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Foreword

It is a great pleasure to write a preface to this book. In my view, the content is
unique in that it blends traditional teaching approaches with the use of mathematics
and a mainstream Hardware Design Language (HDL) as formalisms to describe
key concepts. The book keeps the “machine” separate from the “application” by
strictly following a bottom-up approach: it starts with transistors and logic gates and
only introduces assembly language programs once their execution by a processor is
clearly defined.

Using a HDL, Verilog in this case, rather than static circuit diagrams is a big
deviation from traditional books on computer architecture. Static circuit diagrams
cannot be explored in a hands-on way like the corresponding Verilog model can. In
order to understand why I consider this shift so important, one must consider how
computer architecture, a subject that has been studied for more than 50 years, has
evolved.

In the pioneering days computers were constructed by hand. An entire computer
could (just about) be described by drawing a circuit diagram. Initially, such dia-
grams consisted mostly of analogue components before later moving toward dig-
ital logic gates. The advent of digital electronics led to more complex cells, such
as half-adders, flip-flops, and decoders being recognised as useful building blocks.
However, miniaturisation of devices and hence computers has led to the design of
single circuits containing millions or even billions of components. As a result, hand-
lay-out is only used for specific modules, and circuit diagrams are less useful as a
mechanism for describing functionality for real circuits.

Instead, two formalisms are used in industry: HDLs and mathematics. A HDL
allows us to tell the component-layout and simulation tools how we would like to
implement our circuit; mathematics tells us what the circuit ought to do. In order
to verify whether the circuit does what we want it to, we can (partly mechanically)
compare the mathematical description with the HDL description. This represents
increased use of abstraction to cope with complexity, and an engineer can now be
productive by simply understanding and using high-level circuit design (e.g., multi-
plier design or pipelined processors) and formalisms (e.g., HDLs and mathematics).
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viii Foreword

Circuit diagrams are still used in the design flow, but mostly to sketch the physical
layout, in order to predict whether a circuit can be laid out sensibly.

Dealing with gaps in understanding between such a wide range of concepts and
techniques is often off-putting for people new to the subject. The best way to ap-
proach the problem is by placing it within a practical context that enables students
to experiment with ideas and discover themselves the advantages and disadvantages
of a particular technique.

In this book, Dan does just that by giving an excellent overview of key concepts
and an introduction to formalisms with which they can be explored. I hope this book
will inspire many readers to follow a career in this fascinating subject.

Henk Muller.
Principal Technologist, XMOS.



Preface

In theory there is no difference between theory and practice. In practice there is.

– L.P. “Yogi” Berra

Overview

In my (limited) experience, and although there are a number of genuinely excel-
lent textbooks on the subject, two main challenges exist in relation to delivery of
University level taught modules in computer architecture:

1. Such modules are often regarded as unpopular and irrelevant by students who
have not been exposed to the subject before, and who view a computer system
from the applications level. This is compounded by the prevalence of technolo-
gies such as Java which place a further layer between the student and actual
computer hardware. In short, and no matter how one tries to persuade them oth-
erwise, students often see no point in learning about the internals of a computer
system because they cannot see the benefit.

2. Conventional textbooks teach the subject in a different way than in other modules
students are exposed to at the same time. For example, conventional wisdom says
that one cannot “teach” programming, one has to “do” programming in order
to learn. This is in stark contrast to textbooks on computer architecture where
students are often forced to learn in a more theoretical way, learning by taking
facts for granted rather than experimenting to arrive at their own conclusions. For
example, because of the difficulty in working with large logic designs on paper,
any practical work is often limited and hence detached from the more challenging
content.

I would argue that this is a shame: computer architecture represents a broad spec-
trum of fundamental and exciting topics that underpin computer science in gen-
eral. Aside from the technical challenges and sense of achievement that stem from

ix



x Preface

understanding exactly how high-level programs are actually executed on devices
built from simple building blocks, historical developments in computer architecture
neatly capture and explain many design decisions that have shaped a landscape we
now take for granted. The representation of strings in C is a great example: the null-
terminated ASCIIZ approach was not adopted for any real reason other than the
PDP-7 computer included instructions ideal for processing strings in this form, and
yet we still live with this decision years after the PDP-7 became obsolete. Seem-
ingly frivolous anecdotes and examples like this are increasingly being consigned
to history whereas from an Engineering perspective, one would like to learn and
understand previous approaches so as to potentially improve in the future.

International experts regularly debate tools and techniques for delivering
University-level modules in computer architecture; the Workshop on Computer Ar-
chitecture Education (WCAE), currently held in conjunction with the International
Symposium on Computer Architecture (ISCA), is the premier research conference
in this area. This book represents an attempt at translating my personal philosophy,
that theoretical concepts should be accessible for practical experimentation, into a
form suitable for use in such modules. Put simply, I see computer architecture as a
subject in which “getting things done” is paramount; the ability to understand trade-
offs before selecting between and implementing well considered design options is
often as important as the study of those options at a more theoretical level. This fo-
cus is underlined by the book sub-title: a “practical” approach is the aim throughout.
To enable this, a key feature of this book is inclusion and use of a hardware descrip-
tion language (i.e., Verilog), and a concrete processor (i.e., MIPS32) as practical
vehicles for modelling and experimenting with digital logic and processor design.

Target Audience

The content is organised into three parts which contain a total of thirteen core chap-
ters. Although some slight disagreement about inclusion of specific topics is in-
evitable, the chapters represent a compromise between my informal opinion, inter-
ests and experience, and more formal curriculum guidelines such as that developed
by the UK Quality Assurance Agency (QAA):

http://www.qaa.ac.uk/

Of course, international equivalents exist; examples include those developed jointly
by the IEEE and ACM, leading professional bodies within this domain:

http://www.computer.org/curriculum/

The general aim of this book is to cover topics every computer science student
should have at least a basic grasp of, and equip said students with enough knowl-
edge to read and understand more advanced textbooks. In this respect, the core tar-
get audience is first-year Undergraduate students with a rudimentary knowledge of
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programming in C. More generally, the book content is pitched at a level which sat-
isfies most of the demands that have resulted from our degree programmes at the
University of Bristol. In particular, the more advanced material has proved useful as
a bridge toward, or in support of, more specialised textbooks that cover later-year
Undergraduate and Postgraduate modules.

Organisation

The book chapters are described briefly below. Very roughly the three parts of the
book can be viewed as somewhat self-contained, representing three layers or levels
of abstraction: the digital logic layer, the instruction set and micro-architecture
layer, and the hardware/software interface. Part 1 deals with basic tools and tech-
niques which underpin the rest of the book:

Chapter 1 Introduces the theoretical background including logic, sets, and num-
ber representation.

Chapter 2 Uses the theory developed in the previous chapter to describe the ba-
sics of digital logic including logic gates and their construction using transistors,
combinatorial and clocked circuits and their optimisation.

Chapter 3 As a means of realising the digital logic designs presented in the pre-
vious chapter, Verilog is presented in an introductory manner; this content is
written with a reader who is a proficient C programmer in mind.

Part 2 deals with the broad topic of processor design and implementation. The con-
tent takes a step-by-step approach, starting with a functional description of a com-
puter processor and gradually expanding on the details, issues and techniques that
have resulted in modern, high-performance processor designs:

Chapter 4 The first step in introducing the design of processors (as an extension
to the study of general circuits) is to track historical developments and use them
as a means to explain central concepts such as the fetch-decode-execute cycle.

Chapter 5 Once the core concepts are introduced, a concrete realisation in the
form of MIPS32 is discussed; this discussion includes details such as addressing
modes and instruction encoding for example.

Chapter 6 This chapter outlines some basic methods for evaluating processors
in terms of various metrics which can be used to defined quality, focusing on
performance in particular.

Chapter 7 As a vital component in any processor, the design of efficient circuits
for arithmetic (e.g., addition and multiplication) is introduced and demonstrated
using Verilog.

Chapter 8 In the same way as arithmetic, the design of efficient components in
the memory hierarchy is introduced and demonstrated using Verilog.

Chapter 9 Finally, a number of more advanced topics in processor design are
investigated including approaches such as superscalar and vector processors.
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Finally, Part 3 attempts to bridge the gap between hardware and software by exam-
ining the programming tools and operating system concepts that support the devel-
opment and execution of programs:

Chapter 10 As a first step, this chapter presents a detailed description of a de-
velopment tool-chain, starting with linkers and assemblers. This material is sup-
ported by and links to Appendix A, which provides a stand-alone tutorial on us-
ing SPIM, a MIPS32 simulator. As such, it provides a concrete means of writing
programs for the processor design introduced earlier in the book.

Chapter 11 Following the previous chapter, compilers are now introduced by fo-
cusing on their aspects which are most closely tied to the processor they target.
For example, register allocation, instruction select and scheduling are all covered.

Chapter 12 With a means of writing programs established, the operating sys-
tem layer is introduced in a practical way by using SPIM as a platform for real
implementations of concepts such as scheduling and interrupt handling.

Chapter 13 Finally, a somewhat novel chapter examines the concept of efficient
programming. This is written from the point of view of a programmer who wants
(or needs) to capitalise on the behaviour and characteristics of the concepts pre-
sented in previous chapters to improve their programs.

Each chapter concludes with a set of example questions which are largely at a level
one might encounter in a degree-level examination. These questions are numbered
consecutively (rather than relative to the chapter number) and a set of example so-
lutions can be found in Appendix B.

Although this content might clearly contain accidental omissions, some topics
have been avoided by design. Optimistically, one might view them as ideal for in-
clusion in future versions of the book; more realistically they represent topics that
are important but not vital at the level the book is aimed at:

• Perhaps the largest omission, at least the one which seems likely to prompt the
loudest outcry, is that of floating point arithmetic. Although the book covers
floating point representation briefly, the circuits for arithmetic and instruction
sets that use them are integer only. The rationale for this decision was purely
space: floating point represents a fairly self-contained topic which could be left
out without too negative an impact on core topics covered by the rest of the
content.

• A similar situation exists with the topic of design verification: although testing
the digital logic designs one can produce with Verilog is important, one could
easily dedicate an entire book to the art of good design verification.

• The main emphasis of the book is processors and as such, they are examined
somewhat in isolation. This contrasts with reality where such processors typically
form part of a larger system including peripherals, communication networks and
so on. As such, the broad topic of system-level design, which is central to other
books, is not covered here.

• At the time of writing, the “hot topic” in computer architecture is the advent of
multi-core devices, i.e., many processors on a single chip. Although this has been
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a research area for many years in an attempt to cope with design complexity and
effective use of increased transistor counts, commodity multi-core devices have
breathed new life into the subject. Again, because the emphasis is more intra-
processor than inter-processor, we omit the topic here although among all the
options for future material this is perhaps the most compelling.

• The book covers only traditional logic styles. However, for specific application
areas it has become attractive to investigate alternatives; the idea is basically that
one should be aware of available alternatives and use the right one in the right
place. Specifically, secure logic styles (which help to prevent certain types of
passive attack) and asynchronous logic (which avoids the need for global clock
signals) represent interesting avenues for future content.

Contact

As people who know me will (too) willingly attest, I am far from perfect. As a result,
this book is sure to include problems in the shape of minor errors and mistakes. If
you find such a problem, or have a more general comment, I would be glad to hear
about it; you can contact me via

http://www.cs.bris.ac.uk/home/page/
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Part I
Tools and Techniques



Chapter 1
Mathematical Preliminaries

In mathematics you don’t understand things. You just get used to them.

– J. von Neumann

Abstract The goal of this chapter is to give a fairly comprehensive overview of the
theory that underpins the rest of the book. On first reading, it may seem a little dry
and is often excluded in other similar books. However, without a solid understand-
ing of logic and representation of numbers it seems clear that constructing digital
circuits to put this theory into practise would be much harder. The theory here will
present an introduction to propositional logic, sets and functions, number systems
and Boolean algebra. These four main areas combine to produce a basis for formal
methods to describe, manipulate and implement digital systems such as computer
processors. Those with a background in mathematics or computer science might
skip this material and use it simply for reference; those approaching the subject
from another background would be advised to read the material in more detail.

1.1 Propositions and Predicates

Definition 1. A proposition is a statement whose meaning, termed the truth value,
is either true or false. Less formally, we say the statement is true if it has a truth
value of true and false if it has a truth value of false.

A predicate is a proposition which contains one or more variables; only when
concrete values are assigned to each of the variables can the predicate be called a
proposition.

Since we use them so naturally, it almost seems too formal to define what a proposi-
tion is. However, by doing so we can start to use them as a building block to describe
what logic is and how it works. The statement

“the temperature is 90◦C”

3
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is a proposition since it is definitely either true or false. When we take a proposition
and decide whether it is true or false, we say we have evaluated it. However, there
are clearly a lot of statements that are not propositions because they do not state any
proposal. For example,

“turn off the heat”

is a command or request of some kind, it does not evaluate to a truth value. Propo-
sitions must also be well defined in the sense that they are definitely either true or
false, i.e., there are no “gray areas” in between. The statement

“90◦C is too hot”

is not a proposition since it could be true or false depending on the context, or
your point of view: 90◦C probably is too hot for body temperature but probably not
for a cup of coffee. Finally, some statements look like propositions but cannot be
evaluated because they are paradoxical. The most famous example of this situation
is the liar paradox, usually attributed to the Greek philosopher Eubulides, who stated
it as

“a man says that he is lying, is what he says true or false ?”

although a clearer version is the more commonly referenced

“this statement is false” .

If the man is telling the truth, everything he says must be true which means he is
lying and hence everything he says is false. Conversely, if the man is lying every-
thing he says is false, so he cannot be lying since he said he was ! In terms of the
statement, we cannot be sure of the truth value so this is not normally classed as a
proposition.

As stated above, a predicate is just a proposition that contains variables. By as-
signing the variable a value we can turn the predicate into a proposition and evaluate
the corresponding truth value. For example, consider the predicate

“x◦C equals 90◦C”

where x is a variable. By assigning x a value we get a proposition; setting x = 10,
for example, gives

“10◦C equals 90◦C”

which clearly evaluates to false. Setting x = 90◦C gives

“90◦C equals 90◦C”

which evaluates to true. In some sense, a predicate is an abstract or general proposi-
tion which is not well defined until we assign values to all the variables.
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1.1.1 Connectives

Definition 2. A connective is a statement which binds single propositions into a
compound proposition. For brevity, we use symbols to denote common connectives:

• “not x” is denoted ¬x.
• “x and y” is denoted x∧ y.
• “x or y” is denoted x∨ y, this is usually called an inclusive-or.
• “x or y but not x and y” is denoted x⊕ y, this is usually called an exclusive-or.
• “x implies y” is denoted x → y, which is sometimes written as “if x then y”.
• “x is equivalent to y” is denoted x ↔ y, which is sometimes written as “x if and

only if y” or further shortened to “x iff. y”.

Note that we group statements using parentheses when there could be some confu-
sion about the order they are applied; hence (x∧ y) is the same as x∧ y.

A proposition or predicate involving connectives is built from terms; the connective
joins together these terms into an expression. For example, the expression

“the temperature is less than 90◦C ∧ the temperature is greater than 10◦C”

contains two terms that propose

“the temperature is less than 90◦C”

and

“the temperature is greater than 10◦C” .

These terms are joined together using the ∧ connective so that the whole expression
evaluates to true if both of the terms are true, otherwise it evaluates to false. In a
similar way we might write a compound predicate

“the temperature is less than x◦C ∧ the temperature is greater than y◦C”

which can only be evaluated when we assign values to the variables x and y.

Definition 3. The meaning of connectives is usually describe in a tabular form
which enumerates the possible values each term can take and what the resulting
truth value is; we call this a truth table.

x y ¬x x∧ y x∨ y x⊕ y x → y x ↔ y

false false true false false false true true
false true true false true true true false
true false false false true true false false
true true false true true false true true

The ¬ connective negates the truth value of an expression so considering

¬(x > 10)
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we find that the expression ¬(x > 10) is true if the term x > 10 is false and the
expression is false if x > 10 is true. If we assign x = 9, x > 10 is false and hence
the expression ¬(x > 10) is true. If we assign x = 91, x > 10 is true and hence the
expression ¬(x > 10) is false.

The meaning of the ∧ connective is also as one would expect; the expression

(x > 10)∧ (x < 90)

is true if both the expressions x > 10 and x < 90 are true, otherwise it is false. So if
x = 20, the expression is true. But if x = 9 or x = 91, then it is false: even though
one or other of the terms is true, they are not both true.

The inclusive-or and exclusive-or connectives are fairly similar. The expression

(x > 10)∨ (x < 90)

is true if either x > 10 or x < 90 is true or both of them are true. Here we find that
all the assignments x = 20, x = 9 and x = 91 mean the expression is true; in fact it
is hard to find an x for which it evaluates to false ! Conversely, the expression

(x > 10)⊕ (x < 90)

is only true if only one of either x > 10 or x < 90 is true; if they are both true then
the expression is false. We now find that setting x = 20 means the expression is false
while both x = 9 and x = 91 mean it is true.

Inference is a bit more tricky. If we write x → y, we usually call x the hypothesis
and y the conclusion. To justify the truth table for inference in words, consider the
example

(x is prime )∧ (x 	= 2) → (x ≡ 1 (mod 2))

i.e., if x is a prime other than 2, it follows that it is odd. Therefore, if x is prime then
the expression is true if x ≡ 1 (mod 2) and false otherwise since the implication
is invalid. If x is not prime, the expression does not really say anything about the
expected outcome: we only know what to expect if x was prime. Since it could still
be that x ≡ 1 (mod 2) even when x is not prime, and we do not know anything better
from the expression, we assume it is true when this case occurs.

Equivalence is fairly simple. The expression x ↔ y is only true if x and y evaluate
to the same value. This matches the idea of equality of numbers. As an example,
consider

(x is odd ) ↔ (x ≡ 1 (mod 2)).

This expression is true since if the left side is true, the right side must also be true
and vice versa. If we change it to

(x is odd ) ↔ (x is prime ),

then the expression is false. To see this, note that only some odd numbers are prime:
just because a number is odd does not mean it is always prime although if it is prime
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it must be odd (apart from the corner case of x = 2). So the equivalence works in
one direction but not the other and hence the expression is false.

Definition 4. We call two expressions logically equivalent if they are composed of
the same variables and have the same truth value for every possible assignment to
those variables.

An expression which is equivalent to true, no matter what values are assigned
to any variables, is called a tautology; an expression which is equivalent to false is
called a contradiction.

Some subtleties emerge when trying to prove two expressions are logically equiv-
alent. However, we will skirt around these. For our purposes it suffices to simply
enumerate all possible values each variable can take, and check the two expressions
produce identical truth values in all cases. In practise this can be hard since with n
variables there will be 2n possible assignments, an amount which grows quickly as
n grows ! More formally, two expressions x and y are only equivalent if x ↔ y can
be proved a tautology.

1.1.2 Quantifiers

Definition 5. A free variable in a given expression is one which has not yet been
assigned a value. Roughly speaking, a quantifier is a statement which allows a free
variable to take one of many values:

• the universal quantifier “for all x,y is true” is denoted ∀ x [y].
• the existential quantifier “there exists an x such that y is true” is denoted ∃ x [y].

We say that applying a quantifier to a variable quantifies it; after it has been quanti-
fied we say it has been bound.

Put more simply, when we encounter an expression such as

∃ x [y]

we are essentially assigning x all possible values; to make the expression true just
one of these values needs to make the expression y true. Likewise, when we en-
counter

∀ x [y]

we are again assigning x all possible values. This time however, to make the expres-
sion true, all of them need to make the expression y true. Consider the following
example:

“there exists an x such that x ≡ 0 (mod 2)”

which we can re-write symbolically as
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∃ x [x ≡ 0 (mod 2)].

In this case, x is bound by the ∃ quantifier; we are asserting that for some value of
x it is true that x ≡ 0 (mod 2). To make the expression true just one of these values
needs to make the term x ≡ 0 (mod 2) true. The assignment x = 2 satisfies this so
the expression is true. As another example, consider the expression

“for all x, x ≡ 0 (mod 2)”

which we re-write
∀ x [x ≡ 0 (mod 2)].

Here we are making a more general assertion about x by saying that for all x, it is
true that x ≡ 0 (mod 2). To decide if this particular expression is false, we need
simply to find an x such that x 	≡ 0 (mod 2). This is easy since any odd value of x
is good enough. Therefore the expression is false.

Definition 6. Informally, a predicate function is just a shorthand way of writing
predicates; we give the function a name and a list of free variables. So for example
the function

f (x,y) : x = y

is called f and has two variables named x and y. If we use the function as f (10,20),
performing the binding x = 10 and y = 20, it has the same meaning as 10 = 20.

1.1.3 Manipulation

Definition 7. Manipulation of expressions is governed by a number of axiomatic
laws:
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equivalence x ↔ y ≡ (x → y)∧ (y → x)
implication x → y ≡ ¬x∨ y
involution ¬¬x ≡ x
idempotency x∧ x ≡ x
commutativity x∧ y ≡ y∧ x
association (x∧ y)∧ z ≡ x∧ (y∧ z)
distribution x∧ (y∨ z) ≡ (x∧ y)∨ (x∧ z)
de Morgan’s ¬(x∧ y) ≡ ¬x∨¬y
identity x∧ true ≡ x
null x∧ false ≡ false
inverse x∧¬x ≡ false
absorption x∧ (x∨ y) ≡ x
idempotency x∨ x ≡ x
commutativity x∨ y ≡ y∨ x
association (x∨ y)∨ z ≡ x∨ (y∨ z)
distribution x∨ (y∧ z) ≡ (x∨ y)∧ (x∨ z)
de Morgan’s ¬(x∨ y) ≡ ¬x∧¬y
identity x∨ false ≡ x
null x∨ true ≡ true
inverse x∨¬x ≡ true
absorption x∨ (x∧ y) ≡ x

A common reason to manipulate a logic expression is to simplify it in some way
so that it contains less terms or less connectives. A simplified expression might be
more opaque, in the sense that it is not as clear what it means, but looking at things
computationally it will generally be “cheaper” to evaluate. As a concrete example
of simplification in action, consider the exclusive-or connective x⊕ y which we can
write as the more complicated expression

(y∧¬x)∨ (x∧¬y)

or even as
(x∨ y)∧¬(x∧ y).

The first alternative above uses five connectives while the second uses only four; we
say that the second is simpler as a result. One can prove that these are equivalent by
constructing truth tables for them. The question is, how did we get from one to the
other by manipulating the expressions ?

To answer this, we simply start with one expression and apply our axiomatic laws
to move toward the other. So starting with the first alternative, we try to apply the
axioms until we get the second: think of the axioms like rules that allow one to re-
write the expression in a different way. To start with, we can manipulate each term
which looks like p∧¬q as follows

(p∧¬q) = (p∧¬q)∨ false (identity)
= (p∧¬q)∨ (p∧¬p) (null + inverse)
= p∧ (¬p∨¬q) (distribution)
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Using this new identity, we can re-write the whole expression as

(y∧¬x)∨ (x∧¬y) = (x∧ (¬x∨¬y))∨ (y∧ (¬x∨¬y))
= (x∨ y)∧ (¬x∨¬y) (collect)
= (x∨ y)∧¬(x∧ y) (de Morgan’s)

which gives us the second alternative we are looking for. A later chapter shows
how to construct an algorithm to do this sort of simplification mechanically so as to
reduce our workload and reduce the chance of error.

1.2 Sets and Functions

The concept of a set and the theory behind such objects is a fundamental part of
mathematics. Informally, a set is simply a well defined collection of elements. Here
we mainly deal with sets of numbers, but it is important to note that the elements
can be anything you want.

We can define a set using one of several methods. Firstly we can enumerate the
elements, writing them down between a pair of braces. For example, one might
define the set A of whole numbers between two and eight (inclusive) as

A = {2,3,4,5,6,7,8}.

The cardinality of a finite set is the number of elements it contains. For the set A,
this is denoted by |A| such that from the example above

|A| = 7.

If the element a is in the set A, we say a is a member of A or write

a ∈ A.

The ordering of the elements in the set does not matter, only their membership or
non-membership. So we can define another set as

B = {8,7,6,5,4,3,2}

and be safe in the knowledge that A = B. However, note that elements cannot occur
in a set more than once; a set where repetitions are allowed is sometimes called a
bag or multi-set but is beyond the scope of this discussion.

There are at least two predefined sets which have a clear meaning but are hard to
define using any other notation:

Definition 8. The set /0, called the null set or empty set, is the set which contains
no elements. Note that /0 is a set not an element, one cannot write the empty set as
{ /0} since this is the set with one element, that element being the empty set.
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Definition 9. The contents of the set U , called the universal set, depends on the
context. Roughly speaking, it contains every element from the problem being con-
sidered.

As a side note, since the elements in a set can be anything we want they can po-
tentially be other sets. Russell’s paradox, discovered by mathematician Bertrand
Russell in 1901, is a problem with formal set theory that results from this fact. The
paradox is similar to the liar paradox seen earlier and is easily stated by considering
A, the set of all sets which do not contain themselves. The question is, does A con-
tain itself ? If it does, it should not be in A by definition but it is; if it does not, it
should be in the set A by definition but it is not.

1.2.1 Construction

The above method of definition is fine for small finite sets but when the set is large or
even infinite in size, writing down all the elements quickly becomes an unpleasant
task ! Where there is a natural sequence to the elements, we write continuation dots
to save time and space. For example, the same set A as above might be defined as

A = {2,3, . . . ,7,8}.

This set is finite since there is a beginning and an end; the continuation dots are
simply a shortcut. As another example, consider the set of numbers exactly divisible
by two that might be defined as

C = {2,4,6,8, . . .}.

Clearly this set is infinite in size in the sense there is no end to the sequence. In this
case the continuation dots are a necessity in order to define the set adequately.

The second way to write down sets is using what is sometimes called set builder
notation. Basically speaking, we generate the elements in the set using f , a predicate
function:

D = {x : f (x)}.
One should read this as “all elements x ∈ U such that the predicate f (x) is true”.
Using set builder notation we can define sets in a more programmatic manner, for
example

A = {x : 2 ≤ x ≤ 8},
and

C = {x : x > 0∧ x ≡ 0 (mod 2)}
define the same sets as we explicitly wrote down above.



12 1 Mathematical Preliminaries

A B A B

(a) A∪B (b) A∩B

A B
A

(c) A−B (d) A
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Figure 1.2 An example Venn diagram showing membership of two sets.

1.2.2 Operations

Definition 10. A sub-set, say B, of a set A is such that for every x ∈ B we have that
x ∈ A. This is denoted B ⊆ A. Conversely, we can say A is a super-set of B and write
A ⊇ B.
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Note that every set is a sub-set and super-set of itself and that A = B only if A ⊆ B
and B ⊆ A. If A 	= B, we use the terms proper sub-set and proper super-set and
write B ⊂ A and B ⊃ A respectively.

Definition 11. For sets A and B, we have that

• The union of A and B is A∪B = {x : x ∈ A∨ x ∈ B}.
• The intersection of A and B is A∩B = {x : x ∈ A∧ x ∈ B}.
• The difference of A and B is A−B = {x : x ∈ A∧ x 	∈ B}.
• The complement of A is A = {x : x ∈ U ∧ x 	∈ A}.

We say A and B are disjoint or mutually exclusive if A∩B = /0. Note also that the
complement operation can be re-written A−B = A∩B.

Definition 12. The power set of a set A, denoted P(A), is the set of every possible
sub-set of A. Note that /0 is a member of all power sets.

On first reading, these formal definitions can seem a bit abstract and slightly scary.
However, we have another tool at our disposal which describes what they mean
in a visual way. This tool is the Venn diagram, named after mathematician John
Venn who invented the concept in 1881. The basic idea is that sets are represented
by regions inside an enclosure that implicitly represents the universal set U . By
placing these regions inside each other and overlapping their boundaries, we can
describe most set-related concepts very easily.

Figure 1.1 details four Venn diagrams which describe how the union, intersec-
tion, difference and complement operations work. The shaded areas of each Venn
diagram represent the elements which are in the resulting set. For example, in the
diagram for A∪B the shaded area covers all of the sets A and B: the result contains
all elements in either A or B or both. As a simple concrete example, consider the
sets

A = {1,2,3,4}
B = {3,4,5,6}

where the universal set is

U = {1,2,3,4,5,6,7,8,9,10}.

Figure 1.2 shows membership in various settings; recall that those elements within
a given region are members of that set. Firstly, we can take the union of A and B as
A∪B = {1,2,3,4,5,6} which contains all the elements which are either members
of A or B or both. Note that elements 3 and 4 do not appear twice in the result.
The intersection of A and B can be calculated as A∩B = {3,4} since these are the
elements that are members of both A and B. The difference between A and B, that is
the elements in A that are not in B, is A−B = {1,2}. Finally, the complement of A
is all numbers which are not in A, that is A = {5,6,7,8,9,10}.

The union and intersection operations preserve a law of cardinality called the
principle of inclusion in the sense that we can calculate the cardinality of the output
from the cardinality of the inputs as
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|A∪B| = |A|+ |B|− |A∩B|.

This property is intuitively obvious since those elements in both A and B will be
counted twice and hence need subtraction via the last term. We can even check it: in
our example above |A|= 4 and |B|= 4. Checking our results we have that |A∪B|= 6
and |A∩B| = 2 and so by the principle of inclusion we should have 6 = 4 + 4− 2
which makes sense.

1.2.3 Numeric Sets

Using this basic notation, we can define three important numeric sets which are used
extensively later on in this chapter.

Definition 13. The integers are whole numbers which can be positive or negative
and also include zero

Z = {. . . ,−3,−2,−1,0,+1,+2,+3, . . .}.

The natural numbers are whole numbers which are positive

N = {0,1,2,3, . . .}.

The rational numbers are those which can be expressed in the form p/q where p
and q are integers called the numerator and denominator

Q = {p/q : p ∈ Z∧q ∈ Z∧q 	= 0}.

Clearly the set of rational numbers is a super-set of both Z and N since, for example,
we can write p/1 to represent any integer p as a member of Q. However, not all
numbers are rational. Some are irrational in the sense that it is impossible to find
a p and q such that they exactly represent the required result; examples include the
value of π .

1.2.4 Functions

Definition 14. If A and B are sets, a function f from A to B is a process that maps
each element of A to an element of B. We write this as

f : A → B

where A is termed the domain of f and B is the codomain of f . For an element
x ∈ A, which we term the preimage, there is only one y = f (x) ∈ B which is termed
the image of x. Finally, the set
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{y : y = f (x)∧ x ∈ A∧ y ∈ B}

which is all possible results, is termed the range of f and is always a sub-set of the
codomain.

As a concrete example, consider a function INV which takes an integer x as input
and produces the rational number 1/x as output:

INV : Z → Q, INV(x) = 1/x.

Note that here we write the function signature which defines the domain and
codomain of INV inline with the definition of the function behaviour. In this case
the domain of INV is Z since it takes integers as input; the codomain is Q since it
produces rational numbers as output. If we take an integer and apply the function to
get something like INV(2) = 1/2, we have that 1/2 is the image of 2 or conversely
2 is the preimage of 1/2 under INV.

From this definition it might seem as though we can only have functions with
one input and one output. However, remember that we are perfectly entitled to have
sets of sets so we can easily define a function f , for example, as

f : A×A → B.

This function takes elements from the Cartesian product of A as input and produces
an element of B as output. So since pairs (x,y) ∈ A×A are used as input, f can in
some sense accept two input values. As a concrete example consider the function

MAX : Z×Z → Z, MAX(x,y) =
{

x if x > y
y otherwise.

This is the maximum function on integers; it takes two integers as input and pro-
duces an integer, the maximum of the inputs, as output. So if we take a pair of
integers, say (2,4), and apply the function we get MAX(2,4) = 4 where we usually
omit the parentheses around the pair of inputs. In this case, the domain of MAX

is Z×Z and the codomain is Z; the integer 4 is the image of the pair (2,4) under
MAX.

Definition 15. For a given function f , we say that f is

• surjective if the range equals the codomain, i.e., there are no elements in the
codomain which do not have a preimage in the domain.

• injective if no two elements in the domain have the same image in the range.
• bijective if the function is both surjective and injective, i.e., every element in the

domain is mapped to exactly one element in the codomain.

Using the examples above, we clearly have that INV is not surjective but MAX is.
This follows because we can construct a rational 2/3 which does not have an integer
preimage under INV so the function cannot be surjective. Equally, for any integer x
in the range of MAX there is always a pair (x,y) in the domain such that x > y so
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MAX is surjective, in fact there are lots of them since Z is infinite in size ! In the
same way, we have that INV is injective but MAX is not. Only one preimage x maps
to the value 1/x in the range under INV but there are multiple pairs (x,y) which map
to the same image under MAX, for example 4 is the image of both (1,4) and (2,4)
under MAX.

Definition 16. Given two functions f : A → B and g : B →C, the composition of f
and g is denoted

g◦ f : A →C.

Given some input x ∈ A, this composition is equivalent to applying y = f (x) and
then z = g(y) to get the result z ∈C. More formally, we have

(g◦ f )(x) = g( f (x)).

The notation g◦ f should be read as “apply g to the result of applying f ”.

Definition 17. The identity function I on a set A is defined by

I : A → A, I (x) = x

so that it maps all elements to themselves. Given two functions f and g defined by
f : A → B and g : B → A, if g ◦ f is the identity function on set A and f ◦ g is the
identity on set B, then f is the inverse of g and g is the inverse of f . We denote this
by f = g−1 and g = f −1. If a function f has an inverse, we hence have f −1 ◦ f = I .

The inverse of a function maps elements from the codomain back into the domain,
essentially reversing the original function. It is easy to see not all functions have an
inverse. For example, if the function is not injective then there will be more than one
potential preimage for the inverse of any image.

At first glance, it might seem like our example functions both have inverses but
they do not. For example, given some value 1/x, we can certainly find x but we have
already said that numbers like 2/3 also exist in the codomain so we cannot invert
all the values we might come across. However, consider the example of a successor
function on integers

SUCC : Z → Z, SUCC(x) = x+1

which takes an integer x as input and produces x + 1 as output. The function is
bijective since the codomain and range are the same and no two integers have the
same successor. Thus we have an inverse and it is easy to describe as

PRED : Z → Z, PRED(x) = x−1

which is the predecessor function: it takes an integer x as input and produces x−1
as output. To see that SUCC−1 = PRED and SUCC−1 = PRED note that

(PRED ◦SUCC)(x) = (x+1)−1 = x
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which is the identity function. Conversely,

(SUCC ◦PRED)(x) = (x−1)+1 = x

which is also the identity function.

1.2.5 Relations

Definition 18. We call a sequence of n elements (x0,x1, . . . ,xn−1) an n-tuple or sim-
ply a tuple when the number of elements is irrelevant. In the specific case of n = 2,
we call (x0,x1) a pair. The i-th element of the tuple x is denoted xi, and the number
of elements in a particular tuple x may be written as |x|.

Definition 19. The Cartesian product of n sets, say A0,A1, . . . ,An−1, is defined as

A0 ×A1 ×·· ·×An−1 = {(a0,a1, . . . ,an−1) : a0 ∈ A0,a1 ∈ A1, . . . ,an−1 ∈ An−1}.

In the most simple case of n = 2, the Cartesian product A0 × A1 is the set of all
possible pairs where the first item in the pair is a member of A0 and the second item
is a member of A1.

The Cartesian product of a set A with itself n times is denoted An. To be complete,
we define A0 = /0 and A1 = A. Finally, by writing A∗ we mean the Cartesian product
of A with itself a finite number of times.

Cartesian products are useful to us since they allow easy description of sequences,
or vectors, of elements. Firstly, we often use them to describe vectors of elements
from a set. So for example, say we have the set of digits A = {0,1}. The Cartesian
product of A with itself is

A×A = {(0,0),(0,1),(1,0),(1,1)}.

If you think of the pairs as more generally being vectors of these digits, the Cartesian
product An is the set of all possible vectors of 0 and 1 which are n elements long.

Definition 20. Informally, a binary relation f on a set A is like a predicate function
which takes members of the set as input and “filters” them to produce an output. As
a result, for a set A the relation f forms a sub-set of A×A. For a given set A and a
binary relation f , we say f is

• reflexive if f (x,x) = true for all x ∈ A.
• symmetric if f (x,y) = true implies f (y,x) = true for all x,y ∈ A.
• transitive if f (x,y) = true and f (y,z) = true implies f (x,z) = true for all x,y,z ∈

A.

If f is reflexive, symmetric and transitive, then we call it an equivalence relation.
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The easiest way to think about this is to consider a concrete example such as the
case where our set is A = {1,2,3,4} such that the Cartesian product is

A×A =

⎧⎪⎪⎨
⎪⎪⎩

(1,1), (1,2), (1,3), (1,4),
(2,1), (2,2), (2,3), (2,4),
(3,1), (3,2), (3,3), (3,4),
(4,1), (4,2), (4,3), (4,4)

⎫⎪⎪⎬
⎪⎪⎭

.

Imagine we define a function

EQU : Z×Z → {true, false},EQU(x,y) =
{

true if x = y
false otherwise

which tests whether two inputs are equal. Using the function we can form a sub-set
of A×A (called AEQU for example) in the sense that we can pick out the pairs (x,y)

AEQU = {(1,1),(2,2),(3,3),(4,4)}

where EQU(x,y) = true. For members of A, say x,y,z ∈ A, we have that EQU(x,x) =
true so the relation is reflexive. If EQU(x,y) = true, then EQU(y,x) = true so the
relation is also symmetric. Finally, if EQU(x,y) = true and EQU(y,z) = true, then
we must have that EQU(x,z) = true so the relation is also transitive and hence an
equivalence relation.

Now imagine we define another function

LTH : Z×Z → {true, false},LTH(x,y) =
{

true if x < y
false otherwise

which tests whether one input is less than another, and consider the sub-set of A

ALTH = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

of all pairs (x,y) with x,y∈A such that LTH(x,y)= true. It cannot be that LTH(x,x)=
true, so the relation is not reflexive; we say it is irreflexive. It also cannot be that
if LTH(x,y) = true then LTH(y,x) = true, so the relation is also not symmetric;
it is anti-symmetric. However, if both LTH(x,y) = true and LTH(y,z) = true, then
LTH(x,z) = true so the relation is transitive.

1.3 Boolean Algebra

Most people are taught about simple numeric algebra in school. One has

• a set of values, say Z,
• a list of operations, say −, + and ·,
• and a list of axioms which dictate how −, + and · work.
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You might not know the names for these axioms but you probably know how they
work, for example you probably know for some x,y,z ∈ Z that x +(y + z) = (x +
y)+ z.

In the early 1840s, mathematician George Boole combined propositional logic
and set theory to form a system which we now call Boolean algebra [4]. Put (rather
too) simply, Boole saw that working with a logic expression x is much the same as
working with a number y. One has

• a set of values, {false, true},
• a list of operations ¬, ∨ and ∧,
• and a list of axioms that dictate how ¬, ∨ and ∧ work.

Ironically, at the time his work was viewed as somewhat obscure and indeed Boole
himself did not necessarily regard logic directly as a mathematical concept. How-
ever, the step of finding common themes within two such concepts and unifying
them into one has been a powerful tool in mathematics, allowing more general think-
ing about seemingly diverse objects. It was not until 1937 that Claude Shannon, then
a student of both electrical engineering and mathematics, saw the potential of using
Boolean algebra to represent and manipulate digital information [60].

Definition 21. A binary operation � on some set A is a function

� : A×A → A

while a unary operation � on A is a function

� : A → A.

Definition 22. Define a set B = {0,1} on which there are two binary operators ∧
and ∨ and a unary operator ¬. The members of B act as identity elements for ∧ and
∨. These operators and identities are governed by a number of axioms which should
look familiar:
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equivalence x ↔ y ≡ (x → y)∧ (y → x)
implication x → y ≡ ¬x∨ y
involution ¬¬x ≡ x
idempotency x∧ x ≡ x
commutativity x∧ y ≡ y∧ x
association (x∧ y)∧ z ≡ x∧ (y∧ z)
distribution x∧ (y∨ z) ≡ (x∧ y)∨ (x∧ z)
de Morgan’s ¬(x∧ y) ≡ ¬x∨¬y
identity x∧1 ≡ x
null x∧0 ≡ 0
inverse x∧¬x ≡ 0
absorption x∧ (x∨ y) ≡ x
idempotency x∨ x ≡ x
commutativity x∨ y ≡ y∨ x
association (x∨ y)∨ z ≡ x∨ (y∨ z)
distribution x∨ (y∧ z) ≡ (x∨ y)∧ (x∨ z)
de Morgan’s ¬(x∨ y) ≡ ¬x∧¬y
identity x∨0 ≡ x
null x∨1 ≡ 1
inverse x∨¬x ≡ 1
absorption x∨ (x∧ y) ≡ x

We call the ∧, ∨ and ¬ operators NOT, AND and OR respectively.

Notice how this description of a Boolean algebra unifies the concepts of proposi-
tional logic and set theory: 0 and false and /0 are sort of equivalent, as are 1 and true
and U . Likewise, x∧ y and A∩B are sort of equivalent, as are x∨ y and A∪B and
¬x and A: you can even draw Venn diagrams to illustrate this fact. It might seem
weird to see the statement

x∨ x = x

written down but we know what it means because the axioms allow one to manipu-
late the statement as follows:

x∨ x = (x∨ x)∧1 (identity)
= (x∨ x)∧ (x∨¬x) (inverse)
= x∨ (x∧¬x) (distribution)
= x∨0 (inverse)
= x (identity)

Also notice that the ∧ and ∨ operations in a Boolean algebra behave in a similar
way to · and + in a numerical algebra; for example we have that x ∨ 0 = x and
x ∧ 0 = 0. As such, ∧ and ∨ are often termed (and written as) the “product” and
“sum” operations.
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1.3.1 Boolean Functions

Definition 23. In a given Boolean algebra over the set B, a Boolean function f can
be described as

f : B
n → B.

That is, it takes an n-tuple of elements from the set as input and produces an element
of the set as output.

This definition is more or less the same as the one we encountered earlier. For ex-
ample, consider a function f that takes two inputs whose signature we can write
as

f : B
2 → B

so that for x,y,z ∈ B, the input is a pair (x,y) and the output for a given x and y is
written z = f (x,y). We can define the actual mapping performed by f in two ways.
Firstly, and similarly to the truth tables seen previously, we can simply enumerate
the mapping between inputs and outputs:

x y f (x,y)
0 0 0
0 1 1
1 0 1
1 1 0

However, with a large number of inputs this quickly becomes difficult so we can
also write f as a Boolean expression

f : B
2 → B, f (x,y) = (¬x∧ y)∨ (x∧¬y)

which describes the operation in a more compact way.
If we require more than one output, say m outputs, from a given function, we can

think of this just m separate functions each of which produces one output from the
same inputs. For example, taking m = 2 a function with the signature

g : B
2 → B

2

can be split into two functions

g0 : B
2 → B

g1 : B
2 → B

so that the outputs of g0 and g1 are grouped together to form the output of g. We can
again specify the functions either with a truth table
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x y g0(x,y) g1(x,y)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

or a pair of expressions

g0 : B
2 → B, g0(x,y) = (¬x∧ y)∨ (x∧¬y)

g1 : B
2 → B, g1(x,y) = (x∧ y)

such that the original function g can be roughly described as

g(x,y) = (g0(x,y),g1(x,y)).

This end result is often termed a vectorial Boolean function: the inputs and outputs
are vectors over the set B rather than single elements of the set.

1.3.2 Normal Forms

Definition 24. Consider a Boolean function f with n inputs, for example f (x0,x1, . . . ,
xn−1).

When the expression for f is written as a sum (i.e., OR) of terms which each
comprise the product (i.e., AND) of a number of inputs, it is said to be in disjunctive
normal form or Sum of Products (SoP) form; the terms in this expression are
called the minterms. Conversely, when the expression for f is written as a product
(i.e., AND) of terms which each comprise the sum (i.e., OR) of a number of inputs,
it is said to be in conjunctive normal form or Product of Sums (PoS) form; the
terms in this expression are called the maxterms.

This is a formal definition for something very simple to describe by example. Con-
sider a function f which is described by

x y f (x,y)
0 0 0
0 1 1
1 0 1
1 1 0

The minterms are the second and third rows of this table, the maxterms are the first
and fourth lines. An expression for f in SoP form is

fSoP(x,y) = (¬x∧ y)∨ (x∧¬y).

Notice how the terms ¬x∧ y and x∧¬y are the minterms of f : when the term is 1
or 0, the corresponding minterm is 1 or 0. It is usually crucial that all the variables
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appear in all the minterms so that the function is exactly described. To see why this
is so, consider writing an incorrect SoP expression by removing the reference to y
from the first minterm so as to get

(¬x)∨ (x∧¬y).

Since ¬x is 1 for the first and second rows, rather than just the second as was the
case with ¬x∧ y, we have described another function f ′ 	= f with the truth table

x y f ′(x,y)
0 0 1
0 1 1
1 0 1
1 1 0

In a similar way to above, we can construct a PoS expression for f as

fPoS(x,y) = (x∨ y)∧ (¬x∨¬y).

In this case the terms x∨ y and ¬x∨¬y are the maxterms. To verify that the two
forms represent the same function, we can apply de Morgan’s axiom to get

fPoS(x,y) = (x∨ y)∧ (¬x∨¬y)
= (¬x∧¬y)∨ (x∧ y) (de Morgan’s).

Although this might not seem particularly interesting at first glance, it gives us quite
a powerful technique. Given a truth table for an arbitrary function, we can construct
an expression for the function simply by extracting either the minterms or maxterms
and constructing standard SoP or PoS forms.

1.4 Number Systems

Definition 25. One can write an integer x as

x = ±
n−1

∑
i=0

xi ·bi

where each xi is taken from the digit set D = {0 . . .b− 1}. This is called the base-
b expansion of x; the selection of b determines the base or radix of the number
system x is written in. The same integer can be written as

x = ±(x0,x1, . . . ,xn−1)(b)

which is called the base-b vector representation of x.
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Definition 26. We use x(b) to denote the integer literal x in base-b. Where it is not
clear, we use |x(b)| to denote n, the number of digits in the base-b expansion of x. At
times this might look a little verbose or awkward, however it allows us to be exact
at all times about the meaning of what we are writing.

We are used to working in the decimal or denary number system by setting b =
10, probably because we (mostly) have ten fingers and toes. In this case, we have
that xi ∈ {0 . . .9} with each digit representing a successive power of ten. Using this
number system we can easily write down integers such as

123(10) = 1 ·102 +2 ·101 +3 ·100.

Note that for all y, we define y0 = 1 and y1 = y so that in the above example 100 = 1
and 101 = 10. Furthermore, note that we can also have negative values of i so, for
example, 10−1 = 1/10 and 10−2 = 1/100. Using this fact, we can also write down
rational numbers such as

123.3125(10) = 1 ·102 +2 ·101 +3 ·100 +3 ·10−1 +1 ·10−2 +2 ·10−3 +5 ·10−4.

Of course, one can select other values for b to represent x in different bases. Com-
mon choices are b = 2, b = 8 and b = 16 which form the binary, octal and hex-
adecimal number systems. Irrespective of the base, integer and rational numbers
are written using exactly the same method so that

123(10) = 1 ·26 +1 ·25 +1 ·24 +1 ·23 +1 ·21 +1 ·20

= 1111011(2)

and

123.3125(10) = 1 ·26 +1 ·25 +1 ·24 +1 ·23 +1 ·21 +1 ·20 +1 ·2−2 +1 ·2−4

= 1111011.0101(2).

The decimal point we are used to seeing is termed the binary point in this case.
Considering rational numbers, depending on the base used there exist some values
which are not exactly representable. Informally, this is obvious since when we write
1/3 as a decimal number we have 0.3333r(10) with the appended letter r meaning
that the sequence recurs infinitely. Another example is 1/10 which can be written
as 0.1(10) but is not exactly representable in binary, the closest approximation being
0.000110011r(2).

There are several properties of the binary expansion of numbers that warrant a
brief introduction. Firstly, the number of digits set to 1 in a binary expansion of some
value x is called the Hamming weight of x after Richard Hamming, a researcher at
Bell Labs. Hamming also introduced the idea of the distance between two values
which captures how many digits differ; this is named the Hamming distance. For
example, consider the two values
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x = 9(10) = 1 ·23 +0 ·22 +0 ·21 +1 ·20 = 1001(2)
y = 14(10) = 1 ·23 +1 ·22 +1 ·21 +0 ·20 = 1110(2).

The Hamming weights of x and y, say H(x) and H(y), are 2 and 3 respectively; the
Hamming distance between x and y is 3 since three bits differ.

Using the hexadecimal numbers system is slightly complicated by the fact we
are used to only using the ten decimal digits 0 . . .9 yet need to cope with sixteen
hexadecimal digits. As a result, we use the letters A . . .F to write down the base-10
numbers 10 . . .15. This means we have

7B(16) = 7 ·161 + B ·160

= 7 ·161 + 11 ·160

= 123(10) .

Each octal or hexadecimal digit represents exactly three or four binary digits respec-
tively; using this shorthand one can more easily write and remember long vectors of
binary digits.

Aside from the issue of not being able to exactly represent some rational numbers
in some bases, it is crucial to realise that an actual number x and how we represent
it are largely independent. For example we can write any of

123(10) = 1111011(2)
= 173(8)
= 7B(16)

yet they all represent the same number, they still mean the same thing, exactly the
same rules apply in all bases even if they seem unnatural or unfamiliar. The choice
of base then is largely one of convenience in a given situation, so we really want to
select a base suitable for use in the context of digital computers and computation.

1.4.1 Converting Between Bases

Considering just integers for the moment, converting between different bases is a
fairly simple task. Algorithm 1.1 demonstrates how it can be achieved; clearly we
need to be able to do arithmetic in both bases for it to be practical. Simply put,
we extract one digit of the result at a time. As an example run, consider converting
123(10) into binary, i.e., x = 123, b̂ = 10 and b̄ = 2:
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Input: An integer number x represented in base-b̂.
Output: The same number represented in base-b̄.

INTEGER-BASE-CONVERT(x, b̂, b̄)1

i ← 02

t ← x3

if x < 0 then4

t ← −t5

r ← 06

while t 	= 0 do7

m ← t mod b̄8

t ← �t/b̄�9

r ← r +(m · b̄i)10

i ← i+111

if x < 0 then12

r ← −r13

return r14

end15

Algorithm 1.1: An algorithm for converting integers from representation in one base to another.

Input: A rational number x represented in base-b̂, an integer d determining the
number of digits required.

Output: The same number represented in base-b̄.

FRACTION-BASE-CONVERT(x, b̂, b̄,d)1

i ← 12

t ← x3

if x < 0 then4

t ← −t5

r ← 06

while t 	= 0 and i < d do7

m ← t · b̄8

n ← �m�9

r ← r +(n · b̄−(i+1))10

t ← m−n11

i ← i+112

return r13

end14

Algorithm 1.2: An algorithm for converting the fractional part of a rational number from one
base to another.
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i m t r

− − 123(10) 0000000(2) = 0
0 1 61(10) 0000001(2) = 20

1 1 30(10) 0000011(2) = 20 +21

2 0 15(10) 0000011(2) = 20 +21

3 1 7(10) 0001011(2) = 20 +21 +23

4 1 3(10) 0011011(2) = 20 +21 +23 +24

5 1 1(10) 1111011(2) = 20 +21 +23 +24 +25

6 1 0(10) 1111011(2) = 20 +21 +23 +24 +25 +26

One can see how the result is built up a digit at a time by finding the remainder of
x after division by the target base. Finally, if the input was negative we negate the
accumulated result and return it.

Dealing with rational numbers is more tricky. Clearly we can still convert the
integer part of such a number using Algorithm 1.1. The problem with using a similar
approach with the fractional part is that if the number cannot be represented exactly
in a given base, our loop to generate digits will never terminate. To cope with this
Algorithm 1.2 takes an extra parameter which determines the number of digits we
require. As another example, consider the conversion of 0.3125(10) into four binary

digits, i.e., x = 0.3125, b̂ = 10, b̄ = 2 and d = 4:

i n t r

− − 0.3125(10) 0.0000(2) = 0
1 1 0.6250(10) 0.0100(2) = 2−2

2 0 0.2500(10) 0.0100(2) = 2−2

3 1 0.5000(10) 0.0101(2) = 2−2 +2−4

On each step, we move one digit across to the left of the fractional point by multi-
plying by the target base. This digit is extracted using the floor function; �x� denotes
the integer part of a rational number x. Then, so we can continue processing the rest
of the number, we remove the digit to the left of the fractional point by subtract-
ing it from our working accumulator. We already set the sign of our number when
converting the integer part of the input so we do not need to worry about that.

1.4.2 Bits, Bytes and Words

Concentrating on binary numbers, a single binary digit is usually termed a bit. To
represent numbers we group together bits into larger sequences; we usually term
these binary vectors.

Definition 27. An n-bit binary vector or bit-vector is a member of the set B
n where

B = {0,1}, i.e., it is an n-tuple of bits. We use xi to denote the i-th bit of the binary
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vector x and |x| = n to denote the number of bits in x. Instead of writing out x ∈ B
n

fully as the n-tuple (x0,x1, . . . ,xn−1) we typically just list the digits in sequence.

For example, consider the following bit-vector

(1,1,0,1,1,1,1)

which can be less formally written as

1111011

and has seven bits in it. Note that there is no notation for what base the number is in
and so on: this is not a mistake. This is just a vector of binary digits, in one context
it could be representing a number but in another context perhaps it represents part
of an image: there is a clear distinction between a number x and the representation
of x as a bit-vector.

Definition 28. We use the concatenation operator (written as x : y) to join together
two or more bit-vectors; for example 111 : 1011 describes the bit-vector 1111011.

We do however need some standard way to make sure we know which bits in the
vector represent which bits from the more formal n-tuple; this is called an endi-
anness convention. Usually, and as above, we use a little-endian convention by
reading the bits from right to left, giving each bit is given an index. So writing the
number 1111011(2) as the vector 1111011 we have that

x0 = 1
x1 = 1
x2 = 0
x3 = 1
x4 = 1
x5 = 1
x6 = 1

If we interpret this vector as a binary number, it therefore represents 1111011(2) =
123(10). In this case, the right-most bit (bit zero or x0) is termed the least-significant
while the left-most bit (bit n−1 or xn−1) is the most-significant. However, there is
no reason why little-endian this is the only option: a big-endian naming convention
reverses the indices so we now read them left to right. The left-most bit (bit zero
or x0) is now the most-significant and the right-most (bit n−1 or xn−1) is the least-
significant. If the same vector is interpreted in big-endian notation, we find that
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x0 = 1
x1 = 1
x2 = 1
x3 = 1
x4 = 0
x5 = 1
x6 = 1

and if interpreted as a binary number, the value now represents 1101111(2) =
111(10).

We have special terms for certain length vectors. A vector of eight bits is termed
a byte (or octet) while a vector of four bits is a nibble (or nybble). A given context
will, in some sense, have a natural value for n. Vectors of bits which are of this
natural size are commonly termed words; one may also see half-word and double-
word used to describe (n/2)-bit and 2n-bit vectors. The word size is a somewhat
vague concept but becomes clear with some context. For example, when you hear
a computer processor described as being 32-bit or 64-bit this is, roughly speaking,
specifying that the word size is 32 or 64 bits. Nowadays, the word size of a processor
is normally a power-of-two since this simplifies a number of issues. But this was not
always the case: the EDSAC computer used a 17-bit word since this represented a
limit in terms of expenditure on hardware !

The same issues of endianness need consideration in the context of bytes and
words. For example, one can regard a 32-bit word as consisting of four 8-bit bytes.
Taking W , X , Y and Z as bytes, we can see that the word can be constructed two
ways. Using a little-endian approach, Z is byte zero, Y is byte one, X is byte two and
W is byte three; we have the word constructed as W : X : Y : Z. Using a big-endian
approach the order is swapped so that Z is byte three, Y is byte two, X is byte one
and W is byte zero; we have the word constructed as Z : Y : X : W .

1.4.3 Representing Numbers and Characters

The sets Z, N and Q are infinite in size. But so far we have simply written down such
numbers; our challenge in using them on a computer is to represent the numbers
using finite resources. Most obviously, these finite resources place a bound on the
number of digits we can have in our base-b expansion.

We have already mentioned that modern digital computers prefer to work in bi-
nary. More specifically, we need to represent a given number within n bits: this
includes the sign and the magnitude which combine to form the value. In discussing
how this is achieved we use the specific case of n = 8 by representing given numbers
within a byte.
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Decimal BCD Encoding

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 1.1 A table showing a standard BCD encoding system.

1.4.3.1 Representing Integer Numbers

The Binary Coded Decimal (BCD) system is one way of encoding decimal digits
as binary vectors. Believe it or not, there are several standards for BCD. The most
simple of these is called Simple Binary Coded Decimal (SBCD) or BCD 8421:
one represents a single decimal digit as a vector of four binary digits according to
Table 1.1. So for example, the number 123(10) would be represented (with spacing
for clarity) by the vector

0001 0010 0011.

Clearly there are some problems with BCD, most notably that there are six unused
encodings, 1010 . . .1111, and hence the resulting representation is not very compact.
Also, we need something extra at the start of the encoding to tell us if the number
is positive or negative. Even so, there are applications for this sort of scheme where
decimal arithmetic is de rigueur.

Consigning BCD to the dustbin of history, we can take a much easier approach
to representing unsigned integers. We simply let an n-bit binary vector represent our
integer as we have already been doing so far. In such a representation an integer x
can take the values

0 ≤ x ≤ 2n −1.

However, storing signed integers is a bit more tricky since we need some space to
represent the sign of the number. There are two common ways of achieving this: the
sign-magnitude and twos-complement methods.

The sign-magnitude method represents a signed integer in n bits by allocating
one bit to store the sign, typically the most-significant, and n−1 to store the magni-
tude. The sign bit is set to one for a negative integer and zero for a positive integer
so that x is expressed as

x = −1xn−1 ·
n−2

∑
i=0

xi ·2i.
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Hence we find that our example is represented in eight bits by

01111011 = +1 · (26 +25 +24 +23 +21 +20) = +123(10)

while the negation is represented by

11111011 = −1 · (26 +25 +24 +23 +21 +20) = −123(10).

In such an n-bit sign-magnitude representation, an integer x can take the values

−2n−1 −1 ≤ x ≤ +2n−1 −1.

For our 8-bit example, this means we can represent −127 . . .+127.
Note that in a sign-magnitude representation there are two versions of zero,

namely ±0. This can make constructing arithmetic a little more tricky than it might
otherwise be. As alternative to this approach, the twos-complement representation
removes the need for a dedicated sign bit and thus the problem of there being two
versions of zero. Essentially, twos-complement defines the most-significant bit of
an n-bit value to represent −2n−1 rather than +2n−1. Thus, an integer x is written as

x = xn−1 ·−2n−1 +
n−2

∑
i=0

xi ·2i.

Starting with the value
+123(10) = 01111011

we obtain the twos-complement negation as

−123(10) = 10000101

since
−123(10) = 1 ·−27 +1 ·22 +1 ·20.

The range of values in an n-bit twos-complement representation is slightly different
than using sign-magnitude; an integer x can represent the values in the range

−2n−1 ≤ x ≤ +2n−1 −1.

So for our 8-bit example, this means values in the range −128 . . . + 127 with the
difference from the sign-magnitude version coming as a result of there only being
one version of zero: the twos-complement of zero is zero. As you might expect,
calculating the twos-complement negation of a number can be done with a sim-
ple algorithm; we see how this works when we introduce methods for performing
arithmetic with numbers in Chapter 7.

It is crucial to realise that the representation of a number in either method is
dependent on the value of n we need to fit them in. For example, setting n = 4 the
sign-magnitude representation of −2(10) is 1010 while with n = 8 it is 10000010. A
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similar argument is true of twos-complement: it is not a case of just padding zeros
onto one end to make it the right size.

1.4.3.2 Representing Characters

Imagine that we want to represent a sequence or string of letters or characters;
perhaps as used in a call to the printf function in a C program. We have already
seen how to represent integers using binary vectors that are suitable for digital com-
puters, the question is how can we do the same with characters ? Of course, this
is easy, we just need to translate from one to the other. More specifically, we need
two functions: ORD(x) which takes a character x and gives us back the correspond-
ing integer representation, and CHR(y) which takes an integer representation y and
gives us back the corresponding character. But how do we decide how the functions
should work ?

Fortunately, people have thought about this and provided standards we can
use. One of the oldest, from circa 1967, and most simple is the American Stan-
dard Code for Information Interchange (ASCII), pronounced “ass key”. ASCII
has a rich history but was originally developed to communicate between early
“teleprinter” devices. These were like the combination of a typewriter and a tele-
phone: the devices were able to communicate text to each other, before innovations
such as the fax machine. Later, but long before monitors and graphics cards existed,
similar devices allowed users to send input to early computers and receive output
from them. Table 1.2 shows the 128-entry ASCII table which tells us how charac-
ters are represented as numbers; 95 are printable characters that we can recognise
(including SPC which is short for “space”), 33 are non-printable control characters.
Originally these would have been used to control the teleprinter rather than to have
it print something. For example, the CR and LF characters (short for “carriage re-
turn” and “line feed”) would combine to move the print head onto the next line; we
still use these characters to mark the end of lines in text files. Other control charac-
ters still play a role in more modern computers as well: the BEL (short for “bell”)
characters play a “ding” sound when printed to most UNIX terminals, we have key-
boards with keys that relate to DEL and ESC (short for “delete” and “escape”) and
so on.

Given the ASCII table, we can see that for example CHR(104) = ‘h’, i.e., if we
see the integer 104 then this represents the character ‘h’. Conversely we have that
ORD(‘h’) = 104. Although in a sense any consistent translation between characters
and numbers would do, ASCII has some useful properties. Look specifically at the
alphabetic characters:

• Imagine we want to convert a character x from lower case into upper case.
The lower case characters are represented numerically as the contiguous range
97 . . .122; the upper case characters as the contiguous range 65 . . .90. So we can
convert from lower case into upper case simply by subtracting 32. For example:

CHR(ORD(‘a’)−32) = ‘A’.
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y CHR(y) y CHR(y) y CHR(y) y CHR(y)
ORD(x) x ORD(x) x ORD(x) x ORD(x) x

0 NUL 1 SOH 2 ST X 3 ET X
4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 LF 11 V T
12 FF 13 CR 14 SO 15 SI
16 DLE 17 DC1 18 DC2 19 DC3
20 DC4 21 NAK 22 SY N 23 ET B
24 CAN 25 EM 26 SUB 27 ESC
28 FS 29 GS 30 RS 31 US
32 SPC 33 ! 34 " 35 #
36 $ 37 % 38 & 39 ’
40 ( 41 ) 42 * 43 +
44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3
52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ;
60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C
68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K
76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S
84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [
92 \ 93 ] 94 ˆ 95 _
96 ‘ 97 a 98 b 99 c

100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k
108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s
116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 {
124 | 125 } 126 ˜ 127 DEL

Table 1.2 A table describing the ASCII character encoding.
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• Imagine we want to test if one character x is alphabetically before some other y
(ignoring the issue of case). The way the ASCII translation is specified, we can
simply compare their numeric representation: if we find ORD(x) < ORD(y), then
the character x is before the character y in the alphabet.

The ASCII table only has 128 entries: one represents each character with a 7-bit
binary vector, or an integer in the range 0 . . .128. However, given that an 8-bit
byte is a more convenient size, what about characters that are assigned to the range
128 . . .255 ? Strict ASCII uses the eighth bit for error correction, but some systems
ignore this and define a so-called “extended” ASCII table: characters within it are
used for special purposes on a per-computer basis: one computer might give them
one meaning, another computer might give them another meaning. For example,
characters for specific languages are often defined in this range (e.g., é or ø), and
“block” characters are included and used by artists who form text-based pictures.

The main problem with ASCII in a modern context is the lack of spare space
in the encoding: it only includes characters suitable for English, so if additional
language specific characters are required it cannot scale easily. Although some ex-
tensions of ASCII have been proposed, a new standard for extended character sets
called unicode is now more prevalent.

1.4.3.3 Representing Rational Numbers

The most obvious way to represent rational numbers is simply to allocate a number
of bits to the fractional part and the rest to the whole part. For example, given that
we have

123.3125(10) = 1111011.0101(2),

we could simply have an 11-bit value 11110110101(2) with the convention that the
four least-significant bits represent the fractional part while the rest represent the
whole part. This approach, where we have a fixed number of digits in the fractional
part, is termed a fixed-point representation. The problem however is already clear:
if we have only eight bits to store our value in, there needs to be some compromise
in terms of precision. That is, since we need seven bits for the whole part, there is
only one bit left for the fractional part. Hence, we either truncate the number as

1111011.0(2) = 123.0(10)

or perform some form of rounding. This underlines the impact of our finite re-
sources. While n limits the range of integers that can be represented, it also impacts
on the precision of rational numbers since they can only ever be approximations.

Definition 29. We say that a number x is in a base-b fixed point representation if
written as

x = ±m ·bc

where m,c ∈ Z. The value m is called the mantissa while the fixed value c is the
exponent; c scales m to the correct rational value and thus determines the number
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of digits in the fractional part. Note that c is not included in the representation of x,
it is a fixed property (or parameter) across all values.

Taking the example above, setting b = 2, c = 1 and m = 11110110(2) we see that

11110110(2) ·2−1 = 1111011.0(2)
= 123.0(10).

Not many languages have built-in types for fixed point arithmetic and there are no
real standards in this area. However, despite the drawbacks, lots of applications exist
where only limited precision is required, for example in storing financial or money-
related values where typically only two fractional digits are required.

Floating point numbers are a more flexible approximation of rational numbers.
Instead of there being a fixed number of digits in the fractional and whole parts, we
let the exponent vary.

Definition 30. We say that a number x is in a base-b floating point representation
if written as

x = −1sm ·be

where m,e ∈ Z. The value m is called the mantissa while e is the exponent; s is the
sign bit used to determine the sign of the value.

Informally, such numbers look like

x = ±dd . . .dd.dd . . .dd︸ ︷︷ ︸
p digits

where there are p base-b digits in total. Roughly speaking, p relates to the precision
of the number. We say that x is normalised if it is of the form

x = ±d.dd . . .dd︸ ︷︷ ︸
p digits

such that there is a single non-zero digit to the left of fractional point. In fact, when
dealing with binary numbers if this leading digit is non-zero it must be one. Hence
we do not need to store the leading digit and hence get one bit more of precision
instead; this implicit leading digit is often called a hidden digit.

So that computers can inter-operate with common data formats, IEEE-754 of-
fers two standard floating point formats which allow one to represent floating point
numbers as bit-vectors. These two formats are termed single and double precision;
they fit into 32-bit and 64-bit representations respectively. Both formats, described
in Figure 1.3 and Listing 1.1, consist of three parts; these parts are concatenated
together to form one bit-vector. A sign-magnitude method is adopted for the whole
number in that a single bit denotes the sign.

The integer exponent and mantissa are both represented by bit-vectors. We need
the exponent to be signed so both large and small numbers can be specified; the
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(b) The 64-bit, double precision format.

Figure 1.3 Single and double precision IEEE floating point formats (as bit-fields).

1 struct ieee32
2 {
3 uint32 m : 23, // mantissa
4 e : 8, // exponent
5 s : 1; // sign
6 }
7

8 struct ieee64
9 {

10 uint64 m : 52, // mantissa
11 e : 11, // exponent
12 s : 1; // sign
13 }

Listing 1.1 Single and double precision IEEE floating point formats (as C structures).

mantissa need not be signed since we already have a sign bit for the whole number.
One might imagine that a twos-complement representation of the exponent might be
appropriate but the IEEE-754 standard uses an alternative approach called biasing.
Essentially this just means that the exponent is scaled so it is always positive; for the
single precision format this means it is stored with 127 added to it so the exponent
0 represents 2−127 while the exponent 255 represents 2+128. Although this requires
some extra decoding when operating with the values, roughly speaking all choices
are made to make the actual arithmetic operations easier.

Again consider our example number x = 123.3125(10) which in binary is x =
1111011.0101(2). First we normalise the number to get

x = 1.1110110101(2) ·26

because now there is only one digit to the left of the binary point. Recall we do not
need to store the hidden digit. So if we want a single precision, 32-bit IEEE-754
representation, our mantissa and exponent are the binary vectors
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m = 11101101010000000000000
e = 10000101

while the sign bit is 0 since we want a positive number. Using space simply to
separate the three parts of the bit-vector, the representation is thus the vector

0 10000101 11101101010000000000000.

In any floating point representation, we need to allocate special values for certain
quantities which can occur. For example, we reserve particular values to represent
+∞, −∞ and NaN, or not-a-number. The values +∞ and −∞ occur when a result
overflows beyond the limits of what can be represented; NaN occurs, for example,
as a result of division by zero. For single precision, 32-bit IEEE-754 numbers these
special values are

0 00000000 00000000000000000000000 = +0
1 00000000 00000000000000000000000 = −0
0 11111111 00000000000000000000000 = +∞
1 11111111 00000000000000000000000 = −∞
0 11111111 00000100000000000000000 = NaN
1 11111111 00100010001001010101010 = NaN

with similar forms for the double precision, 64-bit format.
Finally, consider the case where the result of some arithmetic operation (or con-

version) requires more digits of precision than are available. Most people learn a
simple method for rounding in school: the value 1.24(10) is rounded to 1.2(10) us-
ing two digits of precision because the last digit is less than five, while 1.27(10) is
rounded to 1.3(10) since the last digit is greater than or equal to five. Essentially,
this rounds the ideal result, i.e., the result if one had infinite precision, to the most
suitable representable result according to some scheme which we call the round-
ing mode. In order to compute sane results, one needs to know exactly how a given
rounding mode works. IEEE-754 specification mandates the availability of four such
modes; in each case, imagine we have an ideal result x. To round x using p digits of
precision, one directly copies the digits x0 . . .xp−1. The task of the rounding mode is
then to patch the value of xp−1 in the right way. Throughout the following descrip-
tion we use decimal examples for clarity; note that essentially the same rules with
minor alterations apply in binary:

Round to nearest Sometimes termed Banker’s Rounding, this scheme alters ba-
sic rounding to provide more specific treatment when the result x lies exactly half
way between two values, i.e., when xp = 5 and all trailing digits from xp+1 on-
ward are zero:

• If xp ≤ 4, then take xp−1 and do not alter it.
• If xp ≥ 6, then take xp−1 and alter it by adding one.
• If xp = 5 and at least one of the digits xp+1 onward is non-zero, then take xp−1

and alter it by adding one.
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• If xp = 5 and all of the digits xp+1 onward are zero, then alter xp−1 to the
nearest even digit. That is:
– If xp−1 ≡ 0 (mod 2), then do not alter it.
– If xp−1 ≡ 1 (mod 2), then alter it by adding one.

Again considering the case of rounding for two digits of precision we find that
1.24(10) is rounded to 1.2(10) since the p-th digit is less than than or equal to four;
1.27(10) is rounded to 1.3(10) since the p-th digit is greater than or equal to six;
1.251(10) is rounded to 1.3(10) since the p-th digit is equal to five and the (p+1)-
th digit is non-zero; 1.250(10) is rounded to 1.2(10) since the p-th digit is equal
to five, digit (p + 1) and onward are zero, and the (p− 1)-th digit is even; and
1.350(10) is rounded to 1.4(10) since the p-th digit is equal to five, digit (p + 1)
and onward are zero, and the (p−1)-th digit is odd.

Round toward +∞ This scheme is sometimes termed ceiling. In the case of a
positive number, if the p-th digit is non-zero the (p − 1)-th digit is altered by
adding one. In the case of a negative number, the p-th digit onward is discarded.
For example 1.24(10) and 1.27(10) would both round to 1.3(10) while 1.20(10)
rounds to 1.2(10); −1.24(10), −1.27(10) and −1.20(10) all round to −1.2(10).

Round toward −∞ Sometimes termed floor, this scheme is the complement of
the round toward +∞ above. That is, in the case of a positive number the p-th
digit onward is discarded. In the case of a negative number, if the p-th digit is
non-zero the (p− 1)-th digit is altered by adding one. For example, −1.24(10)
and −1.27(10) would both round to −1.3(10) while −1.20(10) rounds to −1.2(10);
1.24(10), 1.27(10) and 1.20(10) all round to 1.2(10).

Round toward zero This scheme operates as round toward −∞ for positive num-
bers and as round toward +∞ for negative numbers. For example 1.27(10),
1.24(10) and 1.20(10) round to 1.2(10); −1.27(10), −1.24(10) and −1.20(10) round
to −1.2(10).

The C standard library offers access to these features. For example the rint func-
tion rounds a floating point value using the currently selected IEEE-754 rounding
mode; this mode can be inspected using the fegetround function and set us-
ing the fesetround function. The latter two functions use the constant values
FE_TONEAREST, which corresponds to the round to nearest mode; FE_UPWARD,
which corresponds to the round toward +∞ mode; FE_DOWNWARD, which corre-
sponds to the round toward −∞ mode; and FE_TOWARDZERO, which corresponds
to the round toward zero mode.

Using a slightly cryptic program, we can demonstrate in a very practical way that
floating point representations in C work as expected. Listing 1.2 describes a C union
called ieee32 which shares space between a single precision float value called
f and a 32-bit int called i; since they share the same physical space, essentially
this allows us to fiddle with bits in i so as to provoke changes in f. The program
demonstrates this; compiling and executing the program gives the following output:

bash$ gcc -std=gnu99 -o F F.c
bash$ ./F
00000000
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include <fenv.h>
5

6 typedef union __ieee32
7 {
8 float f;
9 uint32 i;

10 }
11 ieee32;
12

13 int main( int argc, char* argv[] )
14 {
15 ieee32 t;
16

17 t.f = 2.8;
18

19 printf( "%08X\n", ( t.i & 0x80000000 ) >> 31 );
20 printf( "%08X\n", ( t.i & 0x7F800000 ) >> 23 );
21 printf( "%08X\n", ( t.i & 0x007FFFFF ) >> 0 );
22

23 t.i |= 0x80000000;
24 printf( "%f\n", t.f );
25

26 t.i &= 0x807FFFFF;
27 t.i |= 0x40800000;
28 printf( "%f\n", t.f );
29

30 t.i = 0x7F800000;
31 printf( "%f\n", t.f );
32

33 t.i = 0x7F808000;
34 printf( "%f\n", t.f );
35 }

Listing 1.2 A short C program that performs direct manipulation of IEEE floating point numbers.

00000080
00333333
-2.800000
-5.600000
inf
nan

The question is, what on earth does this mean ? The program first constructs an in-
stance of the ieee32 union called t and sets the floating point field to 2.8(10). The
printf statements that follow extract and print the sign, exponent and mantissa
fields of t.f by examining the corresponding bits in t.i. The output shows that
the sign field is 0(16) (i.e., the number is positive), the exponent field is 80(16) (i.e.,
after considering the bias, the exponent is 1(16)) and the mantissa field is 333333(16).
If we write this as a bit-vector as above, we have

0 10000000 01100110011001100110011

which is representing the actual value
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−10 ·1.011001100110011001100110011(2) ·21

or 2.8(10) as expected. Next, the program ORs the value 80000000(16) with t.i
which has the effect of setting the MSB to one; since the MSB of t.i mirrors the
sign of t.f, we expect this to have negated t.f. As expected, the next printf
produces −2.8(10) to verify this. The program then ANDs t.iwith 807FFFFF(16)
and then ORs it with 40800000(16). The net effect is to set the exponent field of t.f
to the value 129(10) rather than 128(10) as before, or more simply to multiply the
value by two. Again as expected, the next printf produces −5.6(10) = 2 ·−2.8(10)
to verify this. Finally, the program sets t.i to the representations we would expect
for +∞ and NaN to demonstrate the output in these cases.

1.5 Toward a Digital Logic

We have already hinted that digital computers are happiest dealing with the binary
values zero and one since they can be easily mapped onto low and high electrical
signals. We have also seen that it is possible to define a Boolean algebra over the
set B = {0,1} where the meaning of the operators ∧, ∨ and ¬ is described by the
following table:

x y ¬x x∧ y x∨ y x⊕ y

0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Note that we have included x⊕ y to denote exclusive-or, which we call XOR. In a
sense, this is just a shorthand since

x⊕ y = (¬x∧ y)∨ (x∧¬y)

such that XOR is defined in terms of AND, OR and NOT. Now consider all the
pieces of theory we have accumulated so far:

• We know that the operators AND, OR and NOT obey the axioms outlined pre-
viously and can therefore construct Boolean expressions and manipulate them
while preserving their meaning.

• We can describe Boolean formula of the form

B
n → B

and hence also construct functions of the form

B
n → B

m
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simply by having m functions and grouping their outputs together. It thus makes
sense that NOT, AND, OR and XOR can be well-defined for the set B

n as well
as B. We just define n Boolean functions such that, for example,

fi : B → B, fi(x,y) = xi ∧ yi.

So for x,y,z ∈ {0,1}n we can write zi = fi(x,y) with 0 ≤ i < n to perform the
AND operation component-wise on all the bits from x and y. In fact, we do not
bother with this long-winded approach and just write z = x∧ y to mean the same
thing.

• We know how to represent numbers as members of the set B
n and have described

how bit-vectors are just a short hand way of writing down such representations.
Since we can build arbitrary Boolean functions of the form

B
n → B

m,

the results of Shannon which show how such functions can perform arithmetic
on our number representations should not be surprising. For example, imagine
we want to add two integers together. That is, say x,y,z ∈ Z are represented as
n-bit vectors p,q,r ∈ B

n. To calculate z = x + y, all we need to do is make n
similar Boolean functions, say fi, such that ri = fi(p,q). Each function takes p
and q, the representation of x and y, as input and produces a single bit of r, the
representation of z, as output.

In short, by investigating how Boolean algebra unifies propositional logic and set
theory and how to represent numbers using sets, we have a system which is ideal for
representing and manipulating such numbers using digital components. At the most
basic level this is all a computer does: we have formed a crucial link between what
seems like a theoretical model of computation and the first step toward a practical
realisation.

1.6 Further Reading
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• K.H. Rosen.
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McGraw-Hill, 2006. ISBN: 0-071-24474-3.

• J. Truss.
Discrete Mathematics for Computer Scientists.
Addison-Wesley, 1998. ISBN: 0-201-36061-6.

1.7 Example Questions

1. For the sets A = {1,2,3}, B = {3,4,5} and U = {1,2,3,4,5,6,7,8} compute the
following:

a. |A|.
b. A∪B.
c. A∩B.
d. A−B.
e. A.
f. {x : 2 · x ∈ U }.

2. For each of the following decimal integers, write down the 8-bit binary represen-
tation in sign-magnitude and twos-complement:

a. +0.
b. −0.
c. +72.
d. −34.
e. −8.
f. 240.

3. For some 32-bit integer x, explain what is meant by the Hamming weight of x;
write a short C function to compute the Hamming weight of an input value.

4. Show that
(¬x∧ y)∨ (¬y∧ x)∨ (¬x∧¬y) = ¬x∨¬y.



Chapter 2
Basics of Digital Logic

Scientists build to learn; Engineers learn to build.

– F. Brooks

Abstract In the previous chapter we made some statements regarding various fea-
tures of digital logic systems; for example, we stated that they could easily repre-
sent the binary digits zero and one because these could be mapped onto low and
high electrical signals. The goal of this chapter is to expand on these statements by
showing how they are satisfied using basic physics. Since most people learn about
physics in school and an in-depth discussion would require another book, our goal
is not rigorous accuracy but simply a rough recap and overview of the pertinent
details. Using this starting point, we build higher level digital logic components ca-
pable of representing meaningful values and performing useful operations on them.
We then look at how simple storage elements can be constructed and how sequences
of operations can be performed using state machines and clocks.

2.1 Switches and Transistors

2.1.1 Basic Physics

Everything in the universe is composed from primitive building blocks called atoms.
An atom in turn is composed from a group of subatomic particles: a group of nu-
cleons, either protons or neutrons, in a central core or nucleus and a cloud of
electrons which orbit the nucleus. The number of protons translates into the atomic
number of the atom which roughly dictates what chemical element or material it is.
Silicon has atomic number fourteen, for example, since there are fourteen protons in
the nucleus. The arrangement of electrons around the nucleus is called the electron
configuration; electrons can orbit the nucleus in one of several levels or shells.

43
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Subatomic particles carry an associated electrical charge which is characteristic
of their type; electrons carry a negative charge, protons have a positive charge and
neutrons have neutral charge. An ion is an atom with a non-neutral charge overall. A
negatively charged ion has more electrons in the electron cloud than protons in the
nucleus, a positively charged ion has fewer electrons than protons. Electrons can be
displaced from an electron cloud, using some energy, in a process called ionisation.
How much energy is required to perform this process relates to how tightly coupled
the electrons are to the nucleus and is dictated in part by the type of atom. For
example, metals generally have loosely coupled electrons while plastics generally
have tightly coupled electrons. We usually term these types of material conductors
and insulators respectively.

Ionisation aside, electrons repel each other but are attracted by holes or space
in an electron cloud. So given the right conditions, electrons may move around be-
tween atoms. In particular, if we apply a potential difference between two points on
a conductor then electrons, and hence their associated charge, will move and create
an electrical current between the points. This is a useful starting point but depends
highly on the materials we are using and their electron configurations: if we do not
have a material with the right number of electrons or holes, it will not behave as
required. However, we can manipulate a material to have the required properties via
a process called doping. We take the starting material and dope it, or mix it, with
a second material called the donor. Depending on the properties of the donor, the
new material will have a different number of electrons or holes but otherwise re-
tain very similar characteristics. As an example, consider pure silicon which has an
electron cloud of four electrons (only about half full): it is more or less an insula-
tor. Doping with a boron or aluminium donor creates extra holes while doping with
phosphor or arsenic creates extra electrons. We call the new materials P-type and
N-type semiconductors respectively; the material is not a conductor or an insulator
but somewhere in between.

In summary, we can more or less create materials with atomic characteristics of
our choosing. The basic idea in building digital logic components from these mate-
rials is to sandwich together wafers of the materials in different ways. For example,
electrons can flow from N-type to P-type semiconductors but not in the other direc-
tion; we can use this fact to build atomic scale switches called transistors.

2.1.2 Building and Packaging Transistors

Although transistors can perform a variety of functions, for example the amplifica-
tion of signals, we will use them almost exclusively as switches. That is, a compo-
nent that conducts, or allows charge to flow, between two terminals when we turn
on the switch and not conduct, or be a resistor, when we turn off the switch. There
are several different types of transistor but we will concentrate on one of the sim-
plest, the Field Effect Transistor (FET) which was originally invented in 1952 by
William Shockley, an engineer at Bell Labs. In this context we term the two tran-
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(a) N-MOSFET. (b) P-MOSFET.

Figure 2.1 Implementation of N-MOSFET and P-MOSFET transistors.

sistor terminals the source and drain, and call the switch that controls the flow of
current the gate.

To actually create the switch, we combine and layer materials with different prop-
erties. Again there are several ways to approach this: we concentrate on the most
common design which is called a Metal Oxide Semiconductor Field-Effect Tran-
sistor (MOSFET), invented in 1960 by Martin Atalla, also at Bell Labs. Figure 2.1
shows how a typical MOSFET device is built from N-type and P-type semiconduc-
tor materials and layers of metal; the two different types are termed N-MOSFET
and P-MOSFET devices. The rough idea is that by applying a potential difference
between the gate and source, an electric field is created which offers a channel be-
tween the source and drain through which current can flow. The type of channel
depends on the types of semiconductor material used. Changing the potential differ-
ence between gate and source changes the conductivity between source and drain,
and hence regulates the current: if the potential difference is small, the flow of cur-
rent is small and vice versa. Thus, the gate acts like a switch that can regulate the
current between source and drain.

For an N-MOSFET the types of semiconductor material used mean that when
there is a high potential difference between gate and source, the conduction channel
is open and current flows: the switch is on. When there is a low potential difference
between gate and source, the channel closes and the switch is off. A P-MOSFET
reverses this behaviour by swapping around the types of semiconductor material:
when the potential difference is high the switch is off, when it is low the switch
is on. Although we say the switch is off, the transistor still allows a small level
of conductivity between source and drain because of the imperfect nature of the
materials involved; this effect is termed leakage.

Transistors are seldom used in isolation and are more commonly packaged into
larger components before use in larger digital circuits: these components form what
are often called logic styles. The most frequently used style, and one of the rea-
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Figure 2.2 A CMOS cell built from N-MOSFET and P-MOSFET transistors.
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Figure 2.3 Symbolic representations of N-MOSFET and P-MOSFET transistors.

sons behind the popularity of MOSFET type transistors, is called Complementary
Metal-Oxide Semiconductor (CMOS); it was invented in 1963 by Frank Wanlass
at Fairchild Semiconductor. The idea of CMOS is to pair each N-MOSFET transis-
tor with a P-MOSFET partner into a component sometimes termed a cell. Figure 2.2
details a CMOS cell; the two transistors are arranged in a complementary manner
such that whenever one is conducting, the other is not. This arrangements allows
one to form circuits which have two key features: a pull up network of P-MOSFET
transistors which sit between the positive power rail (that supplies the Vdd voltage
level) and the output, and a pull down network of N-MOSFET transistors which
sit between the negative power rail (which supplies the GND voltage level) and the
output. Only one of the networks will be active at once, so aside from leakage a
CMOS cell only consumes power when the inputs are toggled or switched. Since
we commonly aim to build circuits with many very small transistors in close prox-
imity to each other, this feature provides some significant advantages. In particular,
it means that the use of CMOS reduces power consumption and heat dissipation
which in turn aids reliability and enables size reduction. Thus, CMOS can be char-
acterised as a low-power alternative to competitors such as Transistor-Transistor
Logic (TTL) which is usually built from Bipolar Junction Transistors (BJT) and
is operationally faster. It can be common to mix the characteristics of CMOS and
TTL in one circuit, a technology termed bipolar-CMOS (BiCMOS).
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Figure 2.4 Implementations of NOT, NAND and NOR logic gates using transistors.

x y r = NOT x r = x NAND y r = x NOR y

GND GND Vdd Vdd Vdd

GND Vdd Vdd Vdd GND
Vdd GND GND Vdd GND
Vdd Vdd GND GND GND

Table 2.1 Truth tables for transistor implementations of NOT, NAND and NOR.

When constructing higher-level components that utilise these behaviours, we use
the symbols detailed in Figure 2.3 to represent different transistor types. We term
the higher-level components we are aiming for logic gates, the idea being that they
implement some function related to those we saw at the end of Chapter 1 and whose
behaviour is described by Table 2.1.

For example, consider building a component which inverts the input; we call
this a NOT gate. That is, when the input x is Vdd the component outputs GND and
vice versa. We can achieve this using the arrangement of transistors in Figure 2.4a.
To see that this works as required, consider the different states the input can be in
and the properties of N-MOSFET and P-MOSFET transistors. When the input x is
connected to GND the bottom transistor will be closed while the top one will be
open: the output r will be connected to Vdd . When input x is connected to Vdd the
bottom transistor will be open while the top one will be closed: the output will be
connected to GND.

We can build two further components in a similar way; these are the NAND (or
NOT AND) and NOR (or NOT OR) gates in Figure 2.4b-c. We can reason about
their behaviour in a similar way as above. For example, consider the NAND gate.
When input x is connected to GND the bottom transistor will be closed while the
top left transistor will be open: the output r will be connected to Vdd no matter what
input y is connected to. Likewise, when input y is connected to GND the middle
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Figure 2.5 Symbolic representation of standard logic gates.

transistor will be closed while the top right transistor will be open: the output will
be connected to Vdd no matter what input x is connected to. However, when both
x and y are connected to Vdd the top two transistors will be closed but the bottom
two will be open; this means the output is connected to GND. A similar reasoning
applies to the operation of the NOR gate.

Clearly this is a good step toward building useful circuits in that we now have
devices, constructed from very simple components, that perform meaningful opera-
tions. Specifically, we can relate the functions they implement to many of the con-
cepts previously encountered. That is, we have a means of actually building devices
to compute Boolean functions that up until now have been discussed abstractly.

2.2 Combinatorial Logic

2.2.1 Basic Logic Gates

It is somewhat cumbersome to work with transistors because they represent such
a low-level of detail. In order to make our life easier, we commonly adopt a more
abstract view of logic gates by taking two steps: we forget about the voltage levels
GND and Vdd , abstractly calling them 0 and 1, then we forget about the power rails
and just draw each gate using a single symbol with inputs and outputs. The goal
is that by viewing the gates more abstractly, we can focus on their properties as
Boolean logic functions rather than their underlying implementation as transistors
or via another technology. By composing the gates together we can build all manner
of operations which are loosely termed combinatorial logic; the gate behaviours
combine to compute the function continuously, the output is always updated as a
product of the inputs.

Figure 2.5 defines symbols for each of the NOT, NAND and NOR gates built
above and also the AND, OR and XOR operations described at the end of the previ-
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BUF AND OR XOR
x y r = x r = x∧ y r = x∨ y r = x⊕ y

0 0 0 0 0 0
0 1 0 0 1 1
1 0 1 0 1 1
1 1 1 1 1 0

NOT NAND NOR XNOR
x y r = ¬x r = x ∧ y = ¬(x∧ y) r = x ∨ y = ¬(x∨ y) r = x ⊕ y = ¬(x⊕ y)
0 0 1 1 1 1
0 1 1 1 0 0
1 0 0 1 0 0
1 1 0 0 0 1

Table 2.2 Truth tables for standard logic gates.

x r x r

(a) NOT from NAND. (b) NOT from NOR.

x
y r
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r

(c) AND from NAND. (d) AND from NOR.

x

y

r
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(e) OR from NAND. (f) OR from NOR.

Figure 2.6 Identities for standard logic gates in terms of NAND and NOR.
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Figure 2.7 An implementation and symbolic description of a 3-state enable gate.

ous chapter; these symbols represent functions with behaviour described as a truth
table in Table 2.2. Note the use of an inversion bubble on the output of a gate to
invert the value. Using this notation, a buffer (or BUF) is simply a gate that passes
the input straight through to the output and a NOT gate just inverts the input to
form the output. Also note that for completeness we have included the XNOR (or
NXOR) symbol which has the obvious meaning but is seldom used in practise. We
use ∧ , ∨ and ⊕ as a short hand to denote the NAND, NOR and XNOR opera-
tions respectively. Finally, for two input gates such as AND, OR and XOR we often
use a notational short hand and draw the gates with more than two inputs; this is
equivalent to making a tree of two-input gates since, for example, we have that

(w∧ x∧ y∧ z) = (w∧ x)∧ (y∧ z).

The natural question to ask after this is why have we built NAND and NOR when
AND and OR seem to be more useful ? The answer is related to the cost of im-
plementation; it is simply more costly to build an AND gate from transistors, the
cheapest way being to compose a NAND gate with a NOT gate. Since NAND and
NOR are the cheapest meaningful components we can build, it makes sense to con-
struct a circuit from these alone. This is possible because NAND and NOR are both
universal in the sense that one can implement all the other logic gates using them
alone; one simply substitutes gates using the identities in Figure 2.6 to perform the
translation. The reason for wanting to use just one component to implement an en-
tire circuit is related to how the circuit is fabricated: one can typically build much
more reliable and compact circuits if they are more regular.

2.2.2 3-state Logic

Roughly speaking, one can freely connect the output of one logic gate to the input
of another. While it does not really make sense to connect two inputs together since
neither will drive current along the wire, connecting two outputs together is more
dangerous since both will drive current along the wire. The outcome depends on a
number of factors but is seldom good: the transistors which are wired to fight against
each other typically melt and stop working.
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x en r

0 0 Z
1 0 Z
Z 0 Z
0 1 0
1 1 1
Z 1 Z

Table 2.3 A truth table for a 3-state enable gate.

We can mitigate this fact by introducing a slightly different style of logic called
3-state logic; we do not go into a great deal of depth about how such logic gates are
constructed but instead focus on their behaviour. The central component in 3-state
logic is a switch which is sometimes called an enable gate. The single transistor
implementation of the gate and the more common symbolic description are shown
in Figure 2.7. The gate has some interesting characteristics in terms of its behaviour
which is shown as a truth table in Table 2.3.

Notice that we have introduced a new logic state, hence the name 3-state, called
Z or high impedance. When the enable signal en is set to 0 the gate does not pass
anything through to the output r, it is not driven with anything so in a sense some
other device can be connected to and drive the same wire. However, when en is
set to 1, the gate passes through the input x to the output r: nothing else should be
driving a value along this wire or we are back to the situation which caused the
original melted transistor. In summary, the high impedance signal acts as a sort of
“empty” value allowing any other signal to overpower it without causing damage
to the surrounding transistors. Thus, careful use of enable gates allows two or more
normal logic gate outputs to be connected to the same wire: as long as only one of
them is enabled at a time, and hence driving a signal along the wire, there will be no
disasters.

2.2.3 Designing Circuits

The next issue to address is how one combines simple Boolean logic gates to create
higher-level functions. Fortunately we have already covered a lot of material which
enables us to do this in a fairly mechanical form. In particular, given a truth table
that describes the function required, one can perform a simple sequence of steps to
extract the corresponding sum of products (SoP) expression built from a number of
minterms:

1. Imagine there are n inputs numbered 1 . . .n, and one output:

• Use Ii, j to denote the value of input j in row i.
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Figure 2.8 An implementation of an XOR gate.

• Use Oi to denote the value of the output in row i.

2. Find all the rows, a set R, for which given r ∈ R we have that Or = 1. That is, R
is all row numbers where the output is 1.

3. For each such r ∈ R, find

• A set Hr such that for h ∈ Hr, Ir,h = 1.
• A set Lr such that for l ∈ Lr, Ir,l = 0.

4. The expression is then given by

O =
∨
r∈R

(
∧

i∈Hr

Ir,i ∧
∧
j∈Lr

¬Ir, j).

The large ∧ and ∨ symbols used here are similar to the summation and product
symbols (Σ and Π ). They basically AND and OR many terms together in a similar
way to Σ and Π which add and multiply many terms together.

Consider the example of constructing an XOR gate whose truth table can be
found in Table 2.2. Setting x = I1 and y = I2 while numbering the rows of the table
1 . . .4, we find that we want a 1 from our expression in rows 2 and 3 and a 0 in rows
1 and 4. This is expressed using the set R = {2,3} such that H2 = {2}, L2 = {1},
H3 = {1} and L3 = {2}. As a result, our expression is

(I2 ∧¬I1)∨ (I1 ∧¬I2)

or rather
(¬x∧ y)∨ (x∧¬y)

which we can verify as being correct. To build the circuit diagrammatically we sim-
ply replace each of the operators with a gate and connect the inputs and outputs
together as one would expect; for our XOR expression above this is shown in Fig-
ure 2.8.
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w x y z r

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Table 2.4 An example 4-input function.

2.2.4 Simplifying Circuits

Again using the theory developed in the previous chapter, we can manipulate our
XOR expression from above using the axiomatic laws of Boolean logic. For exam-
ple, we can construct the product of sums (PoS) expression built from a number of
maxterms

(x∨ y)∧ (¬x∨¬y)

or the functionally equivalent expression

(x∨ y)∧¬(x∧ y).

We know that if there were more than one output required, say m outputs for exam-
ple, we can simply construct m such expressions using x and y which each produce
one of the outputs. This raises an important issue in designing circuits: if we can
simplify our expressions in the sense that they use less operators, we use less tran-
sistors and hence less space. This is a valuable step and is coupled to the issue that
if we have multiple expressions, we can potentially share common blocks between
the two; for example, if two expressions include some term x∧ y, we only need one
gate to produce the result, not two.
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Figure 2.9 Karnaugh maps for an example 4-input function.

2.2.4.1 Karnaugh Maps

Consider the truth table in Table 2.4 describing some function r, and how one might
derive a SoP expression for r to implement it. By applying the method from the
previous section we get

r = ( ¬w ∧ ¬x ∧ ¬y ∧ ¬z ) ∨
( ¬w ∧ ¬x ∧ ¬y ∧ z ) ∨
( ¬w ∧ ¬x ∧ y ∧ ¬z ) ∨
( ¬w ∧ x ∧ ¬y ∧ ¬z ) ∨
( ¬w ∧ x ∧ ¬y ∧ z ) ∨
( w ∧ ¬x ∧ ¬y ∧ ¬z ) ∨
( w ∧ ¬x ∧ y ∧ ¬z ) ∨
( w ∧ x ∧ y ∧ z )

which is verbose to say the least ! The Karnaugh map, a method of simplifying
such expressions, was invented in 1953 by Maurice Karnaugh while working as
an engineer at Bell Labs. The idea is to first provide a concise way to write down
lengthy truth tables, and secondly a mechanism to easily create and simplify logic
expressions from said tables without resorting to manipulation by logical axioms.

The first step is to encode the truth table on a grid as shown for our example in
Figure 2.9a. The encoding used is not the natural binary ordering one might expect.
For example, writing the inputs as vectors of the form (w,x,y,z) we might expect
the order to follow the original truth table and produce the sequence
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(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0,1,1,1)

. . .

such that moving from, for example, (0,0,1,1) to (0,1,0,0) flips the three bits asso-
ciated with x, y and z. Instead, we use what is called a Gray code, named after Frank
Gray who patented the idea in 1953 while also working as a researcher at Bell Labs;
such codes had been known and used for a couple of hundred years before that. The
basic idea is that between neighbouring lines in the sequence only one bit should
change; thus we get a sequence such as

(0,0,0,0)
(0,0,0,1)
(0,0,1,1)
(0,0,1,0)
(0,1,1,0)
(0,1,1,1)
(0,1,0,1)
(0,1,0,0)

. . .

such that moving from (0,1,1,1) to (0,1,0,1) flips only the bit associated with y.
In fact, moving from any line to the previous or next flips only one bit. Looking at
the Karnaugh map, the left most column represents the values where (w,x) = (0,0)
and reading from top to bottom where (y,z) = (0,0), (0,1), (1,1), (1,0). The next
columns are similar for y and z but for the cases where (w,x) = (0,1), (1,1) and
(1,0).

Use of this technique to encode the Karnaugh map grid allows us to easily sim-
plify the function in question. The basic idea is that by locating minterms which
differ in only one input, we can simplify the resulting expression by eliminating this
input. In our example, the minterms (1,0,1,0) and (1,0,1,1) offer a good demon-
stration of this fact. We could implement these minterms using the expressions

w∧¬x∧ y∧¬z

and
w∧¬x∧ y∧ z.

This is clearly wasteful however; it does not matter what value z takes since the
overall function is still 1 as long as w = 1, x = 0 and y = 1. Thus we can eliminate
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x y z r

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 ?
1 1 0 1
1 1 1 ?

Table 2.5 An example 3-input function.

the z term from our expressions above and simply use the single and more simple
minterm

w∧¬x∧ y

to cover both cases.
The next step in realising this simplification from our Karnaugh map is to gather

cells in the grid whose entry is 1 into rectangular groups of size 2n for some integer
n. We can thus form groups of 1 cell, 2 cells, 4 cells and so on: the key thing is
that the groups are rectangular. Due to the properties of the Gray code, these groups
are allowed to wrap around the sides of the grid; this is valid since moving right
from (w,x,y,z) = (0,0,0,0) in the top left-hand corner to (1,0,0,0) in the top right-
hand corner still only flips one bit. Additionally, groups are allowed to overlap if
they want as long as they are still rectangular. The annotated Karnaugh map in
Figure 2.9b demonstrates these concepts by forming four groups.

Each of the final groups represents one term we need to implement in order to
implement the overall function. The bigger the group, the less variables we need to
include in each of the terms. Consider, for example, the group of four cells in the
top left-hand corner. Looking at how the variables are assigned values in the grid,
it does not matter what value x takes as long as w = 0 and it does not matter what
value z takes as long as y = 0 because we still get a 1 as output. We can implement
this term as ¬w∧¬y to cover all four cells in that group; this is much simpler than
the four separate corresponding terms in our original implementation. Applying the
same technique to the function as a whole, we find that

r = ( ¬w ∧ ¬y ) ∨
( w ∧ ¬x ∧ ¬y ∧ ¬z ) ∨
( ¬x ∧ y ∧ ¬z ) ∨
( w ∧ y ∧ z ) .

Clearly this is significantly simpler than our initial effort and does not require te-
dious application of logical axioms. However, it is not the most simple description
of the function; we leave this issue open to explore in the next section.
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Figure 2.10 Karnaugh maps for an example 3-input function.

Karnaugh maps can represent functions with any number of inputs but drawing
them for more than eight or so becomes tricky. More importantly, there is no reason
why they need to be square. For the three input function r in Table 2.5 we can draw
the grid in Figure 2.10a. Another important feature is detailed in this example in that
some of the outputs are neither 0 nor 1 but rather ?. We call ? the don’t care state in
the sense it can take any value we want; it is not that we do not know the value, we
just do not care what the value is. One can rationalise this by thinking of a circuit
whose output just does not matter given some combination of input, maybe this
input is invalid and so the result is never used. Either way, we can use these don’t
care states to our advantage during simplification. By regarding them as 1 values
when we want to include them in our groupings and 0 otherwise, we can further
simplify our implementation. This can be seen in Figure 2.10b where without the ?
state in the middle we are forced to implement two groups but by including it we
can group four cells together into one: remember, less groups and larger groups will
typically mean a simpler implementation.

2.2.4.2 Quine-McCluskey

Although the Karnaugh map method for simplification is attractive, it falls down
when either the number of inputs grows too large or it needs to be implemented
in software. In these cases we prefer Quine-McCluskey minimisation, a method
developed independently by Willard Quine [55] and Edward McCluskey [39] in the
mid 1950s. As an example of applying the method, we re-simplify the function r
used above and detailed in Table 2.4.

The first step is to extract all the minterms from the truth table, i.e., all the combi-
nations of input that result in a 1 in the output. We assign a number to each minterm
and write them, using vectors of the form (w,x,y,z) in this case, within a table; this
is shown in the top, first phase section of Table 2.6. Placed in this form, each entry
is called an implicant. We place the implicants into groups according to the number
of 1 values in their vector representation. For example, implicant 0 corresponding
to (0,0,0,0) has no 1 values and is placed in group 0; implicants 1, 2, 4 and 8 all
have one 1 value and are all placed in group 1.
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Phase 1
0 (0,0,0,0)

√

1 (0,0,0,1)
√

2 (0,0,1,0)
√

4 (0,1,0,0)
√

8 (1,0,0,0)
√

5 (0,1,0,1)
√

10 (1,0,1,0)
√

11 (1,0,1,1)
√

15 (1,1,1,1)
√

Phase 2
0+1 (0,0,0,−)

√

0+2 (0,0,−,0)
√

0+4 (0,−,0,0)
√

0+8 (−,0,0,0)
√

1+5 (0,−,0,1)
√

4+5 (0,1,0,−)
√

2+10 (−,0,1,0)
√

8+10 (1,0,−,0)
√

10+11 (1,0,1,−)
11+15 (1,−,1,1)

Phase 3
0+1+4+5 (0,−,0,−)

0+2+8+10 (−,0,−,0)
0+4+1+5 (0,−,0,−) duplicate

0+8+2+10 (−,0,−,0) duplicate

Table 2.6 Step one of a Quine-McCluskey-based simplification: extraction of prime implicants.

Recall from our simplification using Karnaugh maps that we were able to apply
a rule to cover the pair of minterms

w∧¬x∧ y∧¬z

and
w∧¬x∧ y∧ z

with one simpler minterm
w∧¬x∧ y

because the value of z has no influence on the result. We use a similar basic approach
here. We compare each member of the i-th group with each member of the (i + 1)-
th group and look for pairs which differ in only one place; there is no point in
comparing members of the i-th group with other groups since we know they cannot
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0 1 2 4 8 5 10 11 15

0+1+4+5
√ √ √ √

0+2+8+10
√ √ √ √

10+11
√ √

11+15
√ √

Table 2.7 Step two of a Quine-McCluskey-based simplification: the prime implicants table.

satisfy this criterion since they have different numbers of 1 values. So for example,
we compare implicant 0 from group 0 with implicants 1, 2, 4 and 8 from group 1
and find that in each case the pairs differ in just one place. We write these pairs in
a new table; this is detailed in the middle, second phase section of Table 2.6. In the
new table, we replace the differing value with a − so that, for example, combining
implicants 0 and 1, represented by (0,0,0,0) and (0,0,0,1), produces implicant 0+
1 which is represented by (0,0,0,−). Furthermore, when we have used an implicant
from the original table to produce a combined one in the new table we place a
tick next to it; all of implicants 0, 1, 2, 4 and 8 are ticked as a result of our initial
comparisons between groups 0 and 1. This process is repeated for other groups, so
groups 1 and 2, 2 and 3 and 3 and 4 in this case. We then iterate the whole procedure
to construct further tables until we can no longer combine any implicants. In this
case we terminate after three phases as shown in Table 2.6. However, notice that
in the third phase we start to introduce duplicate implicants; these duplicates are
deleted from further consideration upon detection.

Implicants in any table which are unticked, i.e., have not been combined and used
to produce further implicants, are called prime implicants and are the ones we need
to consider when constructing the final expression for our function. In our example,
we have four prime implicants

0+1+4+5 (0,−,0,−)
0+2+8+10 (−,0,−,0)
10+11 (1,0,1,−)
11+15 (1,−,1,1)

To further simplify the resulting expression, the Quine-McCluskey method uses a
second step. A so-called prime implicant table is constructed which lists the prime
implicants along the side and the original minterms along the top. In each cell where
the prime implicant includes the corresponding minterm, we place a

√
; this is shown

in Table 2.7 for our example. The goal now is to select a combination of the prime
implicants which includes, or covers, all of the original minterms. For example, the
implicant 0+1+4+5 covers the prime implicants 0, 1, 4 and 5 so selecting this as
well as implicant 10+11 will cover 0, 1, 4, 5, 10 and 11 in total.

Before we start however, we can identify so-called essential prime implicants
as being those which are the only cover for a given minterm. Minterm 15 in our
example demonstrates this case since it is only covered by prime implicant 11+15;
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it is essential to include this implicant in our final expression as a result. Starting
with the essential prime implicants, we can draw a line through the associated row
in the prime implicants table. Each time the line goes through a

√
, we also draw a

line through that column. The intuition behind this is that the resulting lines show
which minterms are currently covered by prime implicants we have selected for
inclusion in our final expression. Following this procedure in our example, we find
that using only implicants 11+15, 0+1+4+5 and 0+2+8+10 we can cover all
the original minterms. Looking at the associated vectors, we have

0+1+4+5 (0,−,0,−)
0+2+8+10 (−,0,−,0)
11+15 (1,−,1,1).

Treating the entries with − as don’t care, we thus implement the final expression for
the function r as

r = ( ¬w ∧ ¬y ) ∨
( ¬x ∧ ¬z ) ∨
( w ∧ y ∧ z )

which is simpler than our original attempt using Karnaugh maps; we only have three
terms in this case ! The reason is obvious when one looks at the original Karnaugh
map: we formed a group of 1 cell in the top right-hand corner and a group of 2
cells from the bottom left and right-hand corners. We can easily merge these into a
single group of 4 cells which covers all 4 corner cells of the map and overlaps with
the group of 4 cells already in the top left-hand corner. Since less groups and larger
groups mean simpler implementation, we get a simpler expression: the two terms

w∧¬x∧¬y∧¬z

and
¬x∧ y∧¬z

have been merged into the single term

¬x∧¬z

which covers both.
Hopefully it is clear that the Quine-McCluskey method offers something that

Karnaugh maps do not. Although Karnaugh maps are a useful tool for simplifying
functions with a small number of inputs by hand, Quine-McCluskey is easy to auto-
mate and hence ideal for implementation on a computer which can deal with many
more inputs as a result. However, the complexity of the algorithm dictates that the
upper limit in terms of number of inputs is quickly reached; logic simplification
is classed as an NP-complete problem, and the complexity of Quine-McCluskey is
exponential in the number of inputs.
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2.2.5 Physical Circuit Properties

2.2.5.1 Propagation Delay

CMOS-based logic gates do not operate instantaneously because of the way transis-
tor switching works at the physical level; there is a small delay between when the
inputs are supplied and when the output is produced called propagation delay. The
problem of propagation delay in gates, so-called gate delay, is compounded by the
fact that there is also a delay associated with the wires that connect them together.
A wire delay is typically much smaller than gate delay but the same problem ap-
plies: a value takes an amount of time proportional to the wire length to travel from
one end to the other. Although such delays are extremely small, when many gates
are placed in series or wires are very long the delays can add up and produce the
problem of circuit metastability.

Consider for example the XOR circuit developed previously. So far we have
taken a static view of the circuit in the sense that we set some inputs and by assum-
ing that all gates operate instantly, compute the output. The picture changes when
we take a dynamic view that includes time; in particular, we see that depending on
which time period we sample, the circuit can be in a metastable state which does not
correctly represent the required final result. Given the labelled XOR implementation
in Figure 2.8, Figure 2.11 highlights this effect. We start at time t = 70ns when the
circuit is in the correct state given inputs of x = 0 and y = 1. The inputs are then
toggled to x = 1 and y = 1 at t = 80ns but the result does not appear instantly given
example propagation delays for NOT, AND and OR gates as 10ns, 20ns and 20ns
respectively. In particular, we can examine points in the time-line and show that the
final and intermediate results are wrong. For example, it takes until t = 90ns before
the NOT gates produce the correct outputs and the final result does not change to
the correct value until t = 130ns; before then the output is wrong in the sense that it
does not match the inputs.

One can try to equalise the delay through different paths in the circuit using
dummy or buffer gates. A buffer simply copies the input to the output and can also
amplify the input in some cases; essentially it is performing the identity function.
Since the buffer takes some time to operate just like any other gate yet performs
no change in input, one can place them throughout the circuit in order to ensure
values arrive at the same time. An example is shown in Figure 2.12. Although the
circuit may still enter metastable states, we have tamed the problem to some extent
by ensuring that values passing into the two AND gates arrive at the same time.

However, even when the effects of propagation delay are minimised it produces a
secondary feature that acts as a limit. This feature is the critical path of the circuit,
the longest sequential sequence of gates in the circuit that dominates the time taken
for it to produce a result. In the XOR circuit above, the critical path goes through
a NOT gate, an AND gate and then an OR gate: the path has a total delay of 50ns.
We will see later how this feature limits the performance of our designs. For now it
is enough to believe that the shorter the critical path is, the quicker we can compute
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Figure 2.11 A behavioural time-line demonstrating the effects of propagation delay on the XOR
implementation.
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Figure 2.12 Buffering inputs within the XOR gate implementation to equalise propagation delay.

results with our circuit; hence it is advantageous to construct or simplify a design so
as to minimise the critical path length.

2.2.5.2 Fan-in and Fan-out

Fan-in and fan-out are properties of logic gates relating to the number of inputs and
outputs. The problem associated with fan-in and fan-out is that a given logic gate
will have physical constraints on the amount of current which can be driven through
it. For example, it is common for the output of a source gate to be connected to
inputs of several target gates. Unless the source gate can drive enough current onto
the output, errors will occur because the target gates will not receive enough of a
share to operate correctly; fan-out is roughly the number of target gates which can
be connected to a single source. CMOS-based gates have quite a high fan-out rating,
perhaps 100 target gates or more can be connected to a single source.

2.2.6 Basic Building Blocks

2.2.6.1 Half and Full Adders

Ultimately, our goal in constructing digital circuits is to do some computation or,
more specifically, arithmetic on numbers. The most basic key component one can
think of in this context is a 1-bit adder which takes two 1-bit values, say x and y, and
adds them together to product a sum and a carry, say s and co. This is commonly
termed a half-adder, the truth table is shown in Table 2.8a. The truth table makes
intuitive sense: if we add x = 0 to y = 1, the sum is 1 and there is no carry-out;
if we add x = 1 to y = 1, the result is 2 which we cannot represent in 1-bit so the
sum is 0 and the carry-out is 1. The half-adder is easily implementable as shown by
Figure 2.13a. Essentially we use the same techniques as developed above to extract
an expression for each of the outputs in terms of x and y:
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x y co s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

ci x y co s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

(a) Half-adder (b) Full-adder

Table 2.8 Truth tables for 1-bit adders.

x
y

co

s

x
y

co

s

ci

(a) Half-adder (b) Full-adder

Figure 2.13 Implementation of a 1-bit half-adder and full-adder.
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Figure 2.14 A chain of full-adders used to add 4-bit values.
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(a) Basic NAND half-adder. (b) Basic NOR half-adder.

x y

co

s
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s

co

(c) Simplified NAND half-adder. (d) Simplified NOR half-adder.

Figure 2.15 NAND and NOR gate implementations of a half-adder.

co = x∧ y
s = x⊕ y.

However, the half-adder is only partly useful since in order to add together numbers
larger than 1-bit we need a full-adder circuit that can accept a carry-in as well as
produce a carry-out. The truth table for a full-adder is shown in Table 2.8b. Again
extracting an expression for each of the outputs, this time in terms of x, y and ci we
find

co = (x∧ y)∨ ((x⊕ y)∧ ci)
s = x⊕ y⊕ ci

which are a little more complicated. To simplify these expressions we note that
there is a shared term x⊕ y which we only need one set of logic for. This produces
the circuit shown in Figure 2.13b. Note that the full-adder is essentially two half-
adders joined together. Using such components, we will see later that one can build
a chain of n 1-bit full-adders that is capable of adding together n-bit values. The
basic structure follows that in Figure 2.14 where each of the i full-adders takes bits
i of the two inputs x and y and produces bit i of the result; the carry-out of the i-th
full-adder is fed into the carry-in of (i+1)-th full-adder.

Finally, as an example of how to implement a circuit using only NAND or NOR
gates consider translating the half-adder implementation above. Essentially we just
use the identities discussed previously in place of each gate in the circuit; this is
shown in Figure 2.15a-b. However, once this translation is completed we can start
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x y equ

0 0 1
0 1 0
1 0 0
1 1 1

x y lth

0 0 0
0 1 1
1 0 0
1 1 0

(a) Equality. (b) less than.

Table 2.9 Truth tables for 1-bit comparators.

to simplify the equations, eliminating and sharing logic. The results are shown in
Figure 2.15c-d. We can re-write the expressions for the NOR version of the half-
adder as follows:

co = ¬x ∨ ¬y
s = ¬((¬¬x ∨ ¬y) ∨ (¬x ∨ ¬¬y))

= ¬((x ∨ ¬y) ∨ (¬x ∨ y))
= (x ∨ y) ∨ (¬x ∨ ¬y)

from which we can then share the term ¬x ∨ ¬y between co and s. This reduces the
number of NOR gates used from thirteen in the original, naive translation to five in
the simplified version.

2.2.6.2 Comparators

In the same way as one might want to perform arithmetic on numbers, comparison of
numbers is also a fundamental building block within many circuits. With our adder
circuits, we looked at the idea of addition of 1-bit numbers with a view to adding
n-bit numbers later on. We take the same approach to comparison of numbers by
looking at some very simple circuits for performing 1-bit equality and less than
comparisons; it turns out we can produce all other comparisons from these two.

Table 2.9 shows the truth tables for 1-bit equality and less than comparison
between two numbers x and y. Both operations produce a 1-bit true or false result,
named equ and lth respectively. The tables are self explanatory although maybe a
little odd given we are dealing with 1-bit numbers: for example, reading the table
for less than we have that 0 is not less than 0, 0 is less than 1, 1 is not less than 0
and 1 is not less than 1. Using the truth tables we can easily produce the following
expressions for the two operations:

equ = ¬(x⊕ y)
lth = ¬x∧ y.
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s0 i1 i0 r

0 ? 0 0
0 ? 1 1
1 0 ? 0
1 1 ? 1

s1 s0 i3 i2 i1 i0 r

0 0 ? ? ? 0 0
0 0 ? ? ? 1 1
0 1 ? ? 0 ? 0
0 1 ? ? 1 ? 1
1 0 ? 0 ? ? 0
1 0 ? 1 ? ? 1
1 1 0 ? ? ? 0
1 1 1 ? ? ? 1

(a) 2-way, 1-bit multiplexer. (b) 4-way, 1-bit multiplexer.

Table 2.10 Truth tables for 2-way and 4-way, 1-bit multiplexers.

2.2.6.3 Multiplexers and Demultiplexers

A multiplexer is a component that takes n control inputs and uses them to decide
which one of 2n inputs is fed through to the single output. A demultiplexer does
the opposite, it still takes n control inputs but uses them to decide which one of 2n

outputs is fed with the single input. We say that a multiplexer or demultiplexer is
n-way if it accepts or produces n inputs or outputs, and m-bit if those inputs and
outputs are m bits in size.

Table 2.10a shows the truth table for a 2-way, 1-bit multiplexer with inputs i0 and
i1, a control signal s0 and an output r. The table shows that when s0 = 0 we feed
the value of i0 through to the output, i.e., r = i0, while if s0 = 1 we have that r = i1.
This behaviour is easily implemented using the expression

r = ( ¬s0 ∧ i0 ) ∨
( s0 ∧ i1 )

which is shown diagrammatically in Figure 2.16a.
A natural question arises given this simple starting point, namely how do we ex-

tend the design to produce n-way, m-bit alternatives ? Building an m-bit multiplexer
is easy, we simply have m separate 1-bit multiplexers where multiplexer i takes the
i-th bit of each input and produces the i-th bit of the output. This technique is the
same no matter how many inputs we have and is sometimes termed bit-slicing since
we chop up the work into bit-sized chunks.

We can produce a multiplexer design with double the number of inputs using two
techniques: either produce a large truth table along the same lines as Table 2.10a but
with four inputs and two control signals, or re-use our 2-way multiplexer. Con-
sidering the truth table for a 4-way multiplexer in Table 2.10b, we can derive an
expression for r as
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(a) 2-way, 1-bit multiplexer. (b) 4-way, 1-bit multiplexer.

Figure 2.16 Implementations for 2-way and 4-way, 1-bit multiplexers.
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Figure 2.17 Using cascading to build a 4-way multiplexer from 2-way building blocks.

r = ( ¬s0 ∧ ¬s1 ∧ i0 ) ∨
( s0 ∧ ¬s1 ∧ i1 ) ∨
( ¬s0 ∧ s1 ∧ i2 ) ∨
( s0 ∧ s1 ∧ i3 ) .

This is more complicated than our 2-way multiplexer but still offers easy and ef-
ficient implementation as shown in Figure 2.16b; hopefully it is clear that one can
take this general pattern and extend it to even more inputs. However, in doing so the
truth table and corresponding implementation become more and more complicated
to the point of being unmanageable. To address this issue we can simply re-use
multiplexers with smaller numbers of inputs to build components with more inputs
using a technique called cascading. The idea is to split the large decisional task of
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s0 i r1 r0

0 0 ? 0
0 1 ? 1
1 0 0 ?
1 1 1 ?

s1 s0 i r3 r2 r1 r0

0 0 0 ? ? ? 0
0 0 1 ? ? ? 1
0 1 0 ? ? 0 ?
0 1 1 ? ? 1 ?
1 0 0 ? 0 ? ?
1 0 1 ? 1 ? ?
1 1 0 0 ? ? ?
1 1 1 1 ? ? ?

(a) 2-way, 1-bit demultiplexer. (b) 4-way, 1-bit demultiplexer.

Table 2.11 Truth tables for 2-way and 4-way, 1-bit demultiplexers.

which input to feed through into smaller tasks. Figure 2.17 demonstrates this idea
by building a 4-way multiplexer from 2-way multiplexer building blocks. The con-
trol signal s0 is now used to manage the first two multiplexers; the top one produces
i3 if s0 = 1 or i2 or s0 = 0, the bottom one produces i1 if s0 = 1 or i0 or s0 = 0.
These outputs are fed into a final multiplexer which uses s1 to select the appropriate
input. For example, if s0 = 0 and s1 = 1 the top multiplexer produces i2 while the
bottom one produces i0; the final multiplexer selects i2 and feeds it to the output;
this is what we expect for the given control signals. By using a similar approach one
can construct multiplexers with even more inputs, for example a 16-way component
using 4-way building blocks.

Having discussed multiplexers, demultiplexers are somewhat trivial since they
are essentially just multiplexers in reverse; Table 2.11 details the truth tables for the
2-way and 4-way, 1-bit components which are implemented in Figure 2.18. Note
that the same techniques of bit-slicing and cascading can be applied to demultiplex-
ers as to multiplexers in order to produce n-way, m-bit components.

2.2.6.4 Encoders and Decoders

What we normally called encoder and decoder devices are, roughly speaking,
like specialisations of the multiplexer and demultiplexer devices considered earlier.
Strictly speaking we usually say decoders translate, or map, an n-bit input into one
of 2n possible output values; encoders perform the converse by translating one of 2n

possible input values into an n-bit output. Of course, some inputs or outputs might
be ignored in order to relax this restriction; more generally we say an encoder or
decoder is an n-to-m device if it has n inputs and m outputs, a 4-to-2 encoder for ex-
ample. Some decoders (resp. encoders) demand that exactly one bit of their output
(resp. input) is 1 at a time, these are normally called one-of-many devices although
the term is often dropped when the assumption is that all devices are one-of-many.
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(a) 2-way, 1-bit demultiplexer. (b) 4-way, 1-bit demultiplexer.

Figure 2.18 Implementations for 2-way and 4-way, 1-bit demultiplexers.

i1 i0 r3 r2 r1 r0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

i3 i2 i1 i0 r1 r0

0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

(a) 2-input one-of-many decoder. (b) 2-output one-of-many encoder.

Table 2.12 Truth tables for a simple 2-input decoder and 2-output encoder.

Table 2.12a details the truth table for a simple one-of-many decoder circuit; no-
tice that the structure is similar to a demultiplexer with the inputs tied to suitable
values. This type of decoder is often used to control other circuits. Consider the
case of having say four circuits in a system, only one of which should be active at a
time depending on some control value. A decoder could implement this behaviour
by taking the control value as input and driving 1 onto an output to activate the as-
sociated circuit. The decoder drives 1 onto the output number associated with the
inputs i0 and i1. That is, if one considers the 2-bit value i = (i1, i0), the decoder
drives 1 onto output number i and 0 onto all other outputs.

Considering this example again, there may be occasions where no circuit should
be active; it is therefore typical to equip the decoder with an enable input which,
when set to 0, forces all outputs to 0 thus disabling any control behaviour. This is
easily realised by adding an extra input en to the circuit which is ANDed with the
outputs. Expressions for r0 . . .r3 can be written as
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(a) 2-input one-of-many decoder. (b) 2-output one-of-many encoder.

Figure 2.19 Implementation of a simple 2-input decoder and 2-output encoder.

r0 = en ∧ ¬i0 ∧ ¬i1
r1 = en ∧ i0 ∧ ¬i1
r2 = en ∧ ¬i0 ∧ i1
r3 = en ∧ i0 ∧ i1

with the resulting implementation shown in Figure 2.19a.
Table 2.12a details the truth table for the corresponding encoder circuit which is

implemented in Figure 2.19a. The idea is to perform the converse translation: take
the inputs i = (i3, i2, i1, i0) and decide which value the decoder would have mapped
them to. This is somewhat easier to construct because the many-of-one property
ensures exactly one of i0 . . . i3 is equal to 1; expressions for r0 and r1 can be written
as

r0 = en∧ (i1 ∨ i3)
r1 = en∧ (i2 ∨ i3)

with the resulting implementation shown in Figure 2.19b.
In this context, it is also useful to consider what is termed a priority encoder. In

a one-of-many encoder, exactly one input bit is allowed to be 1 but in practise this
is hard to ensure. To cope with this fact, we might like to give some priority to the
various possibilities. For example, if both bits i0 = 1 and i1 = 1 then the normal one-
of-many encoder fails, we might like to say for example that we give priority to i1
in this case and set the output accordingly. More generally, we are saying that input
bit i j+1 has a higher priority that input bit i j (although other schemes are obviously
possible). Reading the truth table detailed in Table 2.13 enforces this relationship.
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i3 i2 i1 i0 r1 r0

0 0 0 ? 0 0
0 0 1 ? 0 1
0 1 ? ? 1 0
1 ? ? ? 1 1

Table 2.13 Truth table for a simple 2-output priority encoder.

en

r0

r1

i3 i2 i1

Figure 2.20 Implementation of 2-output priority encoder.

Take the bottom row for example: although potentially i0 = 1, i1 = 1 or i2 = 1 the
output gives priority to i3. The resulting implementation of the expressions

r0 = (i1 ∧¬i2 ∧¬i3) ∨ (i3)
r1 = (i2 ∧¬i3) ∨ (i3)

is shown in Figure 2.20.
As a concrete example, consider the task of controlling a 7-segment LED as

found in many calculators and shown in Figure 2.21. The device has seven segments
labelled r0 . . .r6 which are controlled individually in order to create a suitable image:
in our case we deal only with images related to decimal digits 0 . . .9. We need n = 4
bits to represent a decimal digit. Therefore a decoder to translate from a digit to
the corresponding image will have a 4-bit input and 24 = 16 outputs; an encoder to
perform the reverse translation from an image to the corresponding digit will have a
16-bit input and 4-bit output.
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r0

r6

r3

r 5 r 1

r 4 r 2

Figure 2.21 A 7-segment LED.

i3 i2 i1 i0 r6 r5 r4 r3 r2 r1 r0

0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 0 0 0 1 1 0
0 0 1 0 1 0 1 1 0 1 1
0 0 1 1 1 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1 0
0 1 0 1 1 1 0 1 1 0 1
0 1 1 0 1 1 1 1 1 0 1
0 1 1 1 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 0 0 1 1 1

Table 2.14 Truth table for a 7-segment LED decoder.

Table 2.14 describes a truth table for a decoder which could be used to control
the LED. It leaves out unused input and output combinations for brevity. For ex-
ample, we do not use the possible digits 10 . . .15 and some of the potential segment
numbers are not used; there are no segments r7 . . .r15. In reality, these relate to don’t
care states. To implement the decoder, one can derive a logical expression for each
of the outputs via a Karnaugh map or similar technique
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Figure 2.22 A flawed, nonsensical example of a 4-bit counter where we neither initialise the value
x or allow it to settle before incrementing it.

r0 = i3 ∨ i1 ∨ (i0 ∧ i2) ∨ (¬i0 ∧¬i2)
r1 = i3 ∨ ¬i2 ∨ (i0 ∧ i1) ∨ (¬i0 ∧¬i1)
r2 = i3 ∨ ¬i1 ∨ (¬i3 ∧ i2) ∨ (i0 ∧ i1)
r3 = (¬i0 ∧¬i2) ∨ (¬i0 ∧ i1) ∨ (i0 ∧¬i1 ∧ i2) ∨ (i0 ∧ i1 ∧¬i2)
r4 = (¬i0 ∧¬i2) ∨ (¬i0 ∧ i1)
r5 = i3 ∨ (¬i0 ∧¬i1) ∨ (¬i1 ∧ i2) ∨ (¬i0 ∧ i2)
r6 = (¬i0 ∧ i1) ∨ (¬i2 ∧ i3) ∨ (¬i1 ∧ i2) ∨ (i1 ∧¬i2 ∧¬i3)

Implementation of the decoder is then simply implementation of the expressions
with suitable sharing of common terms to reduce the number of gates required.

2.3 Clocked and Stateful Logic

Combinatorial logic is continuous in the sense that the output is always being com-
puted, subject to propagation delay, as a product of the inputs. One of the limitations
of this sort of component is that it cannot store state, it has no memory. As an exam-
ple of why this could be an issue, consider the problem of implementing a counter
that repeatedly computes x ← x + 1 for some 4-bit value x. That is, it takes x, in-
crements it and stores the result back into the value x ready to start again. Given
we already have a 1-bit adder component, a naive first attempt at realising such an
operation might be to build the component shown in Figure 2.22. Essentially we
take the value x, feed it into the adder and loop the adder output back into the input
ready to start again.

There are two major problems with this approach. Firstly, we have not given x
and initial value so it is unclear what the input to the adder will be when we start.
Secondly and more importantly, we never actually store the value x. The value fed
to the input of the adder is continuously being updated by the output; as the output
changes the input changes and so the output changes again, the circuit is never able
to settle into a consistent state. These problems highlight a big difference between
designing hardware and writing software. In a language such as C, we are given
variables which can store or remember values for us; sequences of statements are
guaranteed to execute in order with each only being executed once previous ones
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clock pulse

positive edge negative edge

negative level positive levelclock cycle

Figure 2.23 Features of a clock signal.

have completed. This section aims to address this imbalance by showing how we
can build components to store values and how to perform sequences of operations
in a controlled manner.

2.3.1 Clocks

In order to execute a sequence of operations correctly, we need some means of con-
trolling and synchronising them. The concept of a clock is central to achieving this.
When we say clock in digital circuit design we usually mean a signal that oscillates
between 0 and 1 in a regular fashion rather than something that tells the time. This
sort of clock is more like a metronome; ticks of the clock act as synchronising events
that keep other components in step with each other.

A clock signal is just the same as any other value within a logic design. As such,
there are several items of terminology that relate to general values but are best intro-
duced in the context of clocks. Figure 2.23 details these features. Firstly, we assume
the clock signal approximates a square wave so the signal is either 0 or 1. The phys-
ical characteristics of these components mean this is dubious in reality (the corners
of the signal can be “rounded”), but suffices for the discussion here. Transitions of
the clock from 0 to 1 are called positive clock edges, transitions from 1 to 0 are
negative clock edges. At any point while the clock is 1 we say it is at a positive
level, while the clock is 0 it is at a negative level. The interval between one posi-
tive or negative edge and the next positive or negative edge respectively is termed a
clock cycle; the time taken for one clock cycle to happen is the clock period and
the number of clock cycles that occur each second is the clock frequency or clock
rate. The region between a positive and negative clock edge is termed a clock pulse.
Note that the time the clock signal spends at positive and negative levels need not
be equal; the term duty cycle is used to describe the ratio between these times. The
clocks we use will typically have a duty cycle of a half meaning the signal is at a
positive level for the same time it is at a negative level.

The basic idea in using clocks to synchronise events within a circuit is that on a
clock edge we present values to our combinatorial logic in order to do some com-
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C3 C2 C1 C0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Table 2.15 Values of bits in a 4-bit counter as used for clock division.

putation with them. These values are only updated on clock edges, as a result the
combinatorial logic has one clock cycle to settle into a stable state; note that this
differs from the flawed example above where values are updated instantaneously.
As such, the faster our clock frequency is, the faster we perform computation. How-
ever, there are two limits to how a given circuit can be clocked. Firstly, since the
combinatorial logic must compute a new result within one clock cycle, the clock pe-
riod must be greater than the critical path of that logic. Recall that the critical path
dominates the time taken to compute a result, if it is longer than the clock period
then the result required to update our value with will not be ready. This is a crucial
fact: to perform computation at high speeds it is vital that the critical path of the
combinatorial components is minimised so the clock frequency can be maximised.
Secondly, we must consider the effects of propagation delay in wires to prevent a
phenomenon called clock skew. Clock skew is simply the fact that if a clock signal
arrives at one point along a slightly longer wire than another point, the times of ar-
rival will differ slightly; the clocks will be skewed or unsynchronised. Depending
on the situation this might present a problem because the circuit components are no
longer perfectly in step.

Although the clock is just any other value, we need it to oscillate in a regular and
reliable manner. As such, clock signals are usually generated externally to a given
circuit and fed into it. A common method for generating the required behaviour is
to use a piezoelectric crystal which, when a voltage is applied across it, oscillates
according to a natural frequency related to the physical characteristics of the crys-
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Figure 2.24 Three variations of SR-latch.

tal. Roughly speaking, one can use the resulting electrical field generated by this
oscillation as the clock signal.

Multiplying a reference clock, or increasing the frequency, is best done using a
dedicated component and is somewhat beyond the scope of discussion here. Divid-
ing a reference clock, or decreasing the frequency, is achieved much more easily.
Imagine that on each positive edge of our original clock, a 4-bit counter C is in-
cremented. Table 2.15 shows the progression of the counter with row i representing
the value of bits in C after i clock edges have passed. The value of bit C0 oscillates
from 0 to 1 at half the same speed as the original clock; the value of bit C1 takes
twice as long again, it oscillates from 0 to 1 at a quarter of the speed as the original
clock. Thus by using our counter and examining specific bits, we have created a
component which can divide the clock frequency by powers-of-two. Specifically, if
we want to divide the clock by 2 j (with j > 0), we use a j-bit counter and examine
the ( j−1)-th bit.

2.3.2 Latches

The first step toward building a component which can remember or store values
is somewhat counter-intuitive. We start by looking at the Set-Reset latch, usually
called an SR-latch, as shown in Figure 2.24a. The circuit has two inputs called S
and R which are the set and reset signals, and two outputs Q and ¬Q which are
always the inverse of each other. The circuit design seems a little odd compared to
what we have seen so far because we have introduced a sort of loop; the outputs of
each NOR gate are wired to the input of the other. The result of this odd design is that
the outputs of the circuit are not uniquely defined by the inputs. For example, when
we set the inputs to S = 0 and R = 0, either of the two situations in Figure 2.25a-b
is valid; the circuit is in a stable state in both cases. When we set the inputs to S = 1
and R = 0, we force the latch into the state shown in Figure 2.25c; Q is set to 1 and
¬Q to 0 whatever they were before because the top NOR gate will have to output 0.
Conversely, when we set the inputs to S = 0 and R = 1 we force the latch into the
state shown in Figure 2.25d; Q is set to 0 and ¬Q to 1 because the bottom NOR gate
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Figure 2.25 Stable states for the SR-latch.

current next
S R Q ¬Q Q ¬Q

0 0 0 1 0 1
0 0 1 0 1 0
0 1 ? ? 0 1
1 0 ? ? 1 0
1 1 ? ? ? ?

current next
J K Q ¬Q Q ¬Q

0 0 0 1 0 1
0 0 1 0 1 0
0 1 ? ? 0 1
1 0 ? ? 1 0
1 1 0 1 1 0
1 1 1 0 0 1

(a) SR-latch (b) JK-latch

Table 2.16 Truth tables for an SR-latch and a JK-latch.

will have to output 0. The final issue is what happens if we set the inputs to S = 1
and R = 1. In this case, the circuit enters a contradictory or undefined state: both
outputs should become 0, yet we know they must also be the inverse of each other.

