing systems that perform the
necessary operations, transforming the raw materials in a final product. In many
cases, if properly designed, those individual manufacturing systems require simple
parameterization to execute the tasks they are designed to execute. If that
parameterization can be commanded remotely by automatic means from where it is
available, then the system becomes almost autonomous in the sense that operator
intervention is reduced to the minimum and essentially related with small
adjustments, error and maintenance situations [3]. In other cases, a close
cooperation between humans and machines is desirable although very difficult to
achieve, due to limitations of the actual robotic and automation systems.

The above described scenario puts focus on HMI, where speech interfaces play an
important role because manufacturing system efficiency will increase if the
interface is more natural or similar to how humans command things. Nevertheless,
speech recognition is not a common feature among industrial applications,
because:

o The speech recognition and text-to-speech technologies are relatively
new, although they are already robust enough to be used with industrial
applications

¢ The industrial environment is very noisy which puts enormous strain on
automatic speech recognition systems

¢ Industrial systems weren’t designed to incorporate these types of features,
and usually don’t have powerful computers dedicated to HMI
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Automatic speech recognition (ASR) is commonly described as converting speech
to text. The reverse process, in which text is converted to speech (TTS), is known
as speech synthesis. Speech synthesizers often produce results that are not very
natural sounding. Speech synthesis is different from voice processing, which
involves digitizing, compressing (not always), recording, and then playing back
snippets of speech. Voice processing results are natural sounding, but the
technology is limited in flexibility and needs more disk storage space compared to
speech synthesis.

Speech recognition developers are still searching for the perfect human-machine
interface, a recognition engine that understands any speaker, interprets natural
speech patterns, remains impervious to background noise, and has an infinite
vocabulary with contextual understanding. However, practical product designers,
OEMs, and VARs can indeed use today's speech recognition engines to make
major improvements to today's markets and applications, Selecting such an engine
for any product requires understanding how the speech technologies impact
performance and cost factors, and how these factors fit in with the intended
application.

Using speech interfaces is a big improvement to HMI systems, because of the
following reasons:

e Speech is a natural interface, similar to the “interface” we share with other
humans, that is robust enough to be used with demanding applications.
That will change drastically the way humans interface with machines

e  Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases, common PCs were used, along
with a normal noise-suppressing headset microphone

e Speech reduces the amount and complexity of different HMI interfaces,
usually developed for each application. Since a PC platform is used,
which carry currently very good computing power, ASR systems become
affordable and simple to use

In this section, an automatic speech recognition system is selected and used for the
purpose of commanding a generic industrial manufacturing cell. The concepts are
explained in detail and two test case examples are presented in a way to show that
if certain measures are taken, ASR can be used with great success even with
industrial applications. Noise is still a problem, but using a short command
structure with a specific word as pre-command string it is possible to enormously
reduce the noise effects. The system presented here uses this strategy and was
tested with a simple noiseless pick-and-place example, but also with a simple
welding application in which considerable noise is present.
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4.2.2 Evolution

As already mentioned, the next level is to combine ASR with natural language
understanding, i.e., making machines understand our complex language, coping
with the implementations, and providing contextual understanding. That capability
would make robots accessible to people who don't want to learn the technical
details of using them. And that is really the aim, since a common operator does not
have the time or the immediate interest to dig into technical details, which is, in
fact, neither required nor an advantage.

Speech recognition has been integrated in several products currently available:

o Telephony applications

e Embedded systems (Telephone voice dialing system, car kits, PDAs,
home automation systems, general use electronic appliances, etc.)

e Multimedia applications, like language learning tools

e  Service robotics

Speech recognition has about 75 years of development. Mechanical devices to
achieve speech synthesis were first devised in the early 19th century, but imagined
and conceived for fiction stories much earlier.

The idea of an artificial speaker is very old, an aspect of the human long-standing
fascination with humanoid automata. Gerbert (d. 1003), Albertus Magnus (1198-
1280), and Roger Bacon (1214-1294) are all said to have built speaking heads.
However, historically attested speech synthesis begins with Wolfgang von
Kempelen (1734-1804), who published his findings of twenty years of research in
1791. Wolfgang ideas gain another interest with the invention of the telephone in
the late 19th century, and the subsequent efforts to reduce the bandwidth
requirements of transmitting voice.

On March 10, 1876, the telephone was born when Alexander Graham Bell called
to his assistant, "Mr. Watson! Come here! I want you!" He was not simply making
the first phone call. He was creating a revolution in communications and
commerce. It started an era of instantaneous information-sharing across towns and
continents (on a planetary level) and greatly accelerated economic development.

In 1922, a sound-activated toy dog named "Rex" (from Elmwood Button Co.) could
be called by name from his doghouse.

In 1936, UK. Tel introduced a "speaking clock" to tell time. In the 1930s, the
telephone engineers at Bell Labs developed the famous Voder, a speech synthesizer
that was unveiled to the public at the 1939 World’s Fair, but that required a skilled
human operator to operate with it.

Small vocabulary recognition was demonstrated for digits over the telephone by
Bell Labs in 1952, The system used a very simple frequency splitter to generate
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plots of the first two formants. The identification was achieved by matching them
with a pre-stored pattern. With training, the recognition accuracy of spoken digits
was 97%.

Fully automatic speech synthesis came in the early 1960s, with the invention of
new automatic coding schemes, such as adaptive predictive coding (APC). With
those new techniques in hand, the Bell Labs engineers again turned their attention
to speech synthesis. By the late 1960s, they had developed a system for internal use
in the telephone system, a machine that read wiring instructions to Western
Electric telephone wirers, who could then keep eyes and hands on their work.

At the Seattle World's Fair in 1962, IBM demonstrated the "Shoebox" speech
recognizer. The recognizer was able to understand 16 words (digits plus
command/control words) interfaced with a mechanical calculator for performing
arithmetic computations by voice. Based on mathematical modeling and
optimization techniques learned at IDA (now the Center for Communications
Research, Princeton), Jim Baker introduced stochastic processing with hidden
markov models (HMM) to speech recognition while at Carnegie-Mellon University
in 1972. At the same time, Fred Jelinek, coming from a background of information
theory, independently developed HMM techniques for speech recognition at IBM.
HMM provides a powerful mathematical tool for finding the invariant information
in the speech signal. Over the next 10-15 years, as other laboratories gradually
tested, understood, and applied this methodology, it became the dominant speech
recognition methodology. Recent performance improvements have been achieved
through the incorporation of discriminative training (at Cambridge University,
LIMSI, etc.) and large databases for training,

Starting in the 1970s, government funding agencies throughout the world (e.g.
Alvey, ATR, DARPA, Esprit, etc.) began making a major impact on expanding and
directing speech technology for strategic purposes. These efforts have resulted in
significant advances, especially for speech recognition, and have created large
widely-available databases in many languages while fostering rigorous
comparative testing and evaluation methodologies.

In the mid-1970s, small vocabulary commercial recognizers utilizing expensive
custom hardware were introduced by Threshold Technology and NEC, primarily
for hands-free industrial applications. In the late 1970s, Verbex (division of Exxon
Enterprises), also using custom special-purpose hardware systems, was
commercializing small vocabulary applications over the telephone, primarily for
telephone toll management and financial services (e.g. Fidelity fund inquiries). By
the mid-1990s, as computers became progressively more powerful, even large
vocabulary speech recognition applications progressed from requiring hardware
assists to being mainly based on software. As performance and capabilities
increased, prices dropped.

Further progress led to the introduction, in 1976, of the Kurzweil Reading
Machine, which, for the first time allowed the blind to "read" plain text as opposed
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to Braille. By 1978, the technology was so well established and inexpensive to
produce that it could be introduced in a toy, Texas Instruments Speak-and-Spell.
Consequently, the development of this important technology from inception until
fruition took about 15 years, involved practitioners from various disciplines, and
had a far-reaching impact on other technologies and, through them, society as a
whole.

Although existing for at least as long as speech synthesis, automatic speech
recognition (ASR) has a shorter history. It needed much more the developments of
digital signal processing (DSP) theory and techniques of the 1960s, such as
adaptive predictive coding (APC), to even come under consideration for
development.

Work in the early 1970s was again driven by the telephone industry, which hoped
for both voice-activated dialing and also for security procedures based on voice
recognition. Through gradual development in the 1980s and into the 1990s, error
rates in both these areas were brought down to the point where the technologies
could be commercialized.

In 1990, Dragon Systems (created by Jim and Janet Bailer) introduced a general-
purpose discrete dictation system (i.e. requiring pauses between each spoken
word), and in 1997, Dragon started shipping general purpose continuous speech
dictation systems to allow any user to speak naturally to their computer instead of,
or in addition to, typing. /BM rapidly followed the developments, as did Lernout &
Hauspie (using technology acquired from Kurzweil Applied Intelligence), Philips,
and more recently, Microsoft. Medical reporting and legal dictation are two of the
largest market segments for ASR technology. Although intended for use by typical
PC users, this technology has proven especially valuable to disabled and physically
impaired users, including many who suffer from repetitive stress injuries (RSI).
Robotics is also a very promising area.

AT&T introduced its automated operator system in 1992, In 1996, the company
Nuance supplied recognition technology to allow customers of Charles Schwab to
get stock quotes and to engage in financial transactions over the telephone. Similar
recognition applications were also supplied by SpeechWorks. Today, it is possible
to book airline reservations with British Airways, make a train reservation for
Amtrak, and obtain weather forecasts and telephone directory information, all by
using speech recognition technology. In 1997, Apple Computer introduced
software for taking voice dictation in Mandarin Chinese.

Other important speech technologies include speaker verification/identification and
spoken language learning for both literacy and interactive foreign language
instruction. For information search and retrieval applications (e.g. audio mining)
by voice, large vocabulary recognition preprocessing has proven highly effective,
preserving acoustic as well as statistical semantic/syntactic information. This
approach also has broad applications for speaker identification, language
identification, and so on.
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Today, 65 years after the Voder and just 45 years after APC, both ASR and TTS
technologies can be said to be fully operational, in a case where a very convoluted
technological history has had a modest and more or less anticipated social impact.

4.2.3 Technology

Speech recognition systems can be separated into several different classes
depending on the types of utterances they have the ability to recognize. These
classes are based on the fact that one of the difficulties of ASR is the ability to
determine when a speaker starts and finishes an utterance. Most packages can fit
into more than one class, depending on which mode they're using.

Isolated words: Isolated word recognizers usually require each utterance to have
quiet (lack of an audio signal) on both sides of the sample window. It doesn't mean
that it accepts single words, but does require a single utterance at a time. Often,
these systems have "listen/not-listen" states, where they require the speaker to wait
between utterances (usually doing processing during the pauses). Isolated utterance
might be a better name for this class.

Connected words: Connected word systems (or more correctly “connected
utterances”) are similar to isolated words, but allow separate utterances to be run-
together with a minimal pause between them.

Continuous speech: Continuous recognition is the next step. Recognizers with
continuous speech capabilities are some of the most difficult to create because they
must utilize special methods to determine utterance boundaries. Continuous speech
recognizers allow users to speak almost naturally, while the computer determines
the content. Basically, it's computer dictation and commanding.

Spontaneous speech: There appears to be a variety of definitions for what
spontaneous speech actually is. At a basic level, it can be thought of as speech that
is natural sounding and not rehearsed. An ASR system with spontaneous speech
ability should be able to handle a variety of natural speech features such as words
being run together, pauses, "ums" and "ahs", slight stutters, etc.

Voice verification/identification: Some ASR systems have the ability to identify
specific users. This book doesn't cover verification or security systems, because
user validation is done using other means.

Speech recognition, or speech-to-text, involves capturing and digitizing the sound
waves, converting them to basic language units or phonemes, constructing words
from phonemes, and contextually analyzing the words to ensure correct spelling for
words that sound alike (such as “write” and “right”).
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Recognizers (also referred to as speech recognition engines) are the software
drivers that convert the acoustic signal to a digital signal and deliver recognized
speech as text to the application. Most recognizers support continuous speech,
meaning the user can speak naturally into a microphone at the speed of most
conversations. Isolated or discrete speech recognizers require the user to pause
after each word, and are currently being replaced by continuous speech engines.

Continuous _speech recognition_engines currently support two modes of speech
recognition:

e Dictation, in which the user enters data by reading directly to the
computer

e Command and control, in which the user initiates actions by speaking
commands or asking questions

Dictation mode allows users to dictate memos, letters, and e-mail messages, as
well as to enter data using a speech recognition dictation engine. The possibilities
for what can be recognized are limited by the size of the recognizer's "grammar" or
dictionary of words. Most recognizers that support dictation mode are speaker-
dependent, meaning that accuracy varies based on the user's speaking patterns and
accent. To ensure accurate recognition, the application must create or access a
"speaker profile" that includes a detailed map of the user's speech patterns captured
in the matching process during recognition.

Command and control moede offers developers the easiest implementation of a
speech interface in an existing application. In command and control mode, the
grammar (or list of recognized words) can be limited to the list of available
commands (a much more finite scope than that of continuous dictation grammars,
which must encompass nearly the entire dictionary). This mode provides better
accuracy and performance, and reduces the processing overhead required by the
application. The limited grammar also enables speaker-independent processing,
eliminating the need for speaker profiles or "training" the recognizer.

The command and control mode is the one most adapted for speech commanding
of robots.

4.2.4 Automatic Speech Recognition System and Strategy

From the several continuous speech ASR technologies available, based on personal
computers, the Microsoft Speech Engine [4] was selected because it integrates very
well with the operating systems we use for HMI, manufacturing cell control, and
supervision (Windows XP/NT/2000). The Microsoft Speech Application
Programming Interface (SAPI) was also selected, along with the Microsoft’s
Speech SDK (version 5.1), to develop the speech and text-to-speech software
applications [4]. This API provides a nice collection of methods and data structures
that integrate very well in the .NET 2003 framework [5], providing an interesting
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developing platform that takes advantage of the computing power available from
actual personal computers. Finally, the Microsoft's SAPI 5.1 works with several
ASR engines, which gives some freedom to developers to choose the technology
and the speech engine.

Grammars define the way the ASR recognizes speech from the user. When a
sequence included in the grammar is recognized, the engine originates an event
that can be handled by the application to perform the planned actions. The SAPI
provides the necessary methods and data structures to extract the relevant
information from the generated event, so that proper identification and details are
obtained.

There are three ways to define grammars: using XML files, using binary
configuration files (CFG), or using the grammar builder methods and data
structures. XML files are a good way to define grammars if a compiler and
converter is available, as in the SDK 5.1. In the examples provided in this chapter,
the grammar builder methods were used to programmatically construct and modify
the grammar.

The strategy used here takes into consideration that there should be several robots
in the network, running different applications. In that scenario, the user needs to
identify the robot first, before sending the command. The following strategy is
used,

e All commands start with the word “Robot”
The second word identifies the robot by a number: one, two, etc
The words that follow constitute the command and the parameters
associated with a specific command

Consequently, the grammar used is composed of a “TopLevelRule” with a
predetermined initial state, i.e., the ASR system looks for the pre-command word
“Robot” as a precondition to any recognizable command string. The above
mentioned sequence of words constitutes the second level rules, i.e, they are used
by the TopLevelRule and aren’t directly recognizable. A rule is defined for each
planned action. As a result, the following represents the defined syntax of
commands:

robot number command parameter_i

where “robot” is the pre-command word, number represents the robot number,
command is the word representing the command to send to the robot, and
parameter_i are { words representing the parameters associated with the command.

Another thing considered was safety. Each robot responds to “hello” commands,
and when asked to “initialize” the robots require voice identification of username
and password to give the user the proper access rights. Since the robots are
connected to the calling PC using an RPC socket [2, 6-7] mechanism, the user must
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“initialize” the robot to start using its remote services, which means that an RPC
connection is open, and must “terminate” the connection when no more actions are
needed. A typical session would look like,

User: Robot one hello.

Robot: I am listening my friend.

User: Robot one initialize.

Robot: You need to identify to access my functions.
Robot: Your username please?

User: Robot one <username>.

Robot: Correct.

Robot: Your password please?

User: Robot one <password>.

Robot: Correct.

Robot: Welcome again <username>. I am robot one. Long time no see.

Sequence of commands here. Robot is under user control.

User: Robot one terminate.
Robot: See you soon <username>.

In the following sections, two simple examples are given to demonstrate how this
voice command mechanism is implemented, and how the robot controller software
is designed to allow these features.

4.2.5 Pick-and-Place and Robotic Welding Examples

The following examples take advantage of developments done in the Industrial
Robotics Laboratory, of the Mechanical Engineering Department of the University
of Coimbra on robot remote access for command and supervision [2, 6-7]. Briefly,
two industrial robots connected to an Ethernet network are used. The robot
controllers (ABB S4CPlus) are equipped with RPC servers that enable user access
from the network, offering several interesting services like variable access, 10
access, program and file access and system status services [7]. The new versions of
the ABB controller, named IRCS, are equipped with a TCP/IP sockets API {§],
enabling users to program and setup TCP/IP sockets servers in the controller. For
that reason, the ideas presented here can be easily transported to the new IRCS5
controller with no major change.

