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Preface

Growth and development of this work sprang from the need to
provide educational material for food engineers and food scientists. The
first edition was conceived as a textbook and the work continues to be
used in graduate level courses at various universities. Its greatest
appeal, however, was to individuals solving practical day-to-day prob-
lems. Hence, the second edition, a significantly expanded and revised
version of the original work, is aimed primarily at the rheological
practitioner (particularly the industrial practitioner) seeking a broad
understanding of the subject matter. The overall goal of the text is to
present the information needed to answer three questions when facing
problems in food rheology: 1. What properties should be measured? 2.
What type and degree of deformation should be induced in the mea-
surement? 3. How should experimental data be analyzed to generate
practical information? Although the main focus of the book is food,
scientists and engineers in other fields will find the work a convenient
reference for standard rheological methods and typical data.

Overall, the work presents the theory of rheological testing and
provides the analytical tools needed to determine rheological properties
fromexperimental data. Methods appropriate for common food industry
applications are presented. All standard measurement techniques for
fluid and semi-solid foods are included. Selected methods for solids are
also presented. Results from numerous fields, particularly polymer
rheology, are used to address the flow behavior of food. Mathematical
relationships, derived from simple force balances, provide a funda-
mental view of rheological testing. Only a background in basic calculus
and elementary statistics (mainly regression analysis) is needed to
understandthematerial. The text contains numerous practical example
problems, involving actual experimental data, to enhance comprehen-
sion and the execution of concepts presented. This feature makes the
work convenient for self-study.

Specific explanations of key topics in rheology are presented in
Chapter 1: basic concepts of stress and strain; elastic solids showing
Hookean and non-Hookean behavior; viscometric functions including
normal stress differences; modeling fluid behavior as a function of shear
rate, temperature, and composition; yield stress phenomena, exten-
sional flow; and viscoelastic behavior. Efficient methods of attacking
problems and typical instruments used to measure fluid properties are
discussed along with an examination of problems involving interfacial

ix



rheology, electrorheology, and on-line viscometry for control and mon-
itoring of food processing operations. Common methods and empirical
instruments utilized in the food industry are also introduced: Texture
Profile Analysis, Compression-Extrusion Cell, Warner-Bratzler Shear
Cell, Bostwick Consistometer, Adams Consistometer, Amylograph,
Farinograph, Mixograph, Extensigraph, Alveograph, Kramer Shear
Cell, Brookfield disks and T-bars, Cone Penetrometer, Hoeppler Vis-
cometer, Zhan Viscometer, Brabender-FMC Consistometer.

The basic equations of tube (or capillary) viscometry, such as the
Rabinowitsch-Mooney equation, are derived and applied in Chapter 2.
Laminar flow criteria and velocity profiles are evaluated along with data
correction methods for many sources of error: kinetic energy losses, end
effects, slip (wall effects), viscous heating, and hole pressure. Tech-
niques for glass capillary and slit viscometers are considered in detail.
A section on pipeline design calculations has been included to facilitate
the construction of large scale tube viscometers and the design of fluid
pumping systems.

A general format, analogous to that used in Chapter 2, is continued
in Chapter 3 to provide continuity in subject matter development. The
main foci of the chapter center around the theoretical principles and
experimental procedures related to three traditional types of rotational
viscometers: concentric cylinder, cone and plate, and parallel plate.
Mathematical analyses of data are discussed in detail. Errors due to
end effects, viscous heating, slip, Taylor vortices, cavitation, and cone
truncations are investigated. Numerous methods in mixer viscometry,
techniques having significant potential to solve many food rheology
problems, are also presented: slope and matching viscosity methods to
evaluate average shear rate, determination of power law and Bingham
plastic fluid properties. The vane method of yield stress evaluation,
using both the slope and single point methods, along with a consider-
ation of vane rotation during testing, is explored in detail.