Defining the metastable state S = 1,R = 1 as unknown, the behaviour of the SR-
latch can be described by Table 2.16a. Note that this differs somewhat from previous
truth tables because there is some notion of state in Q and ¬Q. Their value when
they are next latched depends partly on their current value. Essentially we have a
component that we can set into a defined state using the set and reset inputs: if we
want the output Q to be 1 we set S = 1,R = 0 for a while; if we want the output to
be 0 we set S = 0,R = 1 for a while. The key thing to notice is that after waiting a
while, when we return the inputs to S = 0,R = 0 the circuit remembers which of S
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Figure 2.26 Implementation of a master-slave JK-latch.

and R was set last. It offers a means of storing or latching a 1-bit value provided we
control it correctly.

One problem with the basic SR-latch design is that it cannot currently be synchro-
nised with other components in the system, i.e., the latched value can be changed
at any time. It is often convenient to constrain when the value can be changed; as a
result we introduce the variation shown in Figure 2.24b. The basic idea is to AND
an enable signal en with the S and R inputs to provide the latch inputs. By doing so,
the latch is only sensitive to changes in S and R during positive levels of en; when
en = 0 it does not matter what S and R are, the AND gates simply output 0. Since
en will often be a clock signal, but is not required to be, we call this component a
clocked SR-latch. In this context, the latched value can only change value during
the positive phase of a clock cycle.

As a side note, we usually call components which are sensitive to inputs during
positive or negative levels of an enable signal active high and active low respec-
tively. The choice of which to use is usually dictated by cost of implementation and
ease of integration with other components: there is no real advantage in using one
over the other from any other point of view.

Using either an active high or active low approach, a further problem with our
clocked SR-latch is the potential to enter an unattractive, metastable state when
S = 1 and R = 1. The easiest way to avoid this situation is to ensure it never occurs;
we can do this by allowing one input D and using S = D and R = ¬D as inputs to
a clocked latch. This approach is shown in Figure 2.24c. Clearly we can now never
have that S = 1 while R = 1 and so avoid the potential problem. However, we can
also not have that S = 0 while R = 0 which was the state which remembered the
input. This design, termed a D-type latch, is a component which operates such that
when D = 1 and en = 1 the output Q = 1, while if D = 0 and en = 1 the output
Q = 0. If en = 0 the D-type latch simply maintains the current state. We now have a
reliable 1-bit memory. When we want to latch a new value we place it on the input
D and send a clock pulse into en; the currently stored value is always available on
the output Q.

An alternative approach to solving the metastable state problem is to use the
input S = 1, R = 1 for some other purpose. The JK-latch is an example of this
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(a) SR-latch. (b) D-type latch. (c) JK-latch.

Figure 2.27 Symbolic representations of different latches.

which uses the state to toggle the outputs Q and ¬Q; when S = 1 and R = 1 the
outputs swap over as described in Table 2.16b. Although other methods exist, the
classic implementation of a JK-latch uses two SR-latches in series: the first is called
the master while the second is called the slave, an arrangement termed a master-
slave JK-latch and is shown in Figure 2.26. By inverting en and feeding the result
to the slave SR-latch, we enable the master SR-latch during positive levels of the
enable signal while disabling the slave. When the enable signal changes, the value
held in the master SR-latch is transferred to the slave. Roughly speaking, since there
is no longer a feedback path directly from one latch into itself, the metastable state
is eliminated. Or, by feeding Q and ¬Q back into the input AND gates we can never
feed S = 1 and R = 1 because at least one of Q and ¬Q will be 0 in the slave latch.

We typically use the symbols in Figure 2.27 to represent the different latches
presented here so as to simplify the description of large designs. It is common to
further simplify the symbols by omitting ¬Q unless it is explicitly required.

2.3.3 Flip-Flops

Latches are level triggered in the sense that their value can be changed when the
enable signal is at a positive or negative level depending on whether then are ac-
tive high or low. This partly solves the problem of synchronisation but it is often
attractive to constrain things even further and say that the value should only be able
to change at a positive or negative edge rather than at any time during the positive
or negative level. Altering our basic latch component so that it is edge triggered
produces a variation called a flip-flop.

A basic approach for changing a latch into a flip-flop is to construct a pulse
generator circuit which remains at a high-level for a very short period of time after
the enable signal goes high. We use this pulse generator to drive a level triggered
latch; the reasoning is that if the pulse is short enough, the active period of the latch
is essentially limited to the positive edge of the enable signal. Figure 2.28 shows an
implementation of such a device while Figure 2.29 details the resulting behaviour
assuming propagation delays for NOT and AND gates are again 10ns and 20ns
respectively. Propagation in the NOT gate is what makes the circuit work, when en



2.3 Clocked and Stateful Logic 81

en

a b

Figure 2.28 Implementation of a simple pulse generator.

is set to 1 at time t = 10ns there is a 10ns delay before a changes. This delay means
that for a short time equal to the propagation delay of the NOT gate, both en and a are
equal to 1 meaning that b is also 1. The change in b is delayed by 20ns but the short
pulse we are looking for is still evident; the pulse width is equal to the propagation
delay of the NOT gate, it is skewed by a distance equal to the propagation delay of
the AND gate. Notice that when en is set to 0 again at time t = 70ns we do not get a
similar pulse: this generator produces positive edge triggered devices when coupled
to it. Thus, as long as the propagation delay of the NOT gate is small enough, we
can alter, for example, a standard D-type latch to produce an edge triggered D-type
flip-flop shown in Figure 2.30.

We again use symbols, shown in Figure 2.31, to represent the different flip-flop
types. The only difference from the symbol for the corresponding latch is the inclu-
sion of a vee-shaped marker on the en input which denotes edge triggering rather
than level triggering.

2.3.4 State Machines

Definition 31. A Finite State Machine (FSM) is formally defined by a number of
parts:

• Σ , an input alphabet.
• Q, a finite set of states.
• q0 ∈ Q, a start state.
• A ⊆ Q, a set of accepting states.
• A function δ : Q×Σ → Q which we call the transition function.

More simply an FSM is just a directed graph where moving between nodes (which
represent each state) means consuming the input on the corresponding edge. As an
example, consider a simple state machine that describes a vending machine that sells
chocolate bars. The machine accepts tokens worth 10 or 20 units but does not give
change. When the total value of tokens entered reaches 30 units it delivers a choco-
late bar but it does not give change; the exact amount must be entered otherwise an
error occurs, all tokens are ejected and we start afresh.

From this description we can start defining the state machine components. The
input alphabet is simply the possible input values, in this case the different tokens
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Figure 2.29 Behavioural time-line for a simple pulse generator.
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Figure 2.31 Symbolic representations of different flip-flops.

0̂

1̂0

2̂0

3̂0

⊥

10

20

10

20

10

20

ε

ε

Figure 2.32 A graph describing the FSM for a chocolate vending machine.

such that Σ = {10,20}. The set of states the machine can be in is easy to imagine: it
can either have tokens totalling 0, 10, 20 or 30 units in it or be in the error state which
we denote by ⊥. Thus, using a hat over numbers to differentiate between states and
input token values, we have that Q = {0̂, 1̂0, 2̂0, 3̂0,⊥} where q0 = 0̂ since we start
with 0 tokens in the machine. The accepting state is 3̂0 since this represents the
state where the user has entered a valid sequence of tokens and obtains a chocolate
bar. Finally we need to define the transition function δ which is best described
diagrammatically as in Figure 2.32. From this we see that, for example, if we are in
state 2̂0 and accept a 10 unit token we end up in state 3̂0, while if we accept a 20
unit token we end up in the error state. Note that the input marked ε is the empty
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Figure 2.33 The general structure of an FSM in digital logic.
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Figure 2.34 A corrected example of a 4-bit counter.

input; that is, with no input we can move between the accepting or error states back
into the start state thus resetting the machine.

From this description it should start to become obvious why state machines play
a big part in digital logic designs. Given we now have components that allow us to
remember some state, as long as we can construct combinatorial logic components
to compute the transition function δ , and a clock to synchronise components, we can
think of a design that allows us to step through sequences of operations. A general
structure for digital logic state machines is shown in Figure 2.33. A block of edge
triggered flip-flops is used to store the current state; this is fed into two combinatorial
components whose task it is to update the state by applying the transition function
and compute any outputs based on the state we are in. On each positive clock edge
our flip-flops take the next state and store it, overwriting the current state. Thus the
design steps into a new state under control of the clock.

Using this general structure we can finally solve the problem outlined at the be-
ginning of the section: how to build a 4-bit counter. Clearly we need four flip-flops
to store the 4-bit state of our counter; these constitute the state portion of the general
structure. We do not require any additional output from the circuit, simply that it cy-
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State Next State Main Road Annex Road

0 1 green red
1 2 amber red
2 3 red amber
3 4 red green
4 5 red amber
5 0 amber red

Table 2.17 Description of the traffic light controller state machine.

S2 S1 S0 S′
2 S′

1 S′
0 Mr Ma Mg Ar Aa Ag

0 0 0 0 0 1 0 0 1 1 0 0
0 0 1 0 1 0 0 1 0 1 0 0
0 1 0 0 1 1 1 0 0 0 1 0
0 1 1 1 0 0 1 0 0 0 0 1
1 0 0 1 0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 1 0 1 0 0

Table 2.18 Truth table for the traffic light controller state machine.

cles through values in turn. Thus we only need a simple update portion built from
a 4-bit adder as before. Figure 2.34 demonstrates the final design. When the reset
signal rst is 0, the counter is set to 0 on the following positive clock edge. When the
reset signal is 1, the counter is updated on each positive clock edge by feeding the
current value through the adder. Since there is a whole clock cycle between present-
ing the current value and storing the new value, the adder can settle in a stable state
and we get the correct result.

As a more complete example of state machines in this context, consider the prob-
lem of controlling a set of traffic lights which prevent motorists on a main road
crashing into those turning on to it from an annex road. The idea is that while traffic
is set flowing on the main road via a green light or go sign, the annex road drivers
should be shown a red light or stop sign. Eventually drivers on the annex road get
a turn and the roles are reversed. An amber light is added to the system to offer a
period of changeover where both roads are warned that the lights are changing.

Table 2.17 offers a description of the problem. It describes a state machine with
six states and, given a current state, which state we should move into next: there is no
input in this machine, each of the transitions in the function δ being ε type and based
only on the state we are currently in. Furthermore, it shows what lights should be on
given the current state. So if we are in state 0, for example, we should move to state
1 next and the main and annex road lights should be green and red respectively. We
could draw a graph of the state machine but it would be a bit boring since it simply
cycles through the six inputs in sequence.
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The states can be represented as 3-bit integers since there are six states and 23 >
6. We use S0, S1 and S2 to denote the current state bits and S′

0, S′
1 and S′

2 to denote the
next state bits. There are nine outputs from our combinatorial logic, three outputs
for the next state and six outputs to represent the red, amber and green lights on
each of the roads. We use Mr, Ma and Mg to denote red, amber and green lights on
the main road and Ar, Aa and Ag to denote red, amber and green lights on the annex
road.

As a side note, the encoding of our states is important in some cases; we have sim-
ply used the binary representation of each state number but more involved schemes
exist. For example, one could use a Gray code, mentioned earlier when we intro-
duced Karnaugh maps. Using a Gray code to represent states means that only one
bit changes between adjacent states: this might reduce transistor switching and thus
improve the power efficiency of our design. Alternatively one can consider a tech-
nique called one-hot coding. Essentially this uses one flip-flop for each state; when
the i-th flip-flop stores 1, we are in state i. The state machine is reset by setting all
flip-flops to 0 except the first flip-flop which is set to 1 to store the hot bit. The flip-
flops are chained together so that on each clock edge the hot bit is passed to the next
flip-flop and we transfer from state to state. One advantage of this approach is that
decoding which state we are in is made much easier; one disadvantage is that we
typically use more logic to store the state.

From this tabular description of the traffic light problem we can derive a truth
table, shown in Table 2.18, for each of our outputs given the current state. Note that
for each light we assume a signal of 1 turns the light on while a signal of 0 turns it
off. Using this truth table we can derive expressions for the next state in terms of the
current state:

S′
0 = ( ¬S0 )

S′
1 = ( S0 ∧ ¬S1 ∧ ¬S2 ) ∨

( ¬S0 ∧ S1 ∧ ¬S2 )
S′

2 = ( S0 ∧ S1 ∧ ¬S2 ) ∨
( ¬S0 ∧ ¬S1 ∧ S2 ) .

Note that if our state machine transition function depended on some input as well as
the current state, our expressions above would have to include that input in order to
produce the correct next state given the current one. Either way, we can do a similar
thing to control the traffic light colours on each road:
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Mr = ( ¬S0 ∧ S1 ∧ ¬S2 ) ∨
( S0 ∧ S1 ∧ ¬S2 ) ∨
( ¬S0 ∧ ¬S1 ∧ S2 )

Ma = ( S0 ∧ ¬S1 ∧ ¬S2 ) ∨
( S0 ∧ ¬S1 ∧ S2 )

Mg = ( ¬S0 ∧ ¬S1 ∧ ¬S2 )

Ar = ( ¬S0 ∧ ¬S1 ∧ ¬S2 ) ∨
( S0 ∧ ¬S1 ∧ ¬S2 ) ∨
( S0 ∧ ¬S1 ∧ S2 )

Aa = ( ¬S0 ∧ S1 ∧ ¬S2 ) ∨
( ¬S0 ∧ ¬S1 ∧ S2 )

Ag = ( S0 ∧ S1 ∧ ¬S2 ) .

Thus the current state drives everything; we feed S0, S1 and S2 into two components,
one of which produces the next state we need to move into and one which produces
signals to control the lights. Clearly by sharing terms between the state update and
light components we can reduce the cost of our design significantly.

2.4 Implementation and Fabrication Technologies

Designing a digital circuit is roughly akin to writing a program: once we have writ-
ten a program, one usually intends to use it to perform some real task by executing
it on a computer. The same is true of circuits, except that we first need to realise
them somehow using physical components in order to use them. Although this topic
is somewhat beyond the scope of this book, it is useful to understand mechanisms
by which this is possible: even if that understanding is at a high-level, it can help to
connect theoretical concepts with their practical realisation.

2.4.1 Silicon Fabrication

2.4.1.1 Lithography

The construction of semiconductor-based circuitry is very similar to how pictures
are printed; essentially it involves controlled use of chemical processes. The act
of printing pictures onto a surface is termed lithography and has been used for a
couple of centuries to produce posters, maps and so on. The basic idea is to coat
the surface, which we usually call the substrate, with a photosensitive chemical.
We then expose the substrate to light projected through a negative, or mask, of
the required image; the end result is that a representation of the original image is
left on the substrate where the light reacts with the photosensitive chemical. After
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Figure 2.35 A silicon wafer housing many instances of an INMOS T400 processor design; see
finger tips for scale ! (Copyright remains with photographer, photographer: James Irwin, source:
personal communication)

washing the substrate, one can treat it with further chemicals so that the treated areas
representing the original image are able to accept inks while the rest of the substrate
cannot.

The analogous term in the context of semiconductors is photo-lithography and
roughly involves similar steps. We again start with a substrate, which is usually a
wafer of silicon. The wafer is circular because of the process of machining it from a
synthetic ingot, or boule, of very pure silicon. After being cut into shape, the wafer
is polished to produce a surface suitable for the next stage. We can now coat it with
a layer of base material we wish to work with, for example a doped silicon or metal.

We then coat the whole thing with a photosensitive chemical, usually called a
photo-resist. Two types exist, a positive one which hardens when hidden from light
and a negative one which hardens when exposed to light. By projecting a mask of the
circuit onto the result, one can harden the photo-resist so that only the required areas
are covered with a hardened covering. After baking the result to fix the hardened
photo-resist, and etching to remove the surplus base material, one is left with a
layer of the base material only where dictated by the mask. A further stage of etching
removes the hardened photo-resist completes the process for this layer. Many layers
are required to produce the different layers required in a typical circuit; for example,
we might need layers of N-type and P-type semiconductor and a metal layer to
produce transistors. Using photo-lithography to produce a CMOS-based circuit, for
example, thus requires many rounds of processing.



2.4 Implementation and Fabrication Technologies 89

Figure 2.36 Bonding wires connected to a high quality gold pad. (Public domain
image, photographer: Unknown, source: http://en.wikipedia.org/wiki/Image:
Wirebond-ballbond.jpg)

2.4.1.2 Packaging

A major advantage of lithography is that one can produce accurate results across
the whole wafer in one go. As such, one would typically produce many individual
but identical circuits on the same wafer; each circuit instance is called a die. The
next step in manufacture is to subject the wafer to a series of tests to ensure the
fabrication process has been successful. Some dies will naturally be defective due
to the circular shape of the wafer and typically rectangular shape of the dies; some
dies will only represent half a circuit ! More importantly, since the manufacturing
process is imperfect even complete dies can be operationally defective. Some circuit
designs will incorporate dedicated test circuitry to aid this process. The ratio of
intended dies to those that actually work is called the yield; clearly a high yield is
attractive since defective circuits represent lost income.

The final step is to cut out each die from the wafer and package the working
components. Packaging involves mounting the silicon circuit on a plastic base and
connecting the tiny circuit inputs and outputs to externally accessible pins or pads
with high quality bonding wires. The external pins allow the circuit to be interfaced
with the outside world, the final component can thus be integrated within a larger
design and forms what we commonly call a microchip or simply a chip. Large or
power-hungry microchips are often complemented with a heat sink and fan which
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Figure 2.37 A massive heatsink (roughly 8”× 4”× 1.5”) sat on top of a 667 MHz DEC Alpha
EV67 (21264A) processor; such aggressive cooling allowed the processor to be run at higher clock
speeds than suggested ! (Copyright remains with photographer, photographer: James Irwin, source:
personal communication)

draws heat away and allow it to more easily operate within physical limits of the
constituent materials.

2.4.2 Programmable Logic Arrays

A Programmable Logic Array (PLA) allows one to implement most combinato-
rial logic functions from a single, generic device. The basic idea is that the PLA
forms a network of AND and OR gates. Considering an AND-OR type PLA as an
example, the first network, or plane, allows one to implement minterms using a
set of AND gates. These minterms are fed into a second plane of OR gates which
implement the SoP expression for the required function. An OR-AND type PLA
reverses the ordering of the planes of gates and thus allows implementation of PoS
expressions.

More than one function that uses the same set of inputs can be implemented by
the same PLA in either case. However, the limit in terms of both numbers of input
and output and design complexity, is governed by the number of gates and wires one
can fit into each plane. Figure 2.38a shows a diagram of a clean AND-OR type PLA
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(a) A clean PLA. (b) A PLA configured as a half-adder.

Figure 2.38 Implementations of a clean and a configured PLA.

device with three inputs and five outputs. Notice how we construct the inverse of
each input and feed wires across the plane so that they can be connected to produce
the required logic function.

To program or configure a PLA so that it computes the required function, one
starts with a generic, clean device with no connections on the wires. For an AND-
OR type device, connection of the wires, by filling in the black dots on the diagram,
forms the minterms in the AND plane and collects them in the OR plane. From a
physical perspective, this is done by manipulating components placed at the connec-
tion points. Consider the placement of a fuse at each connection point or junction.
Normally this component would act as a conductive material somewhat like a wire;
when the fuse is blown using some directed energy, it becomes a resistive material.
Thus, to form the right connections on a PLA one simply blows all the fuses where
no connection is required. Alternatively, one can consider an antifuse which acts in
the opposite way to a fuse: normally it is a resistor but when blown it is a conduc-
tor. Using antifuses at each junction means the configuration can simply blow those
antifuses at the junctions where a connection is required. Figure 2.38b shows the
originally clean PLA configured to act as a half-adder. We have that i0 and i1 are the
inputs while r0 is the carry-out and r1 is the sum.

PLA devices based on fuses and antifuses are termed one-time-programmable
since once the components at each junction are blown, they cannot be unblown: the
device can only be configured once. However, the advantage of a PLA is the gener-
ality it offers. That is, one can take a single PLA component and easily implement
most combinatorial functions: no costly silicon fabrication is required.
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Figure 2.39 Implementation of a basic FPGA logic block.

2.4.3 Field Programmable Gate Arrays

The problems of one-time-programmable PLA devices are clear: prototyping logic
designs can be costly since any mistake is terminal and the device can only ever
be used for one task which, for large designs, means more cost when redundant
devices are left idle. A Field Programmable Gate Array (FPGA) is one type of
device that acts to solve this problem. Essentially, the idea of an FPGA is to offer a
many-time-programmable device; the FPGA can be configured with one design and
then re-configured with another design at a later date.

Roughly, an FPGA is built from a mesh of logic blocks. Each block can be con-
figured to perform a specific, although limited, range of logic functions. Typical
logic blocks might contain an n-input, 1-output Look-Up Table (LUT). The LUT
operation is simple: one forms an integer index i from the n inputs, looks-up item i
in a table and returns this as the result. By filling the table with the required outputs
for each input, the LUT can implement any n-input, 1-output logic function. Along
side each LUT we typically find one or more flip-flops to enable devices with mem-
ory to be constructed. Most FPGAs also offer a small number of specialist logic
blocks which incorporate high-performance versions of common circuits such as
adders or even small processors. Figure 2.39 details a simple logic block consisting
of a 4-input LUT and a D-type flip-flop; this is typical of many FPGA architectures.

Connections between the logic blocks in the mesh are formed in a similar way to
a PLA in the sense that a component is placed at each connection junction. However,
the FPGA junctions are re-configurable switches that can be turned on and off as
required rather than blown in a one-off act. The idea is that by configuring each
logic block to perform the right task and configuring connections between them,
one can have the mesh compute both combinatorial and stateful logic circuits. For
example, with our simple logic block above the configuration would fill the LUT
with correct values and initialise the select input of the multiplexer with the right
value so the block performs the right role. Connections between the logic blocks are
then configured so that they interconnect and form the required circuit.

FPGA devices typically operate more slowly than custom silicon and use more
power. As such, they are often used as a prototyping device for designs which will
eventually be fabricated using a more high-performance technology. Further, in ap-
plications where debugging and updating hardware is as essential as software the
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FPGA can offer significant advantages. Use of FPGA devices in mission-critical
applications such as space exploration is commonplace: it turns out to be exception-
ally useful to be able to remotely fix bugs in ones hardware rather than write off a
multi-million pound satellite which is orbiting Mars and hence out of the reach of
any local repair men !

2.5 Further Reading

• T.L. Floyd.
Digital Fundamentals.
Prentice-Hall, 2005. ISBN: 0-131-97255-3.

• D. Harris and S. Harris.
Digital Design and Computer Architecture: From Gates to Processors.
Morgan-Kaufmann, 2007. ISBN: 0-123-70497-9.

• C. Petzold.
Code: Hidden Language of Computer Hardware and Software.
Microsoft Press, 2000. ISBN: 0-735-61131-9.

• C. Roth.
Fundamentals of Logic Design.
Brooks-Cole, 2003. ISBN: 0-534-37804-8.

• A.S. Tanenbaum.
Structured Computer Organisation.
Prentice-Hall, 2005. ISBN: 0-131-48521-0.

2.6 Example Questions

5. a. Describe how N-type and P-type MOSFET transistors are constructed using
silicon and how they operate as switches.

b. Draw a diagram to show how N-type and P-type MOSFET transistors can be
used to implement a NAND gate. Show your design works by describing the
transistor states for each input combination.

6. Given that ? is the don’t care state, consider the following truth table which de-
scribes a function p with four inputs (a, b, c and d) and two outputs (e and f ):
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a b c d e f a b c d e f
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0 0 1 0 0
0 0 1 0 1 0 1 0 1 0 0 1
0 0 1 1 ? ? 1 0 1 1 ? ?
0 1 0 0 0 1 1 1 0 0 ? ?
0 1 0 1 1 0 1 1 0 1 ? ?
0 1 1 0 0 0 1 1 1 0 ? ?
0 1 1 1 ? ? 1 1 1 1 ? ?

a. From the truth table above, write down the corresponding sum of products (SoP)
equations for e and f .

b. Simplify the two SoP equations so that they use the minimum number of logic
gates possible. You can assume the two equations can share logic.

7. Consider the following circuit where the propagation delay of logic gates in the
circuit are NOT= 10 ns; AND= 20 ns; OR= 20 ns; XOR= 60 ns.

c

b

d

b

a

c

d

a

c

d

e

a. Draw a Karnaugh map for this circuit and derive a sum of products (SoP) expres-
sion for the result.

b. Describe advantages and disadvantages of your SoP expression and the dynamic
behaviour it produces.

c. If the circuit is used as combinatorial logic within a clocked system, what is the
maximum clock speed of the system ?

8. You are tasked with building a device for a casino based gambling game. The
device must check when three consecutive heads are generated by a random coin
flipper. Design a hardware circuit which will output 1 when three consecutive heads
are generated and 0 otherwise. You can assume the random coin flipper circuit is
already built or, for extra marks, design one yourself.

9. Imagine you are asked to to build a simple DNA matching hardware circuit as part
of a research project. The circuit will be given DNA strings which are sequences of
tokens that represent chemical building blocks. The goal is to search a large input
sequence of DNA tokens for a small sequence indicative of some feature.

The circuit will receive one token per clock cycle as input; the possible tokens are
adenine (A), cytosine (C), guanine (G) and thymine (T ). The circuit should, given
the input sequence, set an output flag to 1 when the matching sequence ACT is found
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somewhere in the input or 0 otherwise. You can assume the inputs are infinitely long,
i.e., the circuit should just keep searching forever and set the flag when the match is
a success.

a. Design a circuit to perform the required task, show all your working and explain
any design decisions you make along the way.

b. Now imagine you are asked to build two new matching circuits which should
detect the sequences CAG and T T T respectively. It is proposed that instead of
having three separate circuits, they are combined into a single circuit that matches
the input sequence against one matching sequence selected with an additional
input. Describe one advantage and one disadvantage you can think of for the two
implementation options.

10. NAND is a universal logic gate in the sense that the behaviour of NOT, AND
and OR gates can be implemented using only NAND. Show how this is possible
using a truth table to demonstrate your solution.

11. A revolutionary, ecologically sound washing machine is under development by
your company.

When turned on, the machine starts in the idle state awaiting input. The washing
cycle consists of the three stages: fill (when it fills with water), wash (when the wash
occurs), spin (when spin dying occurs); the machine then returns to idle when it is
finished. Two buttons control the machine: pressing B0 starts the washing cycle,
pressing B1 cancels the washing cycle at any stage and returns the machine to idle;
if both buttons are pressed at the same time, the machine continues as normal as if
neither were pressed.

a. You are asked to design a logic circuit to control the washing machine behaviour.
Draw a diagram that shows the washing machine states and the valid transitions
between them.

b. Draw a state transition table for a state machine that could be used to implement
your diagram.

c. Using the Karnaugh map technique, derive logic expressions which allow one to
compute the next state from the current state in your table; note that because the
washing machine is ecologically sound, minimising the number of logic gates is
important.



Chapter 3
Hardware Design Using Verilog

If I designed a computer with 200 chips, I tried to design it with 150. And then I would try
to design it with 100. I just tried to find every trick I could in life to design things real tiny.

– S. Wozniak

Abstract The goal of this chapter is not to give a comprehensive guide to Verilog
development but to provide enough of an introduction that the reader can understand
and implement concepts used as examples in subsequent sections. Although these
concepts become increasingly complex they build on the basic principles outlined in
this chapter and, as such, it should provide enough of a reference that no other text
is necessary. We omit the study of low-level concepts like transistor-level design,
subjects related to Verilog such as formal verification, and advanced topics such as
the Programming Language Interface (PLI).

3.1 Introduction

3.1.1 The Problem of Design Complexity

Looking back as recently as fifty years ago, the number of components used to con-
struct a given circuit was in the range of 10 to 100, all selected from a small set of
choices. Operating at this scale, it was not unrealistic for a single engineer to design
an entire circuit on paper and then sit with a soldering iron to construct it by hand.
Malone describes one extreme example of what could be achieved [38, Pages 148–
152]. Development of a floppy disk controller for the Apple II was, in early 1977,
viewed as a vital task so that the computer could remain competitive in a blossoming
market. Steve Wozniak, a brilliant technical mind and co-founder of Apple, devel-
oped and improved on existing designs and within two weeks had a working circuit.
Not content with eclipsing the man-hour and financial effort required by other com-
panies to reach the same point, Wozniak redesigned and optimised the entire circuit

97
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over a twelve-hour period after spotting a potential bug before it was sent into pro-
duction !

As circuit complexity has increased over the years, and lacking a Wozniak to
deploy in every design company, this model fails to scale. For example, a mod-
ern computer processor will typically consist of many millions of transistors and
related components. Just as designing robust, large-scale software is a challenge,
designing a million-component circuit is exceptionally difficult. The sheer number
of states the circuit can be in requires splitting it into modular sub-systems, the in-
terface between which must be carefully managed. Without doing this, verifying the
functional correctness of the circuit is next to impossible; one must instead verify
and test each module in isolation before integrating it with the rest of the design.
Physically building the circuit by hand is equally impossible because of the size of
the features: one would need an exceptionally tiny soldering iron to wire connec-
tions together ! Furthermore, one would need almost infinite patience because of
the number of connections. Since humans are bad at repetitive tasks like this, errors
will inevitably be introduced. Coping with design constraints such as propagation
delay becomes massively time consuming since the act of component layout and
connection with so many items is a mind-bogglingly complex optimisation prob-
lem. The increased number of components introduces further problems; issues of
power consumption and heat dissipation start to become real problems.

Several key advances have tamed the problems in this gloomy picture. Certainly
improvements in implementation and fabrication technologies that allow miniatur-
isation of components have been an enabling factor, but the advent of design au-
tomation (i.e., software tools to help manage the complexity of hardware design)
has arguably been just as important.

3.1.2 Design Automation as a Solution

Verilog is a Hardware Description Language (HDL). A language like C is used to
describe software programs that execute on some hardware device; a language like
Verilog can describe the hardware device itself. Using a HDL, usually within some
form of Electronic Design Automation (EDA) software suite, offers the engineer
similar benefits to a programmer using a high-level language like C over a low-level
machine language.

The Verilog language was first developed in 1984 at a company called Gateway
Design Automation as a hardware modelling tool. Some of the language design
goals were simplicity and familiarity; as a result Verilog resembles both C and Pas-
cal with many similar constructs. Coupled with the provision of a familiar and flex-
ible development environment, Verilog promotes many of the same advantages that
software developers are used to. That is, the language makes it easy to abstract away
from the implementation and concentrate on design; it makes design modularisation
and reuse easier; associated tools such as simulators make test and verification eas-
ier and more efficient. There are two standards for the language: an initial version
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termed Verilog-95 was improved and resubmitted to the IEEE for standardisation
as Verilog-2001 or IEEE 1364-2001. Much of this improvement was driven by in-
put from users in companies such as Motorola and National Semiconductor. This
standardisation, along with the production of software to synthesise real hardware
from Verilog descriptions at a variety of abstraction levels, has made the language a
popular choice for engineers.

Verilog models, so-called because they are somewhat abstract models of physical
circuits, can be described at several different levels. Each level is more abstract than
the last, leaving less work for the engineer and allowing them to be more expressive:

Switch Level At the lowest level, Verilog allows one to describe a circuit in terms
of transistors. Although this gives very fine-grained control over the circuit com-
position, developing large designs is still a significant challenge since the build-
ing blocks are so small.

Gate Level Above the transistor level, and clearly more attractive for actually
getting anything useful done, is the concept of gate-level description. At this
level, the designer describes the functionality of the circuit in terms of basic logic
gates and the connections between them; this is somewhat equivalent to the level
of detail in the previous chapter.

Register Transfer Level (RTL) RTL allows the designer to largely abstract away
the concept of logic gates as an implementation technology and simply describe
the flow of data around the circuit and the operations performed on it.

Behavioural Level The most abstract and hence most expressive form of Verilog
is so-called behavioural-level design. At this level, the designer uses high-level
constructs, similar to those in programming languages like C, to simply specify
the required behaviour rather than how that behaviour is implemented.

Roughly speaking, development of real hardware from a Verilog model is a three-
phase process which we describe as being managed by a suite of software tools
called the Verilog tool-chain:

Simulate During the first phase, the Verilog model is fed into a software tool
which simulates the behaviour of the circuit. This simulation is highly accurate,
modelling how gates and signals change as time progresses, but is abstract in the
sense that many constraints of real hardware are not considered. Since by using
software simulation it is easy to alter the model and debug the result, a develop-
ment cycle is relatively quick. As a result, the simulation phase is typically used
to ensure a level of functional correctness before the model is processed into
real hardware. That is, if the model simulates correctly, then one can progress to
implementing it in real hardware with a greater confidence of success.

Synthesise The second phase of development is similar to the compilation step
whereby a C program is translated into low-level machine language. The Verilog
model is fed into synthesis software which converts the model into a list of real
hardware components which implement the required behaviour. This is often
called a netlist. Optimisation steps may be applied by the synthesiser to improve
the time or space characteristics of the design. Such optimisations are usually
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Figure 3.1 A waterfall style hardware development cycle using Verilog.

conceptually simple but repetitive: ideal fodder for a program but not so for the
engineer.

Implement The synthesis phase produces a list of components and a description
of how they are connected together to form the implementation. However, a fur-
ther step is required to translate this description into real hardware. Firstly, we
need to select components from the implementation technology with which to
implement the components in the netlist. For example, on an FPGA it might be
advantageous to implement an AND gate one way whereas on an ASIC a dif-
ferent method might be appropriate. Secondly, we need to work out where the
components should be placed and how the wiring between them should be or-
ganised or routed. Long wires are undesirable since they increase propagation
delay; the place and route process attempts to minimise this through intelligent
organisation of the components. Again, this is a problem which is well suited to
solution by a computer but not by the engineer.

In reality, these steps form part of a waterfall style development cycle (or similar)
which iterates each stage to remove errors after some form of verification.

3.2 Structural Design

3.2.1 Modules

Programs written in C can be thought of as collections of functions that use each
other to perform some computation. The computation is determined by how the
functions call each other and by what goes on inside each function. The analogous
construct in Verilog is a module. Basically speaking, a module defines the interface
of a hardware component, i.e., the inputs and outputs, and how the component does
computation to produce the outputs from the inputs and any stored state.

Like functions, modules provide us with a first layer of abstraction: we can view
them as a black-box, with inputs and outputs, without worrying how the internals
work. For example, the multiplexer device introduced previously selects between
several values to produce a result; we might draw such a device as previously shown
in Figure 2.16a. From a functional point of view, we do not really care what is inside
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1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 ...
7

8 endmodule

Listing 3.1 The interface for a 1-bit, 2-way multiplexer.

1 module mux2_1bit( r, i0, i1, s0 );
2

3 output wire r;
4 input wire i0;
5 input wire i1;
6 input wire s0;
7

8 ...
9

10 endmodule

Listing 3.2 The interface for a 1-bit, 2-way multiplexer.

the component. That is, in order to use a multiplexer we do not care how it works or
what gates are used within it, just what it does.

We can describe the interface of Figure 2.16a, i.e., the inputs and outputs rather
than the internals, using the Verilog module definition shown in Listing 3.1. A mod-
ule definition like this specifies a name or identifier, this one is called mux2_1bit,
and a list of inputs and outputs which it uses for communication with other mod-
ules. We term the inputs and outputs defined by a module as the port list; each input
or output is a port over which it communicates, the direction of communication is
determined by the input and output keywords. In this case, we have replaced
the body of the module, which determines how it works, with some continuation
dots that we will fill in later.

Listing 3.2 offers a different way of defining the same interface. This time, in-
stead of describing the input and output characteristics of each port inline with the
definition, we simply name the ports and give them a type inside the module. Al-
though the two methods are largely equivalent, there are some advantages to the sec-
ond method which we will see later. Typically, for simple modules the first method
is more compact and so is preferred unless there is a good reason not to use it.

3.2.2 Wires

In Verilog, a net is the term used to describe the connection between two modules.
By net we essentially we mean a wire which is the exact analogy of the same thing
in real life: a conducting medium that allows a signal to be sent between the two
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1 wire w0; // 1-bit unsigned wire
2 wire [3:0] w1; // 4-bit unsigned wire vector
3 wire [0:3] w2; // 4-bit unsigned wire vector
4 wire [4:1] w3; // 4-bit unsigned wire vector
5 wire signed [3:0] w4; // 4-bit signed wire vector

Listing 3.3 Several different examples of wire definition.

ends. We say that we drive a value onto one end before it propagates along the wire
and can be read at the other end. We define Verilog wires using a similar syntax to
variable declaration in C, as shown in Listing 3.3.

Line 1 defines a wire called w0 capable of carrying 1-bit values. Although 1-bit
values are fine for some situations, often we will want to communicate larger values.
So-called wire vectors allow us to do exactly this by bundling 1-bit wires into larger
groups. Since we can select the individual wires from a given wire vector, we can
think of the vector as either as an array of four 1-bit wires, or a single compound
wire that can carry 4-bit values. Line 2 demonstrates this by defining a wire vector
called w1 which can carry 4-bit values. One can read the range notation [3:0] as
3 down to 0 or 3,2,1,0. This is a means of specifying the size of the wire vector, as
well as the order and index of wires within it. For example, Line 3 defines another
4-bit wire vector but the order of the range is reversed, the left-most bit of w2 is bit
0 while the right-most is bit 3. In the previous example, the left-most bit was bit 3
while the right-most was bit 0. Line 4 uses a third variation where the order of wires
within the wire vector is the same as w1 but their index is changed. This time the
left-most bit of w3 is numbered 4, rather than 3, while the right-most is numbered 1,
rather than 0. These variations might seem confusing but they are useful in practise.
For example, reversing the order of the bits in a wire allows us to easily change the
endianness and hence easily comply with demands set by the system we want to
connect our design to.

It is worth noting that more recent Verilog language specifications include the
facility to declare signed wire vectors, i.e., wire vectors that carry signed, twos-
complement values rather than unsigned values. For example, Line 5 in Listing 3.3
declares a 4-bit signed wire vector called w4; it can take the values between −8
and 7 inclusive. This differs from Line 2 where w1 is declared as a 4-bit unsigned
wire vector capable of taking the values between 0 and 15 inclusive. Clearly this is
a matter of interpretation to some extent since one can view a given bit pattern as
representing a signed or unsigned value regardless of the wire vector type. However,
the addition of the signed keyword “hints” to the Verilog tool-chain that, for exam-
ple, if the value on signed wire w4 is inspected or displayed somehow it should be
viewed as signed.
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Value Meaning

1’b0 Logical low or false
1’b1 Logical high or true
1’bX Undefined or unknown value
1’bZ High impedance value

Table 3.1 A list of the four different value types.

Strength Meaning

supply Strongest
strong

↓
pull
large
weak
medium
small
highz Weakest

Table 3.2 A list of the eight different strength types.

3.2.3 Values and Constants

In a perfect hardware system, a wire should only ever take the values 0 or 1 (i.e.,
true and false) written in Verilog as 1’b0 or 1’b1. However, physical properties
of such systems dictate they are never perfect. As a result, Verilog supports four
different values, shown in Table 3.1, to model the reality of imperfect hardware. In
a sense, there is a similar motivation here as in the discussion of 3-state logic in
Chapter 2.

The undefined or unknown value 1’bX is required to model what happens when
some form of conflict occurs. It is not that we do not care what the value is, we
genuinely do not know what the value is. As a simple example, consider driving the
value 1’b1 onto one end of a wire and the value 1’b0 onto the other end, what
value does the wire take ? The answer is generally undefined, but roughly depends
on how strong the two signals are. Verilog offers a way to model how strong a value
of 1’b0 or 1’b1 is; one simply prefixes the value with one of the strength types
shown in Table 3.2. However, this sort of assumption should be used with care:
generally speaking, if you rely on an unknown value being resolved to something
known, there is probably a better way to describe the design and avoid the problem.
The high impedance value 1’bZ is a kind of pass-through described previously in
the context of 3-state logic. If high impedance collides with any value, it instantly
resolves to that value. This is useful for modelling components which must produce
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some continuous output but might not want to interfere with another component
using the same wire.

Constant values, which one can use to drive wires or to compare against values
read from wires for example, can be written in a variety of ways using the general
format

[<sign>] [<size>’<base>] <value>

such that the fields in square brackets are optional. The <sign> field is an optional
minus symbol to denote negative constants; <size> denotes the number of bits in
the constant; <base> is the number base the constant is expressed in, for example
H or h for hexadecimal, D or d for decimal and B or b for binary; and value is the
actual constant. So, for example we have that:

• 2’b10 is a 2-bit binary value 10(2) or 2(10) or 2(16).
• 4’hF is a 4-bit hexadecimal value 1111(2), 15(10) or F(16).
• 8’d17 is an 8-bit decimal value 17(10) or 00010001(2) or 11(16).
• 3’bXXX is a 3-bit unknown binary value.
• 8’hzz is an 8-bit high impedance value.
• 4’b10XZ is a 4-bit binary value where bit zero is the high impedance value, bit

one is the unknown value, bit two is logical low and bit one is logical high. This
value does not really translate into another base; although some of the bits are
defined, because some are not the whole value is undefined.

Where size is not important, one can omit the <size> field and accept a default.
Likewise, one can omit the <base> field to accept the default of decimal numbers
so that the constant 10 is the same as 4’d10. Clearly we can also specify signed
constants by prefixing them with a negation symbol such as -10 or -4’d10.

3.2.4 Comments

Like most other programming languages, Verilog allows one to comment source
code. Comments are used with the same syntax as C and Java so that single-line
comments

// comment

and multi-line comments

/*
comment
comment
...

*/

are both possible. It goes without saying that since Verilog models can contain just
as many subtle implementation issues as a C program, comments are a vital way to
convey meaning which might not be present in the source code.
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1 module or_gate( output wire r,
2 input wire x,
3 input wire y );
4

5 ...
6

7 endmodule

Listing 3.4 The interface for a 2-input OR gate.

1 or t0( r, x, y ); // 2-input or gate instance
2 or t1( r, x, y, z ); // 3-input or gate instance
3 or t2( r, w, x, y, z ); // 4-input or gate instance

Listing 3.5 Instantiating primitive gates with multiple inputs.

3.2.5 Basic Instantiation

Continuing the analogy between C functions and Verilog modules, a function clearly
does not do anything until it is called: the function is just a description. Equally, a
module does not do anything until it is instantiated. Instantiating a module is the
equivalent of actually placing a physical copy of it down on our design. If we in-
stantiate a multiplexer module, this is the analogy of taking a multiplexer component
from a box and placing it on a circuit board.

Verilog offers a number of primitive modules that represent logic gates. In a
sense you can think of primitive modules as similar to the C standard library which
makes basic operations available to all C programs. We can connect these together to
describe more complex circuits and as such they offer a convenient way to introduce
the instantiation syntax. Consider a primitive two input OR gate. Although it is
provided for us by Verilog, we can think of it having an interface similar to that
shown in Listing 3.4 (we deliberately name it or_gate and not or to avoid conflict
with the built-in name). In fact, Verilog is nicer to us than simply providing a 2-way
version, it provides multi-input versions of these modules; one simply adds more
inputs to the instantiation as shown in Listing 3.5. For example, the instantiation of
t1 in Line 2 names three inputs x, y and z.

Using this primitive OR gate module, and similar ones for AND, NOT and XOR,
we can start filling in the module body of Listing 3.1 so it matches the multiplexer
design from Figure 2.16a whose truth table is shown in Table 2.10a. Listing 3.6 de-
scribes an implementation by first defining some internal wires to connect the com-
ponents and then instantiating primitive modules to represent those components.
Each instantiation is built from a few syntactic parts: the type of the module, an
identifier for the instance, and a port list. In this case, the types are not, and and
or; the identifiers are t0, t1, t2 and t3. The port list describes how wires connect
to the communication ports of the module. For example, in the case of the or gate
we have connected wires w1 and w2 to the or gate input ports, and output of the
multiplexer r to the or gate output port. As another example, consider the imple-
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1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 wire w0, w1, w2;
7

8 not t0( w0, s0 );
9

10 and t1( w1, i0, s0 );
11 and t2( w2, i1, w0 );
12

13 or t3( r, w1, w2 );
14

15 endmodule

Listing 3.6 An implementation of a 1-bit, 2-way multiplexer using primitive modules.

1 module add_1bit( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6

7 wire w0, w1, w2;
8

9 xor t0( w0, x, y );
10 and t1( w1, x, y );
11

12 xor t2( s, w0, ci );
13 and t3( w2, w0, ci );
14

15 or t4( co, w1, w2 );
16

17 endmodule

Listing 3.7 An implementation of a full-adder using primitive modules.

mentation of a full-adder in Listing 3.7. Exactly the same principles apply as in the
multiplexer implementation: we again wire together a number of primitive gate in-
stances to replicate the functionality required by the truth table shown in Table 2.8b.

Stated in the above form, module instantiation appears very similar to a C func-
tion call which will also typically have an identifier and arguments. But there are
some crucial differences between the two:

• Typically, a compiler translates each function declared in a C program into one
implementation in the executable. That is, two separate calls to the same function
actually use the same code: they call the same function implementation. With
module instantiation, rather than being shared, each instance is a separate item
of hardware.

• Within a typical C program, each function call in the program is executed se-
quentially so that at any given time we know where in the program execution is:
it cannot be in two functions at the same time. With a Verilog design, every mod-
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1 module mux4_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire i2,
5 input wire i3,
6 input wire s0,
7 input wire s1 );
8

9 wire w0, w1;
10

11 mux2_1bit t0( w0, i0, i1, s0 );
12 mux2_1bit t1( w1, i2, i3, s0 );
13 mux2_1bit t2( r, w0, w1, s1 );
14

15 endmodule

Listing 3.8 An implementation of a 1-bit, 4-way multiplexer using user-defined modules.

ule instance executes in parallel with every other instance so that one module
can be doing things at the exact same time as another.

Since each instance executes in parallel with every other, the or gate used above
can be described as continuous in the sense that it does not wait for the inputs
to be ready before computing the output: it is always computing an output. We
could just as well write Listing 3.6 with the or gate instantiated before both the
and gates. In C, this would make no sense because now the results w1 and w2
are not produced before they are used. In Verilog however, all three modules are
continuously working in parallel so it does not matter what order we instantiate
them in as long as they are wired together correctly.

Clearly this continuous behaviour can cause problems if you are used to the se-
quential nature of C. For example, what happens if some of the inputs have values
driven onto them while others do not ? Since the module is continually generating
an output, the output must be something, but it will typically be resolved as the un-
defined value. When executing a C program, the processor deals with this issue for
us by forcing each instruction to execute in order; from a functional perspective a
given instruction never starts until previous instructions are completed. In Verilog
however, we are left on our own to enforce such rules.

This presents us with the first challenge of timing within Verilog models: we
need to be sure that when we use the output of a module, enough time has elapsed
to generate it. We have already seen that propagation delay in gates takes some time
which could impact on when the output becomes valid. As the model size increases
these small delays can accumulate and present a significant delay which needs to
be accommodated. In the simple combinatorial circuits we have looked at thus far,
timing is not a major problem since we typically just drive the input values and wait
until they generate the output. With models that store state, which we encounter
in Section 3.4, timing becomes much more important. For example, we need to
ensure that we only set the value of our state with values that are valid, i.e., are not
undefined.
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3.2.6 Nested Instantiation

Primitive modules are just like modules you describe yourself except that they are
provided by Verilog. Therefore we can consider a design composed of several of our
own modules in the same way as we did above with the 2-way multiplexer. Consider,
for example, extending the 2-way multiplexer so it has four inputs selected between
using two control signals. One can think of at least two methods of implementing
this design which were described previously: either we use the same primitive gates
as in the 2-way case or we build it using our previously defined module. Ignor-
ing which is the most efficient in terms of the number of gates, the latter method
clearly leans on one of the advantages of Verilog in that reuse of modules is made
very easy. Listing 3.8 takes advantage of this by implementing a 4-way multiplexer
called mux4_1bit using three instances of the 2-way multiplexer mux2_1bit.
Exactly the same rules apply when instantiating mux2_1bit as when instantiating
a primitive or gate: we have a type, an identifier and a port list for each instance and
each instance of our 2-way multiplexer operates continuously and in parallel with
every other.

Verilog instantiation creates a hierarchy of instances. Each instance is said to
contain those modules it in turn instantiates. To keep track of this hierarchy, Verilog
outlines a simple naming scheme. For example, the 4-way multiplexer in Listing 3.8
has three instances of a 2-way multiplexer named t0, t1 and t2. Within each of
these 2-way multiplexers there is a not gate named t0, two and gates named t1
and t2 and an or gate named t3. Hierarchical naming means each primitive gate
has a unique name: the not gate within 2-way multiplexer t1 is called t1.t0
while the one in multiplexer t2 is called t2.t0. This is a useful property since we
can embed debugging mechanisms within a module and determine exactly where
the messages are coming from; without the naming scheme, all debugging from the
module mux2_1bit would be mixed together and become useless with respect to
locating errors.

3.2.7 User-Defined Primitives

For some simple functions, building a module from gates is overly verbose. Addi-
tionally, it defeats one of our reasons to use Verilog which was to hand off as much
work to the Verilog tool-chain as we can. The User-Defined Primitive (UDP) offers
a more convenient way to build simple modules by essentially allowing the designer
to specify the truth table and leave the implementation to the tool-chain. Given such
a truth table, the tool-chain tries to find the most optimal way to realise it, using for
example the Quine-McCluskey method.

UDPs have a similar interface to modules. For example, we might define our
2-way multiplexer as shown in Listing 3.9. The body of the UDP is the truth table
which states, given some combination of input, what output should be produced.
Each line in the table lists the values of the input ports followed by a colon and
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1 primitive mux2_1bit( output r,
2 input i0,
3 input i1,
4 input s0 );
5 table
6 0 ? 0 : 0;
7 1 ? 0 : 1;
8 ? 0 1 : 0;
9 ? 1 1 : 1;

10

11 ? ? X : X;
12 endtable
13

14 endprimitive

Listing 3.9 An implementation of a 1-bit, 2-way multiplexer using a UDP.

then the value required on the output port. We are free to include the unknown value
1’bX but the high impedance value 1’bZ is treated as 1’bX. We are also free to
include don’t care states in the table as we might with a Karnaugh map; such states
are written using a question mark. Thus, the first line above can be read as “when
both i0 and s0 are 0 and i1 is any value, set the result r to 0”. The last line can be
read as “when s0 is unknown and both i0 and i1 are any value, set the result r to
unknown”.

Compared to the description of the same module in terms of gates, this seems
a much nicer way to do things. However, there are some caveats to consider when
defining a UDP:

• There can only be one output port although there can be as many inputs as re-
quired; the output port must be specified first in the port list.

• Both input and output ports can only be single wires; wire vectors are not al-
lowed.

3.3 Higher-level Constructs

Expressing a design purely in terms of basic logic gates is analogous to writing soft-
ware directly in a low-level machine language: it offers great control over the result
but progress requires significant effort on the part of the programmer. To combat
this, we can use RTL style design to construct Verilog models at a higher-level of
abstraction. Rather than worrying exactly how the functionality is realised, RTL
allows us to concentrate on how data flows around the design and the operations
performed on it. Clearly there is some overlap between RTL and gate-level design;
essentially RTL offers a short hand way to describe combinatorial logic.
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1 module nand_gate( output r,
2 input w,
3 input x,
4 input y,
5 input z );
6

7 assign r = ˜( w & x & y & z );
8

9 endmodule

Listing 3.10 Using a continuous assignment to replicate the behaviour of a primitive module.

1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 assign r = ( s0 ? i1 : i0 );
7

8 endmodule

Listing 3.11 An implementation of a 1-bit, 2-way multiplexer using a continuous assignment.

3.3.1 Continuous Assignments

In Section 3.2 we described the operation of primitive gates as continuous in the
sense that they were continuously calculating outputs from their inputs rather than
waiting for the inputs to be available. We can use a higher-level, continuous as-
signment RTL statement to do the same thing. Such a statement looks similar to
an assignment in C in the sense that it has left-hand side (LHS) and right-hand side
(RHS) expressions. The LHS is said to be assigned a value calculated by evaluat-
ing the RHS. In a C program we typically expect the LHS to be a variable; in a
Verilog continuous assignment the LHS is a wire or wire vector. Furthermore, and
unlike in a C program, a Verilog continuous assignment is continually being exe-
cuted rather than only being executed when control-flow reaches the assignment.
This is a fundamental difference and relates to the fact that instantiations of Verilog
modules, which a continuous assignment will be translated into by the tool-chain,
are continuously operating in parallel with each other.

The beauty of the construct is that one can use a huge range of C style logical
and arithmetic operators as part of the RHS expression; Table 3.3 contains a list
of them, their types and number of operands. Consider the construction of a 4-
input NAND gate shown in Listing 3.10 (again we name the module nand_gate
and not nand to avoid conflict with the built-in name). Of course, one could use
a built-in primitive module to achieve the same thing, but this simple assignment
neatly demonstrates the expressive power of a continuous assignment. Instead of
several module instantiations and wire connections, we simply write the required
RHS expression and let the Verilog tool-chain convert this into an efficient low-level
implementation. Virtually all C operators are permitted so, for example, we can re-
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Type Symbol Meaning Operands

Arithmetic * multiply 2
/ divide 2
+ add 2
- subtract 2
% modular reduction 2
** exponentiation 2

Logical ! logical NOT 1
&& logical AND 2
|| logical OR 2

Relational > greater than 2
< less than 2
>= greater than or equal to 2
<= less than or equal to 2
== equal to 2
!= not equal to 2
=== case equal to 2
!== case not equal to 2

Bitwise ˜ bitwise NOT 1
& bitwise AND 2
| bitwise OR 2
ˆ bitwise XOR 2

Reduction & reduce AND 1
˜& reduce NAND 1
| reduce OR 1
˜| reduce NOR 1
ˆ reduce XOR 1
˜ˆ reduce XNOR 1

Shift << logical left-shift 2
<<< arithmetic left-shift 2
>> logical right-shift 2
>>> arithmetic right-shift 2

Misc [ ... ] selection n
{ ... } concatenation n
{ { ... } ... } replication n
... ? ... : ... conditional 3

Table 3.3 A list of Verilog operator types.
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x x∧ y

0 1
1 0
X X

x y x∧ y

0 0 0
0 1 0
1 0 0
1 1 1
0 X 0
1 X X
X 0 0
X 1 X
X X X

x y x∨ y

0 0 0
0 1 1
1 0 1
1 1 1
0 X X
1 X 1
X 0 X
X 1 1
X X X

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0
0 X X
1 X X
X 0 X
X 1 X
X X X

(a) NOT. (b) AND. (c) OR. (d) XOR.

Table 3.4 Logical operators in the presence of unknown values.

implement our 2-way multiplexer using an inline-conditional expression as shown
in Listing 3.11. In this case, the LHS is the output wire r whose value is calculated
by evaluating the RHS expression. If wire s0 is 1, the expression evaluates the value
of i1, otherwise it evaluates to the value of i0.

One subtle caveat exists with the analogy between gates and logical operators: the
latter deals explicitly with cases where one or more of the inputs are the unknown
or high impedance values 1’bX or 1’bZ. Firstly, in this context the value 1’bZ
is treated as unknown or 1’bX. Then, the rules in Table 3.4 are applied to describe
the output based on the inputs. Clearly there are additional entries versus traditional
truth tables for NOT, AND, OR and XOR. These additional entries show that, for
example, if one were to AND together two values using 1’b0 & 1’bX, then the
result would be 1’b0. Intuitively this might seem odd: how can one decide on a
result if one of the inputs is unknown ? In reality, the properties of AND mean this
is possible since when the first input is 0, it does not matter what the other input is
because the output will always be 0. Similar shortcuts exist for the other operators.
For example, if either input of an OR operator is 1 it does not matter what the other
one is (even if it is unknown) because the output will always be 1.

3.3.2 Selection and Concatenation

Although the RHS expression of a continuous assignment closely resembles a C
expression, the fact that C is designed for writing software programs means opera-
tions we expect in hardware are absent. To address this, Verilog includes selection,
concatenation and replication operators which split, join and replicate wires and
wire vectors.
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1 module add_1bit( output wire co,
2 output wire s,
3 input wire ci,
4 input wire x,
5 input wire y );
6

7 assign { co, s } = x + y + ci;
8

9 endmodule

Listing 3.12 An implementation of a full-adder using RTL-level design features.

Given the definitions in Listing 3.3, we can split the wire vector w1 into parts
using an operator similar to array sub-scripting in C. The expression

w1[0]

selects wire number zero from the vector w1; the type of this expression is a 1-
bit wire. If w1 takes the value 4’b1010, then the expression w1[0] evaluates to
1’b0. We can extend this selection to include ranges so that the expression

w1[2:0]

is a 3-bit wire we have split from w1 by selecting bits two, one, and zero. The
expression evaluates to 3’b010.

In a similar way, we can join together wires using the concatenation operator so
that the expression

{ w0, w1 }

is a 5-bit wire vector. Wire number four in this vector is equal to the value of w0
while wires three, two, one and zero are equal to the corresponding wires in w1.
So if w0 takes the value 1’b0 then the above expression evaluates to 5’b01010.
Note that there is something of a duality between selection and concatenation since
the expression

w1[2:0]

is in fact equivalent to

{ w1[2], w1[1], w1[0] }

where in both cases we are creating a 3-bit wire vector with component wires drawn
from the vector w1. Finally, the replication operator allows us to create repeated
sequences by specifying a replication factor and a value. The expression

{ 4{w1[0]} }

is equivalent to the expression

{ w1[0], w1[0], w1[0], w1[0] }

with both evaluating to 4’b0000.
As a demonstration of these operators in a practical context, consider a simpli-

fication of the previous gate-level full-adder design. The power of using a more
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abstract description is shown in Listing 3.12. Instead of a number of very primitive
module instances connected together, we use a single, expressive continuous assign-
ment. The RHS of the assignment is easy to understand: it simply adds together the
two inputs x and y and the carry-in ci. The LHS uses a more cryptic concatenation
of two wires co and s, the result is a 2-bit wire vector. Since the result of the RHS,
i.e., adding together the three input wires, is a 2-bit result. This forces the top bit
into the carry-out and the bottom bit into the sum: exactly what we want. By being
more expressive we not only make the module easier to read, we also open the op-
portunity for the Verilog tool-chain to optimise the design for us. For example, if the
implementation technology offers a particularly efficient hardware structure for an
adder, the tool-chain can spot the operator in our code and capitalise on this fact. In
this case the advantages are perhaps marginal, but for more complex designs it can
make a real difference to the end result.

3.3.3 Reduction

The second class of operation which will be alien to C programmers are those of
reduction. Each Verilog reduction operator takes one operand and produces a 1-bit
result; essentially it applies a logical operator to all the bits in the operand, bit-by-bit
from right to left. Again considering the wire definitions in Listing 3.3 and assuming
w1 is set to the value 4’b1010, the reduction expression

|w1

is exactly equivalent to the expression

w1[0] | w1[1] | w1[2] | w1[3]

which evaluates to 1’b1. Another example could be

&w1

which is exactly equivalent to the expression

w1[0] & w1[1] & w1[2] & w1[3]

and evaluates to 1’b0. This sort of operation does not exist in C because it is word-
oriented with the programmer seldom combining bits from the same word. In Ver-
ilog however, we work more freely and can easily extract and utilise bits from any
value since they are always accessible as 1-bit wires.

3.3.4 Timing and Delays

To model issues of timing in a model, Verilog offers several ways to specify delay.
In the context of continuous assignment, one can utilise regular delay to specify the
time between changes to the RHS expression and the assignment to the LHS. One
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1 reg r0; // 1-bit unsigned register
2 reg [3:0] r1; // 4-bit unsigned register vector
3 reg [0:3] r2; // 4-bit unsigned register vector
4 reg [4:1] r3; // 4-bit unsigned register vector
5 reg signed [3:0] r4; // 4-bit signed register vector
6 reg r5[7:0]; // 1-bit, 8-entry register array
7 reg [3:0] r6[7:0]; // 4-bit, 8-entry register vector array

Listing 3.13 Several different examples of register definition.

can think of this as the analogy of propagation delay whereby it takes some length
of time for values to propagate through the circuit representing the RHS expression
before they result in a value on the LHS. For example, the assignment

assign #10 r = ( x | y );

uses a regular delay of ten time units; the value of r is assigned ten time units after
any change to x or y. One caveat to this simple rule is that the change in x and y
must persist for at least as long as the time delay for r to actually see the result. If
x changes from 1 to 0 and then back again in less than ten time units, r will not
change to represent this change.

3.4 State and Clocked Design

So far we have only considered combinatorial circuits which hold no state but sim-
ply compute some outputs from some input values. This is partly because wires
cannot hold state, their value being maintained only as long as a signal is driven
onto the wire. However, we will often want to maintain some state in a design so
that computation is based not only on the input values but also on previous compu-
tation.

3.4.1 Registers

To maintain state, Verilog allows the definition of registers that retain their value
even when not being continuously driven with that value; registers are more or less
analogous to variables in a C program. While wires in Verilog are literally wires in
real hardware, registers are implemented using flip-flops so that the stored value is
retained as long as the flip-flop is powered. While a wire is continuously updated
with whatever value drives it, a register is only updated when a new value is assigned
into it.

Definition of registers is essentially the same as definition of wires, one simply
replaces the wire keyword with reg; Listing 3.13 describes some examples. How-
ever, the introduction of registers adds some complication in terms of how one uses
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Module

inout wire

output reg or wireinput wirereg or wire wire

wire

Figure 3.2 Connection rules for registers and wires.

inputs and outputs to and from modules. In short, only certain types can be used in
each circumstance; Figure 3.2 describes these rules. For example, if some register
r is defined within a module x, it can be named in the input port list to some mod-
ule instance y within x. However, within y the input must be viewed as a wire: we
cannot be sure that the input will always be a register (and hence retain state) so we
must be pessimistic about its behaviour. In this description, we have introduced a
new type of port, marked with the inout keyword, which can act as both an input
and output.

Although one might describe a register vector above as like being an array of
registers, this is not a great analogy since an array is usually a connection of separate
values whereas a register vector typically represents one value. Verilog does offer
“real” arrays as well, which are somewhat confusingly termed memories. The range
of indices which address the memory is declared after the memory identifier as
described in Line 6 and Line 7 in Listing 3.13. In these declarations we declare two
memories: r5 has eight entries numbered 7,6, . . . ,0, each entry is a 1-bit register;
r6 also has eight entries indexed in the same way but each entry in the memory is a
4-bit register vector.

There are some constraints on where and when one can reference elements in a
memory, but roughly speaking the syntax follows that of register vectors so that the
expression

r5[2]

selects element 2, a 1-bit register, from memory r5 while the expression

r6[1]

selects element 1, a 4-bit register, from memory r6. We can combine the two forms
to select individual wires from this. The expression

r6[1][1:0]

selects element 1 from r6 in the same way as above, then extracts bits 1 and 0 from
the result to finally form a 2-bit vector.
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begin
x = 4’b0000;
y = 4’b1111;

end

begin:name
x = 4’b0000;
y = 4’b1111;

end

(a) Basic sequential block. (b) Named sequential block.

fork
x = 4’b0000;
y = 4’b1111;

join

fork:name
x = 4’b0000;
y = 4’b1111;

join

(c) Basic parallel block. (d) Named parallel block.

Table 3.5 Examples of different types of behavioural code block.

3.4.2 Processes and Triggers

Blocks of statements are marked before and after using keywords that act in a similar
way to the { and } braces in C programs. The begin and end keywords denote
a sequential block of statements; each statement in the block is executed in the
order they are listed, any timing control for a statement is relative to the previous
statement. The fork and join keywords denote a parallel block of statements;
each statement in the block is executed at the same time as the others, each timing
control is relative to the start of the block. We can attach a hierarchical name to each
block of code by appending a colon and identifier to the start of block keyword.
Examples of each of these block definitions can be found in Table 3.5. Note that in
a similar way to how { and } braces work in C programs, we can omit the start and
end of block keywords for one line blocks.

All blocks must exist within a Verilog process. A process can be thought of
as a parallel thread of execution. To rationalise this, consider using an RTL-style
approach to drive values onto two wires via two continuous assignments. These
assignments are always being evaluated; they are executing at the same time. How
would one cope with this using a behavioural approach ? The fork and join type
blocks could come in handy but more generally we should split our behavioural
statements into two separate groups, or processes, that each deal with updating one
of the values. The processes will execute in parallel with each other just like the
continuous assignments, they simply use behavioural code rather than RTL-style
constructs to implement the required functionality.

There are two types of Verilog process, one marked with the always keyword
and one with the initial keyword. An always process is like an infinite loop
in that execution of the content starts at the top, continues through the body and
then restarts again at the top. In contrast, an initial process only executes once.
Table 3.6a demonstrates the definition of an always process; we simply decorate
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always
begin

...
end

always @ ( x )
begin

...
end

(a) Untriggered always processes are (b) Triggering by value change.
possible but poor design practice.

always @ ( posedge x )
begin

...
end

always @ ( negedge x )
begin

...
end

(c) Triggering by positive edge. (d) Triggering by negative edge.

Table 3.6 Examples of different process definitions and triggers.

a normal block with the always keyword. Basic processes are somewhat simple in
that they either execute just once or loop forever; there is no way to specify when
they should be executed. We can add a trigger, or sensitivity list, to a process to
specify this sort of information. Having looked at how digital logic works, examples
are easy to come by: we might want a block of code to be triggered by a positive
or negative signal edge or level. Table 3.6b-d demonstrate the addition of triggers
which cause the associated block to execute when the value of x changes from
anything to anything; when a positive edge in x is encountered, that is a change in
value from 0 to 1; and when a negative edge in x is encountered, that is a change
in value from 1 to 0. Here we have included just one signal x in the sensitivity list,
more can be added by separating the extra signals with commas; in this case we
might specify, for example, that a process is triggered when either x or y changes
value.

Note that Table 3.6a which represents an untriggered always block is consid-
ered bad design practice: without some form of delay, we are saying that every
iteration of the block happens at the same time. Since this is clearly impossible,
we need to ensure that there is some delay within the process or, more preferably,
change the design so it is clear when each iteration of the process is triggered.

3.4.3 Procedural Assignments

Within a block of code, we can place a sequence of statements which are executed
when the encompassing process is triggered. The most simple example of a state-
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begin
x = 10;
y = 20 + x;

end

begin
x <= 10;
y <= 20 + x;

end

(a) Blocking procedural assignments. (b) Non-blocking procedural assignments.

Table 3.7 Examples of different procedural assignments.

ment is the procedural assignment which evaluates a RHS expression and assigns
the value to an LHS expression. Such assignments come in two flavours, block-
ing assignments and non-blocking assignments. A blocking assignment is said to
block subsequent statements in the sense that they only execute after it has com-
pleted. In contrast, a non-blocking assignments allow subsequent statements to ex-
ecute at the same time as it. For example, consider the two blocks in Table 3.7. The
left-hand example uses blocking assignments; the assignment to y only executes
once the assignment to x is finished. This means that when the assignment to y
executes, x will definitely have been assigned the value 10(10). However, the right-
hand process uses non-blocking assignments; the assignments to x and y execute
at the same time. Here, this causes a problem because we can no longer guarantee
that x will definitely have been assigned the value 10(10) before the assignment to
y is executed; this means y potentially gets the wrong result. Problems like this
are avoided by considering a data-flow graph and avoiding dependent non-blocking
assignments. Additionally, we should not mix blocking and non-blocking assign-
ments within a given block of code so that it is clear when a particular assignment
will occur.

Procedural assignments can incorporate timing and delay specifiers in the same
way as continuous assignments. However, it is important to again note the differ-
ence between the two: continuous assignments are continually being executed while
procedural assignments are only executed when their process block is triggered. Ad-
ditionally, note that procedural assignments can only use registers as the LHS while
continuous assignments can only use wires. This makes sense since the execution
of a procedural assignment is time dependent and hence requires the LHS to retain
state.

Either way, we are now in a position to actually design a meaningful module
using behavioural-level Verilog. Recall that a D-type flip-flop is a component that
can store 1-bit values; it has an output Q which represents the currently stored value
an input D which is used to set the value when a positive edge is driven onto the
enable signal en. Listing 3.14 replicates this interface and implements the required
behaviour using two processes. Firstly, we define a 1-bit register called t which is
used to represent the value stored within the flip-flop; we use a continuous assign-
ment to set the flip-flop output Q to match the value t. Using an initial process,
we ensure that t is set to 0 to start with. Then, we use an always process which
is triggered whenever a positive edge is detected on the input en. Whenever this
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1 module dtype_ff( input wire D,
2 output wire Q,
3 input wire en );
4 reg t;
5

6 assign Q = t;
7

8 initial
9 begin

10 t = 0;
11 end
12

13 always @ ( posedge en )
14 begin
15 t = D;
16 end
17

18 endmodule

Listing 3.14 An implementation of a D-type flip-flop using behavioural Verilog.

occurs the code within is executed; this means the value of input D is assigned to
our register t and Q is updated in turn by the continuous assignment.

3.4.4 Timing and Delays

We previously saw how one can specify regular delays on continuous assignments
to model propagation delay. This is also true of procedural assignment, although the
semantics are slightly different. Using the following

#10 r = ( x | y );

simply specifies that the assignment should be executed 10 time units after the previ-
ous statement completed. This essentially defers execution of the entire assignment
statement for some period of time. Trying to work out how timing delays interact
with non-blocking forms of assignment is difficult and generally it is better not to
mix the two forms.

In contrast to regular delays, intra-assignment delay simply defers update of the
LHS. For example, by moving the timing specifier to the RHS, the assignment

r = #10 ( x | y );

executes immediately after the previous statement completes. The RHS is evaluated
straight away but the assignment of the result to the LHS is only performed 10 time
units later.
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1 module dtype_ff( input wire D,
2 output wire Q,
3 input wire en,
4 input wire rst );
5 reg t;
6

7 assign Q = t;
8

9 initial
10 begin
11 t = 0;
12 end
13

14 always @ ( posedge en )
15 begin
16 if( rst == 1 )
17 t = 0;
18 else
19 t = D;
20 end
21

22 endmodule

Listing 3.15 An implementation of a D-type flip-flop with reset.

3.4.5 Further Behavioural Statements

3.4.5.1 Conditional Statements

Basic conditional behaviour can be implemented almost identically to in C by using
the if statement; this takes the form

if ( x )
statement0;

else if( y )
statement1;

else
statement2;

To decide which of statement0, statement1 or statement2 gets executed
we first evaluate the expression x and, if the value is non-zero, statement0 is ex-
ecuted. Otherwise, we carry on to the next case, evaluate y and test if it is non-zero;
if it is, then statement1 is executed. If neither x or y evaluates to a non-zero
value then statement2 is executed as the default case. A slight problem is intro-
duced by considering whether the unknown value 1’bX “means” zero or non-zero.
For an if statement, this is resolved by defining the unknown value as zero. In this
example, if x and y both evaluate to the unknown value then we end up in the default
case where statement2 is executed. Note that each single statement associated
with each test can in fact be a block of statements surrounded with begin and end
keywords.

As an example of the if statement in action, consider upgrading our D-type flip-
flop design from Listing 3.14 to include a signal which zeros or resets the stored
value. This alteration is shown in Listing 3.15 and simply performs a test on the
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rst signal each time a positive clock edge triggers the process: if rst is equal to
1, then we set the stored value t to 0, otherwise we set it to the input D.

Long or nested if statements can quickly become hard to maintain as the number
of alternatives and complexity of conditions grows. To combat this, Verilog includes
a construct called case which is very similar to the switch statement in C. A
case statement takes an expression which can evaluate to one of several options;
depending on which of these options it does actually evaluate to, one of several
statements is executed. It essentially acts like a multi-way or computed branch and
takes the form

case( x )
value0 : statement0;
value1 : statement1;
value2 : statement2;
...
default : statementN;

endcase

The expression x, which can include operators and so on rather than being simply a
wire or register, is first evaluated. If the value equals value0, then statement0
is executed; if it equals value1, then statement1 is executed and so on. At most
one statement is executed, and there is no need for a break statement as is needed
in C. If the value of x does not equal any of the options then the statement corre-
sponding to the default value is executed; if there is no default option then
no statements are executed. Note that we can never have more than one default
options and that, like an if statement, each single statement associated with a value
can be a block of statements surrounded with begin and end keywords.

A similar problem to usage of if statements is presented when considering what
happens if x evaluates to the unknown or high impedance value; since the case
statement performs a bit-by-bit comparison even a single bit within x which is not
0 or 1 can result in unexpected behaviour. One method to deal with such options is
to explicitly list them so that, for example, if we use

case( x )
2’b00 : y = 1’b0;
2’b01 : y = 1’b1;
2’b10 : y = 1’b1;
2’b11 : y = 1’b0;

2’b0x : y = 1’bX;
2’b1x : y = 1’bX;
2’bx0 : y = 1’bX;
2’bx1 : y = 1’bX;

default : y = 1’b0;
endcase

then when x evaluates to the value 2’b0X we execute the fifth statement rather than
the default statement as would have happened before. The other way to deal
with this problem is to use the casex and casez variations of the basic case
construct. A casez statement treats all occurrences of the high impedance value as
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don’t care; a casex treats both the unknown and high impedance values as don’t
care. This applies to both the case expression (i.e., x in the above) or one of the
case options (e.g., 2’b0X in the above). By treating these values as don’t care we
exclude them from comparison so that, for example, the case value 2’b0X would
match the case option 2’b00 (if not previously matched) when using a casex
statement instead of a standard case statement. Likewise, the case value 2’b00
would match the case option 2’bX0 (if not previously matched) when using casex
instead of case.

As an example of the case statement in action, recall the traffic light controller
we developed previously in the form of a state machine. The idea was that we stored
some state and had a function which moved us to a next state on each positive clock
edge; we also had an associated function to set the value of various traffic lights
based on the state. Listing 3.16 sketches an implementation of this design, omitting
some of the cases for brevity. The module holds the 3-bit current state in the register
S and initialises this to zero using an initial block. On every positive clock
edge the first always process is triggered; we evaluate S and update the value
to match the required next state. Also, each time S changes we trigger a second
always block which again evaluates S but this time sets the value of output wires
corresponding to the traffic lights.

3.4.5.2 Iteration Statements

It is often useful to iterate or loop over a block of statements a given number of
times. Although the if and case statements allow us to control the flow of exe-
cution, they are unsuitable for this task. Likewise, an always process offers some
form of iteration but it is also unsuitable in the sense that it is too coarse grain:
we require a set of statements similar to do, while and for loops available in C
programs.

The forever loop simply performs an infinite loop over the body of statements
associated with it. Although in software this is generally considered a bad idea, in
hardware it can make perfect sense: for example, a keyboard waits in an infinite loop
for keys to be pressed until it is eventually powered off. A forever loop takes the
form

forever
begin
...

end

where the continuation dots represent the body of code which is looped over. In
common with all iteration statements in Verilog, there is no way to exit from the
loop prematurely. In a C loop this is performed using the break statement; there is
no equivalent in Verilog.

The next step up in terms of complexity is a loop which instead of iterating for-
ever, iterates a fixed number of times. The repeat statement, not seen in languages



124 3 Hardware Design Using Verilog

1 module traffic( input wire clk,
2

3 output reg Mr,
4 output reg Ma,
5 output reg Mg,
6 output reg Ar,
7 output reg Aa,
8 output reg Ag );
9

10 reg [2:0] S;
11

12 initial
13 begin
14 S = 0;
15 end
16

17 always @ ( posedge clk )
18 begin
19 case( S )
20 0 : S = 1;
21 1 : S = 2;
22 2 : S = 3;
23 3 : S = 4;
24 4 : S = 5;
25 5 : S = 6;
26 default : S = 0;
27 endcase
28 end
29

30 always @ ( S )
31 begin
32 case( S )
33 0 : begin
34 Mr = 0; Ma = 0; Mg = 1;
35 Ar = 1; Aa = 0; Ag = 0;
36 end
37

38 ...
39

40 5 : begin
41 Mr = 0; Ma = 1; Mg = 0;
42 Ar = 1; Aa = 0; Ag = 0;
43 end
44 default : begin
45 Mr = 0; Ma = 0; Mg = 0;
46 Ar = 0; Aa = 0; Ag = 0;
47 end
48 endcase
49 end
50

51 endmodule

Listing 3.16 An implementation of the traffic light controller state machine.
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like C, offers exactly this behaviour. For example, if we want to execute a body of
statements thirty two times we would use

repeat( 32 )
begin
...

end

Note that the value that determines the number of iterations must be a constant rather
than an arbitrary expression. Where an arbitrary number of iterations is required, we
use a while loop such as

while( x )
begin
...

end

In this case the expression x is evaluated and tested before each loop iteration; if
the resulting value is non-zero, then iteration continues, if it is zero then the loop
terminates.

Finally, we have a for loop which offers a powerful but simple way to iterate
over the loop body. Definition of a for loop uses three expressions: an initialiser, a
conditional, and an updater. The idea is that the initialiser expression sets loop coun-
ters to an initial value. Before each time the loop body is executed the conditional
expression is evaluated: if the resulting value is non-zero the loop is executed, oth-
erwise it terminates. After each loop execution the update expression is evaluated to
update the loop counters. An an example which executes a body of statements 32
times we could write

for( i = 0; i < 32; i = i + 1 )
begin
...

end

In this case we have i = 0 as the initialiser which sets the loop counter i to zero;
i < 32 is the conditional which allows the loop to continue as long as i is less than
32; the update expression i = i + 1 increments the loop counter each time the
loop is executed. Note that unlike the equivalent statement in C, we cannot use the
increment or decrement operators: we are forced to use the expression i = i + 1.
Also note that in some sense a for loop is just a shorthand; we could write the above
using just a while loop as

i = 0;
while( i < 32 )
begin
...
i = i + 1;

end

As in the case of always blocks, there is a problem if the body of statements one
iterates over has no delays in it: again we are saying that every iteration happens at
the same time.
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3.4.6 Tasks and Functions

We have already drawn analogies between modules in Verilog and functions in C,
but have tried hard to show that they are different. Even so, it is useful to have some
means of defining shared or common blocks of code rather than replicating that
code wherever required. Two methods of achieving this can be used in Verilog; they
are called tasks and functions respectively. In a rough sense, functions can only
be combinatorial results while tasks can be fairly arbitrary blocks of code. More
exactly, there are some constraints on how tasks and functions can be constructed:

• Tasks can have any number of inputs and outputs; functions must have at least
one input and no (explicit) outputs.

• Tasks can contain fairly arbitrary statements including timing control; functions
cannot contain timing control statements.

• Tasks can call other tasks and other functions; functions can only call other func-
tions.

All tasks and functions are local to the module in which they are defined and can
access all wires and registers defined within that module; neither can contain locally
defined wires or registers.

Consider the following example function which calculates the parity of an input,
i.e., whether there are an odd or even number of 1 bits set in the value:

function parity;
input [7:0] x;

begin
parity = ˆx;

end
endfunction

After giving the function a name or identifier, the 8-bit input x is defined. The body
of the function simply applies the XOR reduction operator to x and forms the return
value by assigning this to a pseudo-value with the same name of the function. The
function can then be called much like one would in C. The following example task
demonstrates this by using the parity function to perform a parity check of an
input x against a parity bit b:

task parity_check
input [7:0] x;
input bit;
output err;

begin
if( parity( x ) == bit )
err = 0;

else
err = 1;

end
endtask

If the calculated parity of input x is equal to the input check bit called bit, then
we set the output err to 0, otherwise we set it to 1 to mark an error has occurred.
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We can then use the task within some block of code. As a slightly more contrived
example, consider reading an 8-bit value and an associated check bit from some
input source; having obtained all the bits we could use the task to check the parity
and perform some operation as a result:

reg err;

always @ ( posedge clk )
begin
x[0] = read_bit();
x[1] = read_bit();
x[2] = read_bit();
x[3] = read_bit();
x[4] = read_bit();
x[5] = read_bit();
x[6] = read_bit();
x[7] = read_bit();

bit = read_bit();

parity_check( x, bit, err );

if( err )
...

else
...

end

If the parity_check task is used often enough within the encompassing module,
then we will have reduced the amount of replicated code (although not necessarily
the logic that implements it) and associated risk of introducing errors. Notice here
that the inputs and outputs of the task must be valid in the context of their use. For
example, the procedural assignment to err in the task means the argument passed
in must be a register.

3.5 Effective Development

Like most forms of programming, hardware design using a HDL like Verilog is more
than simply knowing the language syntax and semantics. Without some experience
actually using the language to produce functioning models, many of the pitfalls and
intricacies will remain hidden. With this in mind, the following section attempts to
convey some good design practises and features in the Verilog language that can
improve the quality of code in terms of maintainability and functional correctness.
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$display( <format>, <args> ... )
Print output to the console.
$monitor( <format>, <args> ... )
Print output whenever values change.
$monitoron
Enable all monitor output.
$monitoroff
Disable all monitor output.
$stop
Halt the simulator.
$finish
Exit the simulator.
<value> = $random( <seed> )
Produce a random value.
<handle> = $fopen( <filename> )
Open a file for input.
$fclose( <handle> )
Close an open file.
$fdisplay( <format>, <args> ... )
Direct $display output to file.
$fmonitor( <format>, <args> ... )
Direct $monitor output to file.
$readmemb( <filename>, <memory>, <start>)
Read ASCII binary file into memory.
$readmemh( <filename>, <memory>, <start>)
Read ASCII hexadecimal file into memory.

Table 3.8 A list of common system tasks.

3.5.1 System Tasks

Since during simulation a Verilog model is, by definition, running on some form of
controlled platform, it makes sense to allow it access to some of the resources on
that platform. For example, it is useful to allow a model to issue messages to the
console or access the file system to load test data or store results. Although such a
facility will not be present in real hardware, the use of a system task as a means of
accessing functionality on the host platform is a massive aid to the development and
debugging cycle.

A system task is similar to a normal Verilog task except that is it executed by
the simulator rather than the model. As such, they are somewhat dependent on the
exact simulator used although standardised Verilog includes a number of system
tasks which should always be available. Table 3.8 lists some common system tasks;
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perhaps the most useful are the $display and $monitor tasks which offer a
simple means of debugging.

The $display task is similar to the printf function in C in that one gives
it a format string and a list of values to fill into the template. Using this task, the
translated string is printed to the console of the simulator so that it can be read by a
user. For example, the following block

begin
x = 10;
y = 20;

$display( "x is %b in binary, y is %d in decimal", x, y );
end

uses the %b formatting parameter to format value x as a binary number and the %d
formatting parameter to format y as a decimal value. The resulting string, “x is 1010
in binary, y is 20 in decimal” is printed to the console so that one can verify that x
and y have the values expected. However, the use of many $display tasks to
track the value of a wire of register can be cumbersome; often we want to just print
the value whenever it changes. The $monitor task offers a simple way to achieve
this. The syntax is similar to a $display task in that it takes a format string and a
list of values but rather than being executed just once, the monitor task is executed
whenever one of the listed value changes. Thus, using the block

begin
$monitor( "x is %b in binary, y is %d in decimal", x, y );

$monitoron;
x = 10;
y = 20;
$monitoroff;

end

we would expect two messages to be printed to the console: one after x is assigned
to and one after y is assigned to.

3.5.2 Using the Pre-processor

Constant values without an obvious meaning in a C program or Verilog program
are often called “magic”: they make things work but it often is not clear why their
specific value is chosen. As a solution to this problem, C allows the use of a pre-
processor with which one can manipulate the source code before it is fed to the
compiler. For example, instances of defined macros are replaced with an associated
value; the program source code is hence more easily understood.

Although less sophisticated than the C pre-processor, Verilog allows similar func-
tionality through directives to the tool-chain. Perhaps the most simple example is the
‘include directive which allows one to include the contents of a Verilog source
file in another. This practise should be used with care so that cycles of inclusion are
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1 ‘define WIDTH 4
2

3 module add_nbit( output wire co,
4 output wire [‘WIDTH-1:0] s,
5 input wire ci,
6 input wire [‘WIDTH-1:0] x,
7 input wire [‘WIDTH-1:0] y );
8

9 assign { co, s } = x + y + ci;
10

11 endmodule

Listing 3.17 Using pre-processor directives to replace global constants.

1 ‘define GATES
2

3 module add_1bit( output wire co,
4 output wire s,
5 input wire ci,
6 input wire x,
7 input wire y );
8

9 ‘ifdef GATES
10 wire w0, w1, w2;
11

12 xor t0( w0, x, y );
13 and t1( w1, x, y );
14

15 xor t2( s, w0, ci );
16 and t3( w2, w0, ci );
17

18 or t4( co, w1, w2 );
19 ‘else
20 assign { co, s } = x + y + ci;
21 ‘endif
22

23 endmodule

Listing 3.18 Using pre-processor directives for conditional source code inclusion.

avoided and is best used, for example, to include a single file of macro definitions
that are common to the entire model.

Continuing the similarity with the C pre-processor, the ‘define directive al-
lows the definition of a macro which is replaced the associated value when used
subsequently. Listing 3.17 shows the use of ‘define in action by implementing
an adder whose input and output ports are wider than 1-bit. By altering the definition
of the macro WIDTH, we can change how wide these ports are without fiddling with
the main module definition. Note that when using a macro in C, one would only
need to use the macro identifier WIDTH while in Verilog we are required to prefix
the identifier with a quote to get ‘WIDTH.

Conditional inclusion or exclusion of Verilog code can be achieved using the
‘ifdef, ‘ifndef, ‘else, ‘elsif and ‘endif directives. This sort of con-
struct can alter the source code fed to the Verilog tool-chain by simply changing
some defined constants rather than major alterations to the source code itself. List-
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ing 3.18 demonstrates an example; we have two different implementations of the
adder module and select which one is used in the design by simply defining or not
defining the GATES macro. Code for whichever branch is taken is fed to the tool-
chain, the branch which is not taken is omitted as if it were never there or simply
commented. Since macros can be defined by the tool-chain as well as in the source
code, conditional inclusion and exclusion of code can offer a neat way to configure
a design for different purposes and situations.

The ‘timescale directive is a means of changing the unit of time during sim-
ulation. This alters the units used to define timing delays without the need to scale
them all by hand, a daunting task in a large design. Use of ‘timescale follows
the general format:

‘timescale <reference> / <precision>;

where the <reference> field determines the unit of measurement while the
<precision> field specifies the precision to which delays are rounded. There are
some constraints as to what values can be used in both fields but these are largely
dependent on the simulator.

3.5.3 Parameters

Although using pre-processor directives to ease maintainability is a useful idea, of-
ten they are not powerful enough to achieve what we want. For example, consider
the definition of an adder module with variable sized input and output ports as de-
scribed in Listing 3.17. By using the macro WIDTH we can easily change the size
of the ports but this is a global change: all add_nbit modules will have the same
sized ports, what if we want one with 4-bit ports and another with 2-bit ports ?

Module parametrisation solves this problem by allowing the declaration of pa-
rameters for each module which can be overridden by each instance. The parameter
keyword is used to declare a parameter with a default value. Essentially similar to a
macro definition, the parameter symbol can then be used freely within the module
body, although it cannot be assigned to since it is not a variable. The major differ-
ence between using a parameter is that each instance can set it to a different value.
This is shown in Listing 3.19 where we parametrise the adder module and then form
two instances. The instance named t0 has the WIDTH parameter set to four so that
the ports are four bits wide; The instance named t1 has the WIDTH parameter set to
two so that the ports are two bits wide. This is performed using the defparam key-
word and utilises the Verilog hierarchical naming scheme to specify exactly which
instance and parameter are being referred to.

Note that we mentioned in Section 3.2 that the form of module definition where
the ports are typed inside the module body is sometimes useful: parameters are
one reason why. Since the parameter is defined inside the body, one cannot use
the symbol before it is defined and hence the parameter symbol cannot exist in the
module header.
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1 module add_nbit( co, s, ci, x, y );
2

3 parameter WIDTH = 0;
4

5 output wire co;
6 output wire [WIDTH-1:0] s;
7 input wire ci;
8 input wire [WIDTH-1:0] x;
9 input wire [WIDTH-1:0] y;

10

11 assign { co, s } = x + y + ci;
12

13 endmodule
14

15 module top();
16

17 wire t0_co, t0_ci;
18 wire t1_co, t1_ci;
19

20 wire [3:0] t0_s, t0_x, t0_y;
21 wire [1:0] t1_s, t1_x, t1_y;
22

23 add_nbit t0( t0_co, t0_s, t0_ci, t0_x, t0_y );
24 add_nbit t1( t1_co, t1_s, t1_ci, t1_x, t1_y );
25

26 defparam t0.WIDTH=4;
27 defparam t1.WIDTH=2;
28

29 endmodule

Listing 3.19 A full-adder implementation whose port width is parametrised.

1 add_1bit t0( w0 , w1 , w2 , w3 , w4 );
2 add_1bit t1( .co(w0), .s(w1), .ci(w2), .x(w3), .y(w4) );
3 add_1bit t2( .co(w0), .s(w1), .ci(w2), .y(w4), .x(w3) );
4 add_1bit t3( .s(w1), .x(w3), .y(w4) );

Listing 3.20 Using named port lists to instantiate a full-adder.

3.5.4 Named Port Lists

As modules get more complex, the number of input and output ports typically grows
quite large. This presents a number of problems. Firstly, it becomes difficult to re-
member the order the ports are declared in and one can easily wrongly connect two
modules as a result. Secondly, it is quite common to want to omit specific connec-
tions to complex modules because one does not use the functionality they provide.
For example, we might ignore the write port of a memory module if the memory
is used in a read-only mode. In this case, we would like to connect the port to null
somehow.

Named port lists solve both of these problems simultaneously. Consider having
to instantiate the full-adder module described in Section 3.2 and Section 3.3. List-
ing 3.20 shows four different ways to do this starting with the conventional method
in Line 1. In fact, the first three lines are equivalent; even though the order or some
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1 module mux2_nbit( r, i0, i1, s0 );
2

3 parameter WIDTH = 0;
4

5 output wire [WIDTH-1:0] r;
6 input wire [WIDTH-1:0] i0;
7 input wire [WIDTH-1:0] i1;
8 input wire s0;
9

10 assign r = ( s0 ? i1 : i0 );
11

12 endmodule
13

14 module top();
15

16 wire [31:0] r;
17 wire [31:0] i0;
18 wire [31:0] i1;
19 wire s0;
20

21 mux2_1bit t0( .r(r), .i0(i0), .i1(i1), .s0(s0) );
22

23 defparam t0.WIDTH = 32;
24

25 endmodule

Listing 3.21 A parametrised implementation of a 1-bit, 2-way multiplexer with 32-bit ports.

wires in Line 2 and Line 3 are different, the fact we name the ports we want to
connect to ensures the instantiations are correct. The final instantiation in Line 4
omits the carry-in and carry-out ports. The carry-in input is therefore wired to zero
for us by the Verilog tool-chain, while the carry-out output is simply ignored or left
dangling.

3.5.5 Generate Statements

Consider the task of creating a 2-way multiplexer where the inputs and outputs are
no longer 1-bit values as previous discussed, but 32-bit values. One way to go about
this is clearly to simply utilise wire vectors and increase the width of the ports. We
might even use parameters as shown in Listing 3.21.

Another way to do the same thing is to use a Verilog generate statement. A gen-
erate statement is designed to programatically and automatically generate hardware
instances; the statement is a means of manipulating the design rather than some-
thing which is executed at run-time. As such, one can think of it as another form of
directive. The idea is that instead of typing out thirty two instantiations of the 2-way
multiplexer with 1-bit inputs, we let the Verilog tool-chain do the work for us. List-
ing 3.22 demonstrates the generate statement in action; the generate block encloses
a for loop which the tool-chain executes to instantiate thirty two multiplexers, each
one taking the i-th bit of the two inputs and producing the i-th bit of the result. Note
that in this case, Verilog demands our loop counter is declared using the genvar
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1 module mux2_1bit( output wire r,
2 input wire i0,
3 input wire i1,
4 input wire s0 );
5

6 assign r = ( s0 ? i1 : i0 );
7

8 endmodule
9

10 module top();
11

12 wire [31:0] r;
13 wire [31:0] i0;
14 wire [31:0] i1;
15 wire s0;
16

17 genvar i;
18 generate
19 for( i = 0; i < 32; i = i + 1 )
20 begin:gen_mux
21 mux2_1bit t( .r(r[i]), .i0(i0[i]), .i1(i1[i]), .s0(s0) );
22 end
23 endgenerate
24

25 endmodule

Listing 3.22 A generate statement building a 1-bit, 2-way multiplexer with 32-bit ports.

type to distinguish it from types used for statements which need to be executed at
run-time.

Looking at the two solutions, the parametrised version seems more sensible; cer-
tainly it does the right job and also promotes reuse of the module. However, there
is a subtle design principle underlying the use of generate which goes beyond sim-
ply reducing work. The Verilog tool-chain is good at taking models and running
simulation and synthesis processes on them. But like any software, it is finite in
computational power and generally fallible in the face of complex inputs. In fact,
a Verilog tool-chain will typically do a much better job of any optimisation when
faced with simple, small constructs rather than large ones. With this in mind, creat-
ing models from lots of modules that operate on small inputs is often more desirable
than using one module that operates on a single large input.

3.5.6 Simulation and Stimuli

One of the major advantages of using Verilog over raw hardware is that one can
simulate and debug a circuit before it is sent through the expensive process of man-
ufacturing. Roughly speaking, there are two types of Verilog simulator:

Cycle-based Simulator The most simple form of simulator assumes that the en-
tire model is clocked and that change occurs synchronously at clock edges. The
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simulator runs a clock and on each transition calculates the new state of the
model; any changes in between the clock transitions are lost.

Event-based Simulator Roughly speaking an event-based simulator waits, watch-
ing for changes in any values within the model and then propagates those changes
to elements they effect. Events occur relative to an internal clock which tracks
the progress of simulation time; the current time is typically stored in a variable
named $time which is accessible for debugging purposes.
For example, the simulator might watch the inputs to a module and, when they
change, evaluate expressions to compute the output or trigger execution of a pro-
cess. Complex scheduling methods determine the order such events are processed
in so that simulation remains valid and to reduce the amount of computation re-
quired.

In some sense, the difference in approach represents a trade-off between simula-
tion speed and accuracy although modern simulators of either type are effective.
They can be further sub-divided into interpreted simulators versus those which per-
form some form of compilation on a model before simulation. Purely interpreter-
based systems process the model line-by-line and as a result are slower. In contrast,
compilation-based simulation translates the model into an internal, easier to deal
with format before executing it. This has the advantage that the simulation can be
much faster; optimisation of the internal format and a global view of the model can
give significant performance benefits. An extreme example of a compiler-based sim-
ulator might translate the model into native executable code for the host machine.
Obviously the drawback is that every time the model changes, it must be recompiled
before simulation can restart so the internal representation matches the design.

None of the modules we have looked at thus far have been self-contained: they
include input and output ports to external systems. In part it is obvious that any
useful module will look like this since if it takes no input and produces no output
as a side effect, we can optimise the design by replacing it with the empty module
! This sort of module with no inputs and no outputs is usually called a top-level
module since it is self-contained, at the top of the hierarchy. To follow convention,
we usually call the top-level module top; clearly it can be called anything.

No matter what simulation system is used, to simulate a model we typically need
to feed it test signals and collect the outputs. This is the job of a top-level stimu-
lus module. Such a module encompasses the design, instantiating an instance of it
and stimulating the inputs in order to provoke execution. For example the stimu-
lus might toggle the reset signal to jump-start the design, emulating the behaviour
of the physical switch one would wire onto the design when implemented in real
hardware.

Figure 3.3 describes diagrammatically how a stimulus for our full-adder inter-
faces with the module. The stimulus module instantiates the full-adder and con-
nects the ports to nets internal to it. These nets can then be set to values in order to
provoke the full-adder to produce output which can be inspected in the simulator.
Listing 3.23 demonstrates an implementation of this: we instantiate the adder and
then use a single process to toggle ci, x and y through all possible values to test
the module. To verify that we are getting the right results on co and s, we use the
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Figure 3.3 A stimulus module encompasses the design and feeds it test values.

1 module top();
2

3 wire co;
4 wire s;
5 reg ci;
6 reg x;
7 reg y;
8

9 add_1bit t0( .co(co), .s(s), .ci(ci), .x(x), .y(y) );
10

11 initial
12 begin
13 $monitor( "%b %b %b %b %b", co, s, ci, x, y );
14

15 #10 ci = 0; x = 0; y = 0;
16 #10 ci = 0; x = 0; y = 1;
17 #10 ci = 0; x = 1; y = 0;
18 #10 ci = 0; x = 1; y = 1;
19 #10 ci = 1; x = 0; y = 0;
20 #10 ci = 1; x = 0; y = 1;
21 #10 ci = 1; x = 1; y = 0;
22 #10 ci = 1; x = 1; y = 1;
23 end
24

25 endmodule

Listing 3.23 Implementation of a stimulus module for a full-adder.

$monitor system task to track their values as they change. The use of $monitor
reduces the amount of typing we do but increases the verbosity of the output; we
might also have used $display to inspect the values at specific points in execu-
tion.

3.6 Further Reading

• D. Harris and S. Harris.
Digital Design and Computer Architecture: From Gates to Processors.
Morgan-Kaufmann, 2007. ISBN: 0-123-70497-9.
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• S. Palnitkar.
Verilog HDL: A Guide in Digital Design and Synthesis.
Prentice-Hall, 2003. ISBN: 0-130-44911-3.

• D.E. Thomas and P.R. Moorby.
The Verilog Hardware Description Language.
Springer-Verlag, 2002. ISBN: 1-402-07089-6.

3.7 Example Questions

12. Write the following as Verilog declarations:

a. An 8-bit little-endian wire vector called a.
b. A 5-bit big-endian wire vector called b.
c. A 32-bit register called c.
d. A signed 16-bit register called d.
e. A memory of 1024 elements, each 8 bits in size, called e.
f. A generate variable called f.

13. Given the declarations:

wire [3:0] a;
wire [3:0] b;
wire [1:0] c;
wire [3:0] d;
wire e;

assign a = 4’b1101;
assign b = 4’b01XX;

what are the values resulting from the following assignments:

a. assign c = a[1:0];
b. assign c = a[3:2];
c. assign d = a & b;
d. assign d = a ˆ b;
e. assign d = { a[3:2], a[1:0] };
f. assign d = { a[1:0], a[3:2] };
g. assign c = {2{b[1]}};
h. assign c = {2{b[2]}};
i. assign e = &a;
j. assign e = ˆa;

14. a. Consider the following Verilog processes for appropriately defined 1-bit
wires a, b, x, y, p and q:
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always @ ( posedge p )
begin
x <= a;
y <= b;

end

always @ ( posedge q )
begin
x <= b;
y <= a;

end

Given that p and q are independent and may change at any time, write down one
potential problem with this design and outline one potential solution.

b. Consider the following Verilog process, for appropriately defined 1-bit wire clk
and 2-bit wire vector state, which implements a state machine with three
states:

always @ ( posedge clk )
begin
case( state )
0 : begin

do_0;
state = 1;

end
1 : begin

do_1;
state = 2;

end
2 : begin

do_2;
state = 0;

end
end

If this process constitutes the entirety of the design, write down one potential
problem with it and outline one potential solution.

15. A Decimal Digit Detector (DDD) is a device that accepts a 1-bit input at each
positive clock edge, and waits until four such bits have been received. At this point,
it sets a 1-bit output signal to true if the 4-bit input (interpreted in little-endian form)
is a valid Binary Coded Decimal (BCD) digit and false if it is not; it then repeats the
process for the next set of four input bits.

Design a Verilog module to model the DDD device. Your design should incorpo-
rate a reset signal that is able to initialise the DDD.

16. A comparator C is a function which takes two unsigned n-bit integers x and y as
input and produces max(x,y) and min(x,y) as outputs. One can think of C as sort-
ing the 2-element sequence (x,y) into the resulting sequence (min(x,y),max(x,y)).
Design a Verilog module to model a single comparator for n-bit numbers.
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17. An n-bit Linear Feedback Shift Register (LFSR) called R is a register whose n-
bit content is shifted right on each positive clock edge; if we use Ri to refer to the i-th
bit of R, this means that R0 is shifted out of the register then provided as output from
the LFSR, and we need to create a new bit to replace Rn−1. The new bit is created
by XORing together bits from the register according to a tap sequence; if the tap
sequence is 0,2,3,5 then the new value for Rn−1 shifted in is R0 ⊕R2 ⊕R3 ⊕R5.
Design a Verilog module to model an 8-bit LFSR with the tap sequence 3,5,7. Your
design should incorporate a reset signal that is able to initialise the LFSR with a
seed value given as input.
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Chapter 4
A Historical and Functional Perspective

Computers are good at following instructions, but not at reading your mind.

– D. Knuth

Abstract If one looks back through history, the terms computer processor and com-
puter are somewhat synonymous; they are both used refer to devices that perform
some computation. Today we typically separate the two concepts and use computer
to refer to the entire system, including memory, input/output peripherals and so on.
The term processor is roughly used to refer to the Central Processing Unit (CPU)
which is normally realised on a single microchip. The CPU is at the heart of the
computer, the collection of logic it houses is tasked with executing programs that
generate results for the user. Our aim in this chapter is to survey the development
and introduce the function of a basic CPU. That is, the aims of this chapter do not
relate to the implementation of the CPU in digital logic: we focus almost entirely on
the concepts and mechanisms that dictate how such a CPU will execute programs.

4.1 Introduction

This general subject area has a rich and interesting history recorded in detail by
a large number of dedicated, knowledgeable authors. Throughout the chapter we
make citations to specific works of interest; an interested reader can find a more
thorough treatment in the books of Brian Randell [56] and Paul Ceruzzi [12], and in
the extensive IEEE Annals of the History of Computing journal or ACM History of
Programming Languages (HOPL) conference.

It might seem a simplistic comparison, but the design and use of a computer
relates well to how one might design and use a pocket calculator which, at face
value, seems far more primitive:

143
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A pocket calculator:

• has an accumulator (i.e., current
value) and some memory (accessed
via the M+ and MR buttons ) that
can store values.

• has some component that performs
arithmetic (e.g., add together num-
bers).

• has input and output peripherals
(e.g., keypad, LCD screen).

• responds to simple commands or in-
structions from the user; for ex-
ample, the user can supply things
to perform arithmetic on (i.e., num-
bers) and commands to perform
arithmetic (e.g., do an addition).

A computer processor:

• has many accumulators (or regis-
ters), and potentially many levels
and large amounts of memory.

• has an Arithmetic and Logic Unit
(ALU) to perform arithmetic.

• has input and output peripherals
(e.g., hard disk, monitor).

• executes sequences of simple in-
structions called programs; instruc-
tions are made up from operands
that define values to operate on, and
opcodes which define the operation
to perform.

In reality, a pocket calculator is a type of special-purpose computer so the similarity
is probably not surprising; unlike what we may traditionally view as a computer, the
calculator exists to perform the single task of arithmetic on behalf of the user. From
the perspective of someone using a computer however, the analogy is not always as
obvious. In particular, this is because features such as the user interface, operating
system and programming languages mask the simplicity of low-level behaviour.

In terms of teaching and learning about computer science, this presents a major
problem: on one hand languages such as Java offer a powerful means to construct
software, but on the other hand programmers using Java are many levels away from
the raw hardware that executes the end result. This chapter represents a starting point
toward explaining how a computer actually executes programs and thereby allows it
to be generally useful rather than fixed to some special task such as arithmetic. The
aim is to overview evolutionary steps using examples from history to highlight key
advances, and to demonstrate at a functional level what typical low-level behaviour
is.

4.2 Special-Purpose Computers

Ignoring the era of mechanical computers such as the famous Differential and An-
alytical Engine designs of Babbage, there are a number of milestones that demand
a brief overview. One of the first machines we would recognise as a computer
today was the Colossus [14, 18, 23], often cited as the first electronic computer.
Although described as a programmable computer, Colossus was built by British
code-breakers for a single purpose: to decipher messages encrypted by the German-
designed Lorenz machine during the Second World War. The first, prototype Colos-
sus contained 1500 electronic valves (essentially vacuum tubes) and was brought
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Figure 4.1 Operators using the Colossus computer and paper tape reader (Public domain
image, photographer: Unknown, source: http://en.wikipedia.org/wiki/Image:
Colossus.jpg).

on-line at Bletchley Park in early 1944; ten such machines were built and used by
the end of the war. Colossus was designed and built by a team led by engineer
Tommy Flowers, initially at the Post Office Research Station, after weaknesses in
the Lorenz cipher were found by Bill Tutte, a cryptanalyst at Bletchley Park. In
a technical sense, the computer was designed to apply a programmable Boolean
function to inputs read from a paper tape at high speed. By counting how often the
Boolean function was evaluated as true, Colossus mechanically unpicked statistical
features in message tapes that enabled their eventual decryption.

Lorenz was not the only cipher used by the Germans; the rotor-based Enigma
machine is perhaps more famous and offered at least an equal challenge to Allied
forces. Using Polish cryptanalytic techniques, Bletchley Park developed an auto-
mated way to decipher messages secured by Enigma. Put very simply, the purpose
of the so-called Bombe computer was to emulate the rotor structure of Enigma and
search different configurations until a statistical test was passed; this was done at
very high speed. The correct configuration was deemed found when an output that
statistically represented natural language was detected. The first devices, built un-
der the direction of Harold Keen following initial designs by Alan Turing, were
installed in 1940. By 1945 roughly two hundred machines were being operated by
staff in order to decipher German communication.
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Figure 4.2 The ENIAC installation at the U.S. Army Ballistics Research Laboratory. (A U.S.
Army photograph now in public domain, photographer: Unknown, source: http://ftp.arl.
army.mil/ftp/historic-computers/gif/eniac5.gif)

4.3 General-Purpose Computers

Although the Colossus and Bombe were partly programmable in the sense that their
behaviour could be altered by reconfiguring the physical machine using a plug-
board, they were not general-purpose in the way we expect today. For a computer to
be general-purpose we now say it must be Turing-complete, a concept introduced
by Alan Turing to capture the notion that a truly general purpose computer be able
to compute anything actually computable; it should have a computational power
equivalent to a universal Turing machine.

A step toward this goal was the Electronic Numerical Integrator And Com-
puter (ENIAC) [9], a computer designed by John Presper Eckert and John Mauchly
while working as researchers at the University of Pennsylvania. Although it was de-
signed as a general-purpose computer, the ENIAC was commissioned by the U.S.
Army for their Ballistics Research Laboratory; the chief aim was to accurately com-
pute numerical tables used to guide firing of munitions. Until then, the tables were
calculated by hand and were difficult to produce within an acceptable accuracy;
without said accuracy the risk of friendly fire incidents was presumably significant!
The ENIAC was brought on-line in 1946 having cost around $500,000, occupying
an entire room and weighing around three tonnes; it used a huge number of electri-
cal components including almost 19,000 electronic valves, more than ten times as
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Figure 4.3 Two operators at the ENIAC control panel. (A U.S. Army photograph now
in public domain, photographer: Unknown, source: http://ftp.arl.army.mil/ftp/
historic-computers/gif/eniac7.gif)

Figure 4.4 Original caption notes that “replacing a bad [vacuum] tube meant checking
among ENIACs 19,000 possibilities”; a daunting task ! (A U.S. Army photograph now
in public domain, photographer: Unknown, source: http://ftp.arl.army.mil/ftp/
historic-computers/gif/eniac3.gif)
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many as the Colossus. The ENIAC was programmed by configuring the many phys-
ical switches and cables that controlled behaviour. In this sense, the ENIAC was
programmable and could perform a range of arithmetic operations including ad-
dition, subtraction, multiplication and even square root using decimal values from
ten-digit accumulators.

Essentially the ENIAC was an early pocket calculator, although one would need
large pockets to carry it around ! Early computers of this type viewed instructions
(the commands to the computer) and data (the values the commands operated on)
as different things; this approach is now termed a Harvard architecture after the
Harvard Mark 1 computer, a precursor to the ENIAC designed by Howard Aiken
circa 1944. Consider an imaginary computer of this era whose programs were fed
to it on a paper tape. Like the pocket calculator, we can identify and start to explain
the key components in some detail:

Accumulators When using a calculator and entering a value, say 10 for example,
with which to perform some computation, it needs to be stored somewhere. One
can think of the accumulator as a small area of short-term storage for values
while we are working with them. In contrast to a memory which stores many
values, the accumulator typically stores just a single value; whereas the values in
the memory are potentially long lived, the value in the accumulator is transient
and only useful in the short term.

Memory A memory is simply a storage device in which one can store values; one
can think of it as an infinite array MEM which can store n-bit binary vectors. As
such, one can think of the memory abstractly as two functions

LOAD(x) : {0,1}∗ → {0,1}n, LOAD(x) = MEM[x]
STORE(x,y) : {0,1}∗ ×{0,1}n →⊥, STORE(x,y) = MEM[x] ← y.

We call x the address or index; it is used to select the element in MEM whose
value we wish to either retrieve using the LOAD function, or update with y using
the STORE function. Of course, in reality we cannot hope to build an infinitely
large memory. We bound the size of MEM to say m locations; addresses used to
access it are then bit-vectors of length  log2(m)!.
In terms of our pocket calculator, it is common to find a single location memory
that is used to assist calculation. For example, to compute the result of 10−20

7+3 one
might first compute 7 + 3 and store this in the memory. Then we can compute
10 − 20 and divide the result by a value loaded from the memory. Of course,
the analogy is not perfect here since with a single location memory we do not
really need an address; the location we are referring to is implicit. The LOAD

and STORE functions for the calculator are commonly denoted MR and M+ for
“memory recall” and “memory add”.

Arithmetic and Logic Unit (ALU) Once we can store values in the long and
short term, we need a device to perform computation on them. The ALU rep-
resents such a device and lies at the heart of any computer processor design,
including our example. When the user provokes the addition of two values using
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the + and = keys on the calculator, it is the ALU which takes them and calculates
the answer.
Typically the ALU is tasked with performing arithmetic on values and compar-
isons between them. Abstractly, an ALU can be thought of as a collection of
functions which take values, normally termed operands, and produce results.
The function applied to the operands is determined by an opcode. For example,
imagine we have a family of four functions that operate on n-bit operands and
produce n-bit results:

f+(x,y) : {0,1}n ×{0,1}n → {0,1}n, f+(x,y) = x+ y
f−(x,y) : {0,1}n ×{0,1}n → {0,1}n, f−(x,y) = x− y
f·(x,y) : {0,1}n ×{0,1}n → {0,1}n, f·(x,y) = x · y
f/(x,y) : {0,1}n ×{0,1}n → {0,1}n, f/(x,y) = x/y

then we can define a simple function that describes a limited ALU as

ALU(x,y,z) : {0,1}n ×{0,1}n ×{+,−, ·,/}→ {0,1}n, ALU(x,y,z) = fz(x,y)

That is, we take the operands x and y and use the opcode z to select which function
to apply to them in order to produce the result. So if we want the result of 10−20
then we invoke the ALU using ALU(10,20,−) in order to calculate it for us via
a call to the function f−(10,20) = 10−20 = −10.

For our imaginary computer, we define one accumulator called A and a memory
called MEM each of which can store values represented as six-digit decimal num-
bers. Obviously we have already seen that binary offers a better way to connect the
concepts of numbers and circuits for their manipulation; we will use decimal here
firstly for clarity, and secondly because computers of this era (including ENIAC for
example) did the same. Such a computer would execute instructions in a program
using a repeated series of steps which one can view as a simple state machine:

1. Encode a program onto punched tape; load this tape into the tape reader and start
the computer.

2. Using the tape reader, fetch the next instruction and call it IR.
3. If the end of tape marker is encountered or IR is the HALT instruction then halt

the computer, otherwise execute the instruction IR (i.e., perform the operation it
specifies).

4. Repeat from step 2.

Note that the roles of data and instructions are clearly separated; programs were
written onto the tape at compile-time but fixed at run-time, one cannot change the
tape content once execution is started. To actually write such programs in the first
place, we need to define an instruction set which details the instructions the com-
puter can understand and execute. A very limited instruction set might include the
following:

• A ← n, i.e., load the value n into the accumulator A.
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• MEM[n] ← A, i.e., store the value in the accumulator A into address n of the
memory.

• A ← MEM[n], i.e., load the value from address n in memory into the accumulator
A.

• A ← A+MEM[n], i.e., add the value from address n of the memory to the accu-
mulator A and store the result back in the accumulator.

• A ← A−MEM[n], i.e., subtract the value from address n of the memory to the
accumulator A and store the result back in the accumulator..

• HALT , i.e., halt or stop execution.

Clearly the instruction set limits the sorts of program we can write; for example,
like the Harvard Mark 1 there are no branch instructions so we can only execute
instructions on the tape in same sequence they were written. More simply, if we
want a “loop” in the program, we need a physical “loop” of tape ! Consider a simple
example program which adds together two numbers held in MEM[4] and MEM[5]
and then stores the result back into MEM[6]; the program consists of the four in-
structions

A ← MEM[4]
A ← A+MEM[5]
MEM[6] ← A
HALT

The steps involved in executing the program (and the tape and memory content at
each step) are detailed in Figure 4.5 and Figure 4.6. After eight steps, we end up
with the result of the addition stored in MEM[6]: not exactly earth-shattering news
by modern standards, but probably quite an achievement in the 1940s !

4.4 Stored Program Computers

Although it was operational until 1955 the ENIAC was upgraded at various points to
improve the memory size and arithmetic performance. The most notable improve-
ment, however, came in 1948 when it was improved to incorporate ideas of John
von Neumann who, along with Eckert and Mauchly, had designed a successor to
ENIAC called the Electronic Discrete Variable Automatic Computer (EDVAC).
von Neumann was a Hungarian mathematician responsible for a huge range of re-
sults in computer science, physics, mathematics and economics. Many aspects of the
EDVAC were based on a 1945 report by von Neumann [48]. The machine was again
commissioned by the U.S. Army Ballistics Research Laboratory and was brought
on-line in 1949. The success of the machine, and the general architectural design
that it was based on, resulted in Eckert and Mauchly leaving academia to found the
Eckert-Mauchly Computer Corporation.

The key advance was the realisation that instructions that control the computer
and the data they operate on are both essentially numbers. This is easy to see now:
we could for example associate the number 1 with the addition operation and easily
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CPU

state = start
IR =
A = 000000

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000000
7 000000

Step t0 starts by initialising the processor and loading the program onto the tape.

CPU

state = fetch
IR = A ← MEM[4]
A = 000000

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000000
7 000000

Step t1 fetches instruction #0 from the program tape.

CPU

state = execute
IR = A ← MEM[4]
A = 000010

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000000
7 000000

Step t2 executes instruction #0, loading the value 10 from memory address 4 into A.

CPU

state = fetch
IR = A ← A+MEM[5]
A = 000010

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000000
7 000000

Step t3 fetches instruction #1 from the program tape.

CPU

state = execute
IR = A ← A+MEM[5]
A = 000030

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000000
7 000000

Step t4 executes instruction #1, adding the value 20 from memory address 5 to A.

Figure 4.5 Execution of a simple program on a Harvard-style computer.
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CPU

state = fetch
IR = MEM[6] ← A
A = 000030

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000000
7 000000

Step t5 fetches instruction #2 from the program tape.

CPU

state = execute
IR = MEM[6] ← A
A = 000030

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000030
7 000000

Step t6 executes instruction #2, storing the value 30 in memory address 6.

CPU

state = fetch
IR = HALT
A = 000030

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000030
7 000000

Step t7 fetches instruction #3 from the program tape.

CPU

state = execute
IR = HALT
A = 000030

Tape
Address Instruction

0 A ← MEM[4]
1 A ← A+MEM[5]
2 MEM[6] ← A
3 HALT
4
5
6
7

MEM
Address Value

0 000000
1 000000
2 000000
3 000000
4 000010
5 000020
6 000030
7 000000

Step t8 executes instruction #3, halting the computer.

Figure 4.6 Execution of a simple program on a Harvard-style computer.
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Arithmetic and Logic
Unit (ALU)

Accumulators

Control Unit

Memory

Input and Output Devices

Figure 4.7 The canonical stored program architecture.

store this in memory alongside the data values, the meaning of 1 becoming a simple
matter of interpretation. There is certainly some prior art to the ideas of von Neu-
mann, for example Konrad Zuse described the concept circa 1936 in a patent appli-
cation for his range of early computers and Alan Turing described a complete stored
program computer, the Pilot ACE, circa 1946. However, the successful implementa-
tion of the so-called von Neumann architecture or stored program architecture
in the EDVAC has become a milestone innovation.

A canonical stored program architecture is comprised of a number of compo-
nents as shown in Figure 4.7. This diagram makes explicit a number of additional
components which were implicit in our original imaginary computer. In particular,
we see that the architecture includes:

Control Unit In order to synchronise and control all other aspects of the system,
the control unit typically acts as a state machine which steps through a series of
operations to perform computation; as such it has implicit hooks into all other
devices which it uses to control their behaviour.
Inside a calculator for example, the control unit has a number of tasks: accept
input from the user, invoke the ALU where required, display output to the user.
Although the user cannot see this happening, the control unit imposes an order
on how the calculator can be used and how the devices inside it are used.

Buses The lines that connect components in Figure 4.7 depict channels of com-
munication, for example the ALU communicates information to and from the
accumulator. Naively, we can think of these connections as wires that link the
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components. However, several factors mean we also need a protocol or policy to
manage how the wires are used. For example, both ends of the communication
link sending a signal at the same time along the same wire will cause problems
that need to be managed.
The general term for such connections is a bus; this differs from a point-to-point
link in that the communication medium can be shared between several devices if
correctly managed by a bus protocol. Again, there is no obvious analogy in the
context of a calculator. Hopefully it is clear that, inside the device at least, there
needs for be communication between the ALU doing computation and the LCD
screen output device for example.

Input and Output Devices Input and output devices are the easiest to explain
by analogy since they are usually the most obvious in a physical sense. With
a calculator, the keypad used to enter values and the LCD screen used to view
those values are examples of such devices. Input devices are used by the user
to communicate information into the processor, output devices are used by the
processor to communicate information to the user.

Considering the overall architecture, we have effectively identified two main sub-
systems: the data-path which is responsible for doing computation and the control-
path which is responsible for telling the data-path what to do and when to do it.
From a programmer’s point of view, the capabilities of a processor are more ab-
stractly described by an Instruction Set Architecture (ISA). The ISA specifies
how instructions should be formatted so that the control unit can correctly interpret
them, and the meaning of those instructions in terms of their semantics. As such, an
ISA represents an interface between programmer and an abstract processor rather
than an exact specification of how the processor should be implemented. For exam-
ple, the MIPS32 ISA specifies a fairly standard instruction set which is implemented
by a number of different physical processor designs. Each implementation can make
different trade-offs in terms of size and performance but still offers the same basic
interface to the programmer: the processors still execute the same programs and
yield the same results, they just do so in a different way.

Regardless of the actual implementation, the core operations carried out by a
stored program computer are easy to describe. The one assumption is that the pro-
cessor maintains a Program Counter (PC), or instruction pointer, that determines
where in memory the instruction which should be executed next is; normally we ex-
pect the PC to be set to zero when the processor is reset. Once the processor is
started, execution of the program proceeds using a slight alteration to our original
scheme:

1. Encode a program onto a tape; load this tape into memory using the tape reader,
zero PC and start the computer.

2. From the address in PC, fetch the next instruction IR.
3. Increment PC so it points to the next instruction.
4. If IR is the HALT instruction then halt the computer, otherwise execute the in-

struction IR (i.e., perform the operation it specifies).
5. Repeat from step 2.
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More formally, once execution starts this repeated sequence of steps encapsulates
what is normally called the fetch-decode-execute cycle:

Fetch During the first stage, the control unit uses the program counter to access
memory and load the instruction to be executed next. The program counter is
then incremented, using the ALU, so that it points to the next instruction in the
program.

Decode Once we have retrieved the instruction, we need to check what it means in
terms of the operations it instructs the processor to perform. From the numerical
instruction the control unit extracts the operation code, or opcode, that specifies
the computation we perform and the operands that we use as values in that com-
putation. The operands can take several forms: they can refer to an accumulator
or a memory location, whose content we must fetch, or simply an immediate
number whose value is directly available.

Execute At this point, the processor has all the information required to actually do
something; we say the instruction is now executed. During execution the control
unit might invoke the ALU to perform some computation, or access memory to
load or store values into or from an accumulator. Any results generated by these
actions are potentially written back into an accumulator or into memory for use
in the execution of further instructions.

To complete our imaginary computer, consider an “upgrade” so that it uses a stored
program architecture rather than a Harvard architecture. All we need to unify data
and instructions is an encoding (or map) from values to meaning; essentially we
have to define the ISA for the computer. For our purposes, the encoding does not
matter too much; imagine that we again represent everything as six-digit decimal
values. An example encoding, where we can fill in n as a value of our choosing,
might be as follows:

• 0nnnnn means A ← n.
• 1nnnnn means MEM[n] ← A.
• 2nnnnn means A ← MEM[n].
• 3nnnnn means A ← A+MEM[n].
• 4nnnnn means A ← A−MEM[n].
• 5nnnnn means HALT .

For example, the value 300020 is viewed as the instruction A ← A + MEM[20]. In
this context the “3” part is the opcode and the “00020” part is the operand.

Equipped with our upgraded computer and a definition of the ISA, we can look at
how the example program from above would be executed. Notice that the program
is the same four instructions

A ← MEM[4] "→ 200004
A ← A+MEM[5] "→ 300005
MEM[6] ← A "→ 100006
HALT "→ 500000
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CPU

state = start
PC = 0
IR =

=
A = 000000

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t0 starts by initialising the processor and loading the program into memory.

CPU

state = fetch
PC = 0
IR = 200004

= A ← MEM[4]
A = 000000

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t1 fetches instruction #0 from memory address PC = 0.

CPU

state = execute
PC = 1
IR = 200004

= A ← MEM[4]
A = 000010

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t2 increments PC and executes instruction #0, loading the value 10 from
memory address 4 into A.

CPU

state = fetch
PC = 1
IR = 300005

= A ← A+MEM[5]
A = 000010

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t3 fetches instruction #1 from memory address PC = 1.

CPU

state = execute
PC = 2
IR = 300005

= A ← A+MEM[5]
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t4 increments PC and executes instruction #1, adding the value 20 from
memory address 5 to A.

Figure 4.8 Execution of a simple program on a stored program computer.
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CPU

state = fetch
PC = 2
IR = 100006

= MEM[6] ← A
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t5 fetches instruction #2 from memory address PC = 2.

CPU

state = execute
PC = 3
IR = 100006

= MEM[6] ← A
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000030
7 000000

Step t6 increments PC and executes instruction #2, storing the value 30 in memory
address 6.

CPU

state = fetch
PC = 3
IR = 500000

= HALT
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000030
7 000000

Step t7 fetches instruction #3 from memory address PC = 3.

CPU

state = execute
PC = 4
IR = 500000

= HALT
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[6] ← A
3 500000 HALT
4 000010
5 000020
6 000030
7 000000

Step t8 increments PC and executes instruction #3, halting the computer.

Figure 4.9 Execution of a simple program on a stored program computer.
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except now we map them, via our instruction encoding, into their representation
as six-digit decimal values. The steps involved in executing the program (and the
memory content at each step) are detailed in Figure 4.8 and Figure 4.9. Two key
differences are obvious:

1. we have removed the need for a tape during execution since the program is stored
in memory at addresses 0 . . .3, and

2. the CPU now has a program counter (which is analagous to the tape head we
needed before) that keeps track of where in memory the next instruction comes
from.

Other than that, execution is similar and after eight steps, we reassuringly end up
with the result stored in MEM[6].

4.5 Toward Modern Computers

To reiterate, two main features can be used to distinguish a stored program architec-
ture from previous designs: the inclusion of a memory that stores both instructions
and data, and the segregation of memory and control unit. These features were used
to good effect by two of the first electronic stored program computers, the Small-
Scale Experimental Machine (SSEM) and Electronic Delay Storage Automatic
Calculator (EDSAC).

The SSEM [36], nicknamed the Baby, was designed and built by a team led by
Frederic Williams and Tom Kilburn at the University of Manchester. It is gener-
ally recognised as the first computer to run a stored program; in 1948 it used a
program for division to show that the numbers 314159265 and 217828183 are rel-
atively prime. The architecture of the SSEM was based around a device called the
Williams tube that acted as a memory. The device was able to store 32 values, each
32 bits in size. Values were loaded from the memory into an accumulator and then
use as input one of a limited set of arithmetic operations with results stored back
into the memory; this represents a typical cycle in stored program architectures.

Like the SSEM, the EDSAC [11, 66] was architected around a memory technol-
ogy, in this case a device called a mercury delay tube that was designed to hold 1024
values each of 18 bits in size; it eventually had only 512 values each 17 bits in size .
The EDSAC was constructed by Maurice Wilkes [67] and his team at the University
of Cambridge with the support of J. Lyons & Co. It ran a stored program slightly
later than the SSEM; in 1949 it ran a program that calculated a list of prime num-
bers. Even so, it offered a number of other firsts. David Wheeler, a researcher on the
EDSAC project, was credited with the invention of what we now know as the sub-
routine. In addition, the EDSAC was equipped with the first example of what we
now know as an operating system. The so-called Initial Orders [65] represented
a short program initialised by a plug-board that were responsible for loading the
user program from a storage device. Because of these innovations the EDSAC is
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Figure 4.10 The EDSAC computer, including William Renwick and Maurice Wilkes. (Copyright
Computer Laboratory, University of Cambridge. Reproduced by permission under the Creative
Commons Attribution Licence, photographer: Unknown, source: http://www.cl.cam.ac.
uk/Relics/jpegs/edsac_wilkes.jpg)

Figure 4.11 Sid Barton with 9-inch tubes which implemented the EDSAC operator display.
(Copyright Computer Laboratory, University of Cambridge. Reproduced by permission under the
Creative Commons Attribution Licence, photographer: Unknown, source: http://www.cl.
cam.ac.uk/Relics/jpegs/edsac99.35.jpg)
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generally recognised as the first practical stored program computer and the first real
forerunner of computers as we know them today.

As implementations of the general stored program architecture, the SSEM and
EDSAC both presented ways to write practical and sizable programs for the first
time. Several additional aspects of the architecture, which bridge the gap somewhat
toward more modern computers, are worth discussing.

4.5.1 The von Neumann Bottleneck

The execution of the fetch-decode-execute cycle highlights an issue with the basic
stored program architecture: processor performance is tightly bound to the memory
performance. That is, since we need to access memory at least once per cycle to
retrieve an instruction, the processor can only operate as fast as the memory. This is
sometimes termed the von Neumann bottleneck or memory wall [68] and presents
a significant problem for modern computer processors.

We investigate the construction of memory in Chapter 8 but roughly speaking
the memory wall is exacerbated by two main facts: firstly, since the memory is
physically separated from the processor, there is an inherent and significant delay in
transferring instructions or data; secondly, the development of memory technologies
at a physical level has been outstripped by improvements to processor technology.
This is partly because their goals differ (e.g., memory technology is often concerned
with size rather than speed), but the end result is that a processor can commonly be
starved of instructions to execute due to the latency of memory access. Approaches
to removing, or at least hiding, this latency are therefore enormously important.

4.5.2 Data-Dependent Control-Flow

The addition of the program counter has a fairly profound implication for the types
of program we can write. Thus far, we have examined a (very simple) straight-
line example program: execution starts at the first instruction and proceeds with
each subsequent instruction in sequence until the CPU is halted. This behaviour is
enforced by the fetch-decode-execute cycle which increments PC to point at the
next instruction in the sequence. However, imagine we add some instructions to our
ISA which allow the program to test A and (conditionally) set the value of PC. For
example, imagine we add three instructions:

• 6nnnnn means PC ← n, i.e., set the value of PC so that the next instruction is
fetched from address n in memory.

• 7nnnnn means if A = 0,PC ← n, i.e., set the value of PC to n if the accumulator
A holds the value 0, otherwise do not change it at all.

• 8nnnnn means if A 	= 0,PC ← n, i.e., set the value of PC to n if the accumulator
A holds the value other than 0, otherwise do not change it at all.
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Using these instructions, the program can dictate which instruction the processor
executes next by controlling the value of PC. Furthermore, it can do this based on
the result of some previous computation (i.e., based on the value held in A). We
say this allows the program to alter the control-flow, or the path taken through the
program, in a way which is data-dependent.

Imagine we take our example program to add together numbers and replace the
HALT instruction with one that alters PC. We can construct what you might recog-
nise as an infinite loop: once the program finishes the addition and stores the result
into MEM[6], it sets PC = 0:

A ← MEM[4]
A ← A+MEM[5]
MEM[6] ← A
PC ← 0

This means that the instruction executed after instruction #3 will be instruction #0,
i.e., the whole process of addition is repeated again and again until the computer
is turned off ! Clearly by more intelligent use of these sorts of instruction one can
construct programs that include the equivalent of iteration (e.g., for or while)
and conditional (e.g., if) statements which one might associate with C programs.

4.5.3 Self-Modifying Programs

There is a subtle difference between Harvard and stored program architectures in
that with the latter design, instructions and data are the same thing so we can alter
instructions just as easily as data: in the former case we could not alter the program
once execution had started. Imagine we make a mistake while writing our example
program so that instead of storing the addition result in MEM[6], we store it in
MEM[3]:

A ← MEM[4]
A ← A+MEM[5]
MEM[3] ← A
HALT

Examining the execution in Figure 4.12 and Figure 4.13 we see that when instruction
#2 is executed, it actually overwrites instruction #3 and thus changes it from HALT
to A ← 30. As a result, when instruction #3 is fetched and executed it reloads the
value 30 into A and then carries on rather than halting execution: the program has
modified itself by altering instructions while the same program is running !

At face value, this seems like an issue of program correctness: if we make a
mistake in writing the program, it should not be a surprise that it executes in an
erroneous manner. However, there are situations where the constructive use of self-
modifying programs allows one to consider novel solutions to problems; we exam-
ine two such situations below.
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CPU

state = start
PC = 0
IR =

=
A = 000000

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t0 starts by initialising the processor and loading the program into memory.

CPU

state = fetch
PC = 0
IR = 200004

= A ← MEM[4]
A = 000000

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t1 fetches instruction #0 from memory address PC = 0.

CPU

state = execute
PC = 1
IR = 200004

= A ← MEM[4]
A = 000010

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t2 increments PC and executes instruction #0, loading the value 10 from
memory address 4 into A.

CPU

state = fetch
PC = 1
IR = 300005

= A ← A+MEM[5]
A = 000010

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t3 fetches instruction #1 from memory address PC = 1.

CPU

state = execute
PC = 2
IR = 300005

= A ← A+MEM[5]
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t4 increments PC and executes instruction #1, adding the value 20 from
memory address 5 to A.

Figure 4.12 Execution of a self-modifying program on a stored program computer.
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CPU

state = fetch
PC = 2
IR = 100003

= MEM[3] ← A
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 500000 HALT
4 000010
5 000020
6 000000
7 000000

Step t5 fetches instruction #2 from memory address PC = 2.

CPU

state = execute
PC = 3
IR = 100003

= MEM[3] ← A
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 000030 A ← 30
4 000010
5 000020
6 000000
7 000000

Step t6 increments PC and executes instruction #2, storing the value 30 in memory
address 3 and thereby overwriting the HALT .

CPU

state = fetch
PC = 3
IR = 000030

= A ← 30
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 000030 A ← 30
4 000010
5 000020
6 000000
7 000000

Step t7 fetches the modified instruction #3 from memory address PC = 3.

CPU

state = execute
PC = 4
IR = 000030

= A ← 30
A = 000030

MEM
Address Value Meaning

0 200004 A ← MEM[4]
1 300005 A ← A+MEM[5]
2 100006 MEM[3] ← A
3 000030 A ← 30
4 000010
5 000020
6 000000
7 000000

Step t8 increments PC and executes the modified instruction #3, loading the value
30 into A.

Figure 4.13 Execution of a self-modifying program on a stored program computer.
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4.5.3.1 Program Relocation

Considering the original example program again, notice that it only works if we load
the instructions into memory starting at address 0. For example, imagine if we load
it starting at address 1 so that the initial memory content is:

MEM
Address Value Meaning

0
1 200004 A ← MEM[4]
2 300005 A ← A+MEM[5]
3 100006 MEM[6] ← A
4 500000 HALT
5 000010
6 000020
7 000000

We can expect at least two problems when executing this program. Firstly, we do not
really know what the contents of MEM[0] will be, so if we start executing at address
0 undefined behaviour will result. Secondly, our load and store instructions have
fixed addresses in them; when we try to load 000010 from address 4, we actually
load the encoded HALT instruction instead, i.e., the value 500000. To resolve this
problem, we need to relocate instructions by patching addresses so they make sense
relative to the address we load the program at.