If calls to those services are implemented in the client PC, it is fairly easy to
develop new services. The examples presented here include the ActiveX
PCROBNET2003 [9] that implement the necessary methods and data structures
(see Table 3.3) to access all the services available from the robot controller.
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The basic idea is simple and not very different from the concept used when
implementing any remote server. If the system designer can access robot program
variables, then he can design his own services and offer them to the remote clients.
A simple SWITCH-CASE-DO cycle, driven by a variable controlled from the
calling client, would do the job:

switch (decision_1)

{
case 0: call service_0; break;
case 1: call service 1; break;
case 2: call service_2; break;

case n: call service_n; break;

}

4.2.6 Pick-and-Place Example

For example, consider a simple pick-and-place application. The robot, equipped
with a two-finger pneumatic gripper, is able to pick a piece from one position
(named “origin™) and deliver it to other position (named “final”). Both positions
are placed on top of a working table (Figure 4.4).

Final position

Figure 4.4 Working table for the simple pick-and-place application

The robot can be commanded to open/close the gripper, approach origin/final
position (positions 100mm above origin/final position, respectively), move to
origin/final position, and move to “home” (a safe position away from the table).
This is a simple example, but sufficient to demonstrate the voice interface. Figure
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4.5 shows a simplified version of the server software running on the robot
controller.

To be able to send any of those commands using the human voice, the following
grammar was implemented:

TopLevelRule = “Robot”
Rule 0 = “one hello”

pre-command word
check if robot is there

Rule 1 = “one initialize”
Rule 2 = “one master”
Rule 3 = “one masterxyz”

ask robot to initialize (open client)
rule defining username “master”
password of username “master”

open the gripper

close the gripper

put robot in run state

put robot in stand-by state
start program

stop program

call service 94

call service 93

call service 91

call service 92

call service 90

release robot access (close client)

Rule 4 = “one open”

Rule 5 = “one close”

Rule 6 = “one motor on”

Rule 7 = “one motor off”

Rule 8 = “one program run”
Rule 9 = “one program stop”
Rule 10 = “one approach origin”
Rule 11 = “one approach final”
Rule 12 = “one origin”

Rule 13 = “one final”

Rule 14 = “one home”

Rule 15 = “one terminate”

PROC main()
TPErase; TPWrite "Example Server ...";
p1:=CRobT(\Tool:=trj_too\WObj:=trj_wobj);
Move] p1,v100,fine,trj too\WObj:=trj wobj;
decisionl:=123;
WHILE TRUE DO
TEST decisionl
CASE 90:
Movel home,v200,fine,tool0; decisionl:=123;
CASE 91:
MoveL final,v200,fine,tool0; decisionl:=123;
CASE 92:
MoveL origin,v200,fine,tool0; decisionl:=123;
CASE 93:
MovelJ Offs(final, 0,0,100),v200,fine,tool0; decision1:=123;
CASE 94:
Move) Offs(origin, 0,0,100),v200,fine,tool0; decisionl:=123;
ENDTEST
ENDWHILE
ENDPROC

Figure 4.5 Simple pick-and-place server implemented in RAPID
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The presented rules were introduced into a new grammar using the grammar
builder included in the Microsoft Speech API (SAPI) [4]. The following (Figure
4.6) shows how that can be done, using the Microsoft Visual Basic .NET2003
compiler.

TopRule = Grammar.Rules. Add("TopLevelRule",
SpeechLib.SpeechRuleAttributes.SRATopLevel Or
SpeechLib.SpeechRuleAttributes.SRADynamic, 1)

ListltemsRule = Grammar.Rules.Add("ListItemsRule",
SpeechLib.SpeechRuleAttributes. SRADynamic, 2)

AfterCmdState = TopRule.AddState

m_PreCommandString = "Robot"

TopRule.InitialState. AddWordTransition(A fterCmdState, m_PreCommandString, " ", , "",
0,0)

AfterCmdState. AddRuleTransition(Nothing, ListitemsRule, "", 1, 1)
ListItemsRule.Clear()

ListItemsRule.InitialState. AddWordTransition(Nothing, "one hello", " ", , "one hello", 0, 0)
Grammar.Rules.Commit()

Grammar.CmdSetRuleState("TopLevelRule",SpeechLib.SpeechRuleState. SGDSActive)
RecoContext.State() = SpeechLib.SpeechRecoContextState. SRCS_Enabled

Figure 4.6 Adding grammar rules and compiling the grammar using SAPI in Visual Basic
.NET2003

After committing and activating the grammar, the ASR listens for voice commands
and generates speech recognition events when a programmed command is
recognized. The corresponding event service routines execute the commanded
strings. Figure 4.7 shows the shell of the application built in Visual Basic .NET
2003 to implement the voice interface for this simple example. Two robots are
listed in the interface. The robot executing the simple pick-and-place example is
robot one (named Rita).
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Figure 4.7 Shell of the voice interface application used to command the robot

With this interface activated, the following sequence of commands (admitting that
the logging procedure was already executed) will take the robot from the “home”
position, pick the work object at the origin position, deliver it to the final position,
return to “home” and release the robot control.

User: Robot one approach origin.
Robot: Near origin, master.
User: Robot one open.

Robot: Tool open master.

User: Robot one origin.

Robot: In origin position master.
User: Robot one close.

Robot: Tool close master.

User: Robot one approach origin.
Robot: Near origin, master.
User: Robot one approach final.
Robot: Near final, master.

User: Robot one final.

Robot: In final position, master.
User: Robot one approach final.
Robot: Near final, master.

User: Robot one home.

Robet: In home position, master.
User: Robot one terminate.
Robot: See you soon master.
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The speech event routine, running on the voice interface application, is called when
any of the rules defined in the working grammar are recognized. For example,
when the “motor on” rule is identified, the following routine is executed:

If ok_command_1 =1 And (strText = "Robot one motor on') Then
resultl = Pcrobnet2003.MotorON2(1)
If resultl >= 0 Then
Voice.Speak('""Motor on, master.")
ans_robot_1.Text() = "Motor ON, master."
Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master."
End If
End If

To give another example, when the move to “origin” rule is recognized, the
following routine is executed:

If ok_command_1 =1 And (strText = "Robot one origin') Then
Dim valor As Integer
valor =92
resultl = Pcrobnet2003. WriteNum2("decision1", valor, 1)
If result] >= 0 Then
Voice.Speak("In origin position, master.")
ans_robot_1.Text() = "In origin position, master."
Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master."
End If
End If

4.2.7 Robotic Welding Example

The welding example presented here extends slightly the functionality of the
simple server presented in Figure 4.5, just by adding another service and the
necessary routines to control the welding power source. The system used for this
demonstration is composed of an industrial robot ABB IRB1400 equipped with the
robot controller ABB S4CPlus, and a MIG/MAG welding power source (ESAB
LUA 3154). The work-piece is placed on top of a welding table, and the robot must
approach point [ (named “origin”) and perform a linear weld from that point until
point 2 (named “final”). The system is presented in Figure 4.8. The user is able to
command the robot to

e  Approach and reach the point origin (P1)
e Approach and reach the point final (P2)



192 Industrial Robots Programming

e Move to “home” position
e Perform a linear weld from point P1 (origin) to point P2 (final)
¢ Adjust and read the value of the welding velocity

These actions are only demonstration actions selected to show further details about
the voice interface to industrial robots. To implement the simple welding server, it
is enough to add the following welding service to the simple server presented in
Figure 4.5:

CASE 94:
weld_on;
Movel. final,v200,fine,tool0;
weld_off;
decisionl:=123;

where the routine “weld_on” makes the necessary actions to initiate the welding
arc [2], and the routine “weld off” performs the post welding actions to finish the
welding and terminate the welding arc [2].

The welding server is running in robot 2 (named babylon), and is addressed by that
number from the voice interface application (Figure 4.9). To execute a linear weld
from P1 to P2, at 10mmy/s, the user must command the following actions (after
logging to access the robot, and editing the velocity value in the voice interface
application — Figure 4.9) using the human voice:

User: Robot two approach origin.
Robot: Near origin master.

User: Robot two origin.

Robot: In origin position master.
User: Robot two velocity.
Robot: Velocity changed master.
User: Robot two weld.

Robeot: I am welding master.
User: Robot two approach final.
Robot: Near final master.

Figure 4.9 shows the voice interface when robot two is actually welding along with
a user equipped with a handset microphone to send voice commands to the robot.
The code associated with the welding command is,

If ok_command_2 =1 And (strText = "Robot two weld") Then
Dim valor As Integer
valor = 95
resultl = Pcrobnet2003.WriteNum2("decision1", valor, 2)
If resultl >= 0 Then
Voice.Speak("] am welding, master.')
ans_robot_2.Text() = "I am welding, master."
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Else
Voice.Speak("Error executing, master.")
ans_robot_2.Text() = "Error executing, master."
End If
End If

The code above writes the value 95 to the variable “decisioni”, which means that
the service “weld” is executed (check Figure 4.5).
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Figure 4.8 Simple welding application used for demonstration

[ Robot-by-¥oice Command using SAPI 5.1 and PCROBGNET2003 |
—Robot 1: Rita Pick-and-place Application)
RAobot State ()

answer_txt:  Neat final, master.
. Reco_txt: Flobot one approach final
] Variable decision: 123

~ Robot 2 Babylon (Welding Application]
RobotState () Velocity [10.0 0.00
answes bt |/am Welding, masier;

‘Reco_txt:  Robot two wekd

Variable decision: 85
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Figure 4.9 Shell of the voice interface application showing the welding operation, and a
user (author of this book) commanding the robot using a headset microphone

4.2.8 Adjusting Process Variables

During the welding process, it may be necessary to adjust process variables such as
the welding velocity, welding current, the welding points, and so on. This means
that the voice interface must allow users to command numerical values that are
difficult to recognize with high accuracy. Furthermore, it is not practical to define
fixed rules for each possible number to recognize, which means that dictation
capabilities must be active when the user wants to command numbers. To avoid
noise effects, and consequently erroneous recognition, a set of rules were added to
enable dictation only when necessary, having the rule strategy defined above
always active. Consequently, the following rules were added for robot two (the one
executing the welding example):

Rule V1 = “two variables” enables access to variables

Rule V2 = “two variables out” ends access to variables

Rule V3 = “two <variable_name>" enables access to <variable_name>
Rule V4 = “two <variable_name> lock” ends access to <variable_name>

Rule V5 = “two <variable_name> read” reads from <variable_name>
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Rule V6 = “two <variable_name> write” writes to <variable_name>

Rules V1 and V2 are used to activate/deactivate the dictation capabilities, which
will enable the easy recognition of numbers in decimal format (when the feature is
activated, a white dot appears in the program shell — Figure 4.10). Rules V3 and
V4 are used to access a specific variable. When activated, each number correctly
recognized is added to the text box associated with the variable (a blinking LED
appears in the program shell — Figure 4.10). Deactivating the access, the value is
locked and can be written to the robot program variable under consideration. The
rules V5 and V6 are used to read/write the actual value of the selected variable
from/to the robot controller.

[/®Robot-by-Voice Command using SAPI 5.1 and PCROBGNET2003 =(of x|

—Robot 1: Rita (Pick-and-place Application)
Robot State

answer_tzt  Initializing SAPI reco context object..
Heco_tzt:
Variable decision:

—Robot 2: Babylon [Welding Application)
RobotState (O Velociy [105 0.00 o

answer_tst:  Near origin, master.
Heco_tst  Robot two velocity
Varable decision: 123

5 hitp://robotics. 3 beito/

Figure 4.10 Accessing variables in the robot controller

As an example, to adjust the welding velocity the following code is executed after
the corresponding rule is recognized:

If ok_command_2 =1 And (strText = "Robot two velocity write") Then

Dim valor as Double

Dim velocity as Integer

valor = velocity. Text()

resultl = Pcrobnet2003.WriteSpeed("velocity", valor, 2)

If Resultl1 >= 0 Then
Voice.Speak(""Welding velocity changed, master.")
ans_robot_2.Text() = "Welding velocity changed, master."

Else
Voice.Speak("Error executing, master.")



Interface Devices and Systems 197

ans_robot_2.Text() = "Error executing, master."
End If
End If

Because the voice interface was designed to operate with several robots, two in the
present case, the user may send commands to both robots using the same interface
which is potentially interesting.

Using speech interfaces is a big improvement to HMI systems, for the following
reasons:

*  Speech is a natural interface, similar to the “interface” we share with other
humans, that is robust enough to be used with demanding applications. It
will change drastically how humans interface with machines

¢ Speech makes robot control and supervision possible from simple multi-
robot interfaces. In the presented cases, common PC’s were used, along
with a quite normal noise-suppressing headset microphone

e  Speech reduces the amount and complexity of different HMI interfaces,
usually developed for each application. Since a PC platform is used, and
they carry very good computing power, ASR systems become affordable
and user-friendly

The experiments performed with this interface worked extremely well, even when
high noise was involved (namely during welding applications), which indicates
clearly that the technology is suitable to use with industrial applications where
human-machine cooperation is necessary or where operator intervention is
minimal.

4.2.9 Conclusion

In this section, a voice interface to command robotic manufacturing cells was
designed and presented. The speech recognition interface strategy used was briefly
introduced and explained. Two selected industrial representative examples were
presented to demonstrate the potential interest of these human-machine interfaces
for industrial applications.

Details about implementation were presented to enable the reader to immediately
explore from the discussed concepts and examples. Because a personal computer
platform is used, along with standard programming tools (Microsoft Visual Studio
.NET2003 and Speech SDK 5.1) and an ASR system freely available (SAPI 5.1),
the whole implementation is affordable even for SME utilization.

The presented code and examples, along with the fairly interesting and reliable
results, indicate clearly that the technology is suitable for industrial utilization.
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4.3 VoiceRobCam: Speech Interface for Robotics

The example presented in this section extends the example in section 3.2, namely
adding extra equipment and implementing a simple manufacturing cell-like system
composed of a robot, a conveyor, and several sensors. It also includes a
voice/speech interface developed to allow the user to command the system using
his voice. The reader should consider the presented example as a demonstration of
functionality because many of the options were taken with that objective in mind,
rather than trying to find the most efficient solutions but instead the ones that suit
better the demonstrating purpose.

The system (Figure 4.11) used in this example is composed of:

e An industrial robot ABB IRB140 [8] equipped with the new IRCS5 robot
controller

e An industrial conveyor, fully equipped with presence sensors, and
actuated by an electric AC motor managed through a frequency inverter.
To control the conveyor, an industrial PLC (Siemens §7-200) [12] is used

e A Webcam used to acquire images from the working place and identify
the number and position of the available objects. The image processing
software runs on a PC offering remote services through a TCP/IP sockets

server
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Figure 4.11 Manufacturing cell-like setup: picture and Solidworks model

In the following, a brief explanation of how the various subsystems work is
provided. In the process, the relevant details about each subsystem and their
respective construction are also given.

4.3.1 Robot Manipulator and Robot Controller

The ABB IRB140 (Figure 4.12) is an anthropomorphic industrial robot
manipulator designed to be used with applications that require high precision and
repeatability on a reduced working place. Examples of those types of applications
are welding, assembly, deburring, handling, and packing.

ABB IRB 140 Basic Details

Year of release: 1999

Repeatability: +/- 0.03mm

Payload: Skg

Reach: 810mm

Max. TCP Velocity: 2.5m/s

Max. TCP Acceleration: 20m/s2
Acceleration time 0-1m/s: 0.15 seconds

Figure 4.12 Details about the industrial robot manipulator ABB IRB140

This robot is equipped with the new IRCS robot controller from ABB Robotics
(Figure 4.13). This controller provides outstanding robot control capabilities,
programming environment and features, along with advanced system and human
machine interfaces.
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IRC5 Basic Details

Year of release: 2005

Multitask system

Multiprocessor system

Powerful programming language: RAPID
FieldBus scanners: Can, DeviceNet, ProfiBus,
Interbus

DeviNet Gateway: Allen-Bradley remote 10
Interfaces: Ethernet, COM ports

Protocols: TCP/IP, FTP, Sockets

Pendant: WinCE based teach-pendant
PLC-like capabilities for 10

Figure 4.13 Details about the industrial robot controller IRC5

The robot is programmed in this application to operate in the same way as
explained in section 3.3.1, i.e.,, a TCP/IP socket server is available that offers
services to the remote clients (see Table 3.3). This server is independent of the
particular task designed for the robot, and allows only the remote user to send
commands and influence the running task. In this case, the task is basically to pick
objects from the conveyor and place them on a box. The robot receives complete
commands specifying the position of the object to pick. Furthermore, since the
relevant robot IO signals are connected to the PLC, the robot status and any 10
action, like “MOTOR ON/OFF”, “PROGRAM RUN/STOP”, “EMERGENCY”, etc.,
are obtained through the PLC interface.