The experimental methods to determine extensional viscosity are
explained in Chapter 4. Techniques presented involve uniaxial exten-
sion between rotating clamps, biaxial extensional flow achieved by
squeezing material between lubricated parallel plates, opposing jets,
spinning, and tubeless siphon (Fano) flow. Related procedures,
involving lubricated and nonlubricated squeezing, to determine shear
flow behavior are also presented. Calculating extensional viscosity from
flows through tapered convergences and flat entry dies is given a
thorough examination.
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Essential concepts in viscoelasticity and standard methods of
investigating the phenomenon are investigated in Chapter 5. The full
scope of viscoelastic material functions determined in transient and
oscillatory testing are discussed. Mechanical analogues of rheological
behavior are given as a means of analyzing creep and stress relaxation
data. Theoretical aspects of oscillatory testing, typical data, and a
discussion of the various modes of operating commercial instruments
-strain, frequency, time, and temperature sweep modes- are presented.
The Deborah number concept, and how it can be used to distinguish
liquid from solid-like behavior, is introduced. Start-up flow (stress
overshoot) and the relationship between steady shear and oscillatory
properties are also discussed. Conversion factors, mathematical rela-
tionships, linear regression analysis, and typical rheological data for
food as well as cosmetics and polymers are provided in the Appendices.
Nomenclature is conveniently summarized at the end of the text and a
large bibliography is furnished to direct readers to additional infor-
mation.

J.F. Steffe
June, 1996
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Chapter 1. Introduction to Rheology

1.1. Overview
The first use of the word "rheology" is credited to Eugene C. Bingham

(circa 1928) who also described the motto of the subject as
("panta rhei," from the works of Heraclitus, a pre-Socratic Greek phi-
losopher active about 500 B.C.) meaning "everything flows" (Reiner,
1964). Rheology is now wellestablished as thescience of the deformation
and flow of matter: It is the study of the manner in which materials
respond to applied stress or strain. All materials have rheological
properties and the area is relevant in many fields of study: geology and
mining (Cristescu, 1989), concrete technology (Tattersall and Banfill,
1983), soil mechanics (Haghighi et al., 1987; Vyalov, 1986), plastics
processing (Dealy and Wissburn, 1990), polymers and composites
(Neilsen and Landel, 1994; Yanovsky, 1993), tribology (study of lubri-
cation, friction and wear), paint flow and pigment dispersion (Patton,
1964), blood (Dintenfass, 1985), bioengineering (Skalak and Chien,
1987), interfacial rheology (Edwards et al., 1991), structural materials
(Callister, 1991), electrorheology (Block and Kelly, 1988), psychor-
heology (Drake, 1987), cosmetics and toiletries (Laba, 1993b), and
pressure sensitive adhesion (Saunders et al., 1992). The focus of this
work is food where understanding rheology is critical in optimizing
product development efforts, processing methodology and final product
quality. To the extent possible, standard nomenclature (Dealy, 1994)
has been used in the text.

One can think of food rheology as the material science of food. There
are numerous areas where rheological data are needed in the food
industry:

a. Process engineering calculations involving a wide range of equip-
ment such as pipelines, pumps, extruders, mixers, coaters, heat
exchangers, homogenizers, calenders, and on-line viscometers;

b. Determining ingredient functionality in product development;
c. Intermediate or final product quality control;
d. Shelf life testing;
e. Evaluation of food texture by correlation to sensory data;
f. Analysis of rheological equations of state or constitutive equations.

Many of the unique rheological properties of various foods have been
summarized in books by Rao and Steffe (1992), and Weipert et al. (1993).

παντα ρε ι



2 Chapter 1. Introduction to Rheology

Fundamental rheological properties are independent of the instru-
ment on which they are measured so different instruments will yield
the same results. This is an ideal concept and different instruments
rarely yield identical results; however, the idea is one which distin-
guishes true rheological material properties from subjective (empirical
and generally instrument dependent, though frequently useful)
material characterizations. Examples of instruments giving subjective
results include the following (Bourne, 1982): Farinograph, Mixograph,
Extensograph, Viscoamlyograph, and the Bostwick Consistometer.
Empirical testing devices and methods, including Texture Profile
Analysis, are considered in more detail in Sec. 1.13.