The Initial Orders operating system used by EDSAC had a mechanism to do
just this. It maintained a value called Θ which held the load point, i.e., the address
where the program is loaded. As each instruction was read into memory, the address
field n was modified by adding Θ to it. That is, an instruction A ← MEM[4] would
be modified to A ← MEM[4 +Θ ]. This solves the second of our problems above;
setting Θ = 1 the loaded program becomes

MEM
Address Value Meaning

0
1 200005 A ← MEM[4+1]
2 300006 A ← A+MEM[5+1]
3 100007 MEM[6+1] ← A
4 500000 HALT
5 000010
6 000020
7 000000

such that, for example, the load instruction now correctly loads the value 000010
from address 4+1 = 5 rather than from address 4.

4.5.3.2 Array Iteration

Another use of self-modifying code is to cope with inadequacies in the ISA, for
example the problem that we must supply addresses as constant values. Imagine
a simple problem involving a 3-element vector X where we would like to write a
program that loads Xi, increments it and then stores the result back in the same
place. In C this would be simple: we would represent X as an array X and write a
loop such as
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for( int i = 0; i < 3; i++ ) {
X[ i ] = X[ i ] + 1;

}

such that to access element X[i] we do some pointer arithmetic and load from or
store to address &X+i; in this context &X is the base address and i is the offset.
But this is impossible with the instructions at our disposal; the address must be
specified as part of the instruction, not calculated as one would in C. As a result,
to implement this sort of loop on a computer such as EDSAC, one was forced to
employ self-modifying code in a constructive way. The basic approach, focusing on
the instruction that loads the value of X [i], is that we start by saying the instruction
will load X [0]. After executing it, we modify the same instruction so that next time
around the loop it will load X [1] and so on. Consider a short example of this in
action where only the instructions that represent the loop body are shown:

MEM
Address Value Meaning

0 200015 A ← MEM[15]
1 300014 A ← A+MEM[14]
2 100015 MEM[15] ← A
3 200000 A ← MEM[0]
4 300014 A ← A+MEM[14]
5 100000 MEM[0] ← A
6 200002 A ← MEM[2]
7 300014 A ← A+MEM[14]
8 100002 MEM[2] ← A

.

.

.

.

.

.

.

.

.
14 000001
15 X [0]
16 X [1]
17 X [2]

Notice that MEM[14] contains the constant 1 and that the values X [0 . . .2] are held
in MEM[15 . . .17]. Instructions #0 . . .#2 load the value X [0] from MEM[15], in-
crement the value by adding the value at MEM[14], i.e., the constant 1, and then
store X [0] + 1 back into MEM[15]. This completes the first iteration of the loop.
But before we branch back to execute the second iteration, we execute instructions
#3 . . .#8 which act to self-modify the program. For example, instructions #3 . . .#5
load the value from MEM[0], i.e., the instruction A ← MEM[15] represented by
value 200015, increment the value by adding the contents of MEM[14], and then
store the resulting value 200016 back into MEM[0]. This has the net effect of mod-
ifying A ← MEM[15] into A ← MEM[16] so that in the next loop iteration, we
load and increment X [1]. Instructions #6 . . .#8 perform a similar task for the store
instruction in MEM[2].

Clearly this is quite an involved process for writing a loop we now regard, at a
high-level at least, as fairly simple; the complexity and program length are basically
due to the limited form of our ISA. To improve matters, we will see later that one
can allow different types or modes of load and store instruction. In the context of
our CPU for example, we might introduce a second accumulator called B and then
redefine load and store instructions so that B is added to the address n. For example,
what was A ← MEM[n] would become A ← MEM[B + n]. By allowing the pro-
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grammer to set the value of B, we have constructed what might be called an indexed
mode for loads and stores.

4.6 Further Reading

• P.E. Ceruzzi.
A History of Modern Computing.
MIT Press, 2003. ISBN: 0-262-53203-4.

• G. O’Regan.
A Brief History of Computing.
Springer-Verlag, 2008. ISBN: 1-848-00083-9.

• C. Petzold.
Code: Hidden Language of Computer Hardware and Software.
Microsoft Press, 2000. ISBN: 0-735-61131-9.

• B. Randell.
The Origins of Digital Computers: Selected Papers.
Springer-Verlag, 1982. ISBN: 0-387-11319-3.

4.7 Example Questions

18. The description of a stored program memory architecture often implies it is su-
perior to, or at least more advanced than, a Harvard memory architecture. In reality
both have advantages and disadvantages; discuss two advantages that a Harvard
memory architecture can provide.

19. Consider a simple stored program computer with an instruction set of nine in-
structions whose semantics and encoding are defined by:

• 0nnnnn means A ← n.
• 1nnnnn means MEM[n] ← A.
• 2nnnnn means A ← MEM[n].
• 3nnnnn means A ← A+MEM[n].
• 4nnnnn means A ← A−MEM[n].
• 5nnnnn means HALT .
• 6nnnnn means PC ← n.
• 7nnnnn means if A = 0,PC ← n.
• 8nnnnn means if A 	= 0,PC ← n.

Making appropriate assumptions as required, write a program which will emu-
late the behaviour (i.e., perform the fetch-decode-execute cycle) after a program
is loaded into memory and the computer is reset.
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20. Using your emulator from the previous question, write and describe the opera-
tion of a program (i.e., specify the initial memory content) to compute the sum of n
elements held in an array X . That is, compute

n−1

∑
i=0

Xi

for some known n where X is located at some known address m.



Chapter 5
Basic Processor Design

People who are really serious about software should make their own hardware.

– A. Kay

Abstract In previous chapters we introduced the physical characteristics of digi-
tal circuits and the mechanisms used to design and implement them, followed by a
functional description of how a computer processor executes programs. We can now
combine this experience by examining how to design and implement a concrete pro-
cessor. In this chapter we focus on the high-level design issues rather than the design
of individual components. As such, we cover micro-architecture design (the design
of the physical hardware) and instruction set design (the design of the interface to
the hardware offered to the programmer). In other books, it is popular to introduce
assembly language at this point as a means of programming the resulting system.
We take a different approach, opting to describe instructions (and hence programs)
using the pseudo-assembly language introduced previously.

5.1 A Concrete Stored Program Architecture

To investigate some of the issues involved in designing a concrete instruction set
and implementing a concrete processor, we will step through the development of
a realisation of MIPS32 [42–44]. Micro-Processor without Interlocked Pipeline
Stages (MIPS) is a name that relates to an implementation technique called pipelin-
ing which we will discuss in Chapter 9. The first MIPS processor that used the asso-
ciated techniques was developed in the early 1980s by a team led by John Hennessy
at Stanford University. Their focus was improvement of performance using pipelin-
ing techniques but, recalling that an ISA is simply an interface not a design, the
MIPS32 ISA does not dictate this as necessary. This is highlighted by the fact that
the company formed to commercialise the Stanford design, also called MIPS, has
produced a series of backwardly-compatible MIPS32 ISAs which are now used in
implementations by companies such as NEC, Toshiba and Phillips; their products

169
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Figure 5.1 An simple data-path that could be used to implement the MIPS32 ISA.

drive consumer electronics such as the PlayStation2 and workstations such as the
SGI Indy.

We selected MIPS32 as an example for several reasons. The design is fairly sim-
ple and very typical of modern processors; this is highlighted by the level of real-
world use of the ISA. The documentation for the ISA is easily available and there
are a number of good compilers, simulators and so on that can be used to explore the
design without physical hardware. Unlike more complete references [28], we focus
on a reduced version of the MIPS32 ISA to make it more easily accessible; this
is shown in Table 5.1. For example, we omit all floating point operations. Where
appropriate we are careful to differentiate between the full MIPS32 ISA and this
reduced version.

5.1.1 Major Data-path Components

We often call the details of a processor implementation the micro-architecture to
contrast with the instruction set architecture which represents an interface with
the programmer potentially shared between many different implementations. The
MIPS32 ISA dictates, or at least strongly hints toward a 32-bit micro-architecture:
the data-path width is 32 bits in the sense that the accumulators hold 32-bit values,
the buses usually transfer 32-bit values and the ALU can usually deal with 32-bit
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inputs. In some sense, 32-bit is the natural size of things within the processor. To
highlight where this size has an impact we say the data-path is n bits wide: keep in
mind that in this case n = 32. Figure 5.1 shows a block diagram of a data-path which
we use for our implementation. The components in, and structure of, the diagram
closely follows the description of the more general stored program architecture.
Sectioned to relate the concrete data-path to the abstract stored program architecture,
the key components are:

Accumulators The accumulators within a stored program architecture are de-
fined in a somewhat abstract way. Our data-path includes a set of concrete accu-
mulators, normally called registers in a modern context, which are for general-
purpose use. There are thirty two such registers grouped into a structure called a
register file; we write GPR[i] to refer to the i-th general-purpose register, each
value in GPR[i] is n bits in size. The register file is like a small, high-speed, short-
term memory whose content we can access very quickly making it ideal to supply
values to the ALU for computation and storing results of said computation be-
fore they are written into more long-term storage such as the main memory. The
registers are general-purpose in the sense that their content and usage are freely
determined by the programmer. Usually the general purpose registers are used to
contain integer values; there may be a second register file to store floating point
values.
The MIPS32 ISA demands that GPR[0] is the constant value zero; retrieving
the value of GPR[0] gives zero, any stores to GPR[0] are discarded. This might
appear a strange choice: why would we waste a register to store a seemingly
useless value and nothing else ? The answer is that by having the constant zero
always available we can construct some operations within the ISA from others
using no additional logic. For example consider the nop or NOP instruction
which performs no operation. We can implement such an instruction with more
or less any instruction which targets GPR[0] and has no other side effects. For
example, using the instruction sllv to shift GPR[0] left by a distance of zero
and store the result in GPR[0] will have no effect on the state of the processor:
although we need some logic to implement the sllv instruction, we get the nop
instruction for free.
As well as the general-purpose registers, the data-path includes a number of
special-purpose registers whose usage is pre-determined by the design of the
processor; these might not even be accessible to the programmer. The special-
purpose register set includes a Program Counter (PC) that holds the address
of the next instruction the processor will execute; an Instruction Register (IR)
which holds the instruction currently being executed; the Memory Address Reg-
ister (MAR) which holds addresses that are passed to the memory when a value
is stored or retrieved; the Memory Buffer Register (MBR) which holds the ac-
tual values being stored or retrieved; and the HI and LO registers that act as
temporary storage for specific instructions such as mult.
The issues of designing and constructing registers and register files are examined
in more detail in Chapter 8.
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Arithmetic and Logic Unit (ALU) The ALU is shown as a dashed wedge shape.
We will discuss implementation of devices that perform arithmetic and logic in
Chapter 7; for now it suffices to understand that the ALU simply performs com-
putation for us. More specifically, where we might write a Verilog statement to
perform an addition we would instead have the ALU produce a result by passing
it operands and using an opcode to select the addition operation.

Control Unit The control unit is shown alongside the data-path in a dashed box;
it has implicit links into all the components so that it can control how they behave.
Inside the control unit are two implicit structures whose implementation we leave
as fairly abstract. Firstly, the control unit has a constant value register which it
uses to send constant values onto either the A or B buses; in reality this might
not be a physical register. Secondly, the control unit has a status register which
details the state of the processor. Various conditions that are flagged by bits in
a typical status register include arithmetic exceptions, for example division by
zero, and the processor mode (either user or kernel), an issue which is discussed
later in Chapter 12. A program can query the status register by extracting and
examining bits and hence make decisions on how to proceed based on special
events which might have occurred during execution.

Buses There are two main groups of buses within the data-path which are used
to communicate values between the different components: the ALU buses allow
communication of operands and results to and from the ALU, the memory bus
allows communication of addresses and values to and from the memory.
There is one slight subtlety in the design of our buses in that where a value
can be communicated from two different places we need a multiplexer to select
which one; control signals for the multiplexer are managed by the control unit.
Examples include the input to the MBR which can take values from either the C
bus or the memory.

Input and Output Devices In this basic model we largely ignore input and out-
put devices and assume they interact with the processor. Simply put, this involves
associating regions of memory with a hardware device rather than a memory lo-
cation. So for example if one were to write into address 123 this might actually
mean “communicate a value to the video device” rather than “store a value in
memory”.

Memory The main memory is shown alongside the data-path as a dashed box
since it is not actually part of the processor; memory is commonly placed on a
different physical microchip to the processor. From here on we will consider a
memory in which each location holds 8-bit values. Each location will have an
address so this is called a byte addressed memory: we are able to access each
byte individually. However, in order to remove the need for multiple accesses to
retrieve or store a 32-bit value for example, the basic unit of transfer between the
processor and memory typically matches the data-path width n. This does not
change the fact that the memory is byte addressed however.
We still view the memory fairly abstractly here, filling in the details of imple-
mentation in Chapter 8. For now it suffices to understand that the memory can be
represented, if not actually implemented, as a 2-dimensional Verilog register.



174 5 Basic Processor Design

The crucial thing to realise from this description is that the data-path contains only
hardware devices we already know how to build: we know how to implement regis-
ters in Verilog; we know how to implement simple arithmetic circuits in Verilog; we
know how to design and implement state machines in Verilog. Although we will use
later chapters to go into more detail as to how these devices are actually realised,
there should be nothing intimidating about the block diagram in Figure 5.1: it is just
a big circuit.

5.1.2 Describing Instruction Behaviour

In other books, it is popular to introduce assembly language early on as a means of
programming the processor under discussion. We break with this trend and take a
slightly different approach. That is, we describe instructions (and hence programs)
using a pseudo-assembly language that relates directly to the effect of each instruc-
tion on the processor. The aim is to show that machine code is the natural language
at this level: only when we start to discuss the interface between hardware and soft-
ware in Chapter 10 and Chapter 11 is assembly language introduced.

The general-purpose registers are viewed abstractly as an array such that use of
an index identifies a specific register, GPR[7] is the general-purpose register number
seven for example. Any special-purpose registers are referred to by their name, for
example PC is the program counter. Memory is also viewed abstractly as an array.
Recalling Table 5.1, an instruction with the meaning

GPR[2] ← GPR[3]+GPR[4]

shows the use of operands read from general-purpose register three and four in per-
forming an ALU operation (in this case an addition), and writing a result back into
general-purpose register two. Roughly speaking, things on the right-hand side of the
assignment symbol ← should be interpreted as being read (or as source operands)
and those on the left-hand side as being written (or as target operands) by the in-
struction. This also implies that memory access can be written in the same way; for
example the operation

MEM[64] ← GPR[2]

reads general-purpose register two and writes the value into memory address sixty
four.

Where an instruction is only executed if some condition is true, we adopt a
pseudo-code style and write the condition before the instruction. For example, in
writing the instruction

if GPR[2] = 0,PC ← PC +12
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Figure 5.2 Execution of an addition instruction on the example data-path.

we mean that the PC is only incremented by twelve if the related condition is sat-
isfied. That is, if the contents of general-purpose register two is equal to zero, then
the current PC value is incremented, otherwise no action is performed.
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5.1.3 The Fetch-Decode-Execute Cycle

To see how the data-path is typically used to execute instructions, consider the ex-
ample of GPR[2] ← GPR[3] + GPR[4]. Figure 5.2 details the familiar steps from
Chapter 4 in a graphical way; they are also described below:

Fetch The PC is fed through the ALU unaltered and stored in the MAR since
there is no direct connection between PC and MAR. Once stored, the control unit
initiates a load from memory; this results in the instruction at the address in PC
being loaded into the MBR. The instruction is again fed through the ALU and
stored in the instruction register IR. Finally, the PC is incremented by four so it
points at the next instruction to be executed: the PC is fed onto the A bus while
the constant 4 is fed onto the B bus, the ALU is invoked to perform an addition
with the result on the C bus stored back in the PC. Note that we increment the
PC by four because each instruction is 32 bits in size and our PC counts in bytes:
a 32-bit instruction is four 8-bit bytes.

Decode The control unit now examines the instruction in IR and determines the
opcode and operands: in this case the opcode tells us we should do an addition
and the operands tell us to source values from GPR[3] GPR[4] and produce a
result in GPR[2].

Execute Execution proceeds by placing GPR[3] onto bus A and GPR[4] onto bus
B, then provoking the ALU to add the two inputs together; the result is produced
on bus C.

Write Finally, the write phase takes the value on bus C and stores it into GPR[2].
Execution of this instruction is now complete and the processor loops back to the
fetch stage to retrieve and execute the next instruction.

The actions within the execute and write stages will change depending on the in-
struction type. For example, if we are required to perform a load from memory, then
it is possible the ALU will not be needed whereas if we are performing an arith-
metic operation it will. The actions within the fetch and decode stages are the same
for every instruction. This should make sense since until the instruction decode has
taken place, the control unit does not even know what the instruction means.

5.1.4 Controlling the Data-path

Construction of the control unit, which constitutes the control-path of the processor,
is crucial: if the control unit cannot efficiently manage the resources in the data-
path to implement the fetch-decode-execute cycle, the speed of the entire processor
is compromised even if those resources are individually capable of being more ef-
ficient. There are two main approaches to designing the physical logic within the
control unit; these are commonly termed hard-coded and micro-code designs.

In a hard-coded design one uses techniques outlined in Chapter 3 to directly im-
plement a state machine capable of operating the data-path components in the right
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way. This technique is easy to implement, although the state machine can become
complicated, and is efficient in the sense that the amount of logic used can be small
since the state machine is tailored closely to what is required. However, once the
state machine is implemented in logic it is fixed forever: altering it means building
a new processor.

A micro-coded design approaches the same problem in a different way. It essen-
tially allows the data-path to be programmed using very simple instructions called
micro-instructions; an instruction in the ISA is therefore implemented by a num-
ber of micro-instructions. One must contrast the level at which these two types
of instruction work: an instruction in the ISA operates at a fairly high-level, the
operands involved are typically values from the register set; an instruction in the
micro-code operates at a low-level, typical operands are control signals in the data-
path. A micro-coded design is more complex to implement but offers some signifi-
cant advantages in terms of flexibility. For example, one can fix problems with the
processor by upgrading the micro-code rather than re-engineering the actual hard-
ware. This exact issue reared its head in 1994 when the Intel Pentium range of
processors was found to have a bug in the division instruction; when using certain
inputs the instruction would produce the wrong result. Today, Intel processors allow
upgradeable micro-code which could potentially have solved this problem without
the associated cost of product recall: in theory they might have simply issued soft-
ware that would have updated the micro-code and fixed the flaw.

5.2 Buses

As previously stated, a bus is a communication link between devices; the most basic
example is a wire which links the devices. We are usually careful to categorise a bus
by the type of information it is used to communicate. The bus which communicates
addresses from the processor to the memory is called an address bus; the bus which
communicates data values to and from the processor and memory is called the data
bus. The buses which communicate operands and results to and from the ALU is
also a data bus. In each case, the bus width is the size of information that can be
communicated along the bus: a single wire can communicate 1-bit values, a 32-bit
wire vector can communicate a 32-bit value.

Although there are many ways to construct a communication channel between
two (or more) devices, we need to at least make the distinction between two major
classes.

5.2.1 Synchronous Buses

When deploying a synchronous bus there must be a shared, unskewed clock acces-
sible to the two devices. The devices use this clock to schedule their operations;
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each operation involving signals on the bus will always take a known, integer num-
ber of bus cycles to complete. This fact ensures that one device can operate with a
guarantee that the other will remain in step with it.

Imagine a contrived example of two devices P and Q communicating values be-
tween themselves: P sends a value x to Q, Q computes y = x2 and sends y back to P,
finally P checks that y is the same as x ·x and sends 1 or 0 back to Q in the case that
the test is true or false respectively. Using a synchronous bus, all these operations
take say b bus cycles so we can describe our communication as follows:

Time P Q

0b x →
1b ← y = x2

2b y
?= x · x →

Note that Q knows that the result y will be communicated at time 2b because the
two devices are synchronised by the shared clock, so it can read this value from the
bus without further control. Also note that we are using a single shared bus to do
communication in both directions. The time slices allocated to each device via the
clock allow this to occur without conflict.

Examples of synchronous buses within our data-path include the A, B and C
buses used to communicate with the ALU. These are synchronous because their
operation is governed by the system clock used to drive the processor. For example,
Figure 5.2 shows the A bus being used to communicate both values read from the
general-purpose register file and constant values from the control unit. These do not
interfere with each other because the system clock determines the ordering of the
fetch, decode and execute stages so they cannot overlap.

5.2.2 Asynchronous Buses

Devices connected by an asynchronous bus do not share a common clock and cannot
therefore use it for synchronisation of their operations. Using the above example
again but with an asynchronous bus, Q would not be able to make the assumption
that at time 2b the value y would be communicated to it. That is, the value might be
placed on the bus at time 2b + ε for some small ε in which case Q could read the
wrong value. To combat this problem, extra control signals are added to the bus that
allow each device to tell the other when it is ready to communicate. This introduces
a bus protocol which must be adhered to.

As a simple example, when P wants to communicate x to Q it first raises a control
signal c1 to show it is ready to send the data. Q will have been waiting for this event
to occur: as soon as it sees that c1 = 1 it raises a control signal c2 in the opposite
direction to show it is read to receive the data. When P notices the change in c2, it
knows the communication can proceed. Thus, the communication of x is performed
using a sequence such as:
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P Q

c1 = 1 →
← c2 = 1

x →
← c2 = 0

c1 = 0 →
...

Note that operations no longer need to take an integer number of bus cycles: there
is no system clock, the devices are simply waiting to be triggered by events on the
control signals.

An example of an asynchronous bus within our data-path is the interface between
the processor and memory. Since the memory is an external device, it is unlikely that
there is a shared clock between it and the processor. As a result, the devices need to
enter into a protocol so that each knows when and how to operate the address and
data buses that connect them. This protocol is outlined in Chapter 8.

5.3 Addressing Modes

Considering some collection of objects, addressing refers to identifying a particular
member of the collection using a label called an address. As a concrete example one
can imaging the 4-tuple of integers

A = (6,7,8,9).

Denoting the i-th entry of A as Ai, in order to access an element of the tuple we need
to provide an index, or address, i.e., an i. For example, to access element number
two we use A2 where 2 is the address and 8 is the resulting value. An addressing
mode encompasses the mechanism for taking an address of some sort and using it
to retrieve an element from some collection. In the context of processor design, this
means providing an address so that we can retrieve an operand ready to perform
computation with. There are three major classes of operands: constant or immediate
values, general and special-purpose register content, and memory content.

The MIPS32 ISA implies a load-store architecture. This means that instructions
either access register content or memory content but not a mix of both: the lw and
sw instructions are the only ones that access memory. This makes life easier since
within a given instruction we limit the types of operand and hence addressing modes
used. Not all ISAs are the same: traditionally Intel Pentium processor designs have
included instructions that, for example, add the content of a memory location to the
content of a register.
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5.3.1 Immediate Addressing

An immediate operand is simply a constant value embedded into the instruction
that is used in computation. For example, consider executing the addition operation
GPR[2] ← GPR[3] + 1. The value 1 is implicit in the instruction: we do not need
to fetch the value from a register or from memory, it is immediately available once
the instruction is decoded. As such, calling this an addressing mode might seem
somewhat overkill; we do not really provide an “address” as such since the value is
available without retrieving it from somewhere.

5.3.2 Register Addressing

Addressing the general-purpose registers is a simple task: there are r registers in
total so to specify which one we mean, we simply supply an address in the range
0,1, . . . ,r − 1 which requires  log2(r)! bits to represent it as an unsigned integer.
This is commonly termed register direct addressing. There is a slight subtlety when
it comes to accessing special-purpose registers however: we cannot simply pro-
vide an address or name, their access must be implicit in the instruction itself.
As an example, the MIPS32 ISA has instructions named mthi and mfhi that
move values to and from the special-purpose register HI that is used to store one
half of a multiplication result. One cannot execute an instruction with the meaning
GPR[2]← GPR[3]+HI since the register HI is not generally addressable. One must
first execute an mfhi instruction to perform something like GPR[4] ← HI and then
execute GPR[2] ← GPR[3]+GPR[4].

This represents a trade-off in the design of the ISA. If one defines the special-
purpose registers as disjoint from the general-purpose registers, then more special
instructions are needed to access them. If one defines them in the same set as the
general-purpose registers, then our register addresses need to come from a larger
range (since they need to address more registers) or the number of general-purpose
registers decreases. However, the second option means that the standard instruction
set can access the special-purpose registers as easily as the general-purpose regis-
ters. The trade-off is therefore roughly one of orthogonality or regularity versus the
constraints of usefulness.

5.3.3 Memory Addressing

Previously, we viewed memory as an array called MEM which was accessed by
providing an index or address x. The retrieval of a value at address x was denoted
MEM[x] while MEM[x]← y represented a store of value y into the memory location
x. Here we are only interested in the address x and so consider both forms of access
at once. The key thing to realise is that there are different methods, or address-
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ing modes, by which one can construct the address x which we call the effective
address and is passed to memory.

It is easy to start introducing more and more addressing modes to make life easier
for the programmer. However, doing so is a balancing act. More addressing modes
typically means a more complex processor and a requirement for the programmer
or compiler to understand and use them effectively. Less addressing modes means
the program must be longer since it will need to implement the behaviour of miss-
ing modes using instructions that are provided. Different processors make different
trade-offs and one might encounter a huge range of different addressing modes as a
result:

Direct Addressing Consider the most basic form of addressing, direct address-
ing. In this case, the effective address passed to memory is the same address as
the one we want. That is, we want to access MEM[x] so just feed our address x
as the effective address. Very roughly, we can describe the process as a diagram:

x = 20 →

Address Value
...

...
16
20 28
24
...

...

→ 28

This is a simple addressing mode to use, and requires no addition to the stan-
dard way we interface with memory. However, the trade-off for this simplicity is
that all the work in constructing the effective address x needs to be done by the
programmer.

Indirect Addressing One way to extend direct addressing is to allow an indirect
addressing mode instead. The memory treats an effective address as the address
of the address of the element we want. You can think of this as the same way
a pointer works in a C program: if the pointer is stored somewhere in memory,
then to load the data it points to we need to first load the pointer and then load
the data it points to. Again, we can describe this process diagrammatically as:

x = 20 →

Address Value
...

...
16
20 28
24
...

...

→

Address Value
...

...
24
28 60
32
...

...

→ 60

Although some processors might perform both memory accesses as the result of
one instruction, and hence decrease the number of instructions the programmer
needs to provide, the clear drawback to indirect addressing is the sequential na-
ture of the two memory accesses: this can have a significant performance impact.
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Indexed Addressing Perhaps a more attractive extension of direct addressing is
indexed addressing. In this case, the effective address passed to memory is the
sum of a base address and an offset. Again described diagrammatically, a mem-
ory access is performed as follows:

base = 16
offset = 4

}
x = 16+4 = 20 →

Address Value
...

...
16
20 28
24
...

...

→ 28

To see why this might be a useful thing to offer, consider a typical array access
in a C program; for example a reference to the tenth element of an array of bytes
called A written as A[10]. The element of A we want is ten locations on from
wherever A is located and we know A is located at some fixed address. So to
perform an access to A[10] we simply use an indexed addressing mode and set
the base address to the address of A, say &A, and the offset to ten. As a result we
access MEM[&A+10] which is exactly what we wanted. The MIPS32 ISA uses
this form of addressing mode in the lw and sw instructions: the base is allowed
to be any register value while the offset is an immediate, their sum is passed to
the memory as the effective address.
There is a trade-off however. We have introduced a new addressing mode that is
doing some work for us by adding the base address and offset together. This is
more complex than direct addressing for example, and probably requires invoca-
tion of the ALU to perform addition. On the other hand, it means programs can
be written using less instructions: if we had no indexed addressing more then we
would need to add the base address and offset ourselves using an extra addition
instruction.

Scaled Addressing Consider what happens to the example access to byte array A,
discussed in the context of indexed addressing, if we change the array so it holds
32-bit integers rather than bytes. The element A[10] is no longer ten locations
on from the address of A but forty locations on: each element of A requires four
locations in memory. Accessing A[10] using the indexed mode is now a little
tricky, essentially we need to scale the offset by a factor of four to get the right
address. Clearly this could be done by adding another instruction to the program,
but we could also introduce a scaled addressing mode by adding a scaling factor
which is applied using an inexpensive shift:
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base = 16
offset = 4
scale = 2

⎫⎬
⎭ x = 16+(4 # 2) = 32 →

Address Value
...

...
28
32 99
36
...

...

→ 99

In the context of our example we can now still access A[10] using one instruc-
tion by setting the scaling factor to 2 so as to multiply the offset by 4 as above.
As a result we access MEM[&A+10 ·4] = MEM[&A+40] as required.

5.4 Instruction Encoding

We know how to specify an opcode which tells the control unit which type of in-
struction to execute: this is just a number. We also know how to specify the operands
of an instruction in terms of where their value can be retrieved from using some ad-
dressing mode: these are just numbers as well. Now we need to consider how these
items of information are encoded, or formatted, so the control unit can understand
what we mean. One can view this as an extension of the simple method from Chap-
ter 4.

5.4.1 Instruction Selection

A major task in designing an ISA is selecting which instructions it will include.
This will have a massive impact on many other aspects including any actual im-
plementation. For example, one clearly needs to include hardware that matches the
requirements of instructions within the ISA. There are few concrete rules for decid-
ing which instructions should be included; for a special-purpose ISA it might suffice
to exclude instructions which are extraneous for that domain but would be included
in a general-purpose ISA.

However, one can quite easily start to look at the types of instructions in terms
of the number of operands they use and the capabilities that result. Examining the
MIPS32 ISA, it is clear that there are instructions with zero, one, two and three
operands. For example, the nop instruction has zero operands, the mfhi instruc-
tion has one operand (a destination register), the bltz has two operands (a source
register and an immediate value), the add instruction has three operands (two source
registers and one destination register). Noting this fact seems like a triviality but in
fact can have a major impact on the design of the rest of the processor and on how
it is programmed.
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We already have the instructions mtlo and mthi which have the meaning
LO ← GPR[x] and HI ← GPR[x] for register operand x, and mflo and mfhi
which have the meaning GPR[x] ← LO and GPR[x] ← HI again for some regis-
ter operand x. To see the impact on having instructions with different numbers of
operands, again consider having a requirement to execute the addition operation
GPR[2] ← GPR[3]+GPR[4]. A processor that implements a 0-operand ISA is often
called a stack machine; everything has to be implicit in the instruction. So to add
two values together, we might invent a fictitious instruction that has the meaning
LO ← LO + HI. Note that we do not specify the registers LO and HI in the in-
struction, you should think of them as being hard-coded in some sense: the addition
operation cannot add values taken from any other registers. To use the instruction
one would therefore need to execute the sequence

LO ← GPR[3]
HI ← GPR[4]
LO ← LO+HI
GPR[2] ← LO

We execute four instructions in total. With one operand, things become a bit eas-
ier. Consider a processor that implements a 1-operand ISA which is often called a
accumulator machine. To model such a processor, we introduce another fictitious
instruction that has the meaning LO ← LO + GPR[y] where y is the one operand
we specify in the instructions, LO is again hard-coded in some sense. Now we can
perform the required operation with only three instructions:

LO ← GPR[3]
LO ← LO+GPR[4]
GPR[2] ← LO

As one might have expected, with two operands things are even easier still. A pro-
cessor that implements a 2-operand ISA is often called a register machine. Again
we invent a fictitious instruction to model the ISA; this time the instruction means
LO ← GPR[x]+GPR[y] where x and y are our two specified operands. The required
operation can now be executed in two instructions:

LO ← GPR[3]+GPR[4]
GPR[2] ← LO

Finally, with a 3-operand ISA (implementations of which are usually still classed as
register machines) we can perform the required operation with just one instruction:

GPR[2] ← GPR[3]+GPR[4]

Notice the trade-off which occurs. The more operands in our instructions the less
instructions are typically needed to execute an operation; however, we need to spec-
ify all these operands so our instructions may be bigger. The less operands we have,
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1 struct Rtype
2 {
3 uint32 funct : 6, // ALU function
4 shamt : 5, // ALU shift distance
5 Rd : 5, // register address 2
6 Rt : 5; // register address 1
7 Rs : 5; // register address 0
8 opcode : 6; // opcode
9 }

10

11 struct Itype
12 {
13 uint32 imm : 16, // immediate
14 Rt : 5, // register address 1
15 Rs : 5, // register address 0
16 opcode : 6; // opcode
17 }
18

19 struct Jtype
20 {
21 uint32 off : 26, // offset
22 opcode : 6; // opcode
23 }

Listing 5.1 The three standard MIPS32 instruction formats (as C structures).

the more information is provided implicitly in the instruction rather than explicitly
as operands. Thus the instructions can be smaller.

Just as the number of operands has an impact on things, so does the type of those
operands. In the above example we are only using register operands whereas in the
actual ISA we have immediate operands and register operands. By collating the
different instruction types, we can classify the instructions in the reduced MIPS32
ISA as follows:

3 instruction with 0 register operands + 0 immediate operands
5 instructions with 1 register operand + 0 immediate operands
1 instruction with 2 register operands + 0 immediate operands
9 instructions with 3 register operands + 0 immediate operands
1 instruction with 0 register operands + 1 immediate operand of 16 bits
2 instruction with 0 register operands + 1 immediate operand of 26 bits
4 instructions with 1 register operand + 1 immediate operand of 16 bits
5 instructions with 2 register operands + 1 immediate operand of 16 bits

Clearly we can reduce these seven instruction classes to even less; if we have a
class of three register operand instructions, this can also accommodate those with
two, one and zero register operands simply by ignoring those operands which are
not needed.
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Figure 5.3 The three standard MIPS32 instruction formats (as bit-fields).

5.4.2 Instruction Formats

An instruction format is basically a template which can be used to encode a class of
instructions. Within the template the concrete opcode and operands are placed into
fields to form an encoded instruction. The MIPS32 ISA uses three different instruc-
tion formats, called the R-type, I-type and J-type formats, and which are detailed
in Figure 5.3 and Listing 5.1. These formats correspond to the actual encodings in
Table 5.1 in the sense that it shows which fields of a format should be filled with
which information to encode a given instruction.

5.4.3 Basic Encoding and Decoding

Consider encoding an add instruction to represent our running example which per-
forms GPR[2] ← GPR[3] + GPR[4]. The add instruction uses an R-type format;
to construct the instruction we first fill the opcode and funct fields with the 6-
bit constants 000000(2) and 100000(2) respectively. These fields combine to tell the
control unit that this is an add instruction. Then, we fill the register operand fields
rs, rt and rd with the constants 00011(2), 00100(2) and 00010(2) respectively and
zero the remaining blank field. The end result is the 32-bit number
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1 uint32 encode_Rtype( int opcode, int rs, int rt, int rd, int funct )
2 {
3 return ( ( opcode & 0x3F ) << 26 ) |
4 ( ( rs & 0x1F ) << 21 ) |
5 ( ( rt & 0x1F ) << 16 ) |
6 ( ( rd & 0x1F ) << 11 ) |
7 ( ( funct & 0x3F ) << 0 ) ;
8 }

Listing 5.2 A simple C function to encode a MIPS32 R-type instruction.

1 task decode_Rtype;
2 input [31:0] instruction;
3

4 output [ 5:0] opcode;
5 output [ 4:0] rs;
6 output [ 4:0] rt;
7 output [ 4:0] rd;
8 output [ 5:0] funct;
9

10 begin
11 opcode = instruction[31:26];
12 rs = instruction[25:21];
13 rt = instruction[20:16];
14 rd = instruction[15:11];
15 funct = instruction[ 5: 0];
16 end
17 endtask

Listing 5.3 A simple Verilog task to decode a MIPS32 R-type instruction.

00000000011001000001000000100000(2)

that represents our instruction. Filling in these fields is somewhat tricky so one
would normally utilise some form of function to make things easier; Listing 5.2
details a simple C function which will return an encoded R-type instruction given
a list of opcode and operand values. It first masks each value so that it is the right
size and then shifts them into the right place; the parts are ORed together to form
the end result.

Decoding an instruction is more or less the exact reverse process to encoding
it: we simply extract information from the right place. However, the three MIPS32
instruction formats make the decoding process much easier than it might otherwise
be. In particular, they provide a number of advantages typical of many instruction
encoding strategies:

1. All instructions are of a fixed length; this means we never need to perform more
than one memory access to retrieve them. The control unit can be simple since,
as a result, it does not need to decide when and if more parts of an instruction are
required.

2. Common fields between the formats are aligned in the same place, for example
the opcode is always the most-significant six bits. This allows for more efficient
decoding since the control unit never needs to conditionally shift around the fields
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1 function ext;
2 input [31:0] instruction;
3

4 begin
5 extend_16bit = instruction[15] ? { 16’hFFFF, instruction[15:0] } :
6 { 16’h0000, instruction[15:0] } ;
7 end
8 endfunction

Listing 5.4 A simple Verilog task to decode a 16-bit sign-extended immediate value.

to get the right information: it just extracts the bits required from a known loca-
tion.

As such, it is easy to write Verilog tasks that could be used within the control unit to
decode instructions. Listing 5.3 details an example which could decode our previ-
ously encoded R-type add instruction. Since Verilog offers a convenient mechanism
to describe the extraction of bits, the task amounts only to a few assignments.

However, things are somewhat complicated when we consider immediate val-
ues in the I-type and J-type formats: remember such immediates might represent
positive or negative numbers. Consider, for example, how to decode the 16-bit im-
mediate value in the addi instruction; naively one might simply extract the bottom
16 bits of the instruction. The problem comes when this value is used as a 32-bit
operand. The value −1(10) would be encoded as the 16-bit twos-complement con-
stant

FFFF(16).

When naively padded with zeros to form a 32-bit value ready for performing com-
putation, we get

0000FFFF(16)

which is no longer −1(10) but 65535(10). The problem is that we need to pad with the
most-significant bit, or sign bit since this dictates the sign of the number, not zeros.
Application of this process is called sign extension and produces the constant

FFFFFFFF(16)

which is still −1(10) as a 32-bit value. The sign extension process is also easy to
describe in Verilog; Listing 5.4 gives an example. The MIPS32 ISA description in
Table 5.1 denotes the application of the sign extension process to an immediate
operand x as ext(x). It is important to realise that not all immediate values need be
sign extended. For example, shift distances are always positive so may not require
sign extension but rather just naive extraction.
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000000 Rs Rt Rd 00000 100000

111111 Rs Rt Rd 00000 100000

opcode Rs Rt Rd shamt f unct

000000 00000 00000 00000 00000 100000

Figure 5.4 A fictitious example of variable length encoded instructions: a 1-word add instruction
(with three register operands) is followed by a 2-word instruction (with six register operands), and
finally by a 1-word nop instruction (with no operands).

5.4.4 More Complicated Encoding Issues

The MIPS32 encoding mechanism is typical of 32-bit processors in that the instruc-
tion size is large enough to comfortably accommodate all the required operands in
a few “friendly” formats. Different designs require different approaches however;
an instruction encoding mechanism for 8-bit instructions cannot use the same ap-
proach for example, since space is so limited. Although there are a huge range of
options, we present a few techniques below that one might use. All of the presented
techniques imply a trade-off in terms of their use: we might save space or pack more
information into the same space but will inevitably complicate the control unit as a
result. This is because the decoding step will become harder and less regular since
special cases will need to be checked for and accommodated.

5.4.4.1 Fixed and Variable Length Encodings

Roughly speaking, code density relates to the amount of memory taken up by the in-
structions for a program; higher code density, i.e., number of instructions or amount
of computation carried out per unit space, means the program uses less space. We
have already encountered a design decision that can impact on code density when
we discussed different instruction types: the more operands an instruction has, the
larger it is but typically the less instructions are actually needed to perform an oper-
ation. In an attempt to get the best of both worlds from this trade-off, some designs
use what is called a variable length encoding. Previously, we looked at the MIPS32
encoding mechanism where every instruction was the same length. A variable length
encoding breaks this constraint by allowing instructions that require many operands
to be longer than those that require few operands. As a result, one can achieve high
code density while still having many operands.

One way to achieve this is to reserve one value of the opcode field as some form
of “escape code” which specifies the need to fetch more instruction from memory.
Figure 5.4 attempts to illustrate this in the context of the MIPS32 instruction formats
already presented. There are three instructions arranged in memory starting at some
address. The first is a standard 1-word add instruction which can specify three
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register addresses as operands. The second is some fictitious 2-word instruction;
the first part uses the value 111111(2) as the opcode to show that we need to fetch
another word from memory to complete the instruction. The second part specifies
the actual opcode with both parts containing three register address operands (a total
of six operands). Finally, the third instruction is a standard 1-word nop.

In this contrived example one can clearly see the trade-off offered by having a
variable length encoding. That is, we can now accommodate instructions with many
operands, and still maintain good code density, but doing so means we might need
two accesses to memory to load such instructions. Our control unit will naturally be
more complicated as a result.

5.4.4.2 Compact Instruction Encodings

In the above discussion we used the concept of an escape code to denote that one
opcode meant something special while all others could be interpreted as normal. We
can re-use this concept to look at the issue of how one might design an instruction
encoding mechanism for very compact instructions. That is, instructions that are
perhaps only 8-bits long.

Consider a fictitious ISA with 8-bit instructions; it has four registers and a range
of instructions that all fall into one of the following classes:

0 register operand + 0 immediate operands
1 register operands + 0 immediate operands
2 register operands + 0 immediate operands
0 register operands + 1 immediate operand of 7 bits
1 register operand + 1 immediate operand of 4 bits

Given register addresses can be represented as as 2-bit values, a possible encoding
might define five instruction formats:

1. 0xxxxxxx(2)
2. 10rrxxxx(2)
3. 11ccrrrr(2) → 1100rrrr(2) . . . 1110rrrr(2)
4. 1111ccrr(2) → 111100rr(2) . . . 111110rr(2)
5. 111111cc(2) → 11111100(2) . . . 11111111(2)

where c represents a field for opcodes, x represents space for an immediate and r
represents space for a register address. From this we can see there are three possible
two-operand instructions, three possible 1-operand instructions and four possible 0-
operand instructions. Notice that in each case we are using an escape code to mark a
different format. For example, 1100rrrr(2), 1101rrrr(2) and 1110rrrr(2) are all two-
operand instructions in the third class. However, we use what would have been the
instruction 1111rrrr(2) to signal that actually we mean something else: that is, one
needs to read more opcode and hence translate into the fourth class of 1-operand
instruction of the form 1111ccrr(2).
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One might view this as an application of variable length opcodes, rather than
the variable length instructions as described previously; it is commonly called the
expanding opcode approach. The key thing to realise is that even when we are
allowing parts of the opcode to occur in various different places, every instruction
is uniquely identifiable. This was trivial to see when looking at the MIPS32 ISA
since the opcode was a fixed field. Here it is harder to see but this fact is vital if
the encoding is to work correctly: if instructions are not uniquely identifiable, the
control unit has no hope of telling which one we meant !

5.4.4.3 Compressing Register Addresses

Clearly space is at a premium as far as instruction encodings go, and in order to
maximise the utilisation of this space, an ISA generally provides a general purpose
register file whose size is a power-of-two. This means with n-bit register addresses
we can address all 2n registers. This has advantages and disadvantages. Although it
ensures we get the best use of space since no bits are wasted, if we want less than
2n registers, the next size down is 2n−1. If we start with thirty two registers, the next
size down is sixteen: quite a jump. In ISAs that are designed for implementation in
a context where resources are constrained, using less registers makes a lot of sense.
But this must be balanced against performance so what happens if we want an ISA
with twelve general-purpose registers for example, can we do better than use 4-bit
addresses which could address sixteen registers and is hence wasteful ?

If we assume there are formats for 3-operand instructions, using 4-bit register
addresses would total twelve bits of operand in such an instruction; let us denote
these three 4-bit register addresses as A3...0, B3...0 and C3...0. The crucial thing to
realise is that because

A ∈ {0(10),1(10) . . .11(10)}
then the top two bits of A, i.e., A3...2, cannot be 11(2). That is, we always have that

A3...2 ∈ {00(2),01(2),10(2)}.

So we can store the bottom two bits A1...0 as normal and then use the fact that there
is an unused state in the top two bits to save space. Since we have A, B and C to
encode we have that

A3...2 ∈ {00(2),01(2),10(2)}
B3...2 ∈ {00(2),01(2),10(2)}
C3...2 ∈ {00(2),01(2),10(2)}.

There are thus only twenty seven possible combinations which can be encoded in
only five bits, since 25 > 27, rather than the six which we would have used in the
naive case. In total then, we need six bits for the bottom halves of the three register
addresses and five bits to encode the top halves; this saves us one bit which can be
used elsewhere, e.g., to double the number of opcodes we can specify.
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...
n: PC ← 100

...
m: PC ← 100

...
100: ...

...

��

...
n: PC ← PC +12

...
n+16: ...

...
m: PC ← PC +12

...
m+16: ...

...

�

�

(a) Absolute branches. (b) Offset branches.

Figure 5.5 The difference between absolute and offset (or PC relative) branches.

5.5 Control-Flow

So far we have only considered programs, i.e., sequences of instructions, whose
control-flow is a straight line. That is, the flow of execution starts at the top and
proceeds through each instruction in sequence before ending at the bottom. In re-
ality, this places a massive restriction on the types of programs we can write. For
example we cannot conditionally execute sequences of instructions based on some
input or intermediate result, or iterate over a sequence of instructions to form what
we commonly call loops. Providing the ability to alter the control-flow of a program
is therefore a vital part of both instruction set and micro-architecture design. This
is particularly true since one can view instructions that alter control-flow as pure
overhead: they are not really performing any useful computation themselves, just
selecting which computation is performed. As such, ensuring that the control-flow
mechanism does not have a significant impact on performance is also vital.

Roughly speaking, an instruction which might alter the flow of execution is called
a branch instruction. Any branch will achieve a change in control-flow by updating
the value of PC, the program counter, which holds the address of the next instruction
to be executed. We can classify branches according to a number of criteria which
dictate how and when they perform this update:

Conditional Versus Unconditional A branch is unconditional if it always up-
dates the program counter; such a branch is sometimes called a jump. A branch
is conditional if the update only occurs when some condition is true. Typically
the condition will be a comparison between operands. When a branch is executed
so that we know where next to fetch instructions from, i.e., the processor knows
if it is taken or not, we say the branch has been resolved.
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Examples of both forms are easy to see in the MIPS32 ISA. For example, the j
instruction is an unconditional branch, it simply sets the PC to equal the imme-
diate operand. Both beq and bltz are conditional branches since they compare
two values to each other, two registers or a register and an immediate respec-
tively, and only update the PC if the result of the comparison is true.

Absolute Versus Relative An absolute branch sets the PC to a value unrelated to
the value it currently holds; the instruction simply replaces the value in PC with
some new address. A PC relative (or offset) branch updates the PC by changing
it by some amount (i.e., adding or subtracting some value),; the end result is that
the branch is relative to the PC rather than just any address.
Most branches are fairly local, it is uncommon for a branch to update the PC with
an absolute address. As such, one can encode the target address more compactly
as an offset from the PC than a full 32-bit address. This means that, for example,
a single MIPS32 conditional offset branch beq can include a 16-bit immediate
and cope with most offsets required.
There is one caveat to offset branches, which is related to when the branch is
actually executed. In the fetch-decode-execute cycle we already said that the PC
would be incremented by some amount during the fetch stage so it points to the
next instruction to execute. By the time the processor enters the execution phase
for a taken branch, we are essentially saying that this is not actually the instruc-
tion we want to execute at all, some other one is. But the PC has already been
incremented so we need to take this into account when calculating the offset:
typically the offset required will be one instruction, four bytes in the MIPS32
case, less than one might have thought. If this off-by-one problem is not taken
into account, the processor will branch to the wrong place !
Figure 5.5 attempts to demonstrate the difference between absolute and offset
branches; both Figure 5.5a and Figure 5.5b have two identical branches at ad-
dresses n and m, the result of their execution is different however. In particular,
both branches in Figure 5.5a result in control-flow being sent to address 100
while in Figure 5.5b the branch target depends on what address the branch in-
struction resides at.

Immediate Versus Computed The memory in a typical 32-bit processor has 232

addressable locations. To branch to an arbitrary address therefore, one has to
provide a 32-bit address. Encoding a 32-bit address inside a 32-bit instruction is
impossible: there is no space for the opcode so some compromise must be made.
The unconditional absolute branch j is a good example of this, it sets the PC
to equal a 26-bit immediate which cannot address the whole memory but does
cover a fairly large region.
To cope with the need to branch to arbitrary addresses, most ISAs include a com-
puted branch instruction which takes the new PC value from a register operand.
Since the register can contain a full 32-bit value, the branch can be to anywhere
in memory. The trade-off is that one has to execute more instructions in order to
compute this address in the register before the branch is executed; with immedi-
ate branches these extra instructions are not required.
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Other than these different patterns of actual behaviour, the rest of the fetch-decode-
execute cycle is unchanged. The completion of a branch in the execution stage
means the right value is in the PC for the next fetch stage; the cycle simply car-
ries on as normal except that we have altered where in the program we are now
fetching instructions from.

One slight subtlety introduced by the MIPS32 ISA is the idea that we need not
store the whole branch target as an immediate in the instruction encoding. Each
instruction is a 32-bit value so if the PC starts at address zero, instructions always
start on a multiple of four bytes; they are word aligned. If we are using a byte
addressable memory where each byte has an address, the addresses of instructions
are all 0 modulo 4, which is to say the least-significant two bits of the address are
always zero. Since the PC is always word aligned, any offset from it will also be a
multiple of four bytes and hence will also always have the least-significant two bits
as zero. Given this fact, we do not need to store the bits in an encoded instruction.
For example, the meaning of the j instruction is

PC ← (imm : 00(2))

where imm is a 26-bit immediate stored in the instruction. This 26-bit immediate has
the two implicit zero bits appended to the least-significant end via the concatenation
operator before it is used to update the PC. This way, our 26-bit immediate does not
waste space, and can specify a larger range of addresses as a result.

5.5.1 Predicated Execution

In the MIPS32 ISA, redirection of control-flow is done explicitly using dedicated
branch instructions. Use of predicated or guarded execution offers an alternative to
this model by associating a predicate function to each instruction and only executing
the instruction if the predicate is satisfied, i.e., evaluates to true. Rather than set the
PC to some new value, this approach allows one to “skip over” instructions based
on the associated predicate. It is ideal for conditional execution of short sections of
code due to the low overhead associated. Since MIPS32 does not support predicated
execution, to show how the concept works we need several extensions: these are
imaginary, but relate closely to the form of instruction set such as ARM.

Imagine we extend MIPS32 to include a carry flag CF which resides in the pro-
cessor status register: this flag is set by arithmetic instructions such as addition when
a carry-out is produced. If we also include a branch instruction based on the value
of CF , we can write a short fragment

. . .
GPR[2] ← GPR[3]+GPR[4]
if CF = 0,PC ← skip
GPR[5] ← GPR[5]+1

skip : . . .
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that performs an addition, then tests if the carry flag CF was set in the status reg-
ister: if the sum of GPR[3] and GPR[4] is too large to fit into 32 bits, a carry-out is
produced and CF will be set. If the carry flag is set, a second addition instruction
adds the carry to GPR[2]; if the carry flag is not set, the branch instruction skips
over this second addition. The fragment results in two or three instructions being
executed depending on if the branch is taken or not.

Now imagine we extend MIPS32 further by allowing instructions to specify a
predicate: every instruction can either be executed or skipped based on the value of
CF . One might re-write the fragment from above as follows:

. . .
GPR[2] ← GPR[3]+GPR[4]
if CF = 1,GPR[5] ← GPR[5]+CF

skip : . . .

Now the second instruction has a predicate associated with it, only when the carry
flag is set does this instruction get executed; if the predicate is not satisfied, then
the processor just skips over it. This sequence is now more compact since it is only
two instructions long: roughly speaking the processor executes only one or two in-
structions depending on if the predicate on the second instruction is satisfied. The
trade-offs in deploying a system for predicated execution are quite involved. Typ-
ically programs using predicated execution exhibit better code density and, since
they contain less branches, thus get more concrete computation done in the same
time. On the other hand the predicates take up precious space in the instruction
encoding and the control unit needs to be slightly more complicated to cope with
skipping over instructions rather than passing them through the execute stage of the
fetch-decode-execute cycle.

To better demonstrate the advantages of predicated execution, consider a more
realistic example; the canonical such example is an implementation of the Greatest
Common Divisor (GCD) algorithm due to Euclid. The idea is that given two in-
tegers a and b, the algorithm finds the largest integer c which exactly divides both
a and b; the case where c = 1 means a and b are co-prime. Figure 5.6a shows the
Euclidean algorithm written in C. To implement this function we will again extend
MIPS32 to include a rich set of flags in the status register which are set by a special
compare instruction. Specifically, imagine the execution of

GPR[x] ?= GPR[y]

results in

• the EQ flag being set when GPR[x] = GPR[y],
• the NE flag being set when GPR[x] 	= GPR[y],
• the LT flag being set when GPR[x] < GPR[y],
• the LE flag being set when GPR[x] ≤ GPR[y],
• the GT flag being set when GPR[x] > GPR[y],
• the GE flag being set when GPR[x] ≥ GPR[y].
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int GCD( int a, int b )
{

while( a != b )
{

if( a > b )
a -= b;

else
b -= a;

}

return a;
}

(a) The GCD function written in C.

. . .

loop : GPR[2] ?= GPR[3]
if EQ = 1,PC ← exit
if LE = 1,PC ← skip

take : GPR[2] ← GPR[2]−GPR[3]
PC ← loop

skip : GPR[3] ← GPR[3]−GPR[2]
PC ← loop

exit : . . .

(b) The GCD function implemented using branches.

. . .

loop : GPR[2] ?= GPR[3]
if GT = 1,GPR[2] ← GPR[2]−GPR[3]
if LE = 1,GPR[3] ← GPR[3]−GPR[2]
if NE = 1,PC ← loop

exit : . . .

(c) The GCD function implemented using predicated instructions.

Figure 5.6 A C function and ARM assembly language implementation of the Euclidean algorithm
for computing GCD.

and that the flags are only set by the comparison instruction (i.e., not overwritten
by execution of arithmetic). Again these are imaginary extensions, but again they
closely follow real instruction sets such as ARM.

Figure 5.6b demonstrates a standard approach to implementing the function body
under the assumption that a and b are stored in the registers GPR[2] and GPR[3].
The approach is controlled by comparing GPR[2] and GPR[3], i.e., a and b, and
then using branch instructions to direct control-flow to the correct case: if GPR[2] =
GPR[3], then the first branch exits the loop, if GPR[2] ≤ GPR[3] then the second
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branch directs control-flow to the instruction which subtracts a from b and then
branches back to the start of the loop. Otherwise control-flow drops through to the
instruction which subtracts b from a and then branches back to the start of the loop.
In contrast, Figure 5.6c eliminates those branches by reimplementing the function
body using three predicated instructions. Notice that the only branch is that which
transfers control to the start of the loop: the branches required to select between the
assignments a = a - b or b = b - a are managed by predicated execution.
For example, the first subtract instruction is predicated on the GE or greater than
or equal flag: if the comparison between a and b meant that a was greater than or
equal to b, the GE flag would be set and hence the subtraction instruction (i.e the
assignment a = a - b) would be executed, otherwise it is skipped.

5.5.2 Function Calls

Function calls are clearly another type of control-flow mechanism so we briefly look
at the issue here with respect to support that is provided by the ISA. Considering a
call to a sub-routine X , i.e., a function X with no arguments, execution looks like
the following:

1. Branch to the sub-routine X , i.e., call the sub-routine.
2. Execute the sub-routine X .
3. Branch back to just after the call instruction.

The first two steps are simple enough and can be catered for using instructions
already presented. The problem comes in the third step: a given sub-routine may be
called from a number of different places, how do we know where to branch back to ?
The answer is to store the address to branch back to, the return address, somewhere
when we call the sub-routine. There are three main options as regards where to store
the return address:

• One could store the return address in a single fixed memory location or register.
Although simple, this is a bad choice as it only allows the call of one sub-routine
at a time; nested sub-routines are not really possible.

• One could store the return address in a per-sub-routine fixed memory location or
register. This is a better option in that it allows nested sub-routine calls but still
does not allow any form of recursion.

• Finally, one could use a stack; this is the most common solution since it allows
total freedom with recursion and also facilitates argument passing when consid-
ering functions rather than simply sub-routines.

The MIPS32 ISA includes a common instruction called jal for jump-and-link that
helps implement the first option above. The jal instruction performs two tasks:
firstly it stores the return address in GPR[31], and then it performs a normal, uncon-
ditional absolute branch. The jr instruction offers a mechanism to branch to the
contents of a register so this enables the sub-routine to branch back to the return
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Figure 5.7 A timeline of Intel processor innovation demonstrating Moore’s Law (data taken from
http://www.intel.com/technology/mooreslaw/).

address by using GPR[31]. As such, these two instructions offer an efficient but lim-
ited form of sub-routine call. We will examine a more complete mechanism which
solves the problems in Chapter 11 since more general function calls are essentially
a mechanism implemented by the compiler rather than in the processor. Note that
the jal instruction is the first we have seen to blur the divide between general and
special-purpose registers: GPR[31] is a general-purpose register but it is reserved
here for a special role.

5.6 Some Design Philosophy

5.6.1 Moore’s Law

Gordon Moore, co-founder of Intel, is credited with identifying an important trend
with respect to development of transistor-based technology: roughly speaking,
Moore’s Law [46] says that the number of transistors that one can fit in unit
area roughly doubles every two years. This has become a form of a self-fulfilling
prophecy however in the sense that that the “law” is now an accepted truth so indus-
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try is forced to deliver improvements: industry is driven by the law rather than the
other way around ! Figure 5.7 demonstrates the manifestation of Moore’s Law on
the development of Intel processors.

Of course Moore’s Law is not a “law” at all but has held for the last fourty or so
years all the same. The implications for design of a processor can be viewed in (at
least) two ways:

• If one can fit more transistors in unit area, the transistors are getting smaller and
hence working faster due to their physical characteristics. As a result, one can
take a fixed processor design and over time it will get faster or use less power as
a result of Moore’s Law.

• If one can fit more transistors in unit area, then one can design and implement
more complex structures in the same fixed area. As a result, over time one can
use the extra transistors to improve the processor design yet keep it roughly the
same size.

The second option above is clearly more reasonable in the long term. That is, since
there are physical limits that dictate how small and fast a transistor can be, better
design is always the best long-term option. However, even in this case Moore’s Law
can have an impact on thinking. For example, since the development of a new pro-
cessor takes many years, Moore’s Law can invalidate a given design quite quickly:
what is the best design one day might no longer be the best with respect to a new
generation of improved technology two years later. Furthermore, not all compo-
nents obey Moore’s Law. In particular, the rate at which memory access speed has
improved does not match the rate at which memory density has improved; this leads
to a widening disparity between processor and memory speed which can be a sig-
nificant problem.

5.6.2 RISC versus CISC

Many of the trade-offs presented so far have been a matter of the length and com-
plexity of programs, and hence performance in a rough sense, versus simplicity in
design and implementation. This is a classic trade-off and one which has resulted in
two schools of design methodology, the so-called Reduced Instruction Set Com-
puters (RISC) and Complex Instruction Set Computers (CISC).

RISC Put simply, RISC designs attempt to provide an ISA where instructions all
do very simple operations. To write a program using such an ISA might take
more instructions since they are so simple, but this same simplicity means a pro-
cessor implementation can execute them very quickly; each instruction typically
takes one clock cycle. RISC designs are characterised by the provision of many
general-purpose registers, few addressing modes and a fixed length, regular in-
struction encoding. This makes it easy to program for both humans and compil-
ers; performance of compiler-generated code can often match or better that of
human-generated code.
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CISC In contrast, CISC designs offer instructions which perform much more in-
volved operations. For example, a CISC ISA might include an instruction for
computing square roots while a RISC design would demand you constructed an
algorithm in software using only the basic instructions available. Although the
CISC instruction set will be harder to implement and instructions might take
longer to execute, a program will typically be shorter since there is more work
being done by each instruction. Instructions might take many clock cycles to
complete. A CISC design will typically have fewer general-purpose registers
(perhaps using some of them for special-purposes), many addressing modes and
might use a variable length instruction encoding. As a result, it will be harder for
a compiler to generate efficient code.

Like many areas of computer science, research into ways of improving CISC de-
signs such as the Intel 80486 and Motorola 68000 was initially undertaken by both
industry and academia. Early experiments by IBM [17] into the removal of many
under-utilised and over-designed features eventually led to the POWER and Pow-
erPC RISC architectures. At the same time, research in Berkeley [50] and Stan-
ford [27] heavily influenced the MIPS and SPARC RISC architectures. These pro-
cessors command a significant market share; in particular they dominate the games
console and embedded arenas.

Ultimately there is no right or wrong answer to the question of which is the better
approach, it depends entirely on the design context and goals. However, since initial
research and subsequent commercialisation in the late 1970s and early 1980s, RISC
design has dominated the field of computer architecture. Even processors which
were conventionally CISC-based, such as the Intel Pentium range, have gradually
migrated to using an internal RISC core behind a translation layer for backward
compatibility. Like most aspects of computer architecture, successful RISC designs
rely heavily on selecting an effective trade-off between many competing factors.
Such decisions are typically resolved by performing a workload characterisation
of the sorts of program that the processor will execute. By considering an average
program, the architecture is designed so that the average case is optimised while
non-typical cases are marginalised or omitted.

5.7 Putting It All Together

As described, developing a Verilog processor model that implements the reduced
MIPS32 ISA might seem a daunting task. Although we defer a detailed investiga-
tion of the ALU and main memory to Chapter 7 and Chapter 8, the goal of this
section is to show that for the most part, such a processor model is simply a big
state machine. As such, the resulting model could be more accurately termed a sim-
ulator or emulator: it does the right thing functionally but there is not enough detail
to generate realistic hardware from the model. We make a further simplification by
ignoring system calls, interrupts and the like until we encounter and explain them in
Chapter 12.



1 ‘define STATE_FETCH 3’b000
2 ‘define STATE_DECODE 3’b001
3 ‘define STATE_EXECUTE 3’b010
4 ‘define STATE_MEMORY 3’b011
5 ‘define STATE_WRITE 3’b100
6

7 ‘define OPCODE_SPECIAL1 6’b000000
8 ‘define OPCODE_SPECIAL2 6’b011100
9 ‘define OPCODE_ADDI 6’b001000

10 ‘define OPCODE_LW 6’b100011
11 ‘define OPCODE_SW 6’b101011
12 ‘define OPCODE_BEQ 6’b000100
13 ‘define OPCODE_BNE 6’b000101
14 ‘define OPCODE_BLEZ 6’b000110
15 ‘define OPCODE_BGTZ 6’b000111
16 ‘define OPCODE_REGIMM 6’b000001
17 ‘define OPCODE_J 6’b000010
18 ‘define OPCODE_JAL 6’b000011
19

20 ‘define FUNCT_SYSCALL 6’b001100
21 ‘define FUNCT_BREAK 6’b001101
22 ‘define FUNCT_ADD 6’b100000
23 ‘define FUNCT_SUB 6’b100010
24 ‘define FUNCT_MUL 6’b000010
25 ‘define FUNCT_MULT 6’b011000
26 ‘define FUNCT_AND 6’b100100
27 ‘define FUNCT_OR 6’b100101
28 ‘define FUNCT_XOR 6’b100110
29 ‘define FUNCT_NOR 6’b100111
30 ‘define FUNCT_SLLV 6’b000100
31 ‘define FUNCT_SRLV 6’b000110
32 ‘define FUNCT_MFHI 6’b010000
33 ‘define FUNCT_MFLO 6’b010010
34 ‘define FUNCT_MTHI 6’b010001
35 ‘define FUNCT_MTLO 6’b010011
36 ‘define FUNCT_JR 6’b001000
37

38 ‘define RT_BLTZ 5’b00000
39 ‘define RT_BGEZ 5’b00001
40

41 module processor( input wire clk,
42 input wire rst );
43

44 reg [31:0] PC;
45 reg [31:0] IR;
46 reg [31:0] HI;
47 reg [31:0] LO;
48

49 reg [ 7:0] MEM[0:1023];
50 reg [31:0] GPR[0: 31];
51

52 reg [ 2:0] state;
53

54 reg [ 5:0] dec_opcode;
55 reg [ 4:0] dec_rs;
56 reg [ 4:0] dec_rt;
57 reg [ 4:0] dec_rd;
58 reg [ 5:0] dec_funct;
59

60 reg [31:0] dec_imm16;
61 reg [31:0] dec_imm26;
62 reg [31:0] dec_imm16s;
63 reg [31:0] dec_imm26s;
64 reg [31:0] dec_ext16;
65 reg [31:0] dec_ext26;
66 reg [31:0] dec_ext16s;
67 reg [31:0] dec_ext26s;
68

69 reg [31:0] alu_dst_lo;
70 reg [31:0] alu_dst_hi;
71

72 ...
73

74 endmodule

Listing 5.5 The interface to, and definitions for and within, a Verilog module that models a
MIPS32-based processor.
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1 always @( posedge rst )
2 begin
3 PC = 0;
4 IR = 0;
5 HI = 0;
6 LO = 0;
7

8 state = ‘STATE_FETCH;
9

10 $readmemh( "processor.bin", MEM, 0 );
11 end
12

13 always @( posedge clk )
14 begin
15 if( !rst )
16 begin
17 case( state )
18 ‘STATE_FETCH : begin
19 fetch;
20 state = ‘STATE_DECODE;
21 end
22 ‘STATE_DECODE : begin
23 decode;
24 state = ‘STATE_EXECUTE;
25 end
26 ‘STATE_EXECUTE : begin
27 execute;
28 state = ‘STATE_MEMORY;
29 end
30 ‘STATE_MEMORY : begin
31 memory;
32 state = ‘STATE_WRITE;
33 end
34 ‘STATE_WRITE : begin
35 write;
36 state = ‘STATE_FETCH;
37 end
38 endcase
39 end
40 end

Listing 5.6 Verilog processes that determine the processor behaviour.

Listing 5.5 describes the simple interface to the processor; it just includes ex-
ternal clock and reset signals. Normally this interface would include a lot of other
connections with external devices, the main memory being the most obvious. How-
ever, we have not covered that material yet so we model the memory as an internal 2-
dimensional Verilog register to the processor for now. The processor is driven by the
processes in Listing 5.6. The first process resets the processor whenever a positive
edge on the reset signal rst is detected. The reset procedure involves zeroing the
registers PC, IR, HI and LO, initialising the state machine,represented by state,
and then initialising the memory using the $readmemh system task: you can think
of this as “magic” which would be replaced by an operating system running on the
processor tasked with loading and starting execution of programs. The second task
acts to update the state machine each time a positive edge on the clock signal clk
is detected; the faster the clock works, the faster the processor works. The state ma-
chine simply iterates around the fetch-decode-execute cycle calling the right task at



5.7 Putting It All Together 203

1 task alu( input [ 5:0] alu_oper,
2 input [31:0] alu_src0,
3 input [31:0] alu_src1 );
4 begin
5 case( alu_oper )
6 ‘FUNCT_SYSCALL : ;
7 ‘FUNCT_BREAK : ;
8 ‘FUNCT_ADD : alu_dst_lo = (alu_src0 + alu_src1);
9 ‘FUNCT_SUB : alu_dst_lo = (alu_src0 - alu_src1);

10 ‘FUNCT_MUL : {alu_dst_hi,
11 alu_dst_lo} = (alu_src0 * alu_src1);
12 ‘FUNCT_MULT : {alu_dst_hi,
13 alu_dst_lo} = (alu_src0 * alu_src1);
14 ‘FUNCT_AND : alu_dst_lo = (alu_src0 & alu_src1);
15 ‘FUNCT_OR : alu_dst_lo = (alu_src0 | alu_src1);
16 ‘FUNCT_XOR : alu_dst_lo = (alu_src0 ˆ alu_src1);
17 ‘FUNCT_NOR : alu_dst_lo = ˜(alu_src0 | alu_src1);
18 ‘FUNCT_SLLV : alu_dst_lo = (alu_src0 << alu_src1);
19 ‘FUNCT_SRLV : alu_dst_lo = (alu_src0 << alu_src1);
20 ‘FUNCT_MFHI : ;
21 ‘FUNCT_MFLO : ;
22 ‘FUNCT_MTHI : ;
23 ‘FUNCT_MTLO : ;
24 ‘FUNCT_JR : ;
25 endcase
26 end
27 endtask
28

29 task lw( input [31:0] mem_addr,
30 output [31:0] mem_data );
31 begin
32 mem_data[ 7: 0] = MEM[{mem_addr[31:2],2’b00}];
33 mem_data[15: 8] = MEM[{mem_addr[31:2],2’b01}];
34 mem_data[23:16] = MEM[{mem_addr[31:2],2’b10}];
35 mem_data[31:24] = MEM[{mem_addr[31:2],2’b11}];
36 end
37 endtask
38

39 task sw( input [31:0] mem_addr,
40 input [31:0] mem_data );
41 begin
42 MEM[{mem_addr[31:2],2’b00}] = mem_data[ 7: 0];
43 MEM[{mem_addr[31:2],2’b01}] = mem_data[15: 8];
44 MEM[{mem_addr[31:2],2’b10}] = mem_data[23:16];
45 MEM[{mem_addr[31:2],2’b11}] = mem_data[31:24];
46 end
47 endtask

Listing 5.7 Verilog tasks to model the ALU and main memory.

the right point and updating state appropriately. Notice that we have broken the
execute stage into execute, memory access and write to make things clearer; it then
remains to implement the tasks that determine the processor behaviour within each
state.

Before we implement these tasks, we introduce three auxiliary tasks in List-
ing 5.7 that are used to model the ALU and access to memory. The alu task
simulates the ALU performing some operation, determined by alu_oper, on the
source values alu_src0 and alu_src1 to produce the results alu_dst_lo
and alu_dst_hi. The ALU behaviour is implemented using built-in Verilog op-
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1 task fetch();
2 begin
3 lw( PC, IR );
4 PC = PC + 4;
5 end
6 endtask
7

8 task decode();
9 begin

10 dec_opcode = IR[31:26];
11 dec_rs = IR[25:21];
12 dec_rt = IR[20:16];
13 dec_rd = IR[15:11];
14 dec_funct = IR[ 5: 0];
15

16 dec_imm16 = { 16’h0000, IR[ 15:0] };
17 dec_imm26 = { 6’h00 , IR[ 25:0] };
18 dec_imm16s = { 14’h0000, IR[ 15:0], 2’h0 };
19 dec_imm26s = { 4’h00 , IR[ 25:0], 2’h0 };
20

21 dec_ext16 = { ( ( IR[15] == 1 ) ? 16’hFFFF :
22 16’h0000 ), IR[15:0] };
23 dec_ext26 = { ( ( IR[25] == 1 ) ? 6’h3F :
24 6’h00 ), IR[25:0] };
25 dec_ext16s = { ( ( IR[15] == 1 ) ? 14’hFFFF :
26 14’h0000 ), IR[15:0], 2’h0 };
27 dec_ext26s = { ( ( IR[25] == 1 ) ? 4’h3F :
28 4’h00 ), IR[25:0], 2’h0 };
29 GPR[0] = 0;
30 end
31 endtask
32

33 task execute();
34 begin
35 case( dec_opcode )
36 ‘OPCODE_SPECIAL1 : alu( dec_funct, GPR[dec_rs], GPR[dec_rt]);
37 ‘OPCODE_SPECIAL2 : alu( dec_funct, GPR[dec_rs], GPR[dec_rt]);
38 ‘OPCODE_ADDI : alu(‘FUNCT_ADD, GPR[dec_rs], dec_ext16 );
39

40 ‘OPCODE_LW : alu(‘FUNCT_ADD, GPR[dec_rs], dec_ext16 );
41 ‘OPCODE_SW : alu(‘FUNCT_ADD, GPR[dec_rs], dec_ext16 );
42

43 ‘OPCODE_BEQ : alu(‘FUNCT_ADD, PC, dec_ext16s );
44 ‘OPCODE_BNE : alu(‘FUNCT_ADD, PC, dec_ext16s );
45 ‘OPCODE_BLEZ : alu(‘FUNCT_ADD, PC, dec_ext16s );
46 ‘OPCODE_BGTZ : alu(‘FUNCT_ADD, PC, dec_ext16s );
47 ‘OPCODE_REGIMM : alu(‘FUNCT_ADD, PC, dec_ext16s );
48

49 ‘OPCODE_JAL : alu(‘FUNCT_ADD, PC, 8 );
50 endcase
51 end
52 endtask

Listing 5.8 Verilog tasks to perform fetch, decode and execute stages.
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1 task memory();
2 begin
3 case( dec_opcode )
4 ‘OPCODE_LW : lw(alu_dst_lo, GPR[dec_rt]);
5 ‘OPCODE_SW : sw(alu_dst_lo, GPR[dec_rt]);
6 endcase
7 end
8 endtask
9

10 task write();
11 begin
12 case( dec_opcode )
13 ‘OPCODE_SPECIAL1 : case( dec_funct )
14 ‘FUNCT_SYSCALL : ;
15 ‘FUNCT_BREAK : ;
16

17 ‘FUNCT_MULT : begin
18 HI = alu_dst_hi;
19 LO = alu_dst_lo;
20 end
21 ‘FUNCT_MFHI : GPR[dec_rd] = HI;
22 ‘FUNCT_MFLO : GPR[dec_rd] = LO;
23 ‘FUNCT_MTHI : HI = GPR[dec_rs];
24 ‘FUNCT_MTLO : LO = GPR[dec_rs];
25

26 ‘FUNCT_JR : PC = GPR[dec_rs];
27

28 default : GPR[dec_rd] = alu_dst_lo;
29 endcase
30 ‘OPCODE_SPECIAL2 : GPR[dec_rd] = alu_dst_lo;
31 ‘OPCODE_ADDI : GPR[dec_rt] = alu_dst_lo;
32

33 ‘OPCODE_BEQ : if( GPR[dec_rs] == GPR[dec_rt] )
34 PC = alu_dst_lo;
35 ‘OPCODE_BNE : if( GPR[dec_rs] != GPR[dec_rt] )
36 PC = alu_dst_lo;
37 ‘OPCODE_BLEZ : if( GPR[dec_rs] <= 0 )
38 PC = alu_dst_lo;
39 ‘OPCODE_BGTZ : if( GPR[dec_rs] > 0 )
40 PC = alu_dst_lo;
41

42 ‘OPCODE_REGIMM : case( dec_rt )
43 ‘RT_BLTZ : if( GPR[dec_rs] < 0 )
44 PC = alu_dst_lo;
45 ‘RT_BGEZ : if( GPR[dec_rs] >= 0 )
46 PC = alu_dst_lo;
47 endcase
48

49 ‘OPCODE_J : PC = dec_imm26s;
50 ‘OPCODE_JAL : begin
51 GPR[31] = alu_dst_lo;
52 PC = dec_imm26s;
53 end
54 endcase
55 end
56 endtask

Listing 5.9 Verilog tasks to perform memory access and write stages.
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erators; in Chapter 7 we examine how this task can be replaced by a more efficient,
more realistic module that does the same thing. The lw and sw tasks simulate mem-
ory access by loading and storing a 32-bit value to and from memory respectively.
Again, in Chapter 8 we examine how this can be achieved more realistically by re-
placing the 2-dimensional MEM register with an accurate model with an appropriate
interface.

Using the alu, lw and sw tasks as a means of abstraction, we can start to imple-
ment the processor behaviour. Listing 5.8 details the tasks used by the state machine
for the fetch, decode and execute stages. Each performs exactly the behaviour we
outlined in our previous description of execution within a stored program architec-
ture. For example, the fetch task first loads the next instruction, using the address
in PC, into the instruction register IR. It then uses the ALU to increment PC. The
decode task decodes the instruction in IR, performing sign extension to produce
values read to operate on. This task also cheats a little bit: to ensure that GPR[0]
always holds the value zero, we reset it here so that when we come to executing an
instruction it is always right. The execute task performs the first stage of execu-
tion by invoking the ALU on source operands to produce useful results. In the case
of an R-type arithmetic instruction, the ALU operator is stored in the funct field so
we can easily work out what to do; in the case of a branch, the ALU is used to com-
pute the branch target by adding the offset to PC. Notice how the general-purpose
registers are indexed by the decoded register address. Finally, the memory access
and write tasks are detailed in Listing 5.9. The memory task implements memory
access, both load and store, simply using a call to the appropriate lw or sw task. In
both cases, the address to access will have been computed during the execute stage
and generated by the ALU into alu_dst_lo. The write task write deals with
storing the results of execution back and also completing any branches whose target
address was computed during the execution stage.

In order to test the model, we first need to present it with a program to execute.
To initialise the memory with a program, as triggered by a positive edge on the
reset signal, we use the $readmemh system task. This has the effect of reading the
file specified as the first argument into the 2-dimensional register specified as the
second argument at an offset specified by the third argument. In this case, the file
processor.bin is filled with 256 lines which look like

01 00 03 20
02 00 04 20
20 10 64 00
00 00 00 00
.. .. .. ..

Given the bytes are presented in little-endian order, the first three 32-bit words rep-
resent the machine code instructions

00100000000000110000000000000001(2)
00100000000001000000000000000010(2)
00000000011001000001000000100000(2)

which represent the very basic program
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Figure 5.8 Behaviour of the processor model.
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GPR[3] ← GPR[0]+1
GPR[4] ← GPR[0]+2
GPR[2] ← GPR[3]+GPR[4]

via two addi and one add instruction. Starting the processor executing on this
program yields the behaviour in Figure 5.8. Iteration through the steps of execution
is obvious with the state value being updated on clock edges once the processor
is reset. One can see that during the fetch stage, i.e., when state equals 0, the IR
value is read from memory and the PC is updated. On the first fetch this results in the
instruction 00100000000000110000000000000001(2) = 20030001(16) being loaded
from address 0(16) and then PC being set to 4(16). After parts of the instruction are
extracted during the decode stage, the ALU is invoked to perform the operation
GPR[0]+1 which produces the result 1(16) in alu_dst_lo. The value is written-
back and reused later as execution continues.

5.8 Further Reading

• S.P. Dandamudi.
Guide to RISC Processors.
Springer-Verlag, 2005. ISBN: 0-387-21017-2.

• D. Harris and S. Harris.
Digital Design and Computer Architecture: From Gates to Processors.
Morgan-Kaufmann, 2007. ISBN: 0-123-70497-9.

• J.L. Hennessy and D.A. Patterson.
Computer Architecture: A Quantitative Approach.
Morgan-Kaufmann, 2002. ISBN: 1-558-60724-2.

• D.A. Patterson and J.L. Hennessy.
Computer Organization and Design: The Hardware/Software Interface.
Morgan-Kaufmann, 2004. ISBN: 1-558-60604-1.

• J. Stokes.
Inside the Machine: An Illustrated Introduction to Microprocessors and Com-
puter Architecture.
No Starch Press, 2006. ISBN: 1-593-27104-2.

• D. Sweetman.
See MIPS Run.
Morgan-Kaufmann, 2006. ISBN: 0-120-88421-6.

• A.S. Tanenbaum.
Structured Computer Organisation.
Prentice-Hall, 2005. ISBN: 0-131-48521-0.



5.9 Example Questions 209

5.9 Example Questions

21. Imagine you are on the design team for a new 16-bit processor. The ISA for the
processor includes specifications for:

• 16 general-purpose registers.
• 8 ALU instructions that take two input register operands and write a result into a

third output register operand.
• 4 branch instructions that take an input register operand and an 8-bit immediate

offset.
• 2 memory access instructions that take two input register operands and one out-

put register operand. 2 memory access instructions that take one input register
operand, one output register operand and a 4-bit immediate offset.

a. Devise an instruction encoding for the processor, taking care to explain any ad-
vantages and disadvantages of your design.

b. Draw a block diagram of the basic components within this processor, explain the
function of each one and how they are connected together.

c. Using the example of an instruction that adds two registers together and writes
the result in a third register, describe the steps involved during the following
phases of execution:

i. Fetch.
ii. Decode.

iii. Execute.

d. The control unit that operates the data-path can be implemented using hardwired
logic or a micro-code based system. Explain the idea of both of these methods,
including the advantages and disadvantages of each.

22. Explain what is meant by the following addressing modes, giving examples of
their use in a C program:

a. Immediate.
b. Direct.
c. Indirect.
d. Indexed.

23. a. A change in the design of a particular processor means it will now use the
idea of predicated execution. Explain what this means and translate the following
C fragment into an assembly language style program for the processor:

t = 0;

for( int i = 0; i < n; i++ ) {
if( ( x >> i ) & 1 )
t = t + 1;

}
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Use predicated execution or branch instructions where appropriate and take care
to justify your choice in each case.

b. It is suggested that the code density of programs executed by the processor is
too low. Explain what is meant by code density and outline two approaches to
improving this situation.

24. You have been asked to define the instruction set of a new processor and the
encoding of this instruction set. The processor contains a program counter (PC),
four general-purpose registers (A, B, C and D), uses 8-bit instructions and has a
256-byte memory that is addressed indirectly via the registers. The instructions set
includes the following instructions:

Name Operands Meaning

LDA x Loads constant x, with 0 ≤ x ≤ 127, into
register A.

MOV R, S Moves register S into register R.
NOT R Performs a bitwise complement of register R.
NOP Performs no operation.
NEG R Performs twos-complement negation of register R.
BEZ R, x Branches by incrementing the program counter by an

offset x, with −8 ≤ x ≤ 7, if register R
is equal to 0.

So one might write the program:

LDA 10
MOV B, A
NEG B
BEZ B, 4

to load the constant 10 into register A, then move this value into register B and
finally negate it before jumping forward by four instructions if register B turns out
to be zero.

a. Design an encoding for the instructions given above.
b. What is the maximum number of 2-operand instructions that you can add to the

instruction set ?
c. What is the maximum number of 1-operand instructions that you can add to the

instruction set ?
d. What is the maximum number of 0-operand instructions that you can add to the

instruction set ?
e. Write down a more complete instruction set, adding those which you view as

currently missing and giving reasons why you want to add them.
f. Finally, write down the instruction encoding for this complete instruction set.

25. There are 32 pieces on a chess board represented by an 8×8 grid; a black and a
white version of 1 king, 1 queen, 2 bishops, 2 knights, 2 rooks and 8 pawns.

You are involved in the design of a robot that automates the game of chess only
in terms of moving the physical pieces around. The robot needs to be fed a list of
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moves so that it knows how to move a piece on one board position to another posi-
tion; it does not care about the legality of moves. However, it is intelligent enough
to know whose turn it is (i.e., black or white), how to find a piece on the board
given its unique name (e.g., pawn #1) and can cope with capturing pieces if a move
places a piece on an already occupied square. It cannot play any version of chess
with the advanced rules of promotion, castling, resignation or en passant: it simply
moves and captures pieces. It can deal with the fact that pawns can move two spaces
forward from their starting position but otherwise has no memory.

Design a compact encoding of instructions that can be fed to the robot to provoke
the movement of any piece on the board. State any assumptions you make in your
design and the advantages and disadvantages of the result.

26. Imagine you are asked to design a RISC style instruction set architecture for a
new 32-bit processor which is modelled roughly on the MIPS32 design. The pro-
cessor has 32 general-purpose registers and the instruction set is to include:

• Arithmetic, logic and comparison instructions that use a mix of general purpose
register and immediate operands.

• Memory access instructions that use an single addressing mode whereby a base
address is specified by a general-purpose register operand and an offset is speci-
fied by an immediate operand.

• Branch instructions that include both conditional and unconditional variants and
use mix of general-purpose register and immediate operands to specify the abso-
lute and offset target address.

a. One designer wants to use a fixed length instruction encoding while another sug-
gests that a variable length encoding would be better.

i. Explain the advantages and disadvantages of each approach.
ii. Select one approach and using your selection, design basic instruction encod-

ing formats for the instruction types listed above.

b. The “add immediate” instruction adds the contents of a general-purpose register
to a 16-bit immediate and stores the result back into a general-purpose register.
For example, the instruction GPR[1] ← GPR[2]+3 takes the contents of general-
purpose register 2, adds the immediate value 3 to it and stores the result into
general-purpose register 1.
Using just the instruction encoding formats from above, show how

i. GPR[4] ← GPR[8]+10
ii. GPR[4] ← GPR[8]−10

are encoded into 32-bit “add immediate” instructions; state any assumptions you
make.

c. A major customer for the processor has identified the following C function as
crucial to the performance of their applications:
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int f( int x ) {
int w = 0;

for( int i = 0; i < 32; i++ ) {
if( ( x >> i ) & 1 )

w = w + 1;
}

return w;
}

Explain what this function does and how you might alter the processor design
(including any changes to the ALU) to satisfy the requirements of this customer.

d. There is some debate about which endian convention the processor should use.
Assuming the memory is byte addressed, consider the execution of an instruction
that stores the 32-bit integer 305419896 at address 0. List the content of these
addresses after the store instruction completes if the processor uses

i. Little-endian byte ordering.
ii. Big-endian byte ordering.

e. The team responsible for writing a compiler for the new processor is concerned
about the number of general-purpose registers. Explain the positive and negative
implications for the instruction set if the number of general-purpose registers is

i. Increased from 32 to 64.
ii. Decreased from 32 to 16.

In each case, describe how this might alter performance of programs that execute
on the processor.



Chapter 6
Measuring Performance

One accurate measurement is worth a thousand expert opinions.

– G. Hopper

He uses statistics as a drunken man uses lampposts: for support rather than illumination.

– A. Lang

Abstract Previously we developed a simple processor data-path; our motivation
was simply to demonstrate the fundamentals of how such a processor might work.
We can measure the performance of such a processor according to a huge number
of criteria. For example, we might consider how many instructions it executes in
a given time period, how much power it uses, how large the manufactured circuit
is, and so on. In a more real-life context, we might tune our design to give the
best performance according to one of these criteria; in this chapter we investigate a
number of ways to measure performance (focusing on the speed at which a processor
executes programs).

6.1 Measuring Performance

Before we start to examine better processor designs we need to be able to evalu-
ate their relative performance characteristics, i.e., understand what “better” means.
The problem is that performance can be a difficult concept to define exactly. It is
often more instructive to think about the overall quality of a design rather than
performance. Quality can combine lots of different features as dictated by different
application or market areas; a cost function will determine how quality is evaluated
by combining many metrics. For example, one might worry about how quickly a
processor executes a given program, or how much power is used during execution.
In most designs, such metrics compete for resources in the sense that no one can be
satisfied without being detrimental to another; some form of trade-off or compro-
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mise must be reached, one can think of this as maximising the cost function in some
way.

For a general circuit, perhaps the most simple metric one can consider is how
quickly it operates. This can be further decomposed into two standard measures.

Definition 32. The latency of a circuit is the total time elapsed before a given input
is operated on to produce an output. The bandwidth or throughput of a circuit is
the rate at which new inputs can be offered (or outputs produced).

The difference is somewhat subtle but we will see why both are important when we
look at improving performance: for now, simply consider latency. From the basic
definition, one can try to capture what is meant by performance.

Definition 33. The performance of design X is inversely proportional to latency

PERFORMANCE(X) =
1

LATENCY(X)
.

From this, we can define what is meant by the statement “design X is n times faster
than design Y ”. That is, if n is the speed-up offered by design X over design Y , then

SPEED-UP(X over Y ) = LATENCY(Y )
LATENCY(X)

= PERFORMANCE(X)
PERFORMANCE(Y )

= n.

In the context of a processor rather than a general circuit, one typically uses exe-
cution time in place of latency; that is, the time taken to execute a given program.
However, when placed in our definition this presents even more problems: what
do we mean by execution time, how do we measure time and what exactly are we
executing ?

6.1.1 Estimating Execution Time

There are plenty of bad ways to evaluate the performance of a processor that are
none-the-less still used in marketing literature. A prime example is the Millions of
Instructions Per Second (MIPS) metric, a different MIPS from the MIPS32 ISA !
Essentially the MIPS metric measures how many instructions a processor can exe-
cute each second: the assertion is that the more instructions executed each second,
the higher the performance. One might therefore try to estimate the execution time
of program X on processor Y using

EXECUTION-TIME(X ,Y ) =
INSTRUCTION-COUNT(X)

MIPS-RATING(Y )
.
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This is an intuitive, easy to understand measure with which one can compare the
performance of processors. In fact, in the 1970s the performance of computers was
quoted relative to a baseline computer; the VAX 11/780 was said to represent 1
VAX MIPS, the VAX executed one million instructions per-second. The problem
is, this method of comparison is quite flawed. In particular, it should be clear that
a RISC processor will typically take many instruction to execute a given program
since each instruction performs a relatively simple operation; a CISC processor will
typically take less instructions since each instruction performs more complex oper-
ations. Comparing one with the other is nonsense: we need a performance metric
that includes the idea of amount of useful work done. That is, a RISC processor
will almost always have a higher MIPS rating than a CISC alternative; regardless
of the design quality. In addition, the MIPS rating is tied to the clock speed of the
physical processor. In theory at least, it would be nice to evaluate the quality of a
design independently from the clock speed.

The Cycles Per-Instruction (CPI) metric hopes to solve this problem to some
extent. It measures the average number of clock cycles needed per-instruction and
varies according to the processor architecture and the program being executed. The
instruction mix for a processor tells us what ratio of different instruction types are
used in the average program. For example, we might note that 40% of instructions
perform arithmetic, 40% perform memory access and 20% perform branches. The
process of discovering the instruction mix for a processor is called workload char-
acterisation; we typically use a range of benchmark programs to produce an overall
picture of how often different instructions are used.

Given the instruction mix and the CPI for each instruction type, we can estimate
the overall CPI for the processor. The CPI for each instruction is easily identified;
typically they are quoted as part of the processor manual. Let CPIi denote the CPI
for instruction type i and Fi denote how often instruction type i is executed. The
overall CPI is then calculated as

CPI =
n−1

∑
i=0

Fi ·CPIi.

Consider an example instruction mix:

Operation Fi CPIi Fi ·CPIi

Arithmetic 40% 1 0.4
Memory 40% 4 1.6
Branch 20% 2 0.4
Total 100% 2.4

Using the overall CPI, we can then estimate how long a given program will take
to execute. Firstly we can estimate the number of cycles the program will take to
execute; this requires we know the number of instructions executed by the program
and the overall CPI for the processor as computed above. Then, for program X on
processor Y we have
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CYCLES(X ,Y ) = INSTRUCTION-COUNT(X) ·CPI(Y ).

Finally we can estimate the execution time by dividing the number of cycles by the
clock rate:

EXECUTION-TIME(X ,Y ) = CYCLES(X)
CLOCK-RATE(Y )

= INSTRUCTION-COUNT(X)·CPI(Y )
CLOCK-RATE(Y )

6.1.2 Measuring Execution Time

Rather than estimating execution time of a given program, one might simply mea-
sure how long it takes to execute. Typically we use the term wall-clock time to mean
the elapsed time for execution. However, this may include components other than
the workload under examination such as time to load the program, time spent wait-
ing for access to resources such as storage devices and so on. Depending on what
we want to get from the exercise, we might include or exclude these components.
Time is then one of:

Wall-clock Time Also known as execution time or response time, this is the total
time required to execute a program, including all the potential overheads.

Processor Time Unlike wall-clock time which includes overheads, processor
time is the total computational time spent during execution i.e., without over-
heads. That is, processor time is the amount of time the program spends having
instructions executed by the processor.

System Time The amount of time spent executing operating system or library
code on behalf of the program under examination. This might include calls to
functions that load data from a storage device for example.

User Time In contrast with system time, user time measures how much time is
spent executing the program itself.

Most UNIX systems include the time command which is able to report wall-
clock, system and user times for the execution of a given program. The resolu-
tion (or accuracy) of the results is not ideal, but it offers an easy first attempt at
measuring how long a program takes to execute. On a UNIX system for example,
we might use the wc program to count the number of words in a local dictionary
named /usr/share/dict/words; with the time command we can measure
how long this takes using the following:

bash$ time wc /usr/share/dict/words
483523 483523 4992010 /usr/share/dict/words

real 0m0.714s
user 0m0.656s
sys 0m0.011s
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1 #include <time.h>
2

3 int main( int argc, char* argv[] )
4 {
5 clock_t before;
6 clock_t after;
7 clock_t total;
8

9 before = clock();
10 ...
11 after = clock();
12

13 total = ( after - before ) / CLOCKS_PER_SEC;
14 }

Listing 6.1 Use of clock to measure execution time.

1 unsigned uint64 rdtsc()
2 {
3 register uint32 ax;
4 register uint32 dx;
5

6 __asm__ __volatile__( "rdtsc" : "=a"( ax ),
7 "=d"( dx ) );
8

9 return ( ( uint64 )( ax ) << 0 ) |
10 ( ( uint64 )( dx ) << 32 ) ;
11 }
12

13 int main( int argc, char* argv[] )
14 {
15 uint32 before;
16 uint32 after;
17 uint32 total;
18

19 before = rdtsc();
20 ...
21 after = rdtsc();
22

23 total = ( after - before );
24 }

Listing 6.2 Use of rdtsc to measure execution time.

We can see that the total time taken was 0.714 seconds, of which only about 0.656
was spent executing the actual wc program.

Listing 6.1 and Listing 6.2 demonstrate two common methods of measuring ex-
ecution time of a program fragment with a higher degree of accuracy; in both cases
the continuation dots represent the fragment being timed. Listing 6.1 uses the C
clock function which returns an approximation of how much time has elapsed
since the beginning of execution. It has roughly a microsecond accuracy. By record-
ing the value before the fragment and afterwards, the total time taken is the differ-
ence between the two. It is common to divide by CLOCKS_PER_SEC, a processor-
specific constant that allows conversion into a number of seconds. Deviating for
a moment from our use of MIPS32 as an example, Listing 6.2 is specific to Intel
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processors. It uses some inline assembly language to access the rdtsc instruction
that returns the Time Stamp Counter (TSC) value. The TSC is a register internal
to the processor, an example of a machine-specific register. Every time a processor
cycle is completed, the register is incremented; the program reading the TSC can
thus measure time, very precisely, in number of processor cycles.

6.1.3 Benchmark Programs

Although we now know how to measure or estimate the execution time for a given
program on a given processor, another problem remains. Specifically, it is not clear
which program we should be measuring (and what input data to provide) so we get a
meaningful result. Clearly these choices will have a major effect on our analysis. For
example, a program that performs mostly memory accesses will probably perform
differently than a program that performs a lot of computation; input data that is
hard to process or causes worst-case behaviour in the constituent algorithms will
provoke worse performance than more friendly input. As such, to get an idea of
processor performance that is independent of the program being executed, we need
to make choices that match typical usage. That is, since we cannot measure the
execution time of all possible programs using all possible inputs, we need to find a
representative sample of programs (and input data) that can be easily extrapolated
to how the processor will really be used.

A benchmark is a program or set of programs selected and used to act as the
required sample. Benchmarks allow one to perform comparisons between proces-
sor designs by simply measuring and comparing execution time, and to extrapolate
to other programs by performing workload characterisation and deriving typical in-
struction mixes. A benchmark should, in general, be representative of the type of
applications run on the processor, not be overly dependent on specifics of the pro-
cessor (unless one wants to test a specific feature), and be reproducible in the sense
that we compare and verify results. Benchmarks can usually be placed in one of
three main classes:

Application A benchmark application is a single program, specifically selected,
or even specifically written, to test particular aspects of performance. Examples
include 3DMark series of benchmarks which are used to test the performance
of 3D graphics rendering in modern graphics cards. Using a single application
enables one to focus on specific items of interest but the results are often not easy
to extrapolate because of this.

Suite A benchmark suite is typically a collection of benchmark applications.
Where a single application tests only one aspect of performance, the suite cap-
tures many aspects by constructing some form of average over all the com-
ponent applications. This gives less specific results but makes it easier to see
trends that apply in general. Examples include the SPEC benchmarks, original
versions of which included commonly used UNIX programs such as gzip and
ghostview.
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Kernel A benchmark kernel is a very small fragment of program; it might not
do anything useful alone, but represents the typical computational core of the
programs we are interested in. Kernels are usually easy to program and analyse
but do not usually test overall system performance. Examples include the Liv-
ermore Loops [41] a set of Fortran, and later C, kernels that compute common
arithmetic functions such as matrix multiplication and vector dot product. They
focus mainly on program fragments that loop over arrays of data reasoning that
this is the main computational core of scientific applications.

6.1.4 Measuring Improvement

Our initial definition of the speed-up given by design X over design Y is somewhat
naive. To be more accurate, we need to consider Amdahl’s Law which, roughly
speaking, states that the performance improvement of using some faster mode of
execution is limited by the fraction of the time the faster mode can be used. In
short, Amdahl’s Law is just a slightly technical way of stating the well-known law
of diminishing returns. That is, if an improvement implemented in design X is not
used very often the benefit in performance will be small: the less it is used, the
smaller the improvement will be.

Imagine we improve some hardware design (perhaps some part of the ALU) H
within in a basic processor design Y to produce a new processor design X . Also,
suppose the design for H in processor X speeds-up the original design in processor
Y by some factor F . Finally, imagine we have estimated that the proportion of overall
time that either processor spends using the device H is P. The new execution time
is derived as

EXECUTION-TIME(X) = EXECUTION-TIME(Y ) · ((1−P)+(P/F)).

We can also work out the speed-up the improvement produced

SPEED-UP(X over Y ) = EXECUTION-TIME(Y )
EXECUTION-TIME(X)

= 1
(1−P)+(P/F) .

To see that this is correct, consider the denominator of the fraction. The overall
execution time of Y will be the execution time of the unimproved portion of the
design, which is 1−P, plus the execution time of the improved portion, which is
P/F since we improved it by the factor F . Finally, we divided the old execution
time by the new execution time just like in our original formula.

Consider an example; imagine processor Y takes ten seconds to execute a pro-
gram. Then processor X is designed to improve on Y by using a new adder design,
maybe it uses a carry look-ahead adder. The adder is used in about 20% of instruc-
tions and the new adder is four times as fast. Thus, we compute
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SPEED-UP(X over Y ) = 1
(1−P)+(P/F)

= 1
(1−0.2)+(0.2/4)

∼ 1.18.

This might come as some surprise; our adder is four times as fast so why is the
whole system not much faster ?! This is the law of diminishing returns in effect:
unless the adder is used more often, the improvement will not be capitalised on. As
it is, processor X will take ∼ 8.47 seconds using the new adder.

6.2 Further Reading

• L. Eeckhout, L.K. John and R.P. Wilson.
Performance Evaluation and Benchmarking.
CRC Press, 2005. ISBN: 0-849-33622-8.

• R.W. Hockney.
The Science of Computer Benchmarking.
Society for Industrial & Applied Mathematics, 1996. ISBN: 0-898-71363-3.

• R. Jain.
The Art of Computer Systems Performance Analysis.
John Wiley, 1991. ISBN: 0-471-50336-3.

6.3 Example Questions

27. a. CPI and MIPS are both measures of processor performance. Explain how
they are calculated and their advantages and disadvantages.

b. After some experimentation, someone shows that programs written for a given
processor have the following instruction mix:

Frequency Cycles

ALU 50% 1
Load 20% 5
Store 10% 3
Branch 20% 2

The addition of a new addressing mode and a better compiler means there are
less accesses to memory required. The instruction mix after this change is
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Frequency Cycles

ALU 55% 1
Load 10% 5
Store 10% 3
Branch 25% 2

Calculate the overall CPI for programs that run on the processor before and after
the change, and the speed-up that results from the change.

28. Outline the difficulties faced when writing benchmark software that is to collect
information about the processor performance. Include at least one method that could
be used to artificially increase the performance, i.e., “cheat” the benchmark.



Chapter 7
Arithmetic and Logic

The whole of arithmetic now appeared within the grasp of mechanism.

– C. Babbage

Abstract So far we have seen how to represent numbers as binary vectors and how,
using transistors, one can implement logic gates that perform the basic Boolean
operations NOT, AND, and OR. In order to realise the goal of performing useful
computation on integer values represented as n-bit vectors, we need to compose
these logic gates into higher-level circuits. Generally speaking, the Arithmetic and
Logic Unit (ALU) packages circuits for different operations into one component
that performs computation for the processor. To aid the discussion in examples we
set n = 8 throughout, i.e., set the size of a word to equal one byte. However, it is
important to see that the methods are presented in a general form: one can easily
extend them to cope with larger word sizes.

7.1 Introduction

The ALU is at the heart of any processor; when one requires an addition or compari-
son to happen, it is the component that performs the computation under the guidance
of a control unit. This design was first formalised by John von Neumann in 1945 in
his pioneering design for the EDVAC computer. Many principles outlined in his de-
sign are still retained today. Specifically he noted that any computer would have to
perform basic mathematical operations on numbers and that it is “reasonable that
[the computer] should contain specialised organs for these operations” [48]. The
modern ALU is an example of such an organ.

In a very rough sense one can view the ALU as a primitive calculator: it accepts
operands as input, waits to be told what operation to perform, and then produces
results as output after some time. As such, one can view the high-level architecture
of a basic ALU as being similar to Figure 7.1. In this diagram, there are a number
of units within the ALU which all take inputs and generate results, potentially in
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multiplier
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x y oper

Figure 7.1 A high-level architectural design for a basic ALU.

parallel, for their associated operations. For example, we might have one unit for
addition, one unit for multiplication and one unit for shift operations. These results
are selected between by a signal which is determined by the control-path; depending
on which operator it uses, a different result is produced on the ALU output. In
reality it might be advantageous to turn off units which are not being used at any
one time so as to reduce power consumption or heat. Additionally it is very likely
that replicated logic in different units could be shared; for example, the unit for
addition might also be used in multiplication. We will not worry about these sorts of
optimisation here. Finally note that at this high-level, one usually views the ALU as
a single component. However, at a lower-level, it might be attractive to split it into
parts. For example, it is common to have dedicated floating point arithmetic within a
Floating Point Unit (FPU), or to split the integer ALU into two parts for arithmetic
and comparisons. In this way, one can perform different types of computation at
the same time; for example, we might compare two numbers and add another two
numbers at the same time.

7.2 Comparisons

Recall from Chapter 2 that we can easily construct functions that describe 1-bit
equality and less than comparisons; we use equ(x,y) to denote the truth value related
to the test x = y, and lth(x,y) to denote the truth value related to x < y for 1-bit
values x and y. The basic idea in constructing comparators for larger values, n-bit
integers in our case, is to combine many of these 1-bit comparators together in order
to produce the final result.
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yn-1xn-1 y1x1 y0x0

neq_1bit neq_1bit neq_1bit

r

Figure 7.2 Design for an unsigned equality comparator.

1 module equ_nbit( r, x, y );
2

3 parameter n = 8;
4

5 output wire r;
6 input wire [n-1:0] x;
7 input wire [n-1:0] y;
8

9 wire [n-1:0] w0 = x ˆ y;
10

11 assign r = ˜( |w0 );
12

13 endmodule

Listing 7.1 Implementation of an n-bit unsigned equality comparator.

7.2.1 Unsigned Comparisons

7.2.1.1 Equality

Implementing a hardware circuit to test values for equality is a simple matter of
using the 1-bit equality test in a component-wise manner on the inputs and then
ensuring all the 1-bit comparisons are true. This final step can be implemented by
ANDing all the 1-bit comparisons together; the whole values are unequal if even
one of the 1-bit comparisons fail, so all must be true for the comparison to be true.
For efficiency, one can arrange this operation as a tree to minimise the critical path.

However, we can be slightly more clever than this naive approach and reduce the
number of required gates somewhat. Instead of 1-bit equality modules we use 1-bit
not-equal modules, which are essentially just XOR gates; this change saves n NOT
gates. By ORing these results together, instead of ANDing, and then negating the
result we compute the same function: we have just rearranged the expression a little.
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Figure 7.3 Design for an unsigned less than comparator.

1 module lth_nbit( r, x, y );
2

3 parameter n = 8;
4

5 output wire r;
6 input wire [n-1:0] x;
7 input wire [n-1:0] y;
8

9 wire [n-1:0] w0 = ˜( x ˆ y );
10 wire [n-1:0] w1 = ( ˜x & y );
11 wire [n-1:0] w2;
12

13 assign w2[0] = w1[ 0];
14 assign r = w2[n-1];
15

16 genvar i;
17 generate
18 begin
19 for( i = 1; i < n; i = i + 1 )
20 begin:gen_lth
21 assign w2[i] = w1[i] | ( w0[i] & w2[i-1] );
22 end
23 end
24 endgenerate
25

26 endmodule

Listing 7.2 Implementation of an n-bit unsigned less than comparator.

The end result is shown in Figure 7.2 and implemented in Listing 7.1, the overall
saving is n−1 NOT gates. Note that the implementation uses a reduction operator:
the assumption is that a Verilog tool-chain will be clever enough to translate this
into a tree structure.

7.2.1.2 Less Than

To test if one n-bit value x is less than another one called y, we compare the i-th bits
of x and y with each other starting from the most-significant and find that x < y if
either of the following is true:
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1. lth(xi,yi).
2. equ(xi,yi) and taking x′ and y′ to be the (i−1)-th down to the 0-th bits of x and

y respectively, we recursively find that x′ < y′.

This is somewhat of an awkward description; more concretely we can write the
operation on 8-bit values as the sequence

t0 = lth(x0,y0)
...

t5 = lth(x5,y5) ∨ (equ(x5,y5)∧ t4)
t6 = lth(x6,y6) ∨ (equ(x6,y6)∧ t5)
t7 = lth(x7,y7) ∨ (equ(x7,y7)∧ t6)

with the final result appearing as t7. Consider an even smaller example where we set
x = 6(10) = 110(2) and y = 7(10) = 111(2) such that n = 3. That is, we want to test if
110(2) < 111(2). Examining each bit of x and y we can clearly see that

lth(x0,y0) = true
lth(x1,y1) = false
lth(x2,y2) = false

and also that
t0 = true
t1 = true
t2 = true

because
t0 = lth(x0,y0)

= true

t1 = lth(x1,y1)∨ (equ(x1,y1)∧ t0)
= false∨ true
= true

t2 = lth(x2,y2)∨ (equ(x2,y2)∧ t1)
= false∨ true
= true

Thus we find that x < y, or rather than 6(10) < 7(10), because the final output in
the sequence is t2 = true. Hopefully it is clear that we can chain together instances
of our 1-bit comparator modules in order to implement the sequence above; this
approach is shown in Figure 7.3 and implemented in Listing 7.2. Wires w0 and w1
implement the 1-bit equality and less than tests respectively; the generate statement
chains these together as described above to produce the result r.



228 7 Arithmetic and Logic

7.2.2 Signed Comparisons

A signed equality comparison is the same as an unsigned equality comparison since
we are essentially just testing corresponding bits against each other. Signed less than
comparison is a little more tricky however. We can formulate a set of rules for how
signed less than behaves depending on the signs of the inputs x and y:

x +ve and y -ve → x 	< y
x -ve and y +ve → x < y
x +ve and y +ve → x < y if ABS(x) < ABS(y)
x -ve and y -ve → x < y if ABS(y) < ABS(x) .

Thus we can realise a signed less than comparison just using some simple tests of
the MSBs of x and y, which determine their sign, and controlled use of our unsigned
less than comparison circuit.

The final thing to note is that once we have built hardware for equality and less
than comparison, other operations can be derived using low-cost identities rather
than additional dedicated circuits. For example, one can easily verify that

x 	= y → ¬(x = y)
x ≤ y → (x < y)∨ (x = y)
x ≥ y → ¬(x < y)
x > y → ¬(x < y)∧¬(x = y)

such that all six useful comparisons can be generated with hardware to test for equal-
ity and less than, and four extra logic gates.

7.3 Addition and Subtraction

7.3.1 Addition

Most people learn the method for multi-digit addition in school; we describe the
steps in Algorithm 7.1. Say we select example inputs x = 123(10) and y = 218(10).
Using our algorithm, we can produce a trace which details the values before and
after major assignments as execution of the algorithm progresses:

i xi yi c t zi c

0 3 8 0 11 1 1
1 2 1 1 4 4 0
2 1 2 0 3 3 0

and find that the result is z = 341(10). However, we are often used to writing such
operations more diagrammatically. To calculate the sum z = x+y in base b by hand
for example, we first write out the digits of x and y with similar powers of b above
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Input: The n-digit integers x and y in a base-b representation.
Output: The n+1-digit integer z = x+ y in a base-b representation.

ADD(x,y)1

z ← 02

c ← 03

for i = 0 upto n−1 step 1 do4

t ← xi + yi + c5

zi ← t mod b6

c ← �t/b�7

zn ← c8

return z9

end10

Algorithm 7.1: An algorithm for multi-digit addition.

each other. In decimal, this should be a familiar process; again taking x = 123(10)
and y = 218(10) we produce the sum

1 2 3 input x
2 1 8 input y
0 1 0 carry
3 4 1 result z = x+ y

Note the zero in the first carry-in denoting that there is implicitly no carry into the
first addition: we count this as zero. The same algorithm or diagrammatic method
works in any base we care to represent our numbers in. If we consider binary num-
bers x = 123(10) = 1111011(2) and y = 281(10) = 11011010(2), we proceed as fol-
lows:

1 1 1 1 0 1 1 input x
1 1 0 1 1 0 1 0 input y

1 1 1 1 1 0 1 0 0 carry
1 0 1 0 1 0 1 0 1 result z = x+ y

to again compute the result z = x + y = 341(10) = 101010101(2). Notice the carries
propagate from right to left: we produce a carry from the i-th step which is propa-
gated into the sum for the (i+1)-th step.

Although our algorithm works fine in general, we are presented with a problem
when restricted to working with n-bit integers. The problem, termed overflow, is that
the result of adding two n-bit integers together can create an (n+1)-bit result which
is obviously too large to represent in n bits. This occurs when there is a carry-out
of step n−1 of our algorithm and is demonstrated perfectly by the example above.
Specifically, the inputs x = 123(10) = 1111011(2) and y = 281(10) = 11011010(2)
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are both 8 bits long but the result z = x+y = 341(10) = 101010101(2) is 9 bits long.
Given we want to represent z in 8 bits we have two main choices

• Truncate the result to 8 bits such that z = 85(10) = 01010101(2) and signal by
some method that an overflow has occurred so the error can be detected.

• Clamp or saturate the result to the highest value representable in the 8-bit size
so that we have that z = 255(10) = 11111111(2).

Clamped addition is useful in some contexts where accuracy is not important, for
example when computing with graphical information represented as pixels. How-
ever, for other contexts we prefer to simply truncate the result and flag that overflow
has occurred.

This detection of overflow is slightly complicated when one considers signed
numbers. As an example, consider adding together x = 127(10) and y = −127(10)
represented as 8-bit twos-complement binary vectors:

1 1 1 1 1 1 1 input x
1 0 0 0 0 0 0 1 input y

1 1 1 1 1 1 1 1 0 carry
1 0 0 0 0 0 0 0 0 result z = x+ y

We truncate the result to 8 bits and find z = 0(10) = 0(2) but there is a carry-out of the
last step which means z9 = 1. Using the reasoning above, this should mean there is a
carry-out yet we know the result should be zero and this can clearly be represented
as an 8-bit value so what went wrong ? In short, we need to consider the sign of the
two inputs and the sign of the output; detection of overflow can then be formulated
not in terms of the carry-out of the addition but by some simple rules. Assuming z
is the value of the result z = x+ y after truncation has occurred, we have

x +ve and y -ve → no overflow
x -ve and y +ve → no overflow
x +ve and y +ve and z +ve → no overflow
x +ve and y +ve and z -ve → overflow
x -ve and y -ve and z +ve → overflow
x -ve and y -ve and z -ve → no overflow

Overflow cannot occur if the input numbers have differing signs since the result
must lie somewhere in the range of numbers representable. The overflow cases offer
perhaps the most intuitive way to explain the rest: for example if we are adding
two positive numbers together and get a negative result, something has clearly gone
wrong. Given that xn−1 is the MSB of the value x and that this determines the sign of
x in a twos-complement representation, we have that overflow occurs exactly when
the expression

(xn−1 ∧ yn−1 ∧¬zn−1)∨ (¬xn−1 ∧¬yn−1 ∧ zn−1)

is true.
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Figure 7.4 Design for an n-bit ripple-carry adder.

1 module add_nbit( co, ci, r, x, y );
2

3 parameter n = 8;
4

5 output wire co;
6 input wire ci;
7

8 output wire [n-1:0] r;
9 input wire [n-1:0] x;

10 input wire [n-1:0] y;
11

12 wire [n-2:0] w0;
13

14 add_1bit t0( .co(w0[ 0]), .s(r[ 0]),
15 .ci(ci ), .x(x[ 0]), .y(y[ 0]) );
16 add_1bit t1( .co(co ), .s(r[n-1]),
17 .ci(w0[n-2]), .x(x[n-1]), .y(y[n-1]) );
18

19 genvar i;
20 generate
21 for( i = 1; i < n-1; i = i + 1 )
22 begin:gen_add
23 add_1bit t2( .co(w0[i ]), .s(r[i]),
24 .ci(w0[i-1]), .x(x[i]), .y(y[i]) );
25 end
26 endgenerate
27

28 endmodule

Listing 7.3 Implementation of an n-bit ripple-carry adder.

7.3.1.1 Ripple-Carry Adder

We already know how to construct half and full-adders from basic logic gates that
are capable of adding two 1-bit values and a carry-in to give a sum and carry-out as
a result. Our task in using this basic component to add larger n-bit values is fairly
simple: we just need to chain together the carry-in and carry-out signals of n full-
adders. This chaining technique was described previously in Chapter 2 where we
built a 4-bit adder from 1-bit full-adder components.

Following this, Figure 7.4 shows the very similar, but general structure for an
n-bit adder. This design is called a ripple-carry adder since the flow of carries
through the adders mimics the flow of carries in our algorithm: the carries ripple or
propagate from the i-th adder to the (i + 1)-th adder. As such, the design can only



232 7 Arithmetic and Logic

cico

xn-1 yn-1 x1 y1 x0 y0sn-1 s1 s0

add_1bit

x x x
y yy

s s s

add_1bit add_1bit

g0 p0c1p1g1cn-1pn-1gn-1

carry lookahead logic

Figure 7.5 Design for an n-bit carry look-ahead adder.

calculate the i-th bit of the result once the adders to the right (i.e., those for the less-
significant bits) have completed their results and propagated the carry. Implementing
the design is very easy; Listing 7.3 shows a general-purpose n-bit adder module
built assuming we have the standard add_1bit module available to us. To make
the description more compact, we use a generate statement to instantiate the n− 2
full-adders in the middle of the chain and only explicitly instantiate the two at either
end which carry-in and carry-out ci and co respectively.

7.3.1.2 Carry Look-Ahead Adder

The goal of a carry look-ahead adder design is to reduce the propagation delay
associated with the carry chain through a ripple-carry adder. The basic idea behind
achieving this is to directly compute the carry-in for the i-th step rather than have it
fed through from the (i−1)-th step.

We classify each step as either generating a carry-out or propagating a carry-
in. Working in base-b, a step can generate a carry-out if xi + yi ≥ b while it can
propagate a carry-in if xi +yi = b−1. Consider an example with decimal, i.e., base-
10, values:

1 4 5 input x
1 5 5 input y
1 1 0 carry
3 0 0 result z = x+ y

The first step generates a carry-out because 5+5 ≥ 10 so the carry is passed into the
next step. The second step propagates this carry; although it does not directly gen-
erate a carry-out since 4+5 = 9, the carry-in from the previous step increments this
such that the carry is again passed onto the next step. The final step neither generates
nor propagates a carry since 1 + 1 = 2 which, when incremented to accommodate
the carry-in, is still less than the base-10.
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In binary things are again a little more simple than in the general case. To de-
termine if the i-th step of the sum x + y generates or propagates a carry, which we
denote by gi and pi respectively, we can use

gi = xi ∧ yi

pi = xi ⊕ yi.

That is, the step generates a carry-out if both digits are 1 and propagates a carry-in if
either digit is 1 (but not both, otherwise it would generate a carry-out). Using these
simple starting points, we can directly compute ci, the carry-in for the i-th step.
Given c0 is the carry-in for the whole addition, we continue to find

c1 = g0 ∨ (p0 ∧ c0)
c2 = g1 ∨ (p1 ∧ c1) = g1 ∨ (p1 ∧g0)∨ (p1 ∧ p0 ∧ c0)
c3 = g2 ∨ (p2 ∧ c2) = g2 ∨ (p2 ∧g1)∨ (p2 ∧ p1 ∧g0)∨ (p2 ∧ p1 ∧ p0 ∧ c0)

...

Reading the first line, we have a carry-in for step one if step zero generates a carry-
out or if step zero propagates a carry-in and there is a carry-in for step zero. Subse-
quent lines follow a similar reasoning, but are increasingly complex. However, using
this approach we have significantly reduced the propagation delay associated with
generating a result. Figure 7.5 demonstrates the general design of a carry look-ahead
adder circuit.

As an aside, note that it is common to see gi and pi written as

gi = xi ∧ yi

pi = xi ∨ yi.

Of course, when used in the above this change does not alter the meaning: if xi =
1 and yi = 1, then gi = 1 so it does not matter what the corresponding pi is in
this case. As such, use of an OR gate rather than an XOR is preferred because
the former requires less transistors. In the ripple-carry adder case the circuit has
a depth of O(n) gates to generate a result, with carry look-ahead we reduce this
depth to O(logn). The trade-off is that even though the circuit is less deep and
hence generates a result faster, it generally uses many more gates: roughly O(n2)
for a carry look-ahead adder versus O(n) for a ripple-carry adder. As a compromise
between these advantages and disadvantages, it can be attractive to chain together
small carry look-ahead adders, say four 8-bit adders, in a ripple-carry configuration
to form a larger, say a 32-bit, adder.

7.3.2 Subtraction

Subtraction is performed in a similar way to addition except we substitute carries
from the i-th step to the (i + 1)-th step into borrows from the (i + 1)-th step by the
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Input: The n-digit integers x and y in a base-b representation.
Output: The n+1-digit integer z = x− y in a base-b representation.

SUB(x,y)1

z ← 02

c ← 03

for i = 0 upto n−1 step 1 do4

t ← xi − yi + c5

zi ← t mod b6

c ← �t/b�7

return z8

end9

Algorithm 7.2: An algorithm for multi-digit subtraction.

i-th step. In decimal we show this using the values x = 218(10) and y = 123(10) to
make our life slightly easier, and execute Algorithm 7.2 to produce the trace

i xi yi c t zi c

0 8 3 0 5 5 0
1 1 2 0 −1 9 −1
2 2 1 −1 0 0 0

and calculate z = x−y = 95(10). Written in the more conventional diagram form we
get

2 1 8 input x
1 2 3 input y

−1 0 0 borrow
9 5 result z = x− y

Translating this into the binary case results in exactly the same process; for our test
values x = 281(10) = 11011010(2) and y = 123(10) = 1111011(2) we again compute
z = x+ y = 95(10) = 1011111(2) as follows:

1 1 0 1 1 0 1 0 input x
1 1 1 1 0 1 1 input y

−1 −1 −1 −1 −1 −1 −1 0 borrow
1 0 1 1 1 1 1 result z = x− y

However, implementing separate addition and subtraction is somewhat pointless
given we can deal with subtraction by using the identity z = x− y = x+(−y). That
is, we first compute the negation of y and then add this to x to get our result. At
first glance it seems like we will still need an extra circuit to perform the negation,
but in fact this can be achieved using the following convenient method to convert a
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Figure 7.6 Design for an n-bit ripple-carry adder/subtractor.

number y into the twos-complement negation:

−y ≡ ¬y+1.

So we simply invert each bit in y and then add one. However, we need to take
care with regard to the carry-in since in subtraction this is essentially a borrow-
from so we really want to compute x + y + ci during addition and x− y− ci during
subtraction.

Inverting each bit of y is simple: we just have a control wire which determines if
our adder should do an addition or a subtraction and XOR this control wire with each
bit in y. As a result, when the control wire ctrl = 1 we have yi inverted and when
ctrl = 0 we pass yi through unchanged. Adding one to the result is also simple: we
just set the initial carry-in of our adder chain to 1. However, we need to take care to
only do this when required; based on ctrl and ci the four possible cases are

ctrl = 0 and ci = 0 → x+ y+0 = x+ y
ctrl = 0 and ci = 1 → x+ y+1 = x+ y+1
ctrl = 1 and ci = 0 → x+(¬y+1)−0 = x+(¬y)+1
ctrl = 1 and ci = 1 → x+(¬y+1)−1 = x+(¬y)

Therefore, we actually set the initial carry-in of our adder chain to equal ctrl ⊕ci so
that it is 1 only where either we are doing an addition and there is a carry-in, or we
are doing a subtraction and there is no borrow-from.

Figure 7.6 shows a design for a combined circuit that can perform addition and
subtraction depending on a control signal. This design is implemented in Listing 7.4
and looks very similar to our initial adder implementation in that we again rely on
the basic add_1bit module. This time, instead of feeding y into each adder as
the second input, we use w1 which is conditionally negated by using an XOR of
each bit of y with the control value ctrl. This is accomplished using a replication
operator to form an n-bit vector where each bit is equal to ctrl. Then, instead of
feeding in ci as the carry-in to the first adder we use ctrl again so as to get an
extra addition of 1 where negation of y is required. Actually, this is not quite true: to
cope with the fact that we might still need to use the carry-in value in addition, we
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1 module sub_nbit( ctrl, co, ci, r, x, y );
2

3 parameter n = 8;
4

5 input wire ctrl;
6

7 output wire co;
8 input wire ci;
9

10 output wire [n-1:0] r;
11 input wire [n-1:0] x;
12 input wire [n-1:0] y;
13

14 wire [n-2:0] w0;
15 wire [n-1:0] w1 = y ˆ {n{ctrl}};
16

17 add_1bit t0( .co(w0[ 0] ), .s(r[ 0]),
18 .ci(ci ˆ ctrl), .x(x[ 0]), .y(w1[ 0]) );
19 add_1bit t1( .co(co ), .s(r[n-1]),
20 .ci(w0[n-2] ), .x(x[n-1]), .y(w1[n-1]) );
21

22 genvar i;
23 generate
24 for( i = 1; i < n-1; i = i + 1 )
25 begin:gen_sub
26 add_1bit t2( .co(w0[i ]), .s(r[i]),
27 .ci(w0[i-1]), .x(x[i]), .y(w1[i]) );
28 end
29 endgenerate
30

31 endmodule

Listing 7.4 Implementation of an n-bit ripple-carry adder/subtractor.

actually XOR ctrl with ci to form the first carry-in. This allows us, for example,
to set ctrl to 0 for an addition yet still set ci equal to 1.

7.4 Shift and Rotate

Formally, a left or right shift of an integer x represented in base-b by a distance y
multiplies x by b+y or b−y. This basically has the effect of moving the digits left
or right in the expansion. Consider an example value of x = 123(10). Working in
decimal, shifting x left by setting s = 2 multiplies it by 102 = 100 giving

12300(10)

while shifting right by setting y = −2 multiplies it by 10−2 = 0.01, i.e., it divides it
by 100, to give

1.23(10).

This process works exactly the same in binary. So with x = 1111011(2), shifting x
left by setting y = 2 multiplies x by 22 = 4 to give
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111101100(2)

while shifting right by setting y = −2 multiplies x by 2−2 = 0.25, i.e., it divides it
by 4, to give

11110.11(2).

When representing numbers as n-bit binary vectors, there are some additional ques-
tions that need answering. For example, consider the vector x = 01111011 repre-
senting 1111011(2) in 8 bits. Shifting left by setting y = 2 gives

111011??.

We have lost two digits from the left-hand, most-significant end because they cannot
be accommodated in 8 bits. More importantly the right-hand, least-significant end of
the vector needs two extra digits so it remains 8 bits long; these are marked with ?.
The same is true when shifting in the other direction so that shifting right by setting
y = −2 gives

??011110.

This time we have lost two digits from the right-hand, least-significant end and need
two extra digits inserted into the left-hand, most-significant end.

How we fill the bits marked ? depends on the type of operation we require.
Roughly, there are three important operations: logical shifts, arithmetic shifts, and
rotations. These are best explained by example, starting with operations in the left
direction:

• If we are performing a logical left-shift, we fill the least-significant bits of the
result with 0. Thus, a logical left-shift of the vector x = 01111011 by y = 2
results in 11101100.

• If we are performing a left-rotate, we fill the least-significant bits of the result
with the most-significant bits expelled from the most-significant end. Thus, a
logical left-shift of the vector x = 01111011 by y = 2 results in 11101101.

Similar behaviour can be applied to operations in the right direction:

• If we are performing a logical right-shift, we fill the most-significant bits of the
result with 0. Thus, a logical right-shift of the vector x = 01111011 by y = −2
results in 00011110.

• If we are performing an arithmetic right-shift, we fill the most-significant bits of
the result with the most-significant or sign bit. Thus, an arithmetic right-shift of
the vector x = 01111011 by y = −2 results in 00011110 while using the value
x = 11111011 results in 11111110. This preserves the sign so we get the result
we would expect if viewing right-shift as a form of division.

• If we are performing a right-rotate, we fill the most-significant bits of the result
with the least-significant bits expelled from the least significant end. Thus, a
logical right-shift of the vector x = 01111011 by y = 2 results in 11011110.

The idea of differentiating between logical and arithmetic shifts is that arithmetic
shifts preserve the sign of the value involved while logical shifts do not. This can be
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important depending on the context in which the operation is used: if we really want
to view right-shifting as a division by 2y, we need an arithmetic shift otherwise the
sign of the result will be wrong.

Once we know what the various operations should actually do, we can start to
think about ways of implementing them in hardware. There are two main categories
of implementation which are described in detail below. To make things easier for
ourselves, we will only consider shifting values by unsigned distances. The assump-
tion is that the device controlling our shifter will translate, for example, a logical
left-shift by a negative distance into a logical right-shift by a positive distance of
the same magnitude if required. Thus the assumption is that for an n-bit value x we
always have the distance 0 ≤ y < log2(n).

Finally, we will assume that the style of shift performed by our hardware is dic-
tated by some input which can take one of the following constant values:

‘define SHF_R_LOGIC 3’b000
‘define SHF_R_ARITH 3’b001
‘define SHF_R_ROTATE 3’b010
‘define SHF_L_LOGIC 3’b011
‘define SHF_L_ARITH 3’b100
‘define SHF_L_ROTATE 3’b101

with ‘SHF_L_ARITH being an unused placeholder.

7.4.1 Bit-Serial Shifter

The most simple way to realise the required behaviour is to use a sequential or bit-
serial approach. The basic idea is to build a hardware device capable of shifting
values by a distance of one bit and then iterating the use of this hardware using y
steps to shift a distance of y bits. The advantage of this approach is that it uses the
least logic; we only require hardware to shift by distances of one bit coupled to some
control hardware. The drawback is that it is slow to produce a result; we must make
y sequential steps to get the required result.

Listing 7.5 details the implementation of a simple bit-serial shifter. The module
uses the input oper to decide which type of operation is required; one can perform
left or right logical or arithmetic shifts and rotations. In order to realise the iterated
behaviour, we maintain a counter in register r1 that tracks how many iterations we
have performed so far. This value is incremented by add_nbit instance t0 and
compared with the desired number of iterations by equ_nbit instance t1.

Execution of a shift operation is initialised when a positive edge is detected on
the reset input named rst. When this event occurs we reset the iteration counter to
zero and the temporary value r0, which stores the value being shifted, to the initial
input x. On positive edges of the clk signal the shifter state is updated; that is,
one iteration is executed. We start by updating our temporary shifted value r0 by
shifting it by a distance of one bit in a style determined by oper. We then check if
enough iterations have been performed by examining w1, the result of comparing the
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1 module shf_nbit( clk, rst, oper, r, x, y );
2

3 parameter n = 8;
4 parameter m = 3;
5

6 input wire clk;
7 input wire rst;
8

9 input wire [ 2:0] oper;
10

11 output reg [n-1:0] r;
12 input wire [n-1:0] x;
13 input wire [n-1:0] y;
14

15 reg [n-1:0] r0;
16 reg [m-1:0] r1;
17 reg r2;
18

19 wire [m-1:0] w0;
20 wire w1;
21

22 add_nbit t0(.ci(1’b0),.r(w0),.x(r1),.y(1 ) );
23 equ_nbit t1( .r(w1),.x(w0),.y(y[m-1:0]) );
24

25 defparam t0.n = m;
26 defparam t1.n = m;
27

28 always @ ( posedge rst )
29 begin
30 r0 = x;
31 r1 = 0;
32 r2 = 0;
33 end
34

35 always @ ( posedge clk )
36 begin
37 case( oper )
38 ‘SHF_R_LOGIC : r0 = { 1’b0, r0[n-1:1] };
39 ‘SHF_R_ARITH : r0 = { r0[n-1], r0[n-1:1] };
40 ‘SHF_R_ROTATE : r0 = { r0[ 0], r0[n-1:1] };
41 ‘SHF_L_LOGIC : r0 = { r0[n-2:0], 1’b0 };
42 ‘SHF_L_ROTATE : r0 = { r0[n-2:0], r0[n-1] };
43 endcase
44

45 if( !r2 )
46 begin
47 r1 = w0;
48

49 if( w1 )
50 begin
51 r = r0;
52

53 r2 = 1;
54 end
55 end
56 end
57

58 endmodule

Listing 7.5 Implementation of an n-bit bit-serial shifter.
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Figure 7.7 Behaviour of an n-bit bit-serial shifter.
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iteration counter with the desired number of iterations. If we have done enough, we
set the shifter output r to equal our temporary value r0 to complete the operation.
Otherwise we update the iteration counter by incrementing it and wait for clk to
trigger another iteration.

Figure 7.7 demonstrates the behaviour of this design for the inputs x = 123(10) =
1111011(2) and y = 5(10) = 101(2) when asked to perform a left logical shift. The
clock has a period of 2ns and the shifter is reset at time t = 2ns by the positive
edge of rst. Then, on each positive edge of the clock one can see the loop counter,
accumulator and so on being updated. By time t = 12ns the result is set as r =
96(10) = 1100000(2) which is what we expect; the left-most five bits of x have been
shifted off and zeros inserted as padding on the right-hand side.

7.4.2 Logarithmic Shifter

In reality, it is often desirable to generate results quickly rather than to minimise the
amount of logic used. As such, one can consider alternative designs that by using
more logic can produce a result in just one step rather than y steps. This approach
demands that we make a combinatorial circuit rather than a clocked circuit; the
speed one can generate results is then dominated by the critical path of the circuit
rather than the clock speed. We consider a conceptually simple approach which
is termed a logarithmic shifter. Essentially this design is a series of multiplexers
which shift the input by differing constant amounts to form the result.

The key idea is that each bit of the shift distance y determines a shift by a con-
stant amount 2i. So for example, if y1 = 1 then we need to shift by a distance of
two at some point. The combination of the different constant shifts results in the
overall result so if y = 3(10) = 11(2), we have y0 = 1 and y1 = 1 and so need to shift
by a distance of one then a distance of two. Since the different constant shifts are
independent, we can do them separately and have one unit shifting by 1 then feed
this result to a unit shifting by two. Both units are easy to construct since the shift
distances are now constant. The end result is a structure shown in Figure 7.8. The
design is combinatorial and produces the end result in one clock cycle; the obvious
drawback is the amount of logic used and longer associated critical path.

Implementing a general n-bit logarithmic shifter in Verilog is quite hard due to
the constraints on use of generate statements; one could easily write a C program
to generate the required code however. To provide a concrete example, we present
the implementation of a specific 8-bit shifter. Hopefully it is clear that similar tech-
niques can easily be applied to larger designs. Listing 7.6 details the implementa-
tion which consists of three similar stages. Each stage consists of two multiplexers:
a mul8_8bit instance which shifts the input by a constant distance using a style
dictated by oper, and a mul2_8bit instance which decides between the shifted
and unshifted input depending on the associated bit of input y. So for example mul-
tiplexer instance t0 shifts the input w0, an alias for x, by a distance of one bit.
Multiplexer instance t1 then decides whether to feed the original value w0 or the
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1 module shf_8bit( input wire [2:0] oper,
2

3 output wire [7:0] r,
4 input wire [7:0] x,
5 input wire [7:0] y );
6

7 wire [7:0] w0;
8 wire [7:0] w1;
9 wire [7:0] w2;

10 wire [7:0] w3;
11 wire [7:0] w4;
12 wire [7:0] w5;
13 wire [7:0] w6;
14

15 assign w0 = x;
16 assign r = w6;
17

18 mux8_8bit t0( .r(w1),
19

20 .i0({ 1’b0, w0[7:1] }),
21 .i1({ {1{w0[7:7]}}, w0[7:1] }),
22 .i2({ w0[0:0], w0[7:1] }),
23 .i3({ w0[6:0], 1’b0 }),
24 .i5({ w0[6:0], w0[7:7] }),
25

26 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
27

28 mux2_8bit t1( .r(w2), .i0(w0), .i1(w1), .s0(y[0]) );
29

30 mux8_8bit t2( .r(w3),
31

32 .i0({ 2’b0, w2[7:2] }),
33 .i1({ {2{w2[7:7]}}, w2[7:2] }),
34 .i2({ w2[1:0], w2[7:2] }),
35 .i3({ w2[5:0], 2’b0 }),
36 .i5({ w2[5:0], w2[7:6] }),
37

38 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
39

40 mux2_8bit t3( .r(w4), .i0(w2), .i1(w3), .s0(y[1]) );
41

42 mux8_8bit t4( .r(w5),
43

44 .i0({ 4’b0, w4[7:4] }),
45 .i1({ {4{w4[7:7]}}, w4[7:4] }),
46 .i2({ w4[3:0], w4[7:4] }),
47 .i3({ w4[3:0], 4’b0 }),
48 .i5({ w4[3:0], w4[7:4] }),
49

50 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
51

52 mux2_8bit t5( .r(w6), .i0(w4), .i1(w5), .s0(y[2]) );
53

54 endmodule

Listing 7.6 Implementation of an 8-bit logarithmic shifter.
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Figure 7.8 General design of a basic logarithmic shifter architecture.

shifter value w1 through to the result w2 depending on the value of y[0]. The next
stage, comprising the multiplexer instances t2 and t3, performs a similar operation
on w2 to produce w4 but for a shift distance of two bits; t4 and t5 then shift w4
by a distance of four bits to produce w6. The end result w6 is the correctly shifted
value and is assigned to the shifter output r.