4.3.2 PLC Siemens S7-200 and Server

The PLC (Figure 4.14) plays a central role in this application, as it is common in a
typical industrial manufacturing setup where the task of managing the cell is
generally done by a PLC. In this example, to operate with the PLC, a server was
developed to enable users to request PLC actions and to obtain information from
the setup. To make the interface simple and efficient, the server accepts TCP/IP
socket connections, offering the necessary services to the client’s applications. The
list of available services is presented in Table 4.1. The client application just needs
to connect to the PLC server software application to be able to control the setup
and obtain status and process information.

The server application (Figure 4.15) runs on a computer that is connected to the
PLC through the RS232C serial port, and to the local area network (LAN) for
client access.
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Table 4.1 Services available from the PL.C TCP/IP server

Service Answer Description

Init_Auto <Init Auto Conveyor in Automatic Mode

Init Manual <Init_Auto Conveyor in Manual Mode

Stop <Stop> Conveyor in STOP Mode

Read _Mode Auto, Manual e | Returns the conveyor operating mode

Stop

Manual Forward | Manual Forward Conveyor starts in Manual Mode

Manual_Stop Manual_Stop Conveyor stops in Manual Mode

Force_Forward <Force_Forward Forces the conveyor to Start, although
in Automatic Mode

10 Bit stream* Returns the status of all 10 signals

Status Bit stream™** Returns the status of all IO signals
and the conveyor operating mode

Motor On <Motor_On> Robot Motor ON

Motor _Off <Motor_Off> Robot Motor OFF

Prg Run <Prg Run> Robot Program RUN

Prg Stop <Prg_Stop> Robot Program STOP

* The IO bit stream is formated in the following format:

BQO.0:xxxxxxxxBQ1.0:xxxxxxxx BI0.0:xxxxxxxx:BI1.0:xxxxXXXX
where “BQ0.0:”/”BI0.0:” is string followed by 8 bits corresponding to the first block of
digital outputs/inputs of the PLC, “BQ1.0.”/”BI1.0:” is a string followed by the 8 bits
corresponding to the second block of digital outputs/inputs. For example, the following
answer is obtained when BQO0.2, BQ1.0, BQ1.4, BQL1.6, BI0.1, BI1.0, BIl.1 and BI1.2 are
activated:

BQ0.0:00100000BQ1.0:10001010BI10.0:01000000:BI1.0: 11100000
Note: The bit assignment is as follows:

BQO | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Conv_F | Conv_B | user M on | user Prun | Pstop | M off
BQ1 | 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
user user user user user user user User
BIO* | 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Auto Manual [ M_on M off | Prun | P stop | EMS Busy
BI1 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Sensor]l | Sensor2 | Sensor3 | User user user user user

*BIO0 contains robot status information as listed.

** Similar to the above bit stream, but with the string “Aduto”, “Manual”, or “Stop” added in
the end of the stream in accordance with the state of the conveyor. For example, for the
above mentioned 10 state and with the conveyor in Automatic Mode, the answer to the
Status call is,

BQ0.0:00100000BQ1.0:10001010B10.0:01000000:B11.0:11100000_Auto
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Frequency
Inverter
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Figure 4.14 Electrical panel showing the PLC, the frequency inverter and the electrical
connections
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¥ TCP/IP Async Server
IP

{17216.63.9 Tt I — Serial Port Contiol ——————
Port ;
[2008 Cose | L‘
Msg Disable
IStatus ' _l
172.16.1.10-» Conected ﬂ -
172.16.1.10-> Read_Mode BQO.0 Iuonmuou
172.16.1.10-> Conected '

172.16.1.10-> Status BA1.0 ]DDDDELUDU

172.16.1.10-> Conected

172.16.1.10-> Status BID.0 |01000000
172.16.1.10-> Conected
172.16.1.10-> Status . BI.O |11100000

172.16.1.10-> Conected

172.16.1.10-> Motor_On
172.16.1.10-> Conected fAuto

172.16.1.10> Status hd|

‘W aiting for a connection...

Figure 4.15 Shell of the PLC TCP/IP socket server

The PLC works as a server, as explained in Section 3.2.1.2, offering the 10
services and actions necessary to control the system and obtain status information.

4.3.3 Webcam and Image Processing Software

This setup uses a simple USB Webcam to obtain images from the working area and
compute the number of objects present and their respective positions. The camera
is connected to a PC that runs the image processing software developed in
LabView from National Instruments using the IMAQ Vision toolbox. The software
works in the same way as explained in Section 3.3.2. Nevertheless, two more
messages were added to the TCP/IP server, which return’s the information
necessary to calibrate the camera and to compute the object position in the robot’s
cartesian space (Table 4.2).

Table 4.2 Services from the Webcam TCP/IP server

Service Description

camera get objects Gets a frame from the Webcam

calibration pixels Correlation between pixels and millimeters

camto pos X Y Offset to add to the (x, y) position obtained from the
image to compute the position of the object in the robot
Cartesian space
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The image processing software waits for a “camera acquire objects” message from
the user client. When a message arrives, the server acquires a frame (image) from
the camera and performs a binary operation, i.e., from a color image, or with
several levels of gray, a back-and-white image is obtained with only two colors:
black (0) or white (1). This type of procedure is necessary to identify the working
objects in the scene and remove the unnecessary light effects.

The next task is to remove all the objects that are out of the working range. Those
correspond to the parts of the conveyor belt, light effects, shadows, etc., and need
to be removed before identifying the objects and computing their position.

Figure 4.16 Frame obtained from the camera after being processed

Because the objects used with this application are small discs without holes (Figure
4.16), the image processing software uses a procedure to fill all the holes resulting
from the binary operation. After that, a valid object should have a number of pixels
between certain limits. This will allow users to identify unknown objects or objects
that are overlapped. Only objects that pass this identification are considered, and
for those the center of mass is computed: All other objects are ignored. From that
the (x, y) position is computed and returned to the client application that issued the
call.
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4.3.4 User Client Application

It is now easy to understand the software architecture designed for this application
(Figure 4.17): distributed and based on a client-server model. The user client
application just need’s to implement calls to the available services, track the
answers, and monitor the robot and conveyor operations with the objective of
controlling the setup.

Figure 4.17 Basic distributed software architecture and connections between the different
software modules

Figure 4.18 shows the shell of a PC client application developed using C# .NET
2005 to access the above mentioned TCP/IP services from the various servers, and
control the manufacturing cell-like system. With this application, the user can
operate the setup in “Manual Mode”, i.e., issue all the actions independently, and at
a time. The user can also have the conveyor in “Automatic Mode” and command
the pick-and-place operation manually, i.e., require “camera get objects™ to obtain
the number of objects and their respective positions, selecting from the obtained
list of objects the ones to pick.

Finally, the user can command the setup to work in fully “Automatic Mode”, i.e., to
start the conveyor when objects are detected by sensor 1 (Figure 4.11), stop the
conveyor when objects are detected by sensor 2, acquire an image of the working
space and identify the number of objects and their positions, and then pick-and-
place all of them and resume the conveyor operation.
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For example, the “Read IO and “Motor ON” actions are implemented with the
following code:

Read |0 Send the message “I0” to the PLC TCP/IP socket

server and process the returned answer

private void bt_ReadlO_Click(object sender, EventArgs e)
{
int rec_num; string str_temp;
m_socClient] = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
IPEndPoint remoteEP_PLC = new IPEndPoint(IPAddress.Parse("172.16.63.9"), 2006);
m_socClientl.Connect(remoteEP_PLC);
m_socClientl.Send(System.Text.Encoding.ASCIL.GetBytes("I0<E>"));
byte[] recData = new byte[256];
rec_num = m_socClientl.Receive(recData);
m_socClientl.Close();
if (recData[6] == 48)

{ \
tapete = false;

Tapete_ON.Checked = false;
}

else

{

conveyor = true; conveyor_ON.Checked = true;
}
if (recData[34] == 48)
{

sensorl = false; sensorl.Checked = false;

}

else

{

sensor] = true; sensorl.Checked = true; Presenting the
} received information
if (recData[35] == 48)

sensor2 = false; sensor2.Checked = false;

}

else

{
sensor2 = true; sensor2.Checked = true;

}
if (recData[36] == 48)

sensor3 = false; sensor3.Checked = false;

}

else

{ /
sensor3 = true; sensor3.Checked = true;

}

str_temp = System.Text.Encoding. ASCILGetString(recData, 0, rec_num);
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Motor ON Send t]‘l(.: message that commands the robot “Motor
; AT ON” action

private void bt_Motor_ON_Click(object sender, EventArgs e)
{
m_socClientl = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tep);
IPEndPoint remoteEP_PLC = new IPEndPoint(IPAddress.Parse("172.16.63.9"), 2006);
m_socClientl.Connect(remoteEP_PLC);
m_socClient1.Send(System.Text.Encoding. ASCIL. GetBytes("Motor_On<E>"));
byte[] recData = new byte[256];

m_socClientl.Receive(recData);
m_socClient1.Close();

f® YoiceRobCam

N - N! pieces. Init Comm
[ e |

272.43_140.92 ~PLC

319.05_185.41 .
241.44_199.71 Read Mode () AutoMode
176.43_232.42 ) Manual Mode
247.29_260.03 Stop Mode
315.31_271.63 Ehange Mode

S St Read 0 [ Conveyor ON

[ Input Sensor
Cam Sensor
Force Forward [C] Output Sensor

|:‘ .h:li—J F ondarc

Robo =

[ Autobode [ Picksseet
Motor ON
Ll [ Pokal ] [ MotoroFr |

E1 Emergency © Pkl L1Proo J{ Zroa]
[ Busy O Pick Al Manual

Figure 4.18 Shell of a client application developed in C# to control the setup (Sensor]l =
“Input Sensor”, Sensor2 = “Cam Sensor” and Sensor3 = “Ouiput Sensor™)
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The client code is very simple and is composed of five main parts:

When operating in fully “Automatic Mode” follows the sequence represented in
Figure 4.19, which corresponds to the normal (or production-like) operation of the
system. Considering a real production setup, it could be interesting to have more
portable solutions. Consequently, a client application (Figure 4.20) was also
developed to run on a Pocket PC (PPC). This application has the same basic

Established socket client connection

Send the command message
Receive the answer

Close the socket

Process and present the returned information

functionality of the PC application (Figure 4.18).

y

“Force Forward”
Conveyor Forwards

Y

Sensor 2 is "ON”
Conveyor Stops

A J

"Get Objects”
Camera Aquire N Objects

A\

N Objects Coorditates Listed
in Client Aplication

Y

Object #1 Coordinates Sent
to Robot

\

Robot Goes "Busy”

Y

Robot Pick Object #1

Y

Robot Goes “Free”

L

Y

Object #2 Coordinates Sent
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Figure 4.19 Sequence for the fully “Automatic Mode”
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Figure 4,20 Aspects of the PPC client application developed in C# to control the
manufacturing cell-like setup (Sensorl = “Input Sensor”, Sensor2 = “Cam Sensor” and
Sensor3 = “Output Sensor™)
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4.3.5 Speech Interface

The current example is an interesting platform to demonstrate the potential of
developing speech recognition systems for human-machine interfaces in industrial
manufacturing systems. This statement is based on the following arguments:

o The system is constituted exclusively of industrial equipment, which
makes it representative of a typical robotic manufacturing cell

o The software architecture developed to handle the system is distributed
and based on a client-server model. This is a current trend in actual
manufacturing plants

e The system uses industrial standards for network communications
(Ethernet and TCP/IP)

o The system software was developed using commonly available software
tools: Microsoft Visual Studio NET 2005

e The concepts and technologies used in the system, for software,
communications system organization, etc., are commonly accessible and
most of them are currently defined as standards

As explained earlier, the system can be commanded manually, i.e., the various
subsystems that compose the system can be directly commanded by the user. That
perspective, or mode of operation, is explored in this section to introduce and
demonstrate the enormous potential of current speech recognition (ASR) and text-
to-speech (TTS) engines. In the presented implementation, the Microsoft Speech
API 5.1 (SAPI 5.1) is used to add speech recognition features (speech commands)
to any of the above presented applications.

The strategy used to build the speech recognition grammar is simple and based on
the concepts already presented in section 4.2. Since the system used here is
composed of three different subsystems, a pre-command string per each piece of
equipment is needed in the speech grammar. This allows the user to address each
subsystem by its name,

m_PreCommandStringl = “Robot”
m_PreCommandString2 = “Conveyor”
m_PreCommandString3 = “Camera”

These three words (“Robot”, “Conveyor”, and “Camera”) are added to the speech
recognition grammar as TopLevelRules, i.e., those words need to be identified to
start the recognition of a command string. This means that the speech recognition
grammar is built considering that the user commands have the following structure:

name_of subsystem command parameters
where “name_of subsystem” is one of the TopLevelRules, i.e., one of the words

that identify each of the subsystems, “command” is a string identifying the
command, and “parameters” is a string containing the parameters associated with
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the specified command. Consequently, to have the system responding to speech
commands, it is necessary to first identify the commands of interest and their
associated parameters (Table 4.3).

Table 4.3 Commands associated with the speech command interface

TopRule Robot
Command Parameters Description
Hello -- Checks if the speech recognition system
is ready
Initialize - Initializes the interface and starts the
login procedure, requesting username
and password
Terminate -~ Terminates the speech interface.
<username> -- Validates the “username”
<password> -- Validates the “password”
Motor On Robot in Motors On state
Off Robot in Motors Off state
Program Run Starts loaded program from the
beginning
Stop Stops loaded program

Run from point

Starts loaded program from the actual
program point

Program Option Root Selects program option ‘“root™: start
menu
<Number> Selects program option defined by
“number”
Pick <Number> Pick object defined by “number”
TopRule Conveyor
Command Parameters Description
Auto -- Places conveyor in Automatic Mode
Start Forces the conveyor to start moving
Manual -= Places conveyor in Manual Mode
Start Conveyor starts moving
Stop Conveyor stops moving
TopRule Camera
Command Parameters Description
Get Objects -- Returns the number of objects in the

scene and their respective positions

Calibration Pixels

Returns the pixel to millimeters ratio

Cam to Pos X Y

Returns the offset that should be added
to the computed positions to obtain the
position in the robot Cartesian space
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Therefore, adding the above presented rules to the speech recognition grammar
(using an XML file or directly in the code), the ASR mechanism fires events when
a rule is correctly identified. Consequently, the client application should just track
the ASR generated events, discriminate the rule that was identified, and execute the
associated actions. To perform those tasks, the ASR API provides functions that
return the identified rule as a string. The application just needs to compare the
string with the relevant possibilities, activating the associated actions when a match
is obtained. Figure 4.21 shows some detail about the code associated with adding a
speech commanding interface to the current application. Only the relevant parts of
the code are listed, taking, as example, a few selected functions.

Speech Recognition Event Routine
strText = Result.PhraseInfo.GetText(0, -1, True)

If ok_command_1 = 0 And (strText = "Robot initialize") Then
Voice.Speak("Your Username please?")
ans_robot_1.Text() = "Your Username please?"
ok _command 1=-1
asr_state.Text() = "Username."
End If

If ok_command_1 = -1 And (strText = "Robot master') Then
Voice.Speak("Correct. And your password please?")
ans_robot_1.Text() = "Correct. And your password please?"
ok_command _1=-2
asr_state. Text() = "Password."

End If

If ok_command_1 =-2 And (strText = "Robot access level three') Then
Voice.Speak("Correct. Welcome again master. Long time no see.")
ans_robot_1.Text() = "Correct. Welcome again, master. Long time no see.
ok_command 1 =1
If (resultl >= 0) Then

robotl_on.Visible() = True
asr_state.Text() = "Login OK."
End If
End If

If ok_command_1 =1 And (strText = "Robot terminate') Then
Voice.Speak("See you soon, master.")
ans_robot_1.Text() = "See you soon, master."
s.Close()
ok _command 1=0
If (robot1_on.Visible = True) Then
robotl_on.Visible = False
asr_state.Text() = "Logout."
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End If
End If

If ok_command_1 =1 And (strText = "Robot motor on") Then
s = ConnectSocket(server_name, server_port)
If s Is Nothing Then
ans_robot. Text() = "Error connecting to robot, master"
Voice.Speak("Error connecting to robot, master")
Else
Dim bytesSent As [Byte]() = Nothing
bytesSent = ascii.GetBytes("motor_on")
s.Send(bytesSent, bytesSent.Length, 0)
'Voice.Speak("Motor on command received, master.")
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
If Encoding. ASCIIL.GetString(bytesReceived, 0, bytes) = "0" Then
Voice.Speak("Motor on, master.")
ans_robot_1.Text() = "Motor on, master."
Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master."
End If
End If
End If

If ok_command_1 =1 And (strText = ""Robot pick eight'") Then

s = ConnectSocket(server_name, server_port)

If s Is Nothing Then
ans_robot. Text() = "Error connecting to robot, master"
Voice.Speak("Error connecting to robot, master")

Else
Dim bytesSent As [Byte]() =
ascii.GetBytes(" command_str 5000_" + object_cam(8))
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)

213

ans_robot. Text() = Encoding. ASCII.GetString(bytesReceived, 0, bytes)

's.Close()

If Encoding.ASCIL.GetString(bytesReceived, 0, bytes) = "0" Then
Voice.Speak("Robot pick, master.")
ans_robot_1.Text() = "Robot pick, master."