7.5 Multiplication

Like addition, most people learn the method for multi-digit multiplication in school.
When calculating z = x · y we term x the multiplicand and y the multiplier; since
multiplication is associative we can switch these roles if we want. To make things
easier for ourselves, we will only consider multiplication of unsigned numbers. Us-
ing some extra logic one can easily deal with signed input by forcing the inputs to
be unsigned and then fixing up the sign of the result.

In a similar way to addition, we can describe multiplication using Algorithm 7.3
and produce a trace of execution for our example inputs x = 123(10) and y = 218(10)
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Input: The n-digit integers x and y in a base-b representation.
Output: The n+1-digit integer z = x · y in a base-b representation.

MUL(x,y)1

z ← 02

for i = 0 upto n−1 step 1 do3

c ← 04

for j = 0 upto n−1 step 1 do5

t ← xi · y j + zi+ j + c6

zi+ j ← t mod b7

c ← �t/b�8

zi+w ← c9

return z10

end11

Algorithm 7.3: An algorithm for multi-digit multiplication.

i j xi y j zi+ j c t zi+ j c

0 0 3 8 0 0 24 4 2
0 1 3 1 0 2 5 5 0
0 2 3 2 0 0 6 6 0
1 0 2 8 5 0 21 1 2
1 1 2 1 6 2 10 0 1
1 2 2 2 0 1 5 5 0
2 0 1 8 0 0 8 8 0
2 1 1 1 5 0 6 6 0
2 2 1 2 0 0 2 2 0

Alternatively, we can describe the operation diagrammatically as

1 2 3 input x
2 1 8 input y
9 8 4 partial product for +x ·8

1 2 3 partial product for +x ·10
2 4 6 partial product for +x ·200
2 6 8 1 4 result z = x · y

At the i-th step we produce a partial product equal to (yi ·x) ·bi. That is, we take the
i-th digit of y, multiply it by x and then shift it along i places into the right column
to form the partial product. The partial products are then added together to produce
the result. As with all our algorithms we can work in binary just as easily as decimal
and thus for x = 123(10) = 1111011(2) and y = 211(10) = 11011010(2) we have
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Input: The n-bit integers x and y in a base-2 representation.
Output: The 2n-bit integer z = x · y in a base-2 representation.

MUL-BIT-SERIAL(x,y)1

t ← 02

for i = n−1 downto 0 step −1 do3

t ← 2 · t4

if yi = 1 then5

t ← t + x6

return t7

end8

Algorithm 7.4: A bit-serial algorithm for multiplication of binary numbers.

0 1 1 1 1 0 1 1 input x
1 1 0 1 1 0 1 0 input y
0 0 0 0 0 0 0 0 partial product for +x ·0

0 1 1 1 1 0 1 1 partial product for +x ·10
0 0 0 0 0 0 0 0 partial product for +x ·000

0 1 1 1 1 0 1 1 partial product for +x ·1000
0 1 1 1 1 0 1 1 partial product for +x ·10000

0 0 0 0 0 0 0 0 partial product for +x ·000000
0 1 1 1 1 0 1 1 partial product for +x ·1000000

0 1 1 1 1 0 1 1 partial product for +x ·10000000
1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 result z = x · y

One minor issue that presents itself immediately from this description is that given
two n-bit inputs, any multiplier design we select will generate a 2n-bit result. This
differs from addition and logical operations which both generate n-bit results if one
ignores the carry-out. This is not a major problem: we just need an extra output from
the ALU so we can return the high and low halves of the result to the processor core
from the multiplier.

Either way, since multiplication is one of the most costly operations it is worth-
while considering the best way to realise the functionality of Algorithm 7.3 in hard-
ware. There are a large number of different implementation options but most multi-
pliers fall roughly into one of three categories which are described in detail below.

7.5.1 Bit-Serial Multiplier

At face value, the description of multiplication in binary above seems much more
complicated than the decimal case. However, it is actually made far easier because
at the i-th step, the i-th bit of the multiplier can only be zero or one: we simply either



246 7 Arithmetic and Logic

1 module mul_nbit( clk, rst, r, x, y );
2

3 parameter n = 8;
4 parameter m = 3;
5

6 input wire clk;
7 input wire rst;
8

9 output reg [2*n-1:0] r;
10 input wire [ n-1:0] x;
11 input wire [ n-1:0] y;
12

13 reg [2*n-1:0] r0;
14 reg [ n-1:0] r1;
15 reg [ m-1:0] r2;
16 reg r3;
17

18 wire [ m-1:0] w0;
19 wire w1;
20 wire [2*n-1:0] w2 = { r0[2*n-2:0], 1’b0 };
21 wire [2*n-1:0] w3;
22

23 add_nbit t0(.ci(1’b0),.r(w0),.x(r2),.y( 1));
24 equ_nbit t1( .r(w1),.x(r2),.y( n-1));
25 add_nbit t2(.ci(1’b0),.r(w3),.x(w2),.y({ {n{1’b0}}, x }));
26

27 defparam t0.n = m;
28 defparam t1.n = m;
29 defparam t2.n = 2*n;
30

31 always @ ( posedge rst )
32 begin
33 r0 = 0;
34 r1 = y;
35 r2 = 0;
36 r3 = 0;
37 end
38

39 always @ ( posedge clk )
40 begin
41 if( r1[n-1] )
42 r0 = w3;
43 else
44 r0 = w2;
45

46 r1 = { r1[n-2:0], 1’b0 };
47

48 if( !r3 )
49 begin
50 r2 = w0;
51

52 if( w1 )
53 begin
54 r = r0;
55 r3 = 1;
56 end
57 end
58 end
59

60 endmodule

Listing 7.7 Implementation of an n-bit bit-serial multiplier.
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Figure 7.9 Behaviour of an n-bit bit-serial multiplier.
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add the partial product into the accumulated total or not. Combined with the fact that
the partial product at the i-th step is simply the multiplicand shifted left i digits, we
can formulate the bit-serial method for multiplication in Algorithm 7.4. To see why
this algorithm works, we need to think about what multiplication “means”. One way
to look at it is that multiplication is just repeated addition. For example

x · y = x+ x+ · · ·+ x+ x︸ ︷︷ ︸
total of y terms

so if we select y = 6(10), then we obviously have

x ·6 = x+ x+ x+ x+ x+ x.

But there is a clear drawback to this in the sense that the bigger y is, the longer
that list of terms is and hence the more additions we are going to need to do if we
actually want to compute x · y. Another way of looking at it is that multiplication
adds another “weight” into the summation above. It might look odd, but imagine we
wrote y out in binary; then we could write x · y as

x · y = x ·
n−1

∑
i=0

yi ·2i.

Again selecting y = 6(10) = 110(2) we find that we still get the result we would
expect to:

x · y = x · y2 ·22 + x · y1 ·22 + x · y0 ·20

= x ·1 ·22 + x ·1 ·22 + x ·0 ·20

= x ·4 + x ·2 + x ·0
= x ·6 .

The problem is, this still looks unpleasant to compute. For example, we keep having
to compute powers of two to “weight” the terms. Fortunately, British mathemati-
cian William Horner worked out a scheme to do this more neatly. Basically we just
bracket the thing we started with in such a way that instead of having to compute
the powers of two independently, we sort of accumulate them; this is best shown by
example:

x · y = ( ( x · y2 ) · 2 + x · y1 ) · 2 + x · y0

= ( ( x ·1 ) · 2 + x ·1 ) · 2 + x ·0
= ( x · 2 + x ·1 ) · 2 + x ·0
= x · 4 + x ·2 + x ·0
= x · 6 .

Working inside out (i.e., from the inner-most term in the nest of brackets to the
outer-most) the computation no longer looks so unpleasant, plus we can see the
relationship to Algorithm 7.4. That is, at the i-th step we take the accumulated value
and double it then add x if yi = 1.

As one can imagine, this approach uses the least area of our three choices since
it requires only an adder to add partial products into the accumulator, a shifter to
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ensure the partial products are added into the right place, and some control logic
to execute the loop. However, it also yields the worst performance in that it takes
us n steps to multiply two n-bit values. Listing 7.7 describes an implementation of
Algorithm 7.4 but requires some explanation. The multiplier is reset to an initial
state on positive edges of the rst signal. On positive edges of the clk signal the
multiplier state is updated; one can think of this as executing one iteration of the loop
on each tick of the clock. To control the loop we use register r2 as the loop counter,
incrementing it via add_nbit instance t0 and comparing it with the loop bound
via equ_nbit instance. The register r0 is used to store the accumulator from
Algorithm 7.4. The wire w2 represents r0 shifted left by one bit, i.e., multiplied by
two. On each iteration of the loop we update r0 with either w3, the result of adding
x to w2 via the add_nbit instance t2, or w2 itself. That is, on each iteration of
the loop we either double r0 or double it and add x depending on the related bit
in y. To make life easier, we store y in register r1 and shift the value left one bit
each time the loop is iterated; this means we always inspect bit n− 1 of r1 rather
than bit i of y. Finally, when we have done enough iterations the accumulator r0 is
assigned to the multiplier result r to complete the operation.

The behaviour of this design when fed our example inputs x = 123(10) and y =
218(10) is shown in Figure 7.9. The clock has a period of 2ns and the multiplier is
reset at time t = 2ns by the positive edge of rst. Then, on each positive edge of the
clock one can see the loop counter, accumulator and so on being updated. At time
t = 16ns the final loop iteration completes and we output the accumulated result on
r, the multiplier is then ready for any subsequent operations required of it.

7.5.2 Tree Multiplier

A parallel multiplier attempts to achieve high-performance by using the largest pos-
sible area of our three options. An example of this type is a tree multiplier; the
basic idea is to generate all the partial products in parallel and then implement a
large combinatorial circuit to add them together. This means that although we use
much more logic than a bit-serial multiplier, we generate a result in one step and in
a time bounded by propagation delay through the adders.

In implementing such a multiplier, instead of using a linear chain of n adders
to accumulate the n partial products we reduce the associated propagation delay by
using a tree. The result is the delay before a result is produced is O(logn) rather
than O(n). The general outline for such a design is shown in Figure 7.10. One can
see how the n partial products would be accumulated by a tree of depth log2 n. The
i-th partial product itself is constructed by ANDing input x with a vector replicated
from the i-th bit of input y; the result is x if we want to add this partial product to
the final result and zero otherwise.

Like the logarithmic shifter, describing a general n-bit parallel multiplier in Ver-
ilog is quite difficult; we again implement an example 8-bit design in Listing 7.8.
The first block of code defines wires w0 to w7 and uses them to represent the eight
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Figure 7.10 Design for a basic parallel multiplier architecture.

partial products. The i-th partial product is shifted left by i bits to place it in the
right position for accumulation. The partial products are then accumulated by the
second block of code which defines t0 to t6, a tree of add_nbit instances which
outputs the final result in r. Note that in this simple example we have padded all our
partial products to 16 bits and parametrised our adder tree accordingly. In reality
this is somewhat wasteful since, for example, in the addition of w0 and w1 we know
some bits of either input are zero: we know that bit eight upwards of w0 and bit zero
of w1 are all zero so this is a “special” addition in a sense. The bottom line is that
by eliminating unnecessary operations that can be identified at design-time, we can
reduce the overall cost in terms of logic.

7.5.3 Digit-Serial Multiplier

One way to view the previous designs is that a bit-serial approach deals with the
multiplier one bit at a time while the parallel approach deals with all n multiplier
bits at once. The natural compromise lies somewhere between these extremes and
deals with say d bits in parallel with 1 < d < n. We term such a design a digit-serial
multiplier; d is said to be the digit size and is normally selected to divide n exactly
to simplify implementation.

Algorithm 7.5 presents a rough outline of the algorithm where we use par to
denote parallel execution of a sequence of statements. The basic idea is that we now
step through the outer loop in steps of d instead of steps of 1 as in the original
bit-serial version; in each iteration of the loop we accumulate d partial products in
parallel. Thus for around a d-fold increase in size, we produce a d-fold increase in
performance. This is a nice trade-off since we can scale d to match our size budget
or our performance goals.
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1 module mul_8bit( output wire [15:0] r,
2 input wire [ 7:0] x,
3 input wire [ 7:0] y );
4

5 wire [15:0] w0 = {8’b0, {8{y[0]}} & x} ;
6 wire [15:0] w1 = {8’b0, {8{y[1]}} & x} << 1;
7 wire [15:0] w2 = {8’b0, {8{y[2]}} & x} << 2;
8 wire [15:0] w3 = {8’b0, {8{y[3]}} & x} << 3;
9 wire [15:0] w4 = {8’b0, {8{y[4]}} & x} << 4;

10 wire [15:0] w5 = {8’b0, {8{y[5]}} & x} << 5;
11 wire [15:0] w6 = {8’b0, {8{y[6]}} & x} << 6;
12 wire [15:0] w7 = {8’b0, {8{y[7]}} & x} << 7;
13

14 wire [15:0] s0;
15 wire [15:0] s1;
16 wire [15:0] s2;
17 wire [15:0] s3;
18 wire [15:0] s4;
19 wire [15:0] s5;
20

21 add_nbit t0(.ci(1’b0),.r(s0),.x(w0),.y(w1));
22 add_nbit t1(.ci(1’b0),.r(s1),.x(w2),.y(w3));
23 add_nbit t2(.ci(1’b0),.r(s2),.x(w4),.y(w5));
24 add_nbit t3(.ci(1’b0),.r(s3),.x(w6),.y(w7));
25

26 add_nbit t4(.ci(1’b0),.r(s4),.x(s0),.y(s1));
27 add_nbit t5(.ci(1’b0),.r(s5),.x(s2),.y(s3));
28

29 add_nbit t6(.ci(1’b0),.r(r ),.x(s4),.y(s5));
30

31 defparam t0.n = 16;
32 defparam t1.n = 16;
33 defparam t2.n = 16;
34 defparam t3.n = 16;
35

36 defparam t4.n = 16;
37 defparam t5.n = 16;
38

39 defparam t6.n = 16;
40

41 endmodule

Listing 7.8 Implementation of an 8-bit parallel multiplier.

7.5.4 Early Termination

To reduce the number of iterations taken by the basic bit-serial multiplier, one can
consider the concept of early termination or early exit. We demonstrate this con-
cept as a continuation of our left-to-right bit-serial multiplier from above. The basic
idea is to check at some iteration i if the remaining bits of y are zero, i.e., yi...0 = 0. In
this case we would simply iterate through the remaining bits always performing the
operation t ← 2 · t but never performing the operation t ← t + x. So instead, we can
exit the loop and scale t in one go, returning t ·2i and thereby replicating the effect
of i iterations of the operation t ← t + t. This is inexpensive because the scaling can
be achieved simply by shifting t by a known distance. The benefit is that we do not
do all those extra iterations, so potentially we can save some time.
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Input: The n-bit integers x and y in a base-2 representation, a digit-size d.
Output: The 2n-bit integer z = x · y in a base-2 representation.

MUL-DIGIT-SERIAL(x,y)1

t ← 02

for i = n−1 downto 0 step −d do3

t ← 2d · t4

par j = 0 upto d −1 step 15

if yi+ j = 1 then6

t ← t + x ·2 j7

return t8

end9

Algorithm 7.5: A digit-serial algorithm for multiplication of binary numbers.

Input: The n-bit integers x and y in a base-2 representation, an integer block
size b|n.

Output: The 2n-bit integer z = x · y in a base-2 representation.

MUL-BIT-SERIAL-ET(x,y)1

for i = n/b downto 1 step −1 do2

if yb·i−1...0 = 0 then3

return 2b·i · t4

else5

for j = 0 upto b−1 step 1 do6

t ← 2 · t7

if yb·i−1− j = 1 then8

t ← t + x9

return t10

end11

Algorithm 7.6: A bit-serial algorithm for multiplication of binary numbers with early termina-
tion.

Algorithm 7.6 roughly models what is going on. The idea is to perform the mul-
tiplication in n/b steps; in the case of n = 32 we might set b = 8 for example to
perform four steps, dealing with eight bits of y in each step. The first thing we do
in each step is check whether the remaining bits of y are all zero: if they are, the
scaled t is returned straight away, otherwise we continue more or less as in the case
of bit-serial multiplication.

Some examples might illustrate better what is going on. Imagine we use the val-
ues n = 32 and b = 8, and consider the inputs x = 5(10) and y = 6(10) = 00000006(16);
by writing y in hexadecimal, it is easy to see that the bottom 8-bit chunk is non-zero.
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Therefore, when the algorithm checks the remaining bits of y at each of the four sets,
there are still some which are non-zero so it behaves the same as the original bit-
serial algorithm:

i j 8 · i−1− j y8·i−1− j t t

4 0 31 0 0 0+0 = 0
4 1 30 0 0 0+0 = 0
4 2 29 0 0 0+0 = 0
4 3 28 0 0 0+0 = 0
...

...
...

...
...

...
1 4 3 0 0 0+0 = 0
1 5 2 1 0 0+0+5 = 5
1 6 1 1 5 5+5+5 = 15
1 7 0 0 15 15+15 = 30

Now consider the inputs x = 5(10) and y = 1536(10) = 0000600(16):

i j 8 · i−1− j y8·i−1− j t t

4 0 31 0 0 0+0 = 0
4 1 30 0 0 0+0 = 0
4 2 29 0 0 0+0 = 0
4 3 28 0 0 0+0 = 0
...

...
...

...
...

...
2 4 11 0 0 0+0 = 0
2 5 10 1 0 0+0+5 = 5
2 6 9 1 5 5+5+5 = 15
2 7 8 0 15 15+15 = 30

At this point, i.e., the final step, the algorithm notices the least-significant 8-bit
chunk of y is zero so returns the value 30 ·28 (which is 7680(10) as expected) without
performing the loop iterations associated with the final step.

Some ARM processors use early termination but combine this with some extra
techniques and use a right-to-left approach rather than left-to-right as we have done.
The reasoning for this is simple: in a normal workload, most multipliers will be
small and hence their more-significant bits are more likely to be zero than their less-
significant bits. For small multipliers (e.g., loop counters, array indices and so on)
the left-to-right approach will yield a higher chance of early termination, and hence
greater reduction in the number of iterations.

7.5.5 Wallace and Dadda Trees

Tree multipliers offer a good trade-off in favour of performance versus size. How-
ever, a drawback of such designs is the long critical path which runs through the tree
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Stage 1 Stage 2 Stage 3
Output Action Output Action Output

Weight-1 1 PT 1 PT 1
Weight-2 2 HA 1 PT 1
Weight-4 3 FA 2 HA 1
Weight-8 4 FA 3 FA 2
Weight-16 3 FA 2 HA 2
Weight-32 2 HA 2 HA 2
Weight-64 1 PT 2 HA 2
Weight-128 0 0 1

(a) Actions in constructing Wallace multiplier for 4-bit inputs.

Stage 1 Stage 2 Stage 3
Output Action Output Action Output

Weight-1 1 PT 1 PT 1
Weight-2 2 PT 2 PT 2
Weight-4 3 FA 1 PT 1
Weight-8 4 FA 3 FA 1
Weight-16 3 FA 2 HA 2
Weight-32 2 PT 3 FA 2
Weight-64 1 PT 1 PT 2
Weight-128 0 0 0

(b) Actions in constructing Dadda multiplier for 4-bit inputs.

Table 7.1 A tabular description of the stages in Wallace and Dadda multipliers for 4-bit inputs.

of adders; if we use ripple-carry adders to build an n-bit tree adder, the number of
1-bit full-adders the critical path passes through is essentially O(n log2 n).

A carry-save adder takes a different approach to ripple-carry and carry look-
ahead adders: instead of computing an addition per-se, it compresses three n-bit
inputs x, y and z into two n-bit outputs. That is, it computes s and c, which we call
the partial sum and shifted carry, where

si = xi ⊕ yi ⊕ zi

ci = (xi ∧ yi)∨ (xi ∧ zi)∨ (yi ∧ zi).

Sometimes this structure is called a 3 : 2 compressor. To compute the real (n+2)-
bit sum of x, y and z one needs to combine s and c in a further addition step by
computing 2c + s using a standard (ripple-carry for example) adder. The idea is
that use of a carry-save adder followed by a ripple-carry adder is faster than two
sequential uses of ripple-carry adders.
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Figure 7.11 An example 4-bit Wallace multiplier.

Wallace multiplier [63] and Dadda multiplier [19] designs capitalise on the
concept of carry-save adders. Both are tree-like multiplier designs in the sense that
they generate and sum partial products in parallel, but improve the critical path
through the multiplier. For n-bit inputs, both are constructed from a number of
stages: an initial stage to generate the partial products; one or more reduction stages
which act to reduce the partial products into two 2n-bit values; and a final stage
which adds the 2n-bit values to produce the result. With a Wallace multiplier the
basic approach to multiplying x and y is as follows:

1. In the first stage, multiply together (i.e., AND together) each xi with each y j to
produce a total of n2 intermediate wires. Each wire is said to have a weight, for
example x0 · y0 has weight 1 as 20 ·20 = 1, x1 · y2 has weight 8 as 21 ·22 = 8.

2. Reduce the number of intermediate wires using additional stages composed of
full-adders and half-adders:

• Combine any three wires with same weight using a full-adder; result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher
weight (i.e., the carry).

• Combine any two wires with same weight using a half-adder; result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher
weight (i.e., the carry).

• If there is only one wire with a given weight, just pass it through to the next
stage.

3. In the final stage, all weights have just one or two wires in them: combine the
wires into two 2n-bit values and add them with a standard adder.

The corresponding rules for a Dadda multiplier are similar in concept to the Wallace
multiplier except the reduction stages are more complicated; that is, we replace the
second step above with the following:
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• Combine any three wires with same weight using a full-adder; the result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher weight
(i.e., the carry).

• If there are two wires with the same weight left, let w be that weight and then:

– If w ≡ 2 mod 3 then combine the wires using a half-adder; the result in next
stage is one wire of the same weight (i.e., the sum) and one wire a higher
weight (i.e., the carry).

– Otherwise, just pass them through to the next stage.

• If there is one wire with the same weight left, just pass it through to the next
stage.

Consider a case were we are dealing with 4-bit inputs x and y; Table 7.1 demon-
strates the actions applied in constructing the various stages of the Wallace and
Dadda multipliers. Since they are similar, we consider only the Wallace case more
carefully. The first stage multiplies each xi with each y j; we have one weight-0
wire from x0 · y0 but three weight-4 wires from x1 · y3, x3 · y1 and x2 · y2 for exam-
ple. Following the first stage, we apply two reduction stages according to the rules.
For example, in the first reduction stage there is one weight-1 wire as input so we
use a pass-through (PT ) operation which results in one weight-1 wire as output;
there are two weight-2 wires so we use a half-adder (HA) operation which results in
one weight-2 wire and one weight-4 wire as output; there are three weight-4 wires
so we use a full-adder (FA) operation which results in one weight-4 wire and one
weight-8 wire as output. Finally, we are left with the output of the second reduction
stage in which all weights have two or less wires in them; we group the wires into
two 8-bit values and add them using, for example, a ripple-carry adder. This might
all sound a bit abstract; consider a concrete example where we want to multiply
x = 0110(2) = 6(10) and y = 1010(2) = 10(10). Figure 7.11 shows the structure of the
entire Wallace multiplier and the intermediate results produced. The final stage com-
putes the result 00111100(2) = 60(10) as the sum of 00111100(2) and 00000000(2)
where zeros are inserted where there are not enough wires.

Notice that the Wallace multiplier used six half-adders and four full-adders and
the final addition has 6-bit inputs; the Dadda multiplier used one half-adder and five
full-adders but the final addition has 5-bit inputs. As such, one can view the two
approaches as a trade-off between complexity in the reduction layers against com-
plexity of the (single) final addition. In each structure, there are O(logn) layers of
reduction plus the initial and final layer. However, notice that within each reduction
stage each half-adder or full-adder can operate independently from the rest. That
is, each reduction stage has an O(1) critical path which is why we see an improve-
ment versus the original tree multiplier: the critical path is essentially through only
O(log2 n) full-adders rather than O(n log2 n).
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7.5.6 Booth Recoding

The technique of recoding either the multiplier or multiplicand to allow more ef-
ficient multiplication can be attractive: essentially we do some extra work before
executing the multiplication so that the actual operation takes less steps. The Booth
encoding technique [5] is a popular example of this; it takes advantage of repeated
sequences of 1 or 0 digits in the multiplier. Using the recoding strategy, addition
operations are only required at the boundaries of such sequences; no additions are
required within the sequences themselves.

For example, consider the 8-bit multiplier value 30(10) = 00011110(2) where one
can see there is a repeated sequence of four 1 digits in the binary representation.
Where such a sequence exists from bits position i to bit position j, we can treat the
sequence as a single digit of weight 2 j+1 −2i. So in this case we re-write the digits
from i = 1 to j = 4 as a single digit of weight 24+1 −21 = 25 −21 = 30. Since we
have recoded a long sequence as a single digit, a generic multiplication algorithm
can take less steps: it requires less additions of partial products resulting from the
combination of multiplier digits and the multiplicand.

Consider the example of multiplying x = 6(10) = 00000110(2) by y = 30(10) =
00011110(2). Using the method introduced previously, we compute the result as

0 0 0 0 0 1 1 0 input x
0 0 0 1 1 1 1 0 input y
0 0 0 0 0 0 0 0 partial product for +x ·0

0 0 0 0 0 1 1 0 partial product for +x ·10
0 0 0 0 0 1 1 0 partial product for +x ·100

0 0 0 0 0 1 1 0 partial product for +x ·1000
0 0 0 0 0 1 1 0 partial product for +x ·10000

0 0 0 0 0 0 0 0 partial product for +x ·000000
0 0 0 0 0 0 0 0 partial product for +x ·0000000

0 0 0 0 0 0 0 0 partial product for +x ·00000000
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 result z = x · y

If we first recode y using the Booth method, the result is instead calculated as fol-
lows:
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0 0 0 0 0 1 1 0 input x
0 0 0 1 1 1 1 0 input y
0 0 +1 0 0 0 −1 0 recoded y
0 0 0 0 0 0 0 0 partial product for +x ·0

1 1 1 1 1 1 1 1 1 1 1 0 1 0 partial product for −x ·10
0 0 0 0 0 0 0 0 partial product for +x ·000

0 0 0 0 0 0 0 0 partial product for +x ·0000
0 0 0 0 0 0 0 0 partial product for +x ·00000

0 0 0 0 0 1 1 0 partial product for +x ·100000
0 0 0 0 0 0 0 0 partial product for +x ·0000000

0 0 0 0 0 0 0 0 partial product for +x ·00000000
0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 result z = x · y

which requires less addition operations, i.e., additions of non-zero partial products,
during accumulation of the partial products and hence potentially less time.

The problem with this approach is that in the worse case, it actually causes us to
require more addition operations during accumulation of the partial products than
the standard method. To show this, consider a multiplier y = 5(10) = 00000101(2).
Using the standard multiplication method we would require two addition operations,
one for each 1 digit in y. Using a Booth recoding of y, we actually perform four
additions:

0 0 0 0 0 1 1 0 input x
0 0 0 0 0 1 0 1 input y
0 0 0 0 +1 −1 +1 −1 recoded y

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 partial product for −x ·1
0 0 0 0 0 1 1 0 partial product for +x ·10

1 1 1 1 1 1 1 1 1 1 0 1 0 partial product for −x ·100
0 0 0 0 0 1 1 0 partial product for +x ·1000

0 0 0 0 0 0 0 0 partial product for +x ·00000
0 0 0 0 0 0 0 0 partial product for +x ·000000

0 0 0 0 0 0 0 0 partial product for +x ·0000000
0 0 0 0 0 0 0 0 partial product for +x ·00000000
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 result z = x · y

which is clearly worse not better ! To combat this worst case and exploit the fact that
the recoded multiplier implies less steps in multiplication, we use a further recoding
strategy which is often termed the modified Booth recoding. The basic idea is to
group the recoded digits into pairs (reading them from right to left). Within a pair
(yi+1,yi) grouped from the recoded value y, the digit yi+1 has twice the weight of yi

so one can think of the pair as having the weight 2yi+1 + yi. This allows us to think
of the pair (+1,−1) as 2− 1 = 1 for example. Seven such pairs are possible, with
the other two impossible due to the original Booth recoding technique; the pairs
contribute the following weights:



7.6 Putting It All Together 259

yi+1 = 0 and yi = 0 → 0
yi+1 = 0 and yi = +1 → +1
yi+1 = 0 and yi = −1 → −1
yi+1 = +1 and yi = 0 → +2
yi+1 = +1 and yi = +1 → not possible
yi+1 = +1 and yi = −1 → +1
yi+1 = −1 and yi = 0 → −2
yi+1 = −1 and yi = +1 → −1
yi+1 = −1 and yi = −1 → not possible

Thus, using these pairings we can re-write our worst case as

0 0 0 0 0 1 1 0 input x
0 0 0 0 0 1 0 1 input y
0 0 0 0 +1 −1 +1 −1 recoded y

0 0 +1 +1 grouped y
0 0 0 0 0 1 1 0 partial product for +x ·1

0 0 0 0 0 1 1 0 partial product for +x ·100
0 0 0 0 0 0 0 0 partial product for +x ·00000

0 0 0 0 0 0 0 0 partial product for +x ·0000000
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 result z = x · y

which is no worse than using the standard method and makes explicit the fact that
there are less steps: we only need to consider half the number of recoded multiplier
digits versus the original.

7.6 Putting It All Together

To flesh out the components in the basic Verilog processor model developed at the
end of Chapter 5, we need ALU modules to perform comparison and arithmetic on
integer inputs. Previously we assumed that such operations could be created for us
by the Verilog tool-chain, for example we used statements such as

alu_dst_lo = GPR[dec_rs] + GPR[dec_rt]

to model the behaviour of an addition instruction. In reality, we would like to con-
glomerate all such operations within the ALU so that we can minimise the amount
of replicated logic and modularise the overall processor design.

7.6.1 Comparison ALU

The ALU for comparisons is the simplest to construct. We already have modules that
perform unsigned equality and less than comparisons; our task is to use and pack-
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Figure 7.12 Behaviour of the ALU for comparisons.
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1 module alu_cmp( input wire clk,
2 input wire rst,
3

4 input wire [31:0] src0,
5 input wire [31:0] src1,
6

7 output wire dst_equ,
8 output wire dst_neq,
9 output wire dst_lth,

10 output wire dst_lte,
11 output wire dst_gth,
12 output wire dst_gte );
13

14 wire w0;
15 wire w1;
16 wire w2;
17

18 equ_nbit t0( .r(w0), .x(src0[31:0]), .y(src1[31:0]) );
19 lth_nbit t1( .r(w1), .x(src0[30:0]), .y(src1[30:0]) );
20

21 defparam t0.n = 32;
22 defparam t1.n = 31;
23

24 assign w2 = ( src0[31] & src1[31] & ˜w0 & w1 ) |
25 ( src0[31] & ˜src1[31] ) |
26 ( ˜src0[31] & ˜src1[31] & ˜w0 & w1 ) ;
27

28 assign dst_equ = w0;
29 assign dst_lth = w2;
30

31 assign dst_neq = ˜dst_equ ;
32 assign dst_lte = dst_lth |
33 dst_equ ;
34 assign dst_gth = ˜dst_lte ;
35 assign dst_gte = ˜dst_lth ;
36

37 endmodule

Listing 7.9 A Verilog module that models an ALU for comparisons.

age these modules so they perform all variants of signed comparison. The Verilog
module is shown in Listing 7.9. We have the ALU generate all possible comparison
outputs continuously from the inputs src0 and src1. That is, there is no need to
pass the ALU an opcode: the processor simply sets the inputs and then bases any
decision on the right comparison output. For example, if it wants to test if the values
are equal then it examines the dst_equ output. This design is motivated by the
fact that the MIPS32 instructions for conditional branches do not use the funct
field of the R-type instruction encoding to determine the ALU operation like, for
example, an addition would. Branches use the I-type encoding and so the operation
performed is derived just from the opcode field.

The slight complication then is simply that we need signed comparison from our
basic unsigned modules. We achieve this using a slight of hand. Firstly, note that
signed equality is the same as unsigned equality: we just test if each bit is the same or
not. Signed less than is the problem; to solve it we adopt the simple rules presented
previously. That is, because of the way the twos-complement representation works
we have that
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1 module alu_exe( input wire clk,
2 input wire rst,
3

4 input wire [ 5:0] oper,
5

6 input wire [31:0] src0,
7 input wire [31:0] src1,
8

9 output wire [31:0] dst_lo,
10 output wire [31:0] dst_hi );
11

12 ...
13

14 endmodule

Listing 7.10 The interface to a Verilog module that models an ALU for arithmetic.

1. If src0 is negative and src1 is negative, they are not equal, and an unsigned
less than comparison is true, then src0 is less than src1.

2. If src0 is negative and src1 is positive we know src0 is less than src1.
3. If src0 is positive and src1 is positive, they are not equal, and an unsigned

less than comparison is true, then src0 is less than src1.

Testing the sign of src0 and src1 is simply a matter of examining the most-
significant bit. Using this fact we can apply our rules, and an unsigned comparison
on the remaining 31-bit unsigned value, to generate the correct signed comparison.
Then, since we have equality and less than, we construct all other comparisons from
these. For example, src0 is greater than src1 if src0 is not less than or equal to
src1. The behaviour of the result is shown in Figure 7.12.

7.6.2 Arithmetic ALU

The ALU for arithmetic is somewhat more complex, partly because we have more
operations and sub-module instances and partly because some of the operations are
multi-cycle rather than continuous. The latter difference requires that we manage
the clock and reset signals for the multiplier and shifter modules so they operate
correctly. The Verilog code is too long to present on one page but the interface is
shown in Listing 7.10. The general idea is that the ALU perform an operation, using
src0 and src1 as inputs, which is determined by the oper input. The output is
supplied in low and high parts via dst_lo and dst_hi which allows for both
32-bit outputs, for example addition, and 64-bit outputs, for example multiplication.
The design does not include the facility to manage carry or overflow flags.

Listing 7.11 details the instantiation of the main sub-modules within the ALU.
Instances t3, t4 and t5 are the addition/subtraction, multiplier and shifter mod-
ules described previously. Adder instances t0, t1 and t2 are used to manage the
multiplier by ensuring it is supplied only with positive inputs. To achieve this, we
negate src0 and src1 to produce n0 and n1 and select whichever one is pos-
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Figure 7.13 Behaviour of the ALU for arithmetic.
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1 add_nbit t0(.ci(1’b0),.r(n0),.x(˜src0),.y(32’b1));
2 add_nbit t1(.ci(1’b0),.r(n1),.x(˜src1),.y(32’b1));
3 add_nbit t2(.ci(1’b0),.r(n2),.x(˜ w1),.y(64’b1));
4

5 defparam t0.n = 32;
6 defparam t1.n = 32;
7 defparam t2.n = 64;
8

9 assign n3 = src0[31] ? n0 : src0;
10 assign n4 = src1[31] ? n1 : src1;
11 assign n5 = src0[31] != src1[31] ? n2 : w1;
12

13 assign ci = 0;
14

15 sub_nbit t3( .ctrl( s0),
16

17 .ci ( ci),
18 .co ( co),
19 .x ( src0),
20 .y ( src1),
21 .r ( w0) );
22

23 mul_nbit t4( .clk ( clk),
24 .rst (mul_rst),
25

26 .x ( n3),
27 .y ( n4),
28 .r ( w1) );
29

30 shf_nbit t5( .clk ( clk),
31 .rst (shf_rst),
32

33 .oper( s1),
34 .x ( src0),
35 .y ( src1),
36 .r ( w2) );
37

38 defparam t3.n = 32;
39 defparam t4.n = 32;
40 defparam t4.m = 5;
41 defparam t5.n = 32;
42 defparam t5.m = 5;

Listing 7.11 Verilog code to instantiate internal sub-modules.

itive to produce n3 and n4; these are fed to the multiplier. The multiplier output
is patched up to generate the right sign by comparing the input signs and selecting
either the actual multiplier output w1 or the negation n2 to produce the final result
n5. Note also that we tie the addition/subtraction carry-in to 0 although in reality
this value might come from a carry flag stored in the processor status register.

Listing 7.12 details the generation of the basic logic operations and the two multi-
plexers used to select the result from all those possible, which is then fed to the ALU
output. Notice that the multiplexers are controlled by the s3 signal; this is managed
by two processes shown in Listing 7.13. The second process is the most interesting:
whenever the oper signal changes, i.e., we want to perform a new operation, a case
statement is executed which compares the opcode to the list of possibilities and sets
the right control signals in each case. The multiplier and shifter cases are the most
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1 genvar i;
2 generate
3 for( i = 0; i < 32; i = i + 1 )
4 begin:gen_alu_exe
5 and t6( w3[i], src0[i], src1[i] );
6 or t7( w4[i], src0[i], src1[i] );
7 xor t8( w5[i], src0[i], src1[i] );
8 nor t9( w6[i], src0[i], src1[i] );
9

10 mux8_1bit ta( .r(dst_lo[i]), .i0(w0[i]), .i1(n5[i+ 0]),
11 .i2(w2[i]), .i3(w3[i ]),
12 .i4(w4[i]), .i5(w5[i ]),
13 .i6(w6[i]), .i7(1’bZ ),
14

15 .s0(s2[0]), .s1(s2[1]), .s2(s2[2]) );
16

17 mux8_1bit tb( .r(dst_hi[i]), .i0(1’bZ ), .i1(n5[i+32]),
18 .i2(1’bZ ), .i3(1’bZ ),
19 .i4(1’bZ ), .i5(1’bZ ),
20 .i6(1’bZ ), .i7(1’bZ ),
21

22 .s0(s2[0]), .s1(s2[1]), .s2(s2[2]) );
23 end
24 endgenerate

Listing 7.12 Verilog code to generate logic operations and multiplexers.

involved; as well as selecting the right multiplexer control signal, these need to reset
the associated device to clear the internal state and initiate a new operation. The
first process ensures this reset signal is cleared soon afterwards ready for the next
operation to be started. The behaviour of the result is shown in Figure 7.13.
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1 always @ ( negedge clk )
2 begin
3 shf_rst = 1’b0;
4 mul_rst = 1’b0;
5 end
6

7 always @ ( oper )
8 begin
9 case( oper )

10 ‘FUNCT_ADD : begin
11 s0 = 0;
12 s2 = 0;
13 end
14 ‘FUNCT_SUB : begin
15 s0 = 1;
16 s2 = 0;
17 end
18 ‘FUNCT_MUL : begin
19 mul_rst = 1;
20 s2 = 1;
21 end
22 ‘FUNCT_MULT : begin
23 mul_rst = 1;
24 s2 = 1;
25 end
26

27 ‘FUNCT_AND : s2 = 3;
28 ‘FUNCT_OR : s2 = 4;
29 ‘FUNCT_XOR : s2 = 5;
30 ‘FUNCT_NOR : s2 = 6;
31

32 ‘FUNCT_SLLV : begin
33 shf_rst = 1;
34 s1 = ‘SHF_L_LOGIC;
35 s2 = 2;
36 end
37 ‘FUNCT_SRLV : begin
38 shf_rst = 1;
39 s1 = ‘SHF_R_LOGIC;
40 s2 = 2;
41 end
42 endcase
43 end

Listing 7.13 Verilog processes that determine the ALU behaviour.

7.8 Example Questions

29. a. Comparison operations for a given processor take two 16-bit operands and
return zero if the comparison is false or non-zero if it is true. By constructing
some of the comparisons using combinations of other operations, show that im-
plementing all of =, 	=,<,≤,> and ≥ is wasteful. State the smallest set of com-
parisons that need dedicated hardware such that all the standard comparisons can
be executed.

b. The ALU in the same processor design does not include a multiply instruction.
So that programmers can still multiply numbers, write an efficient C function to
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multiply two 16-bit inputs together and return the 16-bit lower half of the result.
You can assume the inputs are always positive.

c. A population count operation takes an n-bit value x and computes the Hamming
weight H(x), i.e., the number of bits in x which are set to 1. Some processors
have a dedicated instruction to do this but the proposed one does not; write an
efficient C function to compute the population count of 16-bit inputs.

30. Imagine we want to compute the result of multiplying two n-bit numbers x and y
together, i.e., r = x ·y, where n is even. One can adopt a divide-and-conquer approach
to this computation by splitting x and y into two parts each of size n/2 bits

x = x1 ·2n/2 + x0

y = y1 ·2n/2 + y0

and then computing the full result

r = r2 ·2n + r1 ·2n/2 + r0

via the parts
r2 = x1 · y1

r1 = x1 · y0 + x0 · y1

r0 = x0 · y0.

The naive approach above uses four multiplications of (n/2)-bit values. The Karatsuba-
Ofman method reduces this to three multiplications (and some extra low-cost oper-
ations); show how this is achieved.

31. Assume we are using unsigned integers represented in 4 bits.

a. What is the result of using a normal 4-bit adder circuit to compute the sum 10+
12 ?

b. A saturating or clamped adder is such that if an overflow occurs, that is the result
does not fit into 4 bits, the highest possible number is returned as a result. With a
clamped 4-bit addition denoted by &, we have that 10&12 = 15. In general, for
an n-bit clamped adder

x& y =
{

x+ y if x+ y < 2n

2n −1 otherwise

Design a circuit that implements a 4-bit adder of this type.

32. Give a 1-line C expression to test if a non-zero integer x is an exact power-of-
two; i.e., if x = 2n for some n then the expression should evaluate to a non-zero
value, otherwise it evaluates to zero.



Chapter 8
Memory and Storage

640K [of main memory] ought to be enough for anybody.

– W.H. Gates [alleged, almost certainly misquoted, but still amusing]

Abstract In Chapter 5 we skirted around the idea of long-term memory much like
we did with the idea of computation and the ALU. This was an attractive option at
the time because it meant we could focus on the processor itself, but the concept
of memory and storage is of course central to the operation of the processor: every-
thing it does is oriented toward computation on (large numbers of) values we must
store somewhere if the program being executed is not trivial. To examine these is-
sue in more detail, in this chapter we investigate the design and implementation of a
range of memory and storage devices focusing on those most pertinent to processor
design. Specifically, we include registers and main memory already discussed pre-
viously, describing in basic terms how they can be modelled in Verilog. Ultimately,
our goal is to build a memory hierarchy capable of supplying data and instructions
to our processor data-path via a standard mechanism; to achieve this efficiently and
robustly we include an investigation of cache memory and issues such as error cor-
rection.

8.1 Introduction

A memory, or more generally a storage device, enables us to store items of data
for a period of time. Such devices represent a crucial part of any computer system
since, for example, we need to store values somewhere while the processor performs
computation on them. However, even though the speed of processors has increased
roughly in line with the increase in transistor performance, memory access time has
improved much more slowly; only a few percent each year, about 30% in ten years.
This is a massive problem: for example, it does not matter how fast we can perform
computation in our ALU if loading and storing operands is slow. Furthermore, and
perhaps more importantly, we have already seen that the fetch-decode-execute cycle
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requires the processor to fetch instructions; we perform at least one load from the
memory where instructions are stored in each processor cycle. If this fetch cannot be
completed quickly, the entire fetch-decode-execute cycle will be dominated by the
cost of accessing memory. This problem is often called the memory wall [68] or von
Neumann bottleneck and it demands we, as computer architects, think carefully
about all aspects of memory and storage device design.

Throughout this chapter, we try to refer only to memories rather than the more
general case of storage devices which might include magnetic and optical disks
for example. This might seem a bit odd but very roughly, only when discussing
their implementation are the two different: abstractly we can follow Chapter 5 and
describe either as an infinite array MEM in which we can store n-bit binary vectors.
Two main functions are required to access the structure:

LOAD(x) : {0,1}∗ → {0,1}n, LOAD(x) = MEM[x]
STORE(x,y) : {0,1}∗ ×{0,1}n →⊥, STORE(x,y) = MEM[x] ← y

In this context x is an address or index, a name or label used to identify a particular
element or location. Given an address x, the LOAD function retrieves an element
while the STORE function updates an element with the value y. Essentially, the main
differences between what we might normally call memories and storage devices are
just how we implement the LOAD and STORE functions in a concrete way, and
exactly how addresses refer to particular elements.

We can categorise our memory or storage devices according to a number of key
characteristics:

• A short-term or volatile memory retains stored data while the device is powered;
when it is powered off, the content is lost. A long-term or non-volatile memory
solves this problem by retaining stored data even after the device is powered off.

• A Read-Write (RW) or mutable memory can be used to overwrite or store
new data items and retrieve existing items. The content of a Read-Only (RO) or
immutable memory cannot be altered; one can only retrieve existing data items.
Read-Only memories are often abbreviated ROMs.

• When using a random-access memory, one can store or retrieve any data item;
one is not restricted in terms of the order the data items can be accessed in. A
sequential-access memory imposes restrictions on the order data items can be
accessed in; one must access them in sequence. Random-access memories are
often abbreviated RAMs.

• A primary memory is connected directly to the processor; usually such a device
will be used to store active items of data which are required for the current task.
A secondary memory does not usually have a direct connection to the processor,
it is accessed as a peripheral via some other interface.

Thus far we have talked about memory being used to store and retrieve operands
for the ALU. In order for the ALU to operate however, we need both operands and
operators: the values that decide which arithmetic function the ALU performs. Thus
we can place stored content into one of two classes: data, which are the values we
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Figure 8.1 A military quality sub-miniature vacuum tube. (Reproduced by permission un-
der the GNU Free Documentation License, photographer: Unknown, source: http://en.
wikipedia.org/wiki/Image:CV4501.JPG)

operate on, and instructions, which tell us which operation to perform. Given this
definition, and recapping for completeness on the discussion in Chapter 4, one can
reasonably construct two distinct forms of memory organisation:

Harvard Architecture A Harvard architecture treats data and instructions as sep-
arate entities. One would expect two separate memory hierarchies, and hence two
interfaces to said hierarchies, dedicated to storing exclusively either data or in-
structions.

von Neumann Architecture A von Neumann architecture takes the opposite ap-
proach. There is no inherent difference between data and instructions; we have
already seen that both are just numbers, it depends on how you interpret those
numbers. For example, the number 12 might represent the integer value twelve if
used as an ALU operand or represent the code used to invoke the addition func-
tion if used as an ALU operator. Thus a von Neumann architecture has a single,
unified memory hierarchy that is used to store both data and instructions in the
same way.

8.1.1 Historical Memory and Storage

In Chapter 4 we introduced EDVAC, the first practical stored program computer,
which was based on the stored program architecture. EDVAC is typical of even
modern computers in that it used three main forms of storage device: a vacuum
tube-based accumulator to store very short term data that resulted from computation
by the ALU, a mercury delay line-based volatile memory for longer term data and
instructions, and a paper tape reader for non-volatile, long-term storage.

The vacuum tube was the technology replaced by smaller, more reliable devices
such as transistors. Essentially they perform the same function, but are realised us-
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Figure 8.2 The infamous Harvard Mark II “bug” ! (A U.S. Navy photograph now in pub-
lic domain, photographer: Unknown, source: http://en.wikipedia.org/wiki/Image:
H96566k.jpg)

ing a different technology; as such they can be used to construct logic and storage
devices. A typical vacuum tube, or thermionic valve, looks very much like a light
bulb: it uses a glass or ceramic envelope to hold a vacuum that surrounds an electron-
producing filament (or cathode) and a metal plate (or anode). When the filament is
heated, electrons are produced into the vacuum which are attracted by the plate re-
sulting in a current between the two. In simple terms, this implements a basic switch:
when the filament is heated the switch is on, when it is cooled the switch is off. Al-
though similar logic and storage devices can be constructed using a vacuum tube as
one would construct using a transistor, the scale of such devices is limited by reli-
ability. Specifically, the filament slowly degrades due to impurities in the tube; the
vacuum in the envelope becomes less pure as time progresses. Furthermore, the fil-
ament is stressed during the heating process which will eventually lead to it burning
out; early users realised that this happened particularly often during powering up or
down of a vacuum tube-based device. Although cooling devices eased this problem,
tube failure was one of the most common causes of early computer crashes.

In fact, the terms “bug” and “debug” in relation to programming both stem (at
least in part) from failure of this sort. In 1945, programmers of the Harvard Mark
II computer developed by Howard Aiken, discovered a moth inside one of the com-
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ponents; the unfortunate insect had shorted the component which had resulted in
the computer malfunctioning. Although the terms had been used in various areas of
engineering previously, Grace Hopper and her programmers are often cited as in-
troducing them in the context of computer science. Certainly this real-life bug is so
famous that it is still on display in the Smithsonian Museum of American History !

A mercury delay line is essentially a tube filled with liquid mercury with a pair
of microphones and a speaker at each end. To store a value, the speaker at one end
sends a signal representing the value into the mercury tube; due to the high speed of
sound in mercury, the signal then travels along the tube faster than in a medium such
as air. Upon receiving the signal at the other end via the microphone, it was relayed
to the speaker and sent down in the opposite direction. This process was repeated,
effectively storing the value as a perpetually regenerated looping signal within the
tube. To read the value, one simply intercepted the signal as it was received by
one of the microphones. To update the value, one again intercepted the signal as it
was received by one of the microphones but replaced it with the new value before
passing it on to the speaker for reinsertion into the tube. EDSAC stored 512 words of
memory within thirty two delay lines. As one can imagine, the cost and toxicity of
mercury presented a problem in terms of their use. Other problems were presented
by the speed of sound in mercury, which limited the number of bits stored by each
tube to around 576, and the fact that this speed changed as the mercury temperature
altered ! Even so, the devices were much more reliable than other technologies of
the time and have been used in computers as recently as the 1960s.

Although Babbage had proposed to program his Analytical Engine via a system
of paper cards, perhaps the first use of punched card storage was by inventor Joseph
Marie Jacquard in the early 1800s. Jacquard developed a weaving machine or loom
whose operation, i.e., the pattern of weaving, was determined by a primitive pro-
gram encoded as punched holes in a card. Roughly speaking, each hole in the card
controlled a needle in the machine, each card represented one row of the intended
design. The weaving process was therefore simplified from manual configuration
of the machine, to semi-automatic weaving whereby the operator simply swapped
in the right card at the right time. Later, in 1890 Herman Hollerith used a similar
storage medium to encode US census data. He developed a mechanical tabulating
machine which was able to process the cards, each of which represented the details
of an individual, and produce statistics at an unprecedented speed: the 1890 cen-
sus was processed in less than a quarter of the time the 1880 census had taken to
complete by hand. In 1896 Hollerith founded the Tabulating Machine Company, an
early incarnation of the company we now know as IBM, to exploit his invention.

Paper tape storage is a fairly natural progression from punched cards and the two
mediums share much of the same technology. Instead of individual cards, paper tape
is a continuous ream of paper which is notionally divided up into rows. Each row
allowed for a number of holes to be punched; early tape systems allowed five holes
which allowed for the use of Baudot character encodings, later systems allowed up
to eight which allowed for more modern encodings such as ASCII. The tape would
have perforated sprocket holes on the edge which allowed it to be fed through a tape
reader which, using either a mechanical or optical mechanism, was able to translate
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Figure 8.3 Maurice Wilkes with an EDSAC mercury delay line. (Copyright Computer Laboratory,
University of Cambridge. Reproduced by permission under the Creative Commons Attribution
Licence, photographer: Unknown, source: http://www.cl.cam.ac.uk/Relics/jpegs/
delay_lines.jpg)
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Figure 8.4 Experimental EDSAC memory tank. (Copyright Computer Laboratory, University of
Cambridge. Reproduced by permission under the Creative Commons Attribution Licence, pho-
tographer: Unknown, source: http://www.cl.cam.ac.uk/Relics/jpegs/edsac99.
23.jpg)
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Figure 8.5 Experimental EDSAC magnetic tape rack. (Copyright Computer Laboratory, Uni-
versity of Cambridge. Reproduced by permission under the Creative Commons Attribution Li-
cence, photographer: Unknown, source: http://www.cl.cam.ac.uk/Relics/jpegs/
edsac99.19.jpg)

Figure 8.6 A fanfold DEC paper tape containing a PDP-11 test program. (Reproduced by per-
mission under the GNU Free Documentation License, photographer: Unknown, source: http:
//en.wikipedia.org/wiki/Image:Papertape2.jpg)



8.1 Introduction 277

Figure 8.7 An IBM 5081 data processing card containing a line of DOS JCL program. (Re-
produced by permission under the GNU Free Documentation License, photographer: Dick Kutz,
source: http://en.wikipedia.org/wiki/Image:Punch-card-5081.jpg)

each row of holes into a binary word representing a character. Although the tape
could be prepared off-line by the operator (encoding either a program of instructions
or simply data values) and read at high speed, two main problems existed. Firstly,
the tape was somewhat unreliable in the sense that it was prone to damage and for
holes to be unreadable due to inaccuracies in the punching mechanism. Secondly,
the tape mechanism was difficult to rewind; the paper tape storage device could thus
be described as sequential-access only.

8.1.2 A Modern Memory Hierarchy

The previous discussion of historical memory and storage devices within the ED-
VAC computer was no accident; the three different levels of device live on today
in modern computers although implemented using more modern technologies. The
different levels form what is commonly termed the memory hierarchy or storage
hierarchy, a tiered description of how the different levels compare to and interact
with each other. The different levels of the memory hierarchy are managed by dif-
ferent parts of the system; access to the registers is performed directly by a program
executing on the processor, access to a disk is usually performed by the operating
system on behalf of the program during execution.

Ideally we would like very large, very fast memories but because of physical
constraints this is usually impossible. To approximate the ideal, we use a combi-
nation of technologies. Roughly speaking, as one reads from top to bottom of the
pyramid in Figure 8.8 the devices get farther away from the processor, are able to
store more elements, are slower to access, and are less expensive to build but larger
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Figure 8.8 A modern memory hierarchy.

Level 1 2 3 4

Name Registers Cache Memory Disk
Size O(1kB) O(1MB) O(1GB) O(1GB)
Access Time O(1ns) O(10ns) O(100ns) O(1000ns)
Bandwidth O(10000MB/s) O(1000MB/s) O(100MB/s) O(10MB/s)
Cost O(100$/MB) O(100$/MB) O(10$/MB) O(0.1$/MB)
Managed By Programmer Processor OS OS

Table 8.1 A tabular description of typical price/performance characteristics for memory hierarchy
components.

in physical size. The registers are at the top: they hold small-sized elements but are
very quick to access. The next levels are the caches and main memory, which are
larger but slower to access due to the fact that they are often implemented as a sep-
arate device to the processor. The next levels incorporate longer-term storage in the
shape of magnetic and optical disks and tapes; these can hold the largest amount of
information but are the slowest to access. The idea of course is that we should use
a combination of all these devices, using the right one for the right job. Where we
need to store information that need to be accessed quickly so we can feed operands
to the ALU, we use a register. Where we need to store less transient information in
larger quantities for the lifetime of the program, we use the main memory. Where
we want to store vast amounts for information for periods of time which span when
the device is powered, we use a disk or tape.
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(a) 8-bit resolution (byte addressable). (b) 32-bit resolution (word addressable).

Figure 8.9 8-bit versus 32-bit memory resolution.

8.1.3 Basic Organisation and Implementation

8.1.3.1 Resolution

In reality we cannot build an infinitely large memory so the size of MEM must
be set to say m elements; addresses used to access MEM are then bit-vectors of
length  log2(m)!. Clearly there is a trade-off here: the larger the addresses we have,
the more elements we can address for example. More exactly, if we have larger
addresses we can either address many elements, each of which store elements of a
small size, or fewer elements of a larger size. This relates to the resolution of the
memory. Essentially the resolution dictates the size of each addressable element.

Consider an example using 10-bit addresses. We can clearly address 1024 byte
sized elements in the memory, however we could also address 1024 word sized
elements if we want. In the former case we have that the total memory size is 1024
bytes but, given 32-bit words, in the latter case the total size is 4096 bytes. Figure 8.9
attempts to demonstrate the difference; in each case memory elements are drawn as
boxes with the address in the top-right corner, the elements are arranged in 32-bit
groups with the starting address of the group to the left. In Figure 8.9a each 8-bit
element has a distinct address and is individually accessible; in Figure 8.9b one can
only access each 32-bit element.

Typical processors use byte addressed memory where each element is a byte;
each byte has a unique address. So the operation LOAD(x) retrieves the byte at
address x and STORE(x,y) updates the byte at address x with value y.
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Figure 8.10 Little-endian versus big-endian memory ordering.

8.1.3.2 Endianness

Chapter 1 touched briefly on the problem of endianness, now we can see the prob-
lem in a more concrete setting. Suppose the memory MEM is byte addressable, i.e.,
holds 8-bit values, and we want to load a 32-bit word that starts at address 0. Clearly
we would have to transfer four 8-bit bytes to construct this word; the question is,
which are the most and least-significant bytes ? We could legitimately load the byte
at address 0 and make this the least-significant continuing so that the byte at ad-
dress 3 is the most-significant. As long as we were consistent, it would be equally
as valid to do exactly the opposite: load the byte at address 0 and make this the
most-significant continuing so that the byte at address 3 is the least-significant. The
solution, which must be consistently enforced between load and store operations, is
dictated by the endianness of the processor. The first choice means the processor is
little-endian, the second choice means the processor is big-endian. Some processors
can operate in both modes, one at a time, with their endian semantics selected by
setting a flag in the status register when powered on. MIPS32 is an example of such
a design; we will assume a little-endian system except where noted otherwise.

Again, Figure 8.10 attempts to demonstrate the difference; in each case memory
elements are drawn as boxes with the address in the top-right corner, the elements
are arranged in 32-bit groups with the starting address of the group to the left. In this
case, Figure 8.10a has the 8-bit elements grouped in a little-endian order (the least-
significant element is to the right, the most-significant to the left) while Figure 8.10b
groups them in a big-endian order.

One can easily write a C function to test if a processor uses a little-endian or big-
endian byte ordering; Listing 8.1 demonstrates this technique. The function places
a 32-bit constant into a value shadowed by an array of four 8-bit bytes; we can then
test which of the bytes in the value have been placed in which locations in the array
and deduce the endian semantics as a result.
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1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main( int argc, char* argv[] )
5 {
6 unsigned char x[4];
7 unsigned int y;
8

9 *( unsigned int* )( x ) = 0x03020100;
10

11 y = ( ( unsigned int )( x[ 0 ] ) << 0 ) |
12 ( ( unsigned int )( x[ 1 ] ) << 8 ) |
13 ( ( unsigned int )( x[ 2 ] ) << 16 ) |
14 ( ( unsigned int )( x[ 3 ] ) << 24 ) ;
15

16 if( y == 0x03020100 )
17 printf( "little endian\n" );
18 else
19 printf( "big endian\n" );
20 }

Listing 8.1 A short C program to test the endianness of a processor.

8.1.3.3 Alignment

Again suppose the memory MEM is byte addressable, i.e., holds 8-bit values, and
that we want to load a 32-bit word. In theory, we can load the four bytes that would
be used to construct our word from any address. For example, we might load 0,1,2
and 3 meaning the address of the word was 0, or load 1,2,3 and 4 meaning the
address of the word was 1. However, in practise there is some difference between
these two cases.

Where an address x ≡ 0 (mod w) we say that it is w-aligned. Less formally,
in our case above if x is a multiple of four, then we say that x is word-aligned. The
address 0 is word-aligned as are 4, 8, 12 and so on; the address 1 is not word-aligned.
Given that the word size is typically a power-of-two, and more exactly a power-of-
two number of bytes, processors often make some distinction between aligned and
unaligned addresses when used in load and store operations. An aligned address
can usually be accessed more quickly than an unaligned address. Firstly, this is
because the byte address of an aligned word address can more easily be calculated
and vice versa: one simply adds or removes bits from the least-significant end of
the address. For example, when we load a 32-bit word we can add two zero bits
to the least-significant end of the word address to get us the byte address; word
address 0 becomes byte address 0, word address 1 becomes byte address 4 and so
on. Secondly, as we will see later, if the addresses are aligned it makes it much easier
to design and build other elements of the memory hierarchy such as caches.

Sometimes the distinction is explicit; an ISA will include different instructions
for aligned and unaligned memory access and cause an error if, for example, an un-
aligned address is used with an instruction expecting an aligned address. Sometimes
the issue is implicit; the ISA only has a single set of access instructions that a micro-
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1 module hilevel_mem( input wire clk,
2 input wire rst,
3

4 input wire [7:0] addr,
5 input wire [7:0] data_w,
6 output wire [7:0] data_r,
7 input wire mrq,
8 output reg mrs,
9 input wire re,

10 input wire we );
11

12 reg [7:0] data[0:3];
13

14 always @ ( posedge mrq )
15 begin
16 if ( re )
17 data_r = data[ addr ];
18 else if( we )
19 data[ addr ] = data_w;
20

21 #6 mrs = 1;
22 @( negedge mrq );
23 #6 mrs = 0;
24 end
25

26 endmodule

Listing 8.2 A Verilog module that implements a high-level, 4-element byte-addressable memory.

architecture may execute quicker or slower depending on the alignment properties
of the address.

8.1.3.4 Implementation

Accesses by the processor to the memory via the address and data buses that connect
them are carried out according to a protocol we will call a memory transaction;
this is really a special case of a more general asynchronous bus protocol. Because
it is asynchronous, the protocol cannot rely on the clock to keep the processor and
memory in step with each other. Instead, they use several signals to implement a
handshake, the memory side of which is implemented in Listing 8.2, whereby each
device only progresses once the other is ready:

1. The processor sets the addr signal to the address in memory it wants to access.
If it is performing a LOAD operation, it sets the read enable or re signal to high;
if it is performing a STORE operation, it sets the write enable or we signal to
high. Finally, it sets the memory request or mrq signal to high indicating to the
memory that it wants to actually perform the access.

2. As soon as the memory notices the mrq signal is high, it starts the access. If
re is high, it retrieves the value at address addr and drives this onto the out-
put data_r; if we is high it sets the value at address addr to equal the in-
put data_w. Completion of the actual operation will take some time; this is
termed the memory latency. Once the operation is completed, the memory sets
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the memory response signal or mrs to high to indicate to the processor it has
finished.

3. As soon as the processor notices the mrs signal is high, it sets mrq to low to
complete that side of the handshake. In the case of a LOAD operation, it stores
the value passed to it on data_r into wherever it needs to.

4. As soon as the memory notices that the mrq signal is low, it sets mrs to low to
complete that side of the handshake. Both processor and memory are now ready
to continue performing more memory accesses or other operations.

The Verilog module uses a 2-dimensional register (confusingly also called a mem-
ory), to store the values. When the memory request signal mrq is raised, the access
process is invoked: if the read enable or re signal is set, the data_r output is as-
signed to the value in memory addressed by addr; if the write enable or we signal
is set, the value in memory addressed by addr is set to the input data_w. Once
the operation is completed, the module introduces an artificial delay, to model the
memory latency, before raising the memory response signal mrs to indicate the end
of the transaction. The behaviour of the module is shown in Figure 8.11. In this
case, the test stimulus performs two STORE operations to addresses 1 and 2 with
the values 10 and 20. Notice how the mrq and mrs signals are used to synchronise
and enforce an order to the transaction. Two LOAD operations are then used to read
addresses 0 and 1; reading address 0 gives an undefined result since we have not
yet stored anything in it, reading address 1 gives the value 10 which was previously
stored.

Because the access speed, or latency, of the devices lower down the memory
hierarchy is slower than those at the top, the unit of transfer is typically bigger
as well. Note that this is not strictly related to the bus width: one might have to
make several bus transactions to transfer a chunk of data, the unit of transfer relates
to the size of the chunks requested at one time. For example, one might expect
to read a single 32-bit value at a time from a register file, but a 4kB page at a
time from a disk. By reading larger chunks at a time, the number of accesses will
be smaller: this somewhat compensates for the overhead associated with a single
access. Although we do not cover it in any depth, this issue is related to the concept
of access via a burst mode. The idea is that several accesses close together in time,
i.e., straight after each other, can be performed quicker than the same number of
accesses performed at arbitrary points in time. Again, this compensates somewhat
for the overhead associated with a single access, this time by sort of treating several
accesses in a row as one.

The problem with this basic module is that it is a little too abstract in the sense
that we have glossed over the issue of how the 2-dimensional register is actually
constructed using known low-level components: a scalable design needs more care-
ful consideration. Figure 8.13 details, in a rough sense, a way of constructing larger
memories; it shows a 4-element memory which holds n-bit words (given the dashed
boxes represent the logic equivalent of continuation dots). The idea is that each row
of the main body of the diagram on the right-hand side is a group of n memory
cells that each store a 1-bit value. Since we have already described how they work,
here we use D-type latches for our memory cells; we will see later how memory
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Figure 8.11 Behaviour of the high-level, 4-element, byte-addressable memory.
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Figure 8.12 Behaviour of the low-level, 4-element, byte-addressable memory.
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1 module lolevel_mem( input wire clk,
2 input wire rst,
3

4 input wire [7:0] addr,
5 input wire [7:0] data_w,
6 output wire [7:0] data_r,
7 input wire mrq,
8 output reg mrs,
9 input wire re,

10 input wire we );
11

12 wire [3:0] w0;
13 wire [3:0] w1;
14 wire [7:0] w2[0:3];
15 wire [3:0] w3[0:7];
16 wire [7:0] w4;
17

18 assign w0[0] = ( ˜addr[0] & ˜addr[1] );
19 assign w0[1] = ( addr[0] & ˜addr[1] );
20 assign w0[2] = ( ˜addr[0] & addr[1] );
21 assign w0[3] = ( addr[0] & addr[1] );
22

23 genvar i;
24 genvar j;
25 genvar k;
26 generate
27 for( i = 0; i < 4; i = i + 1 )
28 begin:gen_smem_i
29 assign w1[i] = we & w0[i];
30

31 for( j = 0; j < 8; j = j + 1 )
32 begin:gen_smem_j
33 dtype_ff t( .D ( data_w[j] ),
34 .Q ( w2[i][j] ),
35 .en( w1[i] ) );
36

37 assign w3[j][i] = w2[i][j] & w0[i];
38 assign w4[j] = | w3[j];
39 end
40 end
41

42 for( k = 0; k < 8; k = k + 1 )
43 begin:gen_smem_k
44 assign data_r[k] = re ? w4[k] : 8’bZ;
45 end
46 endgenerate
47

48 endmodule

Listing 8.3 A Verilog module that implements a low-level, 4-element byte-addressable memory.

technologies replace these with more efficient cells for this specific context. The
left-hand side of the diagram implements an address decoder: the address addr is
used to select which row we are dealing with using a similar approach as we have
seen when constructing a demultiplexer. For example, if addr0 = 1 and addr1 = 0,
we are dealing with row 1; the horizontal word select signal for that row is set to
1. In this example, the memory is said to have one read port and one write port
in the sense that one value can be read or one value written at a time. For some
applications, it might be advantageous to have more than one read or write port: for
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Figure 8.13 A diagram of a low-level, 4-element, n-bit memory device.

example, in a memory used as a register file it is common to have two read ports
so two operands can be read at the same time. In such a case we can simply repli-
cate portions of the design that are associated with reading or writing and address
decoding. The key thing to realise is that this design is very regular; there is a lot of
repetition of basic blocks of logic which means fabrication will be somewhat easier.
The knock on effect is that the design is also scalable in the sense that we can easily
add more elements or ports to the memory if we are willing to pay the associated
cost in space.

When we want to read a value from a row, i.e., an address in the memory, we
set the read enable signal to re = 1. Setting the write enable signal to we = 0
causes the word enable signal for the row we are interested in to 0 meaning that
the latches do not receive a signal on their en inputs and a new value is not stored
in the latch. Instead, the Q outputs of each latch in the row are ANDed with the
word select signal for that row, so that only the output of that row is selected, and
fed through to the memory output datar to complete the read. Notice that we have
fed the output through 3-state enable gates: only when re = 1, i.e., we are actually
performing a read operation, are the output wires driven with a value. This allows
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Figure 8.14 Three different organisations for a 1024 byte memory device.

the output wires (or the data bus more generally) to be shared with other devices or
perhaps be used for input and output. When we want to write a value in a row we
set the read enable re = 0 and write enable we = 1 which, when combined with the
word select for that row, causes a pulse to be sent along the associated word enable
signal into the en ports for the latches in that row. This causes them all to store the
value passed into their D input from dataw. Notice that there is no handshake logic
associated with this implementation: access occurs instantaneously aside from the
effects of propagation delay.

The design is implemented in Listing 8.3 using the same interface as previously.
The wire vector w0 and the associated continuous assignments implement the ad-
dress decoder; one can view components of w0 as word select signals for the asso-
ciated row. The rest of the design is built using a generate statement whose main job
is to instantiate the D-type flip-flops that actually store values. In addition, compo-
nents of w1 act as the word enable signals for the associated row and w4 collects
values from a given column into a single signal that is fed through to the output:
we use a final continuous assignment to implement the 3-state style behaviour such
that when the re signal is low, the memory output drives no value. The associated
behaviour when the device is asked to perform the same accesses as the abstract
memory is shown in Figure 8.12.

8.1.4 Memory Banking

Implementing a simple memory device as described above is attractive in that in-
creasing the size of memory simply means replicating central parts of the basic
design. This is excellent from the point of view of manufacture since replication
of similar basic components makes the process much easier. However, if for ex-
ample you were tasked with building a byte addressable memory device capable
of storing 1kB of content, there are several other possible approaches. Instead of
designing a single monolithic device which stores 1024 bytes, one might for exam-
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ple opt to build the device from smaller memories, say four memories each storing
256 bytes or two memories storing 512 bytes each. This concept is called banking,
the collection of smaller memories is called a memory bank. To allow the user to
specify which memory within the bank a particular access is targeting, extra inputs
to the memory are required; Figure 8.14 describes three choices for organisation
of the 1024-byte memory and adds bank selector signals bank0 and bank1 to ad-
dress the two and four memories in the respective cases of having a banks of 512
and 256 bytes. The internal logic which uses these signals to access the component
memories is not shown; clearly one would expect it to resemble some type of de-
multipliexer and multiplexer whereby the input and output signals are connected to
the component memories depending on the values of the bank selectors.

There are several reasons why this latter approach might be better. Firstly it pre-
vents scale from becoming a problem: although our previous design was easy to add
to, a limit emerges where doing so starts to become cumbersome from the point of
view of issues such as wire length and so on. Secondly, it allows designers to focus
their attention more. That is, one might decide to specialise in designing and build-
ing memory devices for use by others in larger systems. By using memory banking
the memory designer can concentrate on an efficient design for the basic building
block and the system designer can simply use this rather than having to perform any
alteration. Introduction of standard memory sizes and interfaces makes this an even
more attractive proposition.

Finally, and perhaps most importantly, the use of banked memory allows us to
somewhat improve memory access performance. Consider the use of our imaginary
1kB, byte addressed memory within a 32-bit processor design. Since the word size
of the processor is 32 bits, loading or storing a word to or from the memory re-
quires four accesses each loading or storing an 8-bit value. With a single monolithic
memory, these accesses will probably need to be performed sequentially since the
address decoder can only support one access at a time (unless there is more than one
read or write port). With the banked design where we use four 256-byte memories,
we can split our word into four and store 8-bits of it in each memory in the bank.
As a result, since the four 8-bit parts of the word are scattered amongst different
memories, they can all be accessed in parallel reducing the time required. This is
sometimes called interleaved access. To instrument this, we need to feed the bank
selector inputs with appropriate values so the right address maps to the right bank. In
the case of using four 256-byte memories to build the 1024-byte device, one would
drive bank0 and bank1 with address inputs addr0 and addr1 and then disregard these
when using them as the actual address fed to the memory (say addr′). As such, this
would result in the following mapping:
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1 int main( int argc, char* argv[] )
2 {
3 int A[ 1024 ];
4 int B[ 1024 ];
5 int C[ 1024 ];
6

7 for( int i = 0; i < 1024; i++ ) {
8 A[ i ] = B[ i ] + C[ i ];
9 }

10 }

Listing 8.4 An example program to demonstrate the effects of temporal and spatial locality.

addr = 0000(2) → bank = 00(2) addr′ = 00(2)
addr = 0001(2) → bank = 01(2) addr′ = 00(2)
addr = 0010(2) → bank = 10(2) addr′ = 00(2)
addr = 0011(2) → bank = 11(2) addr′ = 00(2)
addr = 0100(2) → bank = 00(2) addr′ = 01(2)
addr = 0101(2) → bank = 01(2) addr′ = 01(2)
addr = 0110(2) → bank = 10(2) addr′ = 01(2)
addr = 0111(2) → bank = 11(2) addr′ = 01(2)

...
...

...

Or, in simpler terms, address 0 maps to address 0 in bank 0 while address 1 maps
to address 0 in bank 1 and so on. As a result, we can access all four bytes held in
address 0 within banks 0 . . .3 in parallel rather than in sequence.

8.1.5 Access Locality

The principle of locality is used to characterise when and where accesses to a stor-
age device are performed. The idea is that given a sequence of accesses, the device
will exhibit two different forms of locality:

Definition 34. Temporal locality means that recently accessed locations are likely
to be accessed again in the near future. Spatial locality means that two locations
with addresses that are close to each other will be accessed close together in time.

Listing 8.4 demonstrates both forms of locality. Consider the instructions that make
up the function; the loop performs 1024 iterations over instructions that add ele-
ments of arrays B and C together and store the result in A. Given one access to the
instruction that performs an addition of the i-th elements of B and C it is likely that
the instruction will be accessed again. Only when the loop terminates will this be
false so 1023 times out of 1024 one access correctly predicts another, i.e., there is
temporal locality in the instruction accesses. Now consider the data items in array
A which we access sequentially. If we access the i-th element of A there is a good
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Figure 8.15 A diagram showing transistor level SRAM cell design.

chance we will access the (i + 1)-th element as well; again this prediction is cor-
rect 1023 times out of 1024. Similar arguments can be made for the (i + 2)-th or
(i + 3)-th elements although access to these given an access to the i-th element be-
comes increasingly unlikely; either way we clearly have spatial locality in the data
accesses.

It turns out that most programs we run on a processor will exhibit both forms of
access locality, they are not confined to contrived examples like the above. Thus,
given knowledge of the recent past we can, with reasonable accuracy, predict which
instructions are likely to be required in the near future. The idea then, is to use the
memory hierarchy to improve performance by exploiting the principle of locality.
We try to keep often used data and instructions, the working set, in the faster parts
of the memory hierarchy which are typically smaller and closer to the processor.

8.2 Memory and Storage Specifics

8.2.1 Static RAM (SRAM) and Dynamic RAM (DRAM)

Static Random Access Memory (SRAM) is a method of implementing memory
that uses roughly the same technique as using latches or flip-flops; we saw a small-
scale example of such an approach earlier on. However, for specific use in our mem-
ory design, SRAM cells can be more efficient than a general-purpose latch or flip-
flop. Figure 8.15a shows a functional view of an SRAM cell: in concept, it is built
from two NOT gates which hold the value in a loop (note that this very roughly
matches the approach used by the mercury delay line). The gate behaviour means
that one can read the value Q on one side before it is negated so we can read ¬Q
on the opposite side. This functional view is implemented in Figure 8.15b using a
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total of six transistors, four of which store the 1-bit value and two of which are used
to access the value. Notice that the four storage transistors are arranged so that the
resulting circuit has two stable states which are used to represent the values 0 and
1 (one can think of these as similar to the stable states in a latch). Access to the
cell is performed via a control signal labelled en; this signal controls the two ac-
cess transistors. To read the value stored by the cell, one pre-charges the Q and ¬Q
wires to 1. When the en signal is set to 1, either ¬Q or Q is discharged depending
on the stored value; if 1 is stored then ¬Q is discharged, but if 0 is stored then Q
is discharged. To write a value into the cell we discharge Q or ¬Q and pre-charge
the other, which then forces the state to be stored as required when the en signal is
set to 1. Since SRAM cells are based on a similar design to a latch, they only retain
their value for as long as they are powered. The cells have a fast access speed, in
the order of 10ns, but are quite expensive in terms of the space they require. As a
result SRAM is used in situations where performance is more important than size;
examples include cache memory and register files.

From a simplistic point of view, Dynamic Random Access Memory (DRAM)
makes the opposite trade-off to SRAM. Each cell is implemented using a small
capacitor that is charged appropriately to store a 1-bit value. Since capacitors leak
charge over time, the DRAM cell needs to be periodically refreshed; this dictates
some extra, external control logic that implements the refresh cycle at appropriate
intervals so that the content is only lost if the device is powered off. Where the
refresh logic is built into the memory itself, we sometimes term the result Pseudo-
Static RAM since it can be used as if it were SRAM even though internally it is
DRAM.

Access to the capacitor in a DRAM cell is slow (in the order of 50ns) when
compared to an SRAM cell. However, the DRAM cell has a major advantage in
terms of size however: it is significantly smaller than an SRAM cell, up to a quarter
of the size in fact. This means DRAM cells can be closely packed and result in larger
practical memories. Examples of use include main memory which is typically orders
of magnitude larger (and slower) than cache and registers. However, there is a large
taxonomy of DRAM-based memory designs; all operate in roughly the same way
but are typically specialised or improved to suit a particular application:

Video DRAM (VRAM) As described, our normal DRAM architecture has one
read and one write port but only one of those can be used at once; one can perform
a load or a store but not both simultaneously. This is unattractive in some settings,
the obvious example being memory that stores data ready to be sent to some
display device. VRAM solves this problem by offering two ports, one for reading
data onto the display device and one for the processor to update the data read for
display.

Extended Data Out (EDO) DRAM The innovation of EDO DRAM was to use
pipelining techniques in respect to memory accesses. That is, an EDO DRAM
would allow access to the memory to start before the previous one had entirely
completed. Although we discuss pipelining in Chapter 6, this roughly means that
the time taken to perform one access (the latency) is unchanged but the number
of accesses completed per unit of time (the throughput) is increased.
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Synchronous Dynamic RAM (SDRAM) In normal DRAM, an enable signal
has to be presented to the memory which provokes it to perform some action;
it has to react as quickly as it can when this signal is raised. SDRAM does away
with this mode of operation by clocking the memory so that load and store oper-
ations can only be initiated on positive clock edges. Thus, the processor is able to
control how quickly the memory operates and the added synchronisation allows
for more complex pipelining than in simpler designs such as EDO.

Double Data Rate (DDR) SDRAM DDR SDRAM extends basic SDRAM by
allowing load and store operations to be initiated on both positive and negative
clock edges, thus doubling the rate at which such operations can be performed.

8.2.2 Non-volatile RAM and ROM

Most slower, secondary storage devices such as magnetic and optical disks retain
their content even after they are powered off: they are non-volatile. However most
faster, primary memories, implemented as SRAM or DRAM for example, only re-
tain their content when powered. If one requires a memory which is non-volatile and
yet faster than typical secondary storage devices, some form of specialist device is
used. Roughly speaking, non-volatile memories are useful in applications where it
is unattractive to use secondary storage devices, due to power or size for example in
mobile or embedded computers, or the access latency for a secondary storage device
is unacceptably long.

Consider for example the time taken for computer to cold-boot, i.e., load the
operating system ready to accept input from the user after being powered on. This
delay is a constant source of annoyance; Raskin [57] describes that the Canon CAT
computer went to the lengths of saving an image of your screen upon logout and re-
displaying it during the boot process to pretend it had completed faster than it had !
Without such trickery, the delay itself is caused largely by the time taken to access
the slow secondary storage; if the operating system were stored on a non-volatile
primary memory, the (legitimate) boot time could be significantly less.

Of the different approaches to non-volatile memories, major differences exist in
how one approaches the construction of ROM and RAM type devices. Although
they are potentially much more useful, non-volatile RAM devices are hard to con-
struct. Although there is some recent progress in the design of devices that are close
to being fast enough, the typical approach is to couple a conventional low-power
RAM with a battery backup which retains the RAM content after the main power
source is turned off. Clearly this is not ideal since the battery will eventually run out
as well. Even so, this method is used extensively in computers to store critical in-
formation: if the clock on your computer suddenly stops working, there is a chance
that the battery for this memory has failed ! Devices that cannot be written to, i.e.,
are read only, are easier to construct; there are roughly four evolutions of device
available:
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Mask-Programmed ROM The first approach essentially hard-codes the mem-
ory content in roughly the same way that a logic circuit would be created. That
is, one creates a mask representing the binary content of the memory and uses
the photo-lithography process to etch the image onto some substrate, coupled to
some logic for accessing it, as described in Chapter 2. Once the memory has been
created, the only way to alter it is to build a new one; the process is quite costly
and inflexible as a result.

Programmable ROM (PROM) To avoid the problem of having to reconstruct a
memory produced by the masking approach, the idea of being able to program
a blank device with some image after manufacture was introduced. This process
works in a similar way to the PLA device described in Chapter 2 whereby fuses
are burnt out or left alone so as to produce the binary content of the memory.
Once the image is created, changes are not possible.

Erasable PROM (EPROM) Even PROM type devices are somewhat inflexible
in that as well as being read only when being used, they are read only forever.
This leads to a slightly different definition of ROM: we are interested in a de-
vice that might be read only while in use as a memory, but is writable (or at
least erasable to form a blank device) at other times. This is the goal of EPROM
memory.
The first EPROM devices, invented by engineer Dov Frohman in 1971, were
erasable via exposure to strong ultraviolet light due to their use of special types
of transistor. The memory chip was equipped with a transparent window through
which a special-purpose machine performed the exposure: the erasure process
took about half an hour, the device was then able to retain the memory content
for about ten years. It was common for chips to be equipped with a foil cover to
stop erasure by sunlight !

Electrically Erasable PROM (EEPROM) The process of erasure in EPROM
designs is somewhat cumbersome given the chip needs be taken out of the sur-
rounding circuit and operated on using extra equipment. EEPROM developed on
these basic ideas by allowing erasure via an electrical interface and selective era-
sure so that the memory could be partly updated rather than totally blanked. The
trade-off for this is that unlike EPROM that can typically be erased an unlim-
ited number of times most EEPROMs have a limit due to degradation of storage
medium, typically of ten thousand or so times.
Flash memory is perhaps the most modern example of the EEPROM; they are
fast enough and can be manufactured with enough capacity to replace a read
only magnetic disk for example. These types of memory device are commonly
used in digital cameras for example.

8.2.3 Magnetic Disks

A magnetic disk is a collection of circular platters each of whose surface is coated
with a magnetisable material. The idea in terms of storing information on the plat-
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Figure 8.16 A diagram showing tracks and sectors in a typical hard disk format.

ters is that a disk head is positioned at a given point above the platter and used to
magnetise the surrounding region to encode a single binary digit: the magnetic field
is made to align one way to represent 1 and the other way to represent 0. When the
information is to be read back, the disk head is positioned in the same place. The
magnetic field on the platter induces a current in the disk head which is relayed back
as binary data.

To provide some consistency and interoperability between disks and the devices
that control them, a standard way of sectioning up the platters is employed. This is
the low-level format of the disk. Firstly, a disk may consist of a number of platters;
each platter has a dedicated disk head. A given platter is divided up into a number
of tracks which are arranged in concentric circles on the platter surface; tracks in
the middle of the platter are shorter than those at the edge. The set of tracks, over
all platters, at a given position is called a cylinder. Each track is divided up into a
number of sectors which roughly look like arcs of each concentric circle. Between
each sector is a small blank space called the inter-sector gap. The end of each sector
is punctuated by error correction information that is used to ensure imperfections in
the process can be catered for somewhat invisibly for whoever is using the device.
Figure 8.16 details these features diagrammatically.

In this context, one can think of some function of platter, track and sector as being
the address we are accessing. The access latency is determined by two aspects: the
seek time which determines how quickly the disk head can be moved to the right
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Figure 8.17 A diagram showing tracks and sectors in a typical CDROM format.

track, and the rotational latency which determines how quickly the right sector
arrives under the disk head as the disk spins. With so-called hard disks the disk head
floats above the platter on a cushion of air and can move very quickly, with floppy
disks the disk head is actually in contact with the platter. This can cause the disk
head and platter to degrade over time; the reliability of floppy disks is questionable
as a result.

8.2.4 Optical Disks

Optical disks take a somewhat similar approach to magnetic disks in the sense that
information is encoded on the surface of a (single) platter. Significant differences
exist, however, in the way the information is encoded and organised. Instead of
magnetic regions information is encoded, as binary digits, using a series of physical
indentations in the surface; the indentations are termed pits, the untouched regions
between pits are termed lands. These features are used to encode 1 and 0, although
not directly but as part of some more complicated scheme (i.e., a pit or land does
not directly encode a 1 or 0). Information is read by positioning a laser, the read
head, over the relevant region and firing it at the platter. The nature of the surface
is such that although both pit and land will reflect the laser, they are such that the
reflection has its phase shifted depending on what it is fired at: this change in phase
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is detected by a device that monitors the reflected beam and is converted into binary
data.

The information is encoded as a series of sectors divided into frames; the in-
formation forms a single spiral track on the platter. Header and error correction
information are appended to each frame. Reading the frames is complicated by the
fact that the spiral is tighter at the middle of the platter than at the edge. Using a
Constant Linear Velocity (CLV) scheme means the platter speed is variable but
the pits pass at a constant speed: however, the drive mechanism needs to be quite
complex as a result. In contrast, using a Constant Angular Velocity (CAV) scheme
means the platter speed is constant but the pits pass at a variable rate which leads to
faster transfer when reading from the edge than the middle.

Common forms of optical disks include the Compact Disc Read Only Memory
(CDROM) and Digital Versatile Disc (DVD) both of which are read-only devices;
their content is created using a one-off process called mastering whereby the pits
are permanently etched on the platter. The so-called Rainbow Book standards dic-
tate how information in the frames is interpreted: Red Book specifies the format
for audio CDs, White Book specifies the format of Video CDs (VCDs), and Yel-
low Book specifies the general CDROM format. Read-write versions, for example
Compact Disc Read-Write (CDRW), are possible using a coating on the platter.
The coating can be selectively heated using an infra-red laser to crystallise or anneal
the platter and create or remove pits. This process can repeated around a thousand
times before the platter surface degrades and the encoding is rendered permanent.

8.2.5 Error Correction

Digital components sometimes fail; unlike failures in a processor which would typ-
ically result in catastrophic failure, failures in memory or a storage device can be
somewhat more subtle. For example, consider if a single memory cell were to fail:
this would produce errors so that values transmitted from memory to processor
would be erroneous in just one bit. This might not cause a program to crash, it might
just produce slightly odd results. In addition, both memory and storage devices are
typically implemented as separate devices to the processor so errors might also exist
in transmission rather than storage of values. We can categorise either type of error
as either permanent or transient. Permanent errors are always present, they behave
in the same way at all times. Transient errors only occur occasionally so that, for ex-
ample, a read from memory might be completed without error at one point in time
but produce an erroneous value at another. Sometimes these are termed hard errors
and soft errors respectively.

Techniques for error detection and error correction partly accommodate the
inevitable occurrence of errors in storage and communication devices. In our dis-
cussion we will refer to transmission of values; it is important to see that this is as
relevant to retrieval of values from a storage device by the processor as it is to com-
munication of values along some medium. Error detection hopes to identify when
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an error has occurred. This can either result in the processor being signalled so that
for example it can repeat an access in hope of a subsequent success, or simply to
highlight erroneous memory so that it can be replaced. Error correction takes this
one step further so that errors can be corrected and execution can continue without
further intervention; this helps to accommodate the erroneous memory without need
for immediate replacement. Roughly speaking both methods add redundant infor-
mation to the value held in memory so that errors in the value can be detected and
potentially corrected; the more redundant information that is added, the more errors
can be detected or corrected.

8.2.5.1 Parity Codes

Probably the most basic form of error detection is the parity code. The basic idea is
that one should count the number of bits set to 1 in x, that is, the Hamming weight
of x, and call this total t. We then append a bit p to x based on the value of t to get
a new value x′ = x : p which we call the code word. To use even parity the bit p
should be 1 if t is odd, thus making the total number of bits set to 1 in the code word
x′ even. To use odd parity the reverse is true; the bit p should be 1 if t is even, thus
making the total number of bits set to 1 in x′ odd. As an example, consider the value
x = 1001(2) = 9(10), since there are two bits set to 1 in x, we compute x′ using even
and odd parity as

EVEN-PARITY(x) = 10010
ODD-PARITY(x) = 10011

with the parity bit appended in the least-significant position in this case.
Regardless of whether even or odd parity was used, the code word x′ can now be

checked for errors using the extra bit. Specifically, if an odd number of errors occur
in transmitting x′ then we can detect this because the parity bit will differ from
that expected. For example, imagine we construct the even parity-based encoding
of x = 1001(2) as x′ = 10010. Now imagine that instead of transmitting the code
word x′ = 10010 there is some error which flips one bit and causes us to transmit
y′ = 11010 instead. After extracting the parity bit p′ = 0 we can count the number of
bits set to 1 in y′; this time there are three. Since we are using an even parity scheme
we would expect the parity bit to be 1 so that the overall number of bits set to 1 is
even. But p′ = 0 so there must have been some error.

The basic parity code is easy and inexpensive to implement; it just requires a
few extra XOR gates to compute and check the parity bit. However, there are two
main problems. Firstly we cannot tell where the error occurred or how to correct it,
the value must be resent and we must hope that the error is transient; secondly if
an even number of bits are flipped, then a single parity bit can no longer detect the
error. One can address the second problem by using a more involved scheme such
as the Cyclic Redundancy Check (CRC); the first problem requires some more
ingenuity.



8.2 Memory and Storage Specifics 299

8.2.5.2 Hamming Codes

The Hamming Code, named after their inventor Richard Hamming, improves on
simple error detection mechanisms by allowing the correction of errors once they are
detected. This required that more than one bit be appended to the value; Hamming
used the notation (n,m)-code to denote a scheme where there were n bits in the code
word of which m where actually the original value and n−m were added afterwards
to instrument error detection and correction.

The general Hamming Code is somewhat involved to describe, so we concentrate
on the specific and common example of a (7,4)-code introduced in 1950. The basic
idea is to have several parity bits, in this case three. In a code word under this
scheme, all bits in the code word whose index i implies i + 1 is a power-of-two are
parity bits; this means bits x′0, x′1 and x′3, denoted p0, p1 and p3, are parity bits since
0 + 1 = 20, 1 + 1 = 21 and 3 + 1 = 22. The four other bits represent the original
value. Each parity bit deals with a sub-set of the code word: p0 deals with the parity
of x′2,x′4 and x′6; p1 deals with the parity of x′2,x′5 and x′6; p4 deals with the parity of
x′4,x′5 and x′6. Adopting a vector notation, our code word is thus

x′ = (p0, p1,x0, p3,x1,x2,x3)

where xi are from the original value and p j are our parity bits as described above
and calculated as

p0 = x′2 ⊕ x′4 ⊕ x′6
= x0 ⊕ x1 ⊕ x3

p1 = x′2 ⊕ x′5 ⊕ x′6
= x0 ⊕ x2 ⊕ x3

p3 = x′4 ⊕ x′5 ⊕ x′6
= x1 ⊕ x2 ⊕ x3.

Encoding the value x = 1001(2) = 9(10) using even parity would result in the bits
p0 = 0, p1 = 0 and p3 = 1 so that the code would be computed as x′ = 1001100.
An error in any one bit of the original value embedded in this code would affect the
parity bits; in fact, which bits they affect will unique in the sense that by checking
all three we can determine the location of the error. Consider flipping x0 which
corresponds to x′2 so that instead of transmitting the code word x′ = 1001100 we
transmit y′ = 1001000. Recalculating the parity bits we find that

p′
0 = y′2 ⊕ y′4 ⊕ y′6

= 1
p′

1 = y′2 ⊕ y′5 ⊕ y′6
= 1

p′
3 = y′4 ⊕ y′5 ⊕ y′6

= 1.

Since p′
3 = p3 but p′

0 	= p0 and p′
1 	= p1 there is an error. To find where the error is,

we form a vector from the recalculated parity bits
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Figure 8.18 A basic block diagram of cache operation.

k = (p′
0 	= p0, p′

1 	= p1, p′
3 	= p3)

and consider this as an integer; the error is then at bit k−1. That is,

k = (1,1,0)

so we have k = 011(2) = 3(10) and the error is detected in bit k− 1 = 2. This error
can now be corrected by flipping y′2 to get the original, error-free code word x′ back
again. Consider another example, this time flipping bit x3 which corresponds to x′6
so that we transmit y′ = 0001100. We compute

p′
0 = y′2 ⊕ y′4 ⊕ y′6

= 1
p′

1 = y′2 ⊕ y′5 ⊕ y′6
= 1

p′
3 = y′4 ⊕ y′5 ⊕ y′6

= 0

and find that p′
0 	= p0, p′

1 	= p1 and p′
3 = p3. Writing the vector of parity bits out we

find that k = 111 so that the error is in bit k−1 = 6. This can now be corrected by
flipping bit y′6 to get back to compute the correct code word x′.

One can show that this (7,4)-code can correct 1-bit errors, or detect but not cor-
rect 2-bit errors. Although the length of the code word is larger we do not need to
retransmit very often because unless there are very many errors, they can be fixed
automatically.

8.3 Basic Cache Memories

A cache is a small area of fast RAM and associated control logic which is placed
between the processor and main memory as shown in Figure 8.18. The cache is
typically invisible to the programmer; the interface between processor and main
memory is unchanged and from a functional point of view, and accesses are ser-
viced as if the cache was not there. The basic idea is that since the cache is smaller



8.3 Basic Cache Memories 301

than main memory, it stores a sub-set of the memory content. However, since the
cache can be implemented using a faster technology than main memory, accesses
to content in the cache are faster than those which are not. As a result of locality in
the incoming address stream, the cache reduces the load on the rest of the memory
hierarchy because it can be managed to hold the current working set of data and
instructions.

The cache is typically organised as a number of cache lines, each of which com-
prises a number of sub-words that are used to store contiguous addresses from main
memory:

Definition 35. A cache C is constructed from Clines cache lines. The i-th cache line,
which we write as C[i], has three fields:

• C[i]tag is a tag used as an identifier for the content within the cache line.
• C[i]valid indicates whether the content is valid or not (i.e., if there is content in

the cache line).
• C[i]data is the actual cache line content which consists of Cwords sub-words each

of whose size matches the resolution of the memory. Where appropriate we refer
to the j-th sub-word within the i-th cache line as C[i]data[ j].

To make life easier, we constrain Clines and Cwords so they can only take values
which are powers-of-two; given a total cache size of 2n sub-words for some n and a
line size of Cwords = 2m for some m, the number of lines is Clines = 2n−m. For byte
addressed memory and a total cache size of 210 = 1024 bytes so that n = 10 for
example, there are many different ways to organise things. We might select any one
of the following three options:

Cwords = 22

= 4
Clines = 210−2

= 256

Cwords = 25

= 32
Clines = 210−5

= 32

Cwords = 28

= 256
Clines = 210−8

= 4

Accesses that are serviced by the cache are termed cache-hits and are completed
very quickly; accesses that are not held by the cache are termed cache-misses and
take much longer to complete since main memory must be accessed. When the
cache accesses main memory, it is said to have fetched data: typically an entire line
is fetched in one go. Selecting the best cache organisation is therefore a trade-off:
more lines typically mean we can better exploit temporal locality and are quicker to
fetch, longer lines mean we can better exploit spatial locality but take more time to
fetch. Standard literature categorises cache misses into three classes [29]:

Definition 36. Compulsory misses are unavoidable misses caused by the first ac-
cess to an element in memory. Capacity misses are misses that are independent of
all factors aside from the size of the cache. Conflict misses are misses where one
element replaces another in the cache.

Since the principle of locality guarantees we should get more cache-hits than cache-
misses, performance of the average case program is improved. Common measures
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of cache effectiveness are the hit ratio and miss ratio which are calculated as

HIT-RATIO = TOTAL-HITS
TOTAL-ACCESSES

MISS-RATIO = TOTAL-MISSES
TOTAL-ACCESSES

= 1−HIT-RATIO

It is quite important to stress that performance of only average case programs is
improved. That is, if we have a program that behaves somewhat oddly, for example
it accesses data in a manner which does not respect the principle of locality, the
cache might not be effectual at all.

Beyond the hit and miss ratios, an important performance metric is the idea of
mean access time, the average length of time for a memory access to complete. If
Tcache and Tmemory denote the time required to perform an access to the cache and
memory respectively, we calculate mean access time as

Tcache +Tmemory ·MISS-RATIO

This is easy to see: to access the memory we first check in the cache and if the value
is not present, we need to access the memory. So we pay the price of accessing
the cache plus the price of access to memory for those proportion of accesses that
provoke cache misses. As the miss ratio tends to 0, mean access time tends to Tcache.
As the miss ratio tends to 1, mean access time tends to Tcache +Tmemory. The principle
of locality should ensure the miss ratio is close to 0; if it does not then the addition
of a cache can actually slow down the system ! To get any meaningful speed-up, we
need that

HIT-RATIO >
Tcache

Tmemory
.

To design a real cache using all this theory, we need to consider several key issues:

Addressing Policy Given an access by the processor to an address in memory,
how do we decide where this address should map to in the cache given that it
only stores a sub-set of the memory content ? Application of this mapping is
usually termed address translation.

Fetch Policy Given an access by the processor to an address in memory such that
the location is not resident in the cache, how and where does one load data from
main memory into the cache to satisfy the request ? Furthermore, how does one
cope with the fact that data may already be resident in cache location we want to
fetch new data into ?

Write Policy Given an access by the processor to an address in memory, how
does the cache interact with the memory so that the processor’s view of memory
is consistent when the access is a store ?

In the next sections we explain different fetch and write policies that are common
between most cache architectures. We then introduce three different cache archi-
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tectures that use different addressing policies to implement different performance
trade-offs. Although there can be some differences (e.g., we typically only load in-
structions rather than load and store them), since data and instructions are essentially
the same data and instruction caches are largely the same as well: to make things
easier we concentrate only on data caches.

8.3.1 Fetch Policy

When the processor tries to access an address in memory through the cache and the
cache does not contain the corresponding data, it is fetched from memory into the
cache; once it is located in a cache line it is said to be resident in the cache. In order
to take advantage of the relative speeds and transfer sizes, the cache typically fetches
an entire cache line at once. That is, if the processor tries to access address x, then
the addresses around x that map into the same line will be fetched into the cache as
well. The idea here is to take advantage of any locality: if x has been accessed then
it is probable that the addresses close to x will be accessed soon; if they are, then
the line will already be resident and a cache hit will occur rather than the cache miss
that resulted from the access to x.

The address x is mapped to a cache line by the address translation mechanism.
Once we know which line to fetch the corresponding data into, we need to check
if there is already data resident in that line. Remember that the cache only holds a
sub-set of the memory content so the resident data need not be that relating to x: if it
were, we would have found it, signalled a cache hit and not needed to fetch the line
for x at all ! So if there is already data resident, we need to evict it from the cache
and replace it with the data we do want. If the data has not been altered by a write,
this process is simply a case of overwriting what is already there. If it has been
altered, we have a number of options which are discussed later when examining
write policy.

8.3.1.1 Fetch Ordering

Consider the following example situation where we have a 1024-byte cache with
256 lines and 4 sub-words per-line. The processor issues the cache a load request
for address 2. Suppose the address translation maps address 2 onto cache line 0. The
line will hold data for addresses 0,1,2 and 3 but does not currently hold this data,
we need to fetch it; the cache needs to load data at addresses 0,1,2 and 3 in main
memory to fill line 0. The question is which order should we load these addresses;
there are two main choices:

Critical Word First In this scheme we would load the words in the order 2,3,0,1.
That is, the address we are looking for is loaded first, then the others in cyclic
order.
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Natural Word First In this scheme we would load the words in the order 0,1,2,3.
That is, the first address in the cache line is loaded first followed by all the others.

Clearly each has some advantages and disadvantages to both schemes. Loading the
critical word first means the cache can complete the request from the processor
faster since it does not need to wait for other loads from main memory. That is, once
it loads the value at address 2 it can return this to the processor and carry on with
the others behind the scenes; the processor can hence continue execution earlier. On
the other hand, this requires a more complex operational mechanism; loading the
natural word first is much easier and leads to a simpler design.

8.3.1.2 Pre-fetching

We have already seen that a cache-hit can only occur if the corresponding data is
already resident in the cache; if it is not, a cache-miss occurs and we have to load it
from main memory. One method of trying to reduce the number of cache-misses is,
given previous a list of previous accesses, to guess which address will be accessed
next and fetch this into the cache speculatively. If the guess is right, then a cache-hit
occurs and execution continues without the penalty associated with a cache-miss. If
the guess is wrong, we do no worse than the cache-miss that would have occurred
anyway. This technique is called pre-fetching and is typically realised by a second
hardware device that works alongside the cache.

This seems an ideal solution and, if we had a good enough guessing strategy, it is
indeed ideal in theory. In practise, such a guessing strategy is hard to construct for
general programs even given their access locality patterns. Furthermore, aggressive
pre-fetching introduces the new problem of cache pollution. For example, consider
the case where we pre-fetch some data based on our guess and this fetch evicts data
that would have been useful in the near future. We are essentially polluting the cache
with useless data. Pre-fetch systems need to carefully balance their operation as a
result; generally it is only a good idea to employ pre-fetch if the access pattern is
very regular and hence easy to predict with high accuracy.

8.3.2 Write Policy

So far we have ignored what happens when the processor wants to store data into
memory: the processor issues the store operation as usual, but what should the cache
do ? There are two main problems we need to tackle. Firstly, if we update the data
in the cache, what happens to the data in memory ? Secondly, what happens if the
data we want to update is not even in the cache at all ? No matter what solution
is employed the key requirement is that we maintain consistency between what is
stored in the cache and what is stored in memory. That is, it should be impossible to
get confused about the value held in a particular memory location.
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There are two main options as regards solving the problem of maintaining con-
sistency between the cache and memory content:

Write-Through When a store is issued by the processor, a write-through cache
updates the data in the cache, potentially fetching data into the cache if it is not
already present, but also sends the write through to the main memory. This is
the simplest choice of policy: since the cache and memory content is always the
same, it is always consistent. However, one needs to be careful that the cache still
improves performance by eliminating unnecessary accesses to main memory. For
example, if we perform a number of writes to the same address, there is no need
to keep updating the memory.

Write-Back When a store is issued by the processor, a write-back cache updates
the data in the cache but does not immediately write the data through to main
memory. The hardware for a write-back cache is more complex, it has to remem-
ber which lines are inconsistent with main memory; these are said to be dirty.
The cache needs to include an additional field for each line, say C[i]dirty, which
determines whether the content is dirty or not. When a line is evicted, the asso-
ciated dirty flag is checked to see if it should be written to main memory. This
scheme removes unnecessary memory traffic since now we only write to main
memory when we really have to.

When the processor performs a load operation and the corresponding cache line
is not resident, it is read into the cache. When a store operation is executed, this
implication is not necessarily true. If the cache line is resident the store can update
local data in the cache; however, if the cache line is not resident we cannot do this:
to preserve consistency we need to take into account that there will be other memory
locations in the same line. For example, say an example cache has four sub-words
per-line and addresses 0,1,2 and 3 map to line 0. If a store is executed using address
2 and the line is not resident, we cannot just update the cache line because what
values would the sub-words for addresses 0,1 and 3 hold: the cache and memory
would be inconsistent. Hence we have two main choices:

Allocate-on-Write Follow the implication of a read, that the data will be accessed
again in the near future, and fetch the cache line into the cache before completing
the write operation on the resident line.

No Allocate-on-Write Avoid fetching the cache line into the cache and pass the
store directly onto main memory; thus cache lines are only fetched into the cache
by load operations.

8.3.3 Direct-Mapped Caches

To construct a cache, we need an address translation mechanism that takes an in-
coming address that results from a load or store operation, and maps it onto the
specific sub-word within a cache line which holds the associated data. A direct-
mapped cache takes a simple approach to this by operating such that each 2n-th
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Figure 8.19 A block diagram of a direct-mapped cache.

address in memory maps to the same sub-word in the cache. The address translation
mechanism calculates two components which are used to access the cache content:

Aword = A mod Cwords

Aline = �A/Cwords� mod Clines

The value Aline identifies the cache line for address A, while the value Aword iden-
tifies the sub-word within that cache line. Since both Clines and Cwords are selected
to be powers-of-two, calculating these components is not costly. Given a 32-bit ad-
dress and taking Clines = 23 = 8 and Cwords = 22 = 4 so the total cache size is 32
bytes, this amounts to taking the least-significant two bits of A as Aword and the next
least-significant three bits as Aline. For example, given the address

A = 000000000000000000000000001 000︸︷︷︸

A
li

ne

10︸︷︷︸

A
w

or
d

(2)

= 34(10)

we calculate Aline = 000(2) = 0(10) and Aword = 10(2) = 2(10).
However, since a given cache can only hold a sub-set of memory content, it

follows that there is a many-to-one mapping of memory addresses to cache sub-
words. For example, setting A = 34(10) or A = 66(10) gives the same values for Aword

and Aline in both cases: we need a way to distinguish the cases from each other. To
achieve this, each cache line holds a tag; we need to calculate

Atag = ��A/Cwords�/Clines�
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C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) Cache is initially empty.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0 1 0 1 2 3
i = 1 0
i = 2 0
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(b) Access to address 1 misses, line 0 is filled.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 1 1 32 33 34 35
i = 1 0
i = 2 0
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(c) Access to address 34 misses, line 0 evicted then re-filled; access to
address 35 then hits in line 0.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 1 1 32 33 34 35
i = 1 1 1 36 37 38 39
i = 2 0
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(d) Access to address 36 misses, line 1 is filled; access to address 37
then hits in line 1.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0 1 0 1 2 3
i = 1 1 1 36 37 38 39
i = 2 0
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(e) Access to address 1 misses, line 0 evicted then re-filled; access to
addresses 38 and 39 then hit in line 1.

C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
i = 0 0 1 0 1 2 3
i = 1 1 1 36 37 38 39
i = 2 1 1 40 41 42 43
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(f) Access to address 40 misses, line 2 is filled; access to address 41
then hits in line 2.

Figure 8.20 An example of direct-mapped cache operation.
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to check that the cache line content is actually what we expected. Again, since Clines

and Cwords are selected to be powers-of-two, calculating Atag amounts to simply
taking the remaining twenty seven bits of the 32-bit address, i.e.,

A = 000000000000000000000000001︸ ︷︷ ︸

A
ta

g

000︸︷︷︸

A
li

ne

10︸︷︷︸

A
w

or
d

(2)

= 34(10).

Now we find that setting A = 34(10) results in

Atag = 000000000000000000000000001(2) = 1(10),

but if we instead set A = 66(10), then

Atag = 000000000000000000000000010(2) = 2(10),

i.e., we can tell when the cache line contains content relating to one address versus
the other. Note that in theory we could use the entire address A as the tag since
this would obviously permit distinguishability. However, this is wasteful: the least-
significant bits are implicit, or the same, for a given line so by not storing this portion
we reduce the amount of logic required to implement the cache.

Figure 8.19 shows a block diagram of a typical direct-mapped cache design. The
basic idea is that given an address A, the cache calculates Aword , Aline and Atag. It
then inspects the value

C[Aline]valid .

If the cache line does not contain valid content, the sub-word we want is not resident
and a cache-miss occurs. However, if the cache line does contain valid content, the
cache inspects the value

C[Aline]tag

and compares this to Atag. If the tags do not match, the sub-word we want is not
resident and a cache-miss occurs. However, if the tags do match, then a cache-hit
occurs and the sub-word we want is resident in

C[Aline]data[Aword ].

Imagine we continue to consider the example cache from above, and feed it a stream
of memory accesses whose addresses are

1,34,35,36,37,1,38,39,40,41.

With our address translation scheme, this produces the cache accesses
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Figure 8.21 A block diagram of a fully-associative cache.

A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 34 Aword = 2, Aline = 0, Atag = 1 → miss
A = 35 Aword = 3, Aline = 0, Atag = 1 → hit
A = 36 Aword = 0, Aline = 1, Atag = 1 → miss
A = 37 Aword = 1, Aline = 1, Atag = 1 → hit
A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 38 Aword = 2, Aline = 1, Atag = 1 → hit
A = 39 Aword = 3, Aline = 1, Atag = 1 → hit
A = 40 Aword = 0, Aline = 2, Atag = 1 → miss
A = 41 Aword = 1, Aline = 2, Atag = 1 → hit .

The sequence produces five cache hits and five cache misses; Figure 8.20 details
the sequence graphically. The first access to address 1 is a compulsory cache-miss
since this is the first time we have used this address; the line for address 1 is then
fetched into the cache and the correct value at offset 1 is returned as the result. The
second access to address 34 maps to the same line, i.e., line 0, as the address 1
whose corresponding line is already resident. This is a conflict cache-miss so the
line for address 1 is evicted and replaced by the line for address 34 that is fetched
from memory; notice that these are distinguishable since they have different tags.
The third access to address 35 provokes a cache-hit since the corresponding line,
fetched when we accessed address 34, is resident.
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8.3.4 Fully-Associative Caches

A direct-mapped cache can only ever have one choice of line per address; this can
lead to what is called cache interference or cache contention. This was evident in a
previous example where addresses 1 and 34 interfered when they were both mapped
to line 0. When the resulting eviction happens repeatedly, we say that the access
stream thrashes the cache, a situation where performance is significantly degraded.

One approach to solving this problem is to use the idea of associativity. An
associative cache allows any memory location to map into one of many cache lines;
a fully-associative cache allows a memory location to map to any cache line. Since
the required data could be anywhere in the cache, searching for it is more complex
and the hardware realisation is typically larger and more power hungry. However,
associative caches can exhibit a lower miss ratio than a direct-mapped cache. Again
considering the previous example, if addresses 1 and 34 were mapped to different
lines rather than the same line, then the number of cache-hits would be increased.

Since any memory address can map to any cache line, the problem remains how
to construct an address translation scheme. Firstly we consider how to actually de-
cide which line, i.e., the value Aline to use when we fetch data into the cache. Given
searching for an empty line is typically a bad idea since it is just too costly, we have
a number of options. For example, we might select one of the following:

Random Using a pseudo-random number generator, a line number is chosen at
random regardless of the address and what is already resident in the cache. This
is a low-cost option but can suffer from problems in that “unlucky” random se-
quences still provoke cache contention; the hope is that on average the randomi-
sation will give a good distribution of line usage and hence low levels of con-
tention.

Least Recently Used (LRU) Each time a cache line is accessed, it is moved to the
head of a recently used (LRU) list. When the cache is required to load new data,
the line at the end of the recently used list is selected; the rationale is that this
is the least recently used so is most probable never to be used again. Normally,
the cache will be quite large so maintaining the LRU list is usually too costly an
option.

The word offset Aword is simply given by the least-significant m bits of the address
A, i.e., Aword = A mod Cwords, in both cases; the tag Atag is given by the remaining
bits.

Now, given we have translated the address to a line when fetching the data we
need to consider how to find it again when we want to use it. Essentially, since
a fully-associative cache allows a memory address to map into any cache line we
need to search the entire cache to see if it is resident. Since cache access needs to be
as fast as possible, a linear (or even binary) search is out of the question; we must
search all cache lines in parallel. This feature contributes massively to the cost of a
hardware realisation; Figure 8.21 details a block diagram of the design.

Again consider an example fully-associative cache for a byte-addressed memory
where we have that Clines = 23 = 8 and Cwords = 22 = 4 so the total cache size is 32
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bytes. Imagine we feed it the same stream of memory accesses as before:

1,34,35,36,37,1,38,39,40,41.

It is not difficult to see that using a random line selector, we can achieve optimal
performance. For example, if our pseudo-random number generator happens, very
fortuitously, to give the sequence

0,1,2,3,4, . . .

then our access pattern is

A = 1 Aword = 1, Atag = 0 Aline = 0 → miss
A = 34 Aword = 2, Atag = 8 Aline = 1 → miss
A = 35 Aword = 3, Atag = 8 Aline = 1 → hit
A = 36 Aword = 0, Atag = 9 Aline = 2 → miss
A = 37 Aword = 1, Atag = 9 Aline = 2 → hit
A = 1 Aword = 1, Atag = 0 Aline = 0 → hit
A = 38 Aword = 2, Atag = 9 Aline = 2 → hit
A = 39 Aword = 3, Atag = 9 Aline = 2 → hit
A = 40 Aword = 0, Atag = 10 Aline = 4 → miss
A = 41 Aword = 1, Atag = 10 Aline = 4 → hit .

The only misses that remain are compulsory. However, the pseudo-random number
generator is equally likely, but rather less fortuitously, to produce the sequence

0,0,0,0,0, . . .

in which case the cache performs much worse:

A = 1 Aword = 1, Atag = 0 Aline = 0 → miss
A = 34 Aword = 2, Atag = 8 Aline = 0 → miss
A = 35 Aword = 3, Atag = 8 Aline = 0 → hit
A = 36 Aword = 0, Atag = 9 Aline = 0 → miss
A = 37 Aword = 1, Atag = 9 Aline = 0 → hit
A = 1 Aword = 1, Atag = 0 Aline = 0 → miss
A = 38 Aword = 2, Atag = 9 Aline = 0 → miss
A = 39 Aword = 3, Atag = 9 Aline = 0 → hit
A = 40 Aword = 0, Atag = 10 Aline = 0 → miss
A = 41 Aword = 1, Atag = 10 Aline = 0 → hit .

For the average case we are neither especially lucky nor unlucky, and as a result can
typically expect better hit ratios than a direct-mapped cache.
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Figure 8.22 A block diagram of a set-associative cache.

8.3.5 Set-Associative Caches

On one hand, direct-mapped caches are simple to build but can exhibit relatively
poor performance. On the other hand, fully-associative caches can improve perfor-
mance but are more costly to realise. What would be ideal is to find a trade-off
between the two designs; the set-associative cache does just this.

The basic idea is that the total cache size is sectioned into Cset sets, each of
which groups N = Clines/Cset cache lines together. Instead of mapping an address to
a cache line we instead map to a set, within each set, searching for a particular line is
performed in a fully-associative manner. Usually we say such a cache is N-way set-
associative since there are N places a cache line can reside in each set. Figure 8.22
gives a rough block diagram of set-associative cache design where Cset = 2. In a
similar way to before, we define our address translation scheme as

Aword = A mod Cwords

Aset = �A/Cwords� mod Cset

Atag = ��A/Cwords�/Cset�

so that the word offset is taken as the bottom m bits of the address A and the set
number Aset is the next  log2(Cset)! bits; since we typically constrain Cset to be a
power-of-two this value is an integer and the address translation scheme is easy to
implement efficiently. To decide which line within the set is used, we just select a
policy that follows our original choices for the fully-associative cache. For example,
we might select a random or LRU selection policy. Since Cset is usually small (say
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(a) Cache is initially empty.
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(b) Access to address 1 misses, line 0 in set 0 is filled.

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]
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(c) Access to address 34 misses, line 1 in set 0 is filled; access to
address 35 then hits in line 1 of set 0.

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 4 1 36 37 38 39
i = 1 4 1 32 33 34 35 0
i = 2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(d) Access to address 36 misses, line 0 in set 1 is filled; access to
address 37 then hits in line 0 of set 1; access to address 1 then hits in

line 0 of set 0; access to address 38 then hits in line 0 of set 1; access to
address 39 then hits in line 0 of set 1;

Set 0 Set 1
C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3] C[i]tag C[i]valid C[i]data[0] C[i]data[1] C[i]data[2] C[i]data[3]

i = 0 0 1 0 1 2 3 4 1 36 37 38 39
i = 1 4 1 32 33 34 35 0
i = 2 5 1 40 41 42 43 44 0
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(e) Access to address 40 misses, line 2 in set 0 is filled; access to
address 41 then hits in line 2 of set 0.

Figure 8.23 An example of set-associative cache operation.



314 8 Memory and Storage

2, 4 or 8) it is feasible to choose a very effective selection policy such as LRU
while limiting the cost this implies in terms of searching in parallel for a given
line amongst the Cset possibilities. This option was moot with the fully-associative
cache since there were too many possibilities to allow an efficient and cost-effective
realisation.

Again consider an example set-associative cache for a byte-addressed memory
where we have that Clines = 23 = 8, Cset = 21 = 2 and Cwords = 22 = 4 so the total
cache size is 32 bytes. There are four sets each of two lines, suppose set 0 groups
together lines 0 and 1, set 1 groups together lines 2 and 3 and so on. Imagine we
feed it the same stream of memory accesses as before:

1,34,35,36,37,1,38,39,40,41

and use an LRU selection policy to determine the line number within each set when
data is fetched. With this architecture, we would expect an access pattern such as

A = 1 Aword = 1, Aset = 0, Atag = 0 Aline = 0 → miss
A = 34 Aword = 2, Aset = 0, Atag = 4 Aline = 1 → miss
A = 35 Aword = 3, Aset = 0, Atag = 4 Aline = 1 → hit
A = 36 Aword = 0, Aset = 1, Atag = 4 Aline = 0 → miss
A = 37 Aword = 1, Aset = 1, Atag = 4 Aline = 0 → hit
A = 1 Aword = 1, Aset = 0, Atag = 0 Aline = 0 → hit
A = 38 Aword = 2, Aset = 1, Atag = 4 Aline = 0 → hit
A = 39 Aword = 3, Aset = 1, Atag = 4 Aline = 0 → hit
A = 40 Aword = 0, Aset = 0, Atag = 5 Aline = 2 → miss
A = 41 Aword = 1, Aset = 0, Atag = 5 Aline = 2 → hit .

This matches the fortuitous case of our fully-associative cache example; we have
clearly used a less costly design however. The main difference is the use of LRU to
determine the line numbers within each set; the fact that each set contains 2 lines
means, for example, that addresses 1 and 34 no longer conflict in this case even
though before they might have mapped to the same cache line. When address 1 is
accessed, none of the lines in set 0 have been used so we simply select line 0 and put
this at the front of the LRU list. When address 34 is accessed, although it maps to
the same set as address 0, we have (at least) one line within the set which has been
used less often than line 0; so we simply select line 1 for example. As the access
pattern continues in this way: consider what happens when address 35 is accessed.
Translation of the address gives set 0 which contains two resident lines that were
loaded when we accessed addresses 0 and 34. Parallel search of the two lines in
that set matches the line loaded for 34 which is the one used for the access thus
producing a cache-hit.
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8.3.6 Cache Organisation

8.3.6.1 Cache Bypass

Sometimes it is attractive to perform uncached access to memory. In this case, as
designers of a cache or processor, we might take one of two options. Firstly, we
could provide explicit instructions (or a processor mode of some sort) that perform
the access without going through the cache; this is called cache bypass. The second
option is to provide a mechanism to turn off the cache somehow. Some processors
allow this to be performed as a one-off configuration by setting a flag in the sta-
tus register when powered on, other processors allow dynamic turning on and off
of the cache during execution. Either way, bypassing use of the cache means that
maintaining consistency between the cache and memory is difficult; it is common
to leave this up to the programmer using it.

8.3.6.2 Split-Use Caches

In terms of caches, we have so far avoided the issue that they might be used to store
instructions as well as data. The first issue here is that one can view the caches, like
the rest of the memory hierarchy, as either a Harvard or stored program architecture.
That is, one either regards access to instructions and data as separate, using separate
caches for each, or as unified and hence sharing one common cache. Either approach
is valid but it is common, to suit the pipelining technique described in Chapter 6,
that separate caches are employed. Even from a more naive standpoint it might
be attractive since separating the accesses might lessen the probability of cache
pollution and contention.

Either way, this affords us some opportunity to optimise our implementation. For
example, an instruction cache will not really require logic to perform writes: we do
not usually write into the instructions, only updating data values once execution has
begun, so the instruction cache can be significantly simpler. In addition, accesses
to data and instructions exhibit different forms of locality; one might optimise the
cache policies to take advantage of this knowledge so that better hit-ratios can be
achieved in each case.

8.3.6.3 Split-Level Caches

It is possible to split the cache into a hierarchy just as we did with the more general
memory hierarchy. In particular, it is attractive to construct the hierarchy to make
a distinction between caches on the same chip as the processor, so-called on-chip
caches, and those which are separate devices or off-chip caches. On-chip caches are
typically faster because there is less of an interface to deal with between devices.
But one can only fit so much logic on-chip, therefore off-chip caches can typically
be larger. One can construct multiple levels of these on-chip and off-chip caches:
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Figure 8.24 A basic block diagram of victim cache operation.

the closest level to the processor is level-one (the cache is an L1 cache), the next
level in the hierarchy is level-two (the cache is an L2 cache) and so on.

This hierarchy represents a trade-off in terms of size and speed; the usual solution
is to have a small on-chip cache and a larger off-chip. The hope is that the L1 cache
will be able to cope with most accesses very quickly, and that it cannot deal with
will mostly be dealt with by the L2 cache rather than main memory. This combined
approach relies on the principle of locality to hold in order to be effective.

8.4 Advanced Cache Memories

8.4.1 Victim Caches

Considering only data caches once again, an important aspect of cache memory de-
sign is the trade-off between hit-ratio and access time. On one hand, more involved
replacement policies and address translation, for example, improve hit-ratio; an im-
provement in hit-ratio typically means a decrease in accesses to main memory. On
the other hand, as implementation of the cache design becomes more complex, the
critical path of access logic becomes longer; this increases the time taken for cache
hits and cache misses alike. A direct-mapped cache makes the trade-off in favour of
lower access latency at the cost of lower hit-ratio; a set-associative cache improves
hit-ratio using a more complex design but typically increases the access latency as
a result.

Consider, for the sake of argument, a cache architecture with one level; there
is a direct-mapped L1 cache between the processor and main memory. The victim
cache design [30] makes a slightly different trade-off between hit-ratio and access
time than a set-associative cache. Both hope to reduce the number of conflict misses,
i.e., misses which are caused by two addresses mapping to the same cache line of
the L1 cache and require access to main memory. Instead of altering the L1 cache
design per se, the victim cache is placed between the two; roughly speaking, one
could consider this level-one-and-a-half of the memory hierarchy. The victim cache
is a small (only a few lines in size), fully-associative cache; problems with design
complexity and access time are limited due to the small size. The aim is to capitalise
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on the fact that empirically, it is common for cache lines that have recently been
evicted from the L1 cache to be accessed again some time shortly after eviction;
one can think of this as the L1 cache not quite being able to capitalise on access
locality. By placing the victim cache between the L1 cache and main memory, i.e.,
on the fetch path of the L1 cache, it can store these victim lines temporarily and
allow subsequent access to them without the need for a more expensive access to
main memory. In short, the penalty associated with eviction from the L1 cache and
subsequent reloading is minimised.

Figure 8.24 shows a basic block diagram of where the victim cache sits in relation
to our previous discussion of cache memory. The L1 cache and the victim cache are
placed close together on-chip; their access times can thus be as fast as a single
processor cycle. For a given access, the L1 cache and the victim cache are searched
at the same time. When a miss occurs in both caches, an access to main memory is
required with the resulting cache line stored in the L1 cache only; any evicted lines
are stored in the victim cache which operates according to an LRU policy. When a
miss occurs in the L1 cache but the required data is located in the victim cache, the
access can be completed without access to main memory; the value is taken from
the victim cache by the processor and then placed in the L1 cache.

Notice that fast access time is guaranteed: since both the L1 cache and victim
cache are on-chip and accessed in parallel, there is little difference between a hit
in the L1 cache and a hit in the victim cache. Certainly they are still both at least
an order of magnitude less than access to main memory. Furthermore, as long as
the original empirical statement about locality holds, i.e., that recently evicted lines
are often accessed again, hit-ratio moves closer to that of a set-associated cache and
is certainly improved over the basic direct-mapped design. Of course this depends
on the program being executed and the resulting stream of accesses to memory, but
studies in the original proposal [30] show that anywhere between 10% and 70% of
all misses can be removed by a sixteen line victim cache.

To give a concrete example of victim cache operation, recall where we demon-
strated cache behaviours using a stream of memory accesses whose addresses were

1,34,35,36,37,1,38,39,40,41.

We previously used an example direct-mapped cache for a byte-addressed memory
where Clines = 23 = 8 and Cwords = 22 = 4 so the total cache size is 32 bytes. Using
this cache, we obtained the following behaviour:
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(a) Cache is initially empty.
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(b) Access to address 1 misses, line 0 is filled.

L1 Cache Victim Cache
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(c) Access to address 34 misses, line 0 evicted then re-filled via victim
cache; access to address 35 then hits in line 0.
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(d) Access to address 36 misses, line 1 is filled; access to address 37
then hits in line 1.

L1 Cache Victim Cache
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(e) Access to address 1 misses, line 0 evicted then re-filled via victim
cache; access to addresses 38 and 39 then hit in line 1.
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(f) Access to address 40 misses, line 2 is filled; access to address 41
then hits in line 2.

Figure 8.25 An example of victim cache operation.
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A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 34 Aword = 2, Aline = 0, Atag = 1 → miss
A = 35 Aword = 3, Aline = 0, Atag = 1 → hit
A = 36 Aword = 0, Aline = 1, Atag = 1 → miss
A = 37 Aword = 1, Aline = 1, Atag = 1 → hit
A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 38 Aword = 2, Aline = 1, Atag = 1 → hit
A = 39 Aword = 3, Aline = 1, Atag = 1 → hit
A = 40 Aword = 0, Aline = 2, Atag = 1 → miss
A = 41 Aword = 1, Aline = 2, Atag = 1 → hit .

Notice that addresses 0 . . .3 exactly match our definition of a victim above. That is,
address 1 is initially loaded into line 0 in access one before being evicted by access
two and then reloaded by access six. Figure 8.25 diagrammatically details the cache
behaviour when a victim cache with four lines is added; the victim cache content
is shown below the L1 cache content for each step. The behaviour changes to the
following:

A = 1 Aword = 1, Aline = 0, Atag = 0 → miss
A = 34 Aword = 2, Aline = 0, Atag = 1 → miss
A = 35 Aword = 3, Aline = 0, Atag = 1 → hit
A = 36 Aword = 0, Aline = 1, Atag = 1 → miss
A = 37 Aword = 1, Aline = 1, Atag = 1 → hit
A = 1 Aword = 1, Aline = 0, Atag = 0 → hit
A = 38 Aword = 2, Aline = 1, Atag = 1 → hit
A = 39 Aword = 3, Aline = 1, Atag = 1 → hit
A = 40 Aword = 0, Aline = 2, Atag = 1 → miss
A = 41 Aword = 1, Aline = 2, Atag = 1 → hit .

Essentially, the penalty caused by reloading the line for addresses 0 . . .3 in access six
is eliminated: the reload is performed via the victim cache rather than main memory
and hence we categorise the access a cache-hit rather than a cache-miss.

8.4.2 Gated and Drowsy Caches

Power consumption plays an important role in the design of embedded processors.
Within a mobile telephone, lower power consumption is a good selling point; within
a device such as a sensor node it is a vital operational characteristic. This has led to
significant research into low-power design and manufacturing techniques. The de-
sign of low-power memory hierarchies is a specific area of interest given that mem-
ory, cache memories in particular, form a significant component in overall power
consumption.

Like any transistor-based circuit, the overall power consumption in caches that
use standard SRAM cells can be divided into dynamic and static components. Dy-
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(a) A gated-Vdd cache cell. (b) A drowsy cache cell.

Figure 8.26 Two low-power memory cell designs.

namic power dissipation occurs when a logic gate switches from one state to another
only; static power is dissipated by every logic gate independent of the switching ac-
tivity. Originally the dynamic component dominated the overall power consumption.
However, as transistors have become smaller, and hence their density has increased,
static power dissipation has started to have a major impact on the overall power
consumption.

There are many approaches to reduce power dissipation in cache memories; the
gated-Vdd cache design [54] and the drowsy cache design [22, 31] are both attrac-
tive. Roughly speaking, both designs offer a mechanism to turn cache lines into
a low-power state when they are not serving a useful purpose, i.e., not being reg-
ularly accessed and hence not improving memory access performance. Both de-
signs achieve this by altering the basic SRAM cell design; the resulting cells are
shown in Figure 8.26; the ctrl signal is used to control the cell. Memory cells in a
gated-Vdd cache structure can be powered off using a transistor that disconnects the
power supply to the cell. While this technique clearly reduces overall power dissi-
pation, the information stored in a cell is not preserved; the design is referred to as a
non-state-preserving cache. The drowsy cache offers an alternative, state-preserving
technique. Memory cells in a drowsy cache structure are capable of operating in a
normal mode, where they can be freely read or written to, and a drowsy, low-power
mode where they retain their state but need to be woken before any access can occur.
This low-power mode is facilitated by switching from being powered by the normal
Vdd high input to an alternative low-power voltage labelled Vdd low. The trade-off be-
tween the two designs should be clear: either totally power off the cells (as in the
gated-Vdd cache design) and incur a potential performance penalty if cells need to
be reloaded having been emptied of content, or retain the content (as in the drowsy
cache design) and incur a power dissipation penalty because cells are only in a low-
power state rather than powered off. This trade-off requires careful thought since
cache misses that result from, for example, powering down gated-Vdd cache lines
require more power than a cache hit; therefore any short-term saving from powering
down such lines might be lost if they are accessed again in the longer term.
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Having replaced the memory cells within a cache design, it remains to control
those cells somehow so they are forced into low-power mode according to some
reasonable heuristic or policy. That is, we need some control logic which detects
when we could benefit from switching a given cache line into low-power mode:
the more accurate this detection (in relation to the associated penalty for getting
it wrong), the better our trade-off between power dissipation and performance be-
comes. Two fairly basic approaches can be identified; see for example [22, Section
2]:

“Simple” Maintain a global counter which is incremented after each processor
cycle; when the global counter reaches some threshold, place all cache lines into
low-power mode.

“No-Access” Maintain a global counter which is incremented after each proces-
sor cycle and a single bit associated with each cache line which is set when the
line is accessed; when the global counter reaches some threshold, place all cache
lines with their access bit not set into in low-power mode.

The “simple” policy is clearly easier to implement and probably requires less control
and state logic; however, it is less accurate at powering down cache lines than the
“no access” policy in the sense that it is wrong more often about lines which are
not being used. More advantages and disadvantages of each policy depend on the
type of cache being used, the program being executed and the resulting stream of
accesses to memory, and the threshold alluded to which triggers updates.

8.5 Putting It All Together

To flesh out the components in the basic Verilog processor model developed at the
end of Chapter 5, we need two main devices which are not obviously implementable
using low-level logic components: a general-purpose register file and a memory sys-
tem (including a cache). Both devices were initially implemented as 2-dimensional
Verilog registers; we now know that there is more involved under the surface. To try
to make it more obvious that the devices can be realised using techniques and com-
ponents we know about, we will try to write modules that more closely model their
real operational behaviour. However, we will still rely on a bit of help from Verilog:
we have already showed how a 2-dimensional register can be implemented using
D-type flip-flops, and continue to rely on the 2-dimensional register to store data as
a result. That is, to make things simple enough to read and explain, the difference
is that our devices will implement associated control logic and assume we can swap
the register for the flip-flop-based memory with additional work.



322 8 Memory and Storage

1 module gpr( input wire [ 4:0] addr_w0,
2 input wire [31:0] data_w0,
3 input wire we0,
4

5 input wire [ 4:0] addr_r0,
6 output wire [31:0] data_r0,
7 input wire re0,
8

9 input wire [ 4:0] addr_r1,
10 output wire [31:0] data_r1,
11 input wire re1 );
12

13 reg [31:0] data[1:31];
14

15 assign data_r0 = re0 ? ( addr_r0 == 0 ? 32’b0 : data[ addr_r0 ] ) : 32’bZ;
16 assign data_r1 = re1 ? ( addr_r1 == 0 ? 32’b0 : data[ addr_r1 ] ) : 32’bZ;
17

18 always @( posedge we0 )
19 begin
20 if( addr_w0 != 0 )
21 data[ addr_w0 ] = data_w0;
22 end
23

24 endmodule

Listing 8.5 A Verilog module that models the general-purpose register file.

8.5.1 Register File

The register file is perhaps the most simple of the devices we require; it is simply
a memory with two read ports and one write port. That is, we can read two values
and write one value at once. In addition, we required that it implements the special
behaviour associated with register number 0 which always produces the value 0
when read and discards any writes.

Listing 8.5 details a simple Verilog module for such a device. The interface in-
cludes three ports which supply an address and an enable signal to indicate that port
is in operation; for example, the write port accepts the register address on addr_w0
and is enabled by we0. Each interface also includes an input or output signal to con-
vey data over depending whether the port is used to read or write data, for example
the write port has data_w0 as input. The register values themselves are held in
a two dimensional Verilog register called data. Notice that the indexing excludes
register number 0 which is not required. Two continuous assignments implement
the read ports. Each assignment tests if the associated port is enabled; if it is not,
the assignment writes 32’bZ onto the output to implement 3-state style behaviour.
If the port is enabled, the assignment firsts tests if register number 0 is being ac-
cessed, and outputs the value 0 as a result, or simply looks up the register value if
not. Writes to the register file are edge triggered. A short process, triggered by we0,
first checks that the write is not to register number 0 and updates the register value
with the input data_w0 if not.
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1 module mem( input wire clk,
2 input wire rst,
3

4 input wire [31:0] prev_addr,
5 input wire [ 7:0] prev_data_w,
6 output reg [ 7:0] prev_data_r,
7 input wire prev_mrq,
8 output reg prev_mrs,
9 input wire prev_re,

10 input wire prev_we );
11

12 reg [7:0] data[0:1023];
13

14 always @ ( posedge rst )
15 begin
16 $readmemh( "memory/mem.bin", data, 0 );
17 end
18

19 always @ ( posedge prev_mrq )
20 begin
21 if ( prev_re )
22 prev_data_r = data[ prev_addr ];
23 else if( prev_we )
24 data[ prev_addr ] = prev_data_w;
25

26 #6 prev_mrs = 1;
27 @( negedge prev_mrq );
28 #6 prev_mrs = 0;
29 end
30

31 endmodule

Listing 8.6 A Verilog module that models main memory.

8.5.2 Main Memory

Listing 8.6 details the main memory module which closely resembles the one we
developed previously: remember that we claimed that we could replace the 2-
dimensional Verilog register with a concrete memory design based on D-type flip-
flops. The only real difference is that we include a process that can initialise the
memory content.

To initialise the memory, as triggered by a positive edge on the reset signal, we
use the $readmemh system task. This has the effect of reading the file specified as
the first argument into the 2-dimensional register specified as the second argument
at an offset specified by the third argument. In this case, the file mem.bin is filled
with 256 lines which look like

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
.. .. .. ..

Each value represents one byte encoded as two hexadecimal digits; using the file
essentially just zeros the memory content.
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1 module dmc( input wire clk,
2 input wire rst,
3

4 input wire [31:0] prev_addr,
5 input wire [ 7:0] prev_data_w,
6 output reg [ 7:0] prev_data_r,
7 input wire prev_mrq,
8 output reg prev_mrs,
9 input wire prev_re,

10 input wire prev_we,
11

12 output reg [31:0] next_addr,
13 output reg [ 7:0] next_data_w,
14 input wire [ 7:0] next_data_r,
15 output reg next_mrq,
16 input wire next_mrs,
17 output reg next_re,
18 output reg next_we );
19

20 ...
21

22 endmodule

Listing 8.7 The interface to a Verilog module that models a direct-mapped cache.

8.5.3 Cache Memory

To describe the cache memory, we again opt for a high-level modelling approach.
Of the three designs introduced, direct-mapped caches are the most conceptu-
ally simple. To follow the example presented previously, we model such a cache
parametrised to house eight lines each holding four 8-bit sub-words. The Verilog
code is too long to present on one page but the interface is shown in Listing 8.7. The
cache module has one interface, whose signals are prefixed with prev, for incom-
ing transactions with the processor and one, whose signals are prefixed with next,
for outgoing transactions with the memory. To operate the memory via the outgoing
interface, two tasks are used; these are shown in Listing 8.8. The ld_byte and
st_byte tasks implement the handshake protocol which allows the cache to load
and store bytes from and into the memory. Their operation is fairly straightforward
but consider the ld_byte task as an example. It starts by waiting for the next pos-
itive clock edge to synchronise the operation; once this is encountered it sets the
address, read enable and memory request signals to initiate the transaction. The task
then waits for a positive edge on the memory response signal which indicates that
the memory has completed the operation; the task clears the read enable and mem-
ory request signals and reads the incoming value from the data bus. Finally it waits
for the memory response signal to be cleared by the memory before continuing.

The cache operation is implemented using two processes shown in Listing 8.9.
This code does not show the definitions of internal cache structures: tag holds
the tags for the cache lines, valid holds the valid flags for the cache lines and
data holds the cache lines themselves. The first process simply initialises the cache
content to empty by setting the valid flags for all lines to false; this is triggered
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1 task ld_byte( input [31:0] t_addr,
2 output [ 7:0] t_data );
3 begin
4 @ ( posedge clk )
5 begin
6 next_addr = t_addr;
7

8 next_re = 1;
9 next_mrq = 1;

10 end
11

12 @ ( posedge next_mrs )
13 begin
14 next_re = 0;
15 next_mrq = 0;
16

17 t_data = next_data_r;
18 end
19 @ ( negedge next_mrs );
20 end
21 endtask
22

23 task st_byte( input [31:0] t_addr,
24 input [ 7:0] t_data );
25 begin
26 @ ( posedge clk )
27 begin
28 next_addr = t_addr;
29 next_data_w = t_data;
30

31 next_we = 1;
32 next_mrq = 1;
33 end
34

35 @ ( posedge next_mrs )
36 begin
37 next_we = 0;
38 next_mrq = 0;
39 end
40 @ ( negedge next_mrs );
41 end
42 endtask

Listing 8.8 Verilog tasks to access memory via the outgoing cache interface.

by a positive edge on the reset signal. The second process is triggered every time
there is a memory request via the incoming interface, i.e., a memory request from
the processor. It starts by calculating the tag, line number and word offset from
the incoming address. It can then check the associated line to see if it contains the
required data: if the line is not valid or the stored and computed tags do not match,
the line needs to be fetched from memory using the ld_byte task. Once the data is
definitely resident in the line, we can fulfil the request, writing the data through via
the outgoing interface to memory if the request was a write. Finally we instrument
a small artificial delay, to model the cache latency.

It is interesting to see how the cache behaves when connected to the main mem-
ory module described above. Listing 8.10 demonstrates how the two can be instan-
tiated to form a composite cached memory system; essentially one just has to wire
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Figure 8.27 Behaviour of the composite cached memory system.
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1 always @( posedge rst )
2 begin
3 for( i = 0; i < 8; i = i + 1 )
4 valid[i] = 0;
5 end
6

7 always @ ( posedge prev_mrq )
8 begin
9 dec_tag = prev_addr[31:5];

10 dec_line = prev_addr[ 4:2];
11 dec_word = prev_addr[ 1:0];
12

13 if( ( !valid[dec_line] ) || ( dec_tag != tag[dec_line] ) )
14 begin
15 tag [dec_line] = dec_tag;
16 valid[dec_line] = 1;
17

18 ld_byte( {dec_tag,dec_line,2’b00}, data[{dec_line,2’b00}] );
19 ld_byte( {dec_tag,dec_line,2’b01}, data[{dec_line,2’b01}] );
20 ld_byte( {dec_tag,dec_line,2’b10}, data[{dec_line,2’b10}] );
21 ld_byte( {dec_tag,dec_line,2’b11}, data[{dec_line,2’b11}] );
22 end
23

24 if ( prev_re )
25 prev_data_r = data[{dec_line,dec_word}];
26 else if( prev_we )
27 data[{dec_line,dec_word}] = prev_data_w;
28

29 if( prev_we )
30 st_byte( {dec_tag,dec_line,dec_word}, data[{dec_line,dec_word}] );
31

32 #2 prev_mrs = 1;
33 @( negedge prev_mrq );
34 #2 prev_mrs = 0;
35 end

Listing 8.9 Verilog processes that determine the cache behaviour.

the two devices so that they can talk to each other. To test the combined system and
inspect the behaviour of the cache, we fed the same sequence of loads to it as in our
more theoretical outline:

1,34,35,36,37,1,38,39,40,41.

Figure 8.27 shows the cache behaviour during these accesses. Remember that the
memory is zeroed during initialisation by the reset signal; the values read are hence
all 0. The actual cache behaviour is much more interesting. We start by loading
the value at address 1. The cache computes the tag as 0, the line number as 0 and
the word offset as 1. Since all the cache lines are initially invalid, this causes a
cache miss and the cache is forced to load the associated line, i.e., addresses 0, 1, 2
and 3, from main memory. The same pattern occurs when we try to load the value
at address 34. However, when we try to access the value at address 35 the access
completes much more quickly; there is no interaction with main memory at all since
the value we require is already resident in line 0. The access pattern continues as
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1 module cached_mem( input wire clk,
2 input wire rst,
3

4 input wire [31:0] prev_addr,
5 input wire [ 7:0] prev_data_w,
6 output wire [ 7:0] prev_data_r,
7 input wire prev_mrq,
8 output wire prev_mrs,
9 input wire prev_re,

10 input wire prev_we );
11

12 wire [31:0] next_addr;
13 wire [ 7:0] next_data_w;
14 wire [ 7:0] next_data_r;
15 wire next_mrq;
16 wire next_mrs;
17 wire next_re;
18 wire next_we;
19

20 dmc t0( .clk (clk ),
21 .rst (rst ),
22

23 .prev_addr (prev_addr ),
24 .prev_data_w(prev_data_w),
25 .prev_data_r(prev_data_r),
26 .prev_mrq (prev_mrq ),
27 .prev_mrs (prev_mrs ),
28 .prev_re (prev_re ),
29 .prev_we (prev_we ),
30

31 .next_addr (next_addr ),
32 .next_data_w(next_data_w),
33 .next_data_r(next_data_r),
34 .next_mrq (next_mrq ),
35 .next_mrs (next_mrs ),
36 .next_re (next_re ),
37 .next_we (next_we ) );
38

39 mem t1( .clk (clk ),
40 .rst (rst ),
41

42 .prev_addr (next_addr ),
43 .prev_data_w(next_data_w),
44 .prev_data_r(next_data_r),
45 .prev_mrq (next_mrq ),
46 .prev_mrs (next_mrs ),
47 .prev_re (next_re ),
48 .prev_we (next_we ) );
49

50 endmodule

Listing 8.10 Instantiating the main memory and direct-mapped cache to form a composite cached
memory system.
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one would expect with cache-misses producing long access latencies and cache-hits
completing much more quickly.

8.6 Further Reading
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8.7 Example Questions

33. Draw a diagram of a typical memory hierarchy explaining the types of device
one would expect to find in each level, their key characteristics and the principles
that allow the memory hierarchy to improve system performance.

34. A given processor accesses memory using 32-bit addresses. Suppose there is a
cache between the processor and a byte-addressable main memory of 512 bytes total
size and with a line size of 8 bytes. For each of the following cache architectures
specify how the 32-bit address would be used by the address translation mechanism
in the cache:

a. Direct-mapped cache.
b. 2-way set-associative cache.
c. 4-way set-associative cache.
d. Fully-associative cache.

For example, in the direct-mapped case you would need to specify which bits of the
address are used for the tag, the line number and the word offset.

35. Cache misses can be classified as either compulsory misses, capacity misses or
conflict misses. For each class of cache miss, explain why it might occur and how
changes in the cache architecture can reduce how often it occurs.
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36. A given 32-bit processor has a unified level-one cache. The cache is 1 kilobyte
in size, holds 4 bytes per-line and is direct-mapped. A programmer writes, compiles
and executes the following program on the processor:

char A[1024], B[1024], C[1024];

int main( int argc, char* argv[] )
{
for( int i = 0; i < 1024; i++ ) {
A[i] = B[i] + C[i];

}
}

a. Calculate the number of bits of an address required for each of the following
quantities required to locate items in the cache:

i. cache word address,
ii. cache line address,

iii. cache tag.

and show how they are mapped onto the address.
b. Explain the following terms in relation to the cache hardware using the above

program as an example:

i. spacial locality,
ii. temporal locality,

iii. cache interference or contention.

c. Describe the sequence of cache hits and misses caused by accesses to A[i],
B[i] and C[i] as the loop progresses.

d. The definition of arrays A, B and C are changed to read:

char A[1025], B[1025], C[1025];

i. Explain how this changes the sequence of cache hits and misses described
above and why it improves on the original program.

ii. Outline a different cache architecture that could increase the performance of
the original program without changing.



Chapter 9
Advanced Processor Design

The key to performance is elegance, not battalions of special cases.

– J. Bently and D. McIlroy

Any sufficiently advanced technology is indistinguishable from magic.

– A. Clarke

Abstract In the context of RISC processors, almost every significant improvement
in performance has come about as a result of harnessing some form of parallelism.
Parallelism is the act of performing several small sub-tasks at the same time in order
to more quickly complete a larger task; formally, this is different from the concept
of concurrency. In this chapter, we focus almost exclusively on the concept of
Instruction-Level Parallelism (ILP) which allows instructions from within a sin-
gle program to execute in parallel. The advantage of this approach is demonstrated
by three main design techniques: pipelined processors, superscalar processors
and vector processors.

9.1 Introduction

The types of parallelism that exist within processor designs are usually categorised
as being related to either data or instructions. That is, we typically want to operate
either on several items of data at the same time using a single instruction, or execute
several different instructions at the same time. Our focus is mainly expanding upon
the non-parallel concepts presented previously; as a result it is worthwhile looking
briefly at the broader subject of parallel computer architecture so as to fix some
ideas and notation. The basic idea that runs throughout this chapter is that a single
processor should be composed of multiple Processing Elements (PEs), each of
which operates in parallel and can potentially communicate with each other via
some mechanism. Our initial aim is to present a high-level outline of how these

331
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Figure 9.1 A graphical representation of four parallel computer categorisations.

components could be organised and used to execute instructions in parallel, and
then to introduce concrete processor designs which capitalise on said organisations.

9.1.1 A Taxonomy of Parallelism

9.1.1.1 Computational Model

The computational model of a parallel computer categorises the different instruc-
tion and data streams within the processor. That is, given the processor will be op-
erating on some data using some instructions, it outlines the behaviour of a given
PE in relation to the other PEs. The canonical summary is Flynn’s Taxonomy, a
categorisation introduced by Michael Flynn in 1972 [24] which is described dia-
grammatically in Figure 9.1:

Single Instruction, Single Data (SISD) There is only one stream of instructions
and one stream of data; ignoring co-processors and additional PEs added to pro-
duce identical, redundant computation (e.g., to cope with errors), there can only
be one useful PE in such a processor. Examples of SISD computers include that
described in Chapter 5.

Single Instruction, Multiple Data (SIMD) There is only one stream of instruc-
tions but there are many streams of data; thus we can have many PEs each ex-
ecuting the same instruction at a given point in time but using different data in
each case. Examples of SIMD computers include the Cray series of vector su-
percomputers and the Graphics Processing Units (GPUs) that render 3D images
within most modern graphics cards.
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Multiple Instruction, Single Data (MISD) It is hard to justify the existence of
MISD processors, in the sense that it is hard to see how such a device could
compute useful results: what we are describing is a situation where we take a
single data stream and operate on it using many different instruction streams.
Examples of MISD processors are rare but application areas are typically those
that require some form of duplicate computation. For example, a computer to
forecast weather might run several simulation models on the same dataset and
average the results to get a more reasonable result.

Multiple Instruction, Multiple Data (MIMD) There are many streams of in-
structions and many streams of data; essentially we have many PEs executing
different instructions on different data at the same time. In a sense, this is the
most general form of parallel processor. Examples include a cluster of work-
stations (where the PEs are physically separate computers) connected by a net-
work in order to collectively perform some task; the Beowulf design developed
by Donald Becker at NASA is an example of how one can construct such sys-
tem inexpensively. However, recent advances in processor design have led us
to so-called multi-core designs whereby one has several processor cores on one
microchip; the combined system is essentially a small-scale MIMD computer.

This taxonomy is usually extended to include the so-called Single Program, Multi-
ple Data (SPMD) model. This is similar to SIMD in the sense that each processor is
presented with a single set of instructions to execute. However, unlike SIMD a given
PE within an SPMD processor can obtain an identifier (i.e., a processor number of
some sort) and make conditional decisions based on that identifier. So, for example,
PE number one might take one control-flow path within the single program while
PE number two might take another. Hence although they are both given a single
program, they might execute different instructions within it.

9.1.1.2 Communication Model

The communication model of a parallel processor categorises how the independent
PEs communicate with each other. Although there are variations on each, roughly
speaking this comes down to only two main choices:

Distributed Memory Each PE has a dedicated local memory; PEs are linked to-
gether using some sort of network interconnect. Since intermediate results are
communicated via the network in some way, this gives rise to the term message
passing architecture. That is, intermediate results are passed between the PEs
as messages over the network rather than written into memory by one PE and
then read by another.
Several systems exist to allow easy development of distributed memory parallel
programs; MPI [49] is an industry standard example.

Shared Memory All PEs can load from and store to the same set of addresses,
i.e., there is a shared address space. In concept this means there is a single physi-
cal memory that has many read and write ports, one interface for each PE. How-
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Figure 9.2 A graphical representation of four interconnection networks.

ever, this is often difficult to realise so the address space can be mapped over a
number of physical memories; that is, each PE maintains a local memory which
is tasked with holding a sub-set of the total memory content. In this case some
mechanism must be provided to access potentially non-local memory locations.
A processor that offers a shared address space communication model is often
called a multiprocessor and includes a new generation of multi-core processors.
In this context, processors where access to each location in the address space
takes the same time are said to have Uniform Memory Access (UMA); where
this does not apply they have Non-Uniform Memory Access (NUMA). Where
the single address space is mapped over a number of physical memories, one can
see that NUMA is quite probable: local accesses will be faster than non-local
accesses.
Cache memories can cause a problem in shared memory processors if the address
space is mapped over several memories. Specifically, if one memory holds stale
data, i.e., the real value is held in a local cache for that memory, a remote PE
accessing that data might get the wrong value unless it also accesses the mem-
ory through the cache. A hardware-based cache coherency protocol attempts to
solve this problem; roughly speaking a PE sneaks a look at the local cache to
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decide where it should read the correct value from. Alternatively this problem
can be delegated to the program to manage themselves.
Several systems exist to allow easy development of shared memory parallel pro-
grams; OpenMP [15] is an industry standard example.

The means by which these different mechanisms are implemented is crucial and
quite subtle in terms of performance. For example, it is important to realise that the
network interconnect that links the PEs in a distributed memory system influences
how easy it is to pass messages around. Figure 9.2 shows just four of many different
configurations and demonstrates the trade-offs involved. For example, the bus-based
network is simple to construct and it is easy to add new PEs; however, only one pair
can communicate at a time which potentially imposes a performance bottleneck. In
contrast, the fully connected network is complex to construct and hard to add new
PEs; however, any pair can communicate with each other at any time.

9.1.2 Instruction-Level Parallelism (ILP)

The previous section described quite a general spectrum of parallel computer archi-
tectures. In particular, one might view designs within Flynn’s Taxonomy as a means
to execute arbitrary programs in parallel with each other. In reality, it is useful to
work at the level of instructions rather than programs. As such, it is common to de-
sign and implement mechanisms that allow individual instructions to be executed in
parallel. Put rather too simply, one can imagine some mechanism inside a processor
which examines instructions in the program and for those which can be executed in
parallel, achieves some performance improvement by doing so.

The order that instructions go into the processor is termed the program order,
which is the order that they would be executed on a sequential processor. However,
if one considers a processor that exploits parallelism, the execution order might dif-
fer from the program order; we use the term data order in this case. The analysis of
instructions to determine which can be executed in parallel is termed the schedul-
ing of instructions. Scheduling techniques exist somewhere between two extremes:
static scheduling mainly exploits ILP at compile-time whereas dynamic schedul-
ing mainly exploits ILP at run-time. More simply, one can place responsibility on
the programmer and force the program to make parallelism explicit (i.e., it tells the
processor which instructions to execute in parallel). Alternatively, one can place re-
sponsibility on the processor and have it automatically detect and exploit implicit
parallelism within the program.

However, there are several generic barriers which all ILP-based processors must
consider and deal with to ensure a given program executes correctly; we describe
these in detail below.
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9.1.2.1 Consistency

As discussed previously, a processor ISA can be viewed as a contract that guar-
antees execution of a given program is consistent with a set of defined semantics.
More simply, if one executes a program on some processor then it should execute
as we expect it to. To capture the idea of a program executing consistently with the
semantics, one can define two features:

Definition 37. The term program consistency refers to the order in which execu-
tion of instructions is completed. For example, consider executing an addition in-
struction X in parallel with a division instruction Y . If Y generates an exception as
the result of dividing by zero, the processor must halt execution and perform some
remedial action (e.g., set a flag in the status register). However, depending on which
of X and Y was specified first in program order, the current processor state might
not be as expected. In particular, if Y was specified after X and then generates the
exception, the current state might look like Y was specified before X which would
be inconsistent with the program order.

Definition 38. The term memory consistency refers to the order in which accesses
to memory are performed. For example, consider executing two store instructions X
and Y in parallel; either X or Y could be the last instruction to access memory and
hence store a value. Since either X or Y was specified first in program order, the end
result in memory can be inconsistent with that order.

Both the above can be further described as either strongly consistent or weakly
consistent. Strong processor consistency means instructions must complete execu-
tion in-order, i.e., in program order; weak processor consistency means that instruc-
tions can complete execution out-of-order, i.e., different to program order. Strong
memory consistency means that the order of memory accesses must match the in-
structions that invoke them; weak memory consistency means that the memory ac-
cesses can be re-ordered as long as they respect dependencies between them.

9.1.2.2 Dependencies

Even considering a case where program and memory consistency is guaranteed
somehow, it should be clear that not all instructions in a program can be executed
in parallel with each other. Imagine instruction X comes before instruction Y in the
program order; we can categorise the situations where one instruction is dependent
on another as follows:

Resource Dependency A resource dependency is more to do with the micro-
architecture than the program, but captures the idea that some resources cannot
be shared. In particular, if two instructions X and Y require access to the same
resource, then they cannot be executed at the same time. For example, consider
the program fragment:



9.1 Introduction 337

. . .
GPR[2] ← GPR[3] ·GPR[4]
GPR[5] ← GPR[6] ·GPR[7]
. . .

Both instructions #0 and #1 require the use of a multiplier to compute their re-
sults; if there is only one multiplier available, the two instructions cannot be
executed in parallel.

Data Dependency If the result of instruction X is required as an input to instruc-
tion Y , Y depends on X . This is the intuitive definition of dependency: if instruc-
tion X calculates some value that Y needs, then clearly Y cannot be executed until
X has calculated said value. The relationship is transitive in the sense that if in-
struction Y depends on X and some third instruction Z depends on Y , Z depends
on X as well. For example, consider the program fragment:

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[2]+GPR[2]
GPR[6] ← GPR[5]+GPR[5]
. . .

Instruction #1 depends on the result produced by instruction #0, also instruction
#2 depends on the result produced by instruction #1. In this case, for example, in-
struction #1 cannot be executed until the result produced by executing instruction
#0 is available. Where the dependency is based on a value loaded from memory,
we often use the term load-use dependency, whereas if the value is generated
by some other means (for example an arithmetic instruction) we use the term
define-use dependency.

Name Dependency There are two types of name dependency; both types are of-
ten described as “fake” data dependencies in the sense that they both look like
a normal data dependency, but can be removed by a process of renaming. A so-
called anti-dependence exists if instruction Y writes to a register that X reads
from, ordering of X and Y must be preserved to ensure X reads the correct value.
For example, in the program fragment

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[3] ← GPR[4]+GPR[5]
. . .

instruction #0 reads from GPR[3] but instruction #1 writes to GPR[3]; as written,
instruction #1 depends on instruction #0 in the sense that for the program to
have the right meaning, instruction #1 cannot write a new result to GPR[3] until
instruction #0 has read the previous one. This dependency can be broken by
rewriting the program so that instruction #1 writes into a different register. For,
example in the program fragment
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. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[6] ← GPR[4]+GPR[5]
. . .

instruction #1 is no longer dependent on instruction #0. The related concept of
output dependency exists if instruction X writes to the same register as instruc-
tion Y , ordering of X and Y must ensure the end result is correct. For example, in
the program fragment

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[2]+GPR[2]
GPR[2] ← GPR[3]−GPR[4]
. . .

instructions #0 and #2 both write to GPR[2] so in some sense they are dependent
on each other; instruction #0 has to be executed first in order for the program to
have the right meaning. Again this dependency can be broken by rewriting the
program so that instruction #2 writes into a different register, for example

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[2]+GPR[2]
GPR[6] ← GPR[3]−GPR[4]
. . .

Control Dependency Imagine there are a number of branch instructions in the
program and X is one of them; there is a control dependency between instructions
X and Y if control-flow reaching Y depends on the execution of X . In the program
fragment

. . .
GPR[2] ← GPR[3]+GPR[4]
if GPR[2] 	= 0,PC ← skip
GPR[2] ← 1

skip : . . .

instruction #1 is a branch which conditionally alters control-flow. Since the
branch target depends on the value in GPR[2], instruction #2 is control dependent
on instruction #1: the outcome of executing instruction #1 decides if control-flow
reaches instruction #2.

9.1.2.3 Hazards

A hazard is a condition that needs to be resolved in some way to ensure that an
ILP-based processor avoids incorrect execution of a program as a result of instruc-
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tion dependencies. Note that this issue is intrinsically tied to the micro-architecture:
on one data-path a given dependency between instructions might cause a hazard
condition to occur whereas on another data-path the same dependency might not
cause a hazard. As a trivial example, consider our original, sequential data-path ex-
ecuting the program fragment

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[2]+GPR[2]
GPR[6] ← GPR[5]+GPR[5]
. . .

In the case where each instruction is executed sequentially, there is no hazard: the
data dependency between instructions #1 and #0 does not matter because instruction
#0 will always be executed before #1. In the case of a data-path which executes
instructions in parallel however, this might result in a hazard if the data-path cannot
guarantee the same ordering.

For data and name dependencies at least, there is a somewhat standard method
for categorising hazards that can occur. Again, throughout we imagine instruction
X appears before instruction Y in the program order:

Read-After-Write (RAW) A RAW hazard occurs when instruction Y reads a
value from register (or memory location) R before instruction X has written it.
Unless the hazard is avoided, Y gets the old, wrong value in R; one might say Y
is RAW-dependent on X .

Write-After-Read (WAR) A WAR hazard occurs when instruction Y writes a
value to register (or memory location) R before instruction X has read it. Unless
the hazard is avoided, X gets the new, wrong value in R; one might say Y is
WAR-dependent on X .

Write-After-Write (WAW) A WAR hazard occurs when instruction Y writes a
value to register R (or memory location) before instruction X writes a value to the
same place. Unless the hazard is avoided, the writes happen in the wrong order
and the value after they finish is wrong; one might say Y is WAW-dependent on
X .

9.2 Pipelined Processors

Production or assembly lines in the context of manufacturing offer a neat analogy
for the concept of pipelining in digital logic circuits. The idea of a production line
is for the end result to be produced as the combination of a number of basic steps.
However, instead of performing the steps sequentially each worker within the pro-
duction line can be operating on a different item at the same time. This offers two
main benefits. Firstly, it allows a degree of specialisation; no longer does one person
need to be expert in all stages of manufacture or require the equipment to carry out
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all stages. Each worker in the production line can be dedicated to one stage, mas-
tering it to an extent which meant their output is higher than normal. Secondly, it
allows for division of labour in the sense that one can scale the level of output closely
with the number of workers; roughly speaking, the more workers one has the greater
the output. This is largely because of the fact that the workers in a production line
can all be working effectively at the same time. In particular, one worker is not idle
while waiting for another to finish or for tools to become available.

Although probably not the first to employ such a process, the manufacture of
cars within the Ford Motor Company is a good example. Ford, under direction of
the owner Henry Ford, used a system of continuous production lines to build auto-
mobiles. While one person was assembling the engine to car number one, another
could be attending to the body work on car number two while yet another could be
fitting the wheels to car number three. By around 1913, Ford had his production line
down to such a fine art that they were able to double the output of all their com-
petitors, selling half of all automobiles purchased in the USA. Although assigning
each worker a dedicated task reduced accident and wasted time through their wan-
dering around the factory, the fact that they stood in the same place for long periods
performing repetitive tasks meant that RSI-type injuries were common. Ford com-
bated the resulting high turnover of staff by increasing wages to $5 a day, cutting
shift lengths to eight hours a day and installing a dedicated medical department.
Productivity soared and the cost of producing each vehicle decreased as a result.

Fortunately, pipelining digital logic circuits does not suffer from these social re-
lated problems: our logic gates never tire, get RSI or complain about wages. Other
than this, the principles are almost exactly the same. A basic pipelined circuit con-
sists of a number of pipeline stages arranged in sequence; each will perform part
of the computation. We feed inputs into the first stage and outputs are produced by
the last stage. The progression of intermediate results or work through the pipeline
is typically governed by one of two techniques:

Synchronous Pipeline In a synchronous pipeline, a global clock is in control. On
each clock edge we say the pipeline advances; the stages pass their completed
work onto the next stage and receive new work from the previous stage. We term
the interval between one advancement and another a pipeline cycle in a similar
way that a clock cycle is the interval between one positive or negative edge and
another.
In this setting, unless each stage takes the same amount of time there is some
slack where one or more stages will be idle. For example, if the clock period of
a synchronous pipeline is 10ns and one of the stages takes 5ns to complete its
work, it will be idle for 5ns after working before another clock pulse causes the
pipeline to advance. As such, we ideally want to balance the stages so they all
take roughly the same length of time to complete their work and thus minimise
idleness.

Asynchronous Pipeline In an asynchronous pipeline, the aim is to remove the
need for global control over when the pipeline advances and hence remove the
need to manage a global clock. Roughly speaking, control is devolved into the
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300ns 20ns

Figure 9.3 A sequential block of combinatorial logic.

pipeline stages themselves: for one stage to advance, it must engage in a simple
handshake with the preceding and subsequent stages to agree when to advance.
This is advantageous in that stages can operate as fast or slow as their work-
load, rather than the clock, dictates. For example, in the execution phase an ad-
dition may take less time to complete than a multiplication. The asynchronous
pipeline can advance whenever the result is ready rather than being pessimistic
and forcing advancement at the rate of the slowest operation (i.e., latency of the
multiplication). However, although the global clock is removed one potential dis-
advantage of this approach is overhead in provision of the handshake mechanism
that has to exist between stages.

Although there are positive and negative arguments for both approaches, we con-
sider only synchronous pipelines from here on. We can measure the performance of
such a pipeline using two standard metrics:

Definition 39. The latency of a pipeline is the total time elapsed before a given
input is operated on to produce an output. This is simply the sum of the times taken
by each pipeline stage.

Definition 40. The bandwidth or throughput of a pipeline is the rate at which new
inputs can be offered to the pipeline (resp. outputs produced by the pipeline). This is
typically limited by the stage that takes the longest time since this stage will dictate
how fast the pipeline can be advanced.

When one stage passes on a result to the next, it needs to save it in a pipeline reg-
ister (conceptually like a small storage area) rather than just driving it onto a wire.
If it did not do this, half way through performing the work it might cause the wire
value to change; the next stage using this value would therefore potentially use the
wrong value. By using a register, the value used by the next stage is guaranteed to
remain fixed until it is updated when the pipeline advances. Each pipeline register
takes some time to operate, so adds to the total pipeline latency. Therefore, pipeline
latency and throughput represent something of a trade-off: too many stages means
lots of pipeline registers and a higher latency, too few stages means not enough par-
allelism is taken advantage of, lower throughput and potentially a more unbalanced
pipeline.
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Figure 9.4 A pipelined version of the combinatorial logic block.

Consider the example in Figure 9.3 where we have a block of combinatorial
logic; you can think of this as a shifter circuit perhaps. We want to improve the
performance of this circuit by pipelining it so split it into three stages as shown in
Figure 9.4. In both cases the latency associated with each stage or pipeline register
is shown above it. The total latency of the sequential circuit is

300ns+20ns = 320ns.

The circuit produces an output every 320ns so the rate at which the circuit pro-
duces outputs is 1s/320ns or around 3.12 · 106 outputs per-second. Looking at the
pipelined circuit, we find that the total latency has increased due to the addition of
several pipeline registers:

100ns+20ns+100ns+20ns+100ns+20ns = 360ns.

At face value this seems bad: each input will actually take longer to be operated on to
produce an output than in the sequential case ! However, with the pipelined circuit
we can offer a new input every 120ns since this is the length of the longest stage
(including the pipeline register). So the new throughput is 1s/120ns or 8.33 · 106

outputs per-second, between a two and three-fold improvement.
This example highlights a further issue in terms of pipeline design. Since we

will inevitably increase the total latency by the act of pipelining, our goal is a high
throughput. However, this is only useful in practise if we can keep the pipeline full.
That is, if our pipeline can potentially accept a new input every 10ns but we only
offer one every 50ns, it will be idle for periods of time and so the useful throughput
is much lower than the actual throughput. Thus it only really makes sense to trade
throughput for latency if we can guarantee the pipeline utilisation will be high, i.e.,
the pipeline will be full most of the time. Otherwise you might as well use a sequen-
tial circuit given one-off output will be generated quicker.
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Figure 9.5 Design of a pipelined 8-bit logarithmic shifter architecture.

9.2.1 Pipelined Circuits

In the previous section we presented an abstract description of how the act of
pipelining works: we now turn our attention to a simple but concrete example. We
will pipeline the 8-bit logarithmic shifter from Chapter 7 that was implemented in
Listing 7.6. It is easy to see how this can be split into three small stages since they
are almost implicit in the design from Figure 9.5; more complex circuits are harder
to split up.

Listing 9.1 details the implementation of the first pipeline stage; the other stages
are very similar and are left out for the sake of brevity. The stage looks almost
identical to the first part of our sequential shifter implementation; to recap, we have
a multiplexer t0 that generates the correct result given the shift type and another
multiplexer t1 that decides if we take that shifted result or the original non-shifted
input. The first difference is that each stage only needs 1-bit of the shift distance y
rather than the whole value. The major difference is that we have to include some
logic to advance the pipeline stage. As such, on each positive edge of the clock
signal clk the stage takes the computed result w1 which comes out of the second
multiplexer and assigns it into the stage result r.

We combine the three pipeline stages together in Listing 9.2. Again this is a
simple step, we just instantiate each shifter stage and join them together using the
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Figure 9.6 Behaviour of a pipelined 8-bit logarithmic shifter.
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1 module shf_8bit_stage1( input wire clk,
2 input wire rst,
3

4 input wire [2:0] oper,
5

6 output reg [7:0] r,
7 input wire [7:0] x,
8 input wire y );
9

10 wire [7:0] w0;
11 wire [7:0] w1;
12

13 mux8_8bit t0( .r(w0),
14

15 .i0({ 1’b0, x[7:1] }),
16 .i1({ {1{r[7:7]}}, x[7:1] }),
17 .i2({ x[0:0], x[7:1] }),
18 .i3({ x[6:0], 1’b0 }),
19 .i5({ x[6:0], x[7:7] }),
20

21 .s0(oper[0]), .s1(oper[1]), .s2(oper[2]) );
22

23 mux2_8bit t1( .r(w1), .i0(x), .i1(w0), .s0(y) );
24

25 always @ ( posedge clk )
26 begin
27 r = w1;
28 end
29

30 endmodule

Listing 9.1 Implementation of the first shifter pipeline stage.

pipeline registers r4 to r6. Note though that we need to include registers for the
intermediate shifted results and the shift distance since, for example, stage one might
be shifting a value x1 by a distance y1 while stage two is operating on x2 and y2: if
we do not use pipeline registers for both quantities we could be shifting both x1 and
x2 by y2 which would be incorrect. At the bottom of the module we also include
some logic to provide inputs to the pipeline and grab outputs. Each time the clock
ticks to advance the pipeline, we assign the result from the last stage r3 to r, the
output for the whole shifter. We also take the two inputs x and y and assign these to
the two input registers r0 and r4 which feed the first stage.

Figure 9.6 outlines how this design behaves; the timeline details the execution
of three logical left-shift operations for the values 12(10),13(10),14(10) and 15(10) by
the distances 4(10), 3(10), 2(10) and 1(10) bits respectively. After a few clock cycles,
the oper signal is set to the left-shift value and the first pair of values, 12(10) and
4(10), are driven onto the inputs of the shifter. Note though that the result does not
immediately appear since after the first clock cycle they will only have been pro-
cessed by the first stage of the pipeline as shown by the r1 signal which holds this
output. Instead, we are free to send another pair of values, this time 13(10) and 3(10),
as input. Now we have a case where stages one and two are operating in parallel
on two different operations: stage one is dealing with shifting 13(10) left by 3(10)
bits while stage two is dealing with shifting 12(10) left by 4(10) bits. This continues
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1 module shf_8bit( input wire clk,
2 input wire rst,
3

4 input wire [2:0] oper,
5

6 output reg [7:0] r,
7 input wire [7:0] x,
8 input wire [7:0] y );
9

10 reg [7:0] r0;
11 wire [7:0] r1;
12 wire [7:0] r2;
13 wire [7:0] r3;
14 reg [7:0] r4;
15 reg [7:0] r5;
16 reg [7:0] r6;
17

18 shf_8bit_stage1 t0( .clk ( clk ),
19 .rst ( rst ),
20

21 .oper( oper ),
22

23 .r ( r1 ),
24 .x ( r0 ),
25 .y ( r4[0] ) );
26

27 shf_8bit_stage2 t1( .clk ( clk ),
28 .rst ( rst ),
29

30 .oper( oper ),
31

32 .r ( r2 ),
33 .x ( r1 ),
34 .y ( r5[1] ) );
35

36 shf_8bit_stage3 t2( .clk ( clk ),
37 .rst ( rst ),
38

39 .oper( oper ),
40

41 .r ( r3 ),
42 .x ( r2 ),
43 .y ( r6[2] ) );
44

45 always @ ( posedge clk )
46 begin
47 r6 = r5;
48 r5 = r4;
49 r4 = y;
50 r0 = x;
51 r = r3;
52 end
53

54 endmodule

Listing 9.2 Implementing the whole pipelined shifter.
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t0 t1 t2 t3 t4 t5 t6 t7 t8 · · ·
Fetch #0 #1 #2 · · ·
Decode #0 #1 · · ·
Execute #0 #1 · · ·
Write #0 #1 · · ·

Table 9.1 An execution timeline for a processor using a sequential data-path.

t0 t1 t2 t3 t4 t5 t6 t7 t8 · · ·
Fetch #0 #1 #2 #3 #4 #5 #6 #7 #8 · · ·
Decode #0 #1 #2 #3 #4 #5 #6 #7 · · ·
Execute #0 #1 #2 #3 #4 #5 #6 · · ·
Write #0 #1 #2 #3 #4 #5 · · ·

Table 9.2 An execution timeline for a processor using a pipelined data-path.

FET DEC PE WRI

Figure 9.7 A conceptual diagram of a pipelined processor.

until a while later when the first output appears on r having passed through all three
stages; after this we get a new result every clock cycle as the subsequent values we
sent as inputs are completed. Notice the trade-off between throughput and latency
here. Our results take longer than one clock cycle to pass through the entire circuit
but once the pipeline is full, we get one result every clock cycle. The critical path
of the circuit is less than the fully parallel version since the longest path is now
through only one pipeline stage instead of all three; we can probably clock the cir-
cuit faster as a result. The trade-off is that it probably takes more logic to implement
our pipelined design since we need to, for example, manage the pipeline registers.

9.2.2 Pipelined Processors

9.2.2.1 Basic Concept

The processor data-path we developed previously in Chapter 5 is, in the most basic
sense, a logic circuit. Although it should be obvious we can pipeline components
like the ALU, we can use exactly the same techniques to pipeline the processor
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Figure 9.8 A 5-stage pipelined data-path.

data-path itself. The key thing to grasp when considering pipelined processors is
that we can have more than one instruction in-flight at a time: this is the concept of
ILP being put to practical use. To see why this might be the case, consider Table 9.1
which details an execution timeline for our original sequential data-path. In cycle
t0 we fetch instruction #0 which is then decoded in cycle t1, executed in cycle t2
and finally writes results in cycle t3; we then fetch instruction #1 in cycle t4 and
so on. Now imagine we split the sequential data-path into four pipeline stages, one
each for fetch, decode, execute and write. A conceptual diagram of how this would
look, which is used as a standard starting point for further discussion, is shown in
Figure 9.7. With such a design the fetch stage, for example, can be fetching instruc-
tion #2 while the decode stage is dealing with instruction #1 and the execute stage
is dealing with instruction #0 and so on. This is highlighted in Table 9.2. With all
stages working in parallel with each other, we execute around four times as many in-
structions in the same period; clearly this depends on factors previously introduced
such as the requirement to keep the pipeline full and further complications we will
introduce later.

To make this scheme possible we need to design a pipelined data-path which
is capable of splitting the original into stages, each of which can operate indepen-
dently on a different instruction. Figure 9.8 describes the “classic” way to do this;
the design is composed of five stages in total: the fetch, decode, execute and write
already described, together with a dedicated memory access stage. There are sev-
eral ways this basic design can be improved but it offers a good, simple starting
point. For brevity, we denote these stages FET , DEC, EXE, MEM and WRI. In
the diagram, notice that the stages are separated by pipeline registers just like in
our basic pipelined circuit; we denote these registers FET −DEC, DEC −EXE,
EXE − MEM and MEM −WRI. The registers hold several different values even
though we have drawn them as a single block. When we need to, we subscript the
pipeline register with the conventional register name from the sequential data-path.
So for example FET − DECPC is the value of the program counter register held
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in pipeline FET − DEC, the value of the instruction register at DEC − EXE is
DEC−EXEIR.

9.2.2.2 Control Strategy

By and large the pipeline stages perform similar roles as the steps performed by the
sequential data-path, they just operate in parallel. To expand on this, we describe the
operation of each stage:

Fetch (FET ) The fetch stage uses its dedicated memory interface to load the next
instruction to be executed; it uses the address stored in the PC register which is
also located within the fetch stage. The PC is either incremented using an adder
or, in the case of a taken branch, updated using values fed in from elsewhere.
When the pipeline advances, the instruction to be executed and also the current
value of PC are passed to the next stage by storing them in FET −DEC.

Decode (DEC) The decode stage takes the instruction from FET − DEC, de-
codes it to recover register addresses and immediate values and uses them to
generate operands for the execute stage. It does this by loading operands from
GPR and by sign extending any immediates. When the pipeline advances, these
operands together with the instruction and current value of PC are passed to the
next stage by storing them in DEC −EXE. The act of moving instructions into
phases of actual execution is sometimes called the issue of instructions; a design
using this strategy is termed single-issue in the sense that only one instruction
passes into the execution stage at a time.

Execute (EXE) Having taken opcode and operands from DEC−EXE, the exe-
cute stage fills a similar role as in the sequential data-path. It simply invokes the
ALU to work on the operands and produce some result. Unlike the diagram, the
ALU may be notionally split into two parts since these operate at the same time:
the main ALU performs arithmetic and logic operations while a secondary unit
performs comparisons. The ALU is fed inputs from either the main operands in
DEC −EXE or secondary operands such as the current PC value which is also
stored in DEC−EXE; multiplexers are used to make this selection which allows
for the increment of PC for example. When the pipeline advances, generated
results are stored in EXE −MEM.

Memory (MEM) The memory access stage is simple. It takes the instruction that
is stored in EXE −MEM and, if it is a memory access instruction (i.e., a load
or a store), performs the corresponding operation. Notice this requires that the
memory access stage has a dedicated interface to the memory, and that the stage
now generates two intermediate results which, along with the instruction, are
stored in MEM −WRI when the pipeline advances. In this particular design, the
memory access stage also feeds the branch condition and computed PC value
back to the fetch stage should a branch be taken.

Write (WRI) Finally, the write stage takes any intermediate results which have
been generated, either by execution of some operation or the loading something
from memory, and writes them into the general-purpose register file. Unlike most



350 9 Advanced Processor Design

other signals in the pipeline that are forward facing, the write stage feeds signals
back to the decode stage where the registers are typically housed. Note that in
the diagram, both the value and the instruction from MEM −WRI are fed back
to the decode stage. Although this might seem odd, the instruction is obviously
required so that one can extract the target register operand and hence know which
register to write the value into: the decode stage cannot know this because it will
be operating on a different instruction at the time !

After the write stage has finished, i.e., execution of the instruction is complete, an
instruction is said to have been retired. Note that with this scheme, strong processor
and memory consistency are clearly guaranteed: instructions have to be retired in-
order, since no instruction can overtake another one in the pipeline, and there is no
re-ordering of memory accesses.

9.2.3 Pipeline Hazards

Due to their complexity and the nature of the tasks they are required to perform,
the pipeline stages (as specified) cause hazards as a result of dependencies between
the instructions they might deal with. This was not the case, for example, with the
pipelined shifter where each stage could work entirely in isolation from the oth-
ers. As discussed previously, the fact that hazards occur is as a direct result of the
data-path design in Figure 9.8: we need some way to identify and resolve hazard
conditions otherwise the data-path will execute a given program incorrectly even if
it would be correct on a non-pipelined design. In this particular data-path, one can
identify several concrete hazard conditions:

Resource Hazards Recall that a resource hazard is where two or more parts of
the pipeline need access to the same hardware resource at the same time. Since
concurrent access to most resources we have discussed is impossible, this is a
problem. For example, we cannot perform an addition and a subtraction at the
same time using a single ALU; if we try, it will not compute the correct result.

Data Hazards A RAW type data hazard occurs when an instruction needs an
operand which has not yet been generated or not yet reached the write stage. In
this case, the processor will try to continue using the wrong operand value and
hence the program would be incorrectly executed.

Control Hazards A control hazard occurs where the fetch stage cannot know
which address the next instruction should be retrieved from. This is typically
because of a conditional branch that has not yet been resolved. If the branch is
taken, the processor needs to fetch instructions from the branch target; if it is
not taken, the processor just continues fetching from after the branch instruction
itself. If the processor just guesses and continues to load instructions from ei-
ther path and turns out to have made the wrong guess, the pipeline will contain
erroneous instructions that could cause the program to execute incorrectly.
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We can demonstrate the manifestation of these hazards using a short program frag-
ment. The fragment does not compute anything particularly useful, it just acts to
provide a common example for all three cases:

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[6]−GPR[7]
GPR[8] ← GPR[2] ·GPR[5]
GPR[9] ← GPR[2]⊕GPR[5]
if GPR[8] 	= 0,PC ← PC +4
GPR[8] ← 1
GPR[9] ← GPR[8]∧GPR[9]
. . .

All instructions in the program are subject to resource hazards when executed on our
example pipelined data-path. This is because both the fetch and execute stages need
access to the ALU at the same time; the fetch stage needs to increment the PC while
the execute stage needs to perform arithmetic in order to execute ALU-dependent
instructions. So for example, when the execute stage is dealing with the addition in
instruction one using the ALU, the fetch stage will also need the ALU to increment
the PC after fetching the third, multiply instruction. Note that we have already had
to solve this particular hazard in our data-path by having a main ALU in the execute
stage and an adder in the fetch stage.

Instruction #2, the multiply, demonstrates a RAW type data hazard. The prob-
lem is that when the instruction reaches the decode stage, it tries to fetch the two
operands GPR[2] and GPR[5] from the register file. However, the values it fetches
will be wrong because the previous two instructions that should produce these re-
sults have not yet written them back. Thus, there is a hazard since if execution
continues as normal, the result in GPR[8] will be computed incorrectly. This is de-
tailed in Figure 9.9; in step three the diagram shows that as instruction #2 reaches
the decode stage instructions #0 and #1, which generate the inputs to instruction #2,
are in the memory access and execute stages respectively.

Instruction #4, the conditional branch, demonstrates a control hazard. The prob-
lem here is that until instruction #2, the multiply, writes a result into GPR[8] the
branch cannot know if that result is zero or not. Hence, it cannot know if the branch
should be taken or not and the fetch unit cannot know where to load further instruc-
tions from. This is again detailed in Figure 9.9 where, in step five, the fetch unit
cannot know where to get instructions from because the branch instruction is still in
the decode stage.
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Figure 9.9 A diagram of data and control hazards in the example program.

9.2.4 Stalls and Hazard Resolution

Pipeline hazards present a problem in the sense a given program might not exe-
cute as expected. Remember that an ISA is essentially an interface; if we build a
pipelined processor that might not execute programs correctly, we are breaking this
interface. There are two main approaches to solving this problem:

1. Alter the processor in such a way that all programs will be executed correctly.
Such alteration means the processor will be more complex but the programmer
will find it easier to use and their programs will be more portable across different
implementations of the ISA.

2. Do not alter the processor at all, and place the burden of responsibility for correct
execution on the programmer. This means the processor can be simpler, since it
does not need to resolve hazards at all, but now the programmer must do more
work themselves.

Definition 41. A stall is where one or more pipeline of the stages are prevented from
advancing so that some activity can finish, for example so that a hazard condition
can be resolved or a multi-cycle operation can occur.

Definition 42. A pipeline bubble is the “gap” left as the result of a pipeline stage
stalling. A NOP instruction is typically inserted into the gap, by either the program-
mer or the control unit, in order to have it executed correctly.



9.2 Pipelined Processors 353

FET DEC EXE MEM WRI

FET DEC EXE MEM WRI

#1#2#3#4

#2#3#4

NOP

NOP NOP

step 5

step 6

Figure 9.10 Solving a control hazard in the example program using a pipeline bubble.

One normally stalls a pipeline processor while it is waiting for an activity to finish
that will take longer than a pipeline cycle. Memory access offers one example of this
but complex ALU operations offer another: division (or even multiplication) can of-
ten take more than one pipeline cycle and so it is common to see stalls occurring
when such multi-cycle operations reach the execution stage. Stages after that which
is stalled can be advanced, stages before cannot and have to stall as well; this is be-
cause in our simple pipeline the instructions cannot overtake each other. Where we
allow stages after the stalled stage to advance, we must fill the gap with something;
this something is a pipeline bubble which we represent as a NOP instruction.

Figure 9.10 demonstrates how using a pipeline bubble might work to solve the
control hazard presented earlier. Recall that instruction #4 was a conditional branch
which could not be resolved until the condition was evaluated; in our case the con-
dition result is fed back from the memory access stage. One can think of this as
requiring the fetch unit to stall; stages after it can still advance if we insert pipeline
bubbles. So instead of filling the pipeline with invalid instructions, the control unit
pads the instruction stream with NOP instructions which have no effect. The pro-
gram now executes correctly because when the the branch is finally resolved the
fetch unit has only injected instructions into the pipeline that do not alter the pro-
gram correctness; execution can therefore carry on from the branch target without
any problem.

Stalling is obviously a problem in terms of performance since it implies some
wasted time. Using pipeline bubbles as a solution to hazard resolution demonstrates
this: the more useless NOP instructions flowing through the pipeline, the lower the
utilisation of resources. Much like the discussion of pipeline utilisation in simple
logic circuits, high throughput is only a good thing if we keep the pipeline full
of useful instructions. This is especially true if one considers the fact that there
are many more instructions that use register operands than those which provoke
branches: using pipeline bubbles to solve data hazards would be detrimental to per-
formance as a result. There are several different techniques to reduce the cost asso-
ciated with resource, data and control hazards; all are valuable because they reduce
degradation of performance.
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Figure 9.11 Solving a data hazard in the example program using a forwarding.

9.2.4.1 Resolving Resource Hazards

Although we have already addressed the issue of the ALU being required in both
the fetch and execute stages of our simple pipeline, resource hazards are more gen-
erally solved in one of two ways. The first approach is to do what we have already
proposed: simply replicate the common resource so that each stage that needs it has
dedicated access. Clearly this is a simple solution in the sense that no real extra
management of the resource is required; the drawback is that it will increase the
processor size, this is particularly problematic if the replicated resource is large.

The second approach is to time-share a single instance of the resource. This
is usually accomplished by splitting a pipeline cycle into phases whereby no two
stages can access the same resource in the same phases but otherwise they are free
to do what they want. Using the ALU example again, we might say that during
the first phase of the pipeline cycle the fetch stage can use the ALU and during
the second, disjoint phase the execute stage can have access. This fits well with the
requirements of other shared resources as well. For example, the general-purpose
registers are effectively shared between the decode and write stages; we might al-
low reads from the decode stage to happen in the first phase and writes from the
write stage to happen in the second phase. Although this does reduce the amount
of logic and hence the processor size, a slight caveat is that in order to share the
resource one potentially needs to multiplex the inputs and demultiplex the outputs;
this adds a small overhead in addition to the added complexity in the control unit.
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Figure 9.12 Altering the pipelined data-path to include forwarding logic.

9.2.4.2 Resolving Data Hazards Using Forwarding

The key reason we might encounter a RAW type data hazard is that one of the
results we want to be in the register file is currently somewhere else within the
pipeline; probably it is held as an intermediate result in one of the pipeline registers.
So in order to get the right result rather than the erroneous one stored in the register
file, all we really need to do is grab the value from a pipeline register rather than
use the ones retrieved from the register files. Figure 9.11 demonstrates this strategy:
instruction #2 needs the results that should be in GPR[2] and GPR[5] but are not yet
because instructions #0 and #1 have not yet reached the write stage. But the results
have actually been computed; they are in the pipeline registers so are forwarded
instead.

This scheme is fairly easily achieved by extending the number of inputs to the
ALU multiplexers and connecting them up to the relevant pipeline registers. The
end result looks a little like Figure 9.12. Each multiplexer is operated by the control
unit which examines the state of the pipeline at the start of each cycle and sets the
multiplexer select signals accordingly; essentially it checks if the source operands
of the instruction at the execute phase match the target operand of an instruction at
the memory access or write stages. If it does, a hazard is detected and we forward
the intermediate result from another stage rather than taking the operands retrieved
during the decode stage.

Notice that we have entirely eliminated the performance penalty associated with
the detection of this particular data hazard. Although we have increased the amount
of logic and complexity in both the pipeline and control unit, the occurrence of a
hazard does not require either the pipeline to stall or a bubble to be inserted. As
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such, the useful throughput of the pipeline is improved to a level equal with the case
where the hazard does not exist.

9.2.4.3 Resolving Control Hazards Using Delay Slots

Consider our example from earlier where we stalled the fetch unit and inserted
pipeline bubble NOP instructions until the branch condition for instruction #4 was
computed. We call this sequence of NOP instructions the branch delay slot; one
can think of the actual branch execution being “delayed” by this amount. We said
that the control unit would insert the NOP instructions for us automatically so that
all programs would execute correctly; a different approach would be to let the pro-
grammer do this themselves. Although this means more work for the programmer, it
allows us to reduce the cost associated with the technique. For example, instruction
#3 is independent of the value GPR[8] and as such it does not matter which side
of the branch it is executed: it can be moved without altering the program meaning
as long as it is actually executed at some point. This ability to reschedule when an
instruction is due to be executed allows us to fill the branch delay slot with useful
instructions rather than NOP instructions. So we might re-write the program, using
horizontal lines to delimit instructions in the branch delay slot, as

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[6]−GPR[7]
GPR[8] ← GPR[2] ·GPR[5]
GPR[9] ← GPR[2]⊕GPR[5]
if GPR[8] 	= 0,PC ← PC +4
NOP
NOP
GPR[8] ← 1
GPR[9] ← GPR[8]∧GPR[9]
. . .

"→

. . .
GPR[2] ← GPR[3]+GPR[4]
GPR[5] ← GPR[6]−GPR[7]
GPR[8] ← GPR[2] ·GPR[5]
if GPR[8] 	= 0,PC ← PC +4
GPR[9] ← GPR[2]⊕GPR[5]
NOP
GPR[8] ← 1
GPR[9] ← GPR[8]∧GPR[9]
. . .

Note that we have had to manually insert NOP instructions to ensure the program
executes correctly and that we have left the branch offset the same: in this simple
example we will assume the PC value we are incrementing is when the branch is
resolved. That is, we assume it takes the value at the end of the delay slot.

Before the change we would have had two NOP instructions in the branch delay
slot, now we only have one which is a minor saving but a saving none the less. With
more complex programs hopefully it is easy to see that one might be able to move
around many more instructions and totally fill the branch delay slot. In this case we
totally eliminate the wasted time associated; the trade-off is that our programmer
needs to take on more work and correctly construct the delay slot content by hand.
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Figure 9.13 1-bit and 2-bit saturating counter style branch predictors.
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Figure 9.14 A two-level predictor for the case n = 2.

9.2.4.4 Resolving Control Hazards Using Speculative Execution

When we discussed control hazards, we stated that we wanted to avoid situations
where the pipeline contained instructions we did not want to execute. The opposite
approach is loosely called speculative execution: we allow such instructions into
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the pipeline and clean-up afterwards if it turns out they should not have been there.
Essentially we are guessing that they should be there: if our guess is right, then exe-
cution can carry on as normal and we have lost nothing, if our guess is wrong (i.e.,
we mispredict the branch) we need to clean-up so the program executes correctly.
We call the ratio of mispredictions per executed branch the misprediction rate. As
long as the misprediction rate is low (i.e., we guess right more often than we guess
wrong) performance will be improved over purely inserting useless pipeline bub-
bles. Implementing a speculative execution scheme requires three mechanisms: one
to control the pipeline correctly; one that performs branch prediction to guess if
a branch will be taken or not; and one that performs branch target prediction to
guess where a taken branch will redirect control-flow to.

No matter how good the branch prediction technique is, the processor will some-
times make the wrong guess. In order to clean-up a situation where there are erro-
neous instructions in the pipeline we need to delete them. One option is to flush the
entire pipeline, emptying it of instructions, and starting again. However we can be
slightly more clever than this and simply replace them with NOP instructions; we
say that the erroneous instructions are squashed. Squashing the erroneous instruc-
tions is slightly harder from a control perspective but helps to avoid a full pipeline
flush which will typically be more expensive.

There are numerous approaches to branch prediction; the subject remains an
active research topic because even small improvements in probability of correct
guesses can have a significant impact on performance. The approaches can be
coarsely grouped into two classes which we expand on below. By static predic-
tion we basically mean prediction which occurs at compile-time, although more
precisely one should make a distinction between fixed prediction and static pre-
diction:

Fixed Prediction One of the most simple approaches would be to assume a sin-
gle, fixed view of whether branches are taken or not; this is fixed prediction.
Such an approach clearly cannot offer much of an advantage, however, since the
prediction made is totally independent of the program structure or the data it is
processing, both of which will have an influence. As such, additional heuristics
or rules of thumb are often used to improve matters. For example, one might
guess that backward branches are always taken while forward branches are not
taken. This rule of thumb models the way loops typically work: the branch back
to the beginning of the loop only fails once [3, 61].

Static Prediction Like many instruction sets, the full MIPS32 ISA includes a
number of branch instructions that operate as normal but additionally hint to the
processor that the branch will be taken or not taken. The idea is that a compiler
or programmer can analyse a program at compile-time, work out the most likely
path and pass this information on to be used by the processor; this is static pre-
diction. For example, the MIPS32 bltz branch also comes in an alternate guise
called bltzl which signals that it is likely that the branch will be taken.

In contrast to static approaches, dynamic prediction typically maintains a historical
record of branch behaviour at run-time. This information maps branch addresses
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to information which is used, according to some scheme, to predict whether that
particular branch will be taken or not:

Saturating Counter One scheme formulates the prediction task as an FSM [40].
Imagine the processor maintains a small cache-like structure called a Branch
Prediction Buffer (BPB) which is used to map a branch to a 1-bit history which
represents a current state in the FSM; each FSM state is labelled to show whether
we should predict the branch will be taken or not. Figure 9.13a shows the FSM.
The history, and hence state, is updated with the actual outcome each time we
execute a branch: if it is taken (denoted T ) or not taken (denoted NT ) we make
the appropriate transition in the FSM and hence update our next prediction.
Of course, a 1-bit history has limited capability so one can generalise the idea
to an n-bit history. For example, Figure 9.13b shows the FSM for a 2-bit history
which allows four FSM states in total: in the two left-hand states we predict the
branch is taken but the most left state is a more confident prediction. This essen-
tially gives a “second chance” to the branch, for example, if it is almost always
taken but not taken just once we still predict correctly with a 2-bit history, yet
make a mistake with a 1-bit history. This scheme is sometimes called a saturat-
ing counter-based branch predictor since one can view the value representing
the history as a counter which is incremented or decremented based on branch
behaviour and which saturates (i.e., stops) at either extreme.

Two-Level Predictor Consider a 2-bit saturating counter-based predictor and a
branch that alternates between taken and not taken, i.e., the i-th time one executes
the branch it is taken if i ≡ 0 (mod 2) and not taken otherwise. If the predictor is
initialised in the “strongly taken” state then it will alternate between the “strongly
taken” and “weakly taken” states and hence only predict correctly half of the
time.
The so-called two-level predictor [69] is one approach to resolving the problem
of such patterns. The idea is to split each entry in the BPB into two parts: one
buffer which tracks the exact history of the associated branch over the last n
executions, and one which holds 2n saturating counter predictors that correspond
to each possibility. This approach, as roughly shown in Figure 9.14 for just one
BPB entry, clearly adds some overhead ! However, at least with the example
above, it solves the problem. Consider the case of n = 2 so that each entry in
the BPB holds the exact history of a given branch over the last two executions.
There are 22 = 4 saturating counters, one each for the cases (NT,NT ), (NT,T ),
(T,NT ) and (T,T ). Each of the counters will “learn” what the correct prediction
is in each case and, crucially, not interfere with each other; the important cases for
the example above are (NT,T ) and (T,NT ) where the branch alternates between
taken and not taken. The history will select the appropriate counter which will
always predict correctly.

In the case where branch prediction indicates a branch will be taken, the processor
needs to know where the branch target is so it can set the PC value. A common
method is to maintain another small cache-like structure called a Branch Target
Buffer (BTB) which maps branch instructions to their predicted target. When ex-
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ecution reaches a branch which is predicted to be taken, the processor checks the
BTB. If the branch instruction is present, then instructions are speculatively fetched
from the predicted target. Of course, since the BTB size is limited a branch might
not be present when we need to make our guess; if it is not, we make an uninformed,
static guess. Either way, once we know the real outcome we can update the predicted
branch target to improve the guess next time the branch is encountered.

9.3 Superscalar Processors

9.3.1 Basic Concept

In terms of design and operation, one can identify a number of characteristics in
the pipelined processor we have already described. Firstly, it represents only a basic
approach to exploiting ILP: the processor parallelises with respect to stages of se-
quential execution. Put more simply, the pipeline does not have multiple PEs which
allow the various types of parallelism demonstrated at the beginning of the chapter;
it cannot for example have two instructions in the execute stage at once. Being very
precise one might not view pipelining as parallelism per-se since each stage in the
pipeline is performing a different task. Secondly, the execution of instructions is in-
order. That is, if instruction X enters the pipeline before instruction Y , then it always
retires before Y . Finally, pipelining only really exploits parallelism in straight-line
instruction sequences; as soon as a branch occurs, the pipeline fails in some sense.
These features have important implications in terms of the limits on performance
improvement such designs can yield. For example, if the instruction X stalls the
pipeline, Y cannot proceed even if there is no dependency between them. Further, if
X uses a different element of the ALU than Y , for example it performs floating point
rather than integer arithmetic, then the hardware used to execute Y will idle while X
is being dealt with and vice versa.

Put very simply, the idea of a superscalar processor is to have a single pro-
cessor front-end which is tasked with preparing instructions for execution and a
back-end which consists of several execution pipelines. Viewing each execution
pipeline as a PE of sorts, the front-end and back-end are responsible (in combina-
tion) for producing two major improvements in relation to the single-issue pipelined
processor. Firstly, the processor is able to cope with several in-flight instructions at
once; dynamic scheduling places instructions into the relevant execution pipeline.
Secondly, as a result of dynamic scheduling, the processor can potentially perform
multiple-issue by placing more than one instruction into an execution pipeline dur-
ing the same clock cycle. The combination of these improvements gives superscalar
performance.

Figure 9.15 attempts to describe the structure of a superscalar processor in a
way that offers a stepping stone from the single-issue pipelined processor. As such,
one can view the diagram as retaining the fetch and decode stages in some form.
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Figure 9.15 A conceptual diagram of a superscalar processor; the part-dashed path between ISU
and the PEs is supposed to show that a given instruction is passed to one PE only.

It includes an issue stage denoted ISU which notionally maintains an issue buffer
of instructions ready to be scheduled. Finally it replicates the other stages to form
execution pipelines specialised to particular tasks. For example, one might have
an arithmetic pipeline to deal with integer arithmetic and a load/store pipeline to
deal with memory accesses. As such, if a given program contains an arithmetic
instruction X and a load instruction Y which have no dependencies on each other, we
might expect the processor to feed the arithmetic pipeline with X and the load/store
pipeline with Y thereby executing X and Y in parallel.

The design of superscalar processors is difficult; this subject probably represents
the most demanding material covered in this book. Our aim is to describe the basic
concepts (rather than many details) at an intentionally high level; we use two de-
signs to step from the original single-issue pipelined processor to a multiple-issue
superscalar processor. First we introduce the concept of a scoreboard and how this
basic design can perform the dynamic scheduling aspect. Then we improve on the
design, by replacing the scoreboard with reservation stations and adding a Re-
Order Buffer (ROB), to realise the multiple-issue aspect. Following these steps
we briefly comment on a number of embellishments which can be used to further
improve performance.

9.3.2 Step 1: Scoreboard-based Design

The name scoreboard originally stems from the CDC-6600, a mainframe computer
from Control Data Corporation deployed in the mid 1960s. The scoreboard is a set
of tables which keeps track of the resources used by multiple in-flight instructions
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ISU RD EXE RET

GPR[3] ← MEM[0]
GPR[4] ← MEM[4]
GPR[5] ← GPR[2] ·GPR[4]
GPR[6] ← GPR[3]+GPR[4]
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 0 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE . . .

Cycle t0 starts by initialising the processor and the associated scoreboard tables.

ISU RD EXE RET

GPR[3] ← MEM[0] t1
GPR[4] ← MEM[4]
GPR[5] ← GPR[2] ·GPR[4]
GPR[6] ← GPR[3]+GPR[4]
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 1 #0 3 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 0 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE LSU . . .

Cycle t1 issues instruction #0.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4]
GPR[5] ← GPR[2] ·GPR[4]
GPR[6] ← GPR[3]+GPR[4]
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 0 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE . . .

Cycles t2 . . . t8 see instruction #0 execute and retire.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9
GPR[5] ← GPR[2] ·GPR[4]
GPR[6] ← GPR[3]+GPR[4]
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 1 #1 4 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 0 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE LSU . . .

Cycle t9 issues instruction #1.

Figure 9.16 Execution of a simple program on a scoreboarded superscalar processor.
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ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10
GPR[5] ← GPR[2] ·GPR[4] t10
GPR[6] ← GPR[3]+GPR[4]
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 1 #1 4 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 0 1 1
MUL 1 #2 5 2 4 LSU 1 0

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE LSU MUL . . .

Cycle t10 issues instruction #2.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11
GPR[5] ← GPR[2] ·GPR[4] t10
GPR[6] ← GPR[3]+GPR[4] t11
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 1 #1 4 1 1
BU 0 1 1
ALU0 1 #3 6 3 4 LSU 1 0
ALU1 0 1 1
MUL 1 #2 5 2 4 LSU 1 0

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE LSU MUL ALU0 . . .

Cycle t11 issues instruction #3 while instruction #1 progresses into execution.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11
GPR[5] ← GPR[2] ·GPR[4] t10
GPR[6] ← GPR[3]+GPR[4] t11
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 1 #1 4 1 1
BU 0 1 1
ALU0 1 #3 6 3 4 LSU 1 0
ALU1 1 #4 7 5 4 MUL LSU 0 0
MUL 1 #2 5 2 4 LSU 1 0

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE LSU MUL ALU0 ALU1 . . .

Cycle t12 issues instruction #4; instructions #2, #3 and #4 are now blocked waiting
for instruction #1.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10
GPR[6] ← GPR[3]+GPR[4] t11
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 1 #3 6 3 4 1 1
ALU1 1 #4 7 5 4 MUL 0 1
MUL 1 #2 5 2 4 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE MUL ALU0 ALU1 . . .

Cycles t13 . . . t16 see instruction #1 execute and retire.

Figure 9.17 Execution of a simple program on a scoreboarded superscalar processor.
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ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17
GPR[6] ← GPR[3]+GPR[4] t11 t17
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 1 #3 6 3 4 1 1
ALU1 1 #4 7 5 4 MUL 0 1
MUL 1 #2 5 2 4 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE MUL ALU0 ALU1 . . .

Cycle t17 shows instruction #1 retire, allowing instructions #2 and #3 to progress
by reading their operands.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 1 #3 6 3 4 1 1
ALU1 1 #4 7 5 4 MUL 0 1
MUL 1 #2 5 2 4 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE MUL ALU0 ALU1 . . .

Cycle t18 sees instructions #2 and #3 progress into execution.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18 t21
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4]

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 1 #4 7 5 4 MUL 0 1
MUL 1 #2 5 2 4 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE MUL ALU1 . . .

Cycles t19 . . . t21 see instruction #3 execute and retire.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18 t21
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4] t22

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 1 #5 4 6 4 1 1
ALU1 1 #4 7 5 4 MUL 0 1
MUL 1 #2 5 2 4 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE ALU0 MUL ALU1 . . .

Cycle t22 issues instruction #5; instruction #4 is blocked waiting for the result of
instruction #2.

Figure 9.18 Execution of a simple program on a scoreboarded superscalar processor.
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ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18 t21
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4] t22 t23 t24 t25

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 1 #5 4 6 4 1 1
ALU1 1 #4 7 5 4 MUL 0 1
MUL 1 #2 5 2 4 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE ALU0 MUL ALU1 . . .

Cycles t23 . . . t25 see instruction #5 finish execution but then get blocked from
retiring because of instructions #4.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18 t27
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18 t21
GPR[7] ← GPR[5]−GPR[4] t12
GPR[4] ← GPR[6]+GPR[4] t22 t23 t24 t25

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 1 #5 4 6 4 1 1
ALU1 1 #4 7 5 4 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE ALU0 ALU1 . . .

Cycles t26 . . . t27 see instruction #2 execute and retire.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18 t27
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18 t21
GPR[7] ← GPR[5]−GPR[4] t12 t28
GPR[4] ← GPR[6]+GPR[4] t22 t23 t24 t25

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 1 #4 7 5 4 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE ALU1 . . .

Cycle t28 sees instruction #5 retire.

ISU RD EXE RET

GPR[3] ← MEM[0] t1 t2 t3 t8
GPR[4] ← MEM[4] t9 t10 t11 t16
GPR[5] ← GPR[2] ·GPR[4] t10 t17 t18 t27
GPR[6] ← GPR[3]+GPR[4] t11 t17 t18 t21
GPR[7] ← GPR[5]−GPR[4] t12 t28 t29 t30
GPR[4] ← GPR[6]+GPR[4] t22 t23 t24 t25

B O Fa Fb Fc Qb Qc Rb Rc

LSU 0 1 1
BU 0 1 1
ALU0 0 1 1
ALU1 0 1 1
MUL 0 1 1

GPR[0] GPR[1] GPR[2] GPR[3] GPR[4] GPR[5] GPR[6] GPR[7] . . . GPR[31]
PE . . .

Cycles t29 . . . t30 see instruction #4 retire.

Figure 9.19 Execution of a simple program on a scoreboarded superscalar processor.
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as they progress through execution. The information in the scoreboard can thus be
used to exert centralised control over instruction scheduling so that, for example,
an instruction cannot be issued before the associated operands are available. The
CDC-6600 employed this system to great effect, keeping ten parallel PEs (mainly
floating point execution units) supplied with instructions.

9.3.2.1 Scoreboard

Roughly speaking, there are three components in a scoreboard:

Definition 43. The scoreboard contains an instruction table called IT which records
the status of each in-flight instruction, i.e., whether the instruction is being issued,
reading operands, in execution or writing results. The number of entries in the table
should be equal to the largest possible number of in-flight instructions; we use IT [ j]
to refer to the j-th such entry and make the simplifying assumption that the table is
always large enough to cope with our examples.

Definition 44. The scoreboard contains an execution table called ET which records
the status of each PE. There is one entry in the table for each of the PEs; we use
ET [ j] to refer to the j-th such entry which contains the following fields:

1. ET [ j]B, a flag which is conditionally set depending on whether the j-th PE is in
a busy or idle state.

2. ET [ j]O, a field which details the operation the j-th PE will perform.
3. ET [ j]Fa , the target register of the instruction being dealt with by the j-th PE, or

blank if the PE is idle; ET [ j]Fb and ET [ j]Fc , the source registers of the instruction
being dealt with by the j-th PE, or blank if the PE is idle.

4. ET [ j]Qb and ET [ j]Qc , the PE numbers which will produce the source operands
in ET [ j]Fb and ET [ j]Fc

5. ET [ j]Rb and PR[ j]Rc , flags which are conditionally set depending on whether
ET [ j]Fb and ET [ j]Fc contain operands that are ready for use, or whether the
operands are yet to be produced by the PEs specified by ET [ j]Qb and ET [ j]Qc .

Definition 45. The scoreboard contains a register table, which in reality might be
merged with the register file, containing details for each register that show which
PE is currently engaged in an operation which will write into it. There is an entry
for each register in the general-purpose register file; we use RT [ j] to refer to the j-th
such entry.

9.3.2.2 Control Strategy

Using components detailed in Figure 9.20, execution of instructions is performed
by the following control strategy:



9.3 Superscalar Processors 367
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Figure 9.20 Step 1: a scoreboard-based superscalar data-path.

Fetch (FET ) and Decode (DEC) Instructions are fetched from memory as nor-
mal and decoded (so, for example, it is clear which source and target registers
are used) into the issue buffer; the scoreboard tables are updated to include the
instruction.
Note that unlike the single-issue pipeline described previously, the DEC stage
does not fetch register operands from the register file; this task is deferred until
later.

Issue (ISU) An instruction X in the issue buffer is stalled in the ISU stage until

• all instructions Y that target the same register as X retire, and
• some PE capable of processing X is idle.

These conditions cope with the potential for WAW and resource hazards respec-
tively; when they are satisfied, the instruction is allowed to progress to the RD
stage and the scoreboard tables are updated.

Read (RD) Before actually being executed, an instruction X stalls again in the
RD stage until the required source operands are available; this copes with the
potential for RAW hazards. When the operands are available, they are read and
the instruction is passed to the associated PE.

Execute (EXE) An instruction X then starts to be executed by the associated PE.
As a result of passing through different PEs, different instructions might take
different lengths of time to finish execution: a later instruction Y in program
order might finish execution before X does.

Retire (RET ) An instruction X is stalled again before writing-back result so all
instructions Y , that use the same register as a source operand that X produces
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as a target operand, finish the read stage. This copes with the potential for WAR
hazards. At this point, X writes any results to target registers and the instruction
retires before being deleted from the scoreboard tables.

This strategy has some characteristics and related terminology which need to be
highlighted. Firstly, note that by design there are three simplifications which are
less than ideal. Firstly, although the processor can perform dynamic scheduling to
keep multiple PEs busy at once, it cannot issue more than one instruction per-cycle.
Secondly, there is no processor consistency: there is nothing to say an instruction
X that passes through a low-latency PE might finish execution before another in-
struction Y that passes through a PE with higher latency, even if X comes after Y
in program order. Thirdly, we have glossed over the execution of branches: as such
one should assume there is no speculative execution, once a branch is fetched into
the issue buffer it blocks all subsequent instructions until resolved. Finally, we can-
not cope with the fact that a given PE might be sub-pipelined: only one instruction
can reserve the PE as a resource at a time. This could potentially be resolved by
adding each sub-pipeline stage as a pseudo-PE in the scoreboard table, but for now
we ignore this.

Other aspects of the strategy are choices that we will expand on later. In particu-
lar, the strategy uses what is called in-order issue. This means that instructions can
only be issued to PEs in the same order they appear in the issue buffer; if instruc-
tion X is before instruction Y in the buffer, X is always issued before Y even if X is
blocked and Y could be issued. Put another way, this means the issue buffer operates
as a First-In First-Out (FIFO) structure.

9.3.2.3 Example Execution

Since the main aim of the control strategy above is to schedule instructions into PEs
dynamically, the actual behaviour is highly dependent on the program a processor
is executing. In that sense, it is difficult for a single example to capture all the cases
which could occur. On the other hand, without an example it is difficult to get a grasp
on how the control strategy, and hence the processor, behaves. We try to compromise
between these two factors by using the program fragment

. . .
GPR[3] ← MEM[0]
GPR[4] ← MEM[4]
GPR[5] ← GPR[2] ·GPR[4]
GPR[6] ← GPR[3]+GPR[4]
GPR[7] ← GPR[5]−GPR[4]
GPR[4] ← GPR[6]+GPR[4]
. . .

The idea is to consider this program executing on a scoreboarded superscalar proces-
sor that contains five different PEs: LSU , a Load/Store Unit (LSU) which is tasked
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with execution of memory accesses; BU , a Branch Unit (BU) which is responsible
for executing branch instructions; ALU0 and ALU1, two integer ALUs which execute
all single-cycle integer instructions (e.g., addition and subtraction); and a dedicated
unit for multiplication called MUL. We will assume that the processor is only able
to perform single-issue, i.e., that only one instruction can be issued by the front-end
into the back-end per-cycle. We already noted that our control strategy cannot cur-
rently cope with any PE being sub-pipelined. However, because of their different
behaviour, the PEs have different latencies associated with them: LSU takes five cy-
cles to perform a memory access; BU takes three cycles to process a branch; ALU0

and ALU1 take three cycles to perform integer arithmetic; and MUL takes nine cy-
cles to multiply numbers together. As a result, although the processor is single-issue
it is still possible to have multiple instructions being executed in parallel.

Figure 9.16 through to Figure 9.19 detail (at some length) program execution. In
each part, instead of writing simply true or false in the IT table when an instruction
has completed or not completed a given stage, we write the cycle in which this event
occurs: this gives a more instructive way to track execution as it progresses. Where
no interesting events occur within a given period, we omit the associated diagram
for brevity.

From cycles t0 to t9, nothing too interesting happens: instructions #0 and #1, the
two loads, start to execute. The second one is blocked from being issued by the first
one because of the resource hazard (i.e., there is only one LSU). The first load starts
at t3 and eventually retires five cycles later at t8 which allows the second load to be
issued at t9. In cycle t10 more interesting things start to happen. In particular, we can
issue instruction #2, the multiply, into MUL while the load is being processed by
LSU . Note that cycle t10 represents a point where we could perform multiple-issue
if able to do so, i.e., issue instruction #2 and instruction #3 in the same cycle. At
cycle t11 we see that instruction #1 is being executed but instruction #2 is blocked
at the read stage because it is waiting for the value in GPR[4] to become available.
That is, the instruction is blocked from progress to avoid the RAW hazard associated
with the dependency between the instructions; one can see in the RT table that the
LSU will produce the value in GPR[4] and in the ET table that the ET [4]Rc flag, i.e.,
the one for the MUL PE, is zero meaning that the second operand is not available.
Also in cycle t11 we can issue instruction #3 into ALU0. In cycle t12 we can issue
instruction #4 into the ALU1 PE. Note that we now have three instructions waiting
for LSU to finish executing the second load instruction, and that instruction #4 is
additionally waiting for MUL to finish execution of the multiply. Finally, in cycle
t16 the load retires and the value in GPR[4] is ready for use; this allows instructions
#2 and #3 to progress through the read stage in t17. Note that instruction #4 is still
blocked because it is waiting for the result of multiplication. In cycle t18 both in-
structions #2 and #3 begin execution; instruction #3 finishes execution three cycles
later in cycle t21 but instruction #2, which has a much higher latency, is still being
dealt with. After instruction #3 retires, ALU0 becomes free which means we can
issue instruction #5 to it in cycle t22: before this, instruction #5 was blocked as a
result of the associated resource hazard.
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Cycles t23 to t25 detail the progress of instruction #5; note that instruction #4
is blocked waiting for the result of instruction #2 which is still being executed.
Cycle t25 is interesting because one might expect instruction #5 to retire. However,
it is blocked from doing so because it would write to GPR[4], the same register
that instruction #4 is yet to read from: to avoid the WAR hazard that results from
the associated dependency, instruction #5 is essentially blocked from retiring until
instruction #4 has finished the read stage. At cycle t27 the multiplication finally
finishes and instruction #2 retires. This allows instruction #4 to read the required
operands in cycle t27 and, in turn, for instruction #5 to retire by writing-back the
result it had been hanging on to. Finally, the program fragment finishes execution in
cycle t30 when instruction #4 retires.

9.3.3 Step 2: Reservation Station-based Design

By examining the initial design above, particularly looking at the example execu-
tion, one can identify a few drawbacks. Firstly, there are clearly some points which
we knowingly avoided (for example multiple-issue, pipelined PEs); of course one
can improve the design in these respects. Furthermore, one might conceptually view
scoreboarding as unattractive because of scalability. One argument against cen-
tralised control could be that it is harder to add more PEs to the system since the
scoreboard will grow very large.

Secondly, there are some more subtle features. The use of an in-order, blocking
single-issue strategy means that potentially an instruction can block the issue of
another where there is no requirement to do so. For example, consider some non-
dependent instructions X and Y where X occurs before Y in program order. If there is
no free PE to accept instruction X , instruction Y is blocked from being issued even
if there is a free PE to accept it. Furthermore, there are other stages of execution
where instructions can be stalled where there is no need. Again consider an example
of instructions X and Y which this time write to the same register, i.e., imply a
WAW hazard and hence potentially stall during the issue stage. We have already
seen that this form of dependency is in some sense a fake: if the programmer (or
processor) could re-write the program somehow so that Y used a different register,
this potential to stall is removed. Clearly these features are undesirable since they
degrade performance.

In the mid to late 1960s Robert Tomasulo, then a researcher at IBM, developed
what is now a fundamental algorithm [62] for improved dynamic scheduling. The
algorithm was developed to manage floating-point PEs within the IBM 360/91 com-
puter. Roughly speaking, there are three main alterations to the initial design from
above:

1. The centralised scoreboard is (mostly) removed, with control information dele-
gated to a number of reservation stations. Each reservation station is similar to
the combination of an issue buffer and scoreboard tables. The basic idea is to
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buffer or shelve instructions, controlling them in a more decentralised way, until
they are ready to be dispatched into the corresponding PE.

2. A so-called Common Data Bus (CDB) is implemented as the path by which
instructions write results to the register file. The main innovation here is a for-
warding mechanism whereby if an instruction buffered within a reservation sta-
tion requires a value being written into the register file, it can collect the value
“early” rather than waiting until it can be subsequently read.

3. A Re-Order Buffer (ROB) structure is added to perform three duties:

a. Resolve the lack of processor consistency by ensuring instructions retire in-
order even if they reach the retire stage out-of-order.

b. Enable a mechanism called register renaming. Conceptually, one can see
this as splitting the definition of registers into two: an architectural register
is a register specified as part of an instruction and as prescribed by the ISA, a
physical register is the actual hardware register that a reference to a specific
architectural register is backed by.
Note that we can have more physical registers within the processor than ar-
chitectural registers specified in the ISA. The technique is register renaming,
very roughly, means the processor mapping between the two sets dynamically
so as to remove WAR and WAW style hazards.

c. Enable speculative execution to occur so that the high cost of branches (due to
their blocking every other instruction until resolved in the initial design) can
be reduced.

9.3.3.1 Reservation Stations and Common Data Bus (CDB)

Even with reservation stations, we retain two aspects of the scoreboard-based de-
sign, namely the IT and RT tables which record instruction status for each in-flight
instruction, and the reservation station slot (previously PE) which will generate each
register. Each reservation station records similar but subtly different information to
the scoreboard table ET . The idea is that each reservation station is issued instruc-
tions; each acts as a buffer where such instructions wait until their operands are
available and they can be dispatched into an associated PE.

Definition 46. The i-th reservation station RSi has a number of slots, i.e., the table
RSi has a number of rows; we use RSi[ j] to refer to the j-th such slot in the i-th
reservation station which contains the following fields:

1. RSi[ j]B, a flag which is conditionally set depending on whether the PE associated
to the i-th reservation station is in a busy or idle state.

2. RSi[ j]O, a field which details the operation the PE associated to the i-th reserva-
tion station will perform for the instruction in slot j.

3. RSi[ j]Vb and RSi[ j]Vc , the value of the source operands (previously the register
number) used by the instruction in slot j within the i-th reservation station, or is
blank if the value is not yet available.
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4. RSi[ j]Qb and RSi[ j]Qc , the reservation station slot which will produce the source
operands in RSi[ j]Vb and RSi[ j]Vc or is blank if those operands are already avail-
able.

In a sense, one can view the reservation stations simply like a distributed scoreboard
except that it is value based rather than address based: it stores the value of operands
rather than the register number where the operand is located. This implicitly means
the reservation stations manage the problem of RAW hazards in that an instruction
cannot be dispatched from a slot before the operand values are filled.

If an operand value already exists within the register file, it is read during issue of
the instruction into the reservation station. If not, i.e., there is some other instruction
being executed that will generate the value as a result, then normally the instruction
would stall until the value is available: this means waiting for the associated read
from the register file. The CDB, which passes results from the PEs to be written
into the register file, provides a significant advantage over this situation by allowing
a form of forwarding. Imagine each reservation station sits monitoring the CDB.
When a value passes along it which is required as an operand value in some slot, the
value is copied directly from the CDB into that slot; this in turn potentially enables
dispatch to occur at once rather than having to wait for the operand to be written to
and then read from the register file.

Issue of instructions into the reservation stations is still in-order. However, imag-
ine there are two instructions X and Y in a reservation station and they both become
ready for dispatch at the same time (maybe one value on the CDB enables two
instructions at the same time). This implies the need to choose which of them to
dispatch. The reservation station could dispatch the instruction which is first in pro-
gram order, performing the analogy of in-order issue that we call in-order dispatch.
However, given X and Y are both free from dependency there is no real reason why
such a strategy is necessary: the reservation could perform out-of-order dispatch
by selecting an instruction more arbitrarily.

Note that where the processor can dispatch more than one instruction per-cycle,
the CDB must be able to support the fact that multiple instructions may want to
write results at the same time. If this were not the case, dispatch from the front-end
would soon be prevented as instructions form a traffic jam in the back-end.

9.3.3.2 Re-Order Buffer (ROB)

The concept of a Re-Order Buffer (ROB) is the somewhat canonical way to ensure
processor and memory consistency which has, up until now, been lacking.

Definition 47. The ROB is basically a circular buffer; it has a number of slots, where
we denote the i-th such slot as ROB[i], and a head and a tail pointer that we denote
ROBhead and ROBtail .

When instructions are ready to be issued, they are allocated an entry in the ROB
at the tail pointer. When instructions are ready to retire, they can only do so once
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all previous instructions resident in the ROB have retired; essentially this means in-
structions are removed from the ROB at the head pointer. Only when an instruction
is completed by removing it from the ROB is it allowed to write any results to the
architectural registers and/or memory. Essentially this enforces in-order comple-
tion: even if instructions are dispatched out-of-order or overtake each other within
PEs of different latency, they still retire in-order so that consistency is maintained.
Note that where the processor can issue more than one instruction per-cycle, the
ROB needs to be able to retire more than one instruction per-cycle otherwise the
same traffic jam occurs as described above.

The second benefit of the ROB is that it gives a fairly simple solution to im-
plementation of register renaming. In concept, register renaming is fairly easy.
Imagine there are n architectural registers addressable by the programmer via the
ISA, and the i-th architectural register is GPR[i]. However, the abstractly described
architectural registers are implemented, or backed, by physical registers within the
processor. Imagine the physical register file is some larger collection, say of size m
registers, where the i-th physical register is PRF [i]. With such a design a rename
table, say RNT , is maintained to map architectural registers to physical registers.
Every time an instruction uses an architectural register as a source operand, we use
RNT to map the address to one of the physical registers. Every time an instruction
uses an architectural register as a target operand, we allocate an unused physical reg-
ister use that as the target and update RNT to remap subsequent register addresses.
Consider a case where there are 32 architectural registers and 64 physical registers
and where the RNT is initialised to

RNT [0] = 0
RNT [1] = 1
RNT [2] = 2
RNT [3] = 3
RNT [4] = 4
RNT [5] = ⊥

...
RNT [31] = ⊥

Here the ⊥ symbol is used where no physical register has yet been allocated to
the corresponding architectural register. At the start of the chapter we described the
problem of so-called “fake” dependencies; these can be dynamically resolved by a
processor using register renaming:

. . . . . .
GPR[2] ← GPR[3]+GPR[4] PRF [5] ← PRF [3]+PRF[4]
GPR[5] ← GPR[2]+GPR[2] "→ PRF [6] ← PRF [5]+PRF[5]
GPR[2] ← GPR[3]−GPR[4] PRF [7] ← PRF [3]+PRF[4]
. . . . . .
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The register addresses of source operands in instruction #0 are mapped using RNT
from GPR[3] and GPR[4] to PRF [3] and PRF [4] since RNT [3] = 3 and RNT [4] = 4.
The target operand is allocated a new physical register; for example, we know that
PRF [5] is currently unused (i.e., no architectural register currently maps to it) so we
allocate and use it, then update so that afterwards RNT [2] = 5. The result of this
is that source operands in instruction #1 are mapped using RNT from GPR[2] to
PRF [5]. The target operand is again allocated a new physical register so that this
time RNT [5] = 6. When instruction #2 has renaming applied we see that the “fake”
output dependency, that would have existed between instructions #2 and #0 as a
result of them both targeting the same register, is gone: the renaming process has
allocated a new physical register for instruction #2 to use and hence the two can
potentially execute at the same time.

Although use of a dedicated renaming table is conceptually the neatest way to see
how register renaming works, in practise the ROB offers a simple way to implement
the same functionality. Each instruction is already allocated a slot in the ROB when
it is issued. Therefore, one can view the ROB slot as basically being the physical
register that each instruction is allocated as a target.

9.3.3.3 Branch Unit (BU)

The example execution given for the scoreboarded design did not include any branch
instructions; this masks the added complexity of branch management in a super-
scalar processor. As stated, the control strategy has to block all subsequent instruc-
tions from being issued when a branch is encountered. This ensures that there are no
in-flight instructions which are invalid. In terms of implementation, one can think of
this as an extra rule in the ISU stage which blocks issue whenever the BU is active.

However, in the context of the single-issue pipelined processor described ear-
lier, we introduced the concepts of speculative execution and branch prediction as
a means of improving performance versus simply leaving the processor idle while
a given branch is resolved. On one hand, although matters are complicated by the
increased number of in-flight instructions, the same techniques can be applied here.
In part, this allows for much higher levels of performance because it permits the
exploitation of ILP across branches. In more detail, the single-issue pipeline mo-
tivated us to use speculative execution in order that the pipeline was kept full of
instructions. Performance in a superscalar processor is more or less dependent on
keeping the PEs active: by using speculative execution we can actually overlap exe-
cution within PEs and exploit ILP in a way which was not possible with the single-
issue pipeline. However, one could also point at potential drawbacks. Consider a
single-issue pipelined processor X and a superscalar processor Y for example:

• In Y there are more computational resources (i.e., PEs) available than in X ; as
a result, any branch which stalls instruction fetch will waste relatively more re-
sources on Y than on X . That is, since Y could do more work, having it sit idle is
more costly in some sense.
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• In Y there can potentially be more instructions in-flight at a given point in time
than in X ; as a result, an incorrect branch prediction within a speculative execu-
tion framework will need to do more work to squash invalid instructions and also
waste relatively more resources.

Speculative execution can be easily supported by extending the ROB. The general
idea is to add a flag to each ROB entry which determines if an in-flight instruction
is being executed speculatively or not. Instructions with their speculative ROB flag
set are not allowed to retire until the associated branch is resolved: if the speculation
was correct, then they can complete as normal; if not, then they are simply squashed
and removed from the ROB without writing any results.

9.3.3.4 Load/Store Unit (LSU)

Conceptually, we have so far viewed the Load/Store Unit (LSU) as simply another
PE which performs memory accesses for us rather than computation. However, in
reality the implementation of an LSU involves the solution of some subtle issues re-
lated to correctness and performance of said accesses. Internally, the LSU maintains
two sets of buffers:

1. a set of load buffers into which pending loads are placed, and
2. a set of store buffers into which pending stores are placed.

which basically act in a similar way to reservation stations; in some descriptions,
the LSU is treated as a special case PE without a dedicated reservation station.

A given load or store is performed as a two step process: first the effective address
is calculated, then the actual memory access is performed. Any memory access is
stalled until the effective address is available (perhaps computed by another PE)
in the same way that an arithmetic instruction is stalled until all source operand
values are available. However, a subtle difference is that the effective address is not
communicated to the load or store buffers over the CDB: it has to be read from
the register file. Since the ROB ensures in-order completion of instructions, this
means effective addresses are completed in-order and hence that memory accesses
are performed in-order: strong memory consistency is ensured.

Given that memory access takes a relatively long time, it is possible that the load
or store buffers have several pending loads or stores in them a sub-set of which are
ready to be performed. As such, there is an opportunity to re-order the accesses,
i.e., revert to weak memory consistency, if it could be advantageous. For example,
imagine a load X comes before another load Y in the program order but the effective
address calculation for X takes much longer than Y for some reason: it could make
sense to perform the loads out-of-order.

Crucially, if loads or stores use different effective addresses, then there is no
dependency between them and no hazard will result from re-ordering them. One
can think of this in the same terms as dependencies between instructions that access
the register file, except that here we consider memory locations rather than registers.
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If loads or stores use the same effective address, things are much more tricky. The
most conservative approach is to perform accesses according to a non-speculative
access scheme. The scheme waits until memory accesses are ready to be performed,
i.e., the effective addresses are available, and then compares them with each other in
a pair-wise manner. For two accesses X and Y where X is before Y in program order,
either the effective addresses are different, in which case they can be re-ordered, or
they are the same, in which case there are four possible situations:

X is a load, Y is a load In this case the two loads can be re-ordered as required:
it does not matter in which order X and Y are performed, they still get the right
value.

X is a store, Y is a load In this case, re-ordering X and Y would result in a RAW
hazard since X would get the value that existed in memory before Y was executed
rather than the value stored by Y . As such, Y has to be stalled until X is retired.

X is a load, Y is a store In this case, re-ordering X and Y would result in a WAR
hazard since X would get the value stored by Y rather than the value that existed
in memory before Y was executed. As such, Y has to be stalled until X is retired.

X is a store, Y is a store In this case, re-ordering X and Y would result in a WAW
hazard since any load from the address after the two stores would get the value
stored by X rather than that stored by Y . As such, Y has to be stalled until X is
retired.

These rules can be relaxed by a speculative access scheme. Essentially this means
that the LSU does not wait for the effective addresses of X and Y to both be available:
it guesses that they are different. For example, where the effective address of X is
not available but the effective address of Y is, it could make sense to speculatively
re-order X and Y . It turns out that this only makes sense in the case where X is
a store and Y is a load: if the speculation fails, i.e., X and Y turn out to use the
same effective address, the processor can reissue Y to ensure it gets the right value.
In other cases speculative re-order means reversing an actual memory access, an
action which is seldom feasible.

9.3.3.5 Control Strategy

Using components detailed in Figure 9.21, execution of instructions is performed
by the following control strategy:

Fetch (FET ) and Decode (DEC) Instructions are fetched from memory. Note
that since our aim is to the issue of more than one instruction per-cycle, the pro-
cessor needs to fetch (and decode) more than one instruction per-cycle as well.
In short, this means that the front-end must include a mechanism to keep up with
the demand for instructions, otherwise the back-end will be starved of work.
Instructions are taken from the FET stage, decoded (so, for example, it is clear
which source and target registers are used) into the issue buffer; the scoreboard
tables are updated to include the instruction. Note that unlike the single-issue
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Figure 9.21 Step 2: a reservation station-based data-path with ROB.

pipeline described previously, the DEC stage does not fetch register operands
from the register file; this task is deferred until later.

Issue (ISU) An instruction X in the issue buffer is stalled in the ISU stage until
there is a reservation station slot free for some PE capable of processing X . When
such a slot becomes free

• read any available operand values from the register file,
• allocate a slot at the tail of the ROB,
• issue the instruction into the free reservation station slot.

Dispatch (DIS) An instruction X housed in a reservation station slot stalls in the
DIS stage until all operand values are available; the reservation station monitors
the CDB for newly available results and fills them in as appropriate. When all the
operand values for X are available, make a choice between potentially executable
instructions within the reservation station and pass one of them into execution.

Execute (EXE) An instruction X then starts to be executed by the associated PE.
As a result of passing through different PEs, different instructions might take
different lengths of time to finish execution: a later instruction Y in program
order might finish execution before X does.

Write (WRI) When execution of some instruction X is finished, write the result
onto the CDB (so it can be used by any reservation station slots), and into the
ROB entry. The slot occupied by X in a reservation station can now be made
free.

Retire (RET ) Once an instruction has finished execution, it stalls waiting until
it reaches the head of the ROB buffer and is retired. The process of retirement
depends on the instruction type:
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• an arithmetic instruction will retire by writing results into the register file,
• a store instruction will retire by writing results into memory,
• a branch instruction will retire by either

– squashing all other instructions in the ROB with their speculative execution
flag set in the case where the branch was mispredicted (this implies the
need to restart execution at the correct branch target), or

– clearing the speculative execution flags of all other instructions in the ROB
if the branch was correctly predicted.

Note that the control strategy has a slight inefficiency: sometimes an instruction
will be issued to a reservation station in a state where it is immediately ready to be
dispatched, i.e., with all operand values available. In this case the instruction pays a
penalty of having to wait one cycle whereas in reality this could be improved upon
by allowing a form of forwarding from the issue buffer, bypassing the reservation
station, and straight into the associated PE. This basically allows such instructions
to be issued and dispatched in the same cycle.

9.3.4 Further Improvements

9.3.4.1 Trace Caches

More usually used within the context of compiler design, the term trace is used to
describe a non-cyclic sequence of instructions that could be executed consecutively.
A given program will have many overlapping traces; a given trace may never be
executed or executed very often based on the data-dependent nature of the program.
To make this clearer, consider a short contrived program that takes two values held
in GPR[3] and GPR[4] and sets GPR[5] to the square of their maximum:

. . .
GPR[2] ← GPR[3]−GPR[4]
if GPR[2] ≤ 0,PC ← take

skip : GPR[5] ← GPR[3]
PC ← done

take : GPR[5] ← GPR[4]
done : GPR[5] ← GPR[5] ·GPR[5]

. . .

In this case, control-flow can proceed through one of two traces: either it goes
through instructions #0, #1, #2, #3 and #5 (i.e., the conditional branch is not taken,
or GPR[4] is the maximum) or through instructions #0, #1, #4 and #5 (i.e., the con-
ditional branch is taken, or GPR[3] is the maximum). Notice that the two traces
overlap in that they both contain instructions #0, #1 and #5, and that the trace actu-
ally executed is data-dependent meaning we can only know at run-time which was
executed.
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Figure 9.22 A conceptual diagram of a superscalar processor with hyperthreading.

The basic idea of a trace cache [58] is fairly simple. Such a device aims to capi-
talise on the fact that quite often, a small set of traces dominates execution. For ex-
ample, with a program that contains a loop one would expect the trace representing
instructions in the loop body to be executed many times. Of course, an instruction
cache should capture such traces so that access to their constituent instructions is
efficient. However, even if access to instructions in the cache is efficient, the pro-
cessor still incurs the cost of passing them through potentially costly stages of fetch
and decode. To reduce this cost the trace cache holds instructions from the work-
ing set of traces in a pre-decoded form, i.e., roughly in the form they would be in
when decoding is finished. As a result, when an instruction fetch is required but the
instruction is found in the trace cache, it can more or less bypass work normally
performed by the processor front-end and progress straight into the issue buffer.

9.3.4.2 Hyperthreading

Even with a trace cache, there will be times when it is hard for the front-end to sup-
ply enough instructions to the back-end so that all execution pipelines are kept busy.
For example, if a program performs a high proportion of memory accesses then the
arithmetic pipelines may often be idle. This is problematic since it is the inherent
nature of the program which causes under-utilisation of the execution pipelines, not
really the processor.

As an approach to solving this problem, Intel introduced the concept of hy-
perthreading in their Pentium 4 range of processors. Hyperthreading is a spe-
cific example of a more general strategy for parallel processors termed Simulta-
neous Multi-Threading (SMT) whereby independent threads (i.e., program con-
texts) share the execution resources. The basic idea is to duplicate elements of the
front-end that retain program state, essentially allowing several separate instruction
streams to be fed into the back-end. By doing so, the hope is that the composed in-
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struction stream dealt with by the back-end will be more diverse. That is, if stream
#0 is composed mainly of memory access instructions and stream #1 mainly of arith-
metic instructions, then their composition will avoid idle execution pipelines rela-
tive to only considering one or the other in isolation. Or if an instruction in stream
#0 causes some stall condition, as the result of a cache miss for example, instruc-
tions from stream #1 can prevent the execution resources becoming idle. Figure 9.22
shows a conceptual diagram of a superscalar processor with hyperthreading; the di-
agram shows the general structure, in the specific example of the Pentium 4 there
are just two duplicated parts of the front-end.

9.4 Vector Processors

9.4.1 Basic Concept

The processors we have examined so far operate on scalar data items and try to
detect and capitalise on implicit ILP. An alternative approach is where ILP is made
explicit somehow; the use of vector processors is one example of this approach.
Conceptually, this is an easy step to make. In a scalar processor, the natural units of
computation are single values held in registers. In a vector processor, one operates
using registers that contain p separate values. Consider a simplistic example where
we want to execute a vector addition:

Ai ← Bi +Ci, for i ∈ {0 . . . p−1}

which we could implement in C using the function:

void add( int* A, int* B, int* C, int p )
{
for( int i = 0; i < p; i++ ) {
A[ i ] = B[ i ] + C[ i ];

}
}

where A, B and C are all arrays of, say, 32-bit integers. Often, this sort of operation
is termed a pure vector operation in the sense that computation is happening only
component-wise: the i-th element of the result is generated using only the i-th ele-
ments of the inputs. Using Flynn’s Taxonomy, this is clearly SIMD type parallelism.
On a scalar processor we could implement the loop as follows:
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Figure 9.23 A conceptual diagram of two vector processors; the top design integrates a VPU as
a standard superscalar PE, the bottom design opts for a dedicated VPU which is invoked by the
execution stage of a scalar control processor.

GPR[2] ← 0
GPR[3] ← p

loop : if GPR[2] ≥ GPR[3],PC ← exit
GPR[4] ← MEM[&B+GPR[2]]
GPR[5] ← MEM[&C+GPR[2]]
GPR[6] ← GPR[4]+GPR[5]
MEM[&A+GPR[2]] ← GPR[6]
GPR[2] ← GPR[2]+1
PC ← loop

exit : ...
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But imagine that instead of our standard register file GPR which stores a single 32-
bit value, we had a vector register file where each register stores p such values.
Let V R[i] denote the i-th vector register and V R[i][ j] denote the j-th value or sub-
word in the i-th register. Clearly we also need some vector instructions capable of
operating on values held in the vector register file. Equipped as such, the whole loop
collapses into a few instructions:

V R[4] ← MEM[&B+0] . . .MEM[&B+ p−1]
V R[5] ← MEM[&C+0] . . .MEM[&C+ p−1]
V R[6] ←V R[4]+V R[5]
MEM[&A+0] . . .MEM[&A+ p−1] ←V R[6]
...

Of course, each vector instruction is hugely complex compared to the equivalent
scalar instruction; in some sense, one might view a vector processor as an embod-
iment of CISC design. Important examples of this complexity are the vector add
instruction which uses V R[i] and V R[ j] as source operands and produces a result in
V R[k] essentially computing p additions, and the vector load and store instructions
which load or store p values from or to memory starting at some base address.

One might classify the technique as using static scheduling, since the specifi-
cation of parallelism is done at compile-time, and single-issue, since the processor
issues one instruction per-cycle (even though each instruction implies many similar
operations). There are several important benefits that result:

1. Normal work over vector operands (i.e., the loop) contains branches; without
them, vector programs have fewer control dependencies.

2. Since parallelism within vector operations is explicit, less hardware is required
to manage issues of data dependency and effectively exploit the parallelism.

3. The vector program captures the entire loop in a few instructions; the burden on
fetch and decode stages is therefore reduced.

4. Memory access patterns resulting from vector loads and stores are much more
regular (e.g., vector elements are contiguous in memory).

This topic has a rich history [20]; a (very) rough time line of interesting advances
starts around 1960 when development of the ILLIAC IV computer started at the
University of Illinois, based on previous research by Westinghouse Electric. When
delivered the computer had 64 parallel ALUs and could reach up to 100 MFLOPS.

9.4.2 A Dedicated Vector Processor

There are numerous design options for vector processors. For example, a register-
register design is similar to a load-store RISC design: one cannot mix operands from
registers and memory. In contrast, a memory-memory design uses operands that are
always loaded from and stored into memory. Consider a naive design for a vec-
tor processor based on a register-register approach: from an initial scalar processor
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Figure 9.24 A strided (i.e., r < p) vector register file.

we would replace GPR[i] with V R[i] that holds p values and replicate the ALU p
times to cope with p-element operands. There are some problems with this this. For
example, what value do we select for p, some programs might want p = 8 while
others might prefer p = 128. If p is even somewhat large, the amount of logic re-
quired for the replicated ALUs will be problematic ! Further, not all operations we
want to perform will be vector operations; for example, there might necessarily be
some scalar outer loop over a number of vector instructions, the loop is controlled
by scalar instructions. One design option which addresses these problems does so
by separating the architecture in two parts: a Vector Processing Unit (VPU), which
is somewhat analogous to a separate Floating Point Unit (FPU) used to support
early processors, and a conventional scalar processor which controls the VPU and
interfaces with main memory.

We already know how to design the scalar processor, obviously the VPU is the
most interesting part; if the scalar processor is a conventional pipeline, when the ex-
ecute stage deals with scalar instructions as normal but hands-off vector instructions
to the VPU. As shown in Figure 9.24, a vector register file holds values ready to be
used in execution; say each element in a vector is n bits, there are p such elements
in each vector and there are q such registers. Roughly speaking the vector register
file is a (p × q)-element array of n-bit elements. The VPU houses a number, say
r, of PEs which process values from the vector registers. Sometimes these parallel
PEs are called lanes and ideally we have p = r so that PE i processes element i of
the source operands and produces element i of the result. Additional complexity is
introduced when r < p (we limit this to cases where r|p). In this case PE i has to
process elements i, i + r, i + 2r, . . . and r is termed the stride. Roughly speaking,
the VPU has to iterate a single vector operation  p/r! times to generate all p ele-
ments of the result. This means that each instruction needs multiple cycles to finish
execution and also that the register file must support access to the sub-words for a
given iteration.
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The VPU itself can be pipelined so operand fetches from the vector register file,
execution of vector operations and writes to the vector register file can be over-
lapped. However, we need a way to interface the vector register file to memory
somehow in order to allow vector load and store operations. In viewing the VPU
as entirely separate, this is problematic. More likely, the VPU shares the load/store
unit in the scalar processor which already has a memory interface. The load/store
unit clearly needs to iterate p atomic load or store operations to cope with vector
content; the concept of a burst mode in the memory interface can accelerate load/s-
tore performance. Each lane might also be equipped with a small cache to accelerate
memory accesses, i.e., avoid using the load/store unit; the regular nature of accesses
to vectors held in memory means even simple cache designs can be highly effective.
We might also want to allow communication between lanes as well as to and from
memory so as to support non-pure vector operations more efficiently.

9.4.3 SIMD Within A Register (SWAR)

Constructing a dedicated vector processor is quite an investment; one needs quite
a bit of extra hardware for computation and also control. Modern scalar processors
also exploit vector processing techniques in a backwards compatible manner. The
idea is to implement ISA and micro-architectural changes that allow one to view a
normal register as a number of sub-words: think of it as adding the VPU alongside
an existing ALU, or as a vector execution pipeline in a superscalar design.

This is typically realised by packing sub-words together into a large value and
utilising appropriate arithmetic on them; the more sub-words we process in parallel
the bigger the improvement in performance. To fix notation, if x is a packed value
comprising p sub-words we use xi to denote sub-word i. The general idea is to
compute all the results

ri = xi � yi

such that given an instruction �, the ALU computes all p results, potentially in
parallel if there are enough computational resources.

Media applications have driven development of SWAR within desktop class pro-
cessors and as a result we now have several generations of MMX and SSE by Intel;
VIS by Sun; 3DNow! by AMD; and AltiVec by Apple, IBM and Motorola. MIPS
have a basic SIMD extension called MIPS-3D which is intended for use on floating
point values in 64-bit processors; to aid continuity we discuss MIPS-3D here briefly
even though it is slightly out of the scope of the reduced, integer-only MIPS32 ISA.
MIPS-3D revolves around a data-type called paired-single (PS) that packs two 32-
bit floating point values into a single 64-bit register. The idea is that MIPS-3D offers
two-way SIMD, i.e., it sets p = 2, and allows operation on a pair of values using a
single instruction.

MIPS-3D is not a good example of a SIMD instruction set however; it is very
limited in terms of the actual operations it can perform. Deviating again from our
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1 void add( int* A,
2 int* B,
3 int* C, int p )
4 {
5 int a, b, c;
6

7 for( int i = 0; i < p; i = i + 1 )
8 {
9 b = B[ i ];

10 c = C[ i ];
11

12 a = b + c;
13

14 A[ i ] = a;
15 }
16 }

Listing 9.3 A sequential vector addition function.

1 void add( int* A,
2 int* B,
3 int* C, int p )
4 {
5 __m128i a, b, c;
6

7 for( int i = 0; i < p; i = i + 4 ) {
8 b = _mm_load_si128( B + i );
9 c = _mm_load_si128( C + i );

10

11 a = _mm_add_epi32( b, c );
12

13 _mm_store_si128( A + i, a );
14 }
15 }

Listing 9.4 A SIMD parallel vector addition function.

use of MIPS32 as an example, Listing 9.3 and Listing 9.4 are specific to the Intel
Pentium range of processors; they offer a better concrete example. As before, we
are adding two p-element vectors B and C together to form A as a result. This is a
component-wise operation, i.e.,

Ai = Bi +Ci, i ∈ {0 . . . p−1}.

As such, we can write a basic loop, as in Listing 9.3, to iterate over the elements
of B and C and produce the corresponding element of A. Ignoring the overhead of
the loop, this takes O(p) instructions, one addition for each value of i. Listing 9.4
parallelises this basic loop: since the computation for all values of i are independent
from each other, we can do them at the same time. It performs four at once by using
the SIMD instruction set in the processor; the code uses the intrinsics feature of
GCC to access the instruction set through what look like function calls. First four
elements of each of B and C are loaded into b and c which are given a special
data-type. Then, a single addition instruction is executed which performs a SIMD
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32-bits 128-bits
A0 A0 A1 A2 A3

+ +
B0 B0 B1 B2 B3

= =
A0 +B0 A0 +B0 A1 +B1 A2 +B2 A3 +B3

(a) A pure vector addition.

32-bits 128-bits
A0 A0 A1

· ·
B0 B0 B1

= =
A0 ·B0 A0 ·B0 A1 ·B1

(b) A non-pure vector multiplication.

Figure 9.25 Two figures showing the difference between pure and non-pure vector arithmetic.

addition to the elements in b and c; finally the result is stored back into A. Again
ignoring the loop overhead, this version only takes O(p/4) instructions; we expect
it to execute roughly four times faster as a result.

9.4.4 Issues of Vectorisation

The act of turning a scalar program into a vector equivalent is often termed vec-
torisation. This is made more difficult by two features of most SWAR enabled pro-
cessors. Firstly, and most obviously, not all operations are pure vector operations:
the processor must support operations like swizzles (a permutation of sub-words)
and packs (an interleaving or zip of sub-words). Secondly, some operations require
non-standard semantics. For example, an (n× n)-bit multiplication produces a 2n-
bit result. Storage of this result breaks the normal component-wise nature of pure
vector operations as described in Figure 9.25: essentially the data-path width fans
out from n-bit to 2n-bit in order to accommodate the result.

Designs use different approaches to solving such issues, but generally speaking
non-pure vector operations mean more data reorganisation which is overhead versus
useful computation. We remark below on two concrete examples of where vectori-
sation is difficult, and potential solutions that resolve this difficulty.
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9.4.4.1 Masked Versus Explicit Control-Flow

Managing control-flow in vector programs can be a challenge. On a scalar processor
we simply use a branch instruction to move the PC to the correct part of the program.
However, on a vector processor, one can easily imagine a requirement to perform
one computation on one element of the vector and another computation on another
element. Consider a concrete example; given an 8-bit byte value a, a particular stage
of the AES block cipher involves computing the function:

uint8 xtime( uint8 a )
{
if( a & 0x80 )
return 0x1B ˆ ( a << 1 );

else
return ( a << 1 );

}

If you consider a as a member of F28 [x], then the left-shift is performing multiplica-
tion by x and the conditional XOR performs reduction modulo x8 + x4 + x3 + x+1.
AES works on a vector of sixteen such values; the problem is, how do we vectorise
the xtime function to operate on an entire vector at once ? For example, it is clear
that one component of the vector might require a different control-flow path through
xtime than another: this is not a pure vector operation.

Most SWAR designs attack this problem by providing pure vector comparison
with slightly non-standard semantics. Usually, we think of logical false as 0 and
true as 1 or, in C, false as 0 and true as any non-zero. In a SWAR design with, say,
8-bit sub-words we are free to view false as 00(16) and true as FF(16). This allows us
to use a masking approach to implement the body of xtime. Imagine V R[1] holds
the input vector; we compute the result into V R[2] using the program fragment

V R[2] ←V R[1]∧80(16)
V R[1] ←V R[1] # 1
V R[2] ←V R[2] = 80(16)
V R[2] ←V R[2]∧1B(16)
V R[2] ←V R[1]⊕V R[2]

Imagine V R[1][0] contains a value which takes the first control-flow path through
xtime, i.e., includes the conditional XOR, whereas V R[1][1] takes the bottom
control-flow path. Instruction #0 performs a component-wise AND with the con-
stant 80(16); for V R[1][0] this will result in 80(16) but for V R[1][1] the result is 00(16).
Instruction #1 performs a component-wise left-shift; for both V R[1][0] and V R[1][1]
the value is shifted left. Instruction #2 performs a component-wise comparison with
the constant 80(16); because of the way the SWAR comparisons work, this means for
V R[2][0] the result is FF(16) but for V R[2][1] the result is 00(16). Next instruction #3
performs a component-wise AND with the constant 1B(16); for V R[2][0] the result
is 1B(16) but for V R[2][1] the result is 00(16). Finally, we take the shifted result in
V R[1] and perform a component-wise XOR with V R[2]. The crucial thing to note is
that as a result, the shifted value in V R[1][0] is XORed with the constant 1B(16) as
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required by the first control-flow path whereas V R[1][1] is XORed with 00(16), i.e.,
is unaltered as required by the second control-flow path. This has all been achieved
without per-sub-word conditional operations.

9.4.4.2 Normal Versus Saturated Arithmetic

A similar problem to control-flow occurs when considering any exceptional condi-
tion such as carry or arithmetic overflow. On a scalar processor, if some operation
overflows, the processor detects the condition and then acts accordingly; it might
set a flag in the status register. However, on a vector processor, we are performing
p operations at once: what happens if one computation overflows and another does
not; how do we detect the condition and how do we act accordingly ?

Typically, the answer is not to replicate the status register, i.e., one does not have
p overflow flags which are individually testable. Instead, alternate forms of arith-
metic are used which cope gracefully with exceptional conditions; examples in the
context of overflow are so-called clamped addition or saturating addition. For an
n-bit saturating addition denoted by & we have that

x& y =
{

x+ y if x+ y < 2n

2n −1 otherwise

so instead of an overflow wrapping around, the result is locked to the maximum
possible value. This seems like an odd choice of “graceful” but it is often useful in
the context of media applications. Consider a concrete example; given a vector of
8-bit bytes which represent an image as pixel values, we could brighten the pixels
using the function:

void brighten( uint8* A, uint8* B, int p )
{
for( int i = 0; i < p; i++ )
A[ i ] = B[ i ] + 1;

}

However, if a pixel is already as bright as it can be and we use a modular type
addition, the pixel goes from bright white to dark black ! Using a clamped addition,
the pixel stays bright white; it does not get brighter but the human eye probably
does not notice. Again, this has all been achieved without per-sub-word conditional
operations.
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PE WRI

PE WRI

PE WRI

PE WRI

FET DEC

Figure 9.26 A conceptual diagram of a VLIW processor; the non-dashed path between ISU and
the PEs is supposed to show that a given instruction bundle is split into parts with each part passed
to one PE.

9.5 VLIW Processors

9.5.1 Basic Concept

By definition, for pure vector operations, a vector processor applies the same oper-
ation to each element of the source operands. However, this is sometimes a bit too
much of a constraint: often, programs do not map well onto pure vector operations
and even if they do, one might not get the best resource utilisation. Superscalar pro-
cessors do not impose this constraint; one feeds in a stream of arbitrary instructions
and the hardware works out which can be executed in parallel. The scheme usu-
ally gives good resource utilisation on well-scheduled code but if we already know
which instructions can be executed in parallel, all that hardware is a bit of a waste.

Very Long Instruction Word (VLIW) processors [21] can be thought of as sort
of a compromise between the two. That is, in a superscalar processor, one instruction
specifies one operation whereas in a VLIW processor, r operations are merged into
one instruction bundle; operation i is sometimes termed the i-th channel or lane. If
one instruction is 32 bits long, the instruction bundle could be up to 32r bits long
(although fancy encoding schemes may reduce this). The crucial thing to realise is
that the bundle format is fixed: one cannot create a bundle of arbitrary instructions,
the hardware resources dictate the bundle composition. For example, we might say
it has to specify two integer operations, one multiply operation and one memory
access operation.

One might classify this technique as using static scheduling, since the specifica-
tion of parallelism is done at compile-time, and multiple-issue, since the processor
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issues many instructions per-cycle (even though they may be packed into a single
bundle).
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9.7 Example Questions

37. The figure below shows a block of combinatorial logic built from six parts where
the name and latency of a given part is displayed inside it; the last part is a register
which stores the result:

Part A
40ns

Part B
10ns

Part C
30ns

Part D
10ns

Part E
50ns

Part F
10ns

REG
10ns

It is proposed to pipeline the block of logic using two stages such that there is a
pipeline register in between parts D and E:

Part A
40ns

Part B
10ns

Part C
30ns

Part D
10ns

REG
10ns

Part E
50ns

Part F
10ns

REG
10ns

a. Explain the terms latency and throughput in relation to the idea of pipelining.
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b. Calculate the overall latency and throughput of the initial circuit described above.
c. Calculate the overall latency and throughput of the circuit after the proposed

change.
d. Calculate the number of extra pipeline registers required to maximise the circuit

throughput; state this new throughput and the associated latency. Explain the
advantages and disadvantages of this change.

38. a. It has been suggested that in designing a new processor, a pipelined ap-
proach should be used instead of a multi-cycle approach. Explain how and why
a pipelined design would improve performance; draw a data-path block diagram
to describe which components fit into which pipeline stages and why.

b. In the context of pipelined processor design, explain the meaning of the following
terms and give examples of each:

i. Structural dependency.
ii. Control dependency.

iii. Data dependency.

c. A pipelined processor might stall when such dependencies are encountered; the
performance is decreased as a result. Explain how the three types of dependency
listed above can be avoided so that stalls are minimised.

d. In a pipelined processor design, branches can cause control dependencies that
stall the processor until resolved. There are several options for dealing with this
problem; select two of the three options below and describe how they work:

i. Branch delay slot.
ii. Predicated execution.

iii. Branch prediction.

For each option, your answer should explain how the scheme works, how it re-
duces the performance impact, and the trade-off between complexity and perfor-
mance for the programmer and/or in the hardware.

39. Consider the following C fragment which adds together two n-element vectors
B and C to produce a result A where each element is a 32-bit integer:

for( int i = 0; i < n; i++ ) {
A[ i ] = B[ i ] + C[ i ];

}

The fragment can be parallelised since each iteration of the loop is independent.
Explain how this could be exploited using

a. A vector processor.
b. A VLIW processor.

40. a. Using a diagram and an example program if appropriate, describe the moti-
vation for and design of (i.e components in) a vector processor.
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b. Describe two reasons why use of a vector processor may improve performance
(for suitably written programs) versus a scalar processor.

c. The algorithm below describes the core loop of RC6, a block cipher. The algo-
rithm operates in-place on an input of four values A . . .D and an array K. The
values A . . .D and each K[i] are 32-bit unsigned integers; the loop includes an op-
eration rotl(x,y) which performs bitwise left-rotate of x by a distance y (where
the distance is constrained to be 0 . . .31, i.e., we just use y4...0).

RC6-LOOP(A,B,C,D,K)1

begin2

for i = 0 upto 44 step 2 do3

t0 ← rotl(B · ((2 ·B)+1),5)4

t1 ← rotl(D · ((2 ·D)+1),5)5

A ← rotl(A⊕ t0, t1)+K[i+0]6

C ← rotl(C⊕ t1, t0)+K[i+1]7

t2 ← A8

A ← B9

B ←C10

C ← D11

D ← t212

end13

i. The Intel Pentium 4 processor allows a form of vector processing called SIMD
Within A Register (SWAR); it packs four 32-bit sub-words into each 128-bit
register. Stating any reasonable assumptions (for example about the instruc-
tion set) and using either a diagram or pseudo-code, write a vectorised imple-
mentation of the straight-line RC6 loop body.

ii. Stating any reasonable assumptions, estimate the performance improvement
as a result of vectorisation. Comment on any reason(s) your result is lower
than the theoretical limit, and any changes you might make to the processor
design or instruction set to solve this problem.

41. a. In a superscalar processor, performance is reliant on the front-end supply-
ing enough instructions to keep computational resources in the back-end busy.
Explain how and when speculative execution helps to solve this problem.

b. Speculative execution is often based on prediction of branch behaviour (i.e., if
a branch is taken and what the target address is). One can consider at least two
cases:

i. static branch prediction,
ii. dynamic branch prediction.

For each case, describe a mechanism to predict branch behaviour; take care to
describe the structures within the processor, how they are used and any advan-
tages or disadvantages of the mechanism.

c. Imagine that on some processor function calls are always realised using dedicated
“call” and “return” instructions instead of generic branches.
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i. Using an example and stating any reasonable assumptions, show how such
instructions would be used to implement a function call.

ii. Outline a mechanism that could provide more accurate branch target predic-
tion for these instructions than in those from the previous question.
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Chapter 10
Linkers and Assemblers

Programs must be written for people to read, and only incidentally for machines to execute.

– H. Abelson and G. Sussman

Abstract We have already seen that processors execute programs that are stored in
memory as binary values according to a prescribed encoding. Viewed in this way
we usually say that the program is written in machine code in the sense that it is
suited for interpretation by the machine: it is hard (or at least tedious) for a human
to read or write even trivial programs in this form. In this chapter we investigate
the use of low-level software tools to assist the programmer by automating various
aspects of software development. We focus on two such software tools: linkers,
which translate object files into executable files, and assemblers, which translate
programs written in low-level languages into object files.

10.1 Introduction

The basic purpose of a compilation tool is to translate a program written in some
language, typically containing high-level constructs, into a low-level or executable
form. Essentially this mechanises the processes that an expert programmer might
perform by hand. To allow successful translation, the programmer specifies the pro-
gram using a precise list of operations and symbols on which those operations act.
In modern terms it is unusual for a compiler or assembler to exist in isolation from
other tools. More commonly, they form part of a compiler tool-chain which per-
forms the translation process step by step. Roughly speaking, at each step the tool-
chain translates a source program described at a higher-level (by which we mean
a description that is natural and expressive) into a lower-level target program (by
which we mean a description more bound by constraints of the target platform). Al-
though there is some overlap in definition, we can identify three main tools within
the standard tool-chain detailed in Figure 10.1: compilers, which translate programs

397
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High Level
Program

Low Level 
Program

Compiler

Assembler Object
File

Linker

Executable
File

Figure 10.1 A rough block diagram of tool-chain components.

written in high-level languages into programs written in low-level languages or di-
rectly into object or executable files; assemblers, which translate programs written
in low-level languages into object or executable files; and linkers, which combine
object files into executable files or other object files. Omitted from this list is the
loader tool which, as part of the operating system, is tasked with taking an ex-
ecutable file and loading it into memory ready for execution. Although there are
overlaps with what the linker does, we defer explanation of the loader until Chap-
ter 12.

Wherever used, compiler tools can offer several benefits. Specifically, by allow-
ing expression of programs more naturally and by offering automated forms of anal-
ysis, optimisation and transformation, a programmer will typically improve their
productivity, reduce their rate of error and generally produce software of a higher
quality. Additionally, the combination of several tools rather than one monolithic
tool is attractive for several reasons, mainly related to modularity and reuse of soft-
ware. In particular, it allows us to split a program into parts and process the parts in
different ways using different components of the tool-chain:

• If the program is split into parts, collaborative development is made much easier:
each programmer can work on a separate part of the program and the parts can
be joined together during the compilation process.

• If a particular part is changed (to add functionality or fix a problem for example)
only that part need be reprocessed by the higher-level parts of the tool-chain.
For example, perhaps only that part need be recompiled (although any resulting
executable would also need to be regenerated to include the change).

• If we need to write one part in a particular programming language (e.g., in C)
and another part in a different language (e.g., assembly language), we can use
different tool-chain components to produce object files that can then be linked
together.

• If we need to reuse a particular part in another program, we can extract that part
more easily. For example we might construct a collection of commonly used
functions into a library which the linker combines with other programs.

A definitive history of programming languages and compiler tools is beyond the
scope of this book, and is in fact difficult to capture at all due to the breadth of
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Data Relocation Section

Text Relocation Section

Symbol Table

String Table

Data Section

Text Section

Header Reserved

Text

Static Data 

Dynamic Data

Stack
0x7FFFFFF

0x00400000

0x10000000

0x00000000

Figure 10.2 The seven a.out sections (left), and the MIPS32 memory model (right) onto which
they map.

the subject. To cope, we dedicate this chapter to the introduction of linkers and
assemblers and defer discussion of compilers until Chapter 11.

It is often hard to separate discussion of a programming language from an as-
sociated tool: sometimes they might refer to the same thing but more often there
might be many compiler implementations for a given language. Even so, it is easy
to see that assembler-like tools existed in the 1940s and early 1950s for comput-
ers such as the ENIAC and EDSAC; essentially these acted as a means of writing
machine code in a human-readable form. Invention of the first higher-level com-
piler tools is usually attributed to Grace Hopper in 1952. While working for the US
Naval Reserve on the UNIVAC computer, Hopper developed a program called A-
0 which translated symbolic mathematical expressions and functions into machine
code. Around the same time, various incarnations of a language and compiler called
Autocode were developed by researchers working on the SSEM [7, 8] computer.
Both were quickly extended to include higher-level concepts. A-0 was followed by
B-0 (or FLOWMATIC) which translated more expressive programs into machine
code and which eventually spawned the COBOL programming language. A version
of Autocode was developed to improve on the ALGOL programming language and
support the Atlas computer. By this time the language supported truly high-level
feature including various control-flow and conditional statements, and compilation
of functions and complex mathematical expressions.
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1 #include <stdlib.h>
2 #include <string.h>
3

4 int dot( int*, int*, int );
5

6 int* A;
7 int* B;
8

9 int main( int argc, char* argv[] )
10 {
11 int n = atoi( argv[ 1 ] );
12

13 A = ( int* )( malloc( n * sizeof( int ) ) );
14 B = ( int* )( malloc( n * sizeof( int ) ) );
15

16 for( int i = 0; i < n; i++ ) {
17 A[ i ] = atoi( argv[ i+ 2 ] );
18 }
19 for( int i = 0; i < n; i++ ) {
20 B[ i ] = atoi( argv[ i+n+2 ] );
21 }
22

23 int a = dot( A, B, n );
24

25 printf( "the dot product is %d\n", a );
26 }

Listing 10.1 The source file PSRC, part of a C program to compute a vector dot product that demon-
strates usage of different sections of the memory model.

10.2 The Memory Model

A program is a static description: we execute a program within an environment
or context, and term a program in execution a process. One of the features of the
environment in which a process executes is the layout of the address space (i.e., the
valid memory addresses) it can access. So far we have dealt only with execution
of one process at a time; this means that the process has unconstrained access to
the entire address space, a simplification we will continue with until Chapter 12.
However, it is important to introduce the concept of a memory model which is
imposed by both the operating system and underlying architecture: the process must
work within the rules of the memory model by placing various program components
at well-defined areas in the address space.

The right-hand side of Figure 10.2 details the MIPS32 memory model as four
main sections. The operating system reserves the space from address 00000000(16)
through to 003FFFFF(16); a program is loaded into the text section starting at ad-
dress 00400000(16). As we described earlier in Chapter 4, this presents a problem if
the program is written with the assumption it will be loaded at address 00000000(16).
In this case it requires relocation, a topic we examine later. Following the text sec-
tion is the data section which holds static and dynamic data objects used by the pro-
gram; the dynamic data grows upwards from low addresses toward high addresses.
Finally, at the other end of the address space, the stack section starts at address
7FFFFFFF(16) and grows downward.
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1 int dot( int* X, int* Y, int n )
2 {
3 int a = 0;
4

5 for( int i = 0; i < n; i++ ) {
6 a += X[ i ] * Y[ i ];
7 }
8

9 return a;
10 }

Listing 10.2 The source file QSRC, part of a C program to compute a vector dot product that
demonstrates usage of different sections of the memory model.

While the text section is populated with instructions from the executable file, the
various data sections are used in different ways to implement different features in
a program. To describe these features, we use a single example program split into
two source files which we refer to as PSRC and QSRC and detail in Listing 10.1 and
Listing 10.2. In combination, the two source files compute the dot product of two
n-element vectors A and B

a =
n−1

∑
i=0

Ai ·Bi

where the C variables A, B and n are read from the command line so as to represent
A, B and n, and then the result a is displayed for the user.

10.2.1 Stack Section

Traditionally, a stack is a First-In Last-Out (FILO) structure. We can model the
behaviour of a stack in memory using two functions

PUSH(x,y) : {0,1}∗ ×{0,1}n → {0,1}∗
POP(x) : {0,1}∗ → {0,1}∗ ×{0,1}n

whose behaviour is defined by

PUSH(x,y) = x s.t. x ← x−1,MEM[x] ← y
POP(x) = (x,y) s.t. y ← MEM[x],x ← x+1.

In this context x is the Stack Pointer (SP), an address maintained in order to keep
track of the Top of Stack (ToS). There are actually two ways to talk about ToS:
either it is the next free entry on the stack or the first full entry. Some ISAs define
SP as a special-purpose register with associated instructions to access it; in other
processors SP is part of the general-purpose register file and can be accessed like
any other. MIPS32 takes the latter approach, reserving GRP[29] for use as SP. Some
ISAs, such as ARM, include dedicated instructions for dealing with the two choices
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and also whether the stack grows upward or downward. Here we assume ToS always
points to the first full entry and that it grows downward in memory starting at some
known address.

The PUSH and POP functions act in a similar way to STORE and LOAD except as
well as updating or retrieving an element from memory, they also update the value
of the stack pointer: PUSH puts y onto the top of the stack and returns the updated
stack pointer, POP takes the value from the top of the stack and returns it with the
updated stack pointer. Note that typically there are some conditions on PUSH and
POP to prevent erroneous use, for example pushing items onto the stack if it is full
or popping them off if it is empty; we do not address this problem here. Further, note
that we have only considered pushing and popping elements that match the memory
resolution; clearly one can push and pop larger elements with repeated calls to PUSH

and POP.
Of course, how much of this detail we actually need to worry about depends

on the level at which we are programming. Although the stack is a dynamic data
structure which grows and shrinks under control of the program, we do not really
see this at a high-level. For example if we write a C program, the C compiler emits
instructions that control the stack; we do not interact with it directly. On the other
hand, at a low-level we can control the stack directly by manipulating SP: if we
write an assembly language program, we take on full control of the stack and need
to worry about how to realise PUSH and POP.

Consider a small example. Say we initially set x = 3 and assume the memory is
zeroed, i.e., that MEM[0 . . .2] = (0,0,0) for example. Calling PUSH and POP with
some values gives a behaviour such as

x = PUSH(x,4) → x = 2, MEM[0 . . .2] = (0,0,4)
x,y = POP(x) → x = 3, y = 4, MEM[0 . . .2] = (0,0,4)
x = PUSH(x,3) → x = 2, MEM[0 . . .2] = (0,0,3)
x = PUSH(x,2) → x = 1, MEM[0 . . .2] = (0,2,3)
x,y = POP(x) → x = 2, y = 2, MEM[0 . . .2] = (0,2,3)
x,y = POP(x) → x = 3, y = 3, MEM[0 . . .2] = (0,2,3)
x = PUSH(x,1) → x = 2, MEM[0 . . .2] = (0,2,1)
x,y = POP(x) → x = 3, y = 1, MEM[0 . . .2] = (0,2,1)

Notice that the memory content is not cleared when we call POP: although the call
returns the right value, this is also left in memory until overwritten.

10.2.2 Static Data Section

The static data section is actually comprised of two parts: initialised and unini-
tialised data. Both are, in some sense, used to store global data items within the
program. Within PSRC the string constant

the dot product is %d\n
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is a good example of data that would be allocated space in the initialised data sec-
tion. When the executable file is loaded into memory, the string is allocated space
and the actual content is copied into that space in order to initialise it ready for
use during execution. However, the pointers A and B are not placed in this section:
some space clearly needs to be allocated to these global data items, but they need
not be populated using information in the executable file. As a result, they would be
allocated space in the uninitialised data section.