Else
Voice.Speak("Error executing, master.")
ans_robot_1.Text() = "Error executing, master.”

End If

End If
End If
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If ok_command_1 =1 And (strText = "Conveyor manual start') Then
s = ConnectSocket(server_name_plc, server_port plc)
If s Is Nothing Then
ans_robot.Text() = "Error connecting to conveyor, master”
Voice.Speak("Error connecting to conveyor, master")
Else
Dim bytesSent As [Byte]() = ascii.GetBytes("Manual_Forward<E>")
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
pdata.Text() = Encoding. ASCIL. GetString(bytesReceived, 0, bytes)
Voice.Speak(""Conveyor manual start, master.")
ans_robot_1.Text() = "Conveyor manual start, master."
End If
End If

If ok_command_1 =1 And (strText = "Conveyor auto start") Then
s = ConnectSocket(server name plc, server_port_plc)
If s Is Nothing Then
ans_robot. Text() = "Error connecting to conveyor, master"
Voice.Speak("Error connecting to conveyor, master")
Else
Dim bytesSent As [Byte]() = ascii.GetBytes("Force_Forward<E>")
s.Send(bytesSent, bytesSent.Length, 0)
bytes = s.Receive(bytesReceived, bytesReceived.Length, 0)
pdata.Text() = Encoding.ASCIL GetString(bytesReceived, 0, bytes)
Voice.Speak("Conveyor automatic start, master.")
ans_robot_1.Text() = "Conveyor automatic start, master."
End If
End If

Figure 4.21 Detail about the code used in the ASR event routine

With this type of procedure, it is fairly simple add speech recognition features to
the client applications described in this section. In general terms, the following is
necessary (or desirable) to use speech commanding with industrial manufacturing
systems:

¢ The system must be distributed in terms of software and based on a client-
server model

¢ All the necessary subsystems must implement some type of mechanism
for remote access from remote clients: RPC, TCP/IP sockets, etc

¢ A clear definition of the commanding strings must be available for easy
implementation in different environments

e The speech recognition grammar developed for the application must
reflect the above definitions. The routines associated with the recognition
events must implement the service calls (using the defined commanding
strings) and process the answers
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e Some type of access mechanism must be implemented for security and
safety reasons

e Critical commands should require some type of confirmation to avoid
damaging persons and parts

e A careful selection of the headset used to implement the speech interface
must be done, namely selecting devices with noise reduction electronics
and with a press-to-speak switch

With these basic guidelines, speech recognition can be successfully added to
industrial systems, resulting in a speech-enabled human-machine interface that
could be a valuable improvement in terms of operator adaptation to the system.
This would then improve operator productivity and efficiency, which would then
impact the overall competitiveness of the company.

4.4 CAD Interfaces

Since the vast majority of companies use CAD software packages to design their
products, it would be very interesting if the information from CAD files could be
used to generate robot welding programs. That is, the CAD application could be
the environment used for specifying how the welding robots should execute the
welding operation on the specified parts.

Furthermore, because most welding engineers are familiar with CAD packages,
this could be a nice way to proceed. An application presented elsewhere [2, 13-14]
enables the user to work on the CAD file, defining both the welding path and the
approach/escape paths between two consecutive welds, and organize them into the
desired welding sequence. When the definition is complete, a small program,
written in Visual Basic, extracts motion information from the CAD file and
converts it to robot commands that can be immediately tested for detailed tuning. A
set of tools is then available to speed up the necessary corrections, which can be
made online with the robot moving. After a few simulations (with the robot
performing all the programmed motions without welding) the program is ready for
production. The whole process can be completed in just some minutes to a few
hours, depending on the size and complexity of the component to be welded,
representing a huge reduction of programming and set up time. Besides, most of
the work is really easy offline programming.

These issues are further researched elsewhere [2, 13-14]. The objective here is to
focus on the CAD interface and on adding more functionality to the human-
machine interface of welding robots. Here the parameterization approach will be
used. With this approach, the welding information, extracted from the CAD model,
is used to parameterize a generic existing robot program, i.e., the welding routines
are implemented as general as possible enabling the accommodation of the planned
welding tasks. In the case presented here, the information extracted from the CAD
file, and adjusted using the presented software tools, is stored in a “.wdf” file and
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sent to the robot controller using the option “Send to Robot” of the software tool.
The information is sent in the form of single column matrices serialized by the
sequence that must be followed, ie., each line of any matrix contains the
information corresponding to a certain welding point. As already mentioned, the
robot controller is organized as a server, offering a collection of services to the
remote computer. Therefore, the following are examples of services implemented
in the welding server, running on a ABBIRB1400 industrial robot equipped with
the S4C+ robot controller {the same robot used in Section 4.2).

Service 9100 (Move_CRobot): this service is used to move the robot in the
Cartesian space with the specified TOOL frame, in accordance with the
commanded offsets: x, y, z, rX, ry, and rz, where (x, y, z) are the Cartesian offsets
and (rx, ry, rz) are the rotation offsets about the tool axis x, y and z, respectively.

Service 9401 (Welding): this service is used to execute the welding sequence
commanded to the robot.

Service 9301 (Simulation): this service is used to execute the welding sequence
without igniting the arc, i.e., the welding power source is not activated.

Service 9101 (Move_JRobot): this service is used to move the robot in the joint
space in accordance with absolute joint angles commanded from the remote
computer.

Consequently, the main routine of the welding server may be implemented as a
simple SWITCH-CASE-DO cycle, driven by a variable controlled from the remote
computer (Figure 4.22).

Looking into the code in more detail, it’s easy to find out how it works and how it
can be explored, but also how new functions can be added to the system. Let’s
consider for example the Move _CRobot service (Figure 4.22) that corresponds to
the value 9100 of the variable decisionl. To move the robot in the cartesian space,
the following must be commanded from the remote computer.

1. Enter the service routine: to do that, the user must write the value 9100 to the
numeric variable decisionl. The method from the PCROBNET2003/2005 software
component used to command that task is:

perob. WriteNum(“decision!”, 9100, channel);

where channel identifies the RPC socket open between the robot controller and the
remote computer.
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PROC main()
TPErase; TPWrite "Welding Server ...";
reset_signals;
pl:=CRobT(\Tool:=ttj_too\WObj:=trj _wobj),
MoveJ p1,v100,fine,trj_tool\WObj:=trj_wobj;
joints_now:=CJointT();
decision]:=123; varmove:=0;
WHILE TRUE DO
TEST decisionl
CASE 9100:
x:=0; y:=0; z:=0; rx:=0; ry:=0; rz:=0; move:=0;
pl:=CRobT(\Tool:=trj_tool);
WHILE (decision1=9100) DO
IF (move <> 0) THEN
pl:=RelTool(pl,x,y,2\Rx:=rx\Ry:=ry\Rz:=rz);
x:=0; y:=0; 2:=0; rx:=0; ry:=0; rz:=0; move:=0;
ENDIF
IF varmove <> 198 THEN
Movel p1,v100,fine,trj_tool\WObj:=trj_wobj;
ELSE
MoveL pl,v100,fine,trj_tooNWObj:=trj wobj;
ENDIF
ENDWHILE
decisionl:=123; varmove:=0;
CASE 9101:
joints_now:=CJointT();
WHILE decision1=9101 DO
MoveAbsJ joints_now,v100,fine,trj_too\WODbj:=trj_wobyj;
ENDWHILE
decisionl:=123;
CASE 9401:
weld;
decisionl:=123;
pl:=CRobT(\Tool:=ttj_tool);
Movel] RelTool(p1,0,0,-200),v100,fine,trj _too\WObj:=trj_wobj;
CASE 9301:
weld_sim;
decisionl:=123;
ENDTEST
ENDWHILE
ENDPROC

Figure 4.22 Simple welding server running on the robot controller
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2. Define the type of motion: the user must specify what type of motion to
perform to achieve the target point, i.e., linear motion or coordinated joint motion.
This is specified writing to the variable varmove (198 for joint coordinated motion
and any other value for linear motion). For example, the command

pcrob. WriteNum(“varmove”, 198, channel),

specifies joint coordinated motion, using the open RPC socket identified by the
parameter channel.

3. Command the Cartesian and rotational offsets: the user must write the offsets
to the corresponding variables. After that, when the user signals that the offsets are
available (writing a value different than zero to the variable move), the robot moves
to the position/orientation obtained by adding those offsets to the actual position,
and waits for another motion command. For example, the sequence of commands
necessary to move the robot 20 mm in the positive X direction and 10 mm in the
negative Z direction should be:

pcrob. WriteNum(“x”, 20, channel);
perob. WriteNum(“y”, -10, channel);
pcrob. WriteNum(“move”, 1, channel); 4——— robot moves now!

where again channel identifies the open RPC socket.

4. Leave the service: to leave this service the user must write any value different
from 9100 to the variable decisionl. For example, the following command writes
the value -1 to the numeric variable decision! and makes the robot program quit
the Move_CRobot service:

perob. WriteNum(“decision1”, -1, channel),

Finally, let’s consider the service Welding (Figure 4.22) that corresponds to the
value 9401 of the variable decisionl. The simplified version of the code is
presented in Figure 4.23.

It is clear from the presented code (Figure 4.23) that the user should command the
Welding service to execute, after sending the matrices defining the welding
sequence. This service commands the robot to follow exactly the command
sequence, moving the robot and igniting or stopping the welding arc whenever in
the presence of a welding or approach/escape trajectory, respectively.

The example shows clearly that there are considerable gains in terms of flexibility
and agility when using distributed client-server software architecture to assist
industrial welding operations [2], namely taking advantage of the powerful
programming tools developed for personal computers. It also shows that actual
CAD packages can be used for robot programming tasks with great advantage,
which extend the interest of already largely utilized software tools.
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PROC weld()
weldon:=0; i:=1;
WHILE ((decision1=9401) AND (i<=numberpoints) AND (i>=1)) DO
weldpoint:=i,
wd_iref:=trj_voltage{i}; feed_iref:=trj current{i};
wd_hrefi=trj_voltage{i}; feed_hrefi=trj current{i},
wd_refi=trj_voltage{i}; feed_refi=trj_current{i};
IF (trj_type{i}=0) THEN
weld_on; \
weldon:=1; Welding definition
ENDIF
ppos:=trj{i}; pvel:=tj_vel{i};
pzone:=trj_prec{i}; ptype:=trj_mode{i}; Move the robot
move_gen; <
IF (weldon=1) AND ((i+1>numberpoints) OR (trj_type{i+1}=1)) THEN
weld_off;
weldon:=0;
ENDIF
i=it+1;
ENDWHILE
IF (weldon=1) THEN
weld_off;
weldon:=0;
ENDIF
ENDPROC

PROC move_gen()
IF ptype=0 THEN
MoveL ppos,pvel,pzone,trj_too\WObj:=trj_wobj;
ENDIF
IF ptype=1 THEN
Movel ppos,pvel,pzone,irj too\WObj:=ttj wobj;
ENDIF
IF ptype=2 THEN
TPWrite "[MOVE_GEN]: MoveC not implemented.";
ENDIF
ENDPROC

Figure 4.23 Code for the Welding service
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Figure 4,24 Definition of the simple welding example using AUTOCAD

To clarify further, let’s consider the simple welding example already used in
section 4.2.7. In that example, the robot is commanded to execute a linear welding
on a work piece placed on a welding table. To demonstrate how this simple task is
completely specified and programmed using a CAD package, the welding table and
work piece were modeled in AUTOCAD. The same strategy used before is again
utilized to specify points/orientations and trajectories, i.e., they are all defined
relative to a work object point/orientation (or reference system) named P . In
this way, when exporting points/orientations and trajectories to the robot, the only
thing needed is a good calibration procedure of the robot TCP relative to Pegner
which can be done automatically using sensors (for example, laser position
sensors) and special alignment routines, or manually using the robot joystick.

To execute the welding operation it is necessary to specify four points/orientations
(Py to P;) and the trajectories between them (Figure 4.24). The following
procedures should be used:

1. Py should be defined as the approach point/orientation, ie., a
point/orientation that could permit the robot to reach safely the work-
piece from the “home” position. P, is consequently a non-welding
point/orientation and the trajectory to Py should be free of obstacles (the
user should guarantee adjusting Py accordingly). The precision to reach Py
should be specified as low.,
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2. The trajectory from Py to P; should be defined as an approach linear
trajectory, with point P, reached with the highest precision at low/medium
velocity (let say 100mny/s, for example). As defined in [2], the weld layers
in AUTOCAD are named for easy identification using a string that starts
with the word “WELD”. The next information is the type of trajectory, to
distinguish between welding trajectories and approach/escape trajectories.
After that should be specified the welding current, and then the welding
voltage. Finally, the welding speed is specified. All these parameters are
separated by spaces, constituting a definition string. Consequently, the
label associated with that trajectory [2, 13-14] should be

WELD 10001000

for an approach/escape trajectory, done at 100mm/s with highest precision
in the endpoint.

3. The trajectory from P; to P, should be defined as a welding trajectory with
the required welding parameters. For example, the following label could
be associated with this trajectory:

WELD 0 150.021.3 100

for a welding trajectory executed at 10mm/s, with highest precision in the
end-point, associated with a welding current of 150.0 A and a welding
voltage of 21.3 V.

4. The trajectory from P, to P; should be defined as an approach/escape
trajectory done with low/medium velocity without any special precision in
the endpoint. The following label could be associated with this trajectory:

WELD 100010050

to specify a trajectory done at 100mmy/s, with low precision (50 mm
sphere around the selected point).

This information is saved in the CAD file and can be extracted to a “.wdf’
definition file, which is used for simulation and final tuning using the available
tools [2, 13-14]. Finally, all of the information is sent to the robot using the already
presented procedures, based on the routines developed for the robot controller and
the “write variable” services (see Table 3.3) available from the ActiveX software
[9] component used.

4.4.1 Speech Interface for Welding

Considering the linear weld case presented in Figure 4.24, a simple application was
developed to command the welding procedure using a speech commanding
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interface. This is particularly relevant because the welding cells are usually very
noisy and not attractive to operators, namely the younger ones. Consider that the
trajectories were planned in AUTOCAD and transferred to the robot using the
above mentioned applications. To operate the robot, the speech commands
presented in Table 4.4 are necessary.

Table 4.4 Speech commands for the simple welding application

TopLevelRule Robot Number = Two
Command Parameters Description
Hello - Checks if the speech recognition system
is ready
Initialize - Initializes the interface and starts the
login procedure, requesting username
and password.
Terminate -- Terminates the speech interface.
<username> -- Validates the “username”
<password> -- Validates the “password”
Motor On Robot in Motors On state
Off Robot in Motors Off state
Program Run Starts loaded program from the
beginning
Stop Stops loaded program
Run from point Starts loaded program from the actual
program point
Approach Origin Approach “Origin” position
Final Approach “Final” position
Origin - Move to “Origin” position
Final - Move “Final” position
Weld - Perform a weld operation from “Origin”

position to “Final” position

Note: The command message was defined in sections 4.2.4 and 4.2.7.

The application presented in Figure 4.10 implements a speech interface that
recognizes those commands and executes the appropriate actions [2,13-14]. The
user can command a welding operation just by saying:

User: Robot two approach origin.
Robot: Near origin, master.
User: Robot two origin.

Robot: In origin position, master.
User: Robot two weld.

Robot: I am welding, master.
User: Robot two approach final.
Robot: Near final, master.

User: Robot two home.

Robot: In final position, master.
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That’s easy, isn’t it?
And it makes robotic welding a fun task. Like a computer game.

@
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Industrial Manufacturing Systems

5.1 Introduction

Industrial small and medium (SME) manufacturing companies face complex and
challenging market conditions that may impact their organization and economic
strength. In fact, for a manufacturing SME to remain competitive in the global
economy, it must cope with the following basic characteristics of the market:

Global competition — actual companies compete on a global scale and
with products from all over the world, i.e., coming from very different
economic realities in terms of organization, labor, social protection and
security, etc. Their competitors are global companies that address the
markets with specific objectives and strategies, making the competition
very unpredictable.

Demand for more quality at lower prices — customers want the continuous
improvement of quality at lower prices, i.e., customers tend to evaluate
the quality of the product/service obtained for the money spent in buying
it. This puts big pressure on companies since the market offers other
options for the same product or service, and customers are used to making
comparisons using the quality/price ratio.

Very complex products — many of the modern high-technology products
are very complex to manufacture since they often are composed of many
mechanical parts, electronic components, software modules, etc. This
poses new challenges to manufacturing systems.

Very short life-cycles and time-to-market periods — competition and
continuous innovation tends to reduce the life-cycle of products, forcing
companies to evolve their line of products more often and with higher
levels of agility.