10.2.3 Dynamic Data Section

The dynamic data section, sometimes termed the free store but which we will refer
to using the more colloquial term heap, is perhaps the most difficult to describe. In
part this is because the concept is so abstract: unlike the stack, the processor does
not typically mandate any rules or provide any support for managing the heap. As a
result, management of dynamic data is highly dependent on the programming lan-
guage and operating system used. The basic idea is that sometimes we do not know
at compile-time how much space will be needed for some aspects of a program. The
program represented by PSRC and QSRC contains a good example of this: the size of
arrays A and B are not known until the program is executed and the user decides on a
value of n. As such we need to delay allocation of space for A and B until run-time,
an act which is achieved by using the heap.

In the context of a C program, the heap is typically managed by an implementa-
tion of the malloc library (and variants thereof). These are library functions like
any other, such as printf for example, and form part of the program rather than
part of the operating system. The basic idea is that the C program requests a new
block of memory by calling malloc, potentially calling free later when it is no
longer required. The library is tasked with managing the heap so that these requests
are correctly satisfied; essentially this means keeping track of the allocated blocks
within the area of memory assigned to the heap, and performing their allocation in
a sensible way. This task is crucial and presents a number of challenging problems:

• Finding an effective algorithm for management of the heap is a challenge because
it usually is not possible to predict how it will be used at compile-time: we cannot
tell what sequence of calls to malloc and free will be used, let alone the
size of blocks which need to be allocated. This means the algorithms need to be
generic and use local heuristics to ensure their global operation is effective.
Put more simply, such algorithms will need to make decisions at a given point
in time which may or may not turn out to be good in the long term. An example
problem which results is that of fragmentation. This is caused by the fact a
given sequence of calls to malloc and free might leave small gaps in the
heap which are not big enough to be used by subsequent calls to malloc. These
small gaps represent wasted memory; sometimes we might try to compact the
heap to remove the gaps but this is typically expensive. Thus there is already a
clear trade-off between performance and memory footprint.
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1 typedef struct __meta
2 {
3 struct __meta* prev;
4 struct __meta* next;
5

6 int size;
7 }
8 meta;

Listing 10.3 A C code fragment which describes support structures for the example linked-list-
based heap implementation.

• The trade-off described above is made more complicated by the fact that calls
to malloc and free themselves represent a performance overhead. Such calls
can occur frequently in the program and so overhead relating to their execution
should ideally be kept to a minimum. The implication for this is that although
very effective algorithms for allocation (e.g., to minimise memory footprint)
might exist, their effectiveness needs to be balanced against their efficiency.

• As in our example, imagine a program calls malloc to allocate two blocks
of memory for arrays A and B. Careful management of allocation is crucial to
program correctness: the library must be careful that the blocks it allocates for A
and B do not overlap for example. If this were to happen, the program will almost
certainly behave incorrectly since writing into an element of A could destroy an
overlapping element of B and vice versa.

We can give a much more practical description of how a simple implementation of
malloc and free might work by actually presenting one ! Of course there are
many ways to approach the problem of heap management; we take a basic approach
by modelling the heap as a (doubly) linked-list where each node in the list repre-
sents an allocated block. The idea is that each node is represented by two parts: a
structure detailed in Listing 10.3 which describes meta-data such as the linked-list
pointers (prev and next) and the block size (size), followed by the actual block
of memory allocated to the program.

We perform allocation within a global array (which represents the memory as-
sociated with the dynamic data section) called heap_data shown in Listing 10.4;
this array has a maximum size which represents a limit on the heap size. To initialise
the heap, we use the heap_init function which constructs two meta-data struc-
tures at the start and end of heap_data called heap_head and heap_tail.
To show what is going on, Figure 10.3 and Figure 10.4 show a step-by-step exam-
ple use of the heap. After initialisation, Figure 10.3a shows the linked-list structure
consisting of two nodes (i.e., heap_head and heap_tail) which span a large
expanse of memory in which the heap can grow.

After initialisation, we can start using the heap via malloc and free style
functions which, to avoid clashes, we call heap_malloc and heap_free and
detail in Listing 10.5. Essentially, both functions manage the linked-list structure
already in place. When the program wants to allocate some memory via a call to
heap_malloc, the function traverses the linked-list starting at heap_head. At
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(d) After execution of c = heap malloc( 32 ).

Figure 10.3 Example use of a linked-list-based heap implementation.



406 10 Linkers and Assemblers

(h) After execution of e = heap malloc( 16 ).

Figure 10.4 Example use of a linked-list-based heap implementation.
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1 uint8 heap_data[ HEAP_SIZE ];
2

3 meta* heap_head;
4 meta* heap_tail;
5

6 void heap_init()
7 {
8 heap_head = ( meta* )( heap_data );
9 heap_tail = ( meta* )( heap_data + HEAP_SIZE - sizeof( meta ) );

10

11 heap_head->prev = NULL;
12 heap_head->next = heap_tail;
13 heap_head->size = 0;
14

15 heap_tail->next = NULL;
16 heap_tail->prev = heap_head;
17 heap_tail->size = 0;
18 }

Listing 10.4 A C code fragment which initialises the example linked-list-based heap implementa-
tion.

each step, it checks the gap between the current node and the next node: if there
is enough space to allocate the requested memory, then the linked-list is updated
to include a new node and a pointer to the associated block is returned for use
by the program. When the program want to deallocate some memory via a call
to heap_free roughly the opposite occurs: the function removes the associated
node from the linked-list so that the associated memory is available for subsequent
allocations.

Figure 10.3a-d shows the state of the linked-list as three blocks of memory are
allocated; since there is no reason to do otherwise, the blocks are allocated con-
tiguously starting at heap_head so that the heap grows upward in memory. Fig-
ure 10.4e-f show the state of the linked-list after two of the three blocks are deallo-
cated. The list structure remains in place but after deallocation there is a gap at the
start of the heap. Finally Figure 10.4g-h shows two further blocks are allocated: the
first fits into the gap left as a result of the previous deallocations, the second cannot
fit into the (still smaller) gap that remains, and so is allocated at the end of the heap
growing it further upward. Notice that there is now a slight fragmentation problem:
at the start of the heap we now have a small gap which is quite unlikely to be useful
and hence represents wasted memory.

10.3 Executable Versus Object Files

Most components of the tool-chain work with two types of files. A rough definition
of the difference between the two types is that an executable file is ready for execu-
tion by the processor, an object file is in a form ready for further processing by the
tool-chain; sometimes these are termed load modules and object modules, we term
the content of an executable file a program image. Typically an executable file con-
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1 void* heap_malloc( int n )
2 {
3 for( meta* ep = heap_head; ep != NULL; ep = ep->next )
4 {
5 meta* pp = ep->prev;
6 meta* np = ep->next;
7

8 uint8* ep_beg = ( uint8* )( ep );
9 uint8* ep_end = ( uint8* )( ep ) + sizeof( meta ) + ep->size;

10 uint8* np_beg = ( uint8* )( np );
11 uint8* np_end = ( uint8* )( np ) + sizeof( meta ) + np->size;
12

13 uint32 gap = np_beg - ep_end;
14

15 if( gap >= ( sizeof( meta ) + n ) )
16 {
17 meta* p = ( meta* )( ep_end );
18

19 ep->next = p;
20 p->prev = ep;
21

22 np->prev = p;
23 p->next = np;
24

25 p->size = n;
26

27 return ( void* )( ( uint8* )( p ) + sizeof( meta ) );
28 }
29 }
30

31 return NULL;
32 }
33

34 void heap_free( void* p )
35 {
36 meta* ep = ( meta* )( ( uint8* )( p ) - sizeof( meta ) );
37

38 printf( "freeing %p with entry at %p\n", p, ep );
39

40 meta* pp = ep->prev;
41 meta* np = ep->next;
42

43 pp->next = np;
44 np->prev = pp;
45 }

Listing 10.5 A C code fragment which implements malloc and free style functions in the
example linked-list-based heap implementation.

tains only machine code whereas an object file contains machine code along with
meta-data which details features in the machine code. As an analogy, one might
equate executable and object files to plain text files versus those produced by a word
processor: the latter often include rich sets of meta-data to specify formatting and
layout while the former includes only the raw text.

John Levine [37] gives an excellent overview of various executable and object file
formats. Although the Executable and Linking Format (ELF) is perhaps more state
of the art, to simplify our presentation we consider the a.out format which first
appeared in early versions of UNIX. It exists in many flavours but we will consider
a somewhat typical example of relocatable a.out which allows us to describe both
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1 struct header
2 {
3 uint32 magic; // magic number
4 uint32 text_size; // section size of text
5 uint32 data_size_i; // section size of data ( initialised)
6 uint32 data_size_u; // section size of data (uninitialised)
7 uint32 stab_size; // section size of symbol table
8 uint32 entry; // entry point
9 uint32 text_reloc_size; // section size of text relocation

10 uint32 data_reloc_size; // section size of data relocation
11 }

Listing 10.6 The a.out header format.

1 struct reloc_entry
2 {
3 uint32 address; // offset of address that needs relocation
4 uint32 symbol : 24, // offset into symbol table
5 rel_pc : 1, // address is relative to program counter
6 length : 2, // length of address
7 extern : 1, // address is external
8 rel_go : 1, // address is relative to global offset
9 rel_jt : 1, // address is relative to jump table

10 rel_ep : 1, // address is relative to entry point
11 copy : 1; // address should be copied from symbol
12 }

Listing 10.7 The a.out relocation entry format.

executable and object files. One of the major advantages of a.out is simplicity.
An executable or object file is described by seven sections; throughout our discus-
sion of these sections, any field which describes a size is measured in bytes. The
header section, described by the C structure in Listing 10.6, allows quick analysis
of the content: it includes the magic field which identifies the file type, fields such
as text_size that specify the size of other sections in the file, and the entry
field which specifies the entry point (i.e., for an executable a.out file, the address
execution should start at). The text section contains the machine code instructions
which constitute the program, the data section contains initialised data; in an exe-
cutable a.out file these sections are used to populate the text and initialised data
areas in the process address space.

Following the text and data sections are two sections that specify their respective
relocation entries. Relocation entries have a standard format which is described by
the C structure in Listing 10.7. In terms of the processor, relocation entries relate to
addresses (or pointers) within the text or data sections which need attention when
two object files are linked together or an executable file is loaded into memory.
The address field contains an offset, into either the text or data section, of the
item which needs attention; the symbol field specifies the index in symbol table in
which information about the item in question is stored. Then follows a number of
flags which specify more detailed information, the most important are the rel_pc
flag that specifies whether the item is updated relative to the PC or in an absolute
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1 struct stab_entry
2 {
3 uint32 name; // offset into string table for symbol name
4 uint8 type; // symbol type
5 uint8 other;
6 uint16 debug;
7 uint32 value; // symbol value
8 }

Listing 10.8 The a.out symbol table entry format.

manner; the length flag that specifies the length of the item being updated; and
the external flag which is set if the item relates to an item outside the current
object file (if it is unset, then the item is local to the current file).

As programmers, we typically use human readable names to refer to the ad-
dresses that relocation entries identify; we call such names symbols, essentially a
symbol maps a name to an address. The string table section is a number of null-
terminated strings which are used to specify the names, or identifiers, of symbols.
Each symbol is represented by an entry in the a.out symbol table; like a relocation
entry, each symbol table entry has a standard format as shown in Listing 10.8. The
name field contains an offset into the string table for the human readable symbol
name. The type field determines the symbol type; for example, it might specify
that the symbol exists in the text or data section or be a symbol that is specified
but should remain untouched. The other and debug fields contain information
used by debuggers and finally the value field notionally contains the value of the
symbol; for symbols in the text and data sections this is an address.

10.4 Linkers

Imagine we take the C program represented by the source files PSRC and QSRC and
want to compile it. The first step is to compile the source files into object files which
we will refer to as POBJ and QOBJ and whose content could roughly be described as
follows. We expect that POBJ will

• have a text section corresponding to the instructions that implement the main
function,

• have an uninitialised data section which is eight bytes in size and corresponds to
the two pointers A and B,

• have an initialised data section which is 23 bytes in size and corresponds to the
string the dot product is %d\n,

• have a symbol table which includes the local symbols A, B, main and the exter-
nal symbol dot,

• have a text relocation section that includes an entry which notes that the symbol
dot is external and that the call to dot needs relocation.
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In contrast, we expect that QOBJ will

• have a text section corresponding to the instructions that implement the dot
function,

• have uninitialised and initialised data section which are both empty,
• have a symbol table which includes the local symbol dot.

We can explore these descriptions by actually performing the compilation step for
real using the GCC compiler. Imagine we save PSRC and QSRC in the source files
P.c and Q.c and then invoke GCC to compile them into the object files P.o and
Q.o. From the UNIX command prompt this is achieved as follows:

bash$ ls
P.c Q.c
bash$ gcc -std=gnu99 -c P.c
bash$ gcc -std=gnu99 -c Q.c
bash$ ls
P.c P.o Q.c Q.o

We can verify our original descriptions by inspecting the object files P.o and Q.o.
For example, the string tables in the resulting object files can be inspected using the
strings command:

bash$ strings P.o
the dot product is %d
bash$ strings Q.o

The output shows that the string table in P.o has one entry which corresponds to
the string we expected. Similarly, we can inspect the symbol tables using the nm
command:

bash$ nm P.o
00000004 C A
00000004 C B
00000000 T main

U dot
U malloc
U printf
U atoi

bash$ nm Q.o
00000000 T dot

The output details the address of each symbol followed by the type (represented by
a single character) and the name. For example, symbols A and B are both “common”
symbols (denoted ‘C’) which will be placed in the uninitialised data section; sym-
bols dot and main are both within the text sections of P.o and Q.o respectively
(denoted ‘T’) but note that within P.o the symbol dot is “undefined” (denoted ‘U’)
since it is defined externally (i.e., in Q.o); symbols atoi, malloc and printf
are all “undefined” since they are library functions.

We can describe the two object files in a more easily digestible, tabular form
in Figure 10.5. Now imagine we want to combine POBJ and QOBJ to produce a file
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Symbol Type Address External

A Uninitialised Data 00000004(16) False
B Uninitialised Data 00000004(16) False
main Text 00000000(16) False
dot Unknown True
malloc Unknown True
printf Unknown True
atoi Unknown True

(a) Symbol table for POBJ .

Symbol Type Address External

dot Text 00000000(16) False

(b) Symbol table for QOBJ .

Figure 10.5 A tabular description of the symbol tables for the object files POBJ and QOBJ .

REXE which we can execute. This combination is performed by the linker and (very)
roughly consists of two steps described diagrammatically (if a little too abstractly)
below:

POBJ String Table
POBJ Symbol Table
POBJ Data Relocation Section
POBJ Text Relocation Section
POBJ Data Section
POBJ Text Section
POBJ Header

QOBJ String Table
QOBJ Symbol Table
QOBJ Data Relocation Section
QOBJ Text Relocation Section
QOBJ Data Section
QOBJ Text Section
QOBJ Header

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

"→

POBJ String Table
QOBJ String Table
POBJ Symbol Table
QOBJ Symbol Table
POBJ Data Relocation Section
QOBJ Data Relocation Section
POBJ Text Relocation Section
QOBJ Text Relocation Section
POBJ Data Section
QOBJ Data Section
POBJ Text Section
QOBJ Text Section
POBJ Header
QOBJ Header

"→

REXE String Table
REXE Symbol Table
REXE Data Relocation Section
REXE Text Relocation Section
REXE Data Section
REXE Text Section
REXE Header

Firstly the linker performs a layout step whereby the sections from POBJ and QOBJ

are merged together and placed within a partly finished version of REXE . Note that
each section, which would have had a known offset within either POBJ or QOBJ , has
been moved so that it now has a new offset within REXE . Secondly the linker ma-
nipulates the content of each section so they make sense within the new executable
file. For example since we have assigned them new offsets, any references to items
in the symbol tables for POBJ or QOBJ need to be adjusted. This second step is the
most involved: it demands that we consider and solve four main problems which we
expand upon below.
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Symbol Type Address External

A Uninitialised Data 0804971C(16) False
B Uninitialised Data 08049720(16) False
main Text 080483AC(16) False
dot Text 080484C4(16) False
malloc Unknown True
printf Unknown True
atoi Unknown True
_start Text 08048300(16) False

(a) Symbol table for the dynamically linked REXE .

Symbol Type Address External

A Uninitialised Data 080A39F0(16) False
B Uninitialised Data 080A39F4(16) False
main Text 080481F0(16) False
dot Text 08048308(16) False
malloc Text 0804A1D8(16) False
printf Text 080492AC(16) False
atoi Text 080487F0(16) False
_start Text 08048100(16) False

(b) Symbol table for the statically linked REXE .

Figure 10.6 A tabular description of the symbol tables for the dynamically and statically linked
executable REXE .

10.4.1 Static and Dynamic Linkage

We already described library functions as being a collection of commonly used func-
tions which can be linked into an executable file by the linker; the idea is essentially
that the functions only need exist in one place and are hence more maintainable. In
reality, we need to be more exact about how the linker combines a library with ex-
isting object files in order to create an executable file. That is, there are two options
for dealing with the “unknown” symbols in Figure 10.5 that represent the library
functions malloc, printf and atoi:

Dynamic Linking In this case, the operating system maintains one single copy
of any given library in memory. If an executable file is loaded and is the first to
use the library (i.e., no other loaded executables use it), then the operating system
also has to load the library, otherwise it does not; the library is already resident
in memory. When the loader loads the executable file into memory, it patches
references to library functions so they refer to this single instance.
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The advantages of this approach are that memory is conserved and the time spent
loading libraries is potentially reduced. The disadvantages are that the loader
needs to be more complicated, and we need to be very careful that exactly the
right library is available and used (i.e., there is not a mismatch between functions
the executable file wants to use and those provided in the library loaded by the
operating system).

Static Linking In this case, the linker takes all the library functions and combines
them directly into every executable file. There is no need for the loader to take any
remedial action when the executable file is loaded into memory since references
to the library functions are all internal.
The advantages of this are the lack of problems with respect to incompatibilities
between the executable file and available libraries: the executable file contains all
the machine code needed. The disadvantages are that now we might find many
processes in memory all with their own identical copies of a library linked into
them; this could be viewed as somewhat wasteful.

We can see how the two options work by continuing the running example of using
GCC to describe a real compilation process; again the end result is shown in a
tabular form in Figure 10.6. We can invoke the linker, and instruct it to use dynamic
linking, using another call to GCC:

bash$ gcc -std=gnu99 -dynamic -o R P.o Q.o
bash$ ls
P.c P.o Q.c Q.o R

Actually dynamic linkage is the default so this command would have worked the
same way without the extra option. Either way, we can again use strings and nm
to inspect the string and symbol tables:

bash$ strings R
the dot product is %d
...
bash$ nm R
0804971c B A
08049720 B B
080483ac T main
080484c4 T dot

U malloc@@GLIBC_2.0
U printf@@GLIBC_2.0
U atoi@@GLIBC_2.0

08048300 T _start
...

This time, the output has been truncated and massaged a little for clarity. The string
table is not too interesting: it contains the original string from P.o as we would
expect, plus some extra strings that relate to functions that have been called and so
on. The symbol table shows four more interesting features:

• the symbols A and B have been explicitly placed in the uninitialised data section,
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• the symbols dot and main have been combined into a single text section in the
executable file,

• the symbols malloc, printf and atoi are still marked “undefined” but have
had an extra identifier tagged onto the end of their name to show which library
(and version) needs to be used,

• a new symbol called _start has been introduced.

Now consider the same process except that we instruct GCC to perform static link-
ing instead:

bash$ gcc -std=gnu99 -static -o R P.o Q.o
bash$ ls
P.c P.o Q.c Q.o R
bash$ strings R
the dot product is %d
malloc: using debugging hooks
realloc(): invalid pointer %p!
malloc: top chunk is corrupt
free(): invalid pointer %p!
...
bash$ nm R
080a39f0 B A
080a39f4 B B
080481f0 T main
08048308 T dot
0804a1d8 W malloc
080492ac T printf
080487f0 T atoi
08048100 T _start
...

This time, the output from strings and nm is significantly more verbose; in com-
parison to the dynamic case, there are two interesting features:

• the string table include strings defined within the library functions we have in-
cluded (e.g., strings which relate to error messages in malloc and free) as
well as our own,

• whereas symbols relating to malloc, printf and atoi library functions were
previously “undefined”, they now have addresses and are marked as being in-
cluded in the text section.

10.4.2 Boot-strap Functions

In order to produce a genuinely executable file, the linker has to include some stan-
dard interface between a program and the operating system it executes within. In
Figure 10.6 we can see new symbols that relate to new functions within the text
section of the executable file: _start represents a function added by the linker to
provide said interface. You can think of it as a library function that is automatically
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included by the linker rather than included as a product of how the program was
written or how GCC was invoked.

More specifically, _start acts to initialise aspects of the program when ex-
ecuted. For example, the _start function acts as a standard entry point for the
executable file; this will be marked in the a.out header as where execution should
begin. It is tasked with calling the main function by constructing and passing in
the argc and argv arguments, and passing back the return value to the operating
system.

10.4.3 Symbol Relocation

For the sake of simplicity, imagine the size of the text sections in POBJ and QOBJ are
p and q bytes respectively, and that they were both originally generated assuming
they would be loaded at address 00000000(16) ready for execution. We can see this
in Figure 10.5 where each of main and dot has address 00000000(16) in POBJ

and QOBJ respectively. To construct the executable file REXE , during the layout step
we placed the two text sections directly after each other. As such, when the new
executable is loaded into memory ready for execution what was the text section for
POBJ will occupy addresses in the range 0 . . . p− 1 while what was the text section
for QOBJ will occupy addresses in the range p . . . p+q−1.

This, of course, presents a problem: we have relocated what was the text section
for QOBJ relative to where it thinks it should be; any absolute branch, for example,
will be to the wrong address ! For example, since the text section for QOBJ has been
relocated to address p, if QOBJ included an absolute branch to address x, then this
branch needs to be patched so it directs control-flow to address p + x instead. A
similar situation exists with the symbols A and B which do not yet have concrete
addresses in POBJ or QOBJ . When the linker performs layout of the uninitialised data
section, it assigns them concrete addresses that we can see in Figure 10.6. In the
same way as the branch, each reference to A or B needs to be patched to cope with
the fact that they have been relocated.

Without going into the details of how machine code instructions are actually
patched, the process which solves this problem is easy to describe. Essentially, the
linker examines each original object file in turn; for each symbol it updates the new
symbol table (i.e., the one in REXE ) so that the address matches the relocated ad-
dress. Put more simply, in our example this means that in the symbol tables for
object files POBJ and QOBJ have main and dot both at address zero; in the sym-
bol table for the executable file their addresses are zero and p. Then, it looks for
references (marked in the relocation table) within the object files to each symbol in
the new symbol table. For each reference it identifies the associated instruction in
the new text section, and patches it by setting the address to where the symbol was
relocated to (i.e., the address in the new symbol table).

This problem can be (partly) mitigated by writing so-called Position Indepen-
dent Code (PIC). The rough idea is that no absolute addresses should exist within
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the machine code; it can therefore be placed anywhere in memory and still work
without any special treatment by the linker or loader. The means by which this is
accomplished are somewhat involved: although some absolute addresses can be re-
moved by using PC-relative branches for example, others are more problematic. For
example, references to absolute addresses that represent data items might need to
be routed through a table which houses the real address and is updated to suit the
address at which the machine code is loaded. The typical trade-off is therefore that
a program using PIC will be slightly larger and execute slightly more slowly than
one which does not.

10.4.4 Symbol Resolution

The text section for POBJ included a reference to the dot symbol which is actually
a function located in QOBJ . During the compilation step, GCC was happy to simply
mark dot as an external symbol in POBJ ; this is clear in Listing 10.5 where the
symbol table for POBJ lists dot as an external symbol without a concrete address.
However, during the linking step we need to patch instructions that refer to dot
so that they are resolved to the concrete address of dot in the executable file, i.e.,
where dot was placed in the new text section of REXE .

Again ignoring how instructions are actually patched, the resolution process is
similar to relocation. The linker again examines each original object file in turn; for
each symbol marked as external, it processes the references to that symbol. Each
reference details an instruction that needs to be patched so the previously missing
address is filled in with the concrete address of the symbol within the new executable
file.

10.5 Assemblers

Above the linker is the assembler tool which is tasked with translation of low-level
assembly language programs either directly into an executable file or into an object
file which is converted into an executable form later. Statements in an assembly
language program correspond almost one-to-one with the machine instructions and
so in contrast to portable, high-level languages such as C, most assembly languages
are closely tied to the processor ISA. Example assemblers include gas, which forms
part of the GCC tool-chain. Systems such as C−− [52] enhance the basic remit of
assemblers by adding selective higher-level features to the assembly process, and
also by attempting to offer some degree of portability.

In this section we try to describe assemblers, assembly language and assembly
language programming in an ISA agnostic way with MIPS32 as a concrete exam-
ple. That is, the concepts introduced use MIPS32 for specific examples but are easily
translated to other assembly language formats and processor ISAs. Further, we shy
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away from matters relating to executing assembly language programs using a physi-
cal processor or simulator; instead we provide a dedicated introduction to SPIM [35]
in Appendix A.

10.5.1 Basic Assembly Language Statements

With some exceptions, assembly languages are typically line-based: each line of the
assembly language program contains a statement which can be dealt with by the
assembler more or less independently from the other statements. Two other distin-
guishing features are common to most assembly languages, namely that the lan-
guages are typeless and unstructured. In high-level languages symbols have a type,
for example a variable in C might be declared as being an int or a char or a
float; an assembly language works at the machine level and so the only real type
is a machine word. In high-level languages control-flow statements such as loops
and conditionals enforce a structure to the program; an assembly language program
has no such structure with the only control-flow being via individual jumps and
branches. These features (and others) mean that assembly language programming
is a challenge. The normal philosophy of assembler design is that right or wrong,
they do exactly what you tell them; although they will check for syntax errors within
the input program, the assembler will happily let you write programs which are du-
bious in terms of type errors and so on. The main benefit of an assembler is thus
automation of tasks that would normally have to be performed by hand.

The operation of an assembler can roughly be described as reading each line,
parsing fields of constituent statements and constructing equivalent machine code
encodings. The assembler keeps an address counter as it processes assembly lan-
guage statements: each statement that causes the assembler to produce some ma-
chine code output also causes the address counter to be incremented. The statements
on each line are drawn from three classes: machine instructions, assembler aliases
or pseudo-instructions, and assembler directives. Although we discuss their mean-
ing and use later, all are specified using roughly the same general format:

[<label>:] <mnemonic> [<operand> ...] [#<comment>]

Note that the fields in square brackets are optional; the meaning of each field de-
mands further explanation:

Label The optional label associates an address with the related statement; it ba-
sically specifies that the label value should be set equal to the current value of
the address counter. In the terminology we already introduced while discussing
executable and object files, a label defines a symbol: the two things are basically
the same, but in the context of assemblers and assembly language the term label
is more common (so we stick to it here).
Thus, instead of writing an instruction to jump to address zero we might instead
write an instruction that jumps to label f and let the assembler work out the ad-
dress f is located at; instead of writing an instruction to load a value from address
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eight we might write an instruction that loads the value associated with the label
a. Note that because it would confuse the process of parsing the statement, labels
cannot be the same as reserved words (which include statement mnemonics). For
example, you cannot specify a label called syscall since this is also a MIPS32
instruction mnemonic.

Mnemonic The statement mnemonic is the keyword which determines the action
to be performed: it plays the role of the operator or opcode when the statement
specifies a machine instruction, essentially allowing the programmer to write a
human-readable name instead of the numeric opcode. For example, the statement

add $2, $3, $4

specifies an instruction to perform addition: use of the mnemonic add instead
of the numeric constants 000000(2) and 100000(2) (which form the opcode and
funct fields for an addition instruction) clearly makes life much easier for the
programmer ! Since some statements have no operands and both labels and com-
ments are optional fields, the mnemonic is the only compulsory part of a state-
ment.

Operand An operand is an item which is operated on in some way by a state-
ment; source operands are used as input to the statement, target operands are
produced as output. Operands within an assembly language statement allow the
programmer to specify what these items are and where they are located. The
number of operands depends on the type of statement. For example, the add
instruction requires three operands: two source operands, which are located in
general-purpose registers, and one target operand which will be written into a
general-purpose register. As such, writing the statement

add $2, $3, $4

specifies an add instruction via the mnemonic, one target operand in the form
of $2 or GPR[2] and two source operands in the form of $3 and $4 or GPR[3]
and GPR[4]. As well as register operands, immediate values can be specified in
either decimal or hexadecimal form. As such, the statements

addi $2, $2, 10

and

addi $2, $2, 0xA

both specify instructions which increment GPR[2] by the constant value ten. Dec-
imal constants can be positive or negative, i.e., specified using standard notation
as 10 or -10, but hexadecimal constants are interpreted directly as the corre-
sponding binary vector. For example the constant value -0xA is invalid. Finally,
labels can be included as operands in certain statements. For example, one might
write

beq $2, $3, f

to specify an instruction which branches to the address associated with the ad-
dress f if GPR[2] and GPR[3] contain the same value. The interpretation of labels
is dependent on the statement type; we will examine this issue in more detail later.
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Comment The role of comments in assembly language programs is the same as
in higher-level programs: they allow the programmer to annotate a program with
human-readable information which aids understanding. Although the comment
field is optional, commenting assembly language programs is often regarded as
even more important than in higher-level programs because said programs are
usually much harder to understand without comments. A comment starts with the
hash character and extends to the end of the line; content after the hash character
is discarded by the assembler before further processing so that, for example, the
statement

add $2, $3, $4 # this is a comment

is equivalent to the statement

add $2, $3, $4

since the comment field is simply discarded.

Some standard lexicographical conventions found within other programming lan-
guages are also found within assembly language. For example, white space (includes
tabs) is not significant except where used as a divider between fields in a statement.
This means that the statement

add $2, $3, $4

can also be written as

add $2, $3,$4

or

add $2 , $3 , $4

but not as

add$2,$3,$4

or

add $2 $3 $4

Although blank lines and lines containing only a comment are permitted, they are
ignored. For example, the statement

# this is a comment

is equivalent to a blank line and hence ignored, as is an entirely blank line.

10.5.2 Using Machine Instructions

Table 10.1 gives a brief overview of assembly language statements that translate
into machine instructions for the reduced MIPS32 ISA introduced in Chapter 5;
the left-hand column gives the statement format and the right-hand column gives
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Statement Meaning

add rd, rs, rt GPR[rd] ← (GPR[rs]+GPR[rt])
sub rd, rs, rt GPR[rd] ← (GPR[rs]−GPR[rt])
mul rd, rs, rt GPR[rd] ← (GPR[rs] ·GPR[rt])
mult rs, rt (HI,LO) ← (GPR[rs] ·GPR[rt])
and rd, rs, rt GPR[rd] ← (GPR[rs]∧GPR[rt])
or rd, rs, rt GPR[rd] ← (GPR[rs]∨GPR[rt])
xor rd, rs, rt GPR[rd] ← (GPR[rs]⊕GPR[rt])
nor rd, rs, rt GPR[rd] ← (GPR[rs] ∨ GPR[rt])
sllv rd, rs, rt GPR[rd] ← (GPR[rs] # GPR[rt]4...0)
srlv rd, rs, rt GPR[rd] ← (GPR[rs] $ GPR[rt]4...0)
addi rt, rs, imm GPR[rt] ← (GPR[rs]+ ext(imm))
mfhi rd GPR[rd] = HI
mflo rd GPR[rd] = LO
mfc0 rt, rd GPR[rt] = CP0[rd]
mthi rs HI = GPR[rs]
mtlo rs LO = GPR[rs]
mtc0 rt, rd CP0[rd] = GPR[rt]
lw rt, imm(rs) GPR[rt] ← MEM[GPR[rs]+ ext(imm)]
sw rt, imm(rs) MEM[GPR[rs]+ ext(imm)] ← GPR[rt]
beq rs, rt, off if GPR[rs] = GPR[rt],PC ← PC + ext(o f f : 00(2))
bne rs, rt, off if GPR[rs] 	= GPR[rt],PC ← PC + ext(o f f : 00(2))
blez rs, off if GPR[rs] ≤ 0,PC ← PC + ext(o f f : 00(2))
bgtz rs, off if GPR[rs] > 0,PC ← PC + ext(o f f : 00(2))
bltz rs, off if GPR[rs] < 0,PC ← PC + ext(o f f : 00(2))
bgez rs, off if GPR[rs] ≥ 0,PC ← PC + ext(o f f : 00(2))
b off PC ← PC + ext(o f f : 00(2))
j imm PC ← (imm : 00(2))
jr rs PC ← GPR[rs]
jal imm GPR[31] ← PC +8,PC ← (imm : 00(2))
nop no operation
syscall cause system call exception
eret return from exception

Table 10.1 A tabular description of an assembly language for a reduced MIPS32 ISA.

the meaning in terms of the processor state. The instructions are roughly grouped
into four classes: those which perform arithmetic, for example the addition or add
instruction; those which perform access to memory, for example the load word or
lw instruction; those which alter the flow of control, for example the unconditional
branch or b instruction; and those which are deemed special in some sense, for
example the system call or syscall instruction.
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10.5.2.1 Arithmetic Instructions

Arithmetic instructions which manipulate values held in the general-purpose regis-
ters typically form the majority of any program. We already introduced a few exam-
ples of this type without explaining them; for example we have already written the
statement

add $2, $3, $4

to specify an add instruction which takes GPR[3] and GPR[4], adds them together
and writes the result back into GPR[2]. It is worth commenting immediately on the
usefulness of having GPR[0] = 0. Because of this fact, we can set registers to any
(small) constant using addi. To see how, consider the instruction:

addi $2, $0, 10 # set GPR[2] = GPR[0] + 10 = 0 + 10 = 10

There are no great mysteries involved in what the assembler does with such an
instruction. It parses the statement, looks up what the encoding should be for this
machine instruction, then produces the resulting encoded instruction as output. In
this case, the instruction semantics

GPR[rt] ← GPR[rs]+ ext(imm)

are filled in to read
GPR[2] ← GPR[0]+10.

This is translated by the assembler into the 32-bit machine code output

00100000000000100000000000001010(2).

The most-significant six bits are 001000(2) which mean the opcode implies an addi
or add immediate instruction. The next two sets of five bits specify the source
and target registers: in this case we read from GPR[0] and write into GPR[2] so
the values are 00000(2) and 00010(2) respectively. The final sixteen bits are the
immediate value 0000000000001010(2) = 10(10). Of course, this works with neg-
ative constants as well; we just need to be careful to deal with the immediate
value in the correct way. That is we need to ensure the sign, in terms of twos-
complement representation, is correct. For example, consider encoding the instruc-
tion addi $2, $0, -10 instead. This results in the output

00100000000000101111111111110110(2)

where everything is the same except the immediate value 1111111111110110(2)
which is the 16-bit twos-complement representation of −10(10).

The reduced MIPS32 ISA described in Table 10.1 does not include an instruction
for division. So, as a limited study of using the suite of arithmetic instructions,
consider the problem of taking an integer value x and dividing it by the constant 3
to give an integer result, i.e., computing q = �x/3�, or more generally q = �x/d� for
some d. To avoid the actual division, the trick is to estimate 1/d, the reciprocal of
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Input: An integer value x.
Output: The integer value q = �x/3�.

DIVIDE-BY-3(x)1

q ← (x $ 2)+(x $ 4)2

q ← (q $ 4)+q3

q ← (q $ 8)+q4

q ← (q $ 16)+q5

r ← x− (3 ·q)6

return q+((11 · r) $ 5)7

end8

Algorithm 10.1: An algorithm for performing integer division by three.

1 .globl main
2

3 main: addi $3, $0, 94 # set x to 94
4 addi $5, $0, 2
5 srlv $6, $3, $5
6 addi $5, $0, 4
7 srlv $7, $3, $5
8 add $4, $6, $7 # set q to ( x >> 2 ) + ( x >> 4 )
9 addi $5, $0, 4

10 srlv $6, $4, $5
11 add $4, $6, $4 # set q to ( q >> 4 ) + q
12 addi $5, $0, 8
13 srlv $6, $4, $5
14 add $4, $6, $4 # set q to ( q >> 8 ) + q
15 addi $5, $0, 16
16 srlv $6, $4, $5
17 add $4, $6, $4 # set q to ( q >> 16 ) + q
18 addi $5, $0, 3
19 mul $6, $4, $5
20 sub $6, $3, $6 # set r to x - ( 3 * q )
21 addi $5, $0, 11
22 mul $6, $6, $5
23 addi $5, $0, 5
24 srlv $6, $6, $5
25 add $4, $4, $6 # set q to q + ( ( 11 * r ) >> 5 );
26 addi $2, $0, 10
27 syscall # exit

Listing 10.9 MIPS32 implementation of integer division by three.

d, and then multiply it with x to get the result. For the case of d = 3 we find that
1/3 ' 0.0101...01(2). More simply this can be written

1/3 ' 1/22 +1/24 +1/26 + · · ·+1/230 + · · ·

so that the division x/3 can be written

x/3 ' x/22 + x/24 + x/26 + · · ·+ x/230 + · · · .
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This looks unpleasant, but actually it is not too bad because we already know that
to compute x/2k we simply need to shift x right k bits. There are some subtleties
with this however, mainly in terms of accuracy. Specifically, we are limited to 32-
bit operations whereas the reciprocal is infinitely long and we are throwing away
some of it with each right-shift of x we perform. Thus, some remedial operations
are required which we will not go into here; for more detail on the method, see the
marvellous discussion of this topic by Henry Warren [64, Chapter 10].

A basic algorithm for performing the division is shown in Algorithm 10.1; note
that we could eliminate some of the multiplications by constants, but these are left
in place to demonstrate the mul instruction. We can implement the algorithm using
MIPS32 machine instructions as demonstrated in Listing 10.9; since this is our first
program of any length, the features in it demand some further discussion. Firstly,
note that the program is straight-line: it contains no branches so execution begins at
the top and ends at the bottom. Usually the first thing to think about when writing
such a program is the register allocation, i.e., which variables in the algorithm will
be held in which machine registers. In this program we use register GPR[3] or $3
to hold the value of x; register GPR[4] or $4 to hold the accumulated value of q;
and registers GPR[5], GPR[6] and GPR[7] or $5, $6 and $7 to hold temporary or
intermediate values.

Once we know which register hold which variables, things start to be easier to
understand. The second thing to think about is the decomposition of the algorithm
into small steps which map onto the operations we can perform using the instruction
set. For example, the first instruction is an application of the discussion above about
setting registers to an immediate value: we set GPR[3] or x to the value we want to
divide by, in this example x = 94 so we are expecting the result 31. Subsequent in-
structions implement (more or less) exactly the steps in the algorithm. For example,
the next five machine instructions implement the step q ← (x $ 2)+(x $ 4). Think
about how this works: the first instruction sets GPR[5] to the constant 2; the second
instruction right-shifts the contents of GPR[3], i.e., x, by the contents of GPR[5],
i.e., 2, and stores the result in GPR[6]; the third and fourth instructions perform a
similar function except with a shift distance of 4; finally, the fifth instruction takes
the intermediate results in GPR[6] and GPR[7], i.e., the results x $ 2 and x $ 4,
adds them together and stores them in GPR[4], i.e., q. The final two instructions in
the program perform a system call that halts the program; this is useful if simulating
with SPIM but otherwise nothing to worry about, we will cover this later.

None of these instructions are particularly interesting as far as the encoding done
by the assembler, it simply fills in the relevant register operands for the appropriate
encoding and produces the resulting output. Take the third, right-shift instruction
which reads srlv $6, $3, $5 for example. The semantics of this instruction
are

GPR[rd] ← GPR[rs] $ GPR[rt]

which for this specific example mean

GPR[6] ← GPR[3] $ GPR[5].
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The assembler selects the encoding for a right-shift instruction and produces the
32-bit machine code output

00000000011001010011000000000110(2).

The most-significant and least-significant six bits are 000000(2) and 000110(2) re-
spectively; this means the opcode and ALU function fields are set such that the
instruction represents an srlv or logical right-shift. The middle three sets of five
bits specify the registers: in this case we read from GPR[3] and GPR[5] and write
into GPR[6], the values are 00011(2), 00101(2) and 00110(2) respectively.

This whole exercise might have seemed painful: it was a lot more effort than
implementing the same algorithm in C for example. But notice that it was a lot less
effort than implementing it in raw machine code: imagine the effort of encoding
twenty or so instructions by hand, let alone ensuring the program they represent is
correct !

10.5.2.2 Memory and Register Access Instructions

The most basic form of access to operands beyond the general-purpose register set is
access to the special-purpose registers. Table 10.1 shows two main examples which
are able to read and write values to and from the HI and LO registers, and to and
from the co-processor register file CP0. The purpose of access to HI and LO is sim-
ple: mult is an arithmetic instruction which yields the 64-bit result of multiplying
together two 32-bit operands. Since the ISA can only support 3-address style in-
structions with two source operands and one target operand, the instruction stores
the multiplication result into HI and LO. These registers are not generally address-
able so in order to perform further processing of the results we need to move them,
using special instructions, into general-purpose registers. Therefore, a typically ob-
served instruction sequence might be

mult $2, $3 # multiply together contents of GPR[2] and GPR[3]
mflo $4 # move low 32-bit part of result into GPR[4]
mfhi $5 # move high 32-bit part of result into GPR[5]

which performs the multiplication and then extracts the result parts in order to per-
form some further computation with them.

The second example of special-purpose register access is to the co-processor,
and is more involved. Roughly speaking, this allows us to perform some special
operations which we will revisit in Chapter 12.

Access to main memory via the load and store word instructions lw and sw is
usually more often used than special-purpose register access. The format of these
instructions is slightly different from the others in the sense that one specifies the
base address and offset using a slightly odd, bracketed syntax. The base address is
always a register operand; the offset is always a constant value, either a number or
a label, written before the bracketed base address.
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Consider the lw for example. The following example program attempts to load
three values from addresses 0, 4 and 8 using a variety of offsets from a fixed base
address of 4 held in GPR[2]:

addi $2, $0, 4 # set GPR[2] to 4
lw $5, -4($2) # load MEM[GPR[2]-4] = MEM[4-4] = MEM[0] into GPR[5]
lw $6, 0($2) # load MEM[GPR[2]+0] = MEM[4+0] = MEM[4] into GPR[6]
lw $7, 4($2) # load MEM[GPR[2]+4] = MEM[4+4] = MEM[8] into GPR[7]

Encoding the memory access instructions follows the same pattern we have already
seen; consider the first load as an example and remember that we need to be careful
to specify the sign of the immediate value correctly as in the case of addi. The
semantics for lw are

GPR[rt] ← MEM[GPR[rs]+ ext(imm)]

which for this specific example is

GPR[5] ← MEM[GPR[2]−4]

and is translated by the assembler into the 32-bit machine code output

10001100010001011111111111111100(2).

The most-significant six bits are 100011(2) which mean the opcode implies an lw
or load word instruction. The next two sets of five bits specify the source and target
registers: in this case we read from GPR[2] and write into GPR[5] so the values
are 00010(2) and 00101(2) respectively. The final sixteen bits are the immediate
value 1111111111111100(2) which is the 16-bit twos-complement representation of
−4(10).

We could write the program above in a different way, loading the same three
values using a variety of base addresses and a fixed offset:

addi $2, $0, -4 # set GPR[2] to -4
addi $3, $0, 0 # set GPR[3] to 0
addi $4, $0, 4 # set GPR[4] to 4
lw $5, 4($2) # load MEM[GPR[2]+4] = MEM[-4+4] = MEM[0] into GPR[5]
lw $6, 4($3) # load MEM[GPR[2]+4] = MEM[ 0+4] = MEM[4] into GPR[6]
lw $7, 4($4) # load MEM[GPR[2]+4] = MEM[ 4+4] = MEM[8] into GPR[7]

At face value, this perhaps makes less sense. However, remember that we can re-
place the offset with a label. Imagine that the label a represents the address of an
array of 32-bit integers in memory; rewriting the example as

addi $2, $0, 0 # set GPR[2] to 0
addi $3, $0, 4 # set GPR[3] to 4
addi $4, $0, 8 # set GPR[4] to 8
lw $5, a($2) # load MEM[0] = MEM[&a+0] ˜ a[0] into GPR[5]
lw $6, a($3) # load MEM[4] = MEM[&a+4] ˜ a[1] into GPR[6]
lw $7, a($4) # load MEM[8] = MEM[&a+8] ˜ a[2] into GPR[7]
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now makes more sense. Remembering that each element of the array is a 32-bit
integer, i.e., a word or four bytes, the program now loads elements 0, 1 and 2 of the
array into GPR[5], GPR[6] and GPR[7].

Of course, sw works in much the same way except we write values into memory
rather than read values from it. As a brief example, consider swapping the first and
second elements in the array a above:

addi $2, $0, 0 # set GPR[2] to 0
addi $3, $0, 4 # set GPR[3] to 4
lw $5, a($2) # load MEM[0] ˜ a[0] into GPR[5]
lw $6, a($3) # load MEM[4] ˜ a[1] into GPR[6]
sw $6, a($2) # store GPR[6] into MEM[0] ˜ a[0]
sw $5, a($3) # store GPR[5] into MEM[4] ˜ a[1]

However, beware of the requirements of both lw and sw to use word-aligned ad-
dresses, i.e., addresses which are a multiple of the word length, or more specifically
a multiple of four bytes. Consider the short example program:

addi $2, $0, 1 # set GPR[2] to 1
lw $3, 0($2) # attempt to load MEM[1] into GPR[3] causes exception

When the processor tries to execute the lw instruction an error or exception will
occur because the address, i.e., 00000001(16), is not word aligned. The implication
of the exception is revisited in Chapter 12; for now, it is enough to think of it as
crashing the program.

10.5.2.3 Control-Flow Instructions

Instructions for changing the flow of control can be roughly broken down using two
characteristics as we discussed in Chapter 5: branches which are conditional (often
termed jumps) versus those which are unconditional, and branches which use an
offset versus an absolute address. The MIPS32 ISA contains branches with both
characteristics, Table 10.1 includes a sub-set of them.

Consider a small example whereby we want to compute the maximum of two
numbers x and y. To achieve this, we compute x− y. Then, if the result is negative
(resp. zero), x must be less than (resp. equal to) y, whereas if the result is positive
(resp. zero), x must be greater than (resp. equal to) y. Thus, we can alter the flow
of control to store the maximum, i.e., which of x and y is the largest, based on the
value x− y:

addi $3, $0, 1 # set GPR[3] to 1, i.e. x = 1
addi $4, $0, 2 # set GPR[4] to 2, i.e. y = 2
sub $2, $3, $4 # set GPR[2] to GPR[3] - GPR[4]
blez $2, take # goto address "take" if GPR[2] <= 0

skip : add $5, $0, $3 # set GPR[5] to GPR[3] + 0 = GPR[3]
j done # goto address "done"

take : add $5, $0, $4 # set GPR[5] to GPR[4] + 0 = GPR[4]
done : ...

Notice that we use two types of branch in this example and in both cases we are us-
ing labels to refer to addresses rather than numbers. Instruction #4 is a conditional
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branch; if GPR[2] is less than or equal to zero, then PC is set to the address take,
i.e., the next instruction executed will be #7. Otherwise the PC is incremented as
normal, i.e., the next instruction executed will be the #5. Instruction #6 is an uncon-
ditional branch: it always sets the PC to the address done so that the next instruction
executed will be #8.

The two branches are also different in the sense that instruction #4 uses a relative
address whereas instruction #6 uses an absolute address. This is perhaps better stated
by examining their semantics: the unconditional branch is the easiest to consider, it
performs the operation

PC ← (imm : 00(2))

which in this specific case means

PC ← done

in that it simply sets the value of PC to the address done. Because of the subtlety of
the ISA discussed in Chapter 5 which means that the least-significant two bits of the
address are not stored, the assembler has to do some minor translation work. For ex-
ample, assume that the program started at address 0 so that done is actually located
at address 28. In this case, the assembler would encode the instruction j done (or
j 28, since they are equivalent) as the 32-bit machine code output

00001000000000000000000000000111(2).

Notice that the most-significant six bits are 000010(2) which mean the opcode im-
plies a j or jump instruction. The other twenty six bits represent the absolute target
of the jump. But the constant is actually 7(10) rather than the expected 28(10). This is
because we know the processor will append zero bits for us at the least-significant
end of the address in order to multiply it by four; this will produce the required
address of 28(10). Using a similar reasoning, the conditional branch performs the
operation

if GPR[rs] ≤ 0,PC ← PC + ext(o f f : 00(2))

which in this specific case means

if GPR[4] ≤ 0,PC ← PC +8.

The actual offset used is maybe a bit confusing: why move the PC forward eight
bytes (i.e., two instructions) ? Again recall the discussion in Chapter 5: when we
perform a branch that uses an offset as the target, we need to keep in mind that
the PC will have already been incremented during the fetch stage of the execution
cycle. Thus, the actual offset is off-by-one compared to what one might expect: in
this case, to get from the branch to the target we move the PC forward two more
instructions, i.e., 8 bytes, instead of three instructions which would be more obvi-
ous. Because the branch uses an offset from the current PC value rather than an
absolute address, it does not matter where the program is located in memory: the
instruction encoding is the same in any case. The assembler would encode the in-
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struction blez $4, take (or blez $4, 8, since they are equivalent) as the
32-bit machine code output

00011000100000000000000000000010(2).

Notice that the most-significant six bits are 000110(2) which mean the opcode im-
plies a blez or branch if less than or equal to zero instruction. The next five bits
specify the register we test, in this case we want GPR[4] so the value is 00100(2).
The next five bits are zero per the encoding scheme, the final sixteen bits represent
the branch offset. Notice that again the offset 8(10) is encoded as 2(10) because we
know the processor will append zero bits for us at the least-significant end.

10.5.2.4 Special Instructions

The final class are special instructions which do not really fit anywhere else. Hope-
fully the nop instruction is self explanatory; it simply performs the null operation
or no operation: it does not alter the processor state, execution simply skips onto
the next instruction. The syscall and eret instructions enable the operation of
an exception or interrupt mechanism. Both are discussed more in Chapter 12 and
Appendix A.

10.5.3 Using Assembler Aliases

In comparison to the expressiveness granted by high-level languages such as C,
the structure of assembly language and limited set of instructions available in the
processor ISA sometimes make writing low-level programs somewhat cryptic. For
example, in C one might easily write and understand the statement a = 0 as as-
signing some variable a the value zero. In MIPS32 assembly language this might
be written as the machine instruction add $1, $0, $0. Even with some context
which is missing here, this instruction is harder to understand. We first need to know
that a is stored in register GRP[1] (rather than referring to it by name); in order to
understand the meaning of the instructing we also need to know that GPR[0] always
stores zero and hence adding GPR[0] to itself and storing the result in GPR[1] is
essentially setting a to zero.

In an effort to make life easier for the programmer, most assemblers allow what
are commonly called instruction and register aliases, or in the specific cases of in-
structions, pseudo-instructions. We already looked roughly at pseudo-instructions
in Chapter 5 when we discussed the fact that nop need not be implemented as a spe-
cial case in the processor hardware because there are plenty of instructions whose
semantics are the same. The example used there was an sllv instruction that tar-
geted GPR[0] to throw away the result and hence performed no operation, i.e., a
nop. In this case, the assembler would spot the nop in the assembly language pro-
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gram but utilise the appropriate sllv instruction encoding. Any assembler is free to
implement similar types of translation that could help the programmer. Consider for
example the fact that the reduced MIPS32 ISA has no native instruction for bitwise
NOT. We can obviously still perform a NOT operation using NOR since

¬x ≡ x ∨ x

but it would be clearer and more meaningful for the programmer to use a not
mnemonic. Thus, we could introduce a not pseudo-instruction which, when en-
countered by the assembler, is translated into appropriate use of nor.

In much the same way, it is quite hard for a programmer to keep track of general-
purpose register usage given that so far we have referred to such registers simply
with a meaningless number. Table 10.2 details a list of register aliases common in
MIPS32 assemblers. The description column is largely unimportant at the moment,
we will describe some of the more specific register later. However, realise that in-
stead of writing $31 to refer to a return address, used for example by the jal
instruction, we can write $ra which is then translated by the assembler into the
correct register number.

Two common pseudo-instructions which we will utilise in the future, but which
are not implemented directly by the processor or specified in the ISA, are li and
la. Consider an example of their use:

.data

A: .word 0
.word 1
...

.text

main: la $2, A # set GPR[2] to &A
li $3, 4 # set GPR[3] to 4
add $3, $2, $3 # set GPR[3] to &A+4
lw $4, 0($3) # set GPR[4] to MEM[&A+4] = A[1]

The la pseudo-instruction loads the address of a label operand into the target reg-
ister. Thus, after executing the first instruction the register GPR[2] holds the address
of label A. In theory, we should be able to write something like addi $2, $0, A
but since the address of A can be a full 32-bit number and the addi instruction can
only accommodate a 16-bit immediate this is problematic. Instead, the la pseudo-
instruction can act more intelligently by constructing the value in GPR[2], poten-
tially expanding to several instructions that form the value in stages. A similar argu-
ment is true for the li pseudo-instruction which loads a register with an immediate
value. After execution of the second instruction the register GPR[3] holds the value
4. Again, we might have written something like addi $3, $0, 4 but if the im-
mediate value is large we run into the same problem as described above; the use of
a pseudo-instruction solves this problem while hiding the details from the program-
mer.
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Register Number Register Name Description

0 0 Constant 0
1 at Reserved
2 v0 Return value
3 v1 Return value
4 a0 Argument
5 a1 Argument
6 a2 Argument
7 a3 Argument
8 t0 Caller-save temporary
9 t1 Caller-save temporary
10 t2 Caller-save temporary
11 t3 Caller-save temporary
12 t4 Caller-save temporary
13 t5 Caller-save temporary
14 t6 Caller-save temporary
15 t7 Caller-save temporary
16 s0 Callee-save temporary
17 s1 Callee-save temporary
18 s2 Callee-save temporary
19 s3 Callee-save temporary
20 s4 Callee-save temporary
21 s5 Callee-save temporary
22 s6 Callee-save temporary
23 s7 Callee-save temporary
24 t8 Caller-save temporary
25 t9 Caller-save temporary
26 k0 Reserved
27 k1 Reserved
28 gp Reserved
29 sp Stack pointer (SP)
30 f p Frame pointer (FP)
31 ra Return address

Table 10.2 A table of MIPS32 register names, aliases and standard uses.

10.5.4 Using Assembler Directives

Statements which relate to machine instructions, either directly or via some alias,
typically generate some output: they are a command by the programmer to translate
the instruction into the machine code. In contrast, a directive is a command to the
assembler itself rather than an instruction for it to translate.
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The typical use for such commands is injection of something other than an in-
struction into the machine code. The most simple directive of this form has the
mnemonic .space and accepts one operand called, for example, n. Using the di-
rective

.space 8

instructs the assembler to dispense with the normal action of producing an encoded
32-bit machine instruction from the statement, and to instead produce n bytes of
empty space or padding; the statement above inserts a total of eight padding bytes.

A similar directive with slightly different behaviour is .align which injects
a different amount of padding depending on the address it is located at. Given an
operand n, the goal is to align the next statement so its address is a multiple of 2n

bytes. So, for example, if we write

.align 2

we want the address of the next instruction to be a multiple of 22 = 4 bytes. If the
directive was encountered when the address counter was 5 for example, this would
result in three padding bytes being inserted so that the next statement would be
generated with the address counter at 8 (which is a multiple of 4). However, if the
directive was encountered when the address counter was 6, only two padding bytes
are required.

As well as padding, one can inject constant values into the generated machine
code. For example, the .half and .word directives both take a list of values
and injects them, as 16-bit half-words and 32-bit full-words respectively, instead of
encoded instructions. For example, consider:

.half 10, 20, 30, 40

.word 10, 20, 30, 40

Both directives are self-aligning in that they automatically place their output on a
multiple of a half-word or word respectively. Similar directives, with the mnemon-
ics .float and .double exist for single and double precision floating point con-
stants. To draw an analogy with the previous discussion of machine instruction en-
coding, for the first example above the assembler generates 64 bits of machine code
output, i.e., four 16-bit values, that we might write as two 32-bit little-endian words

00000000000010100000000000010100(2)
00000000000111100000000000101000(2).

In the second example, we get 128 bits or four 32-bit words of machine code output
from the assembler which look like

00000000000000000000000000001010(2)
00000000000000000000000000010100(2)
00000000000000000000000000011110(2)
00000000000000000000000000101000(2).
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One can also inject text, in the form of strings of characters, in much the same way.
The .ascii directive takes a string (which is again essentially a list of values) and
injects characters as 8-bit bytes:

.ascii "constant"

Recall from Chapter 1 that ASCII gives a standard way to encode characters as bi-
nary strings. As such, we would expect the assembler to produce 64 bits of machine
code for this string, written as two 32-bit little-endian words

01110011011011100110111101100011(2)
01110100011011100110000101110100(2)

where, for example, in the first word reading from the least-significant end the 8-
bit chunks represent the characters ‘c’, ‘o’, ‘n’ and ‘s’. Using .asciiz instead of
.ascii instructs the assembler to null-terminate the characters so that the result
is compatible with the C model of how strings are represented. So given an n-byte
string, .asciiz injects n+1 bytes where the last one is always zero.

You might be rightly thinking that injecting non-instructions into the machine
code is dangerous: what if the processor were to try to execute them ? Clearly, since
they are not encoded instructions it is difficult to say what the processor behaviour
will be: basically it will decode the value as normal and act as if it were an instruc-
tion. This is unlikely to cause meaningful or desirable behaviour. Normally, the
assembler simply leaves it to the programmer to ensure that control-flow can never
reach non-instructions. However, it also offers a mechanism to segregate them; the
.text and .data directive can be used to denote sections of instructions and non-
instructions. This allows the assembler to perform some error checking, for example
it might not normally allow a .ascii directive within the .text section, and to
map the sections of instructions and non-instructions to suitable locations in the re-
sulting machine code. In the case of simulation using SPIM, it has the added side
benefit of allowing the simulator to print values differently for instruction and data
sections so they are more meaningful to the programmer.

Finally, it is worth noting the significance of the .globl and .extern di-
rectives that we have so far used without explanation. The basic idea is that these
directives allow us to control the visibility of labels. If we use a .globl directive
followed by a label name, the symbol associated with that label will be marked as
globally visible in the resulting object file; using .extern marks the symbol as
external. This allows the linker to perform symbol resolution: if a symbol is marked
as global in one object file and external in another, the linker can connect the two
and resolve incomplete references to the external symbol into concrete references to
the global symbol.
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10.5.5 Peephole Optimisation

The term peephole optimisation in the context of assemblers usually means that
we run a small window (or peephole) over the program and try to make localised
performance improvements to instructions within the window. Because the window
is small, usually just a few instructions, we are quite limited to what these improve-
ments can be. We are also limited in the sense that by improving performance we
cannot alter the meaning of the program: in particular, the assembler should not be
responsible for bugs !

As an example of the sort of rewriting the assembler might perform, consider the
instruction

...
add $2, $0, $2
...

which does nothing useful: it essentially adds zero to GPR[2]. While it might not be
sensible for a human to write such an instruction, it is not uncommon for higher-
level tools (or lazy humans) to generate them. The assembler can eliminate the in-
struction and improve performance as a result. As another example, consider the
two instructions

...
addi $2, $2, 1
addi $2, $2, 1
...

Clearly there is no need for them to exist separately: incrementing GPR[2] and then
incrementing it again can be achieved using a single instruction

...
addi $2, $2, 2
...

by rewriting one of the previous addi instructions and eliminating the other. Fi-
nally, consider branches of the form

...
beq $2, $3, l0

l0: ...

There is no point in performing the equality test on GPR[2] and GPR[3] or the re-
sulting branch since either way, control-flow drops through to the next instruction
labelled l0. So we can eliminate the branch to give

...
l0: ...

Many other situations like the three presented above occur commonly in machine
generated assembly language programs. By equipping the assembler with even ba-
sic rules for peephole optimisation, non-trivial improvements in performance are
possible. This is particularly true if, for example, the improvements occur within a
loop executed many times. These rules can often be merged with the set of rewriting
rules used to realise the translation of pseudo-instructions into machine instructions.
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1 .globl A
2 .globl n
3 .globl main
4

5 .data
6

7 A: .space 64
8 n: .word 16
9

10 .text
11

12 main: lw $3, n($0) # load n
13 add $5, $0, $0 # set A[0] to 0
14 addi $6, $0, 1 # set A[1] to 1
15 add $7, $0, $0
16 addi $8, $0, 4
17 sw $5, A($7) # store A[0]
18 sw $6, A($8) # store A[1]
19 addi $4, $0, 2 # set i to 2
20 l0: sub $7, $3, $4
21 blez $7, l1 # goto l1 if n <= i
22 add $7, $5, $6 # set A[i] to A[i-1] + A[i-2]
23 addi $8, $0, 4
24 mul $8, $8, $4
25 sw $7, A($8) # store A[i]
26 add $5, $0, $6 # set A[i-2] to A[i-1]
27 add $6, $0, $7 # set A[i-1] to A[i ]
28 addi $4, $4, 1 # set i to i + 1
29 j l0 # goto l0
30 l1: addi $2, $0, 10
31 syscall # exit

Listing 10.10 MIPS32 implementation of a Fibonacci sequence generator.

10.5.6 Some Short Example Programs

Like most programming, learning to write assembly language is something which
is best done by practise and example rather than simply reading about it. With this
in mind, the following are some short example programs which are intended to
demonstrate several common programming constructs used to solve real problems
of roughly increasing complexity. The big caveat with these examples is that we
have not yet looked at functions or function calls, deferring this subject until we
discuss compilers in Chapter 11. Therefore, each example is presented as if it were
the “whole program” even if in reality it should be a function within a program.

10.5.6.1 Fibonacci Numbers

The i-th number in the Fibonacci sequence is defined by

ai = ai−1 +ai−2

with a0 = 0 and a1 = 1. Thus, the first few numbers of the Fibonacci sequence are
0,1,1,2,3,5,8,13,21,34, . . .. Writing a program to generate these numbers is fairly
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simple: we essentially just need to write a loop which adds together the previous two
numbers to generate the next number. Imagine that such a program should generate
the first n Fibonacci numbers and store them in an array A, i.e., Ai = ai for values
0 ≤ i < n. An implementation of such a program is shown in Listing 10.10.

Firstly, notice that inside the data section we have used the .space directive to
clear 64 bytes of memory for our uninitialised array; placing the label A before the
directive allows us to refer to the array by name. We also allocate a single word, us-
ing .word and labelled n, to hold the input n, i.e., the number of Fibonacci numbers
we should generate into A. Secondly, it is worth noting the register allocation used
(roughly) throughout the program: we use register GPR[3] or $3 to hold the value
of n; register GPR[4] or $4 to hold the value of i; registers GPR[5] and GPR[6] to
hold the previous two Fibonacci numbers, i.e., Ai−1 and Ai−2; and registers GPR[7]
and GPR[8] or $7 and $8 to hold temporary or intermediate values.

We are now in a position to read and understand the program itself; in the text
section, execution starts at the address labelled main. First we load the value of n
and initialise the first two numbers of the Fibonacci sequence to 0 and 1. Storing A0

and A1 demands some care: note that we are storing 32-bit integers so the addresses
of A0 and A1 are &A+ 0 and &A+ 4. We then initialise the loop counter i to 2, and
enter the core loop. This loop works by first testing if the loop counter is larger
than the limit n; we achieve this in a similar way to the test shown previously. That
is, we subtract i from n and exit the loop, i.e., jump to the address labelled l1, if
the result is less than or equal to zero. The body of the loop first adds the previous
two Fibonacci together and stores the result Ai at address &A+ 4i. Notice that this
would be easier if there was support for the scaled addressing mode discussed in
Chapter 5 ! The program then shuffles the Fibonacci numbers around so that in
the next loop iteration Ai and Ai−1 become the two previous numbers. Finally, we
increment the loop counter i and then jump back up to the address labelled l0 for
another iteration.

Of course, like any program which implements an algorithm, there are other
options which we might have used instead. For example, we might prefer not to
keep Ai−1 and Ai−2 in registers if they are at a premium but to load them from
memory in each loop iteration; we might have preferred to keep track of the address
&A+4i by repeated addition rather than using a multiplication of i by four. However,
the program works: we can execute it and on completion the array A contains the
first n Fibonacci numbers.

10.5.6.2 Integer Square Roots

Probably you have met the square root function already in mathematics:

x = y2 −→ y =
√

x

and probably you do not remember it as particularly friendly ! To make things easier
for this example, we will consider only integer square roots: the problem is to find y
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Input: An integer value x.
Output: The integer value y = �√x�.

SQRT(x)1

y ← 02

z ← x+13

while y+1 	= z do4

m ← �(y+ z)/2�5

if m2 ≤ x then6

y ← m7

else8

z ← m9

return y10

end11

Algorithm 10.2: An algorithm for computing integer square roots using binary search.

such that y = �√x�. In other words, find the largest integer y such that y2 ≤ x. Also
assume that x is positive and fits into a general-purpose register, i.e., 0 ≤ x < 232,
and that 0 ≤ y2 < 232.

About the most basic method to use would be to simply use brute force search:
loop through increasing values of y until y2 exceeds x. This is far from the best
approach to solving the problem you could take; for large x it will clearly be very
inefficient ! Even though there are plenty of more involved methods to be more
efficient, let’s consider improving on brute force search by employing binary search
instead. Algorithm 10.2 details how this might work; essentially we initialise the
search limits and then search until we narrow in on the result.

We can adopt a now fairly familiar approach to implementing the algorithm; the
result is shown in Listing 10.11. The data section defines 32-bit words labelled x
and y to represent the input and output of the algorithm; in this case we initialise
x = 256 so we expect the output to be y = 16. We use register GPR[3] or $3 to hold
the value of x; register GPR[4] or $4 to hold the value of y; register GPR[5] or $5
to hold the value of z; register GPR[6] or $6 to hold the value of m; and registers
GPR[7] and GPR[8] or $7 and $8 to hold temporary or intermediate values. Again,
in the text section execution starts at the address labelled main. We start by loading
the value of x and initialising the search limits before entering the loop. The loop
structure is similar to the previous example in the sense that the first thing we do is
test whether y + 1 = z: if it does, we branch to l3 to terminate the loop, otherwise
we execute the loop body. The loop body starts immediately by computing m (using
a right-shift in place of the division by 2) and then performs a test to check whether
to replace the upper or lower limit, and update the right one accordingly (this is
similar to the example where we computed the maximum of two numbers). Finally,
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1 .globl x
2 .globl y
3 .globl main
4

5 .data
6

7 x: .word 256
8 y: .word 0
9

10 .text
11

12 main: lw $3, x($0) # load x
13 addi $4, $0, 0 # set y to 0
14 addi $5, $3, 1 # set z to x+1
15 l0: addi $7, $4, 1
16 sub $7, $7, $5
17 beqz $7, l3 # goto l3 if y+1 == z
18 add $6, $4, $5
19 addi $7, $0, 1
20 srlv $6, $6, $7 # set m to ( y + z ) / 2
21 mul $7, $6, $6
22 sub $7, $7, $3
23 blez $7, l2 # goto l2 if mˆ2 <= x
24 l1: add $5, $6, $0 # set z to m
25 j l0 # goto l0
26 l2: add $4, $6, $0 # set y to m
27 j l0 # goto l0
28 l3: sw $4, y($0) # store y
29 addi $2, $0, 10
30 syscall # exit

Listing 10.11 MIPS32 implementation integer square root using binary search.

we branch back to l0 for another iteration. When the loop finally terminates, the
program stores the result y and exits.

10.5.6.3 Bubble-Sort

As the last example we look at a basic sorting algorithm: the so-called bubble-sort
in Algorithm 10.3 details a standard presentation of the algorithm which sorts an
array a of n numbers into ascending order. Although things are starting to get a bit
more complicated (there are two nested loops now for example), we can approach
the implementation in exactly the same way as shown in Listing 10.12. We start
with a data section which includes space for the array A, which is initialised to A =
(8,5,7,1,3,4,6,2), and the size n which in this case is 8. We reserve register GPR[2]
or $2 to hold the exit flag f which tells us if the array is sorted prematurely; register
GPR[3] or $3 holds n; registers GPR[4] and GPR[5] or $4 and $5 hold the loop
counters i and j; registers GPR[6 . . .10] or $6 to $10 hold temporary or intermediate
values. Execution starts in the text section at the address labelled main. Things are
now maybe a little verbose to explain line-per-line; hopefully the comments make
the code fairly self-explanatory.
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Input: An array A of length n.
Output: The sorted array A.

BUBBLE-SORT(A,n)1

for i = n−1 downto 0 do2

f ← 03

for j = 0 upto i−1 do4

if A j+0 > A j+1 then5

t ← A j+06

A j+0 ← A j+17

A j+1 ← t8

f ← 19

if f = 0 then10

return11

return12

end13

Algorithm 10.3: An algorithm for sorting an array in-place using bubble-sort.

10.5.7 The Forward Referencing Problem

Consider the implementation of bubble-sort in Listing 10.12; we replicate this im-
plementation below but focus only on the beginning and end of the code, cutting out
the middle section:

main: lw $3, n($0) # load n
addi $4, $3, -1 # set i to n - 1

l0: blez $4, l4 # goto l4 if i <= 0
add $2, $0, $0 # set f to 0
...
addi $4, $4, -1 # set i to i - 1
j l0 # goto l0

l4: addi $2, $0, 10
syscall # exit

The first blez branch in this shortened fragment uses label l4 as a target; the
label is located later on in the program, toward the end. This is called a forward
reference. The second j branch uses label l0 as a target; the label is located earlier
on in the program, toward the start. This is called a backward reference. Given the
assembler will scan the program from start to finish, backward reference to a label
causes no problem since at the point the label is used in an instruction, the assembler
has already encountered the label definition and can therefore correctly recover the
label address. However, a forward reference to a label is more problematic since at
the point the label is used, the assembler does not yet know the label address: it has
not encountered the label yet in the program. This is called the forward referencing
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1 .globl A
2 .globl n
3 .globl main
4

5 .data
6

7 A: .word 2
8 .word 6
9 .word 4

10 .word 3
11 .word 1
12 .word 7
13 .word 5
14 .word 8
15

16 n: .word 8
17

18 .text
19

20 main: lw $3, n($0) # load n
21 addi $4, $3, -1 # set i to n - 1
22 l0: blez $4, l4 # goto l4 if i <= 0
23 add $2, $0, $0 # set f to 0
24 add $5, $0, $0 # set j to 0
25 l1: sub $6, $4, $5
26 blez $6, l3 # goto l3 if i <= j
27 addi $6, $0, 4
28 mul $6, $6, $5
29 addi $7, $6, 4
30 lw $8, A($6) # load A[j ]
31 lw $9, A($7) # load A[j+1]
32 sub $10, $8, $9
33 blez $10, l2 # goto l2 if a[j] <= a[j+1]
34 sw $9, A($6) # store A[j+1] (swap)
35 sw $8, A($7) # store A[j ] (swap)
36 addi $2, $0, 1 # set f to 1
37 l2: addi $5, $5, 1 # set j to j + 1
38 j l1 # goto l1
39 l3: blez $2, l4
40 addi $4, $4, -1 # set i to i - 1
41 j l0 # goto l0
42 l4: addi $2, $0, 10
43 syscall # exit

Listing 10.12 MIPS32 implementation of bubble-sort.

problem. So in the example above, a naive assembler cannot encode the blez
branch since at that point in the program it has not encountered the l4 label.

The usual way to solve this problem is to extend our naive assembly process,
which we might call one-pass in the sense that it scans the program once from start
to finish, into a two-pass version. During the first pass of our two-pass assembly
process, the assembler scans the program and discards everything apart from la-
bel definitions. It uses these label definitions to build a symbol table in memory
which holds each label name and the corresponding address. After finishing the first
pass, the symbol table holds every label in the program. During the second pass,
the assembler re-scans the program and this time performs the process of encoding
statements; since it can now look-up label addresses in the symbol table created in
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the first pass rather than relying on having encountered them in the second pass, the
forward referencing problem is no longer a problem.

Of course, the fact that we now perform two passes over the program means
that we need to perform two scans of the program i.e., parse the program twice. The
positive of physically parsing the same program twice is that the two-pass assembler
needs less memory (it need not hold the entire program in memory); the negative
is that for large programs the repeated parsing effort can be problematic. As an
alternative, some assemblers make the opposite trade-off by parsing the program
once, holding it in memory in some intermediate form, and then applying the two
passes without the need for re-parsing.

10.5.8 An Example Assembler

Assemblers are interesting from the point of view of computer architecture because,
roughly speaking, they are the lowest level where human written programs meet the
physical hardware: they commonly represent the programming interface to a given
processor. They are also interesting because unlike more complex software, a basic
but working assembler can be constructed in only a few hundred lines of C code. In
this section we attempt to demonstrate this fact by presenting a skeleton assembler
implementation (in the sense that some trivial parts are omitted) with the goal of
having enough of the assembler in place to assemble the bubble-sort program in
Listing 10.12.

10.5.8.1 Support Structures and the ISA Table

To support everything, Listing 10.13 details a number of common structures used
in the assembler to represent labels (the labl structure), statements (the stmt
structure) and instructions in the ISA (the inst structure). A labl holds the label
name (or identifier) and the address at which it is defined; this structure is mainly
used to represent entries in the symbol table. A stmt represents a parsed assembly
language statement; it holds a count of each of the number of labels, mnemonics
and operands parsed and their lexical representation (i.e., the raw strings that are
parsed). An inst is a description of an instruction in the ISA; it holds the instruc-
tion mnemonic (as written in a program), opcode information (i.e., the opcode and
funct fields), the number of operands and the type of those operands.

The inst structure is particularly important since it allows us to write what is
often termed a table driven assembler. Such a design holds a single table which de-
scribes the ISA and drives the rest of the assembly process: everything else is generic
so that adding or altering instructions means simply changing the table rather than
the code. Listing 10.14 shows the table for our assembler. Each line initialises an
inst structure for an instruction in the reduced MIPS32 ISA. Most of the table
should be intuitive: the entry for add lists the mnemonic add; it uses a single 32-
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1 typedef struct __labl
2 {
3 struct __labl* next;
4 struct __labl* prev;
5

6 char name[ MAX_CHAR ];
7 int addr;
8 }
9 labl;

10

11 typedef struct __smnt
12 {
13 int labl_n;
14 char labl_s[ MAX_LABL ][ MAX_CHAR ];
15

16 int mnem_n;
17 char mnem_s[ MAX_MNEM ][ MAX_CHAR ];
18

19 int oper_n;
20 char oper_s[ MAX_OPER ][ MAX_CHAR ];
21 }
22 smnt;
23

24 typedef struct __inst
25 {
26 char mnem_s[ MAX_CHAR ];
27

28 int code;
29

30 int oper_n;
31 int oper_t[ MAX_OPER ];
32 }
33 inst;

Listing 10.13 A C code fragment which describes support structures for the example assembler.

bit constant OPER_ADD to hold the encoded constants 000000(2) and 100000(2)
which form the opcode and funct fields; it shows that the statement should have
three operands; and most importantly it shows that the operands should all be reg-
isters. The operand type array is perhaps the most important. For add this array
was simple, for other instructions things get more involved. For example, the entry
for addi shows that the instruction takes three operands, the first two of which are
registers and the third is a 16-bit immediate constant. The entry for beq shows that
the instruction takes three operands, the first two of which are registers and the third
is a 16-bit immediate offset which needs word aligning applied to it.

10.5.8.2 A Unified Parser Function

Before we worry about dealing with assembly language statements, we need to parse
them somehow. Given that the assembler operates in a two-pass manner, we would
rather not have two very similar functions for the parsing functionality. As such,
Listing 10.15 shows a unified parsing function which accepts a file pointer and a
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1 inst tab_inst[] = {{ "add", CODE_ADD, 3, {OPER_RD, OPER_RS, OPER_RT }},
2 { "sub", CODE_SUB, 3, {OPER_RD, OPER_RS, OPER_RT }},
3 { "mul", CODE_MUL, 3, {OPER_RD, OPER_RS, OPER_RT }},
4 { "mult", CODE_MULT, 2, { OPER_RS, OPER_RT }},
5 { "and", CODE_AND, 3, {OPER_RD, OPER_RS, OPER_RT }},
6 { "or", CODE_OR, 3, {OPER_RD, OPER_RS, OPER_RT }},
7 { "xor", CODE_XOR, 3, {OPER_RD, OPER_RS, OPER_RT }},
8 { "nor", CODE_NOR, 3, {OPER_RD, OPER_RS, OPER_RT }},
9 { "sllv", CODE_SLLV, 3, {OPER_RD, OPER_RS, OPER_RT }},

10 { "srlv", CODE_SRLV, 3, {OPER_RD, OPER_RS, OPER_RT }},
11 { "addi", CODE_ADDI, 3, {OPER_RT, OPER_RS, OPER_IMM16 }},
12

13 { "mfhi", CODE_MFHI, 1, {OPER_RD }},
14 { "mflo", CODE_MFLO, 1, {OPER_RD }},
15 { "mfc0", CODE_MFC0, 2, {OPER_RD, OPER_RT }},
16 { "mthi", CODE_MTHI, 1, {OPER_RS }},
17 { "mtlo", CODE_MTLO, 1, {OPER_RS }},
18 { "mtc0", CODE_MTC0, 2, {OPER_RD, OPER_RT }},
19 { "lw", CODE_LW, 3, {OPER_RT, OPER_IMM16, OPER_RS }},
20 { "sw", CODE_SW, 3, {OPER_RT, OPER_IMM16, OPER_RS }},
21

22 { "beq", CODE_BEQ, 3, {OPER_RS, OPER_RT, OPER_OFF16_WA}},
23 { "bne", CODE_BNE, 3, {OPER_RS, OPER_RT, OPER_OFF16_WA}},
24 { "blez", CODE_BLEZ, 2, {OPER_RS, OPER_OFF16_WA}},
25 { "bgtz", CODE_BGTZ, 2, {OPER_RS, OPER_OFF16_WA}},
26 { "bltz", CODE_BLTZ, 2, {OPER_RS, OPER_OFF16_WA}},
27 { "bgez", CODE_BGEZ, 2, {OPER_RS, OPER_OFF16_WA}},
28 { "b", CODE_B, 1, { OPER_OFF26_WA}},
29 { "j", CODE_J, 1, { OPER_IMM26_WA}},
30 { "jr", CODE_JR, 1, {OPER_RS }},
31 { "jal", CODE_JAL, 1, { OPER_IMM26_WA}},
32

33 { "nop", CODE_NOP, 0, { }},
34 {"syscall", CODE_SYSCALL, 0, { }},
35 { "break", CODE_BREAK, 0, {

}}};

Listing 10.14 A C code fragment which implements the driver table for the example assembler.

function pointer as input: it uses the file pointer as a source to read the program
from and the function pointer as a handler which processes the statement.

The actual parsing process relies heavily on standard C library functions. The
main while loop reads lines of input using fgets until they are exhausted. Each
line is then stripped of extraneous characters by processing it in reverse; each occur-
rence of the hash character is replaced by end of line to truncate comments, commas
and parentheses are replaced by space and tabs are eliminated to produce a string of
raw tokens separated by space. So for example the line

lw $2, 0($3) # this is a comment

is manipulated into

lw $2 0 $3

The tokens are then extracted by the strtok function which operates in a loop to
fill in a stmt structure which is subsequently passed to the handler function for
processing.
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1 void parse( FILE* f, void ( *process )( smnt* s ) )
2 {
3 char l[ MAX_CHAR ];
4 smnt s;
5

6 while( fgets( l, MAX_CHAR, f ) != NULL )
7 {
8 char* p;
9 char* q;

10

11 for( int i = strlen( l ) - 1; i >= 0; i-- )
12 {
13 if( l[ i ] == ’\n’ || l[ i ] == ’#’ )
14 l[ i ] = ’\0’;
15 if( l[ i ] == ’\t’ || l[ i ] == ’,’ ||
16 l[ i ] == ’(’ || l[ i ] == ’)’ )
17 l[ i ] = ’ ’;
18 }
19

20 s.labl_n = 0;
21 s.mnem_n = 0;
22 s.oper_n = 0;
23

24 for( q = l; ( ( p = strtok( q, " " ) ) != NULL ); q = NULL )
25 {
26 if( s.mnem_n == 0 )
27 {
28 if( p[ strlen( p ) - 1 ] == ’:’ )
29 strcpy( s.labl_s[ s.labl_n++ ], p );
30 else
31 strcpy( s.mnem_s[ s.mnem_n++ ], p );
32 }
33 else
34 {
35 strcpy( s.oper_s[ s.oper_n++ ], p );
36 }
37 }
38

39 process( &s );
40 }
41 }

Listing 10.15 A C function which parses assembly language programs line by line and calls a
function to handle the resulting statement.

10.5.8.3 Functions for Passes One and Two

With the parser able to invoke an arbitrary handler function for each line of in-
put, it simply remains to construct such functions which implement the right be-
haviour during the first and second passes of the assembly process. These func-
tions are detailed in Listing 10.16 and Listing 10.17 respectively. Each code frag-
ment implements three functions: a statement handler function which is called by
the parser to process a statement (for example pass_one_statement); an in-
struction handler which deals specifically with machine instructions (for example
pass_one_instruction); and a directive handler function which deals specif-
ically with assembler directives (for example pass_one_directive).
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1 void pass_one_directive( smnt* s )
2 {
3 if( !strcmp( s->mnem_s[ 0 ], ".word" ) )
4 {
5 for( int i = 0; i < s->oper_n; i++ )
6 {
7 int n = atoi( s->oper_s[ i ] );
8

9 addr += 4;
10 }
11 }
12 }
13

14 void pass_one_instruction( smnt* s )
15 {
16 inst* t = get_inst( s->mnem_s[ 0 ] );
17

18 if ( t == NULL )
19 error( "unknown instruction" );
20 else if( t->oper_n != s->oper_n )
21 error( "wrong operand count" );
22 else
23 {
24 for( int i = 0; i < t->oper_n; i++ )
25 {
26 switch( t->oper_t[ i ] )
27 {
28 case OPER_RD :
29 case OPER_RT :
30 case OPER_RS :
31 if( !is_reg( s->oper_s[ i ] ) )
32 error( "wanted register operand" );
33 break;
34 case OPER_IMM16 :
35 case OPER_OFF16 :
36 case OPER_IMM26 :
37 case OPER_OFF26 :
38 if( !is_num( s->oper_s[ i ] ) )
39 error( "wanted numeric operand" );
40 break;
41 }
42 }
43

44 addr += 4;
45 }
46 }
47

48 void pass_one_statement( smnt* s )
49 {
50 if( s->labl_n != 0 )
51 {
52 if( get_labl( s->labl_s[ 0 ] ) != NULL )
53 error( "redefined label" );
54 else
55 add_labl( s->labl_s[ 0 ], addr );
56 }
57

58 if( s->mnem_n != 0 )
59 {
60 if( is_directive( s->mnem_s[ 0 ] ) )
61 pass_one_directive( s );
62 else
63 pass_one_instruction( s );
64 }
65 }

Listing 10.16 C functions for the first pass of the example assembler.



1 void pass_two_directive( smnt* s )
2 {
3 if( !strcmp( s->mnem_s[ 0 ], ".word" ) )
4 {
5 for( int i = 0; i < s->oper_n; i++ )
6 {
7 int n = atoi( s->oper_s[ i ] );
8

9 output( addr, n );
10

11 addr += 4;
12 }
13 }
14 }
15

16 void pass_two_instruction( smnt* s )
17 {
18 inst* t = get_inst( s->mnem_s[ 0 ] );
19

20 uint32 enc = t->code;
21

22 for( int i = 0; i < t->oper_n; i++ )
23 {
24 switch( t->oper_t[ i ] )
25 {
26 case OPER_RD :
27 enc |= ( ( dec_reg( s->oper_s[ i ] ) ) & 0x0000003F ) << 11;
28 break;
29 case OPER_RT :
30 enc |= ( ( dec_reg( s->oper_s[ i ] ) ) & 0x0000003F ) << 16;
31 break;
32 case OPER_RS :
33 enc |= ( ( dec_reg( s->oper_s[ i ] ) ) & 0x0000003F ) << 21;
34 break;
35 case OPER_IMM16 :
36 enc |= ( ( dec_num( s->oper_s[ i ] ) ) & 0x0000FFFF ) ;
37 break;
38 case OPER_OFF16 :
39 enc |= ( ( dec_num( s->oper_s[ i ] ) - addr - 4 ) & 0x0000FFFF ) ;
40 break;
41 case OPER_IMM26 :
42 enc |= ( ( dec_num( s->oper_s[ i ] ) ) & 0x03FFFFFF ) ;
43 break;
44 case OPER_OFF26 :
45 enc |= ( ( dec_num( s->oper_s[ i ] ) - addr - 4 ) & 0x03FFFFFF ) ;
46 break;
47 case OPER_IMM16_WA :
48 enc |= ( ( dec_num( s->oper_s[ i ] ) ) & 0x0000FFFF ) >> 2;
49 break;
50 case OPER_OFF16_WA :
51 enc |= ( ( dec_num( s->oper_s[ i ] ) - addr - 4 ) & 0x0000FFFF ) >> 2;
52 break;
53 case OPER_IMM26_WA :
54 enc |= ( ( dec_num( s->oper_s[ i ] ) ) & 0x03FFFFFF ) >> 2;
55 break;
56 case OPER_OFF26_WA :
57 enc |= ( ( dec_num( s->oper_s[ i ] ) - addr - 4 ) & 0x03FFFFFF ) >> 2;
58 break;
59 }
60 }
61

62 output( addr, enc );
63

64 addr += 4;
65 }
66

67 void pass_two_statement( smnt* s )
68 {
69 if( s->mnem_n != 0 )
70 {
71 if( is_directive( s->mnem_s[ 0 ] ) )
72 pass_two_directive( s );
73 else
74 pass_two_instruction( s );
75 }
76 }

Listing 10.17 C functions for the second pass of the example assembler.
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During the first pass, the handler functions deal mainly with constructing the
symbol table and performing error detection. For example, the statement handler
first checks if the statement contains any labels. If it does, it then checks if the la-
bel has already been defined and issues an error if it has; if the label has not been
defined, it adds it to the symbol table. The handler then checks if the statement
contains any mnemonics. If it does, the handler determines if the mnemonic is a
machine instruction or a directive and calls the specific handler for that case. The
instruction handler for the first pass simply checks if the mnemonic is a valid in-
struction, if there are the right number of operands, and if the operands are of the
correct type. Note that after this checking, the address counter is incremented. The
directive handler performs a similar duty, incrementing the address counter for each
operand in the list supplied to .word directives.

During the second pass, things get a bit more involved since we need to perform
the actual instruction encoding; the main differences are therefore in the instruction
and directive handlers. The directive handler is the simplest: for each operand to a
.word directive it outputs that operand (as a 32-bit machine code word) and incre-
ments the address counter. The instruction handler needs to consider encoding of
machine instructions which is a harder task. Roughly speaking, the function starts
constructing the encoding by fetching opcode information from the ISA table for
the instruction under inspection. It then loops through each operand and performs
a different action depending on the type (which is also detailed in the ISA table).
Each action first decodes the operand from the lexical representation into a numeric
value. This involves for example translating the register number $3 into the value 3,
translating the immediate value 0xA into the value 10 or retrieving a label address
from the symbol table. Given the numeric value of the operand, the assembler can
shift the value into the right place and then update the constructed encoding. No-
tice that there are some subtleties when dealing with branch instructions which use
immediate and offset addresses which might also need to be further manipulated to
accommodate word alignment. Once the encoding process is finished, the assembler
outputs the encoded instruction (as a 32-bit machine code word) and increments the
address counter.

With these handlers in place, the assembler can be executed by invoking the
parser with one function pointer (to pass_one_statement) to operate the first
pass and call it again with a different function pointer (to pass_two_statement)
for the second pass. Obviously the address counter needs to be reset before each in-
vocation and some initialisation of things like the symbol table need to be performed
before either.

10.5.8.4 Some Example Output

To demonstrate the assembler in action, Table 10.3 details the line-by-line output
when the bubble-sort program is offered as input. Each line in the table lists the ad-
dress, the machine code word at that address and the assembly language statement
which generated the machine code. Obviously this is making some simplifying as-
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Address Machine Code Assembly Language

00000000 00000002 A: .word 2
00000004 00000006 .word 6
00000008 00000004 .word 4
0000000C 00000003 .word 3
00000010 00000001 .word 1
00000014 00000007 .word 7
00000018 00000005 .word 5
0000001C 00000008 .word 8
00000020 00000008 n: .word 8
00000024 8C030020 main: lw $3, n($0)
00000028 2064FFFF addi $4, $3, -1
0000002C 18800013 l0: blez $4, l4
00000030 00001020 add $2, $0, $0
00000034 00002820 add $5, $0, $0
00000038 00853022 l1: sub $6, $4, $5
0000003C 18C0000C blez $6, l3
00000040 20060004 addi $6, $0, 4
00000044 70C53002 mul $6, $6, $5
00000048 20C70004 addi $7, $6, 4
0000004C 8CC8000A lw $8, a($6)
00000050 8CE9000A lw $9, a($7)
00000054 01095022 sub $10, $8, $9
00000058 19400003 blez $10, l2
0000005C ACC9000A sw $9, a($6)
00000060 ACE8000A sw $8, a($7)
00000064 20020001 addi $2, $0, 1
00000068 20A50001 l2: addi $5, $5, 1
0000006C 0800000E j l1
00000070 18400002 l3: blez $2, l4
00000074 2084FFFF addi $4, $4, -1
00000078 0800000B j l0
0000007C 2002000A l4: addi $2, $0, 10
00000080 0000000C syscall

Table 10.3 Example machine code output of the skeleton two-pass MIPS32 assembler; note that
the address and machine code columns are written as 32-bit values in base-16.
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sumptions. Firstly, the assembler is directly generating machine code so we need
to assume that the program is placed at address zero, otherwise assumptions about
the address of, for example, the array A will not hold. Secondly, we do not care
here about the fact that the data section is placed before the text section and might
therefore be executed by a processor that starts execution at address zero; we as-
sume there is some mechanism to start execution at the main entry point at address
24(16) = 36(10). Finally, the implementation above is not complete: we have assumed
the support functions are filled in appropriately to get any output at all !

10.6 Further Reading

• A.W. Appel and M. Ginsburg.
Modern Compiler Implementation in C.
Cambridge University Press, 2004. ISBN: 0-521-60765-5.

• R.L. Britton.
MIPS Assembly Language Programming.
Prentice-Hall, 2003. ISBN: 0-131-42044-5.

• J.R. Levine.
Linkers and Loaders.
Morgan-Kaufmann, 2000. ISBN: 1-558-60496-0.

• S.S. Muchnick.
Advanced Compiler Design and Implementation.
Morgan-Kaufmann, 1997. ISBN: 1-558-60320-4.

• J. Waldron.
Introduction to RISC Assembly Language.
Addison-Wesley, 1998. ISBN: 0-201-39828-1.

10.7 Example Questions

42. Some RISC processors require the programmer or compiler to guarantee that a
register is not read from for a given number of cycles after the content is loaded
from memory; if the guarantee is not met, the program may execute incorrectly.

a. Explain why this approach might be used.
b. Give one advantage and one disadvantage of the approach.

43. The full MIPS32 instruction set includes lb and sb, instructions that load and
store 8-bit bytes (rather than 32-bit words like the corresponding lw and sw instruc-
tions). Using these instructions, consider a function written in MIPS32 assembly
language:
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l0: lb $t0, 0($a0)
beqz $t0, l1
addi $a0, $a0, 1
j l0

l1: add $v0, $a1, $0
l2: lb $t0, 0($a1)

sb $t0, 0($a0)
addi $a1, $a1, 1
addi $a0, $a0, 1
beqz $t0, l3
j l2

l3: sub $v0, $a1, $v0
addi $v0, $v0, -1
jr $ra

The function uses a pass-by-register calling convention: it takes two arguments
which are placed in $a0 and $a1 by the caller, the return address is placed in
$ra; the function produces one return value that is placed in $v0 before it finishes
execution.

a. Ignoring the issue of delay slots (i.e., assuming that the assembler managed this
automatically), explain in English what the purpose of the function is and how it
works.

b. The function works using lb and sb to load and store one 8-bit byte at a time.
Given the purpose of the function, describe how it could potentially be optimised
by using lw and sw instead and what problems this could entail.



Chapter 11
Compilers

Nobody believed that I had a running compiler and nobody would touch it. They told me
computers could only do arithmetic.

– G. Hopper

Abstract In the previous chapter we started by arguing that writing programs in
machine code was tedious and error prone, and what we really needed was an as-
sembler and linker to do some of the work for us. As programs get larger and more
complex, one can start to use the same argument against assemblers and linkers:
often they are too low-level, and higher-level programming tools are required. This
has led to the invention of a variety of high-level languages, such as C, and com-
pilers which translate programs written in those languages into low-level versions
suitable for processing by assemblers and linkers. In this chapter the aim is to focus
on the aspects of compiler tools which relate to the processors that eventually ex-
ecute their output. That is, we shy away from issues of language design and focus
on, for example, effective selection of machine instructions to implement a given
program.

11.1 Introduction

Compilation of a program is an act of translation between a high-level language
such as C, and a low-level language such as assembly language. A typical mod-
ern compiler is at least logically organised into three parts or phases as shown in
Figure 11.1. In the first phase of processing, the front-end of the compiler is re-
sponsible for parsing the source program and translating it into some intermediate
representation. This description is typically less complex and more canonical than
the original program. The intermediate representation is passed to the second phase
of processing whereby an optimisation framework analyses the program and op-
timises it via various transformations which are typically generic (i.e., processor
independent). For example, it might eliminate common sub-expressions so identi-
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OptimiserHigh Level
Program

Front End Back End Low Level
Program

Figure 11.1 A rough block diagram of compiler components.

cal terms in an expression are only computed once; it might perform some form of
strength reduction so that a computationally expensive operation (for example di-
vision) is replaced by a cheaper operation for specific cases (for example division
by two becomes a right-shift); it might perform register allocation so that as many
variables in the program as possible are held in the fastest parts of the memory hier-
archy. The final phase of processing is performed by the back-end of the compiler.
It is responsible for code generation, the translation of the program held in an in-
termediate representation into instructions for the target processor. This process is
made harder by the issue of instruction selection (choosing the best combination
of instructions to implement a given statement in the intermediate program) and in-
struction scheduling (placing the instructions in the best order to exploit features
such as pipelining in the target processor).

It is interesting to note that until even quite recently, the output of compilers
has been viewed as inferior to hand-written low-level programs. Partly, this is a
case of bravado: the ability to write programs at a low level is often viewed as a
mark of skill, and programmers enjoy the challenge of working at this level. Partly,
it is based on fact however: for short programs written for simple processors, a
good human programmer will usually be hard to beat. As software and processor
complexity has increased, the use of high-level compilers has become increasingly
common for all but the most performance critical applications. It is fair to attribute
this change in attitude in large part to the development of the FORTRAN language
and compiler at IBM by John Backus and others in the early 1950s. The FORTRAN
language is used by the scientific computing community to this day. This fact is
partly due to support for data-types such as complex numbers, but mainly because
the FORTRAN compiler was probably the first which can be described as optimising
the input program, particularly of loop constructs. Anecdotal evidence suggests that
use of FORTRAN reduced program length by a factor of around twenty compared
to assembly language alternatives of the time, while delivering largely equivalent
performance. This trend was re-enforced by the development of the C programming
language at Bell Labs by Dennis Ritchie in the early 1970s specifically for system-
level programming and operating system development: this was a domain previously
reserved for assembly language purists.

Unlike the subject of assemblers, compiler design and implementation is vastly
too broad to go into detail here. The so-called “dragon book” by Aho et al. [1] is
the standard reference in this area although Appel and Ginsburg [2] perhaps give
a more practical introduction while Muchnick [47] focusses more deeply on vari-
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ous optimisation techniques. To avoid glossing over the subject, we instead focus
on elements of compilers which are most relevant to the platforms they target. As
such, we consider the problem of bootstrapping a compiler for a particular platform,
allocation of storage for variables in registers and within the stack and heap, basic
code generation from high-level C statements to low-level assembly language, and
the construction of a complete function call mechanism.

11.2 Compiler Bootstrapping and Re-Hosting

The result of decoupling the front-end from the back-end is, in an idealised sense,
that we can write a front-end for each language we want to compile and a back-end
for each target processor. By selecting one of each, we get a compiler for every
language and every target processor using a common intermediate representation.
Although maintaining the system in terms of compatibility between the phases is a
challenge, this is a powerful feature that has in part enabled the GCC tool-chain, for
example, to support a huge range of source languages and target processors.

In the context of compilers, the term bootstrapping refers to a “chicken or egg”
type problem where we want to write a compiler in the same language it is intended
to compile. The problem is, if we are to compile this implementation we need to
exact thing we are trying to compile ! One approach is to implement the compiler
entirely in assembly language. Historically, this was often the best option available.
However, it means a lot of hard work. Another option is to bootstrap the compiler by
writing an initial version in assembly language and then using this basic compiler
to build successively complete compilers until one reaches the desired result:

1. Our starting point is an executable compiler C0, originally written in language L0,
that executes on platform P0. The compiler accepts programs written in language
L0 as input and produces executables that run on the same platform P0 as output.
At this point, C0 can clearly compile its own source code S0 (which was written
in L0). we call such a compiler self-hosted. A concrete example might be that L0

is assembly language for some processor ISA such as a MIPS32.
2. We take the source code for S0 for the compiler C0 and change it to produce S1.

The change is such that the compiler S1 describes can understand some slightly
advanced version of language L0 we call L1; perhaps the programmer can write
loop statements in L1 for example. We can compile S1 using C0 to produce a new
executable compiler C1. At this point, C1 is written in L0, executes on platform
P0, accepts programs written in language L1 as input and produces executables
that run on the same platform P0 as output.

3. We now take the source code for C1 and re-write it in L1 to produce S2. Clearly
this is easier than when it was originally written in L0 since the new language
contains some extra features we can take advantage of. Also, we can compile the
resulting source code S2 using C1 to produce another executable compiler C2. At
this point, C2 is written in L1, executes on platform P0, accepts programs written
in language L1 as input and produces executables that run on the same platform
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P0 as output. That is, the compiler C2 is again self-hosted and obviously more
powerful than our starting point C0. To add further features to the compiler we
simply iterate the process.

A related problem is that of re-hosting a compiler to a new target processor. In
theory, this means simply changing the compiler back-end. However, this simply
enables the compiler to generate code for that processor: we would like to execute
the compiler on that processor as well:

1. Our starting point is an executable compiler C0 for platform P0 which accepts
programs written in language L0 as input and produces executables that run on
the same platform P0 as output. C0 is termed a native compiler for P0 since it
produces executables for the same platform that it executes on itself. A concrete
example might be an installation of gcc which you can run on a MIPS32-based
processor and which compiles C programs to produce MIPS32 executables (that
you can run on the same processor) as a result.

2. For the sake of argument, assume that the compiler is self-hosted, i.e., that the
source code S0 for compiler C0 is written in language L0. Thinking of C0 as gcc
means this step is no problem: it is written in C and can also compile C programs.

3. Next, we take the compiler source code S0 and change it to produce a new set of
source code S1. The change is such that the back-end in S0, which originally pro-
duced executables to run on platform P0, is replaced with one that produces exe-
cutables to run on platform P1. We can compile S1 with compiler C0 on platform
P0. The resulting compiler C1 executes on platform P0 (we used C0 to compile it),
accepts programs written in language L0 as input and produces executables that
run on platform P1 as output (we replaced the back-end in S1 to ensure this). C1

is termed a cross compiler since it produces executables for a different platform
than it executes on itself.

4. Now we take the compiler source code S1 and compile it with compiler C1 again
on platform P0. The resulting compiler C2 executes on platform P1 (we used C1

to compile it), accepts programs written in language L0 as input and produces
executables that run on platform P1 as output (we replaced the back-end in S1 to
ensure this). In creating C2 we now have a native compiler for P1 since it again
produces executables for the same platform that it executes on itself. We have
bootstrapped the compiler for P1 using the compiler for P0.
So, in short, we started with an installation of gcc for a MIPS32-based processor.
Using only the source code and this initial compiler, we bootstrapped a gcc
compiler for a totally different type of processor, an Intel Pentium for example.

11.3 Intermediate Representation

As touched on earlier, a compiler usually translates programs written in some high-
level language into an intermediate representation that is more amenable to mechan-
ical processing (rather than being read or written by a human). We usually term this
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representation an intermediate program which consists of intermediate instruc-
tions. One way to view an intermediate program is as a sort of “symbolic” version
of assembly language. For example, one might use 3-address style operations

x ← y� z

or memory access
x ← MEM[y]

or conditional branches
if x� y, goto z

in a very similar way to how we were writing machine-level programs prior to the
introduction of assembly language. However, there are a few differences between
the two:

1. An intermediate program typically is not specific about where items of data are
stored. Whereas in a machine-level program we need to talk about registers and
memory addresses, a typical intermediate program views the data symbolically.
For example, we might refer to a symbol called x in the intermediate program
whereas in the machine-level program we would need to refer to GPR[2] as stor-
ing x.

2. In a machine-level program, the operations we used really were machine instruc-
tions. An intermediate instruction, while more simple than a statement in the
high-level language, does not necessarily map directly onto a machine instruc-
tions. For example, we might write an intermediate instruction x ← y # 1 to
specify a left-shift of y by the constant 1. In the machine level program, we
would have to have had a shift instruction that accepted a register operand and
an immediate operand; in the intermediate program we can assume that some
further translation will cope with this (e.g., by first loading 1 into a register and
then performing a shift) if the only shift instruction takes two register operands.

Consider a simple example to illustrate these points: Algorithm 11.1 details a
method for computing the Hamming weight of x. We can easily translate this al-
gorithm into a high-level language program, for example a C program as shown in
Listing 11.1. Notice that already we are being more concrete about operations as we
move from higher-level to lower-level: for example where we write xi in the algo-
rithm, we need to be more specific and write the expression ( x >> i ) & 1 in
the C program. Figure 11.2a shows the C program translated into an intermediate
program; it still retains the symbolic names, but now the operations (where I is
the instruction number) are simpler. For example, instead of writing the (composite)
operation ( x >> i ) & 1 in one go, we split it into two simple intermediate
instructions that use a temporary symbol t0.

Within the intermediate program there are two features that demand definition.
The first is the concept of a basic block. A basic block is a sequence of intermediate
instructions where the first instruction in the sequence is the only entry point (i.e.,
the only one allowed to be the target of a branch from outside the block) and the
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Input: An integer number x represented by n base-2 digits.
Output: The Hamming weight of x.
HAMMING-WEIGHT(x,n)1

w ← 02

for i = 0 upto n−1 step 1 do3

if xi = 1 then4

w ← w+15

return w6

end7

Algorithm 11.1: An algorithm to compute the Hamming weight of some value.

1 int HammingWeight( int x, n )
2 {
3 int w = 0;
4

5 for( int i = 0; i < n; i++ ) {
6 if( ( x >> i ) & 1 )
7 w = w + 1;
8 }
9

10 return w
11 }

Listing 11.1 The high-level Hamming weight algorithm converted to a C program.

I Intermediate Instruction

#0 w ← 0
#1 i ← 0
#2 l0 : if i ≥ n goto l2
#3 t0 ← x $ i
#4 t1 ← t0 ∧1
#5 if t1 	= 1 goto l1
#6 w ← w+1
#7 l1 : i ← i+1
#8 goto l0
#9 l2 : return w

B I Intermediate Instruction

#0 #0 w ← 0
#1 i ← 0

#1 #2 l0 : if i ≥ n goto l2
#2 #3 t0 ← x $ i

#4 t1 ← t0 ∧1
#5 if t1 	= 1 goto l1

#3 #6 w ← w+1
#4 #7 l1 : i ← i+1

#8 goto l0
#5 #9 l2 : return w

(a) Intermediate instructions. (b) Intermediate basic blocks.

Figure 11.2 The Hamming weight C program converted to low-level intermediate representations.
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#H #0 #1 #2 #3 #4 #5

#6

#7 #8

#9 #F

Figure 11.3 A Control-Flow Graph (CFG) relating to the intermediate representation of the Ham-
ming weight program.

last instruction is the only exit point (i.e., the only one allowed to branch to outside
the block). For all other instructions in the basic block, control-flow is straight-line.
Figure 11.2b shows how the Hamming weight example can be sectioned into basic
blocks where B is the basic block number. In each case, control-flow can only enter
at the first instruction in the block and exit at the last instruction; control-flow is
transferred either by an explicit branch (i.e., a branch instruction) or an implicit
branch (i.e., when the processor would simply fetch the next instruction). The sec-
ond feature is something we have briefly touched on already when talking about su-
perscalar processors. A trace is a (non-cyclic) sequence of basic blocks that could
be executed consecutively. Clearly whether the sequence does execute consecutively
is data dependent, e.g., depends on conditional branches, and a single intermediate
program might have many overlapping traces. In our example the traces are easy to
extract as [#0,#1,#5], [#0,#1,#2,#4] and [#0,#1,#2,#3,#4].

Finally, we can create some data structures that will help us analyse and trans-
form the intermediate program. The central example of such a data structure is a
Control-Flow Graph (CFG), an example of which is detailed in Figure 11.3. A
node in the graph represents an intermediate instruction, an edge in the graph repre-
sents control-flow; if there is an edge from node X to node Y , control-flow can pass
from X to Y . The CFG could describe the control-flow over basic blocks to factor out
the straight-line parts, but here we limit ourselves to intermediate instructions. We
add an automatic header and footer node which represent the entry and exit points
for the intermediate program.

11.4 Register Allocation

Every time our processor executes an instruction from a given program, it first needs
to fetch some operands to operate on. With 3-address instructions we typically need
to load two operands and store one result, although this might change depending
on the ISA. If the operands are stored in memory, accessing them becomes a major
performance bottleneck so ideally we keep as much of the working set as possible
in the fastest areas of the memory hierarchy. Considering that the register file is the
best place to store operands from a performance perspective, the problem is how to
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I Intermediate Instruction succ[I ] pred[I ] use[I ] de f [I ]
#H {#0} /0 /0 {x,n}
#0 w ← 0 {#1} {#H} {0} {w}
#1 i ← 0 {#2} {#0} {0} {i}
#2 l0 : if i ≥ n goto l2 {#3,#9} {#1,#8} {i,n} /0
#3 t0 ← x $ i {#4} {#2} {x, i} {t0}
#4 t1 ← t0 ∧1 {#5} {#3} {t0,1} {t1}
#5 if t1 	= 1 goto l1 {#6,#7} {#4} {t1,1} /0
#6 w ← w+1 {#7} {#5} {w,1} {w}
#7 l1 : i ← i+1 {#8} {#5,#6} {i,1} {i}
#8 goto l0 {#2} {#7} /0 /0
#9 l2 : return w {#F} {#2} {w} /0
#F /0 {#9} /0 /0

Table 11.1 The first stage of analysis for the Hamming weight program: successor and predecessor
sets, use and definition sets.

best allocate the (many) symbols in a program to the (fewer) registers in the register
file.

Effective mechanisation of this process is vital for large programs since it is un-
realistic for the programmer to perform the allocation by hand. Although there are
other methods [53], one easy way to construct a solution relates to the problem
of graph colouring [6, 13]. This technique dates back to early days of cartogra-
phy: map makers wanted to draw maps where no neighbour countries had the same
colour. If you imagine the countries are symbols in the program and the colours
are register names, then essentially the two problems are the same. An overview of
the approach is motivated by the following argument. Say we have a graph G and
are trying to colour it using colours from the set C where |C| = K. Imagine G has
some node X with degree(X) < K then let G′ = G−{X}, i.e the graph where we
remove node X . If G′ is K-colourable, then so is G because when we add n then any
neighbours have at most K −1 colours. That is, there is always a spare colour for X .

We will use the same common example throughout as in the previous section, i.e.,
Algorithm 11.1, which computes the Hamming weight of some value x, and from
the CFG in Figure 11.3, we build two sets for each node as shown in Table 11.1.
The successor set succ[I ] is the set of nodes with edges from instruction I , the
predecessor set pred[I ] is the set of nodes with edges to I . For our example,
this is fairly simple; we also include two further sets for each node: the usage set
use[I ] is the set of symbols used by I , the definition set de f [I ] is the set of
symbols defined by I . Essentially these sets define what the data-flow, in contrast
with control-flow, looks like. From the data-flow information we can compute live-
ness sets; that is, sets that tell us which symbols are live-in and live-out, or in[I ]
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LIVENESS(G)1

foreach n ∈ G do2

in[n] ← /03

out[n] ← /04

repeat5

foreach n ∈ G do6

in′[n] ← in[n]7

out′[n] ← out[n]8

in[n] ← use[n]∪ (out[n]−de f [n])9

out[n] ← ⋃
s∈succ[n] in[s]10

until ∀n, in′[n] = in[n] and out′[n] = out[n]11

end12

Algorithm 11.2: Computation of live-in and live-out sets via iteration of data-flow equations.

I Intermediate Code in[I ] out[I ]
#H {0,1} {x,n,0,1}
#0 w ← 0 {x,n,0,1} {x,n,w,0,1}
#1 i ← 0 {x,n,w,0,1} {x,n,w, i,1}
#2 l0 : if i ≥ n goto l2 {x,n,w, i,1} {x,n,w, i,1}
#3 t0 ← x $ i {x,n,w, i,1} {x,n,w, i, t0,1}
#4 t1 ← t0 ∧1 {x,n,w, i, t0,1} {x,n,w, i, t1,1}
#5 if t1 	= 1 goto l1 {x,n,w, i, t1,1} {x,n,w, i,1}
#6 w ← w+1 {x,n,w, i,1} {x,n,w, i,1}
#7 l1 : i ← i+1 {x,n,w, i,1} {x,n,w, i,1}
#8 goto l0 {x,n,w, i,1} {x,n,w, i,1}
#9 l2 : return w {w} /0
#F /0 /0

Table 11.2 The second stage of analysis for the Hamming weight program: live-in and live-out
sets.

and out[I ], for each instruction I . Intuitively, a symbol is live at a particular point
in the program if it contains a useful value, i.e., one we cannot overwrite without
changing the program meaning. There are several strategies for computing the live-
ness sets; the most elegant is via iteration of data-flow equations, which is detailed
in Algorithm 11.2. For our example, we reach a solution after only a few iterations;
the end result is shown in Table 11.2. Notice that constants 0 and 1 are live-in to the
function; if these were variables rather than constants, this would indicate a case of
use before definition, i.e., an error in the program. Maybe the only other feature of
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Figure 11.4 The interference graph for the Hamming weight program.

ALLOC-PREPARE(G,S,C)1

G′ ← G2

while |G|′ 	= 0 do3

t ←⊥4

foreach n ∈ G′ do5

if degree(n) < |C| then6

t ← n7

if t =⊥ then8

t ← SELECT-SPILL(G′)9

G′ ← G′−{t}10

S ← push(S, t)11

end12

Algorithm 11.3: Using the interference graph to prepare the colouring stack.

note is that, for example, there is no edge between t0 and t1: their live ranges do not
overlap.

Finally, we draw an interference graph where nodes represent symbols in the
program and edges represent interference, i.e., the fact that two symbols cannot
occupy the same register. We use the liveness information to do this: if symbols X
and Y are live at the same time, they cannot be allocated the same register so edges
(X ,Y ) and (Y,X) exist in the graph. We can draw the interference graph for our
example as in Figure 11.4. To colour the graph (i.e., perform register allocation),
the first step is to create a colouring stack. Algorithm 11.3 details the procedure;
roughly speaking we repeatedly remove some node t with degree(t) < |C| which
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ALLOC-PREPARE(G,S,R)1

while |S| 	= 0 do2

t ← pop(S)3

C′ ←C4

foreach n where (t,n) ∈ G do5

C′ ←C′−{colour(n)}6

if |C|′ 	= 0 then7

colour(t) ←R C′8

else9

PERFORM-SPILL()10

end11

Algorithm 11.4: Colouring the interference graph using the prepared colouring stack.

guarantees they are colourable. If we cannot find such a t, we carry on optimistically
but note that this symbol might require spilling, a concept we examine later.

11.4.1 An Example Allocation

Consider an example where we try to colour our graph using a sub-set of general
purpose registers C = GPR[2 . . .7], i.e., |C|= 6. We start by initialising the colouring
stack S to empty and starting with the original interference graph in Figure 11.4,
iterate our algorithm:

• Figure 11.5a removes t0 so that S = [t0].
• Figure 11.5b removes t1 so that S = [t0, t1].
• Figure 11.5c removes 0 so that S = [t0, t1,0].
• Figure 11.5d removes 1 so that S = [t0, t1,0,1].
• Figure 11.5e removes x so that S = [t0, t1,0,1,x].
• Figure 11.5f removes n so that S = [t0, t1,0,1,x,n].
• Figure 11.5g removes w so that S = [t0, t1,0,1,x,n,w].
• Figure 11.5h removes i so that S = [t0, t1,0,1,x,n,w, i].

Now that we have the colouring stack prepared, we can preform the colouring op-
eration detailed in Algorithm 11.4; we pop nodes from the stack and try to colour
them. In the case where we were optimistic in preparing the stack, we could find
there is not a colour to assign; in this case we need to take some remedial action
(i.e., spill a symbol) which we will describe later. Otherwise, we select a colour
from the list. The colouring stack starts as S = [t0, t1,0,1,x,n,w, i] and all symbols
have no colour (or the null colour) assigned to them; then we proceed as follows:
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Figure 11.5 Preparation of the colouring stack for the Hamming weight program.
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• Pop i, so that S = [t0, t1,0,1,x,n,w], and assign it the colour GPR[2] because none
of x, n, w, t0, t1 and 1 remove any colours from C′.

• Pop w, so that S = [t0, t1,0,1,x,n], and assign it the colour GPR[3] because i
removes GPR[2] from C′.

• Pop n, so that S = [t0, t1,0,1,x], and assign it the colour GPR[4] because i and w
remove GPR[2] and GPR[3] from C′.

• Pop x, so that S = [t0, t1,0,1], and assign it the colour GPR[5] because i, w and n
remove GPR[2], GPR[3] and GPR[4] from C′.

• Pop 1, so that S = [t0, t1,0], and assign it the colour GPR[6] because i, w, n, and
x remove GPR[2], GPR[3], GPR[4] and GPR[5] from C′.

• Pop 0, so that S = [t0, t1], and assign it the colour GPR[2] because w, n, and
x remove GPR[3], GPR[4] and GPR[5] from C′ but i and 0 do not interfere so
GPR[2] is still selectable.

• Pop t1, so that S = [t0], and assign it the colour GPR[7] because i, w, n, x and 1
remove GPR[2], GPR[3], GPR[4], GPR[5] and GPR[6] from C′.

• Pop t0, so that S = [], and assign it the colour GPR[7] because i, w, n, x and 1
remove the colours GPR[2], GPR[3], GPR[4], GPR[5] and GPR[6] from C′ but t0
and t1 do not interfere so GPR[7] is still selectable.

After completion, we find that our colouring has produced the valid register alloca-
tion

colour(x) = GPR[5]
colour(n) = GPR[4]
colour(w) = GPR[3]
colour(i) = GPR[2]
colour(t0) = GPR[7]
colour(t1) = GPR[7]
colour(0) = GPR[2]
colour(1) = GPR[6]

and we are done.

11.4.2 Uses for Pre-colouring

Use of graph colouring yields a natural way to deal with some important special
cases for register allocation:

1. In some ISAs, the 2n-bit result of (n×n)-bit multiplication is stored in prescribed
registers since a 3-address instruction cannot specify two targets.

2. Often, the function calling convention means incoming arguments and return
values are passed in registers.

To solve these problems, we essentially just pre-colour some of the symbols. For ex-
ample, say symbol X has to be coloured with register Y because of some constraint.
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I Intermediate Instruction in[I ] out[I ]
#H {0,1} {x,n,0,1}
#0 w ← 0 {x,n,0,1} {x,n,w,0,1}

#S1 MEM[SP] ← w {x,n,w,0,1} {x,n,0,1}
#1 i ← 0 {x,n, i,0,1} {x,n, i,1}
#2 l0 : if i ≥ n goto l2 {x,n, i,1} {x,n, i,1}
#3 t0 ← x $ i {x,n, i,1} {x,n, i, t0,1}
#4 t1 ← t0 ∧1 {x,n, i, t0,1} {x,n, i, t1,1}
#5 if t1 	= 1 goto l1 {x,n, i, t1,1} {x,n, i,1}

#S2 w ← MEM[SP] {x,n, i,1} {x,n,w, i,1}
#6 w ← w+1 {x,n,w, i,1} {x,n,w, i,1}

#S3 MEM[SP] ← w {x,n,w, i,1} {x,n, i,1}
#7 l1 : i ← i+1 {x,n, i,1} {x,n, i,1}
#8 goto l0 {x,n, i,1} {x,n, i,1}

#S4 w ← MEM[SP] {} {w}
#9 l2 : return w {w} /0
#F /0 /0

Table 11.3 The second stage of analysis for the re-written Hamming weight program: live-in and
live-out sets.

Before executing ALLOC-COLOUR we simply set colour(X) = Y so that during the
colouring process, other symbols cannot use Y .

11.4.3 Avoiding Error Cases via Spilling

When a large number of registers are in use, i.e., contain live symbols, we say that
the level of register pressure is high; when we run out of registers some remedial
action needs to be taken. If we could alter the processor, we could make the register
file larger but this has some drawbacks. In particular it might ease register pressure
but means increased area and requires a larger proportion of the instruction encod-
ing to address the larger register file. More realistically we temporarily spill some
register into main memory, for example onto the stack.

If we want to spill symbol X , we transform or re-write the program using two
rules: wherever X is defined we store the value in memory, wherever X is used we
load the value from memory again. This process alters the liveness analysis: the live
range of X will be shorter and hence X will interfere with less other symbols. The
question is, given a program which symbol should we spill ? This is normally guided
by a rule of thumb called a spill heuristic. For example, we might
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Figure 11.6 The interference graph for the re-written Hamming weight program.

1. spill constants since re-loading them is cheap, or
2. spill symbols with long live ranges since this maximises the change in liveness

analysis, or
3. spill symbols which are used the least since this minimises the cost of the extra

memory access.

In the example program, the symbol w might be a reasonable selection: it has a
long live range and is used somewhat infrequently. So we might elect to re-write
the program so that w is spilt according to our rules; the end result is detailed in
Table 11.3. The resulting interference is shown in Figure 11.6; notice that w no
longer interferes with either t0 or t1 any more. As before, we can use an example to
show the difference this has made: imagine we try to colour our new graph using a
smaller sub-set of general-purpose registers C = GPR[2 . . .6], i.e., |C| = 5. We start
by initialising the colouring stack S to empty and iterate our algorithm:

• Figure 11.7a removes t0 so that S = [t0].
• Figure 11.7b removes t1 so that S = [t0, t1].
• Figure 11.7c removes 0 so that S = [t0, t1,0].
• Figure 11.7d removes 1 so that S = [t0, t1,0,1].
• Figure 11.7e removes x so that S = [t0, t1,0,1,x].
• Figure 11.7f removes n so that S = [t0, t1,0,1,x,n].
• Figure 11.7g removes w so that S = [t0, t1,0,1,x,n,w].
• Figure 11.7h removes i so that S = [t0, t1,0,1,x,n,w, i].

Now that we have the colouring stack prepared, we can again preform the actual
colouring:

• The colouring stack starts as S = [t0, t1,0,1,x,n,w, i] and all symbols have no
colour (or the null colour) assigned to them.
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Figure 11.7 Preparation of the colouring stack for the rewritten Hamming weight program.
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• Pop i, so that S = [t0, t1,0,1,x,n,w], and assign it the colour GPR[2] because none
of x, n, w, t0, t1 and 1 remove any colours from C′.

• Pop w, so that S = [t0, t1,0,1,x,n], and assign it the colour GPR[3] because i
removes GPR[2] from C′.

• Pop n, so that S = [t0, t1,0,1,x], and assign it the colour GPR[4] because i and w
remove GPR[2] and GPR[3] from C′.

• Pop x, so that S = [t0, t1,0,1], and assign it the colour GPR[5] because i, w and n
remove GPR[2], GPR[3] and GPR[4] from C′.

• Pop 1, so that S = [t0, t1,0], and assign it the colour GPR[6] because i, w, n, and
x remove GPR[2], GPR[3], GPR[4] and GPR[5] from C′.

• Pop 0, so that S = [t0, t1], and assign it the colour GPR[2] because w, n, and
x remove GPR[3], GPR[4] and GPR[5] from C′ but i and 0 do not interfere so
GPR[2] is still selectable.

• Pop t1, so that S = [t0], and assign it the colour GPR[3] because i, n, x and 1 re-
move GPR[2], GPR[4], GPR[5] and GPR[6] from C′ but t1 and w do not interfere
so GPR[3] is a still selectable.

• Pop t0, so that S = [], and assign it the colour GPR[3] because i, n, x and 1 remove
the colours GPR[2], GPR[4], GPR[5] and GPR[6] from C′ but t0 and w don’t
interfere so GPR[3] is still selectable.

The difference this time is that we were able to allocate the same colour to w, t0
and t1 because after re-writing the program they do not interfere with each other,
whereas before re-writing they did. After completion, we find that our colouring has
produced the valid register allocation

colour(x) = GPR[5]
colour(n) = GPR[4]
colour(w) = GPR[3]
colour(i) = GPR[2]
colour(t0) = GPR[3]
colour(t1) = GPR[3]
colour(0) = GPR[2]
colour(1) = GPR[6]

which means we have succeeded in performing register allocation using less regis-
ters than before as a direct result of spilling w.

11.5 Instruction Selection and Scheduling

Once the compiler has allocated symbols within the intermediate program to appro-
priate storage locations it can then translate the program, written in what we can
view as a high-level source language, into an equivalent in a lower-level target lan-
guage. In reality, there is probably a need to overlap these two tasks since decisions
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(a)
Tile for

GPR[X ] ← GPR[Y ]∧GPR[Z]. (b)
Tile for

GPR[X ] ← GPR[Y ] $ GPR[Z].

Figure 11.8 Two tiles representing 2-input, 1-output MIPS32 machine instructions. Note that the
register addresses X , Y and Z are part of the template in the sense that they are filled in when the
tiles are placed over the program tree.

made during register allocation sometimes have implications for translation and vice
versa. Either way, we can view translation roughly as two processes:

1. instruction selection, which selects a suitable machine instruction to implement
each intermediate instruction (or group thereof) in the intermediate program, and

2. instruction scheduling, which re-orders the instructions to optimise perfor-
mance; one can view this as arranging the instructions we select in the “best”
order.

11.5.1 Instruction Selection

The instruction selection process translates intermediate operations into actual ma-
chine instructions; the tricky part to this is that is not always a one-to-one mapping
between the two. That is, there is not always a single machine instruction that will
implement a given intermediate instruction and, more annoyingly, there is some-
times more than one machine instruction (or sequence of) to choose from. A fairly
standard way to approach the problem of instruction selection is to apply some form
of tiling algorithm.

The basic idea is that we look at the intermediate program as a tree that describes
the computation performed, and produce a tile for each machine instruction in the
ISA. Each tile is sort of a small sub-tree and acts like a template for what the in-
struction can do. For example, the MIPS32 ISA includes two machine instructions

GPR[rd] ← GPR[rt] $ GPR[rs]
GPR[rd] ← GPR[rs]∧GPR[rt]

From these descriptions we might generate two (fairly trivial) tiles as shown in Fig-
ure 11.8. The tiles are essentially small trees where the “blank” nodes show where
we can combine tiles, for example to show that one tile generates a result that is used
by another. The goal is to perform this combination in such a way that we cover the
program tree with non-overlapping tiles. Given each tile relates to a machine in-
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∧

$ GPR[6]

GPR[4] GPR[5]

∧

$ GPR[6]

GPR[4] GPR[5]

∧

$ GPR[6]

GPR[4] GPR[5]

(a) Untiled program tree. (b) Tiling for MIPS32. (c) Tiling for ARM.

Figure 11.9 The original program tree and two different instruction selections resulting from the
difference between two ISAs.

struction, tiling the program tree effectively acts to select machine instructions for
the program. However, a given program tree might allow many potential tilings: we
need a way to select the “best” one. To assist in this process we assign a weight
to each tile. For example, the number of nodes in the tile might be a good weight,
or perhaps an approximation of the machine instruction cost. An optimum tiling is
such that the weights sum to the lowest possible value; an optimal tiling is where
two adjacent tiles cannot be merged into a tile of lower weight.

Consider the computation of t1 in the example Hamming weight program from
Figure 11.2. For the sake of simplicity, if we assume that the symbols t0, t1, x, y,
and i are allocated the registers GPR[2] GPR[3], GPR[4], GPR[5] and GPR[6], then
we can view computation of t1 as a small tree as shown in Figure 11.9a: the leaf
nodes are the symbols x, i and 1, the interior nodes are the operations that perform
t0 ← x $ i and t1 ← t0 ∧ 1; the root of the tree can be seen as generating t1. As a
result, we can tile our program tree by combining the tiles as shown in Figure 11.9b.
As an aside, even if the symbol 1 is not in a register, MIPS32 has an instruction

GPR[rd] ← GPR[rs]∧ imm

which helps us out, i.e., avoids the need for a third (pseudo) tile to move the value
1 into a register. However, consider what might happen if we had a significantly
different ISA. For example the ARM process might includes an instruction with the
semantics

GPR[rd] ← GPR[rn]∧ (GPR[rm] $ GPR[rs])

which is, roughly speaking, to provide pre-scaled operands that are useful as an
addressing mode. This means on an ARM, we would expect to be able to tile the
program tree with one tile as shown in Figure 11.9c.

Since for larger and more complex programs the tree will be (much) larger and
more complex, we need a way to automate the process. A simple but surprisingly
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effective strategy is maximal munch: we simply process the program tree in a top-
down manner, covering as much of it as possible at each step:

1. Take the root node R of a tree and find the largest tile (i.e., the one with most
nodes) T which can cover R.

2. Cover R (and possibly other nodes) with T ; this creates a number of sub-trees Si.
3. Recursively apply the algorithm from step 1 for each Si.

Note that the algorithm generates instructions in reverse order, i.e., the instructions
at the root should really go first ! Also note that we need to be careful about the
ordering. For example, we probably need to preserve the order of accesses to mem-
ory so should take this into account when walking the tiled tree to actually emit the
machine instructions.

11.5.2 Instruction Scheduling

The instruction scheduling process orders the machine instructions that we select;
the aim is to select the “best” order, for example an order that improves the util-
isation of PEs in a superscalar processor. The problem is, not all orderings of the
machine instructions are valid: some will break the program due to instruction-level
dependency ! Given we have already done the analysis on the program to section
it into basic blocks, we can either work in a global way (i.e., re-order the blocks
themselves) or a local way (i.e., re-order instructions within a block).

11.5.3 Scheduling Basic Blocks

The idea of trace scheduling is to order the basic blocks in a way that improves
performance. Basically, we look for a trace (or set of traces) that we guess will be
executed more often than the others: we guess that this trace will dominate perfor-
mance so treat it with a higher priority with respect to optimisation. To do this we
order the basic blocks in the trace we selected so they form straight-line code; if
there is a branch from block X to block Y , we place block Y immediately after block
X . This sometimes means the branches between the basic blocks can be eliminated.
The strategy effectively optimises for the average case: as long as the trace we select
is executed more often, performance is improved overall. However, in the (hopefully
fewer) cases where our guess does not hold and another trace executes, we pay some
penalty.

To guess which trace(s) are good candidates for ordering in sequence, we ef-
fectively need to predict which way branches will go; doing this at compile-time
is static branch prediction, we are doing at compile-time what a processor that
implements speculative execution might do at run-time. Since conditional branch
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GPR[4] ← GPR[2] + GPR[3] GPR[5] ← GPR[2] · GPR[3]

GPR[6] ← GPR[4] · GPR[5]

Figure 11.10 A data-flow graph relating to the operation (a+b) · (a ·b).

behaviour is data-dependent, we can only really use heuristics unless we have ac-
cess to some profiling information. For example, an easy heuristic is to mimic fixed
branch prediction techniques within processors that guess backward branches are al-
ways taken and forward branches are never taken. Once we apply our heuristics, we
effectively weight edges in the CFG with information which predicts how likely it is
that control-flow will pass along that edge; from this we can guess at the dominante
traces by simply favouring basic blocks with highly weighted edges.

11.5.4 Scheduling Instructions

Within a basic block we deal with ordering instructions using a Data-Flow Graph
(DFG) that captures information about dependencies. Nodes in the DFG represent
machine instructions, edges between the nodes represent data-flow: if there is an
edge from node X to node Y , X is dependent on a value that Y produces. Using the
DFG we can prevent orderings that would cause the program to be invalid: roughly
speaking, the edges in the graph put limits on the ordering because if there is an edge
from X to Y , X cannot be placed before Y . As well as the explicit dependencies in
the DFG, we also need to take care to accommodate implicit dependencies. For
example we probably need to preserve the order of accesses to memory.

Consider a contrived example that computes (a+b) · (a ·b) using the short inter-
mediate program

t0 ← a+b
t1 ← a ·b
t2 ← t0 · t1

If we assume the symbols a, b, t0, t1 and t2 are allocated the registers GPR[2],
GPR[3], GPR[4], GPR[5] and GPR[6], then this can clearly be implemented by the
program fragment

GPR[4] ← GPR[2]+GPR[3]
GPR[5] ← GPR[2] ·GPR[3]
GPR[6] ← GPR[4] ·GPR[5]
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These instructions produce a small DFG as shown in Figure 11.10. The obvious
thing we can take from the graph straight away is that since there is no edge be-
tween instructions #0 and #1 (that generate the symbolic values t0 and t1 held in
GPR[4] and GPR[5]), we could execute them in either order and still get the same
result. The question is, why would we favour one order over the other ? Imagine we
run the program on a superscalar processor (where our aim is to issue one instruction
or more per-cycle) with a single PE able to perform multiplication, and that addi-
tion and multiplication have latencies of one and two cycles respectively. Executing
instruction #0 before #1 means that instruction #2 will stall because the multiplier
will be busy executing instruction #1. However, executing instruction #1 before #0
means that by the time we need the multiplier for instruction #2, it is free. Clearly
this is a simplistic example, but more or less the same reasoning can be applied to
larger programs (and hence larger data-flow graphs).

The DFG can also be useful in determining when we can fill a delay slot with
useful instructions. Recall that a branch delay slot is a (small) window of instruc-
tions after a branch that, depending on the ISA, are executed whether or not the
branch is taken; this is often a side effect of decisions made when implementing the
pipelining scheme. A similar but slightly different concept exists in the context of
load instructions. We discussed an informal approach of how to fill a delay slot in
Chapter 9; using the DFG we can be more specific about how this works. Consider
extending our example from above into the intermediate program

t0 ← a+b
t1 ← a ·b
t2 ← t0 · t1
if t0 = 0,PC ← l1
NOP
NOP

l0 : . . .
. . .

l1 : . . .

where the NOP instructions represent the branch delay slot and the label l0 marks
where the branch actually completes execution. Using the same register allocation
as before, we arrive at the program fragment

GPR[4] ← GPR[2]+GPR[3]
GPR[5] ← GPR[2] ·GPR[3]
GPR[6] ← GPR[4] ·GPR[5]
if GPR[4] = 0,PC ← l1
NOP
NOP

l0 : . . .
. . .

l1 : . . .
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But looking at the DFG, the branch clearly does not depend on instructions #1 or #2
so we could reasonably re-order the instructions and produce

GPR[4] ← GPR[2]+GPR[3]
if GPR[4] = 0,PC ← l1
GPR[5] ← GPR[2] ·GPR[3]
GPR[6] ← GPR[4] ·GPR[5]

l0 : . . .
. . .

l1 : . . .

This removes the need for padding with NOPs: instructions #1 and #2 will still
be performed whether or not the branch is executed and as a result, the program
fragment is marginally smaller and more efficient.

11.6 “Template” Code Generation for High-Level Statements

The process of instruction selection and scheduling as a means of converting an
intermediate program into a machine-level program demands that first of all we
translate a high-level program into an intermediate representation. This is a little be-
yond the scope of our discussion. Instead, to make it more clear how the translation
process could work we will consider a simplification: imagine we want to translate
a “generalised” high-level language construct (e.g., a for loop) into assembly lan-
guage, how could we do this ? At a very simplistic level, one can imagine this trans-
lation being performed using a number of templates which the compiler matches
against cases in the source program and fills in to produce an equivalent target pro-
gram. Of course this is an over simplification of how modern compilers operate,
but acts as a good starting point and analogy between how a human might translate
programs written in C into programs written in assembly language.

As such, Figure 11.11 details example conditional or if statements; Figure 11.12
details a number of loop constructs, for example do, while and for loops; and
Figure 11.13 details two strategies for multi-way branch or switch statements.
The left-hand side of each shows a fragment of C program (i.e., the feature in the
source program) and the right-hand side shows an equivalent MIPS32 assembly
language template; all use continuation dots extensively to denote arbitrary other
statements. Although there are potentially alternative translations depending on the
exact context, each example should go some way to demonstrating that even more
complicated C statements can easily be decomposed into basic steps that map onto
the processor ISA. Additionally, this decomposition helps to understand the relative
merits and costs of C statements in terms of both code footprint and execution time.
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if( x == y )
{

...
}
else
{

...
}

.text

... # put x into GPR[2]

... # put y into GPR[3]
bne $2, $3, l0
... # if body
j l1

l0: ... # else body
l1:

(a) Standard if conditional. (b) Assembly language translation.

if ( x == y )
{

...
}
else if( x == z )
{

...
}
else
{

...
}

.text

... # put x into GPR[2]

... # put y into GPR[3]
bne $2, $3, l0
... # if body 1
j l2

l0: ... # put x into GPR[2]
... # put z into GPR[4]
bne $2, $4, l1
... # if body 2
j l2

l1 ... # else body
l2:

(c) Sequenced-if conditional. (d) Assembly language translation.

if( x == y )
{

if( x == z )
{

...
}
else
{

...
}

}
else
{

...
}

.text

... # put x into GPR[2]

... # put y into GPR[3]
bne $2, $3, l0
... # put x into GPR[2]
... # put z into GPR[4]
bne $2, $4, l2
... # if body (inner)
j l3

l2: ... # else body (inner)
l3: j l1
l0: ... # else body (outer)
l1: ...

(e) Nested-if conditional. (f) Assembly language translation.

Figure 11.11 C code translation examples (conditional statements).
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do
{

...
}
while( x < y );

.text

l0: ... # do body
... # put x into GPR[2]
... # put y into GPR[3]
sub $4, $2, $3
bltz $4, l0
...

(a) Standard do loop. (b) Assembly language translation.

while( x < y )
{

...
}

.text

l0: ... # put x into GPR[2]
... # put y into GPR[3]
sub $4, $2, $3
bgez $4, l1
... # while body
j l0

l1: ...

(c) Standard while loop. (d) Assembly language translation.

for( x = 0; x < y; x++ )
{

...
}

.text

addi $2, $0, 0 # put x into GPR[2]
l0: ... # put y into GPR[3]

sub $4, $2, $3
bgez $4, l1
... # for body
addi $2, $2, 1
j l0
...

(e) Standard for loop. (f) Assembly language translation.

Figure 11.12 C code translation examples (loop statements).

11.6.1 Conditional Statements

The first set of fragments in Figure 11.11 deal with various forms of if statements;
although terminology might differ we refer to the case where there is an else if
clause as a sequenced-if, in the sense that the conditions are tested in sequence,
and the case where one if statement is placed within another as a nested-if. Con-
sider Figure 11.11a as an example. The C fragment tests whether the value x equals
the value y; if it does, then the true case (i.e., statements represented by the top set of
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switch( x )
{

case 0 :
...
break;

case 50 :
...
break;

case 100 :
...
break;

}

.text

... # put x into GPR[2]
addi $3, $0, 0
bne $2, $3, l1
... # case body (0)
j l3 # break

l1: addi $3, $0, 50
bne $2, $3, l2
... # case body (1)
j l3 # break

l2: addi $3, $0, 100
bne $2, $3, l3
... # case body (2)
j l3 # break

l3: ...

(a) Standard switch statement. (b) Sparse assembly language translation.

switch( x )
{

case 0 :
...
break;

case 1 :
...
break;

case 2 :
...
break;

}

.data

jt: .word l1
.word l2
.word l3

.text

... # put x into GPR[2]
addi $3, $0, 2 # scale x
sllv $4, $2, $3
lw $5, jt($4) # load address
jr $5 # jump to address

l1: ... # case body (0)
j l4 # break

l2: ... # case body (1)
j l4 # break

l3: ... # case body (2)
j l4 # break

l4: ...

(c) Standard switch statement. (d) Dense assembly language translation.

Figure 11.13 C code translation examples (multi-way branch statements).

continuation dots) is executed, otherwise the false case (i.e., statements represented
by the bottom set of continuation dots) is executed. Of course, the values x and
y might be the results of more complex expressions: in this case we simply trans-
late the expressions into a sequence of instructions which generate the result into
the register allocated to x or y. Also, the test might be something other than that
of equality: in this case we simply utilise a different instruction from the proces-
sor ISA to invoke the corresponding branch. Either way, we can translate the frag-
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ment into the commented assembly language code shown in Figure 11.11b. First we
generate x or y (be they simple variables or expressions) into GPR[2] and GPR[3]
(of course these registers might differ depending on the allocation). Then we test
GPR[2] against GPR[3], if they are not equal, then control is transferred to label l0
which marks the false case (i.e., code for the bottom set of continuation dots) in the
original fragment. After execution of these statements, control will drop through to
the label l1 which marks the end of the if statement. If GPR[2] and GPR[3] are
equal, then control drops through from the branch instruction to the code for the true
case (i.e., code for the top set of continuation dots). This is followed by an uncondi-
tional branch to label l1 which skips over code for the false case and concludes the
if statement.

Translation of the sequenced-if in Figure 11.11c follows a similar pattern. The
difference is that instead of a single true case, there are many true cases which
need to be tested using dedicated instructions before finally branching to the default
where none of the tests are satisfied. So in this example we first test whether x and
y, held in GPR[2] and GPR[3], are equal. If they are, control drops through to the
first true case (i.e., statements represented by the top set of continuation dots) which
is terminated with an unconditional branch to the label l2 which concludes the if
statement. If they are not equal, control is transferred to label l0 which marks the
second test of whether x and z, held in GPR[2] and GPR[4], are equal. Notice the
slight subtlety here in that depending on whether x is a variable or an expression
or even a function call, we might need to reevaluate it before the test. Either way,
execution of the test either transfers control to label l1, which marks the false case,
or drops through to execute the second true case which is again terminated by a
branch to label l2.

The nested-if in Figure 11.11e is even easier still. Essentially we simply have
the second (inner) if statement within the true case of the first (outer) if statement.
So to translate the fragment into the assembly language in Figure 11.11f we take
the basic template detailed in Figure 11.11b and fill in the true case with another
instance of the same template (with labels and so on renamed).

11.6.2 Loop Statements

The second set of fragments in Figure 11.12 deal with various forms of structured
loop statement. The do loop in Figure 11.12a, and translated in Figure 11.12b, is
perhaps the easiest to understand. Execution immediately enters the loop body at
label l0 meaning the loop is always executed at least once. After completing exe-
cution of the loop body we need to test the condition to see if another iteration is
required. In this case, we place x and y into GPR[2] and GPR[3] and then test them
against each other: if x is less than y, then the branch instruction transfers control
back to label l0 so the loop body is executed again.

The while loop in Figure 11.12c, and translated in Figure 11.12d, operates
roughly in the opposite order; the loop condition is tested before execution of the
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loop body rather than afterwards. Thus execution immediately starts at label l0
where, in this case, x and y are placed into GPR[2] and GPR[3] and then test them
against each other: if x is not less than y, then control is transferred to label l1
to exit the loop. Otherwise the loop body is executed, a sequence which terminates
with an unconditional branch back to l0 to potentially perform another iteration
depending on the condition.

A for loop is simply a while loop with some extra embellishment. To see how
translation is achieved it might be useful to consider that the for loop

for( x = 0; x < y; x++ ) {
...

}

can be rewritten as the while loop

x = 0;

while( x < y ) {
...
x++;

}

The translation in Figure 11.12f follows exactly this pattern. Roughly, it adds to
the previous while loop example by placing the initialisation and increment state-
ments in appropriate positions before the loop test and after the loop body. As an
aside, notice that the while loop

while( x ) {
...

}

can be written as the do loop

if( x ) {
do {
...

}
while( x );

}

This might seem pointless from the view of a human programmer. However, for a
compiler, the fact that we can use a single, canonical representation of for, while
and do loops means less “special cases”: we can represent all three in the same way
and hence apply just one set of analysis and transformation methods rather than
three.

11.6.3 Multi-way Branch Statements

The third and final set of fragments in Figure 11.13 deal with the multi-way branch.
The basic idea is that depending on some value, in this case x, control should be
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transferred to one of many target addresses; this contrasts with a normal branch
where control is transferred to one of two target addresses. The C switch statement
is an example of a multi-way branch: control is transferred to a case block marked
with the value corresponding to x. With a switch statement, the values labelling
each case statement are required to be constant (i.e., known at compile-time). This
allows the use of a translation strategy which best suits the values themselves. In-
terestingly, a compiler might use the first strategy, based on a sequenced-if, where
the values are sparsely distributed (e.g., 0,50,100, . . .), and the second, termed a
branch table, where the values are densely packed together (e.g., 0,1,2, . . .).

Figure 11.13a and Figure 11.13b demonstrate the sequenced-if technique. We
simply test x against each of the cases in turn and if a match occurs, execute the cor-
responding statements which are followed by an unconditional branch to label l3
to implement the break. Since this is based on the sequenced-if, implementation
of the default case, which should match if no others do, is simple since this is
analogous to the else case in Figure 11.11c and Figure 11.11d.

Figure 11.13c and Figure 11.13d demonstrate the branch table strategy. Essen-
tially the idea is to take x and use it as an offset into a table defined at the label
jt; each entry in the table tells us where to branch to for that x. For example, entry
zero in the table contains the address of label l1, entry one in the table contains the
address of label l2 and entry two contains the address of label l3. The strategy is
to take x and scale it into an offset; we can then load the appropriate address and
then branch to it using a jr instruction. First we generate x into GPR[2] and then
scale it, multiplying by four so that the result in GPR[5] gives a valid offset into a
table of 32-bit addresses. Then we load the address, using the jt label as a base
and the scaled value in GPR[5] as an offset, and branch to the result. This method is
more efficient: no matter what the value of x, we always perform the same sequence
of instructions (i.e., do not need to test for cases that will not match). However, it
makes the assumption that the table offset can be generated in a valid manner from
x. For example, if there is no case for x equal to 1, there is a gap in the table we
need to cope with. Additionally, it is harder to deal with the default case using
this method.

11.7 “Template” Code Generation for High-Level Function Calls

In Chapter 5 we gave a very basic overview for how function calls are implemented;
we focused mainly on the concept of the branching from the caller, the part that
makes the function call, to the callee, the function being called. To create a more
complete mechanism, we need to consider three main issues: passing arguments
from the caller to the callee function; creating local variables for the function; and
returning results from the callee to the caller function.

First, however, we need to consider in more detail how the stack is controlled.
Typically, MIPS32 assemblers usually allow $sp as a register alias for the stack
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pointer; as such we can implement PUSH and POP operations on 32-bit words using
two instructions

...
addi $sp, $sp, -4 # make space
sw $2, 0($sp) # push from GPR[2]
...
lw $2, 0($sp) # pop into GPR[2]
addi $sp, $sp, 4 # free space
...

Notice that once we have pushed some values onto the stack, we can inspect their
values without actually popping them: the stack is simply memory after all. This is
sometimes termed peeking at the stack content. Imagine we again initially set x = 3
and assume the memory is zeroed, i.e., that MEM[0 . . .2] = (0,0,0). Then we push
three values, abstractly named a, b and c, onto the stack

x = PUSH(x,a) → x = 2, MEM[0 . . .2] = (0,0,a)
x = PUSH(x,b) → x = 1, MEM[0 . . .2] = (0,b,a)
x = PUSH(x,c) → x = 0, MEM[0 . . .2] = (c,b,a).

We can access a,b and c as MEM[2], MEM[1] and MEM[0]. Often it is often more
attractive to access the stack content relative to SP; thus, with the stack in the final
state, we access a,b and c as MEM[SP+2], MEM[SP+1] and MEM[SP+0]. This is
sometimes called stack relative addressing. The problem with this approach is that
SP changes when values are pushed and popped, so accessing say MEM[SP + 1]
gives a different result depending on what state we are in: after the first push it
accesses a, after the second it accesses b and after the final push it accesses c. So to
correctly use stack relative addressing we need to be clear what state the stack is in
so as to give the right offset from SP.

One use of the stack is as a means of implementing function calls; we will look
at this in detail later. A simpler example is the occasional need to store a value
somewhere temporarily. Imagine for example we have a code sequence where some
32-bit sized variable a is stored in GPR[2] and set to the value 10. There is only a
limited number of registers so sometime later in the sequence we run out of spare
ones: all the registers are all full of values we need. To continue, we need to free
up one (or more) registers; the basic idea here is to find part of the code sequence
which does not use a, for example, and to backup or spill the value into memory
temporarily. This frees the register GPR[2] for use to use without losing the value
of a since we can simply restore it from memory again later when we need it. The
stack is ideal for this task and we can implement the spill using code similar to the
following:

...
addi $2, $2, 10 # set a to 10
...
addi $sp, $sp, -4 # make a space
sw $2, 0($sp) # push a from GPR[2]
... # now free to use GPR[2] for something else
lw $2, 0($sp) # pop a into GPR[2]
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addi $sp, $sp, 4 # free a space
...

Finally, note that it is quite common to push or pop many values to or from the stack
at once. In this case, it is quite inefficient to decrement or increment SP for each
push or pop. It is better to simply perform a single decrement or increment and then
store or load the values with appropriate offsets. For example, pushing and popping
the 32-bit sized variables a, b and c from and to GPR[2], GPR[3] GPR[4] might, in
the naive case, look something like

...
addi $sp, $sp, -4 # make a space
sw $2, 0($sp) # push a from GPR[2]
addi $sp, $sp, -4 # make b space
sw $3, 0($sp) # push b from GPR[3]
addi $sp, $sp, -4 # make c space
sw $4, 0($sp) # push c from GPR[4]
...
lw $4, 0($sp) # pop c into GPR[4]
addi $sp, $sp, 4 # free c space
lw $3, 0($sp) # pop b into GPR[3]
addi $sp, $sp, 4 # free b space
lw $2, 0($sp) # pop a into GPR[2]
addi $sp, $sp, 4 # free a space
...

but clearly we can shorten this significantly to

...
addi $sp, $sp, -12 # make a, b and c space
sw $2, 8($sp) # push a from GPR[2]
sw $3, 4($sp) # push b from GPR[3]
sw $4, 0($sp) # push c from GPR[4]
...
lw $4, 0($sp) # pop c into GPR[4]
lw $3, 4($sp) # pop b into GPR[3]
lw $2, 8($sp) # pop a into GPR[2]
addi $sp, $sp, 12 # free a, b and c space
...

11.7.1 Basic Stack Frames

The most common way to solve the highlighted problems is to use the stack de-
scribed previously. When a function is called, it is allocated space on the stack called
a stack frame. When the function returns, the stack frame is destroyed. The stack
frame is, in some sense, shared between the caller and the callee and offers a way to
communicate values between the two: the arguments to the callee are written by the
caller and read by the callee; the return address is written by the caller and read by
the callee; the return value is written by the callee and read by the caller. Typically,
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Figure 11.14 A simple stack frame.

caller: push arguments
call callee
pop return value
pop arguments
...

callee: push return address
push space for locals
...
pop space for locals
pop return address
push return value
return to caller

Figure 11.15 A simple calling convention between caller and callee.

we name the code sequences that allocate and destroy the stack frame the func-
tion prologue and function epilogue. The specification of the function prologue
and epilogue forms the function calling convention. Figure 11.15 demonstrates a
simple calling convention written as pseudo-code.

This fairly vague description demands an example to make things more con-
crete. Consider the pseudo-assembly language in Figure 11.15 which implements a
simple calling convention. The caller pushes arguments onto the stack then makes
the function call; in MIPS32 this is performed with the jump and link or jal in-
struction which jumps to the callee address and stores the return address in register
$ra$. The callee immediately stores this return address on the stack and allocates
space for any local variables that might need to be spilt to memory. When it has
finished, it frees the space allocated for local variables then pops the return address
from the stack, pushes any return value and branches back to the caller. The caller
finalised the function call by retrieving the return value and the freeing space on the
stack previously allocated for arguments. Figure 11.14 shows the general layout of
stack frames managed by this calling convention; one can immediately see how the
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1 .globl main
2

3 .text
4

5 main: ... # initialise n, n is in $t2
6 ... # allocate and initialise A, &A is in $t0
7 ... # allocate and initialise B, &B is in $t1
8

9 addi $sp, $sp, -4 # make &A space
10 sw $t0, 0($sp) # push &A
11 addi $sp, $sp, -4 # make &B space
12 sw $t1, 0($sp) # push &B
13 addi $sp, $sp, -4 # make n space
14 sw $t2, 0($sp) # push n
15 jal dot # call dot function
16 nop # delay slot
17 nop # delay slot
18 lw $t3, 0($sp) # pop rv
19 addi $sp, $sp, 4 # free rv space
20 addi $sp, $sp, 4 # free n space
21 addi $sp, $sp, 4 # free &B space
22 addi $sp, $sp, 4 # free &A space
23 # dot result in $t3
24 addi $v0, $0, 10
25 syscall # exit
26

27 dot: addi $sp, $sp, -4 # make ra space
28 sw $ra, 0($sp) # push ra
29 addi $sp, $sp, -4 # make i space
30 addi $sp, $sp, -4 # make a space
31

32 lw $t0, 20($sp) # load X from stack
33 lw $t1, 16($sp) # load Y from stack
34 lw $t2, 12($sp) # load n from stack
35 addi $t3, $0, 0 # set a to 0
36 addi $t4, $0, 0 # set i to 0
37 l0: sub $t5, $t2, $t4
38 blez $t5, l1 # goto l1 if n <= i
39 addi $t5, $0, 4
40 mul $t5, $t5, $t4
41 add $t6, $t5, $t0
42 lw $t7, 0($t6) # load X[i]
43 add $t6, $t5, $t1
44 lw $t8, 0($t6) # load Y[i]
45 mul $t9, $t7, $t8
46 add $t3, $t3, $t9 # set a = a + ( X[i] * Y[i] )
47 addi $t4, $t4, 1 # set i to i + 1
48 j l0 # goto l0
49 l1:
50 addi $sp, $sp, 4 # free a space
51 addi $sp, $sp, 4 # free i space
52 lw $ra, 0($sp) # pop ra
53 addi $sp, $sp, 4 # free ra space
54 addi $sp, $sp, -4 # make rv space
55 sw $t3, 0($sp) # push rv
56 jr $ra # return

Listing 11.2 MIPS32 implementation of dot product function using a basic calling convention.

frames are shared between caller and callee and how the stack grows downward in
memory.
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Listing 11.2 is an implementation of the example from Chapter 10, in List-
ing 10.1 and Listing 10.2, which performs a dot product calculation. Notice that
following the basic introduction, we are now using aliased register names because
we will start assigning various registers specific roles. Plus or minus some minor
details, the program implements the steps from Figure 11.15 exactly. Starting at the
entry point main, we first assume that the variables are initialised with their values
held in $t0, $t1 and $t2 respectively; A and B are pointers so their values are
really addresses. At this point the stack frame resembles Figure 11.16a in the sense
that the main function, when called, was passed the arguments argc and argv
and allocated space on the stack for the local variables i, n, A and B. The meat of the
example code starts when it calls the dot function. First it pushes the values of A, B
and n onto the stack as arguments to dot. It then invokes the function as the caller;
we will come back to what dot, the callee does in a while. Notice that the code
is manually padded with nop instructions that fill the jal delay slot. This ensures
that no rogue instructions are executed. When control returns to main from dot
the stack frame resembles Figure 11.16c; notice that the return value is at the top
of the stack. The code retrieves this value into $t3 and then frees the stack space
previously allocated for the arguments to complete the call.

From the point of view of the callee, the steps are again a replication of the
example. The function dot starts by performing the function prologue in saving
the return address, held in $ra, onto the stack and allocating some space for the
local variables i and a. This completes the stack frame for dot, it resembles Fig-
ure 11.16b. Notice that dot starts by retrieving the incoming arguments X , Y and
n using loads relative to SP. For example, the argument Y is located at an address
(counting in 32-bit words) specified by SP plus the number of local variables and
return address we pushed, plus the index of Y in the argument list. That is, the value
of Y is located at SP + 2 + 1 + 1 = SP + 4 words or SP + 16 bytes. Using a similar
logic, X is located at SP + 2 + 1 + 2 = SP + 5 words or SP + 20 bytes. Once the
arguments are available, the actual function body is somewhat simple: we execute a
loop which loads values of Xi and Yi to compute the accumulated value a. When the
loop terminates, we need to perform the function prologue. First, it frees the stack
space previously allocated for local variables i and a. Then it retrieves the return ad-
dress from the stack, pushes the return value a and returns using the jr instruction
which jumps to the address stored in $ra i.e., the return address.

This approach provides a working function call mechanism but we can easily
identify some improvements to the implementation. Firstly, inside dot we allocate
space on the stack for local variables i and a in case we need to spill them to mem-
ory. However, this never actually happens; therefore the space and extra instructions
are redundant and we can safely remove this feature. Secondly, the caller uses a
pattern we previously identified as inefficient in using repeated decrements and in-
crements to push and pop arguments. By aggregating these into one single update
of SP we further improve the program. Both these improvements are implemented
in Listing 11.3.
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Figure 11.16 Dynamic behaviour of the stack while calling functions.

11.7.2 Advanced Stack Frames

There are some major problems with this simple calling convention. The first prob-
lem is one of efficiency. On one hand, structured programming demands modularity
through small, easy to manage functions; on the other hand, the actual function call
mechanism represents overhead compared to performing useful computation. Much
of this overhead is introduced by management of the stack frame. To partly reduce
this cost we can communicate arguments and return values between caller and callee
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1 .globl main
2

3 .text
4

5 main: ... # initialise n, n is in $t2
6 ... # allocate and initialise A, &A is in $t0
7 ... # allocate and initialise B, &B is in $t1
8

9 addi $sp, $sp, -12 # make &A space
10 # make &B space
11 # make n space
12 sw $t0, 8($sp) # push &A
13 sw $t1, 4($sp) # push &B
14 sw $t2, 0($sp) # push n
15 jal dot # call dot function
16 nop # delay slot
17 nop # delay slot
18 lw $t3, 0($sp) # pop rv
19 addi $sp, $sp, 4 # free rv space
20 # free n space
21 # free &B space
22 addi $sp, $sp, 12 # free &A space
23 # dot result in $t3
24 addi $v0, $0, 10
25 syscall # exit
26

27 dot: lw $t0, 8($sp) # load X from stack
28 lw $t1, 4($sp) # load Y from stack
29 lw $t2, 0($sp) # load n from stack
30 addi $t3, $0, 0 # set a to 0
31 addi $t4, $0, 0 # set i to 0
32 l0: sub $t5, $t2, $t4
33 blez $t5, l1 # goto l1 if n <= i
34 addi $t5, $0, 4
35 mul $t5, $t5, $t4
36 add $t6, $t5, $t0
37 lw $t7, 0($t6) # load X[i]
38 add $t6, $t5, $t1
39 lw $t8, 0($t6) # load Y[i]
40 mul $t9, $t7, $t8
41 add $t3, $t3, $t9 # set a = a + ( X[i] * Y[i] )
42 addi $t4, $t4, 1 # set i to i + 1
43 j l0 # goto l0
44 l1:
45 addi $sp, $sp, -4 # make rv space
46 sw $t3, 0($sp) # push rv
47 jr $ra # return

Listing 11.3 MIPS32 implementation of dot product function still using a basic calling convention
but with some optimisations.

via a pass-by-register convention rather than the pass-by-stack convention used so
far. The basic concept is simple: rather than the caller pushing arguments onto the
stack only for the callee to later load them into registers ready for use, the caller just
places them in registers to start with. These registers need to be saved and restored
just like normal registers if overwritten by subsequent function calls. It is important
that the caller and callee agree on a standard for the passing convention, otherwise
neither will know where the required values are. For example, the MIPS32 call-
ing convention specifies that registers GPR[2 . . .3] or $2 and $3 (or $v0 and $v1
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1 .globl main
2

3 .text
4

5 main: ... # initialise n, n is in $t2
6 ... # allocate and initialise A, &A is in $t0
7 ... # allocate and initialise B, &B is in $t1
8

9 add $a0, $t0, $0 # set argument 0 to &A
10 add $a1, $t1, $0 # set argument 1 to &B
11 add $a2, $t2, $0 # set argument 2 to n
12 jal dot # call dot function
13 nop # delay slot
14 nop # delay slot
15 # dot result in $v0
16 addi $v0, $0, 10
17 syscall # exit
18

19 dot: addi $v0, $0, 0 # set a to 0
20 addi $t4, $0, 0 # set i to 0
21 l0: sub $t5, $a2, $t4
22 blez $t5, l1 # goto l1 if n <= i
23 addi $t5, $0, 4
24 mul $t5, $t5, $t4
25 add $t6, $t5, $a0
26 lw $t7, 0($t6) # load X[i]
27 add $t6, $t5, $a1
28 lw $t8, 0($t6) # load Y[i]
29 mul $t9, $t7, $t8
30 add $v0, $v0, $t9 # set a = a + ( X[i] * Y[i] )
31 addi $t4, $t4, 1 # set i to i + 1
32 j l0 # goto l0
33 l1:
34 jr $ra # return

Listing 11.4 MIPS32 implementation of dot product function still using a more advanced calling
convention but with pass-by-register rather than pass-by-stack.

using appropriate aliases) are used to return values from callee to caller and regis-
ters GPR[4 . . .7] or $4 to $7 (or $a0 to $a3 using appropriate aliases) are used
to pass arguments from caller to callee. The only remaining issue is that we have a
fixed number of registers; clearly not all arguments can be passed this way. Typi-
cally, only the first three or four are passed in registers, the rest on the stack. Since
functions with a small number of arguments are more common, on average most
argument will be in registers.

Listing 11.4 follows on from Listing 11.3 using pass-by-register to further im-
prove the efficiency of our example; simply counting the number of instructions
should give some idea of the advantage. More specifically, look at the code for
pushing arguments in the caller and retrieving them in the callee. The previous code
has essentially disappeared: for example, there is no need for the callee to retrieve
the arguments from the stack; they are passed in registers $a0, $a1 and $a2 and
are hence immediately available. Likewise, when returning from the callee to the
caller the return value a does not need to be pushed onto the stack only to be popped
off again straight away. It is allocated register $v0 throughout and the caller can
simply read the value from there when it regains control.
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The second problem relates to what happens if the caller function has values
stored in registers and those registers are also used by the callee. Clearly we need
to save the register content before they are overwritten and restore them afterwards.
The act of saving and restoring register is fairly simple since we can again use the
stack as previously discussed. However, there are two different ways to decide who
performs these operations:

Caller-save In this scheme the caller is responsible for saving and restoring all
registers that contain content it needs. The caller does not know which registers
will actually be used, so it might be overly pessimistic and save more registers
than are strictly required.

Callee-save In this scheme the callee is responsible for saving and restoring all
registers that it overwrites. The callee does not know which register values the
caller actually needs, so it also might end up being overly pessimistic and saving
more registers than strictly required.

Often a combination of the two options is used, for example the MIPS32 calling
convention specifies that registers GPR[8 . . .15] and GPR[24 . . .25] are caller-save
registers used for temporary values while registers GPR[16 . . .23] are callee-save
registers used for temporary values. These can also be accessed using the aliases
$t0 to $t9 and $s0 to $s7 respectively.

The final problem is related to stack offset addressing, specifically that the value
of SP keeps moving as we perform push and pop operations. This feature means
that it can be hard to work out the offset from SP required to access a particular
element in a stack frame. Furthermore, depending on the actual function this offset
can be quite large whereas to fit nicely into our instruction encoding it may be
advantageous to keep offsets small. To solve this problem, we introduce a frame
pointer called FP which is like SP except that it remains fixed for the duration of
a function invocation, pointing to the base of the stack frame for that invocation.
MIPS32 uses GPR[30] or $fp to store FP. Since FP is fixed, all offsets into the
stack frame are more easily calculated; since it points at the base of the stack frame
most accesses to the important entries, such as the function arguments, are efficient
since they are a small offset away. The only down side to this approach is that we
need to save the FP value when calling subsequent functions; this takes a small
amount of extra time and space.

These final problems are solved with the complete, more advanced calling con-
vention pseudo-code shown in Figure 11.18. The additional steps in the caller are
the pushing and popping of register values it has responsibility for saving. The ad-
ditional steps in the callee are the pushing and popping of register values it has
responsibility for saving and also management of the frame pointer FP. This call-
ing convention is made use of by taking another look at the problem of computing
Fibonacci numbers. This time, instead of generating the first n numbers in the se-
quence into an array, imagine we want just the n-th number. Furthermore, we are in-
terested in implementing an elegant, recursive solution as shown in Algorithm 11.5.
Although it perhaps is not the most efficient method we could select, the function is
implemented in Listing 11.5 using MIPS32 assembly language.
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1 main: addi $a0, $0, 10 # set argument 0 to 10
2 jal fib # call fib(10) function
3 nop # delay slot
4 nop # delay slot
5 # fib(10) result in $v0
6 addi $v0, $0, 10
7 syscall # exit
8

9 fib: addi $sp, $sp, -4 # make ra space
10 sw $ra, 0($sp) # push ra
11 addi $sp, $sp, -4 # make fp space
12 sw $fp, 0($sp) # push fp
13 add $fp, $sp, $0 # set fp to sp
14

15 addi $t0, $0, 0
16 addi $t1, $0, 1
17 beq $t0, $a0, l0 # check if n = 0
18 beq $t1, $a0, l1 # check if n = 1
19

20 addi $sp, $sp, -4 # make n space
21 sw $a0, 0($sp) # push n
22 addi $a0, $a0, -1 # set argument 0 to n - 1
23 jal fib # call fib(n-1) function
24 nop # delay slot
25 nop # delay slot
26 # fib(n-1) result in $v0
27 lw $a0, 0($sp) # pop n
28 addi $sp, $sp, 4 # free n space
29

30 addi $sp, $sp, -4 # make a space
31 sw $v0, 0($sp) # push a
32

33 addi $a0, $a0, -2 # set argument 0 to n - 2
34 jal fib # call fib(n-2) function
35 nop # delay slot
36 nop # delay slot
37 # fib(n-2) result in $v0
38

39 lw $v1, 0($sp) # pop a
40 addi $sp, $sp, 4 # free a space
41

42 add $v0, $v0, $v1 # set rv = a + b
43 j l2
44 l0: addi $v0, $0, 0 # set rv = 0
45 j l2
46 l1: addi $v0, $0, 1 # set rv = 1
47 l2:
48 lw $fp, 0($sp) # pop fp
49 addi $sp, $sp, 4 # free fp space
50 lw $ra, 0($sp) # pop ra
51 addi $sp, $sp, 4 # free ra space
52 jr $ra # return

Listing 11.5 MIPS32 implementation of a Fibonacci number generator using advanced calling
convention with pass-by-register, caller and callee saved registers and a frame pointer .
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Figure 11.17 A more complete stack frame.

caller:
push caller-save registers
push arguments
call
pop return value
pop arguments
pop caller-save registers
...

callee:
push return address
push saved FP
set FP = SP
push space for locals
push callee-save registers
...
pop callee-save registers
pop space for locals
pop saved FP
pop return address
push return value
return

Figure 11.18 A more complete calling convention between caller and callee.

The function prologue follows the new calling convention by saving the return
address and current FP on the stack before updating FP with the current SP value.
Although the code does not use this value of FP (since arguments and so on are
passed in registers), any stack content can be accessed relative to this fixed address.
The code then checks the base cases for the recursion before dropping through to
the main body where we need to perform two recursive calls to FIB. Before the first
call the code saves the value of n: this call overwrites the register $a0 that stores n
in preparing the new argument n−1. After the call completes, we restore n from the
stack. Notice that saving n to the stack is not required for the second call since by
the time we prepare the argument n−2, we no longer need n. However, before the
second call we need to save the value of a since the call might destroy this. Although
we are not dealing with MIPS32 specified caller-save registers, this is more or less
a case of caller-save behaviour: the value of a is being saved by the caller since the
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Input: An integer n.
Output: The n-th Fibonacci number.

FIB(n)1

if n = 0 then2

return 13

if n = 1 then4

return 15

a ← FIB(n−1)6

b ← FIB(n−2)7

return a+b8

end9

Algorithm 11.5: A recursive algorithm for computing the n-th Fibonacci number.

callee might overwrite it. After the call we restore a, have b computed as the result
of the second call and can hence produce their sum and return it via the function
epilogue which follows the calling convention by restoring the FP value, retrieving
the return address then returning to the caller.
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11.9 Example Questions

44. Outline the purpose of a stack frame in relation to how function calls work, and
describe the purpose of each component in a typical stack frame.

45. A programmer writes the following program in C to find the maximum of two
integer values:

int max( int x, int y )
{

if( x > y )
return x;

else
return y;

}

int main( int argc, char* argv[] )
{

int a = 10;
int b = 20;

return max( a, b );
}

a. Assuming execution starts by calling the main function, describe using a dia-
gram what the stack looks like at each of the following stages of execution:

i. Inside the main function, before max is called.
ii. Inside the max function.

iii. Inside the main function, after max is called.

b. Ignoring the issue of delay slots (i.e., assuming that the assembler managed this
automatically), translate the program into MIPS32 assembly language.

46. RISC processors are often designed to support the characteristics of average
case C programs.

a. Describe two examples where such an approach could be said to have been used
in a concrete RISC processor design.

b. Choose a programming language other than C or C++ (e.g., Java or Python)
and imagine you are designing a new RISC processor which will predominately
execute programs written in this language. Outline two characteristics of such
programs which are crucial to performance, and mechanisms you could include
in the processor design to support them.

47. Imagine programs written in C require strict array bounds checking due to var-
ious security requirements placed on their execution by a MIPS32-based processor.
This means that a fragment such as



11.9 Example Questions 493

A[ i ] = 0;

where A is a 1024-element array of 32-bit integers for example, will instead need to
be rewritten to include a bounds check:

if( i >= 0 && i < 1024 )
A[ i ] = 0;

else
abort();

Describe one way said processor could be improved to cope better with this demand.



Chapter 12
Operating Systems

UNIX is basically a simple operating system, but you have to be a genius to understand the
simplicity.

– D. Ritchie

Operating systems are like underwear - nobody really wants to look at them.

– B. Joy

Abstract Although programs written for embedded platforms, for example, are of-
ten said to execute on “bare metal” (i.e., the unmanaged processor), more usually we
write programs that do not execute in isolation or without assistance. More often,
they execute on a managed platform which is supported by an Operating System
(OS). The OS is a software layer tasked with management of the computer as a
whole: it ensures that resources are shared between many executing processes, and
performs certain low-level tasks on their behalf. In this chapter the aim is to focus
on aspects of OS design and implementation which most directly relate to the hard-
ware and software components the OS manages. We concentrate on UNIX-style
concepts and approaches, particularly those which can be supported by SPIM, but
the discussion is more generally applicable.

12.1 Introduction

An Operating System (OS) is a layer of software that exists to perform various
management tasks. At the most basic level, the OS is tasked with loading a program
image into memory and providing a context in which it executes as a process; we
can identify more advanced tasks using some examples:

• Whether internal or external, events will occur that require the attention of the
OS. Examples include some external device that needs to be attended to (e.g.,
the keyboard has a key press ready to be read), or an executing process that

495
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needs the OS to perform some function on behalf of it (e.g., write output to a
display device). As such, the OS needs to provide suitable mechanisms so it can
be invoked to deal with such events.

• It is unusual for one process to have dedicated access to the components that
constitute a processor. More commonly we would like to have several processes
resident in memory, but allow them to coexist by sharing the processor and as-
sociated resources having one process active at a given point in time. It is easy
to see this in action: a single computer might allow several users to login and
execute programs at the same time, or one user might execute a word processor
and web-browser at the same time. The OS needs to provide the mechanism by
which this is possible.

• Many peripheral devices can be attached to a computer; examples include re-
sources such as display devices, storage devices and so on. Somehow, a process
executing on the processor needs to access those devices. To permit some level
of portability, access to the devices should be somewhat abstract. For example,
if a program needs to know the exact storage device it is accessing, it cannot
be executed on a computer with another device. A better approach would be to
have the OS provide the program with a generic view of all storage devices and
manage the details of access behind the scenes.

• Given that many processes can be sharing the processor, there is a danger that
one will influence the execution of another or, worse still, somehow influence
the OS itself. For example, you might imagine that if one process accidentally
writes values into memory at addresses that hold the instructions for some second
process, the corrupted second process probably will not execute as expected. The
OS provides mechanisms that protect processes from each other in this respect.

• There is also a chance that two processes sharing the processor will need to access
the same resource at the same time. Sometimes this is not possible, for example
perhaps the resource is a storage device which cannot read and write data at the
same time: while one process is using it to write, another cannot instruct it to
read. In this case the OS needs to act as an arbitrator between the processes. That
is, and more generally, it needs to manage the resource in order that usage is
functionally valid (i.e., works correctly for each process) and fair (e.g., does not
indefinitely prevent one process from performing an access).

The problem is, our typical view of an OS is much wider ranging than we would like
to investigate here. An “operating system” such as Microsoft Windows, for example,
includes a huge range of auxiliary software and features (e.g., any Graphical User
Interface (GUI), or software tools such as calculators and text editors) that we
would like to ignore.

Adopting a purist perspective, we focus specifically on topics that relate to an
OS kernel: the central component of the OS that most closely interacts with the
hardware devices investigated up until now. We cover roughly three core topics:
event management which details how the kernel is invoked to deal with different
events that can occur, memory management which details how the kernel manages
memory, the main resource attached to the processor that we previously discussed,
and process management which details how the kernel manages the execution of
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many processes. Roughly speaking the first two topics define the hardware platform
which the OS manages on behalf of software that executes according to the third
topic. There are clearly many other topics missing from this list; we motivate our
choices by the fact that event, process and memory management place direct con-
straints on and rely upon features in the processor design.

Since SPIM [35], outlined in Appendix A, uses a simulation=based approach to
executing programs, it does not model some features of a MIPS32-based processor
which are required to support a full kernel; for example, it does not fully model the
memory hierarchy. As a result, we adopt a practical approach to the topics it can
support (e.g., we develop a real exception handler) but overview those it does not at
a higher-level (e.g., virtual memory).

12.2 The Hardware/Software Interface

If the OS is tasked with managing the interface between hardware and software, this
interface needs to include the ability for the kernel to inspect and control some as-
pects of how the processor operates. Before we discuss how the kernel implements
said interface, we need to investigate the mechanism by which that inspection and
control is exercised. For MIPS32 at least, this is defined in the Privileged Resource
Architecture (PRA) which in some sense defines how the processor operates in
“managed” mode and contrasts with the ISA which defines how the processor oper-
ates in “bare metal” mode.

12.2.1 MIPS32 Co-processor Registers

The MIPS32 ISA includes an interface to co-processor devices. One might view
these as physically separate from the processor; for our purposes, however, we can
view them simply as collections of special-purpose registers. We denote these in
a similar way to the general-purpose register file so that CP0[i] is the i-th register
within co-processor zero, or CP1[ j] is the j-th register in co-processor one. Access
to the registers is achieved by copying values to and from the general-purpose regis-
ter file using dedicated instructions. For example, the mtc0 and mfc0 copy values
to and from co-processor zero. As a result, we might write the assembly language
fragment

mfc0 $t0, $0 ; move CP0[0] into GPR[8]
... ; perform some processing of GPR[8]
mtc0 $t0, $0 ; move GPR[8] into CP0[0]

to read the value of CP0[0], perform some change to the value and then write this
back to update the co-processor. The idea is that in reality this would represent
communication between the processor and co-processor, potentially prompting the
co-processor to perform some action on behalf of the processor.
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(d) The Status register, CP0[12].
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(g) The Con f ig register, CP0[16].

Figure 12.1 The sub-set of MIPS32 co-processor zero registers from Table 12.1 described as bit-
fields.
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Register Number Register Name Description

8 BadVAddr Address for most recent address-related exception.
9 Count Cycle accurate time-stamp counter.
11 Compare Timer interrupt control.
12 Status Processor status.
13 Cause Details of exception meaning.
14 EPC Exception Program Counter (EPC).
16 Con f ig Processor configuration.

Table 12.1 A table describing a sub-set of MIPS32 co-processor zero registers.

Although they take different approaches to control of their behaviour, processors
need somewhere to store configuration and some mechanism to inspect and update
it. Although it supports up to three co-processors, a MIPS32-based processor dedi-
cates co-processor zero for this role. Of the thirty two or so registers in CP0, some
are optionally defined and only a few are central to our discussion; many control
advanced features of the processor, see [44, Chapter 6] for more detail. Table 12.1
shows a list of pertinent registers, each has a mnemonic which we will use instead
of the register number for clarity and is composed of a number of fields shown by
Figure 12.1. The BadVAddr, Count, Compare and EPC registers are not very in-
teresting in that they each consist of a single 32-bit field; Status, Cause and Con f ig
consist of many fields, mainly 1-bit flags. We will expand on the meaning of relevant
fields in subsequent sections. For now it suffices to understand that when we refer
to the BE field in Con f ig, for example, we mean the 15-th bit of CP0[16]; this bit
indicates the endianness mode the processor is operating in. For more detail, again
see [44][Chapter 6].

There are three additional points of information not captured by the bit-field di-
agrams. Firstly, some fields are read/write in the sense that we can read their value
and write a new value to update the register content, others are read only in the sense
that we can only read their value. Secondly, in Status the combination of UM and
R0 fields has the alias KSU so in some sense you can think of KSU1 ≡ UM and
KSU0 ≡ R0. Thirdly, just like it only supports some co-processor registers, SPIM
does not support all fields in all registers. For example, in Status roughly only those
fields related to interrupt handling are supported.

12.2.2 MIPS32 Processor Modes

In common with other processors, MIPS32 permits four processor modes which
one can also think of as privilege levels. The current mode is dictated by the value
of various status registers. The processor is in:
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Debug Mode when DM field in Debug is 1(2)

Kernel Mode when DM field in Debug is 0(2)
KSU field in Status is 00(2)
EXL field in Status is 1(2)
ERL field in Status is 1(2)

Supervisor Mode when DM field in Debug is 0(2)
KSU field in Status is 01(2)
EXL field in Status is 0(2)
ERL field in Status is 0(2)

User Mode when DM field in Debug is 0(2)
KSU field in Status is 10(2)
EXL field in Status is 0(2)
ERL field in Status is 0(2)

The kernel “owns” some region of memory which contains data and instructions
that allow it to operate; we call this kernel memory to contrast with user memory
which is “owned” by user processes. The basic idea is that depending on the current
mode when it is executed, a given instruction will be allowed or disallowed access
to a certain processor feature or region of memory. Intuitively this is a useful fea-
ture since it enables the kernel to protect resources it manages against misuse by
executing processes. For example, it might be reasonable for changes to the pro-
cessor configuration to be restricted to kernel mode (i.e., performed by the kernel)
since if this were allowed in user mode (i.e., performed by a user process), one pro-
cess could incorrectly configure the processor and perhaps cause another process to
execute incorrectly.

Two questions arise from this description. Firstly, what is the consequence of an
instruction executing in the wrong mode ? Above we said it could be disallowed
access to some resource. In reality we would like to catch the event and have the
kernel deal with it gracefully. This is achieved via the exception and interrupt mech-
anism described in the next section. Secondly, how does the processor enter and
exit kernel mode ? If kernel mode is intended to implement some protection mech-
anism, what is to stop a process executing in user mode from simply changing the
processor state to kernel mode and subverting that protection ? And if this change
is disallowed, how can we ever enter kernel mode ? Again we will see that this is
achieved via the exception and interrupt mechanism.

12.2.3 MIPS32 Assembly Language

At a simple level the kernel is just a special piece of software and as such we imple-
ment it using assembly language just like we might implement a program intended
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to be run in user mode. The only real difference is the level and detail at which
we need to interact with the resources the processor offers. To cope with this, it is
useful to extend the discussion in Chapter 10 with some special-purpose assembler
directives.

In particular, we need to use .kdata and .ktext which are analogies of the
.data and .text directives already described in Chapter 10. Using .data and
.text allowed the programmer to mark sections of data and instructions so the
assembler placed them in relevant places within the object or executable file, and
allowed it to prevent errors such as the use of invalid content within a particular
section. The .kdata and .ktext directives work in the same way except they
specify kernel data and instruction sections. Both directives accept an optional ad-
dress argument that allows placement of data or instructions at a particular address.
For example, we can use the directive

.ktext 0x80000180

to place code at address 80000180(16).
A second set of new directives reduces how pedantic the assembler is when pre-

venting access to reserved registers. Whereas normally GPR[1] (or $1, or $at) is
reserved for use by the assembler, by issuing the directive

.set noat

we are able to use it as normal, e.g., write to GPR[1] without provoking an error.
Using the directive

.set at

again makes it reserved; the assembler will again produce an error if GPR[1] is
written to.

12.3 Boot-Strapping

You probably know the “chicken or egg” problem: given a chick hatches from an
egg laid by another chicken, how did the first egg (or chicken) come about ? There is
a similar problem in the context of programs and their execution. When a computer
is powered on, the memory content is essentially empty (or at least just random)
so although one can reset the processor state to start executing a program as some
fixed address, the program image needs to be there in the first place. The problem
is, we already described the kernel as being responsible for management of loading
and execution of programs: the kernel is also a program but clearly it cannot load
itself ! To solve this problem, it is common for a short boot-strap program to be
stored in non-volatile ROM. Often this forms part of very low-level configuration
called the Basic Input/Output System (BIOS) which allows direct control of how
hardware devices should behave. For example, the BIOS often includes options that
control how the memory hierarchy behaves, allowing one to enable or disable cache
memories and so on.
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The boot-strap program itself is tasked with booting the computer. The idea is
that when the processor is powered on, it resets into kernel mode and is fed the boot-
strap program which initialises the hardware components, and invokes a dedicated
boot-loader program which loads the kernel and starts executing it. For example, a
typical boot-loader might first check the floppy disk drive (if one exists) for presence
of a kernel, then move onto any hard disk drive or CDROM and so on. The exact
mechanism by which it does this is beyond our scope, but clearly the program can
be fairly simple since it has a very specific task. In addition, the boot-strap and
boot-loader programs can typically be kernel agnostic in the sense that they do not
care too much about which kernel they are loading, just that the executable program
starts at one of the preset locations. Since the processor starts in kernel mode, the
boot-strap and kernel have full access to all resources. Once the kernel is running, it
takes control of the management of those resources and executes other programs in
user mode.

As an aside, the slightly odd terminology used is derived from the phrase “to pull
one’s self up by one’s boot-straps”. The original source of this phrase is debatable,
but the implication is the achievement of something seemingly impossible: in this
case managing to get the computer into a working state from an uninitialised starting
point.

12.4 Event Management

The terms exception, interrupt and trap are often used somewhat interchangeably,
but in reality they are different and it can be important to see what the differences
are. All basically describe an event occurring inside or outside the processor which
changes the normal flow of execution in some way: usually normal processing is
suspended when such an event occurs and control is passed to an event handler
(an interrupt or exception handler) in the kernel which deals with it in some way.
Roughly speaking, we can describe all three terms as follows:

Exception An exception is a condition that occurs within the processor itself. An
example is an unaligned load or store, or division by zero. In these cases, some-
thing has happened that the processor cannot deal with correctly; typically this
might terminate the active process, or mean that some flag is set within a status
register so that the process can check whether the error occurred and continue
normally.

Interrupt An interrupt is a signal from either an external hardware component
that is attached to the processor (a hardware interrupt) or software component
executing on it (a software interrupt, or trap), rather than the processor itself. Oc-
currence of an interrupt request from such a component indicates that normal
execution should halt and some action should occur in order to manage the sig-
nalling hardware or software. Note that use of an interrupt mechanism removes
the need for a polling loop whereby the processor would otherwise need to con-
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tinuously check the hardware or software to see if it requires management (and
hence waste time as a result).

Whereas an interrupt occurs because we have explicitly set things up so it will be
triggered, an exception happens because of an implicit side effect within execution.
Put a different way, an interrupt may occur at any time: such an event is asyn-
chronous with respect to processor execution. Exceptions on the other hand are usu-
ally synchronous in that they occur as a direct result of a particular instruction being
executed. Two final concepts that relate to both exceptions and interrupts need to be
described:

Definition 48. Events are termed precise if when they occur and control is passed
to the appropriate handler the PC is saved somewhere, and the pipeline content is
valid in the sense that all instructions before the event are fully executed and all
after the event are not fully executed. If these conditions are not satisfied, the event
is termed imprecise.

Definition 49. Events are either maskable or non-maskable, properties that relate
to whether the processor can ignore them or not. Maskable interrupts, for example,
can be ignored by the processor by setting an interrupt mask, typically within a sta-
tus register. In contrast, non-maskable interrupts always require immediate attention
by the processor and have no corresponding field in the status register.

One way to categorise exceptions and interrupts is by considering an exception to
be a non-maskable interrupt that just happens to be generated internally by the pro-
cessor rather than externally by something else. Another way, which is adopted by
MIPS32 and documented in detail within [44, Chapter 5], is a two-stage approach
which relates the two concepts more or less the other way around. The basic idea is
that if the processor has a mechanism to cope with exceptions, then it can use this to
service interrupt requests. That is, once it detects an interrupt request the processor
raises a particular type of exception to deal with the request. In order to see the com-
plete picture of how both are managed, we look in detail at the role of the processor
and the kernel.

12.4.1 Handling Interrupts

MIPS32 can distinguish between interrupts generated by up to eight different com-
ponents. Two of these are reserved for software interrupts (i.e., events relating to
software components), six are reserved for hardware interrupts (i.e., events relating
to hardware components). Each interrupt has a number and is associated with fields
in both Cause and Status as detailed by Table 12.2. Hardware interrupt number five
is a somewhat special case since it is tied to the timer interrupt which is generated
periodically by the processor itself rather than another hardware component.

The IM0 . . . IM7 fields in the Status register represent the interrupt mask. The
idea is that if, for example, IM2 is set to zero, then the processor is masking (or
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Interrupt Type Interrupt Number Field in Cause Field in Status

Software 0 IP0 IM0
1 IP1 IM1

Hardware 0 IP2 IM2
1 IP3 IM3
2 IP4 IM4
3 IP5 IM5
4 IP6 IM6
5 IP7 IM7

Table 12.2 A table describing MIPS32 interrupt types and their mapping into Cause and Status
registers.

ignoring) hardware interrupt number zero. As such, the processor can be selective
in which interrupts are dealt with in a particular context; while dealing with a critical
task it might be prudent to ignore interrupts generated by the keyboard device for
example since these are less important. In addition, the IE field in the Status register
acts as a master interrupt enable switch: when set to one the interrupt system is
enabled, when set to zero it is disabled. As such, one might include instructions at
the beginning of a program such as

li $t0, 0xFF01 ; move 0xFF01 into GPR[8]
mtc0 $t0, $12 ; move GPR[8] into CP0[12]

which load the value FF01(16) into CP0[12], i.e., the Status register, to enable in-
terrupts via the master flag and mask none of them (i.e., allow all to occur).

The behaviour of the processor when it spots an interrupt request from some
component, when we say an interrupt is raised, is conceptually simple although
can be tricky to implement correctly. The component in question issues an interrupt
request by setting one of the IP0 . . . IP7 fields in Cause. For software interrupts, the
process can directly update the Cause register; for hardware interrupts the hardware
component is reliant on some mechanism that sets the field for it. For example, the
field could be directly connected to a pin so that an external hardware device can
signal directly into the processor. An interrupt is raised when all of the following
conditions are met:

1. One of the interrupt request fields in Cause, say IPn, is set to one.
2. The corresponding interrupt mask field IMn in Status is set to one, i.e., the inter-

rupt is not being ignored.
3. The IE field in Status is set to one, i.e., interrupts have been enabled.

Once the conditions are met, the processor raises an exception which deals with the
interrupt. Before it does this, however, the processor updates the Status and Cause
registers to reflect the change in state. For example, it might set the NMI field in the
Status register so the handler could tell the event was maskable or non-maskable.
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12.4.2 Handling Exceptions

The occurrence of an exception, whether generated to manage an interrupt or a
“real” exception condition such as an arithmetic error, means transfer of control to
the exception handler within the kernel. Since the processor needs to know where
the handler is, it must be placed at a fixed address in memory which is termed
the exception vector. Where there is a single vector for all exception types, we
term the system single vectored; a handler placed at a single address must work
out which exception occurred by decoding the various status registers. In contrast,
a fully vectored system is where dedicated addresses are used to invoke different
handlers for each exception type. Trade-offs clearly exist for each choice. For exam-
ple, with a fully vectored system the handler needs to do less work in decoding the
exception type, but each handler is somewhat constrained in size since one handler
cannot overlap into the space reserved for entry into another handler. MIPS32 im-
plements what one might call a partly vectored approach. There is a single vector
80000180(16) through which “general” exceptions are passed; a handler placed there
determines the exception type by looking at the ExcCode field in the Cause register.
Additionally, there are other vectors through which more “special” exceptions are
passed. For example, there are dedicated vectors for dealing with non-maskable in-
terrupts, soft reset, cache errors and so on. We concentrate on the use of a “general”
exception handler from here on.

To transfer control to the exception handler, the processor must first be set into
a stable and known state. Depending on the pipeline state and the need for precise
exceptions the processor might first squash or flush partly executed instructions,
or stall the exception mechanism until partly executed instructions are completed.
Some types of kernel are re-entrant in the sense that, for example, they themselves
can be interrupted while handling an interrupt. This is a tricky condition to deal
with, so for more simple kernels which are not re-entrant, the processor might ad-
ditionally disable interrupts so the kernel cannot be interrupted. The crucial next
step is to switch into kernel mode: the exception needs to be managed by the kernel
so to do this, the handler needs to execute in kernel mode with full access to the
resources available. The exception handler can now take control; this is achieved
by first setting the ExcCode field in the Cause register, and the Exception Program
Counter or EPC register that holds the PC value related to the exception that oc-
curred. For precise exceptions, EPC is the instruction which caused the exception
(for example a load instruction which uses an unaligned address). To continue ex-
ecution, EPC should be incremented before being used as the new PC. For impre-
cise exceptions, EPC is the PC value where execution should resume; no increment
is required. Finally the processor sets PC to the appropriate address, in this case
PC = 80000180(16), i.e., the “general” exception vector. Restarting execution at the
new PC effectively invokes the exception handler which can the perform whatever
tasks are required to manage the event that occurred. Once the exception handler
has finished, control needs to be passed back again; typically this means restarting
the process that was executing when the event occurred. The processor manages
the switch from user mode into kernel mode automatically; however, a switch in
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the other direction is as the result of executing the eret instruction which takes
the content of EPC and copies it into PC, switches into user mode and then allows
execution to continue.

Note that the cost of an exception (and hence an interrupt since they are managed
in essentially the same way) can be described as the sum of

• the cost of entering the kernel, i.e., transferring control from user to kernel mode,
• the cost of any activity required of the kernel, e.g., dealing with an exception,
• the cost of exiting the kernel, i.e., transferring control from kernel to user mode.

Clearly it is advantageous to keep this cost as low as possible: the faster the steps
are completed, the less time is wasted as overhead and the more time can be spent
performing useful computation. Also note that this description resolves a problem
from earlier where we wondered if a process executing in user mode was prevented
from entering kernel mode freely for reasons of protection, how could we ever enter
kernel mode ? The answer is now clear: the exception mechanism implements the
switch from one to another. Either the kernel configures the processor so it is always
invoked at some point (e.g., it configures the timer interrupt to be triggered every
say n seconds), or it is invoked when and only when some event occurs that requires
it to intervene.

12.4.3 Handling Traps

At the start of the chapter we described one of the requirements on the kernel as
provision of a core set of functions which can be called by and executed on behalf
of a process running in user mode. The example we gave was that of a device driver
which is the generic name we give to operations that relate to management of a
specific peripheral device. However, the concept is more general than this: imagine
there is a set of kernel functions within the kernel which need to be called in a
similar way to user functions housed within the process itself. The problem is, the
kernel functions cannot be linked to user functions otherwise we would effectively
include the entire kernel in every object file produced by the linker ! The typical
approach to solving this general problem is the use of software interrupts as a means
of implementing system calls, i.e., calls from a process executing in user mode into
functionality within the kernel.

Since we have already explained how interrupts and exceptions work in MIPS32,
the concept of a software interrupt or trap is easy to explain: essentially a process
executes a dedicated instruction which raises an interrupt request that is eventually
serviced as an exception by the exception handler. MIPS32 has three main classes
of trap instruction:

• Execution of the syscall instruction is intended to represent a system call
by the executing process; it results in the system call exception Sys (exception
number 8).
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• The break instruction is intended to cause a break-point exception which is
required for single stepping through a program by a debugger; it results in the
break-point exception Bp (exception number 9).

• There are a range of trap instructions such as teq and tne which cause the
generic trap exception Tr (exception number 13).

We concentrate here on use of syscall to perform system calls. In concept, this
is fairly simple. Recall that in Chapter 10 we used the jal instruction to imple-
ment function calls: a user mode caller executed jal to save the return address and
then transfer control to a user mode callee function. One can consider execution of
syscall as somewhat similar in the sense that a user mode caller executes it to
transfer control to a kernel mode callee function that exists within the kernel. The
open question, however, is how one passes arguments and return values between
user process and kernel ? Just like the calling convention between a caller and callee
user function might be standardised but is essentially a decision made by a particu-
lar programmer (or compiler), the system calling convention is a decision made by
a particular kernel. That is, each kernel might have a different scheme to achieve
this. A typical approach is to adopt a similar scheme to that described in Chapter 10
whereby arguments and return values are passed in predetermined registers: the user
process loads the registers with values which are passed as arguments to the system
call; the system call loads the registers with values which are passed back again as
return values.

In fact, this approach is adopted by a limited kernel implemented by SPIM that
allows simulated programs to interact with the simulation environment. For exam-
ple, it allows a simulated program to print output to the terminal in which SPIM is
executed. Appendix A outlines the system calling convention used by SPIM; briefly
one loads the system call number into $v0 and any arguments into $a0, $a1 and
$a2 then uses the syscall instruction to provoke a system call trap. As an exam-
ple, consider using the print_int system call (system call number 1) to print the
integer 999 to the terminal. This can be achieved as follows:

l0: ...
addi $a0, $0, 999 # set system call argument
addi $v0, $0, 1 # set system call number
syscall # invoke system call

l1: ...

Instructions before the system call (denoted by the label l0) are executed, then we
load the argument and system call number into the appropriate registers. Execution
of syscall provokes the trap which is handled by the kernel; the integer 999
is printed to the terminal. When the kernel has finished management of the trap,
control is returned and instructions after the system call (denoted by the label l1)
are executed.
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Exception Number Exception Name Description

0 Int Interrupt.
1 Mod TLB modification.
2 T LBL TLB exception (load).
3 T LBS TLB exception (store).
4 AdEL Address exception (load or fetch).
5 AdES Address exception (store).
6 IBE Bus error (fetch).
7 DBE Bus error (load or store).
8 Sys System call.
9 Bp Breakpoint exception.
10 RI Reserved instruction.
11 CpU Co-processor unusable.
12 Ov Arithmetic overflow exception.
13 Tr Trap exception.
15 FPE Floating point exception.

Table 12.3 A table describing MIPS32 exception types.

1 .globl __start
2

3 .data
4

5 A: .word 0
6 .word 1
7 .word 2
8 .word 3
9

10 .text
11

12 __start: li $t0, 0xFF01 # enable interrupts
13 mtc0 $t0, $12
14

15 la $t0, A
16 addi $t1, $t0, 0 # try to load from address A+0
17 lw $t2, 0($t1)
18 addi $t1, $t0, 4 # try to load from address A+4
19 lw $t2, 0($t1)
20 addi $t1, $t0, 8 # try to load from address A+8
21 lw $t2, 0($t1)
22 addi $t1, $t0, 12 # try to load from address A+12
23 lw $t2, 0($t1)
24 addi $t1, $t0, 13 # try to load from address A+13
25 lw $t2, 0($t1)
26

27 addi $v0, $0, 10
28 syscall # exit

Listing 12.1 An example interrupt handler (user portion).
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1 .kdata
2

3 id: .word id0
4 .word id1
5 .word id2
6 .word id3
7 .word id4
8 .word id5
9 .word id6

10 .word id7
11 .word id8
12 .word id9
13 .word idA
14 .word idB
15 .word idC
16 .word idD
17 .word idE
18 .word idF
19

20 message: .asciiz "unaligned access at address: "
21 nl: .asciiz "\n"
22

23 save_at: .word 0
24 save_v0: .word 0
25 save_a0: .word 0
26

27 .ktext 0x80000180
28

29 .set noat
30 add $k0, $0, $at # save GPR[1]
31 sw $k0, save_at($0)
32 sw $v0, save_v0($0) # save GPR[2]
33 sw $a0, save_a0($0) # save GPR[4]
34 .set at
35

36 mfc0 $k0, $13 # get exception id
37 li $k1, 0x3F
38 and $k0, $k0, $k1
39 lw $k0, id($k0) # load handler address
40 jr $k0 # jump to handler address
41

42 exit_exp: mfc0 $k0, $14
43 addi $k0, $k0, 4
44 mtc0 $k0, $14
45

46 exit_int: mtc0 $0, $13 # clear cause
47

48 li $k0, 0xFF01 # enable interrupts
49 mtc0 $k0, $12
50

51 .set noat
52 lw $k0, save_at($0) # restore GPR[1]
53 add $at, $0, $k0
54 sw $v0, save_v0($0) # restore GPR[2]
55 sw $a0, save_a0($0) # restore GPR[4]
56 .set at
57

58 eret # return from handler

Listing 12.2 An example interrupt handler (kernel portion).
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1 id0: ...
2

3 id4:
4 id5: la $a0, message # print message
5 addi $v0, $0, 4
6 syscall
7 mfc0 $a0, $8
8 addi $v0, $0, 1
9 syscall

10 la $a0, nl
11 addi $v0, $0, 4
12 syscall
13

14 j exit_exp
15

16 id6: ...

Listing 12.3 An example interrupt handler (kernel portion continued).

12.4.4 An Example Exception Handler

As an example, we will consider writing a short handler to catch unaligned load and
store exceptions: recall from Chapter 8 that this means the effective address used in
a load or store is not a multiple of the size of data one is accessing. For example, if
we access 32-bit words via the lw and sw instructions, the effective address must
be a multiple of four (since a 32-bit word is four 8-bit bytes). Using the SPIM
mechanism for system calls described above, we will print an error message when
such an event occurs.

Although this is a specific example, the key thing to take away is the general
framework which can be adapted or extended to cope with other exception types.
The implementation is split into three parts. Listing 12.1 details the user portion;
this represents a process executing in user mode that is used to test the handler by
intentionally performing a series of aligned loads then an unaligned load to an array
labelled A. Note that since SPIM will need to be run in bare mode without the default
handler, the entry point is labelled __start rather than main.

MIPS32 permits thirty two exception types, some of which are currently unused
or reserved for processor-specific behaviour. We list the first fifteen, most central
types in Table 12.3; in common with co-processor register we refer to the exception
name rather than number for clarity. When an exception occurs, the exception num-
ber is stored in the ExcCode field in the Cause register. The register design has the
least-significant two bits set to zero. This means one can extract ExcCode and the
least-significant eight bits of Cause and use them as an aligned offset into a branch
table which dispatches control to a specific handler for each exception type. We use
this fact to implement a fairly generic dispatcher in Listing 12.2. It is worth not-
ing that registers GPR[26] and GPR[27], or $k0 and $k1, are reserved for use by
the operating system kernel: it can overwrite these registers without regard for their
content whereas it must preserve others. This is an important point, and one related
to the concept of preserving registers in function calls; if the kernel corrupts the
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process state, then the process will execute incorrectly just like if a callee function
corrupts the state of the caller, the caller will potentially execute incorrectly when
control returns to it. As such, the handler starts by saving the values of $at, $v0
and $a0 which may be overwritten. It then extracts the exception type and uses the
value as an offset into a branch table (which accommodates exception numbers 0 to
15 only). The branch table branches to the dedicated handler for a given type; in our
case we are interested in exceptions AdEL and AdES (exception numbers 4 and 5).

Listing 12.3 lists the dedicated interrupt handler branched to by the branch ta-
ble. For exception types four and five the handler prints a message followed by
the address that caused the exception followed by a new line. After the dedicated
handler completes, it branches back to either exit_exp or exit_int depending
on whether EPC needs to be incremented or not as a result of a precise or impre-
cise interrupt. Either way, the next steps clear the Cause register, re-enable inter-
rupts which had been disabled. Saved registers are then restored (note the use of the
.set noat and .set at directives that allow this) before the handler uses an
eret instruction to return to the address held in EPC, i.e., resume normal execution
in user mode.

12.5 Memory Management

So far we have considered that processes have access to the entire address space,
i.e., the range of addresses that are valid for use and supported by memory. As
we move toward a situation where the kernel shares the processor and associated
resources between many resident processes, this starts to become an unattractive
assumption. We can highlight why by investigating some examples:

1. Two processes cannot both occupy the same region of memory. For example, the
instructions for only one process can be located at address zero within a given
address space. On the other hand, the memory model outlined in Chapter 10
stipulates that some features should be located at fixed addresses. For example,
the stack should start at address 7FFFFFFF(16) and grow downward. Clearly
there needs to be a solution to this contradiction.

2. In the chapter introduction, we discussed the issue of memory protection using
a high-level example. To briefly recap, the problem is that if several processes
have access to the same address space, there is the potential for one process P to
access the memory being used by another process Q. In some cases, this could
be an advantage, for example P and Q can communicate with each other using
the shared memory, but can also cause problems. Such problems typically take
the form of accidental corruption, whereby P alters memory belonging to Q and
causes it to execute incorrectly, but can also represent a security hole whereby P
can read data owned by Q that it should not be able to.

3. Looking at the memory hierarchy in Chapter 8, the top levels which represent
registers and memory implement an attractive trade-off: registers are fast whereas
memory is large, so when we run out of registers we store (or spill) values into
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memory for a while and then load them again when we need them. At the levels
below this, which represent memory and disks, we do not have the same trade-
off. That is, it is obvious that when we run out of memory we could store values
on disk and then load them again when we need them, we just have not discussed
a mechanism to do it. Given the kernel is in control of the disks, it is reasonable
to assume it should implement such a mechanism.

There are several different ways to address these problems, but we focus on a spe-
cific technique called virtual memory.

12.5.1 Basic Concept

Although a virtual memory system can offer some benefits where there is a single
shared address space, we can solve all the problems above in one go by allocating
each user process (and the kernel) separate address spaces. Each address space is
identified with an Address Space Number (ASN) which could be, but does not have
to be, the same as the process number. The basic idea is that instead of thinking about
memory as a single large array called MEM, we split it into two concepts: an m-
element physical memory which represents the hardware which a process can load
data from and store data into, and an n-element virtual memory which is in some
sense a process’s abstract view of the address space it is allocated. To bridge the gap
between the abstract virtual memory and concrete physical memory, there needs to
be some mechanism managed by the kernel (and preferably supported by hardware)
which translates virtual addresses into physical addresses. For example, when a
process loads from virtual address x, the access is translated into a load from some
physical address y.

Of course, the devil is in the detail; with virtual memory, there is quite a lot of
detail and therefore plenty of devil as well. Even so, there are two key advantages
from this arrangement. The first advantage is that translation mechanism permits x
and y to be different on a per-process basis. To see why this is useful consider an
example where we translate virtual address x to physical address p for process P
and virtual address x to physical address q for process Q. The result is that both pro-
cesses can access their own virtual address x (i.e., they are both fooled into thinking
they have access to the full address space) but behind the scenes we are translating
accesses to disjoint regions of physical memory so that both can coexist; this es-
sentially solves the first problem from above. Even better, since each process has a
separate virtual address space the second problem disappears as well: the transla-
tion process prevents one process from accessing physical memory which is used
to house part of the virtual address space for another process. Essentially we get a
form of memory protection for free. The second advantage is that the size of the
virtual memory address space can be larger than the physical address space if we
can cope with this in the translation mechanism, i.e., we can have n > m. This is
possible because at whatever level you look at, a process is accessing a working set
of instructions and data, i.e., those which are currently being used. We only need to
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Figure 12.2 A diagram showing two options for placing the MMU and the implication for how
cache memory operates.

keep the working set in physical memory and can switch regions in and out behind
the scenes to ensure this; this essentially solves the final problem from above.

As one might expect, the sticking point is finding an efficient way to realise
the translation mechanism: given the so-called von Neumann bottleneck already
noted in Chapter 8, the mechanism should not impose a performance overhead and
ideally not an area overhead either. There are a few different approaches but we will
examine a standard approach termed paged virtual memory. Conceptually, there
is a convenient similarity between how cache memory and paged virtual memory
operate. At a high-level, therefore, paged virtual memory can be described by the
following comparison:
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A cached memory system:

• divides memory into chunks called
cache lines,

• operates transparently; configura-
tion (e.g., dirty and valid bits) for
each cache line managed internally
and automatically by cache,

• holds a sub-set of larger address
space; cache lines not held in the
cache are stored in memory

• uses address translation to map ad-
dresses to sub-words within cache
lines,

• uses management policies control
cache line replacement, eviction and
so on.

A paged virtual memory system:

• divides memory into chunks called
pages,

• operates with support from the ker-
nel; configuration (e.g., dirty and
valid bits) for each page held in a
page table,

• holds a sub-set of larger address
space; pages not held in physical
memory are stored on disk in a ded-
icated swap file,

• uses address translation to map vir-
tual address to frame index and off-
set within physical memory,

• uses management policies control
page replacement, eviction and so
on.

The virtual memory system is often supported by the addition of a dedicated Mem-
ory Management Unit (MMU) which works alongside the processor so when ac-
cesses to memory are made, the accesses pass through and are partly serviced by
the MMU. The MMU, and the decision to use virtual memory at all, is closely inte-
grated with the processor ISA and micro-architectural design. For example, exactly
where the MMU is placed highlights implications of the difference between virtual
and physical addresses. Previously, our processor and associated components dealt
exclusively with physical addresses. Now that a process will access memory using
virtual addresses that are translated into physical addresses by the MMU, changes
need to be made: any component which previously stored or operated on physical
addresses now potentially needs to cope with virtual addresses instead. For example,
the PC associated with each process will now be a virtual address and instruction
fetches will thus be to virtual addresses. Likewise, any cache memories or branch
prediction hardware will potentially need to change: in the case of caches, this de-
pends on where the MMU is placed. Figure 12.2 shows two options, one where the
MMU is placed before the cache and one after. In the first case, the cache operates
with virtual addresses. On one hand this seems reasonable, but a potential problem
is that if the cache tags are based on virtual addresses and there are many virtual
address spaces, there is a danger that the cache will incorrectly identify two identi-
cal addresses from different address spaces as the same: this effectively means the
wrong cache line will be resident. To cope with this the cache tags could be extended
to include an ASN, or the cache flushed each time a new process (and hence address
space) becomes active. The second case places the MMU before the cache so that
it operates on physical addresses so that things work roughly in the same way as
before.
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4

5 int main( int argc, char* argv[] )
6 {
7 printf( "page size is %ld bytes\n", sysconf( _SC_PAGESIZE ) );
8 }

Listing 12.4 A short C program to test the page size used by the host operating system.

12.5.2 Pages and Frames

The basic idea is to divide physical and virtual address spaces into fixed size chunks.
The chunks of physical address space are called frames, there are V Mf rames of
them and each one is V Mf ramesize in size so that the physical address space is
m = V Mf rames ·V Mf ramesize bytes. The chunks of virtual address space are called
pages, there are V Mpages of them and each one is V Mpagesize in size so that each
virtual address space is n =V Mpages ·V Mpagesize bytes. The size of frames and pages
are fixed and the same, i.e., V Mf ramesize = V Mpagesize, but can be dictated by the
kernel. One can query the page size, for example, using a program such as the one
outlined in Listing 12.4. A representative size would be 4096 bytes, and one would
expect the size always to be a power-of-two in order that other aspects of the system
are made simpler.

Each user process (and the kernel) has a separate virtual address space identified
by an ASN. At a given point in time, frames in physical memory will be popu-
lated by pages from these address spaces as detailed by the example in Figure 12.3.
Imagine that V Mf ramesize = V Mpagesize = 4096 bytes and that physical memory can,
somewhat oddly, hold only V Mf rames = 3 frames. The physical address space is thus
m =V Mf rames ·V Mf ramesize = 3 ·4096 = 12288 bytes so valid physical addresses are
in the range 0 . . .12287. Two processes P and Q are resident, each of which has a
virtual address space that consists of V Mpages = 4 pages. Each virtual address space
is thus n = V Mpages ·V Mpagesize = 4 ·4096 = 16384 bytes so valid virtual addresses
are in the range 0 . . .16383. For clarity the i-th page in the virtual address space for
P or Q is labelled P− i or Q− i, for example in this case process P has four pages
labelled P−0, P−1, P−2 and P−3.

Frames in the physical memory MEM are currently populated with the three
pages P− 2, P− 3 and Q− 0. The remaining five pages (i.e., pages P− 0, P− 1,
Q−1, Q−2 and Q−3) are held on disk in the swap file SWAP. Based on this state,
it is already important to re-enforce two facts. Firstly, frame number i in physical
memory does not necessarily hold page number i from a particular virtual address
space; the translation mechanism maps pages to arbitrary frames. Secondly, frame
numbers i and j do not necessarily hold pages from the same address space; phys-
ical memory can be populated with pages with different owners but the translation
mechanism gives the illusion that each has dedicated access.
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Figure 12.3 A diagram showing pages from two processes variously resident in physical memory
and swap, and the page tables which describe this example state.

To keep track of the virtual memory state, the kernel maintains an internal data
structure for each ASN which describes the associated virtual address space. The
organisation of this data structure is crucial, but in order to focus on the fundamental
idea we take a (very) simple approach:

Definition 50. For each virtual address space there is a page table where we write
PTi to describe the page table related to the ASN i. Each PTi has V Mpages entries in
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it, one for each page in the associated virtual address space. The j-th entry in such
a page table, which we write PTi[ j], has the following fields:

1. PTi[ j]location which determines whether page j resides in physical memory or the
swap file.

2. If page j is resident in the swap file:

• PTi[ j]swap holds an offset into the swap file where the page content is stored.

3. If page j is resident in physical memory:

• PTi[ j] f rame holds the frame number in physical memory in which the page is
resident.

• PTi[ j]dirty determines if the page has been altered or not (i.e., if the versions
in memory and on disk are different).

Although this simple scheme will suffice for our description, several issues need to
be at least mentioned if not explored further. Firstly, note that it can be attractive
to split this description into separate parts; often one might find a dedicated frame
table to manage frames in physical memory or a dedicated disk map to manage
pages in the swap file. Secondly, note that the data structure used to realise the
information held in a page table is crucial: many techniques for efficient page table
data structures exist (e.g., so-called inverted or multi-level page tables) although we
ignore them here. Thirdly, note that the kernel might reserve some of the frames in
physical memory as special, and lock them so they cannot be used to hold pages
from address spaces associated with user mode processes. The reason for this is
simple: if the kernel itself does not exist in physical memory, it will be hard for it
to manage the various data structures ! To avoid this somewhat circular problem,
we simplify matters and assume the address space associated with kernel memory
is always resident in physical memory.

Based on this description, the bottom half of Figure 12.3 enhances the top half by
describing two page tables PT0 and PT1, which relate to ASNs 0 and 1 assigned to
processes P and Q and allow us to interpret the state of the virtual memory system. A
demand paging system [25] would assume that when a process is initially allocated
a page table no pages are resident in physical memory: all pages are transferred into
physical memory or the swap file on demand, i.e., when their content is accessed.
In this case, however, we are past this initial stage since frames in physical memory
are populated with pages from P and Q. In particular, looking at the PT0 we can
see that page 1 in this address space (i.e., page P−1) is resident in the swap file at
offset 1. On the other hand, looking at PT1 we can see that page 0 in this address
space (i.e., page Q−0) is resident within frame 2 of physical memory and has been
altered (i.e., any version of the page within the swap file is out of date).
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12.5.3 Address Translation and Memory Access

Given suitable page tables that are configured by the kernel to describe the state of
the virtual memory system, the next step is to utilise them so memory accesses can
be satisfied: this is where the MMU starts to play a role. The MMU needs access to
the page table for the process currently active (i.e., the process currently executing
on the processor) which would have been configured by the kernel. Conceptually,
and in MIPS32 at least, one can imagine the kernel setting the co-processor registers
to reference the current ASN and include a pointer to the associated page table data
structure. An important fact to re-enforce is that the MMU operates as autonomously
as possible. We do not want every memory access by a process to require attention
by the kernel since this would impose a massive performance overhead. Rather, the
MMU is able to automatically satisfy memory accesses for virtual addresses whose
corresponding page is in physical memory; the kernel is only invoked when there
needs to be some management or re-configuration of the virtual memory system.

Put simply, every use of a virtual address VA must be translated into a physical
address PA which can be serviced by the physical memory MEM. Examples where
accesses using VA are performed are easy to imagine: our PC must now hold the
virtual address of the next instruction to fetch from memory, and execution of a load
or store instruction will require a virtual effective address. The translation process
is similar to that we described while looking at cache memories: we use VA to
calculate two components which are used to access the active page table:

VAo f f set = VA mod V Mpagesize

VAindex = �VA/V Mpagesize�

The value VAindex gives the page number for this virtual address, it identifies the
page sized chunk of our virtual address space the virtual address lies within; the
value VAo f f set gives the offset within that page. Since the kernel would select
V Mpagesize to be a power-of-two, computing the values VAindex and VAo f f set is not
costly: given a 32-bit address VA, if we select V Mpagesize = 4096, then it amounts to
taking the twelve least-significant bits as VAo f f set and the remaining twenty bits as
VAindex. Returning to the example in Figure 12.3, one could imagine process number
0 (i.e., process P) performing a load from virtual address

VA = 00003008(16) = 12296(10).

This is reasonable: the virtual address 12296(10) is within the range of valid virtual
addresses even though it is outside the range of valid physical addresses. Extracting
the correct sections of VA as follows
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we find that
VAo f f set = 008(16) = 8(10)
VAindex = 00003(16) = 3(10)

or more simply that this virtual address is in page number 3 (i.e., page P − 3) at
offset 8 of this virtual address space.

The MMU can check if the page is resident in physical memory by inspecting

PTi[VAindex]location.

That is, it looks in the page table for the active process and retrieves the field which
tells us whether page VAindex is held in physical memory or the swap file. As is the
case detailed in Figure 12.3, imagine the page is held in physical memory. In this
case, the easier of the two, the MMU can translate the VA into a physical address
PA as follows:

PA = PTi[VAindex] f rame ·V Mf ramesize +VAo f f set .

Step-by-step, the idea is that the MMU looks in the page table for the active process
and retrieves the frame number for page VAindex which is scaled to give a base
address, and added to VAo f f set to give the physical address. That is, it calculates

PA = PTi[VAindex] f rame ·V Mf ramesize +VAo f f set

= PT0[3] f rame ·V Mf ramesize +8
= 1 ·4096+8
= 4104(10)

The resulting address PA is within the range of valid physical addresses and can thus
be used as the effective address passed to the physical memory in order to perform
the load we started off with. Note that in this case the MMU has dealt with the load
without any intervention of the kernel: there is essentially no performance overhead
(bar the cost of actual translation). Where the memory access is a store rather than
a load, the access mechanism works much the same way: if the page is in physi-
cal memory, we can simply translate the address and perform the store. However,
one minor addition is required in order to update the value of PTi[VAindex]dirty. This
marks the page in the page table as dirty which means that the version held in phys-
ical memory is noted as differing from the version held in the swap file: essentially
we know that the page content has been updated as a result of the store instruction
being executed.

The more difficult case is where page VAindex is not held in physical memory:
the value we want to load is currently resident in the swap file so clearly we cannot
perform the load. Imagine that process number 0 (i.e., process P) performs another
load, this time from virtual address

VA = 00000008(16) = 8(10).
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This address gives VAindex = 0 and VAo f f set = 8, i.e., we are trying to load from
page number 0 (i.e., page P−0) that is currently held in the swap file. This sort of
situation is termed a page fault and results in an exception being raised that invokes
the kernel in order to resolve matters so the load can eventually be performed. You
can think of this as being similar in concept to the exceptions caused by unaligned
loads (or stores) we examined previously: in both cases a load (or store) instruction
causes some problem with respect to the memory system that needs to be resolved
by the kernel.

12.5.4 Page Eviction and Replacement

When a cache memory discovers that it does not hold the cache line associated to
some address, it might first evict an old cache line to free some space and then load
the required cache line from memory. One might say the old cache line is replaced
by the new one; once this occurs, the cache can perform the access required of it. The
kernel performs a similar task with pages. As above, imagine that process number 0
(i.e., process P) performs a load from virtual address

VA = 00000008(16) = 8(10)

which gives VAindex = 0 and VAo f f set = 8. To perform the load, page 0 (i.e., page
P−0) must be held in physical memory so the kernel must first evict another page
to free space and then load page 0 from the swap file. Once the page is loaded
into physical memory and the page table updated to reflect the new state, the kernel
can return control to the process which caused the page fault thereby restarting the
original memory access: the second time around this will succeed because page 0
is now in physical memory. If one believes that access to the swap file on disk is
possible, this should seem a fairly simple task for the kernel. However, there are at
least two issues that need to be mentioned which can somewhat complicate matters.

Firstly, how does the kernel select a page for eviction ? That is, if there are no
empty pages (in which case the kernel would just select one of them to load the new
page into) which page of those resident should be moved from physical memory
into the swap file ? Like a cache, the kernel needs to employ a replacement policy
so those pages used most are likely to be retained in physical memory. Although
the policy is analogous to that required in the context of caches, since the cost of
accessing memory and disk is higher than the cache and memory the penalty for an
ineffective policy is higher as well. The particular case where a page is repeatedly
swapped into physical memory then swapped out again is often called thrashing.
The prolonged spells of disk activity that result mean you can often hear this happen-
ing as well as noticing the performance degradation: the system seems to “freeze”
as the kernel spends most of the time swapping pages in and out of physical mem-
ory and no time allowing processes to execute. When we examined caches, use of
Least Recently Used (LRU) policy was described as an expensive option despite
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providing an effective way to identify cache lines to evict. As a result of the higher
penalties involved here, the overhead of operating LRU to identify pages to evict is
typically worth it.

Secondly, what actually happens when a page is evicted ? Like a cache, if the
page resident in physical memory that we want to evict is dirty (i.e., the page content
has been updated), we first need to copy back the content to the swap file. More
simply, if we want to evict a dirty page, we first save the content into the swap
file whereas if the page is not dirty we can simply discard it. In the context of our
running example from above process number 0 (i.e., process P) needs page 0 (i.e.,
page P− 0) in physical memory. If the kernel chooses to evict the page in frame
0 (i.e., page P− 2), then it can simply overwrite the frame with new page content
since the old page content is non-dirty. However, if the kernel chooses to evict the
page in frame 2 (i.e., page Q−0), then it first needs to save the old page content into
the swap file, since it is marked as dirty, and only then overwrite the frame with new
page content. This difference in behaviour might influence the page replacement
policy in the sense that if we select dirty pages for eviction, the cost is higher than if
we select non-dirty pages. Specifically, the former case implies two accesses to the
swap file (one page store and one load) whereas the latter implies one access (one
page load).

12.5.5 Translation Look-aside Buffer (TLB)

So far we have painted a very positive picture of virtual memory: as long as the
kernel can manage the page table configuration, the initial problems we outlined are
more or less solved. That is, by the kernel and MMU implementing the translation
mechanism behind the scenes and swapping pages in and out of physical memory,
each resident process has access to a large protected address space. However, there
is a nasty issue lurking behind this picture. At the moment, each access to memory
performed by a process actually requires two accesses to memory, one to inspect
the page table and one to perform the actual access. Clearly this is far from ideal:
even though the MMU acts autonomously so as to minimise the kernel activity to
those occasions where some management or re-configuration of the virtual memory
system is required, the price of solving our problems has been a 2-fold increase in
the cost of every memory access. Since this includes instruction fetches, we have
essentially halved the performance of the processor !

Understandably, solutions to this issue are fundamental if virtual memory is to
be feasible for use. Fortunately we have already examined techniques that can pro-
vide such a solution: the basic idea is to hold page table entries in what amounts to
a fancy cache memory called a Translation Look-aside Buffer (TLB). Although
there are ways to optimise the performance of the resulting system, in a basic sense
the TLB is just a fully-associative cache which maps page numbers to frame num-
bers. Essentially we try to use the TLB to eliminate memory accesses that inspect
the page table in our translation mechanism, i.e., we want to have a situation where
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PA = PTi[VAindex] f rame︸ ︷︷ ︸
retrieved from TLB

·V Mf ramesize +VAo f f set .

That is, we calculate VAindex and send this to the TLB which searches the entries and
hopefully returns us the base address of the frame which holds that page. Clearly
the TLB can only hold a sub-set of entries from a given page table. For some virtual
address VA, if there is an entry for VAindex in the TLB a TLB-hit occurs and we can
quickly form the physical address PA without a second memory access. If there is
no entry for VAindex in the TLB, a TLB-miss occurs and we are forced to access the
page table in memory to form PA. The principles of temporal and spatial locality
hopefully mean that more TLB-hits occur than TLB-misses and hence on average
the second accesses required to load a page table entry from memory are required
infrequently.

Since the TLB is a cache, in the case of a TLB-miss one would expect the page
table entry retrieved from memory to replace one currently resident in the TLB.
This can be managed automatically in hardware like a normal cache, or provoke an
interrupt which allows the kernel to dictate the replacement policy.

12.6 Process Management

Informally we have already said that a process is a run-time entity in the sense that
a process context captures one executing instance of a program: the program is a
static entity, the process is an active or dynamic entity. In the most general sense, we
would like to define a process as the basic unit managed by an OS that supports mul-
titasking. The basic idea is that the kernel permits many processes to be resident in
memory at the same time, keeps track of their contexts and swapping between them
to allow sharing of the processor and hence concurrent execution: if virtual memory
provides an abstract view of memory, one could think of multitasking as providing
each process a virtual processor which is an abstraction of the real processor.

The concept of a process versus that of a thread both have associated subtleties
that we need to be careful about. As such, we will adopt a (fairly) standard way to
categorise the two:

Definition 51. Processes:

• have independent goals; each is executed to perform a different task,
• have separate processor context (e.g., different PC and GPR state),
• have separate address space,
• interact with each other using relatively expensive mechanisms (e.g., system

calls).

Definition 52. Threads:

• have a common goal; each is executed as part of a thread team which cooperate
to perform a single task,
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• have a somewhat separate processor context (certainly different PC, probably
shared GPR state),

• have a shared address space,
• interact with each other using relatively inexpensive mechanisms (e.g., via con-

trolled access to their shared address space).

Again informally, one might describe a thread as a sub-process or lightweight pro-
cess. Some kernels manage threads naively alongside processes, others do not recog-
nise them and force threads to be supported by a user mode library. Here we are
interested mainly in the mechanism that allows the processor to be shared, so we
take the simplifying approach of assuming the two things are essentially the same
and exclusively discuss processes.

12.6.1 Storing and Switching Process Context

For each process the kernel allocates a Process Identifier (PID), which is simply
an integer name for the process, and maintains a Process Control Block (PCB) that
acts as an area where the process context can be stored:

Definition 53. The PCB for the i-th process, which we denote PCB[i], has (at least)
the following fields:

1. PCB[i]PC, the saved program counter for the process which represents the address
where execution should resume.

2. PCB[i]GPR, the saved general-purpose register file content; all registers in GPR
are saved here, we use PCB[i]GPR[ j] to refer to the j-th such register where appro-
priate.

Of course, each PCB might include many more details that relate to how the kernel
controls each process. For example, one might include a priority level whose use
we will see later, and pointers to any virtual memory configuration (e.g., the page
table) for the process.

With one processor, clearly only one process can actually be executing at a time:
the context of that active process is held and used by the processor, the context
of other non-active processes are stored in their respective PCB entries. In order
for the kernel to share the processor between the processes, there needs to be a
mechanism to swap the active executing process for another; this is called a context
switch.

Imagine there are two resident processes called P and Q which have PIDs 0 and 1
respectively, and that P is the active process: the context of P is held by the processor
since P is currently executing, the context of Q is held in PCB[1]. At some point,
the kernel steps in and decides that Q should execute instead: to do this, the context
associated with P needs to be saved and then replaced by the context associated with
Q. More simply, the kernel saves the context held by the processor into PCB[0] then
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loads the saved context from PCB[1]. Since this replaces the value of PC, when the
kernel returns control to user mode process Q will start to execute; PCB[1]PC has
become the new PC so this is where execution recommences. Now imagine at some
point the kernel again steps in and decides Q has executed for long enough and that
P should have another chance: to do this, the kernel saves the context held by the
processor into PCB[1] then loads the saved context from PCB[0]. When the kernel
returns control to user mode process P will resume execution; PCB[0]PC, where
execution of P was halted the first time we switched context, has become the new
PC so this is where execution recommences.

A context switch is conceptually simple but deceptively costly. As in the case of
handling an exception, said cost can be described as the sum of transfer into kernel
mode from user mode and vice versa, plus activity performed by the kernel. Focus-
ing on the kernel activity, to switch from the process with PID 0 to the process with
PID 1 we simply save the PC into PCB[0]PC and each GPR[ j] into PCB[0]GPR[ j],
then we load PC from PCB[1]PC and each GPR[ j] from PCB[1]GPR[ j]. Even with
this simple scheme where the context of a process is described by just the program
counter and a register file of thirty two registers, we need a total of sixty six mem-
ory accesses ! This is a lower bound on cost: we did not for example include the
cost of the kernel deciding on which process it wants to execute or updates to state
such as the virtual memory configuration. Keeping in mind that context switching
is pure overhead with respect to useful computation, this is a high price and one
which particular architectures attempt to solve with the assistance of features in the
processor.

12.6.2 Process Scheduling

Although we have established a mechanism to store and switch process context to
and from the processor and PCB table, there are three questions to answer that fall
roughly under the umbrella of process scheduling. The goal is to have a scheduler
(a particular algorithm or mechanism within the kernel) perform context switches in
order to manage access to the processor according to some policy. Firstly we need
to understand what states a process can be in. For example, how do we know some
process Q is a candidate to be executed and more generally, how does the kernel
keep track of this information ? Secondly, given the scheduling mechanism needs
to be executed in some way so it can perform the context switch, what options exist
for provoking this execution ? Thirdly, given some process P will be active, which
process (i.e., which Q) should the kernel select to replace it ?

12.6.2.1 Process States and Queues

The starting point is the definition of numerous process states which describe what
phase of execution a process is currently in. The specific states and their level of
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Figure 12.4 A 5-state description of a process during execution.

detail depend on the kernel; in the most basic sense one can imagine a 2-state model
whereby a process could either be executing or not executing. The idea would be for
the kernel to keep track of which state each process is in by maintaining a process
queue (or list) for each possibility and moving processes between queues as their
state changes. In the 2-state model this is very simple since the executing queue can
only ever contain one process (if there is one processor) and the not executing queue
contains all other processes.

More generally, we can formulate the 5-state description in Figure 12.4 where the
meaning and purpose of each state, and the transitions between them, is as follows:

Created When a process is initially created, it is placed in the created state. This
represents a “foetal” process in the sense that it has been created but not yet ini-
tialised, and is hence not yet ready for execution. Once the kernel has initialised
the process (e.g., allocated structures to keep track of it, initialised context such
as the instructions or stack), it is moved into the ready state and thereafter be-
comes a candidate for execution.

Ready From the point of view of scheduling in the sense of the question above,
the ready state (and associated ready queue) is perhaps most important. Essen-
tially, all processes in the ready state are candidates for selection by the kernel to
replace the active process via a context switch; a process on the ready queue is
ready for execution. The policy that selects a process from the ready queue and
schedules it for execution is discussed later.

Executing A process in the executing state is active: the associated context is
being used by the processor to execute instructions. During execution, one of two
events can cause the active process to be descheduled (i.e., switched for some
other process). Firstly, the kernel might step in and suspend the active process
because it wants to (or needs to) allow another process to execute. This sets
the process state to ready, and hence moves it into the ready queue. Secondly,
an operation performed by the process might cause it to become blocked; for
example, it could try to access a resource which is not currently free. This sets the
process state to blocked, and hence moves it into the blocked queue. One slight
subtlety is that at least one process must be available for execution otherwise
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it is unclear what the processor will execute. To cope with this, many kernels
maintain a somewhat privileged special process called the idle process: this is
simply a process which causes the process to do nothing if there are no useful
processes to execute.

Blocked A process which is blocked is essentially waiting for some event to hap-
pen before it can continue execution; in some sense it can execute but cannot
do anything useful bar wait. Common reasons for a process to become blocked
include waiting for some I/O operation (e.g., a slow disk access, or user input) or
some resource to become available. Once the event occurs (e.g., the I/O opera-
tion completes or the resource becomes free), the process can return to the ready
state since it is then ready for execution again.

Terminated During execution, a process can be terminated. Sometimes this re-
lates to natural completion (i.e., the process exits gracefully), but sometimes can
be due to action by the kernel (e.g., the kernel terminates a process that causes
some exception). Either way, the idea is that the process lifetime is over and the
associated context should be removed from any structure the kernel many have
used to keep track of it. A process which has been terminated but whose context
has not yet been removed from the kernel is termed a zombie process: it has
been terminated but sort of still lives on !

12.6.2.2 Creating and Terminating Processes

One question that arises from the previous discussion of process states is how pro-
cesses are created and terminated, i.e., how processes enter the “created” state ini-
tially and move into the “terminated” state at some point during execution. Both
operations must be provided by the kernel as system calls: a process must be able
to ask the kernel to create a new process or terminate itself. To illustrate how such
system calls can work (a given kernel might take different approaches), we use the
example of a UNIX-style kernel.

• A process can terminate itself by using the exit system call; the prime reason
to do so would be normal completion of execution. It could also be the case that
an external event triggers termination of a process, for example if the process
causes an unrecoverable exception the kernel might opt to terminate it.

• A process can create a new process by using the fork or exec system calls:
the original process is termed the parent process, the new process is the child
process. Since the parent and child are separate processes, they are allocated
separate address spaces. By using fork, the parent memory content is copied
into the child context: the two processes execute the same program image. Using
exec changes this behaviour by subsequently patching the child context with
a new program image. Intuitively this can be more useful since it allows one
program to initiate the execution of a totally different program. Given this model,
UNIX traditionally has a root process called init which is the ancestor of every
other process in the system: every other process has been executed as the result
of a series of fork or exec started by init.
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• The parent can use the wait system call to suspend itself until the child has
finished executing (i.e., is terminated), otherwise the parent and child processes
can execute independently. If the parent does not wait for the child and the child
terminates, this is one example of where a zombie process occurs: the child still
has a PCB entry even though it is not an actively executing process. In some cases
the system enforces the convention that when the parent process is terminated, all
children are terminated automatically. Where this is not the case and the parent
terminates before the child, the child becomes an orphan process.

12.6.2.3 Invoking the Scheduler

In reality, the kernel clearly cannot just “step in” as we described above: it must be
invoked by some mechanism:

Definition 54. The concept of multiprogramming is where the kernel waits until
the active process is blocked (e.g., waiting for a read from disk to complete) and then
switches it for another process. The problem with this approach is neither the kernel
nor the processes have any control of when context switches occur; this makes use
of multiprogramming difficult in interactive systems.

Definition 55. The concept of cooperative multitasking places control in the hands
of the processes themselves: a context switch occurs when the active process offers
to be switched for another process; the active process is said to yield control of the
processor. Although this can be effective when the processes behave properly, the
kernel need to deal with the issue of uncooperative processes: if the active process
never yields, then other processes are starved of execution time.

Definition 56. The concept of preemptive multitasking places control in the hands
of the kernel: a context switch occurs when the active process is deemed, by the
kernel, due to be switched for another process.

Although there are advantages and disadvantages to all three approaches, an obvious
advantage of preemptive multitasking is the ease by which it can be realised. More
specifically, it is quite easy to construct a system which decides when a context
switch is due. The easiest way to achieve this is via the concept of time sharing or
time slicing. The idea is that the kernel controls a timer which acts like an alarm
clock: once reset the timer waits for a period of time (a so-called time slice or time
quantum) and then sounds an alarm, which in this case means it triggers an interrupt
that in turn invokes the kernel. In MIPS32, this behaviour is controlled by the Count
and Compare registers (i.e., registers CP0[9] and CP0[11]). Roughly speaking, the
Count register is incremented by the processor after completion of every cycle and
when Count = Compare, a timer interrupt is triggered. Thus, by setting Count = 0
and Compare equal to the time quantum, e.g., Compare = 1000, one can force an
interrupt to occur 1000 cycles into the future. In turn, this allows the kernel to force
a situation where the process scheduling mechanism is invoked every 1000 cycles: a
process can execute for 1000 cycles after which the kernel “steps in” and performs
a context switch so another process can execute.
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12.6.2.4 Scheduling Policies

Finally we are in a position to discuss how the scheduler, which we assume has
been invoked by some mechanism, selects a process from the ready queue in order
to perform a context switch. That is, how the scheduler applies a policy which would
typically attempt to be

• fair, i.e., it does not indefinitely prevent a (valid) process from executing even
though it may favour some over others,

• efficient, i.e., the scheduling mechanism does not take a prohibitively long time
to execute,

• robust, i.e., it cannot perform some action which causes a process (or the kernel)
to malfunction.

Often, the scheduling policy is split into three levels which are applied with differing
frequencies and have differing goals:

Long-term The long-term scheduler deals with the high-level or “big picture” is-
sues; it is invoked infrequently and tasked with deciding which processes should
inhabit the ready queue. The idea is that the long-term scheduler takes on the
role of load balancing: it might try to maintain a mix of I/O bound (i.e., those
that perform mainly I/O) and computationally bound processes for example, in
order to give the best overall system performance.

Mid-term The mid-term scheduler is typically tasked with swapping processes
into and out of physical memory based on their current state (or predicted future
behaviour).

Short-term The short-term scheduler deals with the low-level detail of selecting
a process from the read queue and performing a context switch so that it can
execute. Since the short-term scheduler is invoked frequently (e.g., after each
time slice), efficiency of this operation is important.

Even within these types, one might expect different algorithms to be deployed in
different scenarios in order to cope with different demands. In short, a “one size
fits all” approach is seldom appropriate. Investigation of these algorithms at a deep
level is a little beyond the scope of this book; to give a flavor, some very simple
short-term approaches to scheduling are overviewed below:

Round Robin The concept of a “round robin” allocation is more general than
this context; it means giving an equal share of some resource, in turn, to some
recipients. Here, the resource is execution time and processes are the recipients: a
round robin scheduler assigns a fixed size time slice to all processes and iterates
through them in turn. Each time it is invoked, it selects the next process and
schedules this for execution. This approach is simple and so can be inexpensive
to implement and execute; it is fair in the sense that every process is guaranteed
to be executed at some point.

Priority-based One of the disadvantages of round robin scheduling is that it ig-
nores priorities that might be assigned to processes. For example, processes that
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deal with interaction with the user could be said to be higher priority: if they
are not scheduled very soon after a user clicks the mouse or presses a key for
example, the user will notice the delay which will degrade their experience.
By assigning each process a priority, e.g., adding it to the PCB entry maintained
by the kernel, one can imagine a scheduling scheme that alters round robin by or-
dering the iteration by priority. That is, instead of iterating through the processes
in turn, it orders them so that the next process is more likely to be one of those
with a high priority than one with a low priority. Of course the problem with this
approach is fairness: one now cannot make the claim that every process will be
executed at some point since a low priority process could be starved of execution
time by higher-priority processes.

Resource-based If one could estimate the amount of resources that a process
needs to execute, e.g., the length of time it is expected to execute, one might make
scheduling decisions based on this. For example, one might use the so-called
Shortest Job First (SJF) or Shortest Remaining Time (SRT) strategies whereby
a process which is expected to take the least time to execute is scheduled be-
fore others. Intuitively this should make some sense; it roughly operates like the
“express” lane at a supermarket checkout. The idea is to maximise throughput
in terms of the number of processes that complete in a given time period. The
disadvantages are that again fairness is hard to guarantee, and also that obtaining
accurate information about execution time (or any resource requirement for that
matter) can often be difficult.

12.6.3 An Example Scheduler

In an attempt to demonstrate the main concepts of process management, we will
write a “process switcher” that one can think of as a (very) limited preemptive mul-
titasking scheduler. The switcher is invoked by the timer interrupt and switches
between two hard-coded processes (i.e., there is no fork system call), one which
prints the character ‘A’ and one which prints the character ‘B’. There is a nice his-
torical motivation to use of this particular example. Moody [45, Page 36] recounts
the words of Linus Torvalds, creator of the Linux kernel, in describing his efforts on
the comp.os.minix newsgroup:

I was testing the task-switching capabilities [of the Intel 80386 processor], so what I did
was I just made two processes and made them write to the screen and had a timer that
switched tasks. One process wrote ‘A’, the other wrote ‘B’, and I saw “AAAABBBB” and
so on.

Like the example exception handler, this is a specific example but again the key
thing to take away is the general framework which can be adapted or extended to
cope with a more complete or flexible approach: just like Linux, with a few decades
work by hundreds of committed programmers you too could transform the example
into a real OS !
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1 .globl __start
2

3 .data
4

5 .text
6

7 __start: li $t0, 0xFF01 # enable interrupts
8 mtc0 $t0, $12
9

10 li $t0, 4 # set timer limit
11 mtc0 $t0, $11
12 li $t0, 0 # set timer count
13 mtc0 $t0, $9
14

15 idle: nop # perform idle loop
16 nop
17 nop
18 nop
19 j idle
20

21 proc_0: li $a0, 0x41 # process 0 (prints A)
22 li $v0, 11
23 loop_0: syscall
24 j loop_0
25

26 proc_1: li $a0, 0x42 # process 1 (prints B)
27 li $v0, 11
28 loop_1: syscall
29 j loop_1

Listing 12.5 An example process scheduler (user portion).

Implementation of the process switcher is again split into three parts. Listing 12.5
details the user code which includes the two processes. Note again that since SPIM
will need to be run in bare mode (and with the -mapped_io option) without the
default handler, the entry point is labelled __start rather than main. The code
starts by enabling all interrupts and setting the Count and Compare registers so as
to trigger a timer interrupt after a few cycles. It then drops into an infinite loop
labelled idle which consists of nop instructions and in some sense relates to the
idle process described previously. With no action by the kernel, we would expect
execution to never exit from this loop. However, our scheduled timer interrupt will
cause the process switcher to execute two hard-coded processes marked proc_0
and proc_1 which loop and use the SPIM mechanism for system calls to print
‘A’ and ‘B’ characters to the terminal. Note that we have intentionally initialised
the arguments to the system call outside the loop. This acts as a rough test that the
scheduler is context switching correctly: if it does not correctly save and restore the
$a0 and $v0 registers for each process, they will not print the right thing.

Listing 12.6 presents a similar generic dispatcher as the one used in the excep-
tion handler example, i.e., Listing 12.2. It performs the same sequence of saving
registers used by the kernel, extracting and using the exception number to invoke a
dedicated handler, and management of EPC upon completion. One slight difference
is the addition of code to reinitialise Count and Compare to ensure timer interrupts
keep being triggered, but otherwise one would expect Listing 12.2 and Listing 12.6
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1 .kdata
2

3 id: .word id0
4 .word id1
5 .word id2
6 .word id3
7 .word id4
8 .word id5
9 .word id6

10 .word id7
11 .word id8
12 .word id9
13 .word idA
14 .word idB
15 .word idC
16 .word idD
17 .word idE
18 .word idF
19

20 save_at: .word 0
21

22 pid: .word 1
23 pcb: .align 2
24 .space 164
25

26 .ktext 0x80000180
27

28 .set noat
29 add $k0, $0, $at # save GPR[1]
30 sw $k0, save_at($0)
31 .set at
32

33 mfc0 $k0, $13 # get exception cause
34 li $k1, 0x3F
35 and $k0, $k0, $k1
36 lw $k0, id($k0) # load handler address
37 jr $k0 # jump to handler address
38

39 exit_exp: mfc0 $k0, $14
40 addi $k0, $k0, 4
41 mtc0 $k0, $14
42

43 exit_int: mtc0 $0, $13 # clear cause
44

45 li $k0, 4 # set timer limit
46 mtc0 $k0, $11
47 li $k0, 0 # set timer count
48 mtc0 $k0, $9
49 li $k0, 0xFF01 # enable interrupts
50 mtc0 $k0, $12
51

52 .set noat
53 lw $k0, save_at($0) # restore GPR[1]
54 add $at, $0, $k0
55 .set at
56

57 eret # return from handler

Listing 12.6 An example process scheduler (kernel portion).
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1 id0: lw $k0, pid($0) # get PCB index
2 li $k1, 2
3

4 beq $k0, $k1, id0_init
5

6 id0_swap: lw $k0, pid($0) # get PCB index
7

8 li $k1, 132 # scale PCB index
9 mul $k0, $k0, $k1

10 la $k1, pcb
11 add $k0, $k0, $k1
12

13 lw $k1, save_at($0) # save GPR (special case GPR[1])
14 sw $k1, 4($k0)
15 sw $2, 8($k0) # save GPR (general case)
16 sw $3, 12($k0)
17 ...
18 sw $29, 116($k0)
19 sw $30, 120($k0)
20 sw $31, 124($k0)
21 mfc0 $k1, $14 # save EPC
22 sw $k1, 128($k0)
23

24 lw $k0, pid($0) # get PCB index
25

26 li $k1, 1 # set PCB index
27 add $k0, $k0, $k1
28 and $k0, $k0, $k1
29 sw $k0, pid($0)
30

31 li $k1, 132 # scale PCB index
32 mul $k0, $k0, $k1
33 la $k1, pcb
34 add $k0, $k0, $k1
35

36 lw $k1, 4($k0) # restore GPR (special case GPR[1])
37 sw $k1, save_at($0)
38 lw $2, 8($k0) # restore GPR (general case)
39 lw $3, 12($k0)
40 ...
41 lw $29, 116($k0)
42 lw $30, 120($k0)
43 lw $31, 124($k0)
44 lw $k1, 128($k0) # restore EPC
45 mtc0 $k1, $14
46

47 j exit_int
48

49 id0_init: la $k0, pcb
50 la $k1, proc_0 # setup pcb_0
51 sw $k1, 128($k0)
52 la $k1, proc_1 # setup pcb_1
53 sw $k1, 260($k0)
54

55 la $k0, pid # start proc_0 (setup pcb index)
56 sw $0, 0($k0)
57 la $k1, proc_0 # start proc_0 (setup EPC)
58 mtc0 $k1, $14
59

60 j exit_int
61

62 id1: ...

Listing 12.7 An example process scheduler (kernel portion continued).
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to be merged into one and roughly represent a single dispatcher capable of dealing
with any exception. Listing 12.7 shows the major difference between the two ex-
amples, which is the length of the dedicated handler for Int (exception number 0)
triggered by the timer interrupt. In Listing 12.6 space for two kernel data structures
is allocated: pid holds the index of the currently executing PCB (0 for proc_0 and
1 for proc_1), pcb holds PCB data relating to each process. We take a very lim-
ited approach and assume there will only ever be two processes, i.e., those marked
proc_0 and proc_1, and allocate space accordingly. Each entry has enough space
to save the entire general-purpose register file as well as the PC value for each pro-
cess; there are no priority levels or other meta-data. We initialise pid to the value 2
which essentially marks the system as uninitialised.

The code in Listing 12.7 for Int (exception number 0) starts by retrieving and
testing the value of pid. If it finds the system uninitialised, it branches to the label
id0_init and initialises it. To do this, it stores the addresses of proc_0 and
proc_1 in the PC entries within their respective PCB space and then schedules
execution of proc_0 by setting the pid value and updating the EPC value to
match. If the system is already initialised, one of the processes must already be
running and control drops through to the label id0_swap to perform a context
switch. The handler first loads the current PBC index and scales it to point at the
corresponding space within the pcb structure. It then saves the context of the current
process, storing each general-purpose register and the PC value where execution
should resume (which is loaded from EPC). It then needs to decide which other
process should be scheduled for execution: in this example, since there are only two
processes the choice is easy ! The handler toggles the current PCB index to the other
process before again manipulating the index into a pointer at pcb. It then restores
the process context, including the PC value (which is stored in EPC), before finally
branching back to the generic handler which returns control to the newly scheduled
process.

12.7 Further Reading

• A. Silberschatz, P.B. Galvin and G. Gagne.
Operating System Concepts.
John Wiley, 2005. ISBN: 0-471-69466-5.

• A.S. Woodhull and A.S. Tanenbaum.
Operating Systems Design and Implementation.
Prentice-Hall, 2006. ISBN: 0-131-42938-8.
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12.8 Example Questions

48. Imagine processes that execute on a MIPS32-based processor are scheduled by
an operating system kernel. This platform is used in an application that gathers data
from a number of sensors. Efficient context switching is important; if a device driver
does not begin execution soon after an interrupt, important data could be lost from
the associated sensor.

Describe one way the processor could be improved to cope better with this de-
mand.

49. In the context of virtual memory as implemented by a given operating system:

a. Describe the resident set versus the working set of a process.
b. What is “thrashing” and how might one detect and resolve the problem ?
c. List some advantages and disadvantages of increasing the page size (given that

the physical and virtual address spaces are of fixed size).

50. a. List two reasons a process might be terminated.
b. List two reasons a process might be suspended.



Chapter 13
Efficient Programming

Rules of Optimization:
Rule 1: Don’t do it.
Rule 2 (for experts only): Don’t do it yet.

– M. A. Jackson

Premature optimization is the root of all evil.

– C.A.R. Hoare

Abstract In this chapter we give an overview of common program optimisation
techniques. In each case the aim is to retain the program semantics but improve
the “quality” somehow. For example, one might re-write the program so it executes
more quickly or so that it uses less memory. These techniques are notoriously ad-
hoc: our aim is to present a reasoned description, making the implications of each
case clear when describing what they achieve. Many of the presented techniques can
be achieved by hand or by using some level of automation in the compiler. In the
former case it is important to understand the technique so it can be applied; in the
latter case the understanding is important so one can reason about what the compiler
is doing and why. The overall aim is that a given program gets the most from the
underlying hardware: even efficient processors are only as efficient as the programs
they execute !

13.1 Introduction

Given the advice in the quotes above, it is hard to imagine why one would engage
in optimisation of a program: such an act seems to fly in the face of modern soft-
ware engineering practise which preaches scalability, maintainability and portability
above all else. However, the advent of structured programming constructs to support
this philosophy has produced a new breed of programmer who is somewhat more
detached from the underlying hardware than his predecessors. Although languages
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like C have clear advantages to assembly language in terms of productivity and
portability, they make the execution characteristics less clear. That is, it is not as
clear what the processor will be doing when executing a C program as it is an as-
sembly language where one clearly has more control. In addition, and even though
modern compiler techniques improve all the time, the act of translation is often far
from perfect: unconventional or unexpected high-level programs can invoke worst-
case behaviour in compilers which fail to generate efficient results. With these issues
in mind, use of guidelines [59] and clever programming tricks [64] can improve
the performance of high-level programs by, in some sense, presenting a “proces-
sor friendly” version of the program in question. Where this can be achieved in a
manner that follows software engineering practise, rather than being ad-hoc and un-
documented, optimisation can offer a good trade-off between software performance
and complexity.

In the early 1900s, Italian economist Vilfredo Pareto observed that 80% of in-
come in Italy was collected by 20% of the population. Although the exact distribu-
tion might change this turns out to be a fairly general rule of thumb: a large pro-
portion of the effect is often as a result of a small proportion of the causes. This is
certainly true when considering the optimisation of programs; it is very common to
find that a small kernel is responsible for a large part of execution time for example.
Our focus here is on reasoned techniques to optimise C programs and, as such, we
specifically target the small kernels of such programs that dominate, namely loops
(nests of loops in particular) and function calls.

13.2 “Space” Conscious Programming

13.2.1 Reducing Register Pressure

Within a given processor, the general-purpose register file is finite in size. Use of the
registers needs to be managed carefully since if one fills the available space, values
will need to be stored in the slower main memory and execution speed will suffer as
a result. Modern compilers are quite good at solving the register allocation prob-
lem: given a set of variables in the program, the compiler assigns them to registers
so that a given register is not required to hold more than one live value at a time.
However, there might be times when there are no free registers: either the compiler
has to spill one of the live values to memory or the programmer must re-write the
program somehow to help out.

One well-known, but very specific trick is the swapping of values via XOR. To
see that this is possible imagine a = α and b = β ; the following operations are
applied:

a ← a⊕b = α ⊕β
b ← a⊕b = α ⊕β ⊕β = α
a ← a⊕b = α ⊕β ⊕α = β
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so that afterwards a = β and b = α , i.e., we have swapped the values. If we represent
a and b by the C variables a and b, we can thus write

a = a ˆ b;
b = a ˆ b;
a = a ˆ b;

instead of something like

t = a;
a = b;
b = t;

which implements the swap using moves and extra variable t that would need to be
allocated a register.

13.2.2 Reducing Memory Allocation

When languages have dynamic memory allocation, calls to the memory allocator
(i.e., the functions that assign blocks of memory to the user) are costly. For ex-
ample, using malloc in C programs can cost orders of magnitude more than an
arithmetic operation even though this is somewhat hidden by the language. The op-
posite operation is equally as costly: de-allocation of memory via a call to free
can also be expensive. For languages such as Java which support automatic de-
allocation via garbage collection the situation is even worse. The support system
for such languages will periodically scan for unused memory it has previously allo-
cated and return it to the heap ready for re-allocation. This process presents a further
performance penalty.

With this in mind, it can make sense to at least try to minimise the use of the
memory allocator by reducing the number of calls to malloc and free. Consider
a running example: a point P in 2D space can be represented by a pair of coordinates
x and y to give P = (x,y). A vector in 2D space can be thought of as a line going
from the origin O = (0,0) to the point V = (x,y). Addition of vectors means adding
their components so that if V1 = (x1,y1) and V2 = (x2,y2), then V3 = V1 +V2 =
(x1 + x2,y1 + y2). Implementation of this operation in C might be achieved by the
following fragment:

typedef struct __vector
{
int x;
int y;

}
vector;

vector* add( vector* a, vector* b )
{
vector* r = ( vector* )( malloc( sizeof( vector ) ) );

r->x = a->x + b->x;
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r->y = a->y + b->y;

return r;
}

In this case, every time the add function is called to add two vectors together, a new
vector structure will be allocated and returned. This creates two problems from a
performance perspective. Firstly, there is an overhead from each call to the memory
allocator to create the extra structure. Secondly, there is an overhead since at some
later time, the de-allocator (invoked either manually or automatically) will need to
spend some time dealing with the extra structure to clean up the heap. Although
these overheads might seem small, they can quickly mount up if for example the
add method is used inside a loop such as

vector* sum( vector* v, int n )
{
vector* r = ( vector* )( malloc( sizeof( vector ) ) );

for( i = 0; i < n; i++ ) {
r = add( r, v + i );

}

return r;
}

The code loops through and accumulates n values in order to perform a vector sum-
mation. However, on each loop iteration a new vector structure is created by the
add method which is clearly unsatisfactory from a performance perspective. To im-
prove the performance of the code fragment, we should analyse the use of the add
method. If we find, for example, that the most often used form of vector addition
looks like a = a + b, as above, rather than c = a + b (i.e., roughly speaking we are
accumulating rather than adding) then we can implement an optimisation whereby
the number of allocation calls is significantly decreased:

void add( vector* r, vector* a, vector* b )
{
r->x = a->x + b->x;
r->y = a->y + b->y;

}

vector* sum( vector* v, int n )
{
vector* r = ( vector* )( malloc( sizeof( vector ) ) )

for( i = 0; i < n; i++ ) {
add( r, r, v + i );

}

return r;
}

A similar situation exists where we allocate memory within a function but unlike
above, do not need to return this to the caller but simply use it internally. Consider a
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function which allocates two temporary vectors to start with, then performs some ar-
bitrary calculation before freeing the temporary vectors and returning the calculated
result:

int foo( ... )
{
vector* t0 = ( vector* )( malloc( sizeof( vector ) ) );
vector* t1 = ( vector* )( malloc( sizeof( vector ) ) );

int r = 0;

... calculate r ...

free( t0 );
free( t1 );

return r;
}

For a seasoned C programmer this code is clearly poor practise since the two tem-
porary vectors can be created on the stack rather than on the heap; this means the
calls to malloc can be trivially removed as follows:

int foo( ... )
{
vector t0;
vector t1;

int r = 0;

... calculate r ...

return r;
}

In this second case, instead of the vectors being created manually at run-time, the
compiler incorporates them into the stack frame for the foo function and imple-
ments their allocation in the function prologue via pushes and pops to and from the
stack pointer SP. The code therefore performs exactly the same task as before but
without the costly calls to the memory allocation system: even freeing the objects
is catered for as part of the method exit and resulting function epilogue. The main
change is syntactic: access to the vectors now performed using the C dot operator
(or direct member access, e.g., t0.x) rather than the arrow operator (or member
access via pointer, e.g., t0->x).
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13.3 “Time” Conscious Programming

13.3.1 Effective Short-circuiting

Consider the logical expressions
a∧b

and
a∨b.

From Chapter 1 we know that

false∧b = false

and
true∨b = true,

i.e., for these cases, the value of b does not matter. Good C compilers use a con-
cept called short-circuiting to optimise the performance of programs that contain
expressions like this: imagine we write a C program which uses such an expression
to control a conditional statement. For example, imagine we write

if( a && b ) {
...

}

such that the statement body is executed if the expression a && b evaluates to true
(or non-zero), and is not executed otherwise. The idea is that we start by evaluating
just a. As above, if the result is false, then we know it does not matter what b
evaluates to: we are going to get false either way. Therefore the compiler arranges to
save some time in the event that a evaluates to false by skipping over the evaluation
of b; only if a evaluates to true is b, and hence the overall expression, evaluated. In
this case we used AND, a similar situation exists for OR except that we evaluate b
only if a evaluates to false: if a evaluates to true there is no point evaluating b since
a || b will be true either way. Neither case may sound like much of a saving,
but remember that where we have used a and b, one could substitute arbitrarily
expressions (as long as they have no side effects) whose cost is potentially more
significant.

Although the compiler implements the short-circuiting scheme automatically, as
programmers can arrange our code to take advantage of it effectively. For example,
in theory there is no difference between the expressions

a∧b

and
b∧a.

In practise, however, there is a difference. Specifically, if short-circuiting is em-
ployed and a is likely to be false then the first expression is better than the second
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since it represents a situation where we are less likely to have to evaluate b. Moving
back to C again, consider a more complicated condition with six terms:

if( a && b && c && d && e && f ) {
...

}

The discussion above essentially tells us that it can pay to think about the probability
that one of the terms will evaluate to false, and re-order the condition so those with a
high probability are moved to the left and hence evaluated first: this gives a high(er)
probability that those to the right will not be evaluated at all and that we improve
performance as a result.

13.3.2 Branch Elimination

Pipelined and superscalar processors are most efficient when executing so-called
straight-line code, i.e., code with no branches in it. As soon as branches are in-
troduced, the processor has to deal with the related control dependency in some
way with throughput typically degraded as a result. This is a problem in terms of
the use of structured programming where high-level statements such as loops and
conditionals, which rely extensively on branches, are used as standard. The (partial)
solution is to implement some form of program restructuring, either manually or via
the compiler, whereby branches are eliminated. Consider the short conditional state-
ment whereby we set x = y if c = 1 and x = z otherwise. In C, using the variables c,
x, y and z to represent c, x, y and z, we could implement this as

if( c ) {
x = y;

}
else {
x = z;

}

or as the shortened form:

x = c ? y : z;

Either way, at a machine level the code fragment would clearly need to use branches;
assuming c, x, y and z are stored in the registers GPR[2 . . .5] a translation into
machine-level operations might look something like the following:

. . .
if GPR[2] = 0,PC ← skip

take : GPR[2] ← GPR[3]
PC ← done

skip : GPR[2] ← GPR[4]
done : . . .
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The problem is, assuming we cannot use features such as predicated execution, how
can we remove the branch instructions ? At first glance it might seem impossible
but there are two potential approaches in this specific example. Both assume that
the conditional c is 0 when we want to select the false branch of the conditional
and 1 otherwise; some compilers will support this, others assume that c will just be
non-zero rather than 1 in which case our approaches, as stated, fail.

In the first approach, we construct a mask value m = c− 1 so that if c = 0 then
m = −1 and if c = 1, then m = 0. Because of the way the twos-complement repre-
sentation works, if c = 0 then m is a value where all the bits are set to 1 and if c = 1
then m is a value where all the bits are set to 0. We can use this mask value to select
the right result from y and z using the logical expression

x = (m∧ z)∨ (¬m∧ y).

That is, if c = 0 then m is a value with all bits set to one and we have that m∧ z = z
and ¬m∧y = 0 so (m∧z)∨(¬m∧y) = z. Conversely, if c = 1 then m is a value with
all bits set to zero and we have that m∧z = 0 and ¬m∧y = y so (m∧z)∨(¬m∧y) =
y. So we can implement the conditional in C as

m = c - 1;
x = ( m & z ) | ( ˜m & y );

This would take five machine-level operations, one more than the version with
branching in, but without branches it will probably run quicker due to the fact it
is more friendly to the pipeline.

In the second approach, we use the fact that we can select values at controlled
addresses using an indexed addressing mode. Specifically, given a small array A, we
can implement the conditional in C as the following sequence of assignments

A[ 0 ] = z;
A[ 1 ] = y;
x = A[ c ];

If c is zero, we set x to the contents of A[0] which is z; if c is one we set x to the
value A[1] which is y. This time we only use three instructions which sounds great
but it is not as clear if this will actually be faster because all three access memory:
typically this will be slow, even compared to the impact of branches on the pipeline.

13.3.3 Loop Fusion and Fission

Consider the implementation of a vector addition operation; we want to use two
n-element vectors B and C to compute

Ai = Bi +Ci, 0 ≤ i < n.

This operation might be implemented as follows:
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for( int i = 0; i < n; i++ ) {
A[ i ] = B[ i ] + C[ i ];

}

where the C variables A, B, C, i and n represent A, B, C, i and n. An induction
variable is a term referring to a variable that is incremented or decremented in every
iteration of the loop; in this example i is the induction variable. The use of a loop
makes implementing the required behaviour simple and concise. However, there is
an overhead associated with this expressiveness: for every execution of the loop
body we need to execute the associated loop control instructions. This overhead can
be costly. In this case, the loop body is just four instructions (two loads, an addition
and a store); ignoring the initialisation of i, the loop control introduces (at least) two
extra instructions (increment and test of loop counter) per-iteration. So ignoring the
impact of the branch on the pipeline, roughly a third of all computation is simply
overhead.

The technique of loop fusion aims to reduce this overhead in particular situa-
tions. The basic idea is when two similar loops exist, one could try to share the
overhead between them by joining or fusing the loops together. Following on from
above, consider an example where we have two n-element vectors B and C and for
some application need their sum and dot-product; i.e., we need to compute

Ai = Bi +Ci, 0 ≤ i < n

and

a =
n−1

∑
i=0

Bi ·Ci.

The first operation is already implemented above, the second can be implemented
as follows:

a = 0;

for( int i = 0; i < n; i++ ) {
a += B[ i ] * C[ i ];

}

where the C variables A, B, C, a, i and n represent A, B, C, a, i and n. Notice that
both loops iterate over the same values of i, the induction variable, that runs through
0 ≤ i < n. It therefore makes perfect sense to fuse the two loops into one thus saving
the cost of the overhead; the fused result can be realised as follows:

int a = 0;

for( int i = 0; i < n; i++ ) {
int b = B[ i ];
int c = C[ i ];

A[ i ] = b + c;
a += b * c;

}
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Such code might appear almost moronic in that the proposed optimisation is so
obvious. However, other issues might cloud the fact that we can perform the fusion
and make advantages less obvious. For example, if the vector addition and dot-
product functionality were implemented as functions, we might not actually see the
two loops alongside each other in code; the topic of function inlining described in
the next section might uncover the potential for optimisation in this case. The second
advantage of performing the fusion of the two loops is that we can now perform
some common sub-expression elimination that might not have been possible before.
In this particular case, both loops load the values B[i] and C[i]: clearly we only
need to do this once and can share the result thus saving around 2n load operations
as well as the loop overhead.

It is not always clear-cut that loop fusion is a good idea. Sometimes the opposite
approach of loop fission, e.g., splitting one loop into two, is the more effective
choice. Consider the following contrived program fragment as an example:

for( int i = 0; i < n; i++ ) {
A[ i ] = A[ i ] + 1;
B[ i ] = B[ i ] + 1;

}

It performs the component-wise increment of two n-element vectors called A and B
that are represented by the C variables A and B. Using common sense, the fragment
adopts the fusion approach and merges the two operations into one loop. But con-
sider what happens if A and B are mapped to the same place in the cache. Access to
A[0] provokes a cache-miss but then B[0] is loaded, again missing and evicting
A[0]. Then A[1] is accessed and would have provoked a cache-hit if it were not
for the fact that B[0] had evicted it. So every iteration of the loop we are losing out
because the locality of accesses in A and B is not being capitalised on. To remedy
this situation, we can split the loop into two:

for( int i = 0; i < n; i++ ) {
A[ i ] = A[ i ] + 1;

}

for( int i = 0; i < n; i++ ) {
B[ i ] = B[ i ] + 1;

}

Note that in this particular case, loop fission has taken one loop and split it into
two by splitting the loop body. An alternative approach, which is useful later, is to
keep the same loop body but split the loop range instead. Instead of having the loop
counter range over 0 ≤ i < n, we might for example select some 0 < m < n and
produce two loops: one loop has a loop counter range over 0 ≤ i < m and the other
has a loop counter range over m ≤ j < n. Using the above as an example, this would
yield

for( int i = 0; i < m; i++ ) {
A[ i ] = A[ i ] + 1;
B[ i ] = B[ i ] + 1;

}
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for( int j = m; j < n; j++ ) {
A[ j ] = A[ j ] + 1;
B[ j ] = B[ j ] + 1;

}

13.3.4 Loop Unrolling

The technique of loop unrolling addresses a similar problem as loop fusion in the
sense that both aim to eliminate the overhead associated with operating a given loop.
In cases where the number of times the loop will iterate (which is called the loop
bound) is statically known, one can enumerate all possible values of the induction
variable. Then one can simply replicate the loop body that many times and substitute
in the enumerated values before removing the loop. Starting with the vector addition
implementation from above, i.e.,

for( int i = 0; i < n; i++ ) {
A[ i ] = B[ i ] + C[ i ];

}

imagine that in a specific application we always know n = 8, and hence that 0 ≤ i <
8. We can unroll the loop to produce

A[ 0 ] = B[ 0 ] + C[ 0 ];
A[ 1 ] = B[ 1 ] + C[ 1 ];
A[ 2 ] = B[ 2 ] + C[ 2 ];
A[ 3 ] = B[ 3 ] + C[ 3 ];
A[ 4 ] = B[ 4 ] + C[ 4 ];
A[ 5 ] = B[ 5 ] + C[ 5 ];
A[ 6 ] = B[ 6 ] + C[ 6 ];
A[ 7 ] = B[ 7 ] + C[ 7 ];

which does the same thing as the original loop (for this particular n) but has no
associated overhead. Usually, loop unrolling is applied to improve performance: in
this case we save the cost associated with the loop overhead by removing it entirely.
However, there are also some drawbacks in that the generated code size can increase
significantly depending on the value of n. Furthermore, one could argue the overall
maintainability is decreased; for example if we unroll the loop for n = 4, and want
to change to n = 8 we need to do more work than simply altering the loop bound.
Although loop unrolling can be performed by hand, it is generally better to let the
compiler do the work since it can evaluate the side effects and relative performance
implications.

As well as removing the loop overhead, loop unrolling can be useful to expose
operations that can be performed in parallel. This can be achieved using partial
unrolling whereby instead of unrolling the loop entirely, we just unroll it a bit and
reduce the number of iterations; consider partially unrolling the example above by
a factor of four:
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for( int i = 0; i <= 4; i += 4 ) {
A[ i+0 ] = B[ i+0 ] + C[ i+0 ];
A[ i+1 ] = B[ i+1 ] + C[ i+1 ];
A[ i+2 ] = B[ i+2 ] + C[ i+2 ];
A[ i+3 ] = B[ i+3 ] + C[ i+3 ];

}

By performing this partial unrolling, it is now clear that the four operations in the
loop body can be performed in parallel; before the unrolling this fact was obscured
by the loop construct. Of course, we have assumed that the loop bound is known
and divisible by the factor by which we unroll the loop (e.g., four does divide eight).
If we cannot make this assumption, we need to add a loop prologue (resp. loop
epilogue) that deals with extra iterations before (resp. after) the loop body. For ex-
ample, imagine we wanted to partially unroll the loop above by a factor of three
instead of four; clearly three does not divide eight so we are forced to construct an
epilogue which deals with the final two elements:

for( int i = 0; i <= 5; i += 3 ) {
A[ i+0 ] = B[ i+0 ] + C[ i+0 ];
A[ i+1 ] = B[ i+1 ] + C[ i+1 ];
A[ i+2 ] = B[ i+2 ] + C[ i+2 ];

}

A[ 6 ] = B[ 6 ] + C[ 6 ];
A[ 7 ] = B[ 7 ] + C[ 7 ];

As an aside, note that one could view the above as two transformations: a loop
fission to split the original loop into two parts (the partially unrolled part and the
loop epilogue) followed by a full unrolling of the epilogue. Clearly we could have
retained the loop epilogue as a “real” loop if this was beneficial: for example if the
loop bound for the epilogue (i.e., the number of elements dealt with by the epilogue)
had been large, unrolling it would have been unattractive.

13.3.5 Loop Hoisting

The body of a loop is potentially executed many times. As such, we want to avoid
including loop invariant code in the loop body. Imagine there is some arithmetic
operation n which takes the general form x ← y � z. That is, it takes y and z as
operands then applies some operation � (e.g., an addition) to produce x as the result.
The operation n is termed loop invariant if

1. each of y and z is constant, or
2. all definitions of y or z that reach n are outside the loop, or
3. only one definition of y or z reaches n, and that definition is loop invariant.

If these conditions hold, we can think about hoisting the operation out of the loop.
Consider the following contrived program fragment as an example:
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b = 10;
c = 20;

for( int i = 0; i < n; i++ ) {
A[ i ] = B[ i ] + b + C[ i ] + c;

}

In this case, the addition of b and c clearly gets executed in every loop iteration.
However, since both b and c are constant, the addition is loop invariant and can
hence be hoisted out of the loop without any change to the meaning:

b = 10;
c = 20;

t = b + c;

for( int i = 0; i < n; i++ ) {
A[ i ] = B[ i ] + C[ i ] + t;

}

As an aside, a similar case can apply where a conditional statement exists inside the
loop body. Clearly, the condition will be tested in every loop iteration; if it is only
satisfied rarely, this is a waste. Sometimes we can hoist the conditional outside the
loop to avoid overhead. Again consider a contrived example program fragment:

for( int i = 0; i < n; i++ )
{
if( i == 0 ) {
A[ i ] = B[ i ] + C[ i ];

}
else {
A[ i ] = B[ i ] - C[ i ];

}
}

In this case we can apply loop fission to break the loop into two parts:

A[ 0 ] = B[ 0 ] + C[ 0 ];

for( int j = 1; j < n; j++ ) {
A[ j ] = B[ j ] - C[ j ];

}

Actually, the first part is just a single operation rather than a loop so one might argue
we have simultaneously applied loop fission (to break the loop into two ranges of
i = 0 and 1 ≤ j < n) and then loop unrolling (to turn the loop over the range i = 0
into a single assignment). Either way one can see that the conditional statement has
been eliminated, so performance is improved.
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13.3.6 Loop Interchange

Consider two (n×m)-element matrices B and C and an operation to compute a third
matrix A as the component-wise addition of B and C:

Ai, j = Bi, j +Ci, j, 0 ≤ i < n, 0 ≤ j < m.

One can imagine two different ways to implement this operation. For example the
two loop nests

for( int j = 0; j < m; j++ ) {
for( int i = 0; i < n; i++ ) {
A[ i ][ j ] = B[ i ][ j ] + C[ i ][ j ];

}
}

and

for( int i = 0; i < n; i++ ) {
for( int j = 0; j < m; j++ ) {
A[ i ][ j ] = B[ i ][ j ] + C[ i ][ j ];

}
}

both do the same thing even though the first iterates in row-major order whereas
the second uses column-major order (in the sense that the inner loop iterates over
rows or columns of the matrices respectively). However, depending on the memory
layout for A, B and C one might be more attractive than the other. For example, C
defines arrays in memory to be row-major in the sense that consecutive elements in
memory are those in the same row (i.e., in consecutive columns); Fortran defines
column-major arrays where the opposite is true. Put more simply, if one defined
the row-major C array:

uint8 A[ 3 ][ 2 ] = { { 0, 1 },
{ 2, 3 },
{ 4, 5 } };

then one would expect the byte-addressed memory content to be

MEM[&A+0] = 0
MEM[&A+1] = 1
MEM[&A+2] = 2
MEM[&A+3] = 3
MEM[&A+4] = 4
MEM[&A+5] = 5

whereas if a column-major order was used, then the memory content would be
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MEM[&A+0] = 0
MEM[&A+1] = 2
MEM[&A+2] = 4
MEM[&A+3] = 1
MEM[&A+4] = 3
MEM[&A+5] = 5.