226 Industrial Robots Programming

This scenario poses very difficult challenges to manufacturing SMEs, namely on
the quality of their manufacturing systems, in terms of flexibility and agility, and
on their overall competitiveness. In fact, production plants based on human labor
aren’t competitive with equivalent companies located in low-salary countries.
Consequently, these types of production plants tend to move their facilities to those
countries or economical regions trying to take advantage of the low obligations to
human labor, social security and protection, safety regulations, etc., and remain
competitive in the global market. This logic has negative effects on western
economies because important production sectors and jobs tend to move to low-
salary countries. Consequently, the impact on the economic and social welfare is
significant, working against our civilization model.

The only way to fight this trend is to focus on science and technology, developing
manufacturing solutions that are flexible and agile, and that integrate efficiently
with human operators. Flexibility is important to face the constant product change
due to competition, fashion trends, quality requirements, and so on. But the time to
market is also fundamental, which requires flexible systems that are easy to use
and simple and fast to reconfigure, i.e., the modern world requires far more than
flexibility and puts the focus on agility, which is a very interesting concept.
Another important factor is the efficiency of the human-robot interfaces, which
should allow humans and machines to operate as coworkers taking advantage of
each other’s abilities.

This chapter detail’s a few industrial examples, with the objective of demonstrating
how the concepts and ideas presented in this book can help to build manufacturing
systems that are flexible, agile, and easy to use. All the systems presented were
developed and built by the author of this book in cooperation with partner
companies operating in Portugal.

5.2 Helping Wrapping Machines for the Paper Industry

In this section, a remote software environment developed to monitor and control
robotic manufacturing cells is presented and discussed. It was used with an
industrial system developed to wrap, label, and assist the storage of paper rolls
coming from highly efficient paper machines. The system is also briefly introduced
pointing out its main advantages. Special attention is given to the software
architecture used to develop the remote services available from the system:

Services for system monitoring

Services for system maintenance

Services for file and database handling

Services for production monitoring

Services for operator interface and system parameterization from the
system control panel
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The advantages of using distributed and object-oriented software approaches are
also discussed, using some inside from the presented implementation. Finally, the
utilization of electronic messaging services with industrial manufacturing systems
is introduced and discussed.

5.2.1 Layout of the System

The system presented here was mainly designed to be used at the end of a paper
machine to help with the wrapping and labeling operations of the paper rolls.
Briefly, paper is produced in cylindrical rolls of several dimensions (with
diameters ranging from 800mm up to 1600mm, and lengths ranging from a few
centimeters to 2-3 meters) and weights. Figure 5.1 represents a diagram of the
system showing its basic stations, i.e., places where robots are used to perform the
required operations.

g5
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£
=

L

Figure 5.1 Basic organization of the of the robotic wrapping and labeling system
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Paper rolls coming from the paper machine are labeled by a human operator using
barcode sticks. The assigned code constitutes a unique identification of each roll.
In the first station, the paper rolls are measured and weighted and that information
is automatically inserted into the factory production database for further use,
namely on the subsequent stations to pre-position the subsystems used in each
station and to adapt the behavior of the local software. The system is controlled
using industrial PLCs, which are accessible through Profibus by the PC that run’s
the human-machine interface software. The fieldbus network connecting the
various system resources is also Profibus.

5.2.1.1 Station One — Dimensions and Weight

In this station, each roll is measured and weighted automatically and
autonomously. The obtained values are introduced into the production database
using the ID number in the barcode (barcode readers are used here). The rolls are
serialized starting from this point and consequently there is no need to keep track
of the rolls in the rest of the process, i.e., after this station there is no way to
remove the rolls manually. The barcode numbers will be checked again at the end
of the wrapping process when the rolis enter the automatic warehouse.

5.2.1.2 Station Two — Roll Wrapping and Inner Header

Rolls are wrapped using a wrapping machine assisted by two industrial robots
ABB IRB6400 (equipped with the S4C+ robot controller) [1]. The robots are
commanded to pick two headers, one per robot, of the appropriate dimensions
(there are six piles of different headers available) and hold them against the two
bases of the roll (Figure 5.2). The dimension of the header to pick is a parameter of
the pick command, which is sent to each robot through Profibus. Consequently, a
client-server software architecture is used, having the robots operating as servers.
Synchronization and messaging (including error handling) with the station PLC,
which also handles the wrapping machine, is done by Profibus using a simple 10
protocol. The system is able to wrap rolls in cycles of less than 20 seconds.
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a)

b)

Figure 5.2 Operation in station two: a) holding the headers, b) picking a header

5.2.1.3 Station Three — External Header

External headers are applied on the rolls to finish the roll wrapping process and
hold the wrapping paper. Operation is assisted using one industrial robot (ABB
IRB6400 equipped with the S4C+ robot controller) [1]. The robot is commanded to
pick two headers (gripper holds two headers) and put them, properly centered in
accordance with its diameter, on the plates of a heated press. The headers are made
from a type of paper that has glue impregnated in its structure. The heat makes the
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glue emerge at the surface of the header, enabling the press to glue them to the
rolls just by applying pressure (Figure 5.3). Due to the cycle time requirements
(less than 20 seconds per roll), the command sent to the robot to pick a pair of
headers includes the diameter of the actual roll (like in the previous station) but
also the actual position of the press plates (to speed up the wrapping process, the
press is independently commanded to pre-position its plates as a function of roll
length). Since the press is hydraulic, the position of its plates is confirmed by the
robot just before entering the press workspace to place the headers. This presents
robot collisions with press plates, which would eventually destroy the robot and

gripper.

5.2.1.4 Station Four — Labeling

In this station (Figure 5.4), two labels are applied to the wrapped rolls (one on the
top and the other on the right side of the roll) with the information about the roll
printed in the label (dimensions, weight, customer, production date, etc.). Each
label also has a barcode that will be used by the automatic warehouse to process
the roll. Labels are printed by an office laser printer, and outputted to a small ramp.
The robot picks the labels when commanded to do it, waits for the “glue labels”
command, puts glue on the surface of the labels (using the gluing machine), waits
for the roll in position, and finally places the labels on the roll. After each basic
operation, the execution status is checked and the next operation is commanded
only if the previous one finished successfully. If an error occurs, the current
process is aborted and the error is issued back to the commanding machine (in this
case a PLC).
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b)
Figure 5.3 Operation in station three: a) picking a pair of headers, b) placing the headers on
the surface of the heated plates of the hydraulic press

This same procedure is used in any of the other stations. All commands are
acknowledged when they finish, i.e., a message specifying that the command
executed correctly is sent back to the commanding machine. Communication runs
over Profibus using a simple IO protocol.

Another version of this labeling station was built for another paper machine (see
section 3.6), at the same company, that uses an Ethernet network and a PC to
interface with the production database. The PC is also used to command the
station, using remote procedure calls (RPC) sent to the robot controller. It is
important to discuss here the basic differences between the two systems.

Considering the brief description made above and in section 3.6, and considering
that robots used in industrial applications are commanded to execute very precise
tasks, it is clear that in both cases there’s the need for a collection of services
properly designed to execute those tasks. Both systems implement a collection of
services designed to execute every task available from the system. The services are
implemented as generally as possible and require parameters to be properly
requested by the remote client. A simple “switch-case-do” loop, driven by the word
or number that defines the command, can be used to implement the server.

The difference resides in the way those services are requested. In the example
presented in section 3.6, the services are requested using RPC calls, and in the
example presented in this section the services are requested using a simple 10
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protocol (see section 3.2.1). Furthermore, the version presented in section 3.6
includes an intermediate server used to connect the factory production software
and the robot controller (Figure 5.5). This server listens for TCP/IP calls and
simply translates the calls to robot commands, collecting the answers and sending
them back to the calling machine (the production software computer).

Figure 5.4 Labeling system: a) tool and gluing machine, b) Robot placing label
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Figure 5.5 Connection between robots and factory production software: using TCP/IP
sockets and SUN RPC 4.0 compatible RPCs

5.2.2 EmailWare

In every station presented, any error is logged and sent to the commanding
computer as part of the answer: etror codes are used to identify each type of error.
Consequently, on an error situation the calling machine can decide what to do
based on the received error code, for example, repeat the command.

Furthermore, every system has a checklist of basic conditions it needs to operate.
For example, the labeling system needs to verify the following conditions to enter
the ready mode:

e  Air pressure at the appropriate working level
e  Printing machine at the ready mode
¢  Glue machine at the ready mode

If a system is experiencing some type difficulty and one of the above conditions is
not met, then the system enters the “error mode” and rejects all the incoming
commands until the problem is solved.

At this point several things can be done. Let’s discuss it a little bit more with an
example. Suppose that there was a vacuum failure in the gripper, caused by air
pressure failure (venturi devices are used to generate vacuum for suction cups).
The system is then unable to pick and hold labels. If the problem appears during
task execution, then an event may be fired (if an event firing mechanism is
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available) and an error code is issued back when the command finishes (0 —
success, < 0 means an error identified by the error code). The simple way to
proceed and to warn operators is to act on local warning devices (a bell, a flashing
light, etc), on flashing warnings on system panels, etc.

This scenario was the motivation to develop the EmailWare application, which
was then extended to enable a more general task of supervising and monitoring the
complete system. With those ideas in mind, a server was built to monitor an
installation of robots (networked robots using TCP/IP over Ethernet or a serial
channel) inside a factory or in a research environment. The server uses the already
mentioned ActiveX component (PCROBNET2003/2005) and is capable of checking
the robots available on the nework for selected interesting information, logging all
events, and warning the user immediately when a selected event actually occurs.
Operators are not always near the system control computer, but can be reached by
beeper, mobile phone, or e-mail. In fact, they can be in an office doing some
desktop job, somewhere in the plant or at home after hours. A manufacturing
system should be able to reach them to send urgent information. The same situation
happens with developers. They need to recollect information about their systems
and sometimes, on debugging situations, they need information when certain
conditions are met,

One good solution is to use short e-mail messages sent to selected accounts with
brief information about events. Those accounts could be regular e-mail accounts,
SMS services, beepers, etc. The application should also accept e-mail messages,
coming from authorized users requesting more details about any subject (see
Tables 5.1 and 5.2).

Using this application, the user may define for each robot in the installation the
type of events he wants to receive. The user can also request the system to send
complete reports daily, weekly, or monthly. When one of the selected events
actually occurs, the application sends a short e-mail to the defined e-mail accounts.
The user also selects the accounts that can receive reports, log files, or long e-mails
(long e-mail should not be sent to SMS accounts or beepers).

Table 5.1 Type of events
Type of event Parameter 1 Parameter 2 | Parameter 3 | Parameter 4
10 _DIGITAL name TO/T1
10_ANALOG name H/L Value
VAR NUM name H/L/C Value
VAR BOOL name TO /Tl
STATE SYS TA/T™M '
STATE PRG TR /TS
ERROR
LOGS D type type Type
LOGS W
LOGS M type type Type

where the symbols have the following meaning;
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10_DIGITAL — digital IO events.

10_ANALOG - analog IO events.

VAR _NUM — events related with RAPID <num> variables.
VAR_BOOL — events related with RAPID <bool> variables.
STATE SYS ~ system state events.

STATE_PRG - program state events.

ERROR — error events (any type of error).

LOGS D - send logs daily.

LOGS W - send logs weekly.

LOGS M - sends logs monthly.

name — name of variable or signal (string).

70 — transition to zero.

T1 — transition to 1.

H — Higher than value.

L ~ Lower than value.

C — When variable changes.

TA — transition to auto mode.

TM — transition to manual mode.

TR — transition to program running.

TS — transition to program stop.

type — type of log.

Table 5.2 Type of commands

235

Command Parameter 1 Parameter 2 Parameter 3
LOGS type type
SYSTEM

PROGRAM

10_DIGITAL all / signal signal
10_ANALOG all / signal signal
10 ALL

VAR NUM name

VAR BOOL name

STOP_PRG password

START PRG password AP /FB
UNLOAD password name
LOAD password name
MOTOR ON password

MOTOR_OFF password

X CMD password par 1

where the symbols have the following meaning:

LOGS — send log files.

SYSTEM — send system state information.

PROGRAM — send program state information.

10 _DIGITAL - send information about digital 1O as specified.
10_ANALOG - send information about analog IO as specified.
10 _ALL - send information about all 10.

STOP_PRG — stops current program.

START PRG - starts current program.

UNLOAD - unload module specified (name).
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LOAD — load module specified (name).

MOTOR_ON - motors ON state,

MOTOR_OFF — motors OFF state.

X CMD — any command implemented in RAPID.

all — all signals of this type.

password — password to execute this command (if password fails, then user is removed
from list of allowed users and an e-mail to administrator is issued).

EMAILWARE

1F poll_naw
Poll_Robots

Retrieve commands

Message to send

Procass
message
(poll_now = 1)

RPC
Message

Process
commands

Message
Queue

Figure 5.6 EmailWare: selecting a robot

Another important feature is the possibility to send e-mail commands to the
application asking for more details on several aspects (see Table 5.2 for the types
of commands that can be issued). The user can issue commands to any robot in the
installation. The application checks if the sender is allowed and then processes the
command. Those commands are e-mail messages sent to emailware(@company
with subject “command” and with the following syntax:

# robot_dns_name command parameters

where “robot_dns_name” is the registered DNS name of the robot and “command”
is a command, using the required “parameters” from Table 5.2. The e-mail
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message can hold any number of commands (one per line starting with character
‘#’) addressed to several robots.

The application cycle polls all robots for any change (it does not keep open clients,
just opens a client connection, makes a survey, and closes the connection), fires e-
mails if there is any change, and then processes commands (Figure 5.6). Since
there is an RPC server working in parallel receiving asynchronous messages from
any robot, any urgent event is immediately attended and information is issued to
the user (the information is sent once when it happens, i.e., when the event is fired
from the robot, and a second time when the polling process detects the change).
The polling frequency of the robots can be adjusted to avoid overloading the
system, ranging from 1/10 Hz (higher frequency) to 1/60 Hz (lowest frequency).

5.2.2.1 EmailWare Application Example

To show the potential of this tool, lets give a simple example. Suppose that at some
industrial installation there is a robot (named “babylon5) doing arc-welding
operations. Suppose also that the welding software keeps information on the
number of pieces that have been welded (num_pieces), on the amount of time in
operation (opr_time), and on the idle time (idle_time). There is also information on
how many errors were encountered during operation (num_error); it is considered
here that the system can handle and maybe automatically recover from certain
operational errors (consequently, for each error the num_error variable is
incremented and an operational message is issued like: bad or no piece in place, no
gas, no air pressure, etc), which is normally the case. There are also some IO
inputs and outputs like: gas information (digital input, gas on), air pressure
information (digital input, air_on), wire information (digital input, wire_on), etc.
Finally, suppose that the user wants to have daily reports about the system,
including the state of some of variables.
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% EmailWar

Figure 5.7 EmailWare: selecting a robot

To configure EmailWare for the welding application, the user starts by selecting
the robot from the available robots (Figure 5.7). After that, the user selects the 10
signals, the variables, and the type of system states of interest.
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EMAIL CONFIGURATION i xI
— E-mail Accounts
Inorberto@lobolics,dem.uc.pl I~ SMS
Inorberto@cmpany_name_com [~ SMS
|368375423@mail tranpt v SMs
I [~ SMS
| [~ sMs
ERASE ALL OK
ADD Cancel
e | e

Figure 5.8 EmailWare: dialog to define e-mail accounts

Then the user e-mail accounts (Figure 5.8) must be defined (up to five accounts)
and the ones that can receive long e-mails (the user should identify at least one
normal e-mail account and one SMS account) must be specified. All the
configurations are stored in a configuration file (rob_conf.cfg) that can be accessed
using any text editor (Nofepad, Wordpad, Word, etc). For the above-mentioned
example, the file could look like the one in Figure 5.9.

As mentioned already, the application was fested on the industrial installation,
presented in this section which uses four robots, but the interested reader can make
his own test using our laboratory robots. Just visit the EmailWare web site located
at http.//robotics.dem.uc.pt/emailware/ and sign up to receive warnings about the
operation of one of our robots. Interested readers can also send commands to it.
The site is a demonstration site, so only a few features are demonstrated and users
cannot customize them. Finally, a demo version that is fully operational for one
robot only (robot serial number is needed) may also be requested.
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* EmailWare Header
* (C) J. Norberto Pires 2000-2006
* norberto@robotics.dem.uc.pt

* USER DEFINITION
norberto@robotics.dem.uc.pt
norberto@company_name.com
968975423@mail.tmn.pt SMS
* ROBOT DEFINITION
name = babyion5
domain = dem.uc.pt

IP = 193.136.213.69
Model = ABB_IRB_1400
@

I0_DIGITAL 3

gas_on TO

wire_on TO

air_on TO

IO_ANALOG 0
VAR_NUM 3

error C

opr_time H 100
idle_time H 50
STATE_SYS TM
STATE_SYS TA
STATE_PRG TS
STATE_PRG TR
LOGS_D all

&

* ROBOT DEFINITION
name = perseus
domain = dem.uc.pt

IP = 193.136.213.61
Model = ABB_IRB_2400
@

*End of configuration file

Figure 5.9 Example of configuration file (rob_conf.cfg)

Consequently, any of the specified users receive messages (by e-mail or SMS)
about the programmed events that can look like:

Babylon 5: Ei guys, I’'m stopped, no air-pressure or air-pressure too low.
Babylon 5: Ei guys, I'm stopped, no wire.