The problem is, if a row-major memory layout is used but then we iterate through it
in column-major order, then the locality of our accesses is worse than if we iterated
through it in row-major order. In the example above, using a row-major memory
layout and column-major iteration order we access MEM[&A+0] then MEM[&A+
3] and so on whereas to get the best use of our cache, we would prefer to have
accessed MEM[&A+0] then MEM[&A+1] and so on since these accesses are more
spatially local.

Since the latency associated with accessing main memory is large, it is often
attractive to restructure a program to improve cache performance. Automation of
such restructuring has been investigated for both data [10, 16] and instructions [26,
51]. In this context, if we start with a loop nest which uses row-major (resp. column-
major) iteration order, we can sometimes transform it into a column-major (resp.
row-major) version which has the same meaning but exhibits better cache locality.
This is termed loop interchange; essentially we are interchanging two loops (as
above) as long as doing so does not cause problems in terms of dependency between
operations within the loop bodies.

13.3.7 Loop Blocking

Another example of cache conscious program restructuring is the technique of loop
blocking. This technique can be applied to loop nests that iterate over elements
of, for example, a large array: the basic idea is to iterate over small blocks of the
array at a time, rather than the whole array in one go. As an example, consider the
multiplication of two (n× n)-element, i.e., square, matrices B and C to produce A
where

Ai, j =
n−1

∑
k=0

Bi,k ·Ck, j, 0 ≤ i, j < n.

This operation can be implemented as follows:

for( int i = 0; i < n; i++ ) {
for( int j = 0; j < n; j++ ) {
A[ i ][ j ] = 0;

}
}

for( int i = 0; i < n; i++ ) {
for( int j = 0; j < n; j++ ) {
for( int k = 0; k < n; k++ ) {
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A[ i ][ j ] += B[ i ][ k ] * C[ k ][ j ];
}

}
}

with the C variables A, B, C, i, j, k and n representing A, B, C, i, j, k and n.
The loop nest iterates over the n× n elements of A, B and C in the inner loop. The
problem is, as n grows large, perhaps none of the matrices will fit entirely into the
cache. This results in the cache being ineffective in utilising the available locality.
For example, the loop nest iterates over the entirety of B, using the reference Ck, j,
for each iteration of the outer loop. As such, we would like C to remain in the cache
since we are reusing the content on each iteration of said loop.

The general strategy is to consider each loop in the loop nest above and to apply
a generic loop blocking transformation from one loop

for( int i = 0; i < n; i++ ) {
...

}

into another

for( int ii = 0; ii < n; ii += b ) {
for( int i = ii; i < min( n, ii + b ); i++ ) {
...

}
}

Both cases iterate over the same (empty) loop body; the loop counter i ranges over
the same values in each case. However, the first case loops over the whole range
of i in one go whereas the second breaks the range into smaller blocks of size
b. Applying the transformation to each loop, we end up with the fairly unpleasant
looking alternative:

for( int i = 0; i < n; i++ ) {
for( int j = 0; j < n; j++ ) {
A[ i ][ j ] = 0;

}
}

for( int ii = 0; ii < n; ii += b ) {
for( int i = ii; i < min( n, ii + b ); i++ ) {
for( int jj = 0; jj < n; jj += b ) {
for( int j = jj; j < min( n, jj + b ); j++ ) {
for( int kk = 0; kk < n; kk += b ) {
for( int k = kk; k < min( n, kk + b ); k++ ) {

A[ i ][ j ] += B[ i ][ k ] * C[ k ][ j ];
}

}
}

}
}

}

Next we apply the idea of loop interchange to rearrange the control loops to the
outside of the nest and the block loop to the inside:
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for( int i = 0; i < n; i++ ) {
for( int j = 0; j < n; j++ ) {
A[ i ][ j ] = 0;

}
}

for( int ii = 0; ii < n; ii += b ) {
for( int jj = 0; jj < n; jj += b ) {
for( int kk = 0; kk < n; kk += b ) {
for( int i = ii; i < min( n, ii + b ); i++ ) {
for( int j = jj; j < min( n, jj + b ); j++ ) {
for( int k = kk; k < min( n, kk + b ); k++ ) {

A[ i ][ j ] += B[ i ][ k ] * C[ k ][ j ];
}

}
}

}
}

}

In doing so, we split the iteration into smaller blocks: instead of working over the
n× n elements in the inner loop, we work over b× b elements. Although there is
massively more overhead in operating this code in terms of the loop control, as long
as these smaller b× b blocks of matrix fit into the cache, performance can still be
vastly improved. For example, if the block of C now fits into the cache, accesses
to Ck, j will always provoke cache-hits which are vastly less expensive than cache-
misses.

13.3.8 Function Inlining

We have already discussed how the compiler uses a stack to implement function
calls. Ignoring recursive functions, the advantages of decomposing a program in to
small functions are mainly related to modularity: it becomes easier to locate and
correct programming errors. The disadvantage of this approach is that there is a cost
or overhead associated with functions in that it takes instructions, and hence time,
to implement the function prologue and epilogue as well as the actual branch. In a
sense, a function call is entirely overhead since it is not doing any useful computa-
tion in itself.

To address this issue, one typically uses function inlining to restructure the pro-
gram into a more efficient version. Consider the example of a simple function to
sum the elements in an n-element vector A, i.e., compute

s =
n−1

∑
i=0

Ai.

Taking an excessively strict approach to modularity, an implementation of the func-
tion might look like the following:
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inline int add( int x, int y )
{
return x + y;

}

int sum( int* A, int n )
{
int s = 0;

for( int i = 0; i < n; i++ ) {
s = add( s, A[ i ] );

}

return s;
}

where the C variables A, s, i and n represent A, s, i and n. The sum function
performs calls to the add function which, very simply, just adds two inputs x and
y together and returns the result. Clearly, the overhead associated with calling add
is large in comparison to execution of the actual function body. To remove this
overhead, we inline add into sum to give the more sensible implementation:

int sum( int* A, int n )
{
int s = 0;

for( int i = 0; i < n; i++ ) {
s = s + A[ i ];

}

return s;
}

This transformation is performed using roughly similar steps as those in loop un-
rolling: first we take a copy of the function body and give all the local variables
unique names; we then map the function call arguments to the definition parameters
and then put the new function body in the place of the function call. Notice that
the definition of add includes the C inline keyword. This signals, or hints, to the
compiler that the function should be inlined. Of course, the process can also be done
manually.

The clear advantage after the program is restructured is that the cost of the func-
tion prologue and epilogue are eliminated. For small values of n this will save time
but will perhaps not be too noticeable; for large values of n the saving will be sig-
nificant. In addition ,inlining can create the opportunity for further optimisations,
for example common sub-expression elimination, which would have been masked
beforehand. However, there are disadvantages to inlining, the most serious of which
is the potential for code bloat. The whole idea of a function is that there need only
be one block of code that is called from multiple locations. By inlining the function,
all these locations now replicate the code. This typically leads to the executable pro-
gram being much larger in size which can be a problem. Finally, like loop unrolling,
it can lead to problems of maintainability if performed manually: changes to a func-
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tion manually inlined in several locations requires more work than changing just
one function.

There are some more intricacies as well: consider the example of computing the
factorial function which is defined by

FAC(x) = x · (x−1) · (x−2) · · ·2 ·1.

so that FAC(5) = 5 · 4 · 3 · 2 · 1 = 120 for example. The standard method of imple-
menting this is via a recursive function:

int fac( int x )
{
if( x == 1 ) {
return 1;

}
else {
return x * fac( x - 1 );

}
}

In the context of function inlining this is a problem. That is, we cannot inline the
fac function because it contains a call to itself; how would we know when to stop
inlining given an unknown input ? However, the fac function has a special prop-
erty in that in the recursive case, the call to fac is the last thing to be computed.
Functions of this form are termed tail-end recursive and can be converted into an
iterative form. This transformation, which can be applied either manually or auto-
matically by most compilers, still removes function call overhead in terms of ex-
ecution time. Perhaps more importantly however, is also vastly reduces amount of
stack space used: in the recursive version a new stack frame would be required for
each recursive call made. After the tail-end recursion is inlined, the implementation
becomes somewhat similar to the following:

int fac( int x )
{
int t = 1;

while( 1 ) {
if( x == 1 ) {
return t;

}

t = x * t;
x = x - 1;

}
}

It uses the variable t to represent the return value from the recursive call; the initial
assignment represents the base case of the recursion, the assignment inside the loop
represents the recursive case. Notice that we also keep track of x which represents
the argument to the recursive call; using the value we know when to exit the iterative
loop representing the act of recursion.
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13.3.9 Software Pipelining

In a hardware pipeline (e.g., a pipelined processor), execution of different instruc-
tions is overlapped. For example, the fetch of one instruction happens at the same
time as another is being decoded: their execution is overlapped. The technique of
software pipelining is another, perhaps more advanced means of optimising loops
with a specific form. In a software pipeline, the execution different code sequences
(most commonly loop iterations) is overlapped with a view to breaking dependen-
cies which could otherwise cause hazards, and hence stalls, within the processor.
Consider the contrived example loop:

for( int i = 0; i < 9; i++ ) {
A[ i ] = A[ i ] + 3;

}

Implementation of the loop body (minus loop control and addressing) will consist
of three instructions: a load, an addition and a store. Note that these instructions
are dependent in the sense that they must be executed sequentially; for example the
addition cannot execute before the load has completed.

Abusing notation slightly to permit ti to denote a temporary symbol in the i-th
iteration of the loop, and reading from left to right and top to bottom, from the
processors perspective the instructions executed form the sequence:

t0 ← MEM[&A+0] t0 ← t0 +3 MEM[&A+0] ← t0
t1 ← MEM[&A+1] t1 ← t1 +3 MEM[&A+1] ← t1
t2 ← MEM[&A+2] t2 ← t2 +3 MEM[&A+2] ← t2

...
...

...

This is a problem for superscalar processors where we aim to issue one instruction
(or more) per-cycle. Imagine each of the instructions has a latency of three cycles,
i.e., it takes three cycles from an instruction being issued to when it make a result
available. Each iteration of the loop takes 3 + 3 + 1 = 7 cycles to complete (as-
suming the load in the next iteration can overlap the store in the current one). The
problem is that the distance between dependent operations is less than the latency
to execute those operations; this means they stall while waiting for the dependency
to be resolved. For example, there is just one cycle between when t0 is loaded from
MEM[&A+0] to when t0 is incremented so the addition instruction must stall until
the load produces a result.

However, a given iteration of the loop is independent from every other; for exam-
ple iteration zero can execute at the same time as iteration one and so on. Imagine
we partially unroll the loop (we might still need a loop prologue and epilogue but
ignore this for now):

for( int i = 0; i <= 6; i += 3 ) {
A[ i+0 ] = A[ i+0 ] + 3;
A[ i+1 ] = A[ i+1 ] + 3;
A[ i+2 ] = A[ i+2 ] + 3;

}
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At face value, nothing has changed. But looking at the actual instructions the proces-
sor would execute, we can now re-schedule them so the processor instead executes
the sequence:

t0 ← MEM[&A+0] t1 ← MEM[&A+1] t2 ← MEM[&A+2]
t0 ← t0 +3 t1 ← t1 +3 t2 ← t2 +3

MEM[&A+0] ← t0 MEM[&A+1] ← t1 MEM[&A+2] ← t2
...

...
...

Unlike the initial sequence, the processor is now free to issue one operation per-
cycle since the distance between each dependent operation matches their latency.
For example, there are now three cycles between when t0 is loaded from MEM[&A+
0] to when t0 is incremented. As a result, each loop iteration takes only 1+1+1 = 3
cycles !

Things can get more tricky than this: imagine we replace the addition with a
multiplication that takes 6 cycles to execute rather than 3:

for( int i = 0; i < 9; i++ ) {
A[ i ] = A[ i ] * 3;

}

Our original software pipeline does not function correctly; the distance between the
multiplication and the store is less than than multiplication latency. But imagine this
(at face value, quite bizarre) rescheduling of instructions in the middle portion of
the loop:

...
...

...
t3 ← MEM[&A+3] t2 ← t2 ·3 MEM[&A+0] ← t0
t4 ← MEM[&A+4] t3 ← t3 ·3 MEM[&A+1] ← t1
t5 ← MEM[&A+5] t4 ← t4 ·3 MEM[&A+2] ← t2
t6 ← MEM[&A+6] t5 ← t5 ·3 MEM[&A+3] ← t3
t7 ← MEM[&A+7] t6 ← t6 ·3 MEM[&A+4] ← t4
t8 ← MEM[&A+8] t7 ← t7 ·3 MEM[&A+5] ← t5

...
...

...

Notice that, for example, the distance between multiplying t3 and storing the result
(more) closely matches the instruction latencies. Of course the corresponding C
program makes much less sense, however performance can again be vastly improved
due to elimination of dependency related stalls. The only final problem to overcome
is that now we need a loop prologue (resp. epilogue). That is, we need to fill (resp.
empty) the pipeline in some sense:
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t0 ← MEM[&A+0]
t1 ← MEM[&A+1] t0 ← t0 ·3
t2 ← MEM[&A+2] t1 ← t1 ·3
t3 ← MEM[&A+3] t2 ← t2 ·3 MEM[&A+0] ← t0

...
...

...
t8 ← MEM[&A+8] t7 ← t7 ·3 MEM[&A+5] ← t5

t8 ← t8 ·3 MEM[&A+6] ← t6
MEM[&A+7] ← t7
MEM[&A+8] ← t8

Depending on the latencies and so on, this can make the prologue (resp. epilogue)
quite long.

13.4 Example Questions

51. The following questions ask you to write C functions that operate on unsigned
16-bit integer values represented by the uint16 type. Each function should be
fairly short, i.e., roughly 10–15 lines or fewer; a more efficient function will gain
more marks. For each answer, briefly state any advantages and disadvantages of
your approach in comparison to alternatives.

a. Without using the operations <, =, or > or any branch or conditional operations,
write a C function that replicates the behaviour of

uint16 choose( uint16 c, uint16 x, uint16 y )
{
if( c ) {
return x;

}
else {
return y;

}
}

where you can assume c is used as a Boolean variable, i.e., it always equals either
0 or 1.

b. Without using the multiply operation, write a C function to implement the multi-
plication x ·15 for an unsigned 16-bit integer x.

c. The population count operation takes an input x and computes H(x), the number
of bits in the representation of x which are set to 1. Write a C function to compute
H(x) for an unsigned 16-bit integer x.

d. Pick one of your solutions from the previous question and show how to accel-
erate it using the concept of pre-computation; you should write one C function
to perform any pre-computation, and one C function that uses the pre-computed
data to implement the original operation.
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52. Assume that unsigned 16-bit and 8-bit integer values are represented by the
uint16 and uint8 types. The C function below performs “packed” division by
two on elements of a vector x: it takes each 16-bit element x[i], unpacks it into two
8-bit values a and b, divides a and b by two, and packs them back into the 16-bit
result:

void packed_div2( uint16* x )
{
for( int i = 0; i < 3; i++ ) {
uint8 a = ( x[ i ] ) & 0xFF;
uint8 b = ( x[ i ] >> 8 ) & 0xFF;

a = a / 2;
b = b / 2;

x[ i ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

}
}

Several optimisation techniques could make this function execute faster:

a. Off-line pre-computation.
b. Specialisation.
c. Parallelism.
d. Program restructuring.

Show how the function could be re-written (using pseudo-code where appropriate)
utilising each of these techniques.

53. Consider the following C fragment which adds together two n-element vectors
B and C to produce a result A where each element is a 32-bit integer:

for( int i = 0; i < n; i++ ) {
A[ i ] = B[ i ] + C[ i ];

}

a. Describe two reasons why the use of loop unrolling might increase performance
of the fragment, and one reason it might decrease performance.

b. Sometimes loop unrolling requires a loop prelude and/or epilogue. Using an ex-
ample, describe what these are and why they might be required.
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Appendix A
SPIM: A MIPS32 Simulator

A.1 Introduction

Often it is convenient to write programs for a processor one does not have physical
access to. In this sort of situation, use of a simulator or emulator can plug the
resulting gap. Roughly speaking both are software programs that attempt to replicate
the behaviour of the related processor. They allow the execution of programs on
a virtual processor in some sense. More strictly, an emulator is often defined as
simply emulating behaviour in the sense that to software running on it, the emulator
appears to be the real processor. Underneath the surface however, the emulator can
take simplifying steps in providing the illusion of features existing. In contrast, a
simulator worries about exactly reproducing these features in detail. For example,
a simulator might exactly model the ALU of a processor while an emulator only
needs to give the illusion that the real ALU is being modelled; it is free to use the
ALU provided by the host system rather than emulating that of the system being
emulated.

Issues of exact definition aside, SPIM is a superb MIPS32 simulator written by
James Larus [35]. In the past SPIM focused on modelling the MIPS R2000 proces-
sor but now boasts impressively complete support for the full MIPS32 ISA. This,
along with the fact that the software is available under a fairly permissive license,
makes it ideal for learning MIPS32 programming. You can download SPIM from

http://pages.cs.wisc.edu/˜larus/spim.html

In this Appendix we cover the features and operation of SPIM version 7.3 that relate
to our discussion of the MIPS32 ISA in Chapter 5 and others. We omit details, such
as floating point operations, which are not relevant in this context.

561
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A.2 Configuring SPIM

Before one starts to use SPIM as a means of simulating MIPS32 programs, it is
important to understand how SPIM will perform this task and how it can be config-
ured to alter various behavioural characteristics. These characteristics are important:
without understanding what SPIM should do when used in a certain way, it can be
frustrating if the result is not what was expected. Firstly, there are some important
facts about what SPIM can and cannot, and will and will not do:

• SPIM does not execute machine code programs. Instead, the front-end can be
thought of more like an assembler. One feeds SPIM a MIPS32 assembly language
program (with a predefined entry point) which is then executed.

• SPIM does not load the input program at address zero like we assumed in the
basic assembler presented in Chapter 10. Instead it loads the program in a way
which lies somewhat closer to how an operating system would deal with it, i.e.,
by placing it at some address in memory and relocating global symbols relative
to this.

• As a result of the positioning of SPIM as somewhere between a processor and
operating system, it does not simulate low-level architectural features such as
the effects of cache memory. However, it does support a limited range of system
calls which are available via the syscall instruction and which allow programs
running on SPIM to interface with the host system. For example they can read
input from the keyboard or print results to the console.

• The endianness of the processor SPIM simulates matches that of the host system.
That means that the endianness might differ depending on where the SPIM sim-
ulator is executed. Therefore, although SPIM itself is portable, programs that run
on it are not platform independent.

• The SPIM front-end strictly enforces the reservation of, for example, GPR[1]
or $1 for use in the assembly process; it will not accept input programs which
target $1 explicitly. This also applies to other reserved registers. By reserving this
register for it’s own use, SPIM ensures, for example, that it can synthesise any
pseudo-instructions. So do not be surprised if, during the execution of a program,
executed instructions do not exactly match what you would expect: probably
SPIM has translated and expanded what you wrote into something more suitable.

Next, note that the behaviour of SPIM can be altered by including one or more
command line options when invoking it:

• The -pseudo and -nopseudo options allow the user to selectively turn on
or off the facility for pseudo-instructions during the parsing of programs by the
SPIM front-end. The default assumes the -pseudo option has been selected to
allow pseudo-instructions.

• We discussed the issue of branch delay slots in Chapter 9 and used this concept
explicitly when describing a mechanism for function calls in Chapter 11. How-
ever, a real MIPS32 processor has other delay slots of this type (for example load
and store delay slots). The -delayed_branches and -delayed_loads
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options allow the user to selectively expose programs to the raw processor in
terms of these types of feature. The default assumes that neither
-delayed_branches or -delayed_loads has been selected so that nei-
ther branch or load delay slots are simulated by SPIM but rather hidden from the
user.

• The -quiet and -noquiet options turn warning messages, which occur when
an exception is raised, on and off. The default assumes that the -noquiet op-
tion has been selected to turn such warnings on.

• The -bare and -asm options allow the user to switch SPIM between basic and
extended modes. The basic mode implies the -pseudo and -noquiet op-
tions and turns off the simulation of branch and load delay slots; this is assumed
by default. The extended or bare mode implies all of -nopseudo, -quiet,
-delayed_branches and -delayed_loads to present a more raw pro-
cessing environment to the user.

• The -exception and -noexception options instructs SPIM to either load
the default exception handler, or to skip this step. The -exception_file op-
tion can be used to load a exception handler other than the default from a file.
The default exception handler includes basic functionality which simply prints
information when exceptions occur, and code at the default SPIM entry point,
labelled __start, which calls code labelled main. Without the default excep-
tion handler, the user must provide their own __start entry point or explicitly
specify an initial address when executing their program.

• The -mapped_io and -nomapped_io instruct SPIM to turn the memory
mapped input/output functionality on or off. Roughly speaking, this turns on or
off software-based interrupts generated by SPIM which include timer events and
the interface with a terminal type device provided by receiver and a transmitter
interrupts. The default assumes the -nomapped_io option has been selected
to specify turn off memory mapped input/output.

A.3 Controlling SPIM

The default interface to SPIM is via a command line similar in style to the debugger
interfaces normally offered for physical processors. After execution from the shell
prompt, the user is presented with the SPIM prompt (spim) which invites entry
of commands to operate the simulator. Listing A.1 shows the invocation of SPIM
and the output of issuing the help command. Notice that when invoking SPIM,
we were careful to specify the command line options -asm, -exception and
-nomapped_io so we are clear how the simulator should behave; as the first step,
SPIM loads the default exception handler as a result of our choices. The help
command prints a screen of information about possible commands; we present an
explanation of these commands in a logical order (rather than in the same order as
the help screen):

• The exit and quit commands both terminate the current simulator instance,
returning the user to the command prompt from where SPIM was executed.
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1 bash$ spim -asm -exception -nomapped_io
2 SPIM Version 7.3. of August 28, 2006
3 Copyright 1990-2004 by James R. Larus (larus@cs.wisc.edu).
4 All Rights Reserved.
5 See the file README for a full copyright notice.
6 Loaded: /usr/local/spim/lib/exceptions.s
7 (spim) help
8

9 SPIM is a MIPS R2000 simulator.
10 Its top-level commands are:
11 exit -- Exit the simulator
12 quit -- Exit the simulator
13 read ‘‘FILE’’ -- Read FILE of assembly code into memory
14 load ‘‘FILE’’ -- Same as read
15 run <ADDR> -- Start the program at optional ADDRESS
16 step <N> -- Step the program for N instructions
17 continue -- Continue program execution without stepping
18 print $N -- Print register N
19 print $fN -- Print floating point register N
20 print ADDR -- Print contents of memory at ADDRESS
21 print_symbols -- Print all global symbols
22 print_all_regs -- Print all MIPS registers
23 print_all_regs hex -- Print all MIPS registers in hex
24 reinitialize -- Clear the memory and registers
25 breakpoint <ADDR> -- Set a breakpoint at address
26 delete <ADDR> -- Delete all breakpoints at address
27 list -- List all breakpoints
28 dump [ ‘‘FILE’’ ] -- Dump binary code to spim.dump or FILE in network byte order
29 dumpnative [ ‘‘FILE’’ ] -- Dump binary code to spim.dump or FILE in host byte order
30 . -- Rest of line is assembly instruction to put in memory
31 <cr> -- Newline reexecutes previous command
32 ? -- Print this message
33

34 Most commands can be abbreviated to their unique prefix
35 e.g., ex(it), re(ad), l(oad), ru(n), s(tep), p(rint)
36

37 (spim)

Listing A.1 The SPIM prompt and help screen.

• The reinitialize command is roughly the equivalent to resetting the pro-
cessor in the sense that it clears the state (including memory and register content).

• The read and load commands both load a named assembly language program
into the simulator ready for execution. As the program is loaded, SPIM might
reject it if errors are encountered during the parsing process (for example a syntax
error such as a missing comma).

• The run command executes the program to completion starting from the entry
point defined by the global symbol __start; by default, the exception handler
includes code which jumps to the label main from this entry point. Once run,
the program either exits cleanly using an exit system call, encounters a non-
instruction and crashes, or never terminates.

• In contrast to run, the step command executes a specific number of instruc-
tions and then returns control to the user. The optional argument N specifies the
number of instructions to execute. The default is N = 1, which is commonly
called single stepping the program, and allows the inspection of processor state
after each instruction is completed to ensure the expected behaviour has resulted.
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• A breakpoint is a sort of marker one can set in the program; when execution
reaches the breakpoint, SPIM returns control to the user rather then continuing
with execution. Use of breakpoints offers a compromise between run and step,
for example one might want to execute the program until a particular loop com-
pletes, which rules out run which would execute until the whole program com-
pletes, but is better than using step which would demand you know how many
instructions the loop will take. The breakpoint instruction allows the user to
add a breakpoint to the current list. The optional argument allows one to asso-
ciate a breakpoint with a particular address; the default is to set the breakpoint to
the current value of PC.

• The delete command allows the removal of the breakpoint associated with
a particular address. The list command prints a list of all current breakpoints.
Finally, the continue command allows one to continue execution after a break-
point is encountered; roughly speaking continue instructs SPIM to execute the
program in a similar way to run except starting from where execution broke off
instead of from the start.

• Finally, SPIM offers a suite of commands which allow the user to inspect the
processor state. The print command prints register and memory content. If
you supply a register name such as $1 as the argument, SPIM prints the value
held in that register. If you supply a number (in either decimal or hexadecimal
form) as the argument, SPIM prints the value held in memory at that address.
The print_all_regs command offer a short cut way to inspect the whole
register file in one go. The print_symbols command prints all globally de-
fined symbols and their addresses. This can be useful in locating the physical
addresses of labels you referred to abstractly in your program.

Perhaps most importantly from a labour saving point of view, pressing return will
repeat the previous command. SPIM interprets this in an intelligent manner so that,
for example, using the command print 0x10010000 to inspect some value in
memory and then pressing return executes the command print 0x10010004 to
inspect the subsequent address. Likewise, using the command print $1 to inspect
some value in a register and then pressing return executes print $2 rather than
print $1 again.

A.4 Example Program Execution

To demonstrate most of the features offered by SPIM, consider the execution of
bubble-sort as implemented in Chapter 10 and reproduced here for completeness in
Listing A.2.

Listing A.3 demonstrates initial, exploratory use of SPIM. It starts by loading
the bubble-sort code using a load command; there are no errors in the program
so SPIM completes this task silently. We can now inspect the global symbols and
their location in memory using print_symbols. The noteworthy part of the out-
put is that the symbols defined in our program are present: a has been placed by
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1 .globl A
2 .globl n
3 .globl main
4

5 .data
6

7 A: .word 2
8 .word 6
9 .word 4

10 .word 3
11 .word 1
12 .word 7
13 .word 5
14 .word 8
15

16 n: .word 8
17

18 .text
19

20 main: lw $3, n($0) # load n
21 addi $4, $3, -1 # set i to n - 1
22 l0: blez $4, l4 # goto l4 if i <= 0
23 add $2, $0, $0 # set f to 0
24 add $5, $0, $0 # set j to 0
25 l1: sub $6, $4, $5
26 blez $6, l3 # goto l3 if i <= j
27 addi $6, $0, 4
28 mul $6, $6, $5
29 addi $7, $6, 4
30 lw $8, A($6) # load A[j ]
31 lw $9, A($7) # load A[j+1]
32 sub $10, $8, $9
33 blez $10, l2 # goto l2 if a[j] <= a[j+1]
34 sw $9, A($6) # store A[j+1] (swap)
35 sw $8, A($7) # store A[j ] (swap)
36 addi $2, $0, 1 # set f to 1
37 l2: addi $5, $5, 1 # set j to j + 1
38 j l1 # goto l1
39 l3: blez $2, l4
40 addi $4, $4, -1 # set i to i - 1
41 j l0 # goto l0
42 l4: addi $2, $0, 10
43 syscall # exit

Listing A.2 MIPS32 implementation of bubble sort.

SPIM at 10010000(16), n at 10010020(16) and main at 00400024(16). Rather than
worry about their values for the moment, we issue a print_all_regs com-
mand to inspect the state of the register file (this is truncated to include only the
general-purpose register file); essentially the simulator is in the reset state with all
registers zeroed. Notice that before the general-purpose registers, SPIM prints a set
of special-purpose and control registers. These include PC, LO and HI and registers
such as EPC which are associated with the management of exceptions and logically
are located within coprocessor zero.

We can force SPIM to start executing our program one instruction at a time
using step commands; where a blank command is shown the user has pressed
return. Each line displays the address from which the instruction was loaded, the
encoded instruction and the assembly language equivalent (including the comment
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1 (spim) load "bubble.asm"
2 (spim) print_symbols
3 g A at 0x10010000
4 g n at 0x10010020
5 g __eoth at 0x00400024
6 g __start at 0x00400000
7 g main at 0x00400024
8 (spim) print_all_regs
9 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000

10 Status = 3000ff10 HI = 00000000 LO = 00000000
11 General Registers
12 R0 (r0) = 0 R8 (t0) = 0 R16 (s0) = 0 R24 (t8) = 0
13 R1 (at) = 0 R9 (t1) = 0 R17 (s1) = 0 R25 (t9) = 0
14 R2 (v0) = 0 R10 (t2) = 0 R18 (s2) = 0 R26 (k0) = 0
15 R3 (v1) = 0 R11 (t3) = 0 R19 (s3) = 0 R27 (k1) = 0
16 R4 (a0) = 0 R12 (t4) = 0 R20 (s4) = 0 R28 (gp) = 268468224
17 R5 (a1) = 0 R13 (t5) = 0 R21 (s5) = 0

R29 (sp) = 2147479548
18 R6 (a2) = 0 R14 (t6) = 0 R22 (s6) = 0 R30 (s8) = 0
19 R7 (a3) = 0 R15 (t7) = 0 R23 (s7) = 0 R31 (ra) = 0
20 ...
21

22 (spim) step
23 [0x00400000] 0x8fa40000 lw $4, 0($29)
24 (spim)
25 [0x00400004] 0x27a50004 addiu $5, $29, 4
26 (spim)
27 [0x00400008] 0x24a60004 addiu $6, $5, 4
28 (spim)
29 [0x0040000c] 0x00041080 sll $2, $4, 2
30 (spim)
31 [0x00400010] 0x00c23021 addu $6, $6, $2
32 (spim)
33 [0x00400014] 0x0c100009 jal 0x00400024 [main]
34 (spim)
35 [0x00400024] 0x3c011001 lui $1, 4097
36 (spim)
37 [0x00400028] 0x8c230020 lw $3, 32($1)
38 (spim) print $3
39 Reg 3 = 0x00000008 (8)
40 (spim) step
41 [0x0040002c] 0x2064ffff addi $4, $3, -1
42 (spim) print $4
43 Reg 4 = 0x00000007 (7)
44 (spim)

Listing A.3 Example use of the SPIM simulator.

from the original source code). The first six instructions look unfamiliar, they are
not part of our program. Instead, they are part of the default exception handler
which includes code located at the SPIM entry point __start: SPIM started ex-
ecution at __start and these six instructions are implementing the call to our
program located at main. One can think of this as the equivalent to when one
executes a compiled C program which needs calls the main function. The sixth
instruction performs the actual call which we can see since the target address is
00400024(16), which matches what we saw in the printed symbols, and SPIM is
even kind enough to point out that this address matches the main symbol. The next
instructions come from our program. For example, the first is lw $3, n($0)
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1 (spim) load "bubble.asm"
2 (spim) print A
3 Data seg @ 0x10010000 (268500992) = 0x00000002 (2)
4 (spim)
5 Data seg @ 0x10010004 (268500996) = 0x00000006 (6)
6 (spim)
7 Data seg @ 0x10010008 (268501000) = 0x00000004 (4)
8 (spim)
9 Data seg @ 0x1001000c (268501004) = 0x00000003 (3)

10 (spim)
11 Data seg @ 0x10010010 (268501008) = 0x00000001 (1)
12 (spim)
13 Data seg @ 0x10010014 (268501012) = 0x00000007 (7)
14 (spim)
15 Data seg @ 0x10010018 (268501016) = 0x00000005 (5)
16 (spim)
17 Data seg @ 0x1001001c (268501020) = 0x00000008 (8)
18 (spim) run
19 (spim) print A
20 Data seg @ 0x10010000 (268500992) = 0x00000001 (1)
21 (spim)
22 Data seg @ 0x10010004 (268500996) = 0x00000002 (2)
23 (spim)
24 Data seg @ 0x10010008 (268501000) = 0x00000003 (3)
25 (spim)
26 Data seg @ 0x1001000c (268501004) = 0x00000004 (4)
27 (spim)
28 Data seg @ 0x10010010 (268501008) = 0x00000005 (5)
29 (spim)
30 Data seg @ 0x10010014 (268501012) = 0x00000006 (6)
31 (spim)
32 Data seg @ 0x10010018 (268501016) = 0x00000007 (7)
33 (spim)
34 Data seg @ 0x1001001c (268501020) = 0x00000008 (8)

Listing A.4 Example use of the SPIM simulator.

intended to load the value of n into $3. SPIM expands this into two instructions
which are actually executed. We then inspect $3 using a print command to find
that the register holds the expected result 00000008(16) = 8(10). Executing the next
instruction addi $4, $3, -1 initialises the loop counter i by subtracting one
from n. Inspecting the register $4 using print again shows the expected result
00000007(16) = 7(10).

Lets now inspect the contents of memory. In Listing A.4 we again load the
bubble-sort program and then instruct SPIM to print the memory address a; SPIM
allows us to refer to the address by name. Repeating the command shows the con-
tent of the unsorted array. To sort the array, we need to execute the program which
is accomplished by issuing a run command. The program runs to completion and
exits cleanly by using the correct syscall whereby control returns to us as the
user. To verify that execution was a success, i.e., that array really is sorted, we again
print the content.

Finally, lets examine the use of breakpoints to control execution. By telling SPIM
to print the program code starting at main, we can identify the blez instruction at
address 00400030(16) as relating to the outer loop of bubble-sort: it controls whether
or not the loop counter i is greater than zero. As such, it represents a good choice of



A.4 Example Program Execution 569

1 (spim) load "bubble.asm"
2 (spim) print main
3 [0x00400024] 0x3c011001 lui $1, 4097
4 (spim)
5 [0x00400028] 0x8c230020 lw $3, 32($1)
6 (spim)
7 [0x0040002c] 0x2064ffff addi $4, $3, -1
8 (spim)
9 [0x00400030] 0x1880001c blez $4 112 [l4-0x00400030]

10 (spim) breakpoint 0x00400030
11 (spim) run
12 Breakpoint encountered at 0x00400030
13 (spim) print $4
14 Reg 4 = 0x00000007 (7)
15 (spim) continue
16 Breakpoint encountered at 0x00400030
17 (spim) print $4
18 Reg 4 = 0x00000006 (6)
19 (spim) list
20 Breakpoint at 0x00400030
21 (spim) delete 0x00400030
22 (spim) continue
23 (spim) print A
24 Data seg @ 0x10010000 (268500992) = 0x00000001 (1)
25 (spim)
26 Data seg @ 0x10010004 (268500996) = 0x00000002 (2)
27 (spim)
28 Data seg @ 0x10010008 (268501000) = 0x00000003 (3)
29 (spim)
30 Data seg @ 0x1001000c (268501004) = 0x00000004 (4)
31 (spim)
32 Data seg @ 0x10010010 (268501008) = 0x00000005 (5)
33 (spim)
34 Data seg @ 0x10010014 (268501012) = 0x00000006 (6)
35 (spim)
36 Data seg @ 0x10010018 (268501016) = 0x00000007 (7)
37 (spim)
38 Data seg @ 0x1001001c (268501020) = 0x00000008 (8)
39 (spim)

Listing A.5 Example use of the SPIM simulator.

breakpoint if our objective is to inspect things after each loop iteration. Therefore,
we set a breakpoint at address 00400030(16) using the breakpoint command and
then set the program running using run. Very quickly, SPIM returns control to us
with the message that our breakpoint was encountered. Clearly this has happened
before the first loop iteration; we can verify this by printing $4 which holds i and
seeing that it has the value 7(10). Using the continue command, we set SPIM
running again from where it previously stopped. It returns control to us with the
message that our breakpoint was encountered again. This time, the breakpoint was
after the second loop iteration which we again verify by inspecting i. Fed up with
this and convinced our loop is executing correctly, we then list the breakpoints and
delete the one we previously set. This time, issuing the continue command exe-
cutes the program to completion: it is no longer interrupted because we deleted the
breakpoint. to verify this fact, we print the contents of A and find it is sorted.
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System Call Name System Call Number Arguments Result

print_int 1 $a0 is integer
print_char 11 $a0 is char
print_string 4 $a0 is string
read_int 5 $v0 is integer
read_char 12 $a0 is char
read_string 8 $a0 is buffer

$a1 is length
exit 10
open 13 $a0 is name $a0 is descriptor

$a1 is flags
$a2 is mode

read 14 $a0 is descriptor $a0 is chars read
$a1 is buffer
$a2 is length

write 15 $a0 is descriptor $a0 is chars written
$a1 is buffer
$a2 is length

close 16 $a0 is descriptor

Table A.1 A table listing a sub-set of system calls supported by SPIM.

A.5 Using System Calls

As previously mentioned, SPIM provides a system call interface that enables pro-
grams running within the SPIM simulator to interface with the host system. They
capture the sorts of operation that an operating system would normally perform on
the behalf of a program (because for example it requires privileged access to some
resource). Indeed, the form of SPIM system calls is similar to the interface with a
conventional operating system: the program initialises arguments to the system call
by storing values in prescribed registers, selects the system call it wants by setting
a prescribed register, and then executes the syscall instruction. This passes con-
trol to the operating system (via the exception handler) which services the request
and then returns control to the program along with any results which are again held
in prescribed registers). We already used this mechanism informally in previous
assembly language program: notice that each program concludes with system call
number 10 which is used to exit the program.

The system call convention is detailed in Table A.1. Each entry lists the sys-
tem call name, the system call number or code and the register allocation vis input
argument and output results. The convention dictates that the system call number
should be placed in register $v0 before invocation using the syscall instruc-
tion. Although the table should be fairly self explanatory, consider the example of
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1 .data
2

3 prompt: .asciiz "enter a number: "
4 result: .asciiz "the result is: "
5

6 .text
7

8 main: la $a0, prompt # set argument
9 addi $v0, $0, 4 # select syscall 4 (print_string)

10 syscall # perform syscall
11 addi $v0, $0, 5 # select syscall 5 (read_int)
12 syscall # perform syscall
13 add $t0, $0, $v0 # store result
14

15 la $a0, prompt # set argument
16 addi $v0, $0, 4 # select syscall 4 (print_string)
17 syscall # perform syscall
18 addi $v0, $0, 5 # select syscall 5 (read_int)
19 syscall # perform syscall
20 add $t1, $0, $v0 # store result
21

22 add $t2, $t0, $t1 # add two read numbers together
23

24 la $a0, result # set argument
25 addi $v0, $0, 4 # select syscall 4 (print_string)
26 syscall # perform syscall
27 add $a0, $0, $t2 # set argument
28 addi $v0, $0, 1 # select syscall 1 (print_int)
29 syscall # perform syscall
30

31 addi $v0, $0, 10 # select syscall 10 (exit)
32 syscall # perform syscall

Listing A.6 Several examples of supported SPIM system calls.

1 (spim) load "syscall.asm"
2 (spim) run
3 enter a number: 5
4 enter a number: 7
5 the result is: 12
6 (spim)

Listing A.7 Example use of the SPIM simulator.

a program where two numbers are read from the user and summed, and the result
is printed to the console. Listing A.6 demonstrates such an implementation with the
added embellishment that we also print prompts on the console which are strings
allocated with the .asciiz directive.

The program first invokes system call 4 (named print_string) to print a
prompt before using system call 5 (named read_int) to read an integer value
from the user; this is stored in register $t0. The same pattern is used to read a fur-
ther value from the user which is stored in register $t1. These values are added
together before system call 1 (named print_int) is used to display the result. Fi-
nally, system call 10 (named exit) is used to cleanly exit the program. An example
execution within SPIM is shown in Listing A.7.



Appendix B
Example Solutions

Questions from Chapter 1

1

a. |A| = 3.
b. A∪B = {1,2,3,4,5}.
c. A∩B = {3}.
d. A−B = {1,2}.
e. A = {4,5,6,7,8}.
f. {x : 2 · x ∈ U } = {1,2,3,4}.

2

a. +0 in sign-magnitude is 00000000, in twos-complement is 00000000.
b. −0 in sign-magnitude is 10000000, in twos-complement is 00000000.
c. +72 in sign-magnitude is 01001000, in twos-complement is 01001000.
d. −34 in sign-magnitude is 10100010, in twos-complement is 11011110.
e. −8 in sign-magnitude is 10001000, in twos-complement is 11111000.
f. Trick question, one cannot represent 240 in 8-bit sign-magnitude or

twos-complement; the incorrect guess of 11111000 in twos-complement for ex-
ample is actually −8.

3 The Hamming weight of x, denoted by H(x) say, is the number of bits in the
representation which are set to one. A function to compute this can be written as:

int H( int x ) {
int w = 0;

for( int i = 0; i < 32; i++ ) {
if( ( x >> i ) & 1 )
w = w + 1;

}

return w;
}

573
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4 Since z∨¬z = 1 and z∨ z = z, we have that

¬x∨¬y = (¬x∧ (y∨+¬y))∨ (¬y∧ (x∨+¬x))
= (¬x∧ y)∨ (¬x∧¬y)∨ (¬y∧ x)∨ (¬y∧¬x)
= (¬x∧ y)∨ (¬y∧ x)∨ (¬x∧¬y).

Questions from Chapter 2

5

a. MOSFET transistors work by sandwiching together N-type and P-type semicon-
ductor layers. The different types of layer are doped with different substances to
create more holes or more electrons. For example, in an N-type MOSFET the
layers are constructed as follows

gate
+-------+
| metal |

==== source ========= drain ==== silicon oxide layer
+--+--------+---------+--------+--+
| | N-type | | N-type | |
| +--------+ +--------+ |
| P-type |
+---------------------------------+

with additional layers of silicon oxide and metal. There are three terminals on
the transistor. Roughly speaking, applying a voltage to the gate creates a channel
between the source and drain through which charge can flow. Thus the device
acts like a switch: when the gate voltage is high, there is a flow of charge but
when it is low there is little flow of charge. A P-type MOSFET swaps the roles of
N-type and P-type semiconductor and hence implements the opposite switching
behaviour.

b. One can construct an NAND to compute z = x ∧ y gate from such transistors as
follows

V_dd
|

+-------+-------+
| |
v v

+--------+ +--------+
x -->| P-type | y -->| P-type |

+--------+ +--------+
| |
+---------------+---> z
|

+--------+
y -->| N-type |
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+--------+
|

+--------+
x -->| N-type |

+--------+
|
+-------+

|
GND

When input x is connected to GND, the bottom transistor will be closed while the
top left transistor will be open: the output r will be connected to Vdd no matter
what input y is connected to. Likewise, when input y is connected to GND the
middle transistor will be closed while the top right transistor will be open: the
output will be connected to Vdd no matter what input x is connected to. However
when both x and y are connected to Vdd we have that the top two transistors will
be closed by the bottom two will be open meaning that the output is connected
to GND.

6

a. The most basic interpretation (i.e., not really doing any grouping using Karnaugh
maps but just picking out each cell with a 1 in it) generates the following SoP
equations

e = (¬a∧¬b∧ c∧¬d)∨ (a∧¬b∧¬c∧¬d)∨ (¬a∧b∧¬c∧d)
f = (¬a∧¬b∧¬c∧d)∨ (¬a∧b∧¬c∧¬d)∨ (a∧¬b∧ c∧¬d)

b. From the basic SoP equations, we can use the don’t care states to eliminate some
of the terms to get

e = (¬a∧¬b∧ c)∨ (a∧¬c∧¬d)+(b∧d)
f = (¬a∧¬b∧d)∨ (b∧¬c∧¬d)+(a∧ c)

then, we can share both the terms ¬a∧¬b and ¬c∧¬d since they occur in e and
f .

7

a. The expression for this circuit can be written as

e = (¬c∧¬b)∨ (b∧d)∨ (¬a∧ c∧¬d)∨ (a∧ c∧¬d)

which yields the Karnaugh map
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1 0

1 1

10

11

1 1

0 1

11

01
c

a

d

b

and from which we can derive a simplified SoP form for e using the techniques
in the associated chapter

e = (b∧d)∨ (¬b∧¬c)∨ (c∧¬d)

b. The advantages of this expression over the original are that is is simpler, i.e.,
contains less terms and hence needs less gates for implementation, and shows that
the input a is essentially redundant. We have probably also reduced the critical
path through the circuit since it is more shallow. The disadvantages are that we
still potentially have some glitching due to the differing delays through paths in
the circuit, although these existed before as well, and the large propagation delay.

c. The longest sequential path through the circuit goes through a NOT gate, two
AND gates and two OR gates; the critical path is thus 90ns long. This time
bounds how fast we can used it in a clocked system since the clock period must
be at least 90ns. So the fastest we can use it would have the clock period at 90ns
which means the clock ticks about 11111111 times a second or at about 11 MHz.

8 Let a head be denoted by 1 and a tail by 0 and assume we have a circuit which
produces a random coin flip R every clock cycle.

There are several approaches to solving this problem. Possibly the easiest, but
perhaps not the most obvious, is to simply build a shift-register: the register stores
the last three inputs, when a new input R is available the register shifts the content
along by one which means the oldest input drops off one end and the new input is
inserted into the other end. One can then build a simple circuit to test the current
state of the shift-register to see if the last three inputs were all heads.

Alternatively, one can take a more heavy-weight approach and formulate the so-
lution as a state machine. Our machine can have seen 0 . . .3 heads in the last 3 coin
flips it observed; thus we can represent the current state in 2 bits named S0 and S1

and the next state in 2 bits named S′
0 and S′

1. The flag that denotes that we have seen
3 heads in a row is called F .

Assuming when we see a head and have already seen 3 heads we can still say we
have seen 3 consecutive heads, i.e., the machine is not reset, we can draw the state
transition table as:
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S1 S0 R S′
1 S′

0 F

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 1 0
0 1 1 1 0 0
1 0 1 1 1 1
1 1 1 1 1 1

From this we need expressions for S′
0 and S′

1 and F which can easily be derived as

S′
0 = R∧ ((¬S0)∨ (S1 ∧S0))

S′
1 = R∧ ((S0)∨ (S1 ∧¬S0))

F = R∧S1

Putting this all together, we can build a state machine with the following block
diagram:

+--------+
+->| state |
| +--------+
| | +--------+
| +-------->| output |
| | +--------+
| v
| +--------+ +--------+
+--| update |<---| random |

+--------+ +--------+

9

a. There are several approaches to solving this problem. Possibly the easiest, but
perhaps not the most obvious, is to simply build a shift-register: the register stores
the last three inputs, when a new input is available the register shifts the content
along by one which means the oldest input drops off one end and the new input is
inserted into the other end. One can then build a simple circuit to test the current
state of the shift-register to see if the last three inputs match what is required..
Alternatively, one can take a more heavy-weight approach and formulate the so-
lution as a state machine. First we need to decide on an encoding for our state;
when searching though the input we can have matched zero through three correct
tokens we denote this by the integer S stored in two bits using S1 and S0 as the
most-significant and least-significant respectively. We also need an encoding of
the actual input tokens I which are being passed to the matching circuit. Arbi-
trarily we might select A = 0, C = 1, G = 2 and T = 3 although other encodings
are valid and might actually simplify things; we use I1 and I0 to denote the most
and least-significant bits of the input token I. From this we can now create a table
describing the mapping between current state S and input I to next state S′ which
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can be roughly written as
S1 S0 I1 I0 S′

1 S′
0

0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

Thus, if we are in state (S1,S0) = (0,0) = 0 and see an A input, we move to state
(S′

1,S
′
0) = (0,1) = 1 otherwise we stay in state (S′

1,S
′
0) = (0,0) = 0. Now we can

define the transition function from current state to next state as

S0 = (¬S1 ∧¬S0 ∧¬I1 ∧¬I0)∨ (S1 ∧¬S0 ∧ I1 ∧ I0)∨ (S1 ∧S0 ∧¬I1 ∧¬I0)
S1 = (¬S1 ∧S0 ∧¬I1 ∧ I0)∨ (S1 ∧¬S0 ∧ I1 ∧ I0)

with simplifications as appropriate. Finally, the output flag F will be set only
according to

F = S1 ∧S0

to signal when we have matched three characters. Putting this all together, we
can build a state machine with the following block diagram:

+--------+
+->| state |
| +--------+
| | +--------+
| +-------->| output |
| | +--------+
| v
| +--------+ +--------+
+--| update |<---| input |

+--------+ +--------+

b. Making a general purpose matching circuit will probably use less logic than hav-
ing three separate circuits; this will reduce the space required. As an extension
one might consider implementing the transition and output functions as a look-
up table instead of hardwiring them; this will mean the circuit could be used to
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match any sequence providing the tables were correctly initialised. Introducing a
more complex circuit design could have the disadvantage of increasing the criti-
cal path (the longest sequential path though the entire circuit). If the critical path
is longer, the design will have to be clocked slower and hence will not perform
the matching function as quickly.

10 Define ∧ as the NAND operation with the truth table:

x y x ∧ y

0 0 1
0 1 1
1 0 1
1 1 0

Using NAND, we can implement NOT, AND and OR as follows:

¬x = x ∧ x
x∧ y = (x ∧ y) ∧ (x ∧ y)
x∨ y = (x ∧ x) ∧ (y ∧ y)

To prove this works, we can construct truth tables for the expressions and compare
the results with what we would expect; for NOT we have:

x x ∧ x ¬x

0 1 1
1 1 0

while for AND we have:

x y x ∧ y (x ∧ y) ∧ (x ∧ y) x∧ y

0 0 1 0 0
0 1 1 0 0
1 0 1 0 0
1 1 0 1 1

and finally for OR we have:

x y x ∧ x y ∧ y (x ∧ y) ∧ (x ∧ y) x∨ y

0 0 1 1 0 0
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 1 1

such that it should be clear all three are correct.
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11

a. A basic diagram should show the four states and transitions between them which
relate the movement from one to the other as a result of the washing cycle, and
movement as a result of input from the buttons; for example a (very) basic dia-
gram would be:

+------+ +------+ +------+ +------+
+-->| idle |-->| fill |-->| wash |-->| spin |
| +------+ +------+ +------+ +------+
| | | | |
+------+-----------+----------+----------+

b. Since there are four states, we can encode them using one two bits; we assign the
following encoding idle = 00, fill = 01, wash = 10 and spin = 11. We use S1 and
S0 to represent the current state, and N1 and N0 to represent the next state; B1 and
B0 are the input buttons. Using this notation, we can construct the following state
transition table which encodes the state machine diagram:

B1 B0 S1 S0 N1 N0

0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 1 0
0 1 0 1 1 0
1 0 0 1 0 0
1 1 0 1 1 0
0 0 1 0 1 1
0 1 1 0 1 1
1 0 1 0 0 0
1 1 1 0 1 1
0 0 1 1 0 0
0 1 1 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0

so that if, for example, the machine is in the wash state (i.e., S1 = 1 and S0 = 0)
and no buttons are pressed then the next state is spin (i.e., N1 = 1 and N0 = 1);
however if button B1 is pressed to cancel the cycle, the next state is idle (i.e.,
N1 = 0 and N0 = 0).

c. From the state transition table, we can easily extract the two Karnaugh maps:
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0 0

1 0

01

10

0 0

0 0

00

10
B1

S1

B0

S0

0 1

0 1

10

10

0 0

0 1

00

10
B1

S1

B0

S0

Basic expressions can be extracted from the tables as follows:

N0 = (S1 ∧¬S0 ∧B0)∨ (S1 ∧¬S0 ∧¬B1)∨ (¬S0 ∧B0 ∧¬B1)
N1 = (¬S1 ∧S0 ∧B0)∨ (¬S1 ∧S0 ∧¬B1)∨ (S1 ∧¬S0 ∧B0)∨ (S1 ∧¬S0 ∧¬B1)

and through sharing, i.e., by computing

t0 = ¬B1

t1 = ¬B0

t2 = ¬S1

t3 = ¬S0

t4 = t2 ∧S0

t5 = t3 ∧S1

we can simplify these to

N0 = (t5 ∧B0)+(t5 ∧ t0)+(t3 ∧B0 ∧ t0)
N1 = (t4 ∧B0)+(t4 ∧ t0)+(t5 ∧B0)+(t5 ∧ t0)

Questions from Chapter 3

12

a. wire [ 7:0] a;
b. wire [ 0:4] b;
c. reg [31:0] c;
d. reg signed [15:0] d;
e. reg [ 7:0] e[0:1023];
f. genvar f;

13

a. c = 2’b01
b. c = 2’b11
c. d = 4’b010X
d. d = 4’b10XX
e. d = 4’b1101
f. d = 4’b0111
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g. c = 2’bXX
h. c = 2’b11
i. e = 1’b0
j. e = 1’b1

14

a. One potential problem is the if p and q can change at any time, and hence trigger
execution of the processes at any time, the two might change at the exact same
time. In this case, it is not clear which values x and y will be assigned to. Maybe
the top assignment to x beats the bottom one, but the bottom assignment to y
beats the top one. Any combination is possible; since it is not clear which will
occur, it is possible that x and y do not get assigned to the values one would
expect.
As an attempt at a solution, we can try to exert some control over which block of
assignments is executed first. For example, we might try to place a guard around
the assignments so that a block is only executed if the signal trigger for the other
block is low:

always @ ( posedge p )
begin
if( !q )
begin
x <= a;
y <= b;

end
end

always @ ( posedge q )
begin
if( !p )
begin
x <= b;
y <= a;

end
end

An alternative might be to combine the two blocks into one:

always @ ( posedge p, posedge q )
begin
if ( p )
begin
x <= a;
y <= b;

else if( q )
begin
x <= b;
y <= a;

end
end
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since now the process is at least deterministic: if p is high then the first block
executes, if q is high then the second block executes and if both are high we
execute the first block as the default.

b. The problem with this is that the state signal is not initialised; to start with it
could be any value which might either result in the state machine operating in
the wrong sequence or, since case is used and not casex or casez, none of
the cases being matched at all. A slightly more minor issue is that we have to
assume that no other process assigns to state. For example, if another process
sets state to 3 the state machine process will malfunction.
The best way to rectify this problem is by introducing a reset signal called rst
and initialising the state variable whenever it is raised:

always @ ( posedge clk, posedge rst )
begin
if( rst )
state = 0;

else
case( state )

0 : begin
do_0;
state = 1;

end
1 : begin

do_1;
state = 2;

end
2 : begin

do_2;
state = 0;

end
end

15 This is a bit of a vague question; it does not mention styles of Verilog and so
you can assume any valid style is okay. With this in mind, a rough solution might
look something like this:

module DDD( clk, rst, in, out );

input wire clk;
input wire rst;

input wire bit;
output wire out;

reg [3:0] t;

assign out = ( t >= 0 ) && ( t <= 9 );

always @ ( posedge clk )
begin
if( rst )
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t = 0;
else
t = { bit, t[3:1] };

end

endmodule

16 Essentially we want a design that looks, at a high-level, like this:

y
|
v

+-----+
x-->| C |-->min(x,y)

+-----+
|
V

max(x,y)

and thus need some sort of comparison inside; we already know how to design a
less than comparison which is good enough. Thus, the Verilog module could look
something like this:

module C( x, y, min, max );

parameter n = 8;

input wire [n-1:0] x;
input wire [n-1:0] y;
output wire [n-1:0] min;
output wire [n-1:0] max;

wire [n-1:0] w0 = ˜( x ˆ y );
wire [n-1:0] w1 = ( ˜x & y );
wire [n-1:0] w2;

assign w2[0] = w1[ 0];

genvar i;
generate
begin
for( i = 1; i < n; i = i + 1 )
begin:gen_lth
assign w2[i] = w1[i] | ( w0[i] & w2[i-1] );

end
end
endgenerate

assign min = ( w2[n-1] ) ? x : y;
assign max = ( w2[n-1] ) ? y : x;

endmodule
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17 In principle, the design we want is fairly simply: we keep track of the 8-bit state
in a register, and then on each clock edge drive the 0-th bit onto an output wire
and then shift the register (producing a new input bit as required). Thus, the Verilog
module could look something like this:

module LFSR( clk, rst, out, seed );

input wire clk;
input wire rst;

output reg out;
input wire [7:0] seed;

reg [7:0] lfsr;

always @ ( posedge clk )
begin
if( rst )
out = 0;
lfsr = seed;

else
out = lfsr[0];
lfsr = { lfsr[3]ˆlfsr[5]ˆlfsr[7], lfsr[7:1] };

end

endmodule

Questions from Chapter 4

18 In a Harvard architecture, since the data and instruction memories are separated
from each other they can:

a. Be built in fundamentally different ways. For example one might remove logic
associated with store operations from the instruction memory, or allow the in-
struction memory to have a different resolution (i.e., hold different sized values).
This permits the designer to capitalise on differences use cases and satisfy differ-
ent metrics for quality (e.g., size, power consumption or performance).

b. Be accessed in parallel. For example, in order to reduce the time taken to com-
plete a given fetch-decode-execution cycle, the processor might attempt to fetch
the next instruction at the same time as executing the current one. The fact that
there are two memories (and hence two memory interfaces) allows this, whereas
in a “pure” stored program architecture one has to perform the accesses in se-
quence.

c. Prevent some problems associated with self-modifying code. Examples include
security threats which result from the ability for an attacker to alter the program
at run-time in a way the programmer did not intend.

19 A very simply implementation of such an emulator is as follows:
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int MEM[] = { ... };

int main( int argc, char* argv[] )
{
int IR = 0, PC = 0, A = 0;

do
{
IR = MEM[ PC ];
PC = PC + 1;

int t0 = IR / 100000;
int t1 = IR % 100000;

switch( t0 )
{
case 0 : A = t1;

break;

case 1 : MEM[ t1 ] = A;
break;

case 2 : A = MEM[ t1 ];
break;

case 3 : A = A + MEM[ t1 ];
break;

case 4 : A = A - MEM[ t1 ];
break;

case 5 : break;

case 6 : PC = t1;
break;

case 7 : if( A == 0 )
PC = t1;

break;

case 8 : if( A != 0 )
PC = t1;

break;
}

}
while( t0 != 5 );

}

The idea is to represent the processor state using the variables IR, A and PC and to
have an array called MEM that represents the memory content. When the emulator
is executed, the first assignments “reset” the processor by initialising IR, A and PC.
It subsequently enters a loop which only terminates when a HALT instruction is
encountered. Within the loop, the fetch-decode-execute cycle is emulated:
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a. First the current instruction is loaded from MEM using the address in PC then PC
is incremented to point at the next instruction.

b. The instruction in IR is “decoded” into an opcode and operand that are held in
t0 and t1.

c. Finally the instruction is executed by checking t0 and carrying out an operation
which matches the semantics of the opcode; for example if t0 is 1 we want to
perform a store of the accumulator into memory so therefore execute the state-
ment MEM[ t1 ] = A since t1 gives the address we want to store into.

20 As an example, imagine n = 8 and m = 13: the array X has eight elements which
occupy MEM[13 . . .20]. Once we know n and m, the easiest way to to compute the
sum is to use n− 1 addition instructions to accumulate the result into A and then
store it into memory (for example at MEM[12]):

Address Content Meaning

0 200013 "→ A ← MEM[13]
1 300014 "→ A ← A+MEM[14]
2 300015 "→ A ← A+MEM[15]
3 300016 "→ A ← A+MEM[16]
4 300017 "→ A ← A+MEM[17]
5 300018 "→ A ← A+MEM[18]
6 300019 "→ A ← A+MEM[19]
7 300020 "→ A ← A+MEM[20]
8 100012 "→ MEM[12] ← A
9 500000 "→ HALT

10
11
12 0
13 X [0]
14 X [1]
15 X [2]
16 X [3]
17 X [4]
18 X [5]
19 X [6]
20 X [7]

Of course, this is a somewhat trivial solution in the sense that we have used an
unrolled loop. Adopting a different approach and computing the sum via iteration
over some loop body produces the following:
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Address Content Meaning

0 200013 "→ A ← MEM[13]
1 300012 "→ A ← A+MEM[12]
2 100012 "→ MEM[12] ← A
3 200000 "→ A ← MEM[0]
4 300010 "→ A ← A+MEM[10]
5 100000 "→ MEM[0] ← A
6 200000 "→ A ← MEM[0]
7 400011 "→ A ← A−MEM[11]
8 800000 "→ i f A 	= 0,PC ← 0
9 500000 "→ HALT

10 1
11 200021
12 0
13 X [0]
14 X [1]
15 X [2]
16 X [3]
17 X [4]
18 X [5]
19 X [6]
20 X [7]

Instructions #0 to #2 update the current value of s by loading and accumulating the
i-th element of X . Instructions #3 to #5 self-modify instruction #0 which loads the i-
th element: this has the effect of changing it so that in the next iteration, it will loads
the (i+1)-th element (and so on). Instructions #6 to #8 control the loop by loading
a semi-artificial loop bound from MEM[11] and comparing it with MEM[0]: if the
result is negative then further iterations are required. Finally instruction #9 halts the
program when enough iterations have been completed.

Questions from Chapter 5

21

a. We have a total of 16 registers to address; each address therefore requires 4 bits.
There are 16 instructions in total; the opcode therefore requires 4 bits. To accom-
modate this, we define three formats:

4 4 4 4
+------+------+------+------+
|opcode| src | dst | src | Format 1
+------+------+------+------+

4 4 8
+------+------+-------------+
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|opcode| src | imm | Format 2
+------+------+-------------+

4 4 4 4
+------+------+------+------+
|opcode| src | dst | imm | Format 3
+------+------+------+------+

Format 1 is used for ALU and register based memory instructions; format 2 is
for branches; format 3 is for immediate based memory instructions. Having three
formats is good, fewer formats means a more complex processor; having fixed
width 16-bit formats, variable length encodings mean a more complex processor.
We have also organised the instruction fields so they are aligned, for example the
opcode is always the top 4 bits and the next 4 bits is always a source register
operand.

b. A reasonable diagram might resemble:

+---------+ +---------+
| | +-----| |
| | | | ALU |-----+
| | | +--| | |
| | | | +---------+ |
| | A Bus | | B Bus | C Bus
| | | | +---------+ |
| CONTROL |-----> | +--| | |
| UNIT | | | GPR |-----+
| | +-----| | |
| | | +---------+ |
| | | |
| | | +---------+ |
| | +-----| PC |-----+
+---------+ | +---------+ |

+-----| IR |-----+
+---------+ | +---------+ |
| |<----> +-----| MBR |-----+
| MEMORY | | +---------+ |
| |<----- +-----| MAR |-----+
+---------+ +---------+

where

• ALU is the Arithmetic and Logic Unit.
• GPR is the General-Purpose Register file.
• PC is the Program Counter.
• IR is the Instruction Register.
• MBR is the Memory Buffer Register.
• MAR is the Memory Address Register.

A register file holds general-purpose, addressable registers which store data op-
erated on by instructions. The program counter stores the address of the next
instruction to be executed; the instruction register holds the instruction currently
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being executed. The memory data and address registers operate the interface to
memory: the processor sends and receives data in the memory data register; it of-
fers the address for loads and stores in the memory address register. The control
unit operates the data-path signals to actually make the processor run. The arith-
metic and logic unit (ALU) performs computation on source values to produce
results so that meaningful processing can be carried out. The components are
connected with several buses, most notably between the ALU and the registers;
between memory and the processor. Smaller control signals connect the control
unit with all the components so it can operate them.

c. The fetch stage loads the instruction from memory. The processor first copies
the program counter to the memory address and then starts the access cycle to
retrieve the instruction. The program counter is then incremented to point at the
next instruction. The decode stage decides what the fetched instruction means
in terms of what the processor must do to execute it. Typically this will include
extracting and sign-extending any immediate values and fetching source values
from the register file. The execute stage performs the actual computation of the
instruction, in this case the processor sends the source values through the ALU
which adds them together and stores the result into a latch register before writing
them into the register file.

d. Hardwiring the control logic means to explicitly encode all the conditions the
processor must make when controlling the data-path signals into dedicated logic.
This is easier from a design perspective but has the drawback that once imple-
mented, is much harder to change. A micro-code based design takes the opposite
approach and stores the information the control unit needs in the form of a very
simple program that controls the data-path signals. This program is much lower-
level than that which is exposed to the programmer and must be stored in some
dedicated on-chip memory. The advantage is that the micro-code can change,
and hence the processor operation can be altered, without changing the actual
data-path logic.

22 Immediate addresses are constant values held in the instruction; one commonly
uses such addresses in C statements such as a=b+10; where the instruction would
include the register addresses for a and b and the constant 10. Direct addressing
is where we pass an address to the memory and we get back the value at exactly
that address, i.e., we give address x and get back MEM[x]. This might be the case
when using any variable. For example in the C statement a=b+10; if a or b are
stored in memory rather than registers we need to load them before using them; if
we know their exact address this might be achieved using direct addressing. Indi-
rect addressing is a two-stage process; we pass the memory address x and get back
MEM[MEM[x]] so the access is like a pointer dereference. That is, if we want to
dereference a pointer p which is stored at a particular address x in memory, we first
load p with MEM[x] and then dereference the pointer by looking in memory where
it points so end up with MEM[MEM[x]]. In C this might look like the expression
*p. Finally, indexed addressing means that the value we get back is located at an
address formed from the sum of a base and an offset, that is we get MEM[x] for an
x formed by evaluating base+offset. This sort of operation is commonly used for C
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array accesses, for example the expression A[10] is evaluated by taking the base,
i.e., the address of A, and adding the offset 10.

23

a. The basic idea behind predicated execution is that each instruction as a simple
predicate function associated with it. When the instruction is fetched and is ready
to be executed, the predicate function is evaluated: if it evaluates to true, the
function is executed, otherwise it is discarded.
Assume the symbols t, x, i and n are allocated the registers GPR[1], GPR[2],
GPR[3] and GPR[4]. The ARM scheme for predicated execution represents a
somewhat standard approach: execution of each arithmetic instruction updates a
status register which contains flags that detail whether the result generated a carry
(C), generated an overflow (O), was negative (N) or was zero (Z). Each instruc-
tion can include a predicate which allows execution or non-execution based on
these flags. As such, we could translate the fragment into the assembly language
style operations:

. . .
GPR[1] ← 0
GPR[3] ← 0

loop : if GPR[3] ≥ GPR[4],PC ← exit
GPR[4] ← GPR[2] $ GPR[3]
GPR[4] ← GPR[4]∧1
if Z = 0,GPR[1] ← GPR[1]+1
GPR[3] ← GPR[3]+1
PC ← loop

exit : . . .

Two conventional branches have been used to implement the loop: the reason-
ing is that they transfer control-flow over a (fairly) large number of dissimilar
instructions which might themselves update the status register. Furthermore, the
branches can be fairly accurately predicted using even static techniques so one
would not expect too much of a problem in terms of their preventing effective
speculative execution. On the other hand, the branch over the single instruction
update of t is essentially random (for arbitrary x) so branch prediction is difficult
and expensive in relation to the instruction which the change of control-flow is
skipping over. As a result, predicated execution is used to skip the instruction
based on the Z flag which would have been set via calculation of the conditional
expression.

b. Roughly speaking, code density refers to the number of instructions (or amount
of work done) per-unit of memory. That is, if we have 100 instructions that fit
into 100 bytes of memory the code density is the ratio of the two, i.e., 100

100 = 1.
If we fit more instructions into our 100 bytes, say 150, then the code density
increases 150

100 = 1.5. Good code density is viewed as an advantage because it
typically reduces the code footprint for programs, i.e., the amount of memory
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they consume, or means that instructions are smaller, and hence easier or faster
to retrieve.
There are plenty of ways to improve code density. One very involved example is
to redesign the ISA so that each instruction can accomplish more; this is roughly
the approach of CISC processors. In this way, since each instruction performs
more useful work, there need be less instructions in total. Another way is to write
better programs, or use a better compiler, that is able to use less instructions to
achieve the same high-level goal. Clearly there is a limit to how successful this
can be, but clever programming can often drive the code footprint underneath
some fixed barrier that prevents execution; perhaps the processor has 100kB of
memory for example and the program needs 101kB before one optimises it using
clever programming.
The concept of variable length instruction potentially increases code density at
the cost of increased complexity within the instruction decoding stage. By al-
lowing each instruction to be as long or short as required, instructions that might
normally consume a lot of space because they are forced to be the same length
as others, can be smaller and hence save space.

24 First we look at the types of instruction required:

a. 0 registers, 1 immediate of 7 bits to store 0 . . .127.
b. 1 registers, 1 immediate of 4 bits to store −8 . . .7.
c. 2 registers, 0 immediate
d. 1 registers, 0 immediate
e. 0 registers, 0 immediate

Given register indicies are representing as 2-bit operands, a possible encoding has 5
instruction types:

a. 0xxxxxxx
b. 10rrxxxx
c. 11ccrrrr→ 1100rrrr . . . 1110rrrr
d. 1111ccrr→ 111100rr . . . 111110rr
e. 111111cc→ 11111100 . . . 11111111

where c represents space for opcodes, x represents space for an immediate and r
represents space for register indicies. From this we can see that there are 3 possible
2 operand instructions, 3 possible 1 operand instructions and 4 possible 0 operand
instructions.

From this we can start encoding the actual instructions already given:
LDA x → 0xxxxxxx
BEZ R x → 10RRxxxx
MOV R S → 1100RRSS
NOT R → 111100RR
NEG R → 111101RR
NOP → 11111100
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The additional instructions come from the obvious classes: so far we have no load
or store instructions, no add instruction which is quite fundamental, and no compar-
isons.

25 This is quite a vague question and demands that you make (stated) assumptions
about anything that is unclear.

A basic approach is as follows; there are 64 squares on the board so one can
encode a board position as a 6-bit integer. To encode a move, we simply use two
such board positions, a source s and a target t with the meaning that one moves the
piece at board position s to board position t. This is a 12-bit representation which is
not too compact but is quite easy to decode.

To be more compact, we need to be more clever. Firstly, note that the robot keeps
track of whose turn it is so to identify a piece, in some sense we don’t need to encode
its colour: this is implicit in whose move it is. Secondly note that each piece cannot
move to an arbitrary board position: the movement rules constrain how many places
it can end up. For example, a king can only move to the squares directly around it:
8 possible moves in total not 64. Drawing a table for the other pieces we find that

Piece Moves log2(Moves)
King 8 3
Queen 27 5
Bishop 13 4
Knight 8 3
Rook 14 4
Pawn 4 2

That is, for example, a queen can move in 27 possible ways and we can encode these
ways as a 5-bit integer. So, gathering the different types together we find that there
are First we look at the types of instruction required and find there are four:

a. 1 instruction (move queen) with 5-bit operands.
b. 4 instructions (move bishop or rook) with 4-bit operands.
c. 3 instructions (move king and knight) with 3-bit operands.
d. 8 instructions (move pawn) with 2-bit operands.

With four types, we can produce an encoding using 8-bit integers:

a. 00cxxxxx→ 000xxxxx . . . 001xxxxx
b. 01ccxxxx→ 0100xxxx . . . 0111xxxx
c. 10cccxxx→ 10000xxx . . . 01111xxx
d. 11ccccxx→ 110000xx . . . 011111xx

where c represents space for opcodes, x represents space for an immediate. This is
slightly harder to decode but is much more compact. One can probably form a 7-bit
encoding by simply enumerating the possible pieces against their possible moves
and associating an integer with each combination. However, this could be harder to
decode (although this is maybe debatable it one simply has a big look-up table).
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26

a. A fixed length encoding is where each instruction is of the same length; this is an
advantage in that the decode and fetch system within the processor can be simple
and each instruction typically only requires one access to memory. A variable
length encoding allows the instructions to be longer or shorter depending on how
many operands etc. they require. This makes the processor more complex but can
potentially improve the code density of programs.
Following the MIPS32 instruction set architecture, we can define three fixed
length instructions formats (which roughly correspond to the MIPS32 R, J and I
formats) as follows:

7 5 5 5 5
+------+------+------+------+------+
|opcode| src | dst | src | | Format 1
+------+------+------+------+------+

7 5 20
+------+------+--------------------+
|opcode| src | imm | Format 2
+------+------+--------------------+

7 5 5 15
+------+------+------+-------------+
|opcode| src | dst | imm | Format 3
+------+------+------+-------------+

Format 1 is used for ALU and register based memory instructions; format 2 is
for branches; format 3 is for immediate based memory instructions. Having three
formats is good, fewer formats means a less complex processor; having fixed
width 16-bit formats means a less complex processor; having organised the in-
struction fields so they are aligned, for example the opcode is always the top 4
bits and the next 4 bits is always a source register operand, means a less com-
plex processor. Other advantages include the facility for large immediate values
in both branch and ALU instructions; disadvantages include a waste of space in
some cases which could be put to better use if more information about the pro-
cessor requirements was given (for example maybe the space could be used to
implement predicate flags for predicated execution).

b. To encode the “add immediate” we would use format 3 from our design; assume
that the opcode for this instruction is 3 and that immediate values are held in
twos-complement form. Thus, the encoded instructions would look like

GPR[4] ← GPR[8]+10 → 0000011 01000 00100 000000000001010
GPR[4] ← GPR[8]−10 → 0000011 01000 00100 111111111110110

Notice the subtle sign case of −10 in the sense that we need to encode this as a
15-bit signed value.

c. This function performs a population count on the value x: it counts the number
of bits in x which are set to 1. One simple way to help the customer achieve
good performance in their application is to support this function in hardware
as an ALU operation rather than have them implement it as a C function. We
need to expose this operation to the programmer via the instruction set so that,
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for example, an instruction of the form pop $1, $2 would take the value in
general-purpose register 2, perform the population count operation and write the
result into general-purpose register 1. The customer could then replace every call
to the C function with a single, fast machine instruction.
Of course, an appropriate circuit is required within the ALU to perform the pop-
ulation count operation. A clocked circuit to do this would roughly mirror the C
implementation, but this would take 32 clock cycles to complete which is still
quite slow. A better approach would be to build a combinatorial circuit; the goal
with a such a circuit would be to minimise the critical path so that the operation
can complete in one cycle. One approach would be to construct a binary adder
tree which starts (at the leaves of the tree) by adding two bits of the input together:
this gives the number of bits set in that region. Roughly, the circuit computes:

((x0 + x1)+(x2 + x3)) · · ·((x28 + x29)+(x30 + x31))

so that the end result is the number of bits set to 1. This circuit would have a
depth of log2(32) = 5 adders where each need only add together 5-bit numbers.

d. First note that the memory is byte addressed, thus when we store the 32-bit con-
stant at address 0 we are actually storing the constituent bytes at addresses 0 . . .3.
Also note that the decimal value 305419896(10) equals 12345678(16).
A little-endian byte ordering convention places the least-significant byte at the
lowest address and the most-significant byte at the highest address; thus one
would expect to find the memory to look like

MEM[0] = 78(16)
MEM[1] = 56(16)
MEM[2] = 34(16)
MEM[3] = 12(16)

after the instruction completes. A big-endian byte ordering convention uses the
opposite ordering; it places the least-significant byte at the highest address and
the most-significant byte at the lowest address to give

MEM[0] = 12(16)
MEM[1] = 34(16)
MEM[2] = 56(16)
MEM[3] = 78(16)

e. If the number of registers is increased from 32 to 64 then one more bit per register
operand will be required to address them; so each register operand will require 6
bits in an encoded instruction rather than 5. Assuming that the actual instructions
are not changed, this will result in less opcode space in the instruction formats
and hence the instruction set will be able to support less instructions. If the num-
ber of registers is decreased from 32 to 16 then one less bit per register operand
will be required to address them and the converse is true: there will be more
space in the instruction formats for the opcode. A larger (or richer) set of instruc-
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tions (that support more addressing modes for example) means a given program
can probably be shorter. Potentially this means the program can execute faster, if
the micro-architecture can execute all instructions as fast as before, and that the
code density is better. The converse is true of a smaller (or more sparse) set of
instructions.
An additional implication for having less registers is that the programmer (or
compiler) will be able to keep less data items in the fast registers and will need
to keep more in the slower main memory; this is termed spilling in the context of
compilers. So with less registers there will probably be more memory accesses
which result in worse performance (and visa versa).

Questions from Chapter 6

27

a. MIPS stands for Millions of Instructions Per Second; it is calculated by measur-
ing how many instructions are executed in a one second period. The advantages
of this are that it is easy to calculate but is is not a good measure of performance
since it ignores how much work gets done during execution: a processor exe-
cuting many simple instructions per second might do exactly the same amount
of work as another processor which executes fewer more complex instructions
in the same time period. CPI stands for Cycles Per Instruction. The idea is to
decompose the performance in to the product of how long each instruction type
takes to execute and how often that instruction type is executed. Typically, a
RISC processor will have a low CPI rating whereas a CISC processor will have
a high CPI rating. The advantages are that we can now factor in how much work
is being done by each instruction and ignore clock rate, the disadvantage is that
it relies on an average program which clearly never exists in real-life.

b. We know that the overall CPI can be computed using:

CPI =
n

∑
i=1

FREQUENCY ·CYCLES

so applying this formula to the initial numbers, we find:

ALU frequency · cycles = 0.5 ·1 = 0.5
Load frequency · cycles = 0.2 ·5 = 1.0
Store frequency · cycles = 0.1 ·3 = 0.3
Branch frequency · cycles = 0.2 ·2 = 0.4
Total 2.2

Using the same method on the numbers after the change, we find:
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ALU frequency · cycles = 0.55 ·1 = 0.55
Load frequency · cycles = 0.10 ·5 = 0.50
Store frequency · cycles = 0.10 ·3 = 0.30
Branch frequency · cycles = 0.25 ·2 = 0.50
Total 1.85

The speed-up can be calculated as follows:

SPEED-UP =
NEW PERFORMANCE

OLD PERFORMANCE

so we have that the new processor is 1.19 times faster than the old one, about a
16% improvement.

28

• Firstly, it is sometimes difficult to know what one should be measuring. Latency
(i.e., execution time) is often the most important factor, but throughput for exam-
ple is also a valid performance metrics. Without some idea of what the interesting
feature of performance is, constructing a benchmark program to measure it is dif-
ficult.

• Next it is difficult, if not impossible, to find a suite of benchmark programs that
perfectly represent “typical” workloads. Within a restricted domain (e.g., scien-
tific or media kernels) this is more tractable, but generally one can always point
at examples that are somehow atypical and hence which are not modelled by the
benchmark.

• Even once the benchmark programs themselves are selected, the problem of in-
put data is important. Processor features such as branch prediction and cache
memories have data-dependant behaviour; this implies that benchmarking them
with worst-case input will yield much different behaviour than best-case.

• Finally, it can often be difficult to actually perform measurements if a high degree
of accuracy is required; often this requires support from the processor (e.g., per-
formance counters) and long experimental trials to smooth over any local anoma-
lies.

Following the description above, one might clearly “cheat” by using input data
which is best-case in some way and hence does not represent typical use of the
benchmark. Another approach might be to develop a special purpose compiler that
behaves in some special way for the benchmark program. A compiler is supposed
to be general purpose, but if it can make assumptions about the input (i.e., that the
input is a particular benchmark program), it can potentially generate much more
efficient output than one might expect.
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Questions from Chapter 7

29

a. Clearly we can implement 	= by negating the result of = and likewise for < and
≥, and > and ≤. Furthermore, we can build ≥ from > and =, and ≤ from <
and =. So essentially we only need two comparisons, say = and < to be able to
compute the rest so long as we have the logic operations as well. The choice of
which three is simply a matter of which ones you want to go faster: the ones built
from a combination of other comparison and logic instructions will take longer
to execute. One might take the approach of looking at C programs and selecting
the set most used. For example = and < are used a lot to program typical loops;
one might select them for this reason.

b. You can be as fancy as you want with any optimisations or special cases, for
example checking for multiplication by zero, one or a power-of-two might be a
good idea. But basically, the easiest way to do this is with the binary or double-
and-add method:

short mul( short x, short y )
{
short r = 0;
short i = 0;

switch( x )
{
case 0 : return 0;
case 1 : return y;
case 2 : return y << 1;
case 4 : return y << 2;
case 8 : return y << 3;
case 16 : return y << 4;

}

switch( y )
{
case 0 : return 0;
case 1 : return x;
case 2 : return x << 1;
case 4 : return x << 2;
case 8 : return x << 3;
case 16 : return x << 4;

}

for( i = 15; i >= 0; i-- )
{
r = r << 1;

if( ( x >> i ) & 1 )
r = r + y;

}

return r;
}
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c. A basic implementation might look like the following:

short H( short x )
{
short t = 0;
short i = 0;

for( i = 0; i < 16; i++ )
{
if( ( x >> i ) & 1 )

t = t + 1;
}

return t;
}

but this has a number of drawbacks. Mainly, the overhead of of operating the
loop and the content is quite high in comparison to the actual operation we are
performing. The loop body for example is only a few instructions; it takes nearly
as many to actually test and increment i during each iteration. Furthermore,
the number of branches in the code means that pipelined processors might not
execute this efficiently at all. An improvement is to use some form of divide-
and-conquer approach where we split the problem into 2-bit then 4-bit chunks
and so on. The result might look like:

short H( short x )
{
x = ( x & 0x5555 ) + ( ( x >> 1 ) & 0x5555 );
x = ( x & 0x3333 ) + ( ( x >> 2 ) & 0x3333 );
x = ( x & 0x0F0F ) + ( ( x >> 4 ) & 0x0F0F );
x = ( x & 0x00FF ) + ( ( x >> 8 ) & 0x00FF );

return x;
}

30 First, note that the result via a naive method would be

r2 = x1 · y1

r1 = x1 · y0 + x0 · y1

r0 = x0 · y0.

However, we can write down three intermediate values using three multiplications
as

t2 = x1 · y1

t1 = (x0 + x1) · (y0 + y1)
t0 = x0 · y0.

The original result can then be expressed in terms of these intermediate values as

r2 = t2 = x1 · y1

r1 = t1 − t0 − t2 = x0 · y0 + x0 · y1 + x1 · y0 + x1 · y1 − x0 · y0 − x1 · y1

= x1 · y0 + x0 · y1

r0 = t0 = x0 · y0.
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So roughly speaking, over all we use three (n/2)-bit multiplications and four (n/2)-
bit additions.

31

a. In binary, the addition we are looking at is

10(10) = 1010(2)
12(10) = 1100(2) +

10110(2)

where 10110(2) = 22(10). In 4 bits this value is 0110(2) = 6(10) however, which is
wrong.

b. A design for the 4-bit clamped adder looks like

+------+ +------+ +------+ +------+
+----|CO CI|-------|CO CI|-------|CO CI|-------|CO CI|-0
| | A|_a_3 | A|_a_2 | A|_a_1 | A|_a_0
| +-|S B|-b_3 +-|S B|-b_2 +-|S B|-b_1 +-|S B|-b_0
| | +------+ | +------+ | +------+ | +------+
| | | | |
| | +------+ | +------+ | +------+ | +-------+
| +-| OR |-s_3 +-| OR |-s_2 +-| OR |-s_1 +-| OR |-s_0
| +------+ +------+ +------+ +-------+
| | | | |
+--------+--------------+--------------+--------------+

32 The relationship

x is a power-of-two ↔ (x∧ (x−1)) = 0

performs the test which can be written as the C expression

( x & ( x - 1 ) ) == 0

This works because if x is an exact power-of-two then x − 1 sets all bits less-
significant that the n-th to one; when this is ANDed with x (which only has the
n-th bit set to one) the result is zero. If x is not an exact power-of-two then there
will be bits in x other than the n-th set to one; in this case x− 1 only sets bits less-
significant than the least-significant and hence there are others left over which, when
ANDed with x, result in a non-zero result. Note that the expression fails, i.e., it is
non-zero, for x = 0 but this is okay since the question says that x 	= 0.

Questions from Chapter 8

33 The memory hierarchy is arranged like a pyramid with higher levels relying
on the performance and functionality of lower levels. The idea is that higher levels
are smaller and more expensive but faster, lower levels are large and inexpensive
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but slower. The principles of locality means that we can keep the working set of a
program, i.e., the data and instructions used most often, in the small, fast areas of
the hierarchy. This means the most often used data can be accessed very quickly but
we can still store very large amount of data since the hierarchy is backed by large,
inexpensive storage.

ˆ
/ \

/ \
/ \
/ \

/ \
/ registers \ smallest fastest expensive

/-------------\ | | |
/ cache \ | | |

/-----------------\ | | |
/ main memory \ | | |

/---------------------\ V V V
/ disk and tape \ largest slowest inexpensive
---------------------------

At the top of the hierarchy are registers, these are word sized areas of on-chip mem-
ory used to produce operands for instructions. Typically they total around 1 kilobyte
in size. The next level is cache memory, typically made from SRAM, which can be
on or off-chip and ranges in size from around 512 kilobytes to several megabytes.
Beyond any cache structures is the main RAM memory which is typically built from
DRAM and is of the order of gigabytes in size. Finally, at the bottom of the hierarchy
are the longer terms storage options such as disk and tape which are multi-gigabyte
in size.

34

a. To address cache lines with 8 sub-words (i.e., 8 bytes in each line) we need a
3-bit word offset since 23 = 8. There are 512 bytes in total which means there
are 512/8 = 64 lines; this means we need a 6-bit line number since 26 = 64. This
means there are 32−3−6 = 23 bits remaining which form the tag.

b. To address cache lines with 8 sub-words (i.e., 8 bytes in each line) we need a
3-bit word offset since 23 = 8. Since there are 64 lines, assuming that access in
each of the 64/2 = 32 sets is fully-associative, we need an 5-bit set number since
25 = 32. This means there are 32−3−5 = 24 bits remaining which form the tag.

c. To address cache lines with 8 sub-words (i.e., 8 bytes in each line) we need a
3-bit word offset since 23 = 8. Since there are 64 lines, assuming that access in
each of the 64/4 = 16 sets is fully-associative, we need an 4-bit set number since
24 = 16. This means there are 32−3−4 = 25 bits remaining which form the tag.

d. To address cache lines with 8 sub-words (i.e., 8 bytes in each line) we need a
3-bit word offset since 23 = 8. In a fully associative cache lines can be placed
anywhere so there is no need to derive them from the address; this means there
are 32−3 = 29 bits remaining which form the tag.
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35

• Compulsory misses are caused by the first access to some content held in mem-
ory. In a sense these seem unavoidable: before an element X is accessed by the
program, how can the processor know it will be accessed and therefore prevent
the cache miss ? The answer is to take a speculative approach and pre-fetch con-
tent into the cache that has a reasonable probability of use; if the speculation is
correct then the associated compulsory miss is prevented, if it is incorrect then
there will be a cache miss which is no worse than our starting point. The major
disadvantage of incorrect speculation is the potential for cache pollution which
can increase conflict misses. Thus, some balance needs to be arrived at between
the two approaches.

• Capacity misses are misses that are independent of all factors aside from the size
of the cache; essentially the only solution is to increase the cache size so a larger
working set can be accommodated.

• Conflict misses are caused by the eviction of resident cache content by a newly
accessed content that maps to the same cache line. The implication is that if
element X is evicted by element Y , there has been a conflict in the address trans-
lation: since both map to the same line the access to Y causes a cache miss.
This effect can continue in the sense that if X is accessed again later, it will
cause another cache miss. The use of set-associative caches can reduce the level
of contention in the cache by allowing conflicting addresses to coexist within a
fully-associative set. Alternatively one might take a software approach and skew
the addresses at which X and Y are placed so they no longer map to the same
cache line.

36

a. There are 4 bytes per-line so we need 2 bits to address these since 22 = 4. These
are taken from the least-significant end of the address. There are 256 lines since
the cache is 1 kilobyte in size; we need 8 bits to address these lines since 28 =
256. These are again taken from the least-significant end, starting after the bits
for the word address. The tag constitutes the rest of the bits so we can uniquely
identify a given address in a line, it is therefore 22 bits in size.

b. Spacial locality is the tendency that if one item is accessed, those items close to
it in memory are also accessed. For example if A[1] is accessed there is a good
chance A[0] or A[2] will be accessed rather than say A[1000]. Temporal lo-
cality is the tendency that if one item is accessed, it will be accessed again in the
near future. For example, when the add instruction which implements the addi-
tion of B[i] and C[i] is accessed, it has a high probability of being accessed
again since it is in a loop. Cache interference is where items compete for space
in the cache. If two items map to the same line and one is loaded into the line, an
access to the other will evict or displace the original since the line cannot hold
both.

c. The load access to B[0] will miss since this item is not in the cache. Such a
miss means the item is loaded into cache line one, along with the values B[1],
B[2] and B[3]. The load access to C[0] also misses but since it maps to the
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same line as B[0], the data loaded evicts the values of B loaded in the previous
load. Finally, the store to A[0] misses and again maps to the same line as C[0]
so again evicts the current values. The loop continues in this manner, essentially
never producing any cache hits because each access evicts the previous data.

d. i. This alteration changes matters entirely since now, A[0] maps to line 0,
B[0] maps to line 1 and C[0] maps to line 2. As a result each access to
B[i] will provoke one miss to load the values into the line, followed by three
hits as the values B[i+1], B[i+2] and B[i+3] will sit in the same line.
The same is true for accesses to C[i] and A[i] so that the program will run
much faster due to the decreased number of accesses to main memory.

ii. The basic problem here is one of cache interference: we want to prevent or
reduce the probability of two addresses mapping to the same line in the cache
and evicting each other. Associative caches are one solution to this problem;
they allow any address to map to any line and include some decisional mech-
anism that places them. For example, least recently used (LRU) or random
placement both solve the interference problem. The problem will associative
caches is that they require significant resource to build. As a compromise, set-
associative caches are a better option. A set-associative cache has number of
sets each of which is like a small cache; inside each set look-up is fully asso-
ciative but since the sets are small, the resulting cost is manageable. The idea
is that we select the set a data item will go into using some more bits from the
address: items that would map to the same line like A, B and C now map into
the same line within different sets so don’t interfere.

Questions from Chapter 9

37

a. The latency of a circuit is the time elapsed between when a single operation starts
and when it finishes. The throughput of a circuit is the number of operations that
can be started in each time period; that is, how long it takes between when two
subsequent operations can be started.

b. The latency of the circuit is the sum of all the latencies of the parts:

40ns+10ns+30ns+10ns+50ns+10ns+10ns = 160ns.

The throughput is related to the length of the longest pipeline stage; since the
circuit is not pipelined, this is 1

160·10−9 .
c. The new latency is still the sum of all the parts but now also includes the pipeline

register:

40ns+10ns+30ns+10ns+10ns+50ns+10ns+10ns = 170ns.
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However, the throughput is now more because the longest pipeline stage only
has a latency of 100 ns including the register; the new throughput is thus 1

100·10−9

which means we can start new operations more often than before.
d. To maximise the throughput we need to try and reduce the latency of all pipeline

stages to a minimum. Since there is already a part with a latency of 50ns, the
lower limit is 60ns if one includes the associated pipeline register. We can achieve
this 60ns latency by placing two more pipeline registers between parts B and C
and parts E and F. This has the effect of ensure all stages have at most a latency
of 60ns and hence maximises the throughput but clearly has a disadvantage: the
overall latency is increased to 190ns even though the throughput is 1

60·10−9 .

38

a. The idea is that the original data-path is split up into stages which match the se-
quential steps it takes. By operating these stages in parallel with each other, the
pipeline can be executing instruction 1 while decoding instruction 2 and fetching
instruction 3 for example. Although there are some caveats to this, for example
dependencies between instructions might prevent the pipeline from advancing,
generally this will improve performance significantly. For example, the instruc-
tion throughput of an n stage pipelined design will approach an n-fold improve-
ment on the multi-cycle design given suitably written programs.
The basic design for a pipelined processor data-path can be split into five stages
with pipeline registers between them to prevent a stage updating the working data
for another stage:

+-+ +-+ +-+ +-+
+---+ |R| +---+ |R| +---+ |R| +---+ |R| +---+
|FET| |E| |DEC| |E| |EXE| |E| |MEM| |E| |WRI|
+---+ |G| +---+ |G| +---+ |G| +---+ |G| +---+

+-+ +-+ +-+ +-+

---- flow of instructions ---->

The fetch stage will perform an instruction fetch, it will house the PC and an
interface to the instruction memory and typically an adder to increment the PC.
The decode phase decodes the instruction and fetches register operands, there-
fore it houses the GPR. The execution stage does the actual instruction execution
and will therefore house the ALU that performs arithmetic and comparisons. The
memory stage simply has to perform data memory access so only needs an inter-
face to the data memory. Finally, the write-back stage houses no actual compo-
nents but has hooks back into the GPR in the decode stage so it can write values.
The IR is sort of spread along the whole pipeline in the pipeline registers; each
stage is operating on a different instruction so each stage has its own IR in some
sense.

b. A structural dependency is where two stages of the pipeline need to access a
single hardware module at the same time. For example, this is commonly caused
when one needs to increment the program counter and perform an ALU operation
at the same time. A control dependency exists since the processor does not know
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where to fetch instructions from until the branch is executed and so could, if not
controlled, execute instructions from the wrong branch direction. A data depen-
dency is where a computational instruction is being processed by the pipeline but
the source values have not been generated or written-back to the register file.

c. The solution for structural dependencies is simple: one either replicates the hard-
ware module so both competing stages have their own, dedicated device; or one
ensures somehow that they use one single device in different phases of the same
cycle. One way of dealing with control dependencies is to delegate the prob-
lem to the compiler and ensure that the delay slot following the branch is either
filled with null operations whose execution does not effect either branch direc-
tion, or valid instructions scheduled from before the branch. We can also re-
duce the chance of stall by better predicting which direction the branch will take
and hence lessening the chance of having to squash invalid instructions in the
pipeline. A branch target buffer of some sort will usually accomplish this. Data
dependencies are usually solved by forwarding results directly from within the
pipeline back to the execution unit. Using this technique, the results don’t need to
be written-back before they are used during execution. Using these techniques,
the processor seldom needs to stall as a result of any dependency although clearly
they complicate the actual processor operation.

d. A branch delay slot is the space in time between when a branch is fetched and
when it is executed. During this time the processor might have to stall since it
cannot know instructions that would be fetched actually need to be executed.
However, if the processor does not stall but just carries on fetching and executing
instructions regardless, there is an opportunity to place instructions we want to
execute in the branch delay slot. The advantage of doing so is that there is less
wasted time but in order to realise this improvement we must be able to re-order
instructions in the program so that the slot is filled; if we cannot fill the slot
then NOPs must be placed there instead to ensure correct execution. This all
means that the processor can be simpler due to the lack of stall condition, but the
programmer must do more work to extract the improvement in performance and
ensure correctness.
In most RISC architectures, alteration of control-flow is done explicitly using
dedicated branch instructions. Predicated execution offers an alternative to this
model by associating a predicate function to each instruction and only execut-
ing the instruction if the predicate is true. Rather than set the PC to some new
value, this approach allows one to skip over instructions based on the associated
predicate. It is ideal for conditional execution of short sections of code due to the
low overhead associated. In this case, both the processor and programmer must
be more complicated; the processor must be able to decode and evaluate predi-
cates and discard instructions which fail, the programmer must be able to write
programs in a style that takes advantage of this feature.
Branch prediction reduces the number of stalls by guessing which way a branch
will complete and continuing to fetch instructions from that path; if the prediction
is wrong then the fetched instructions must be squashed but if it is right execution
can continue with no loss of time. Common prediction mechanisms are simple,
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for example one might predict that backwards branches (that model loops) are
always true: this will be correct most of the time because a loop only exists once
and iterates many times. The complexity in branch prediction is entirely in the
processor; the programmer need do nothing more than normal unless the ISA
allows hints to be passed about the probably direction of branches.

39 After “partially” unrolling the loop by a factor of four, it is clear that the four
additions that represent the new loop body are independent. With a vector proces-
sor, either dedicated or in the form of an extension to a conventional processor (e.g.,
MMX/SSE), these can be executed in parallel. Starting with the scalar implementa-
tion

. . .
GPR[1] ← 0
GPR[2] ← 400

loop : if GPR[1] ≥ GPR[2],PC ← exit
GPR[3] ← MEM[B+GPR[1]]
GPR[4] ← MEM[C+GPR[1]]
GPR[5] ← GPR[3]+GPR[4]
MEM[A+GPR[1]] ← GPR[5]
GPR[1] ← GPR[1]+1
PC ← loop

exit : . . .

the basic idea would be to utilise the vector register file and associated ALUs to load
and execute four additions at once. This could be described as

. . .
GPR[1] ← 0
GPR[2] ← 400

loop : if GPR[1] ≥ GPR[2],PC ← exit
V R[1] ← MEM[B+0+GPR[1] . . .B+3+GPR[1]]
V R[2] ← MEM[C+0+GPR[1] . . .C+3+GPR[1]]
V R[3] ←V R[1]+V R[2]
MEM[A+0+GPR[1] . . .A+3+GPR[1]] ←V R[3]
GPR[1] ← GPR[1]+4
PC ← loop

exit : . . .

whereby we get roughly a 4-fold improvement in performance as a result. Of course
this depends on being able to load and store operands quickly enough (this is assisted
by the regular nature of such accesses), and that there are enough ALUs to execute
the parallel additions.

The case for VLIW is more complicated, in part because such an architecture is
less well defined. Imagine we have a VLIW processor which can accept instruction
bundles that include two memory accesses and one arithmetic operations. The idea
here would be to software pipeline the loop so that we “skew” the iterations: this
allows us to load the operands for iteration 1 at the same time as performing the
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addition for iteration 0 for example. Reading operations on the same row as being
executed in parallel (the first two columns being memory access and the third being
arithmetic), an example code sequence is show in Figure B.1. Notice that by over-
lapping the loop iterations, we are roughly executing one iteration in two instruction
bundles rather than via five conventional instructions as above (even though there
are some empty slots in selected bundles).

40

a. Consider an example function which sums elements from two arrays and stores
the result into a third:

void add( int* A, int* B, int* C, int p )
{
for( int i = 0; i < p; i++ )
A[ i ] = B[ i ] + C[ i ]

}

On a scalar processor, each iteration of the loop is executed separately. The use
of processor designs such as superscalar might capitalise on the implicit paral-
lelism between loop iterations but essentially any given operation only deals with
one (scalar) data item at a time. The idea of a vector processor is to make this
parallelism explicit and equip the processor with the ability to operate on many
data items (vector) using a single operation. As such, instead of executing many
scalar operations of the form

A[0] ← B[0]+C[0]
A[1] ← B[1]+C[1]
A[2] ← B[2]+C[2]

...
A[p−1] ← B[p−1]+C[p−1]

the vector processor executes one vector operation of the form

A[0 . . . p−1] ← B[0 . . . p−1]+C[0 . . . p−1].

To achieve this, the processor needs two key components: a vector register file
capable of storing vectors (i.e., many data items rather than single data items),
and a number of processing elements each of which operates on one element of
the input vectors to produce one element of the output vector. The processing
elements can be sub-pipelined if if there are less of them than there are elements
in a vector, they may need to be used iteratively to operate across the entire vector
content.
Typically these components are gathered together into a single co-processor type
unit which is invoked by a standard scalar processor (i.e., rather than use the
scalar register and ALU) when vector instructions are encountered. This ap-
proach needs careful management of memory access so that a single interface
to memory can be used effectively to load and store vector data.
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b. The use of a vector processor can yield higher performance than a scalar proces-
sor (for a selected class of programs) because:

• Parallelism in the program is explicit. The processor can therefore take advan-
tage of this parallelism, with very little effort or overhead in terms of hardware
complexity, by using multiple processing elements. That is, processing ele-
ment i can operate on element i of the input vectors to produce element i of
the output at the same time as other elements j 	= i are being produced in paral-
lel. Consider a processor that operates on vectors of length p with r processing
elements; the processor achieves a theoretical peak performance improvement
of p/r over the scalar processor if the program is easily vectorised.

• In scalar, multiple issue architectures such as superscalar, the demand for new
instructions is very high: they must be fetched from memory fast enough to
satisfy the aim of issuing one operation per-cycle. Although cache memories
and other techniques can help, this can present a problem. In contrast, the
amount of work done by per-operation in a vector is much higher (e.g., a factor
of p higher if we work with vectors of length p). As such, the pressure for
operations to be fetched quickly is less and hence the impact of the bottleneck
represented by main memory is less pronounced.

• Access to vector data held in memory is typically more regular than that to
scalar data. That is, if we load a p element vector at address A, we explicitly
load from addresses A+0 . . .A+ p−1. The memory hierarchy can capitalised
on this feature via specialist cache design and operational policies, prefetch
and striding, burst access and so on. In the case of access to scalar is not as
easy to deal with: single accesses are disjoint and cannot be easily related to
the overall task of access to the larger vector.

c. Say we represent the input at the start of the loop body as (D,C,B,A), i.e., a
packed 128-bit register of 32-bit sub-words. We assume that the array K has
been padded with space so that when elements are loaded during iteration i, we
get the vector (0,K[i+1],0,K[i+0]). Finally, we assume that all computation is
performed component-wise on sub-words (i.e., using strict SIMD) but that there
are a number of standard sub-word organisation operations such as shuffle and
pack. Equipped as such, we can implement the loop body using the operation
sequence in Figure B.2 so that at the end, we have the vector (A′′,D′′,C′′,B′′)
which is used as input to the next iteration.

d. Implementation of the loop body using 3-address style RISC operations can be
achieved using the following sequence
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t0 ← B+B
t1 ← t0 +1
t2 ← B · t1
t3 ← rotl(t2,5)
t4 ← D+D
t5 ← t4 +1
t6 ← D · t5
t7 ← rotl(t6,5)
t8 ← A⊕ t3
t9 ← rotl(t8, t7)
t10 ← MEM[(K +0)+ i]
t11 ← t9 + t10

t12 ← C⊕ t7
t13 ← rotl(t12, t3)
t14 ← MEM[(K +1)+ i]
t15 ← t13 + t14

A ← B
B ← t13

C ← D
D ← t8

This scalar sequence requires 20 operations; the vector equivalent requires 13
operations. However, the four move operations at the end of the scalar imple-
mentation are essentially just renaming intermediate variables: the actual moves
are not required. Therefore by unrolling the loop somewhat it should be possible
to remove these and reduce the operation count to 16. Although the sequences are
not scheduled intelligently, it seems possible that with some rearrangement (plus
possibly some software pipelining) it is possible to execute roughly one operation
per-cycle. As such, the vectorisation has produced roughly an 19% improvement
in performance (versus roughly 35% without unrolling).
The theoretical limit is a four-fold improvement in performance since one would
expect roughly four operations to occur in parallel in the vector case. The two
main factors which prevent the improvement being higher are wasted work in
computing values we don’t need (e.g., the rotl(D(2D + 1),5) sub-word of r4),
and the amount of shuffle type operations required to move sub-words into the
right place for actual computation. In short, the loop looks easily vectorisable
but the architecture (i.e., packing four 32-bit sub-words into 128-bit registers)
does not capitalise on this well. One might change the processor to pack two
32-bit sub-words into 64-bit registers; this would prevent wasted computation
and reduce either the amount of processing elements required if there is one
processing element for each sub-word (e.g., two rather than four), or the time
taken for each operation if there are less processing elements than sub-words
(e.g., in the initial design, having two processing elements rather than four means
iterating twice for each operation).
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41

a. Speculative execution is a mechanism that acts to reduce the cost of branches.
The problem caused by branches is that until any branch condition and target
are known, the processor cannot proceed: it cannot know where to fetch the next
instructions from and hence the front-end becomes stalled. In turn, this can lead
to under utilisation of the computational resources which are idle until provided
with work.
The basic idea is to construct a group of components (that basically guess which
way a branch will direct control-flow and execute instructions from that path. If
the guess turns out to be correct, then execution can continue more or less as nor-
mal: the instructions allowed into the pipeline really were those the programmer
intended to execute so in a sense no execution time has been wasted. If the guess
turns out to be incorrect however, the instructions in the pipeline are invalid (i.e.,
they are from the wrong path) and need to be deleted. After cleaning up, execu-
tion is restarted along the correct path and although there is a associated cost, this
is not significantly more than the case without speculation. As a result, as long as
guesses made by the processor are correct more often than not, performance is
improved because more often than not the front-end does not stall and can supply
a more consistent stream of work to the back-end.
Note that use of a re-order buffer makes speculation much easier: we can simply
include a flag in the RoB to mark speculatively executed instructions and only
allow them to complete (i.e., exit the RoB) if the associated condition turns out
to be true.

b. The case of static (rather than fixed) branch prediction demands that the compiler
and/or programmer does some analysis of the program to work out the probable
control-flow. For example, the compiler might:

• Examine a particular loop statement and reason that since the loop bound is
large, a branch from the end of the loop body back to the start is much more
likely to be taken than not taken.

• Examine a particular conditional statement and reason that the condition is
very unlikely to evaluate to false, and hence that a branch that skips the con-
ditional body is very unlikely to be taken.

The idea is to pass the results of this analysis to the processor in order to guide
any decisions. One mechanism to do this is to allow “hints” or predicates in the
branch instructions that inform the processor that they are likely or unlikely to
be taken: based on such a “hint”, the processor might speculatively execute one
control-flow path rather than another. Disadvantages of this approach is include
the fact that data-dependent behaviour of the program is not considered (unless
we use some form of profiling), and that there is a limited amount of space in any
instruction encoding with which to accommodate the “hints”.
Use of dynamic branch prediction means that the processor tries to perform anal-
ysis of the program behaviour at run-time. Although this requires extra hardware
to implement the scheme, it means that any data-dependent behaviour can be de-
tected and capitalised upon. Typically the processor would include a mechanism
for predicting whether a branch is taken or not and where the branch target is. The
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branch target is possible simpler: a cache-like structure called the Branch Target
Buffer (BTB) can be maintained whereby the address of a branch is mapped to
a predicted target. If the branch address has no mapping in the BTB then the
processor simply has to guess, but if there is a mapping (e.g., the branch was
executed recently) then the processor can speculatively use the previous target.
Predicting the direction of a branch can be achieved using a Branch Prediction
Buffer (BPB) which maps the address of a branch to a history of that branches
behaviour, i.e., a history of whether it was taken or not. Based on this history,
one can make predictions about whether it will be taken or not in the future. Ex-
amples include the use of saturating counters which effectively treat the problem
like a state machine where the branch history represents the current state (which
acts as the prediction), each executed branch updates the state in a manner that
depends on the real behaviour.

c. i. Assuming for example that the “call” and “return” operate in a similar way to
those in MIPS, a simple calling convention could be:

caller: push arguments
call callee
pop return value
pop arguments
...

callee: push return address
push space for locals
...
pop space for locals
pop return address
push return value
return to caller

In this case, the “call” places the return address in a specific register (this is a
so-called “jump and link”) while the “return” is implemented via a branch to
an address held within any register: the address is popped from the stack into
a register and then used.

ii. The “call” instruction is essentially an unconditional branch: it does not re-
quire any branch prediction since it is always taken and the branch target is
always known if it can be encoded as an immediate operand. The “return”
instruction is more tricky: although unconditional, in this case the processor
will not know the branch target (i.e., the return address) until it is retrieved
from the stack.
One approach would be to employ a system whereby there is segregation be-
tween data and address related stack content, i.e., use a dedicated return ad-
dress stack. This would require the “call” instruction to push the return address
onto the address stack and the “return” instruction to pop it: these operations
could form part of the instruction semantics. Since the address stack will prob-
ably be more constrained in terms of size and use, it could be possible to retain
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some of it on-chip (rather than in memory) so that access to the last say n re-
turn addresses is very fast.
Although there are potentially some disadvantages, the main advantage is that
we can now “snoop” the address stack for a return address. That is, as soon
as the “return” instruction is fetched we can look at the on-chip address stack
and retrieve the associated branch target more quickly.

Questions from Chapter 10

42

a. This description represents a form of delay slot: the load operation takes some
time to complete, say n cycles. Thus, the value loaded only becomes valid n
cycles after the load seems to have executed and can therefore only be read after
then. The alternative would be to either elongate the clock period so a load could
complete in one cycle (this penalises instructions which are faster), or to stall the
processor while the load is completed.

b. By placing the burden on the programmer or compiler, the processor design can
be simpler: if it is pipelined there could be no need for some forms of forwarding
logic and control is generally easier. This could lead to improvements in size and
power consumption. In a sense the situation is more flexible in the sense that
the programmer or compiler can make use of the delay slot to do other things
(i.e., computation not related to the load). However, the programmer or compiler
is faced with a harder task: if they make a mistake the program will execute
incorrectly, plus porting the program to a processor with a different delay is made
harder.

43

a. The arguments $a0 and $a1 represent the addresses of two arrays, say A and B,
where elements in the array are 8-bit bytes:

• Instructions #1 to #4 load elements of A and inspects them: if the loaded ele-
ment is equal to 0 then the function branches to l1, otherwise it increments
$a0 and branches back to l0. The end result is that once control-flow reaches
l1, $a0 holds the address of the first element in A which is zero.

• Instruction #5 stores the value of $a1, i.e., the address of B, in $v0.
• Instructions #6 and #7 load an element from B and store it at the end of A; if the

element is zero, instruction #8 branches to l3. Otherwise, instructions #9 and
#10 increment $a0 and $a1, i.e., the addresses of A and B, then instruction
#11 branches back to l2. The end result is that once control-flow reaches l3,
the content of array B has been appended to the end of A (including the first
zero element).

• Instructions #12 and #13 compute the return value into $v0 by subtracting the
previously stored value in $v0 from the address of the last element stored at
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the end of A (correcting the off-by-one error); this represents the total number
of elements of B appended to the end of A.

• Finally, instruction #14 directs control-flow back to the caller using the return
address in $ra.

Effectively, this is an implementation of the strcat function which concate-
nates two zero terminated strings (i.e., appends one string to the end of another).

b. The obvious optimisation is to use lw and sw to append four bytes of B to the
end of A in each iteration of instructions #6 and #7; since the memory hierarchy
can potentially service such access at the same speed as access to bytes, this po-
tentially gives around a 4-fold improvement in performance (the loop is executed
four times less). However, the problem is that if B is not a multiple of four charac-
ters long the terminating zero character will occur within the 32-bit word loaded
by lw; this makes it harder to check when the terminator is encountered, and to
avoid writing too much content to the end of A (and potentially overwriting other,
legitimate data).

Questions from Chapter 11

44 The rough purpose of stack frame is to capture the run-time “state” of a function;
it provides an area of memory where values relating to said state can be stored,
and a mechanism to create and destroy sub-frames so that nested function calls are
possible. The stack starts at some fixed address and grows downward; it is managed
as a FIFO data-structure. This management is achieved using two pointers which
can be held in general purpose registers and accessed using standard instructions, or
held in special purpose registers and accessed using special instructions:

• The Stack Pointer (SP) keeps track of the Top of Stack (ToS); either it is the
address of the next free space on the stack, or the first used space. The value of
SP changes during execution of functions as items are pushed onto or popped
from the stack.

• The Frame Pointer (FP) keeps track of the fixed base address of the current stack
frame; this allows access to the stack frame content using a fixed offset (rather
than a variable offset based on the moving address held in SP).

A given frame will, depending on the function, contain many features:

• Arguments passed from a caller function to a callee function can be pushed onto
the stack by the caller and then retrieved by the callee. The cost of this can be
reduced by passing arguments in registers; typically we include the return value
as an “argument” or sorts.

• The return address is where a callee function should branch back to in order to
continue execution from the point it was called from in the caller function.

• The saved frame pointer preserves the previous frame pointer value, i.e., the
frame pointer of the caller, when the callee initialises a new stack frame and
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hence a new frame pointer. This allows valid execution when control-flow re-
turns to the caller.

• Within a function, if there are not enough registers to hold the working set of
values some might need to be spilt into memory; the stack frame represents a
good place for spilling to occur into. As such, part of the stack is reserved for
“temporary values”.

• Since the caller should be able to continue execution once the callee function has
completed, the state of the caller should be maintained across calls to many callee
functions. The task of saving this state is typically shared between the caller and
callee: so-called caller save registers should be saved by the caller if their useful
content might be overwritten, callee save registers are the responsibility of the
callee function. In both cases, the register content is stored on the stack and the
retrieved later when execution of the function is complete.

45

a. Assuming a calling convention which includes a frame pointer, and that there is
no need for caller or callee saving of registers, the three cases could roughly be
described by:

: : : : : :
+--------------+ +--------------+ +--------------+
|return value | |return value | |return value |
|argc | |argc | |argc |
|argv | |argv | |argv |
+--------------+ +--------------+ +--------------+
|return address| |return address| |return address|
|saved FP |<-FP |saved FP | |saved FP |<-FP
+--------------+ +--------------+ +--------------+
|a | |a | |a |
|b | |b | |b |
+--------------+ +--------------+ +--------------+
: :<-SP |return value | : :<-SP

|a (arg. x) |
|b (arg. y) |
+--------------+
|return address|
|saved FP |<-FP
+--------------+
: :<-SP

The “before” and “after” cases are clearly the same by design; the only side-
effect of calling the function is the generation of a result (rather than alteration
of the state somehow).

b. An implementation of the max function, and the main function that calls it, is
as follows:

main: addi $t0, $0, 10 # set a = 10
addi $t1, $0, 20 # set b = 20
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addi $sp, $sp, -4 # push rv
sw $t0, 0($sp) # push a
addi $sp, $sp, -4
sw $t1, 0($sp) # push b
addi $sp, $sp, -4

jal max # call max(a,b)

addi $sp, $sp, 4 # pop b
addi $sp, $sp, 4 # pop a
addi $sp, $sp, 4 # pop rv
lw $t0, 0($sp)

...

max: addi $sp, $sp, -4 # make ra space
sw $ra, 0($sp) # push ra
addi $sp, $sp, -4 # make fp space
sw $fp, 0($sp) # push fp
add $fp, $sp, $0 # set fp to sp

lw $t0, 16($fp) # load x
lw $t1, 12($fp) # load y

sub $t2, $t0, $t1 # compare
bgtz $t2, l0
sw $t1, 20($fp) # set rv = y
b l1

l0: sw $t0, 20($fp) # set rv = x

l1: lw $fp, 0($sp) # pop fp
addi $sp, $sp, 4 # free fp space
lw $ra, 0($sp) # pop ra
addi $sp, $sp, 4 # free ra space
jr $ra # return

46 This is quite an open question, so emphasis is placed on level of background
knowledge and quality of reasoning; probably some degree of background research
is required. Taking ARM addressing modes as a concrete processor design, one
might point to the addressing modes as supporting the types of operation required
in typical C programs:

• The base/offset addressing mode is ideal for access to structures since one can
use a pointer to the structure as the base, and then add the fixed distance of a field
in the structure as the offset. This allows the access to be performed without the
overhead of manual pointer arithmetic.

• The ability to scale the second operand to all instructions means one can scale
the offset in a base/offset style access. This is ideal for access to arrays since it
allows one to accommodate arrays of different C types without the overhead of
manual scaling. That is, for an array of 8-bit elements no scaling is required; for
an array of 16-bit elements one can scale the offset by two and so on.
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• The ability to perform auto-indexing supports the update of loop counters re-
quired for most loop constructs. That is, the addressing mode updates the loop
counter without the overhead of an extra addition.

Example topics for discussion wrt. other languages might include:

occam A lineage of Transputer processor designs have offered support for:

a. Light-weight, explicit parallel programs via low-cost fork, join and synchro-
nisation operations for threads.

b. Efficient inter-thread communication via concrete, hardware based “channels”
(effusively similar to managed buffers), that are mapped onto by abstract chan-
nels in a program.

Java a. Certain variants of ARM processor include support for “native” byte-
code execution; for example they fetch and decode bytecode instructions and
translate them into sequences of ARM instructions (including use of “special”
registers).

b. Some specialist architectures have included support for types of “dynamic
dispatch” that result from the use of virtual functions. The basic idea is to
reduce the cost of the several memory accesses, which would be required in a
naive case, that form the function address for a given type.

Pascal a. P-code and similar dedicated virtual instruction sets akin to Java byte-
code, designed to execute compiled Pascal programs and sometimes realised
in physical hardware.

Lisp a. Lisp machines, general purpose processors with dedicated hardware sup-
port for execution of Lisp programs.

b. Initiated by MIT Lisp Machine Project, such processors accelerated costly
aspects of execution such as garbage collection and type checking (the later
supported via “fat” values which included extra bits to represent type).

Forth a. Dedicated stack processors with data and control stacks and an instruc-
tion set to access them.

b. Optimisation examples include support to hold the top of stack value(s) on-
chip rather than in memory.

47 The basic problem is that using instructions available in MIPS32, we would
have to perform at least two comparisons and a branch in addition to each memory
access. This will have an impact on performance and as such, is an ideal candidate
for mitigating alterations to the processor.

One approach would be to include the concept of predicated execution and some-
how capture the bounds check as a predicate that one can use to skip over the access.
Another approach would be to add an addressing mode that is similar to a base/offset
type scheme but includes a third operand that specifies some limit. Again in rela-
tion to ARM, we might take the str instruction that stores a single register at the
effective address derived from a base and an offset. Using this, we might include an
alternative called strbc (for “store register with bounds check”) whose semantics
are
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strbc a,b,c,d =
{

MEM[b+ c] ← GPR[a] if 0 ≤ b+ c < d
⊥ otherwise

Using this instruction we can capture the conditional statement and the associated
store with one instruction; this eliminates the cost of fetching, decoding and execut-
ing the conditional and improves the situation further by eliminating the associated
branch. Note that there is however some burden placed on the programmer or com-
piler: they must be able to use the instruction effectively; this demands for example
that the size of arrays (i.e., the bound d) is known whenever an array access is per-
formed. This could be problematic in C where there is some duality between an
array and a (more arbitrary) pointer.

Questions from Chapter 12

48 During a context switch, the state of one process is saved to the related Process
Control Block (PCB) within the kernel address space, and another process state is
restored; when kernel is finished, the second process is able to continue execution
whereas before it started the first process was executing. A dominant cost within
this operation is the transfer of state to and from memory: among other things, this
cost is influenced by storing every register and then loading them again. One way to
accelerate this is to permit “block” load and store instructions. An example of this
approach is provided by ARM processors: the ldm and stm instructions accept a list
of registers as operands. This list is either loaded from or stored to memory starting
at a base address specified by another operand. The advantage of this is 2-fold: firstly
one can take advantage of any burst accesses mode the memory provides, secondly
the overhead relating to repeated fetch and decode of load and stores is reduced to a
single fetch and decode for one ldm or stm instruction.

49

a. The resident set is that portion of a processes address space that is held in physical
memory at a given point in time; the working set is the portion that is actually
needed for execution. Typically the working set is an instantaneous measure in
the sense that at different points in time, the working set will change due to
the behaviour of the program. Clearly the two measures may differ: physical
memory may not be able to accommodate the full working set, or may hold
resident content which is not required.

b. The term “thrashing” relates to a situation where many page faults occur; due to
contention (or simply lack of space) pages are being transferred into and out of
physical memory often enough that this activity dominates useful computation.
To detect this situation, the OS might monitor the page fault rate (e.g., the average
number of page faults per-access to memory); when this reaches some threshold,
it can state that “thrashing” occurs. Essentially the situation is a product of not
being able to capture the working set in physical memory. If there is one pro-
cess executing, this is somewhat unavoidable but if there are many processes
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one might attempt to reduce the level of multitasking (i.e., prevent some pro-
cesses becoming active). The hope is that by reducing the number of processes
that compete for space in physical memory, the working set of those that remain
will fit. So basically the idea would be to terminate or suspend low-priority or
resource hungry processes until the “thrashing” situation is resolved.

c. Some advantages are:

• A reduction in the page table size; if there are less pages there are less potential
entries in the page table.

• An increase in performance of the TLB; if there are less pages, there is more
chance that the working set can be captured in the TLB and hence that there
will be a TLB-hit.

Some disadvantages are:

• An increase in the time taken to transfer pages in and out of physical memory
from the swap file; if the page is larger, it will naturally take longer to load it
from disk.

• A typical process will not be allocated an amount of memory that is an exact
multiple of the page size; part of the “last” page allocated to it will be unused.
If the pages are larger, this unused region (which is wasted) is larger.

50

a. • The user may have requested that the process be terminated.
• The process could have causes some unresolvable exception (e.g., out of

bounds memory access, execution of an invalid instruction).
• The process could exit normally; although this is perhaps not an “abnormal”

termination, from the perspective of the operating system the process is still
terminated in some sense.

• The parent process (i.e., the process that forked the one we are interested in)
may have terminated.

b. • The user may have requested that the process be suspended.
• The process could have been suspended as a result of time-slicing; once the

time slice of an executing process expires, it needs to be suspended.
• The process could have been suspended in an attempt to resolve “thrashing”.
• The process could have been suspended pending some high-latency I/O oper-

ation (e.g., network communication or virtual memory management).

Questions from Chapter 13

51

a. A basic approach would be to use c as an index into an array which we initialise
with the right value. For example, the C function would be
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uint16 choose( uint16 c, uint16 y, uint16 z )
{
uint16 T[2];
T[0] = z;
T[1] = y;
return T[c];

}

Depending on the characteristics of memory access, this might be slow however:
although it is straight-line and hence does not suffer from pipeline stalls from
branch instructions, it includes three memory accesses (depending on the ad-
dressing modes in the processor. An improvement might be constructed by first
considering a mask value m = c−1 so that if c = 0 then m−1 and if c = 1 then
m = 0. Because of the way the twos-complement representation works, if c = 0
then m is a value where all the bits are set to 1 and if c = 0 then m is a value
where all the bits are set to 0. We can use this mask value to select the right result
from y and z using the logical expression

x = (m∧ z)∨ (¬m∧ y).

That is, if c = 0 then m is a value with all bits set to 1 and we have that m∧ z = z
and ¬m∧ y = 0 so (m∧ z)∨ (¬m∧ y) = z. Conversely, if c = 1 then m is a value
with all bits set to 0 and we have that m∧z = 0 and ¬m∧y = y so (m∧z)∨(¬m∧
y) = y. So we can implement the function in C as

uint16 choose( uint16 c, uint16 y, uint16 z )
{
uint16 m = c - 1;
return ( m & z ) | ( ˜m & y );

}

This is both straight-line and memory access free; it can be executing using only
five instructions.

b. A basic approach might be to find an addition chain for 15 so that we can de-
compose the multiplication into a series of additions. By forcing summands to
be powers-of-two (which can be efficiently generated using shifts), we can im-
plement the operation as

uint16 mul( uint16 x )
{
return ( x << 3 ) +

( x << 2 ) +
( x << 1 ) +
( x ) ;

}

such that the return value is x · 23 + x · 22 + x · 21 + x · 20 = 8x + 4x + 2x + 1x =
15x. However, a more efficient addition chain can be constructed by noticing
15 = 16−1; since we can generate 16x efficiently, we can re-write our solution
as



622 B Example Solutions

uint16 mul( uint16 x )
{
return ( x << 4 ) -

( x ) ;
}

which uses two less shifts and two less additions.
c. The basic approach here is to iterate through all the bits in x testing each one and

incrementing a counter if xi = 1. For example, the C function would be

uint16 H( uint16 x )
{
uint16 t = 0;

for( int i = 0; i < 16; i++ ) {
if( ( x >> i ) & 1 ) {

t = t + 1;
}

}

return t;
}

However, this is inefficient for a number of reasons. Specifically, the cost of oper-
ating the loop is high in comparison with the cost of the loop body: the overhead
is significant. Furthermore, the instruction sequence required will include several
branches which might stall the processor pipeline and degrade performance. A
better approach is the straight-line C function

uint16 H( uint16 x )
{
x = ( x & 0x5555 ) + ( ( x >> 1 ) & 0x5555 );
x = ( x & 0x3333 ) + ( ( x >> 2 ) & 0x3333 );
x = ( x & 0x0F0F ) + ( ( x >> 4 ) & 0x0F0F );
x = ( x & 0x00FF ) + ( ( x >> 8 ) & 0x00FF );

return x;
}

This works using a divide-and-conquer approach; each line of the function is
counting bits within a sub-set of the original value. We mask x with the constant
5555(16) which extracts all the low bits in 2-bit regions within x; we also shift
x right by one and again mask to extract all the corresponding high bits. These
values are added to count the number of bits within the 2-bit regions. We divide-
and-conquer again by considering 4-bit regions and so on until we end up with a
total for the full 16-bit region.

d. Perhaps the easiest example to understand is the population count function. Since
the input x is only 16-bits, there are only 216 potential values the caller can use
for x. Thus, we can easily compute H(x) for every one of these inputs, store them
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in a table and then look them up rather than running the original function. For
example, the C functions could be

uint16* T = NULL;

void precomp()
{
T = ( uint16* )( malloc( 65536 * sizeof( uint16 ) ) );

for( int i = 0; i < 65536; i++ ) {
uint16 x = i;

x = ( x & 0x5555 ) + ( ( x >> 1 ) & 0x5555 );
x = ( x & 0x3333 ) + ( ( x >> 2 ) & 0x3333 );
x = ( x & 0x0F0F ) + ( ( x >> 4 ) & 0x0F0F );
x = ( x & 0x00FF ) + ( ( x >> 8 ) & 0x00FF );

T[ i ] = x;
}

}

uint16 H( uint16 x )
{
return T[ x ];

}

In the first function, we run through all possible values of x and store the results
H(x) in the table T . Then, in the actual function for H(x) we look the value up
from the table. Clearly this only produces an improvement if we use the function
very often otherwise we have wasted time computing all the possible results;
additionally we have made a trade-off in terms of time and space. That is, our
pre-computation requires some memory to hold T so although it takes less time
per-call to H(x), it requires more space than the initial version.

52 Obviously combinations of the optimisation techniques can be applied, here we
simply treat each one separately.

Off-line pre-computation means doing some one-off computation before the
function is called so that we can accelerate execution when it is called; since the
pre-computation is off-line in this case, it should be possible at compile-time i.e.,
before the program is even execute. In this context, we can pre-compute a table, say
T , where each Ti is the result of applying the function to i. This is possible since the
input x is only 16-bits in size: there are only 216 = 65536 16-bit entries in the table
so although this consumes some memory, it is not a lot of memory. Then, when the
function is called we simply look-up Ti rather than doing any actual computation:

uint16* T = NULL;

void precomp()
{
T = ( uint16* )( malloc( 65536 * sizeof( uint16 ) ) );
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for( int i = 0; i < 65536; i++ )
{
uint8 a = ( i ) & 0xFF;
uint8 b = ( i >> 8 ) & 0xFF;

a = a >> 1;
b = b >> 1;

T[ i ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

}
}

void packed_div2_1( uint16* x )
{
for( int i = 0; i < 3; i++ )
{
x[ i ] = T[ x[ i ] ];

}
}

Note that rather than running the pre-computation function at run-time (i.e., when
the program is loaded), we could create the table at compile-time and simply load it
as a constant array or even embed it in the program source code.

Roughly speaking, specialisation is the act of replacing general purpose opera-
tions with special purpose operations that are less expensive. In this function, one
example that occurs is division by the constant two; using a general purpose divi-
sion is expensive (division takes longer than most operations on a typical processor).
However, division by 2k is equivalent to a right-shift by k bits which is less expen-
sive. We can therefore re-write the function:

void packed_div2_2( uint16* x )
{
for( int i = 0; i < 3; i++ )
{
uint8 a = ( x[ i ] ) & 0xFF;
uint8 b = ( x[ i ] >> 8 ) & 0xFF;

a = a >> 1;
b = b >> 1;

x[ i ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

}
}

Note that in this case, we could also include the shift of b with the shift required
to mask the value in the first place; this saves another operation. Also, it is possible
to avoid the unpacking and repacking all together by performing the shift in one go
and using a mask to patch up the result:



B Example Solutions 625

void packed_div2_3( uint16* x )
{
for( int i = 0; i < 3; i++ )
{
x[ i ] = ( x[ i ] >> 1 ) & 0x7F7F;

}
}

Optimisation using parallelism is slightly tricky to write down in C, but roughly
speaking you have to imagine that the host processor is equipped with the facility
for SIMD parallelism: it can execute the same instruction on many data items at
once (where the data items are packed into one blob). So if one can perform two
divisions at once for example, one can clearly perform the divisions of a and b at
the same time and get a speed-up of roughly 2 for this fragment of the function. This
could be thought of as similar to this function:

void packed_div2_4( uint16* x )
{
for( int i = 0; i < 3; i++ )
{
uint8 a = ( x[ i ] ) & 0xFF;
uint8 b = ( x[ i ] >> 8 ) & 0xFF;

par
{
a = a / 2;
b = b / 2;

}

x[ i ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

}
}

where the par keyword is denoting parallelism and the accesses to elements in t
are meant to show that the input to the SIMD operation is naturally packed. For
more able processors (e.g., MIMD rather than SIMD), one might actually be able to
run the three (independent) iterations of the loop in parallel with each other.

Finally, program restructuring roughly means re-writing the program control flow
so that some advantage is gained: optimisations of this type include loop unrolling,
loop fusion, loop fission and so on. Loop unrolling is a good candidate in this case
since we are paying a high price for executing loop control (such as the test, the
counter increment and so on) even though we know there will only ever be three
iterations. Therefore, we can eliminate this overhead and re-write the function as:

void packed_div2_5( uint16* x )
{
uint8 a;
uint8 b;



626 B Example Solutions

a = ( x[ 0 ] ) & 0xFF;
b = ( x[ 0 ] >> 8 ) & 0xFF;

a = a / 2;
b = b / 2;

x[ 0 ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

a = ( x[ 1 ] ) & 0xFF;
b = ( x[ 1 ] >> 8 ) & 0xFF;

a = a / 2;
b = b / 2;

x[ 1 ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

a = ( x[ 2 ] ) & 0xFF;
b = ( x[ 2 ] >> 8 ) & 0xFF;

a = a / 2;
b = b / 2;

x[ 2 ] = ( uint16 )( a ) |
( uint16 )( b << 8 ) ;

}

which looks longer but probably executes faster.

53

a. In the fragment, i is the induction variable (i.e., the loop counter) and n is the loop
bound (i.e., the number of times the loop body is executed). If we can determine
n statically, we can replace the loop with n copies of the loop body where in the
j-th copy we replace the induction variable i with the constant j. This is termed
“full” loop unrolling; for example with n = 4 we would unroll the loop to get

A[ 0 ] = B[ 0 ] + C[ 0 ];
A[ 1 ] = B[ 1 ] + C[ 1 ];
A[ 2 ] = B[ 2 ] + C[ 2 ];
A[ 3 ] = B[ 3 ] + C[ 3 ];

The unrolled alternative might increase performance because:

i. The overhead of operating the loop (i.e., initialisation, test and update of the
induction variable) is eliminated; essentially the unrolled loop requires less
instructions to be executed.

ii. At least one branch per-iteration is required to direct control-flow from the
bottom of the loop body back to the top again. This is overhead as above, but
potentially also causes a problem in pipelined processors if we cannot accu-
rately predict the branch direction and successfully use speculative execution.



B Example Solutions 627

By eliminating the branch, this problem is also eliminated and the straight-line
unrolled loop might execute faster as a result.

However, it might decrease performance because:

i. Depending on n, the number of instructions required to implement the loop
will typically be smaller than the number required to implement the unrolled
alternative (although the loop might still execute more instructions at run-
time). As a result instructions in the unrolled loop are not as spatially local
as in the loop: a significant distance might exist between the first and last
instructions for example. This means an instruction cache might be less effec-
tive. Furthermore, it might be hard to keep the unrolled loop in the cache since
there is more chance of interference. Both features mean there is a chance that
performance could be decreased.

b. Continuing from the solution above, if we do not know n or it is too large to
permit full unrolling we might “partially” unroll the loop; this means that we
reduce the number of iterations but do not totally eliminate the loop. For example,
imagine n = 400: we probably wouldn’t want to fully unroll the loop in this case
but could instead partly unroll by a factor of say m = 4 to get:

for( int i = 0; i < 400; i += 4 )
{
A[ i+0 ] = B[ i+0 ] + C[ i+0 ];
A[ i+1 ] = B[ i+1 ] + C[ i+1 ];
A[ i+2 ] = B[ i+2 ] + C[ i+2 ];
A[ i+3 ] = B[ i+3 ] + C[ i+3 ];

}

Now consider the case of n = 402. If we use the same method as above, we end
up with two extra iterations that we cannot accommodate in the main loop since
m does not exactly divide n. We need to add a loop epilogue after the main loop
to cope with the cases of i = 400 and i = 401:

for( int i = 0; i < 400; i += 4 ) {
A[ i+0 ] = B[ i+0 ] + C[ i+0 ];
A[ i+1 ] = B[ i+1 ] + C[ i+1 ];
A[ i+2 ] = B[ i+2 ] + C[ i+2 ];
A[ i+3 ] = B[ i+3 ] + C[ i+3 ];

}

A[ 400 ] = B[ 400 ] + C[ 400 ];
A[ 401 ] = B[ 401 ] + C[ 401 ];

or alternatively we could add a loop prologue before the main loop:

A[ 0 ] = B[ 0 ] + C[ 0 ];
A[ 1 ] = B[ 1 ] + C[ 1 ];

for( int i = 2; i < 402; i += 4 ) {
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A[ i+0 ] = B[ i+0 ] + C[ i+0 ];
A[ i+1 ] = B[ i+1 ] + C[ i+1 ];
A[ i+2 ] = B[ i+2 ] + C[ i+2 ];
A[ i+3 ] = B[ i+3 ] + C[ i+3 ];

}
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