Babylon 5: Ei guys, wire is running out.

Babylon 5: OK, air-pressure is on again,
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5.2.3 Conclusions and Discussion

The system presented in this section is commanded remotely from the PLC used to
manage the operation of the cell. The system also uses a PC to interface with the
operator, and updates and retrieves information from the factory production
software. The system was designed to operate almost autonomously, i.e., with
minor operator intervention limited to error and maintenance situations.
Consequently, a client-server software architecture was used, with the robots
working as servers allowing remote clients to explore and operate the system. This
proved to be a nice solution capable of providing a good performance and high
levels of flexibility, because the system’s basic operation is defined by the
operating software. Adding new functions or changing the operation is an easy task
and in fact was done several times to adjust to new requirements.

Finally, a simple e-manufacturing solution was introduced in this section. It
enables operators to receive operation events when they occur, allowing a more
efficient supervision of the system, reducing down time due to errors or
unavailability of certain operating conditions. This idea of having automation
equipment sending messages to users with relevant information about its current
status, and enabling users to request more details and sending a few commands,
also by e-mail, can be extended to other areas: monitoring warehouse systems that
could inform users about critical points, smart houses informing users about
current situations and enabling some remote commands, remote maintenance, and
S0 on.

5.3 Complete Robotic Inspection Line for the Ceramic Industry

Non-flat ceramic products, like toilets and bidets, are fully inspected at the end of
the production process to search for structural, surface, and functional defects.
Ceramic pieces are transported to the inspection lines assembled in pallets, carried
by electro-mechanical fork-lifters or automatic guided vehicles (AGV). Pallets
need to be disassembled, feeding the inspection lines where human operators
execute the inspection tasks. Also, the pieces that pass inspection need to be
palletized again in the final pallets used for product distribution. Those de-
palletizing and palletizing operations are physically demanding so they are good
candidates for robots.

This section is a case study on the development of a collection of prototype
manufacturing cells, designed to perform automatic palletizing and de-palletizing
operations of non-flat ceramic pieces such as toilets and bidets. The factories of
these types of products show an impressive mixture of human and automatic labor,
meaning that special attention must be taken with regard to human machine
interfaces (HMI), safety, mode of operation, etc.
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Non-flat ceramic products are commonly used in our homes and are mainly
associated with personal care tasks. The industrial production of these ceramic
products poses several problems to industrial automation, especially if robots are to
be used. Basically, these problems arise from the characteristics of the ceramic
pieces: non-flat objects with high reflective surfaces, very difficult to grasp and
handle due to the external configuration, heavy and fragile, extensive surface
sensitive to damage, high demand for quality on surface smoothness, etc. Also, the
production setups for these types of products require high quality and low cycle
times, since this is a large scale industry that will remain competitive only if
production rates are kept high. Another restriction is that this industry changes
products frequently, due to fashion tendencies in home decoration, etc. Also, there
is the mixture of automatic and human labor production, which is a difficult
problem since HMI are very demanding and a key issue in modern industrial
automation systems.

It was proposed by the partner company to build several de-palletizing and
palletizing solutions, with a simple graphic operator interface, to install in their
final inspection lines. In those lines human operators inspect all pieces by hand to
find functional and surface defects (computer vision solutions for inspection). The
challenge was to build highly efficient systems, capable of handling more pieces a
day than its human counterparts, that could be easy to set up and start up at the
beginning of the day. So, there is a robotic challenge and a software challenge,
namely, in designing human-machine interfaces for operators.

The system presented here (Figure 5.10) was designed to take advantage of
computers and available tools to parameterize and monitor an industrial robotic
cell, i.e., to make human-machine interface. In the process of describing and
discussing the system a few available, a few technical details are highlighted. This
is also important due to the fact that all the software was built from the scratch [2],
without using any of the available commercial software packages (Section 3.2).

5.3.1 Motivation and Goals

The problem addressed in this example is the construction of a complete system to
assist humans in the task of inspecting non-flat ceramic pieces. Those pieces
(bidets and toilets, mainly) reach the inspecting site directly from the high
temperature oven, organized in pallets (input-pallets), using fork-lifters. A few
operators placed along two inspecting lines (15 meters long each), inspect all the
pieces by hand, searching for pieces with functional and surface defects, removing
from the inspection lines the pieces rejected [3, 4]. Consequently, in this system
there is the need to de-palletize the input-pallets, feeding continuously the two
inspection lines. The system must also pick the accepted pieces from the end of the
inspection line, palletizing them again into the pallets (output-pallets) used for
product distribution (Figure 5.10).
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The system should work also as autonomously as possible, requiring only minor
parameterization at the beginning of the work day or production cycle. The system
should be able to work with input-pallets composed of four levels of ceramic
pieces, eight pieces per level placed in a special order to keep pallet equilibrium,
and with levels separated with pieces of hard paper. It should also be able to work
with output-pallets up to five levels of ceramic pieces, eight pieces per level placed
in the same order as in the input-pallets, with levels also separated by hard paper.
The rule used to arrange the pieces in the pallet is to place them alternatively one
up — one down, starting from the ground level, then swap to one down — one up in
the next level (Figure 5.11), and keep the procedure in the proceeding levels.

Figure 5.10 Components of the system

Actually, input-pallets are assembled manually by operators at the end of the high
temperature oven. This means that the robotic system must be tolerant with
possible medium-large palletizing errors, coming from misplaced pieces both in
position and orientation, and also showing significant variations from level fo
level. Another important factor is that pallets are fed into the system by human
operators using electro-mechanic fork-lifters, which also introduces some variation
in the pallets. Sometime in the future, AGVs will be use to fulfill the task, reducing
considerably the variations introduced and increasing the efficiency of the system.
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a)

b)
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c)
Figure 5.11 Pallets and view of the system: a) input pallets and de-palletizing robot; b)
aspect of the de-palletizing gripper; c) view of the complete system

The main objectives for this system are summarized as follows:

e  Build a complete robotic system capable of performing de-palletizing and
palletizing operations to assist inspection lines

e The system must perform each of these operations in less than 12 seconds
per piece

e The system should cope with high palletizing errors on the input-pallets,
since they are assembled by human operators which permits to anticipate
small-medium placement errors (up to 5cm in position and up to 5°
around the vertical axis)

e The system should cope with deviations on the dimensions of the pieces
of up to £1 cm in each direction. Ceramic pieces grow inside the high
temperature oven, making these deviations expected due to temperature
deficiencies, variation of time inside the oven, variations in the ceramic
mixture, etc. These deviations are not necessarily errors, but instead a
characteristic of this type of production

e The system must work with pallets, both input and output, with variable
numbers of pieces, ranging from any number of pieces, in the case of the
input pallets, to 8, 16, 24 or 40 pieces, in the case of the output pallets
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e The system should maintain information about its surroundings, so as to
warn about inconsistencies between what is ordered and what is available

o The system must be parameterized easily, using a graphical interface
implemented with a touch-screen. A few commercial software packages
are available in the market. Nevertheless, our option was to build our own
solution since the human-machine interface plays a crucial role in the
performance of the system, including operator acceptance. It is therefore
very important to have full control over the developed software

o The system must be optimized for each model of ceramic pieces. This
means that there should be the option of introducing new models using a
teach strategy

Considering these above mentioned objectives, the following challenges were
identified:

e To build a human-machine interface, easy to use and capable of handling
production needs. System warnings and errors must be issued to the
operator’s attention in an efficient way. All operations and messages must
be logged for future analysis;

e To build a system capable of meeting the planned requirements;

o To explore the capabilities of the current personal computers, operating
systems, and related tools on a very demanding industrial environment;

Taking the above objectives and challenges, and considering the fact that this is an
industrial project, meaning it is supposed to work 24 hours a day without problems,
it was decided to distribute the software to all the components of the system. A
client-server architecture [2-8), based on remote procedure calls (RPC) [9], was
adopted, with the PC as the client of the rest of the components of the system,
including the robot controllers, and also as the interface to the operator.

5.3.2 Approach and Results

The objectives and requirements of this project necessitated a robotic cell that
could handle the ceramic pieces under consideration. Proper grippers and layouts
were designed and built. It was also necessary to operate the system through an
external personal computer, using the teach pendant of the robot only for a few
special routines not performed in every day normal operations. The robots work as
slaves to that central PC, where all the parameterization is performed. The PC also
monitors the operation, being of guidance when something wrong happens. The
operator is able to solve problems from the PC. There is one PC for each robot,
which was done for practical reasons, but it is not a requirement.

A client-server software architecture was adopted. The robot controller software
works as a server, exposing to the client a collection of services that constitute its
basic functionality. A collection of services was designed to fulfill all the tasks
required of the system, so that they could be called from the PC (Figure 5.12). The
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software architecture used in this work was presented in detail elsewhere [2 -8]
(see also Section 3.2), and is distributed using a client-server model based on
software components (ActiveX controls) [10-11] developed to handle equipment
functionality.

The system is completely operated using a graphical panel running on the PC, built
using the above mentioned ActiveX controls in Visual C++ NET 2003 [12]. When
the system is started, the operator needs only to specify what product model will be
used in each pallet, and if first pallets are fully assembled. This need is only for the
de-palletizing subsystem, because there is no identification on the pieces (they are
coming from the high temperature oven). On the palletizing subsystem, there is no
need to specify the model, because the pieces carry barcodes, inserted by the
inspecting operator, that are used by the subsystem with the help of barcode
readers.

PC

Synchronous call

Synchronous answer

Local Area Network Asynchronous call

S o, =

S — ST
PLC Robot Controller "
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Gy (o=

Figure 5.12 Software architecture used in this example

i

Sometimes, there are some non-fully assembled input-pallets on the shop floor that
need to be introduced into the system. To do that, the software allows the operator
to specify the position and level of the first piece. That is, however, only possible
on the first pallet, because the system resets definitions to the next pallets to avoid
accidents, i.e., proceeding pallets are assumed to be fully assembled. The same
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happens with output-pallets, since the system must be able to fill a pallet not
completely filled on the last production cycle for that model.

5.3.2.1 Basic Functioning of the De-palletizing System

When the operator commands “automatic mode” the robot approaches the selected
input-pallet in the direction of the actual piece, searchers the piece border using
optical sensors placed on the gripper, and fetches the ceramic piece. After that, the
robot places the piece in the first available inspection line, alternating inspection
lines if they are both available, i.e., the robot tries to alternate between them, but if
the selected one is not available then the other is used if available. If both
inspection lines are occupied, the robot waits for the first to become available.

Figure 5.13 shows the interface used by the operator to command the system and
monitor production. It shows the commands available, and the online production
data that enables operators to follow production. All commands and events are
logged into a log file, so that production managers can use it for production
monitoring, planning, debugging, etc. The system also uses a database, organized
in function of the model number, where all the data related to each model is stored.
That data includes type of piece, dimensions, height where the gripper should grab
the piece, average position of the first piece of the pallet, height of the pallet, and
so on, Accessing and updating the database is done in “manual mode”, selected in
the PC interface.

There is a “teaching” option that enables operators to introduce new models and
parameterize the database for that model, where a “feach by showing” strategy is
used. When that option is commanded, the robot pre-positions near the input-pallet
and the operator can jog the robot using function keys to the desired
position/orientation. Basically the de-palletizing operation is preformed step-by-
step and the necessary parameters acquired in the process, asking the operator to
correct and acknowledge when necessary. The operator is asked to enter only the
“model number” to teach, the height, and the width of the piece. The rest is
automatic. After finishing this routine the model is introduced into the database,
and the system can then work with that model number.

The system is able to check for errors such as: wrong pallet for model, presence of
pallet, model not known, no piece in place, wrong level, etc. Proper warnings are
sent to the PC for operator information, and displayed using software icons and
short messages.

5.3.2.2 Basic Functioning of the Palletizing System

A similar approach was used for the palletizing operation. Two inspection lines are
also used, with the robot trying to alternate between them. But the first available
piece is removed not slowing down production. A similar approach to the one used
in the de-palletizing sub-system is used to “feach” models to the robot. Also, the
system identifies the model number from the piece barcode when “automatic
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mode” is commanded, fetches the piece, and inserts it in the pallet compatible for
that model. The operator is able to select what pallet to use first, how many pieces
are already there, and how many pieces it should carry (Figure 5.14). Do to the
required dimensions of the output-pallets, the robot was placed on the top of a
linear axis, controlled by the robot control system (robot external axis), so that a
wider area could be reached. The system is also able to check for errors such as:
wrong pallet for model, presence of pallet, model not known, no piece in place, etc.
Proper warnings are sent to the PC for operator information, and displayed using
software icons and short messages.
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Figure 5.13 Example of an interface used by operators (de-palletizing system)
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Figure 5.14 Example of an interface used by operators (palletizing system)

5.3.3 Operational Results and Discussion

The system achieved the required operational results and is flexible enough when
introducing new models. Currently it works two shifts a day, almost autonomously,
making around 1400 pieces per shift (one shift is seven and-a-half hours).
Operators adapted easily to the system, and found the touch-screen interface easy
to use.

The company improved production quality and reduced production costs: fewer
operators are needed and production is more efficient (more pieces are handled a
day). This can be demonstrated by operational results, and also by the fact that new
systems followed this one to handle other type of pieces and other types of
operations, creating a strong connection between our university and this company.

A few innovations and technology transfers were successfully introduced with this
project and others are ongoing with the same company [2-5]. An interesting
human-machine interface for robotic manufacturing cells was introduced with
good results [2-5]. The solution has been developed from the scratch using Visual
C++ .NET 2003, constituting a software platform that can be used with other
applications. Experience with operators is positive, showing that they adapted well
and really enjoy using it. Nevertheless, new developments are necessary so as to
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guide operators and reduce operator training. This means that advanced help
should be available to guide the operator when inconsistencies are detected. Such
inconsistencies include, for example:

o Commanding “aufomatic mode” without reviewing the pallets
parameterization. That could be correct in some situations and
consequently, allowed. At the moment only a visible warning is issued,
but in the future only some sequence of operations will allow “automatic
mode”

e  Ordering a “RSTART”, i.e., proceed with current configuration and from
the same program position, after a system stop due to an error or operator
manual stop. Actually this situation is permitted, after confirming the
password, because we still rely on operator training and judgment.
Nevertheless, in the future, operators should be guided to follow a certain
procedure, reviewing actual status, so as to avoid mistakes. This can
certainly be done, for example, using an inference mechanism based on

fuzzy logic

The two presented situations are good examples of needed future developments.
For a certain industrial robotic cell characterized by a set of available operations, a
collection of routes should be defined considering all possible operational
situations. Consequently, an operator can command the robotic cell if he follows
one of those routes. This will increase safety, avoid errors, and improve efficiency.
At the moment, critical operations require operator confirmation with a password,
and visible warnings issued to the screen.

Another interesting innovation was the utilization of a client-server architecture,
explained elsewhere [2-5] (see Section 3.2), developed by the first author, to be
used with robotic cells. Using this architecture implies the clear intention to
distribute functions to all “intelligent” components of the robotic cell, leaving to
the central PC (the client) the tasks of making the service request calls, properly
parameterized, and displaying system information to the user. The PC is the user’s
commanding interface, and his window to the system.

5.4 Handling Production Changes Online

In this section, the problem of handling production variations online, i.e., during
actual production, is addressed. These variations may occur when it isn’t possible
to exactly guarantee working conditions during a production cycle or between two
consecutive cycles. These variations are common in some types of industries, like
the glass and ceramic industry, where the products may change slightly during the
production cycle. Also, these industries are multi-model industries in which the
production equipment is required to handle several different models of products
that have their own production requirements. Since it is common to have two or
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more different model campaigns during a working day, it should be possible to
easily parameterize the production system when a new campaign is started.

Consequently, this section uses a highly efficient robotic palletizing system,
developed for a partner company, to introduce and explain how these problems
may be addressed. It includes details about practical implementation, along with a
discussion of options and obtained operational results, which show the system to
be a good example of human-machine cooperation.

As is common in several industries, the intermediate products need to be palletized
in several stages of the production cycle, to circulate between manufacturing cells,
be sold to other companies (white-line or undifferentiated products) that finish the
production cycle adding their own characteristics, or to be stored inside the
company in accordance with the defined production planning and company needs.

This case, the products are several models of automobile side-window glass. The
palletizing system is placed after the glass cutting and washing cells. The obtained
pallets are to be used in the manufacturing line that introduces the characteristic
curvature of the glass. This line, which includes a high-temperature oven and an
incurving system, is shared by all models of side-window glass produced by the
company, which makes the task of automatically feeding the line from all cutting
and washing lines very difficult to manage. Consequently, the glass is palletized
using a robot manipulator and de-palletized near the incurving manufacturing line
by another robot. This enables the company to handle all types of models in a very
simple and efficient way.

5.4.1 Robotic Palletizing System

The system used in this example was developed to pick side-window glass from
the production line and palletize it into pre-configured pallets. The system,
depicted in Figures 5.15 and 5.16, is made of the following components:

¢ Anindustrial robot ABB IRB 4400, equipped with the 2002 version of the
ABB S4C+ robot controller

e A PLC Siemens S7-300, to control all the systems peripheral to the robot.
A centering system, placed on the production line, that guarantees that
glasses are centered and placed in a known position before being picked
by the robot

e A pneumatic gripper with retractile contact sensors and suction cups,
capable of picking glasses and measuring the pallet characteristics

e A rotating system that supports two pallets, ensuring that a new empty
pallet is immediately fed into the system when the previous one is full

e A computer for supervision and control, and for implementing also the
human-machine interface
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Figure 5.15 Components of the palletizing system for the automobile industry

The cycle executed by the system (Figure 5.17) is composed of the following
principal tasks:

5.4.1.1 Identify Empty Pallets and Measure Parameters of an Empty Pallet

An empty pallet needs verification to measure the following pallet parameters:
angle of the back of the pallet with the vertical axis, angle of the base of the pallet
with the horizontal axis, height of the base of the pallet relative to the robot world
reference system, and the pallet dimension. These four values change significantly
from pallet to pallet and need to be obtained each time an empty pallet is
introduced in the system. This task is fundamental for the success of the palletizing
task, because it enables the system to place the glass always in the same
conditions: at the same height relative to the pallet base and at the same distance
from the previous glass. This avoids adding defects to the glass, namely small
scratches on the surface of the glass (due to slipping between consecutive glasses),
or on the edges that contact with the surface of the pallets (due to releasing the
glass more than 1-2mm high from the surface of the pallet).

Any empty pallet needs to be measured for the above mentioned parameters that
will be used during the palletizing process using that pallet. Every time the rotating
base introduces a new pallet, optical sensors, placed behind the back of the pallet,
detect if the pallet is empty and trigger the measuring process.
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Figure 5.16 General view of the palletizing cell

5.4.1.2 Pick a Glass from the Production Line

After getting information from the PLC that there is a glass available in the
production line, properly centered and in position, the robot is commanded to pick
the glass from the predefined picking position (based on the glass model) and take
it to a position near the entrance of the pallet.

5.4.1.3 Palletize the Glass

The glass must be placed in the row in use, taking into consideration the number of
glasses already palletized and the pallet parameters. This operation means also
knowing the thickness of the glass in a way to maintain the same palletizing
conditions for all glasses. At the end, when a pallet is full, the robot signals the
PLC that the pallet is full and places itself in a non-collision situation with the
pallet, enabling the PLC to start the rotating motion that will exchange the pallets
(Figure 5.18).
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5.4.2 System Software

Considering that the above presented system was developed to work with several
models of glass (up to 128 different models), that require their own configuration
in the tasks of picking and palletizing each glass, i.e., these tasks are model
dependent, the operating software should explore the teach-pendant capabilities in
the phase of teaching a new glass model to the system. Consequently, the software
was designed to have two operating modes: manual and automatic.

Manual Mode — In this mode, all subsystem testing and maintenance routines are
allowed (Figure 5.19). The user is also allowed to teach a new model to the system.
This means that the robot will follow pre-determined motions, asking the operator
to adjust positions using function keys. In the process, the software acquires the
necessary data to completely handle that model of glass. In this mode, the
production line is not operational, because production is deactivated. The robot is
commanded from the robot teach-pendant (or console), using local software
designed to assist the selected functions. For practical reasons, this “manual mode”
software will not be explained further here.

ROTINAS EM MODO MANUAL
(C) 3. Norberto Pires 2002

MENU PRINCIPAL

Gripper Robot Teach Porta  Sair

Figure 5.19 Pallet main shell presented to the user in “Manual Mode” on the robot console
(original software with Portuguese interface)

Automatic Mode — The production line is placed in automatic mode and the robot
should follow the cycle presented briefly in Figure 5.17. The robot uses the
definitions stored in the database to handle the model selected by the operator,
using the parameterizations he chooses.
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The software developed to interface with the operator runs on a remote computer,
connected to the robot controller by Ethernet. The software was developed in
Visual C++ NET 2003 [12], using an ActiveX control [10-11] designed by the
author to work with industrial robots [2-5] (see Section 3.2). The shell presented in
Figure 5.20 is the operator interface to the system.

To initiate the system, the user must run the robot program using the operator
interface. A “start_program” remote procedure call (RPC) [9] is issued, launching
a computer program that implements a collection of services that can be requested
from the PC using RPCs. After being initiated, the robot program waits for the
selection of the operating mode, i.e., waits the user to command “Automatic
Mode”, where the robot is controlled by the system PLC using the parameterization
selected by the user, or “Manual Mode” where the robot is commanded from the
robot teach-pendant. Both operating modes may be considered as services that the
robot (server) offers to the PC/operator (client). During the “mode selection state”,
where the robot waits for the user to select the operating mode, it is possible to
access the system database where the definitions for each model are stored. Access
to database is not allowed in any other situation, for safety reasons. Consequently,
before selecting the operating mode, the user should select the model he wants to
produce and parameterize the production: thickness of the model, number of pieces
per row and per pallet, and the dimension of the glass. The thickness and
dimension of the glass are characteristics of the model registered in the database,
and consequently are not to be changed by the user. A password is required to
change them.
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Figure 5.20 — Operator interface running on the PC (original software with Portuguese
interface)

Using the interface presented in Figure 5.20, the operator is allowed to command
three types of operations: Access the glass model definition database, control the
robot program, and online monitoring.
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Figure 5.21 Accessing the database

Figure 5.21 shows the place where the user can change the glass model definition
database. This operation is only possible, nevertheless, when the robot is waiting
for operating mode selection. This procedure was implemented done for safety
reasons, in a way to avoid corrupting the working database.
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— Controlo do Programa—
[e=ad jreroa |
[FIX1| |EMI——— > Places the robot program in “Automatic Mode®
s i Svcts|

» Places the robot program in “Manual Mode”

Example: Manual mode commanding routine (Visual C++ :NET 2003)
void CFornoDlg::Onmanual()
{float valor;
fprintf(log,"%s - Comando de MANUAL \n",tbuffer);
if (m_pon.InitClient("babylon",5) >= 0)
{valor=1236;
nresult = m_pon.WriteNum("decision1",&valor);
if (nresult <0) {m_log.SetWindowText("Error in the MANUAL command.");
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fprintf(log,"%s - Ermor in the MANUAL command.\n" tbuffer);erro=1;
m_erro.ShowWindow(1);}
else m_log.SetWindowText("MANUAL command.");
m_pon.DestroyClient();
} else
{m_log.SetWindowText("Robot didn’t answer ... operation cancelled.");
m_comms.Setlcon(AfxGetApp()->Loadlcon(ID]_smile2));
m_erro.ShowWindow(1);
H

}
Figure 5.22 Controlling the robot program

As already mentioned, commanding automatic or manual mode means accessing to
a different set of functionalities. This operating mode change procedure is
implemented in RAPID (ABB programming language) with the following
simplified code (database access removed for simplicity):

WHILE never_end=FALSE DO
WaitUntil (decision1=1235) OR (decision1=1236)\MaxTime:=1\TimeFlag:=timeout;
IF timeout=TRUE THEN
ENDIF
IF (decision1=1235) THEN
auto_mode; 4— Module that implements the “Auromatic Mode”
decision1:=0;
ENDIF
IF (decision1=1236) THEN
manual_mode; <4——— Module the implements the “Manual Mode”
decision!:=0;
ENDIF
ENDWHILE

5.4.3 On-line monitoring

—|nformagdo ON-Line
Controlador Tempo de Ciclo Numero total ciclos
[Stand By, 203 fisa2
Modo Operago Vertente Actual Dimensdo
{Auto Made. 1 {710
Controlador de PGM Numero do Programa Espessura
[Stopped Stale. 4 [3.45
Estado do Programa Contador de Vidros Num_MAX Vidros
lnitiated. 4 140

Figure 5.23 Online monitoring data

This feature (Figure 5.23) allows the user to quickly observe production data, such
as: model in use, pallet row in use, number of cycles (pieces) performed since the



Industrial Manufacturing Systems 261

last counter erase, number of glasses palletized in the current pallet, last cycle time,
robot working modes, and so on. This information is obtained directly from the
robot, making monitoring calls to the relevant services. These calls are triggered by
a timer interrupt routine, programmed to monitor the system in cycles of five
seconds. A complete cycle, i.e., the operation of picking and palletizing a glass,
takes about nine seconds, which justifies the polling monitoring option and the
choice of a monitoring cycle of five seconds.
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Figure 5.24 — Adjusting online

Many times, due to operational difficulties in the production line, or centering
errors, etc., it is necessary to make small adjustments in the palletizing process
without stopping production. The operator may perform those adjustments using
only a mouse (Figure 5.24), observe results, and correct the problem without
stopping production. This type of procedure is fundamental for production
environments characterized by high production rates and very tight quality control,
as is the case of the automobile components industry.

Finally, another important operation under “Adutomatic Mode” is the operation of
measuring the pallet parameters. That is done, as already mentioned, when a new
empty pallet is introduced. This measurement must be done in every pallet, since
they differ from each other significantly. Without this procedure, the palletizing
process would fail. The robot is commanded to extend the precision contact
sensors and use them to measure the pallet parameters. The robot uses three contact
sensors, placed in the vertices of a triangle, to orient itself parallel to each surface
and compute the angles around the robot’s world reference system (Figure 5.25).
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Figure 5.25 Getting pallet parameters: dy, d2, 0 and B

The routine associated with this process is very simple and is presented below in a
simplified form:

PROC check_pal()
WaitUntil (divazial=0) AND (divazia2=0)\MaxTime:=5\TimeFlag:=timeout;
IF timeout=TRUE THEN
TPWrite "Pallet not empty ..."; /

PulseDO doerros; Empty pallet??

EXIT;
ENDIF .
Movel pal_app,velocity,z100,toolt; Contact sensors in position
sensores_on;

MoveL RelTool(pal_up,0,0,250),velocity_app,fine,toolt;

/Il Angle of the back of the pallet with the vertical axis

SearchL\PStop,disenl temp,RelTool(pal_up,0,0,500),velocity_search,toolt;
MoveL temp,v10,fine,toolt;

temp:=CRobT(\Tool:=tool_senl);

WHILE (disen2=0) AND ((disen3=0)) DO
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MovelJ RelTool(temp,0,0,00\Ry:=-0.1),velocity search,fine,tool senl;
temp:=CRobT(\Tool:=tool_senl);
ENDWHILE
pal_actual:=CRobT(\Tool:=toolt);
anglel:=Abs(90-Abs(EulerZYX(\Y,pal_actual.rot)));
TPWrite "Back Angle = "\Num:=anglel;

/f Angle of the base of the pallet with the horizontal axis

Movel] pal_up,velocity_app,fine,toolt;
Movel pal_down,velocity_app,fine,toolt;
Searchl.\PStop,disenl,temp,RelTool(pal_down,0,0,500),velocity search,toolt;
MoveL temp,v10,fine,toolt;
temp:=CRobT(\Tool:=tool_senl);
WHILE (disen2=0) AND ((disen3=0)) DO
Movel RelTool(temp,0,0,0\Ry:=-0.1),velocity_search,fine,tool_senl;
temp:=CRobT(\Tool:=tool_senl);
ENDWHILE
WaitTime 0.2;
temp:=CRobT(\Tool:=toolt);
angle:=Abs(EulerZYX(\Y,temp.rot));
TPWrite "Base Angle "\Num:=angle;
templ:=RelTool(pal_actual,-(dim {modelo}/2-(pal_actual.trans.z-temp.trans.z)),0,0);
pal_actual:=templ;

Movel pal_down,velocity_app,z50,toolt; —
Movel] pal_app,velocity,z100,toolt; Height and dimension of the pallet
sensores_off;

ENDPROC

Retract contact sensors

5.4.4 Discussion and Results

The system (Figure 5.26) presented in this section is a good example of a flexible
robotic industrial system, capable of handling any production situation. The system
relies on operator command and judgment, enabling him to fully parameterize
production and introduce new production models. Besides of that, the operator may
also introduce adjustments and change working conditions online, without stopping
production, which is a powerful tool to handle production variations and
difficulties. These features were obtained just by implementing a collection of
services capable of handling all the anticipated production requirements, exposing
them to the remote computer (client) where the operator interface is implemented.
In this way, production may be tailored in a very flexible way, enabling the
operator to solve virtually any operational situation.

Operational results are promising:
¢  Operators adapted easily to the system, which is always a good result
considering their average skills
¢ Achieved production cycle is of aboutnine seconds per glass, which is
more than is required



264 Industrial Robots Programming

o The pallet measuring procedure takes about 25 seconds to complete,
which is compensated by the very fast cycle time. The average overhead
introduced by this procedure in the cycle time is about 25/280 = 0,089 ~
0,1s (taking an average number of 280 glasses per pallet), which has no
meaning

e The system works 24 hours a day without any need for operator
supervision

It is worthwhile to point out that this system uses a client-server architecture,
explained elsewhere [2-5] (see Section 3.2), developed to be used with robotic
cells. Using this architecture implies the clear intention to distribute functions to all
“intelligent” components of the robotic cell, leaving to the central PC (¢he client)
the tasks of making the service request calls, properly parameterized, and
displaying system information to the user. The PC is the user’s commanding
interface, and his window to the system. The developed software was built from
scratch and the authors didn’t use any commercial software, apart from operating
systems (for example, ABB Baseware 4.0 for the industrial robots, and Microsoft
Windows 2000 with Service Pack 4 for the PC) and developing tools (Visual C++
INET 2003 [12] trom Microsofi). A port of the SUNRPC 4.0 [9] package for
Windows NT/2000/Xp, a free open package originally developed for UNLX systems,
was also used. The porting effort was, nevertheless, completely done by the author,
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5.4.5 Conclusion

The system presented in this section is an implementation of a distributed software
architecture developed to work with industrial robotic cells. The main objective
was to be able to change production conditions online, and make adjustments to the
working parameters so as to cope with production variations. The system was
presented in some detail, giving special attention to the software designed to
parameterize, monitor, and adjust the production setup enabling online adjustments
to the working conditions. Obtained operational results demonstrate the interest of
these types of systems for multi-model production environments, where high
production rates and quality demands are a key factor. Finally, the obtained system
is also a good example of man-machine cooperation, demonstrating the advantages
of mixing human and automatic labor in actual manufacturing plants.
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Final Notes

6.1 Introduction

Dear reader, I hope you had fun reading and exploring this book, because in my
opinion that is a fundamental outcome of a technical book. Furthermore, a book
about robotics and automation must stimulate the reader curiosity and interest to
explore further on its own.

This book is a practical guide about industrial robotics and related subjects. My
primary objective was to introduce you to the fantastic world of robotics and ride
with you through ideas, examples, and industrial solutions showing how things can
be done, what are the available alternatives and challenges. Robotics and
automation is a multidisciplinary subject that calls for creativity and innovation. It
poses a permanent challenge for performance and practical results and
consequently is a perfect subject for inventive and dedicated people, for whom this
book was written. For that reason, the book presents a considerable amount of
examples and solutions, allowing readers to see, from time-to-time, the complete
picture of building a robotic manufacturing system, which constitutes also an
invitation to maintain the focus. That is important. Robotics is an interesting
subject and people are naturally attracted by its applications and achievements.
Nevertheless, due to its multidisciplinary nature, robotics is also a very demanding
field requiring knowledge of physics, electronics, mechanics, computer science,
and engineering. Consequently, a book in the field gains by having examples and
practical implementations. That was the “design option” followed when planning
and writing the book. You can find the code of several of the presented examples
along with pictures, videos, and other material at:

http://robotics.dem.uc.pt/indrobprog

The access to the site is restricted and requires a login “username” and
“password”. Visit the web site for details on how to obtain a valid login. As author
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of this book, I’ll keep the website updated so that it is a good source of information
on:

New developments

Interesting solutions

Interesting scientific and technical papers
Interesting books

Industrial trends in terms of technology

Most of these issues are related to new developments that result from R&D
projects done in universities, research institutes, and companies, or in cooperation
between academia and industry, resulting in technical papers, books, and new
products. Robotics and automation is perhaps one of the most interesting cases of
industry-academia cooperation since most of the developments require scientific,
technical, and operational advances from both worlds to reach higher levels in
terms of manufacturing flexibility and agility.

To be faithful to the basic “design option” adopted in this book, we will finish with
another example. This final case is about a technical solution designed to
reconfigure an old industrial robot, making it accessible through a local area
network (LAN), and allowing programmers and system engineers to offer remote
services to users.

6.2 Operation “Albert”

Albert is the name of an old robot that we acquired for our laboratory (Figure 6.1).
The primary objective behind the acquisition was to obtain a nice industrial
machine dedicated to teaching activities and to be included in laboratory classes of
the discipline of “Industrial Robotics” (4™ year of the Mechanical Engineering
course). Albert worked for a few years in industry doing several types of tasks:
manipulation, gluing, and labeling. After retiring from industry it is now starting a
promising career in academia. Technically, 4lbert is an anthropomorphic robot
manipulator (from 1992, build year) manufactured by ABB Robotics (model
IRB1500) and equipped with an ABB S3 robot controller [1], i.e., it is a robot from
1992 but carrying technology from the mid eighties. Consequently, it is a rather old
system with the following basic characteristics:

¢  Anthropomorphic manipulator (model ABB IRB1500): Skg of payload, 6
axis, 0.lmm of repeatability and a fairly interesting workspace area
(~1400mm)

s ABB S3 robot controller: This is the main disadvantage of Albert, since
the S3 system is old and not carrying much of the interfaces required by
actual industrial manufacturing systems. The controller is programmed
using the programming language ARLA and has 16 digital inputs, 16
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digital outputs, a serial port for data communication, and a very basic
teach pendant (Figure 6.2).

1T

Figure 6.2 S3 robot controller

Consequently, this is mechanically a very interesting machine, very similar to its
successor, the IRB1400 model. In fact, they share the same wrist design, which
gives to the arm an excellent maneuverability. Nevertheless, because it is an old
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system with very deficient communication interfaces, without any LAN interface,
an old programming language (although sufficiently powerful) and a very basic
user interface, Albert needs to be upgraded to be useful for teaching and training

tasks.

Figure 6.3 S3 cabinet with the extra hardware

To provide the system with a LAN interface, and the ability to offer programmed
services to remote clients, while keeping the available system functionalities, the
following actions were performed to upgrade the old A/bert (Figure 6.3):

[ ]

A PLC (S7-266 from Siemens) was added to the system, connected to the
robot using the IO digital boards available in the S3 system.
Consequently, a very simple parallel interface was added to transfer data
between the PLC and the robot controller

An Ethernet board (CP 243-1 from Siemens) was also added to the
system, connected to the PLC, to enable the system to interface with the
LAN available in the laboratory. Consequently, remote users interface
with the robot controller through the PLC, which means that a basic data
protocol must be defined to exchange information between remote users
and the running robot programs. That is a very simple task and was
already used in Chapter 3

An extra IO module was also added to the PLC to provide a supplemental
set of IO digital line to use with applications.
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The PLC is accessed using the Ethernet board and a simple UDP messaging
system. To simplify the access, we used the Siemens S7-200 OPC Data Access
(OPC DA) Server for the S7-200 (a server that is part of the Siemens S7-200 PC
Access package). This server provides a means to access the PLC memory
allowing the user to execute read/write operations on the entire PLLC memory
spaces (includes program variables, 10O variables, special memory bits, etc.).

| OPC Server 2

{ OPC Server 3 }

OPC Server 1

Figure 6.4 OPC client-server connection

Basically, OPC (OLE for Process Automation) [2, 3] was designed to allow client
applications to access data from shop floor devices in a consistent and transparent
way. Therefore, the OPC client applications interface with software modules (the
OPC servers) and not with the hardware directly. This means that they rely on
software components provided by the hardware manufacturer to efficiently access
and explore the hardware features. Consequently, changes and hardware upgrades
will not affect the user applications.

With OPC, whose specifications [3] include a set of custom COM interfaces [4]
(used when building client applications) and a collection of OLE automation
interfaces [5] to support clients built using high-level languages and applications
(Visual Basic and Excel, for example), users can take advantage of the nice
features of DCOM to facilitate client access to the system features. An OPC client
can connect to OPC servers provided by any vendor that followed the OPC
specification [3] (Figure 6.4).

Basically there are three types of OPC servers {2, 6]:

1. OPC Data Access Servers (OPC DA Servers) — This type of server is used
to offer read/write data services to the client application. OPC DA servers
constitute a powerful and efficient way to access automation and process
control devices
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OPC Alarm and Event Handling Servers (OPC AE) — This type of server
is used to implement alarm and event notifications services to be used
with client applications

OPC Historical Data Access Servers (OPC HDA) — This type of server is
used to access (read/write) data from an historian engine

In this project to upgrade and reconfigure A/bert an OPC DA server [7] is used to
access the PLC. An OPC DA client application designed to access the PLC
resources needs to deal with three types of objects:

1.

OPC DA Servers — maintains information about the server and operates as
a group container

OPC DA Groups — provides the mechanisms for containing and
organizing items. Every OPC group has a particular update rate that must
be set by the OPC client

OPC DA Items - the items are the real connections to the system
resources. An item could represent a bit (like a memory bit or 10 digital
signal, etc.), a byte, a word, etc

Consequently, to access data from the hardware resource through the OPC server,
the client should follow the following procedure:

® o o o

Connect to the OPC server

Create an OPC group to perform synchronous reads/write operations

Add the necessary items to the group

Monitor the actual state of the items, or make asynchronous read/write
operations

With Albert, twelve digital 10 inputs and twelve digital IO outputs are used as data
bus for robot-PLC communication. Some of those IO lines will be use to control
the information flow between the robot and PLC. The remaining four digital inputs
and four digital outputs will be used for special operations (Table 6.1).

To demonstrate how this can be used to command Albert from a remote PC,
consider that the robot “knows” five positions, which are available for user request.
The idea is to build a simple OPC client application to set up an OPC connection to
the Siemens S7-200 OPC Server, and implement the necessary actions to command
the robot to move to the user-selected positions.
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Table 6.1 10 assignment for robot-PLC communication

Robot PLC Description

DIl to DI12 Q0.0to Q1.3 Data IN

DOI1 to DO12 10.0toI1.3 Data OUT

DI13 Ql.4 Motor ON

DI14 Q1.5 Motor OFF

DI15 Ql.6 Program_RUN

DI16 Q1.7 Program_STOP

DO13 11.4 Motor_State

DO14 I1.5 Program_State

DO15 11.6 System_State

DO16 11.7 Emergency_State
With that objective in mind, the following items were defined in the OPC server
(Figure 6.5):

q0 — byte that contains the digital outputs Q0.0 to Q0.7
q1 - byte that contains the digital outputs Q1.0 to Q1.7
i0 - byte that contains the digital inputs i0.0 to i0.7
il - byte that contains the digital inputs i1.0 to i1.7

File Edit View Status Tools Help
D $Re X =D

= 5 Project Name / | ItemID |
g What's New B Microwin, albert.io
= B Microwin(TCP{IP) B Microwin. albert.q0
Baqt Microwin, albert.ql
Si Microwin.albert.it

Figure 6.5 Items defined in the OPC server for this simple example

To implement the possibility of moving the robot using the OPC server, the
following sequence is adopted:

The robot waits for Q0.7 = DI8 = 1; means that a valid command is ready
The commanded position is specified through bits Q0.0 (DI1) to Q0.4
(DI5), i.e., Q0.0 (DI1) is associated with P1, Q0.1 (DI2) with P2, ..., Q0.4
(DI5) with P5

The robot program jumps to “MOVE P1” routine and acknowledges the
received command by making DO8 =10.7=1

The commanding PC should confirm the motion just by making q0 = DI1-
DI8=0

Robot makes DO8 = 10.7 = 0 and moves to the commanded position.
Robot program jumps to the beginning and waits for a new command
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Consequently, the program running on the robot controller (coded using ARLA)
looks like the generic code presented in Figure 6.6.

while never_end;
wait DIR = 1;
switch (byte DI1-DI8)
case 1: DO8 = 1; wait (word DI1-DI8) = 0; DOS8 = 0; Move P1;
case 2: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P2;
case 4: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P3;
case 8: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P4,
case 16: DO8 = 1; wait (word DI1-DI8) = 0; DO8 = 0; Move P5;
endswitch;
endwhile;
Figure 6.6 — Generic code running on 4lbert’s controller

The OPC client application designed to connect to the OPC server, monitor the
selected items and interface with the PLC (and through it to the robot controller) is
represented in Figure 6.7.

OPC Server: Group: [V Group Active State Terminate ]
[s7200.0PCServer |notberto
peict I Dicconnect | | Femoye £fs
00.0t0Q07 100t10.7
[Miciowinalbert a0 [Microwin albert 0 S I WZJ
Wite Value: | of 0
Pesition 3 | Pasition 4 |
Read Value: | ] |
DataChange: | (] 0 R
Add Itemn | Remove ltem | wﬁ i o)
Go Posttion 3, Albert
witeSme | WiteAwnc | [ 3658
Answer
Read S ReadAsnc | [ 0
e | | Abert: moving to P3.
Goup Active State mustbe TRUE [ 70 I

Figure 6.7 OPC client application designed to command the robot

The client application creates a group named “norberto™ and enables the user to
add the items of interest. In this, case the selected items are Microwin.albert.q0 and
Microwin.albert.i(). The default group updated rate is 100ms.

When a command is selected (using the software buttons “Position I to *Position
5™), the client application follows the above sequence just by monitoring the robot



Final Notes 275

response (through the PLC interface), and acting accordingly. Figure 6.8 reveals
the code associated with the action of commanding the robot to move to P1.

Private Sub p1_Click()
If txtChangeVal(1).Text = "0" Then
txtWriteVall. Text="129" <——— Command valid + MOVE to P1
Ipl=1

cmdWriteAsyne <+ Call to WriteAsynchronous
cmd_sent.Caption = "Go Position I, Albert"
Else
cmd_sent.Caption = "Albert: I'm not ready!"
End If
End Sub

Private Sub Timer1_Timer()
If (Ip1 =1) Then
If (txtChangeVal(1).Text) = "128" Then <€—r—— Robot received the command
txtWriteVall. Text = "0"
cmdWriteAsyne « Call to WriteAsynchronous
Ipl=0
answer.Caption = "Albert: moving to P1."
End If
End If

If (Ip5 = 1) Then
If (txtChangeVal(1).Text) = "128" Then —
txtWriteVall.Text = "0"
cmdWriteAsync < Call to WriteAsynchronous
Ip2=0
answer.Caption = "Albert: moving to P5."
End If
End If
End Sub

Figure 6.8 Code associated with the command action move to P1

This example shows clearly the usefulness of the updated Albert for teaching and
training tasks. In the update process a PLC was added to the robot controlier
cabinet, including an extra IO board and an Ethernet card (on the PL.C bus), which
can work in parallel with the application running on the robot controller. These
new features can be explored when building applications, and since the user needs
to deal with the robot controller software, the PLC software, and the protocol to
manage the robot-PLC communication (as shown in the presented example), it is
fair to say that the new Albert constitutes a very nice platform to learn about
robotics and automation.

6.2.1 And “Albert” Speaks

From the material presented in Chapter 4, the task of adding a speech interface to
Albert is straightforward. Nevertheless, it will be done in this section, step-by-step,
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because in the process a few details about the human-robot interface will be further
clarified. For simplicity, we’ll use the same setup presented above.

The first thing to decide is the structure of the voice commands. The best option is
the “command and control mode” (see Section 4.2.3) because it is more adapted to
industrial situations that require a clear and safe identification of commands. With
this operation mode, the software needs to identify the sequence of words and
strings that compose the command, and generate the appropriate action to the robot
controller. Consequently the selected command structure is

name_of _machine command parameters

where “name_of machine” is the name attributed to the machine (in our case
“Albert” or “robot”), “command’ is a word identifying the command and
“parameters” are words or strings identifying the parameters associated with the
particular command.

In the presented example, there are four commands available:

“hello” — enables the user to query if the interface is available
“initiate” — initiates the speech interface

“terminate” — suspends the speech interface

“move” — commands the robot to move to a position

These commands are associated to the machine “Albert” (or “robot”), which means
that they are associated with the pre-command string “Albert” (or “robot™).

The next step is to write the above defined grammar using a standard format that
can be understood by our software. There are two ways to achieve that:

o Include grammar specific instructions in the body of the software (hard-
coded grammar). This means that any change in the grammar structure, or
a simple update in the command list, requires another compilation of the
application software.

o  Specify the grammar using XML files. This is straightforward and flexible
to changes and updates.

In the presented example, an XML file is used to specify the grammar (Figure 6.9).
Since we use English and Portuguese recognizers, two XML grammars were built
to allow the user to select the language. The application reads the grammar from
the XML file, selects the recognizer to use based on the language ID tag, commits
the rules, and handles the recognition events. When a certain rule is identified, an
event is fired by the recognition engine and catch by our application that executes
the appropriate actions (Figure 6.10).
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<GRAMMAR LANGID="409">
<DEFINE>
<ID NAME="test" VAL="1"/>
<ID NAME="move" VAL="2"/>
<ID NAME="position" VAL="3"/>
<ID NAME="init" VAL="4"/>
</DEFINE>
<RULE NAME="ROOT" TOPLEVEL="ACTIVE">
<L>
<P>albert</P>
<P>robot</P>
</L>
<RULEREF PROPNAME="move" PROPID="move" NAME="move"/>
<P>to</P>
<RULEREF PROPNAME="position" PROPID="position" NAME="position"/>
<O>please</O>
</RULE>
<RULE NAME="START" TOPLEVEL="ACTIVE">
<L>
<P>albert</P>
<P>robot</P>
</L>
<RULEREF PROPNAME="init" PROPID="init" NAME="init"/>
<O>please</O>
</RULE>
<RULE NAME="move">
<LN PROPNAME="move" PROPID="move">
<PN VAL="1">move</PN>
<PN VAL="2">go</PN>
</LN>
</RULE>
<RULE NAME="init">
<LN PROPNAME="init" PROPID="init">
<PN VAL="1">initialize</PN>
<PN VAL="2">terminate</PN>
<PN VAL="3">hello</PN>
</LN>
</RULE>
<RULE NAME="position">
<LN PROPNAME="position" PROPID="position">
<PN VAL="1">position one</PN>
<PN VAL="2">position two</PN>
<PN VAL="3">position three</PN>
<PN VAL="4">position four</PN>
<PN VAL="5">position five</PN>
</LN>
</RULE>
</GRAMMAR>

Figure 6.9 XML file containing the speech grammar (English version)

2717
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OFC Server: Gioup [ Gioup Active State Temnae |
|57200 0PCServer |noiberto
[Connect | Lisconmied! [ Add Group | Femove Group I (O Speech Inteiface Active
Q0010 Q0.7 10.0te10.7
[Miciowin abert.q0 [Miciowin albest.i0 Position 1 J Postion 2 l
Wiite Value: | 0 0
Position 3 | Position 4 |
ReadValue: | |
DataChonge: | g 7 s |
End e Callback Command
At e l Remove Item I C ‘
Go Position 4, Albert
i | (=
Answer
Read S Read Async i 0
e I I Albeit: moving to PS.
Goup Active State must be TRUE I 12
Speech: robot mave to position four (4)

Figure 6.10 OPC client application with the speech interface included

Figure 6.11 show the code associated with the rules that command the robot to
move to position one:

position one ._
Albert / position two s
> move to position three 4 please
Robot position four

position five

nprop = Result.Phraselnfo.Properties.Count
If nprop =1 Then
If Result.PhraseInfo.Properties(0).Children(0).Value = 1 Then
answer.Caption = "initialize"
End If
If Result. PhraseInfo.Properties(0).Children(0).Value = 2 Then
answer.Caption = "terminate"
End If
If Result.Phraselnfo.Properties(0).Children(0).Value = 3 Then
answer.Caption = "hello"
If Result.Phraselnfo.Languageld = 1033 Then ———®  English
Voice.Speak ("Hello, I am albert.")
End If
If Result.PhraseInfo.Languageld = 2070 Then ——»  Portuguese
Voice.Speak ("Ol4, eu sou o alberto.")
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End If
End If
End If
If (nprop =2) Then
If Result.Phraselnfo. Properties(1).Name = "position" Then
If (Result.Phraselnfo.Properties(1).Children(0). Value = 1) Then
speech_out.Caption = speech_out.Caption + " (1)"
If Result.Phraselnfo.Languageld = 1033 Then
Voice.Speak ("Position one, master.")
End If
If Result.Phraselnfo.Languageld = 2070 Then
Voice.Speak ("Posi¢do um, mestre.")
End If
pl_Click ——————————% Routine that commands the robot to move to P1
End If

()

Figure 6.11 Visual Basic code associated with handling speech events: aspects related with
the “move to position” command

When an event is received, the application needs to query the speech API for the
property that was identified, and take the appropriate actions based on the returned
values. It’s a straightforward procedure based on the selected command structure
defined in the XML file containing the speech grammar.

With this example, I finish this book. My sincere hope is that it could constitute a

nice and useful resource of information and inspiration, but also a “platform” to
stimulate your curiosity to proceed further in the area.

Because... Robotics is Fun!
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