1.2. Rheological Instruments for Fluids

Common instruments, capable of measuring fundamental rheolog-
ical properties of fluid and semi-solid foods, may be placed into two
general categories (Fig. 1.1): rotational type and tube type. Most are
commercially available, others (mixer and pipe viscometers) are easily
fabricated. Costs vary tremendously from the inexpensive glass capil-
lary viscometer to a very expensive rotational instrument capable of
measuring dynamic properties and normal stress differences. Solid
foods are often tested in compression (between parallel plates), tension,
or torsion. Instruments which measure rheological properties are called
rheometers. Viscometer is a more limiting term referring to devices
that only measure viscosity.

Rotational instruments may be operated in the steady shear (con-
stant angular velocity) or oscillatory (dynamic) mode. Some rotational
instruments function in the controlled stress mode facilitating the
collection of creep data, the analysis of materials at very low shear rates,
and the investigation of yield stresses. This information is needed to
understand the internal structure of materials. The controlled rate
mode is most useful in obtaining data required in process engineering
calculations. Mechanical differences between controlled rate and con-
trolled stress instruments are discussed in Sec. 3.7.3. Rotational sys-
tems are generally used to investigate time-dependent behavior because
tube systems only allow one pass of the material through the apparatus.
A detailed discussion of oscillatory testing, the primary method of
determining the viscoelastic behavior of food, is provided in Chapter 5.
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Figure 1.1. Common rheological instruments divided into two major categories:
rotational and tube type.

There are advantages and disadvantages associated with each
instrument. Gravity operated glass capillaries, such as the Cannon-
Fenske type shown in Fig. 1.1, are only suitable for Newtonian fluids
because the shear rate varies during discharge. Cone and plate systems
are limited to moderate shear rates but calculations (for small cone
angles) are simple. Pipe and mixer viscometers can handle much larger
particles than cone and plate, or parallel plate, devices. Problems
associated with slip and degradation in structurally sensitive materials
are minimized with mixer viscometers. High pressure capillaries
operate at high shear rates but generally involve a significant end
pressure correction. Pipe viscometers can be constructed to withstand
the rigors of the production or pilot plant environment.

Rotational Type

Parallel Plate Cone and Plate

Concentric Cylinder
Mixer

Tube Type

PipeGlass Capillary High Pressure Capillary
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All the instruments presented in Fig. 1.1 are "volume loaded" devices
with container dimensions that are critical in the determination of
rheological properties. Another common type of instrument, known as
a vibrational viscometer, uses the principle of "surface loading" where
the surface of an immersed probe (usually a sphere or a rod) generates
a shear wave which dissipates in the surrounding medium. A large
enough container is used so shear forces do not reach the wall and reflect
back to the probe. Measurements depend only on ability of the sur-
rounding fluid to damp probe vibration. The damping characteristic of
a fluid is a function of the product of the fluid viscosity (of Newtonian
fluids) and the density. Vibrational viscometers are popular as in-line
instruments for process control systems (see Sec. 1.12). It is difficult to
use these units to evaluate fundamental rheological properties of non-
Newtonian fluids (Ferry, 1977), but the subjective results obtained often
correlate well with important food quality attributes. The coagulation
time and curd firmness of renneted milk, for example, have been suc-
cessfully investigated using a vibrational viscometer (Sharma et al.,
1989).

Instruments used to evaluate the extensional viscosity of materials
are discussed in Chapter 4. Pulling or stretching a sample between
toothed gears, sucking material into opposing jets, spinning, or
exploiting the open siphon phenomenon can generate data for calcu-
lating tensile extensional viscosity. Information to determine biaxial
extensional viscosity is provided by compressing samples between
lubricated parallel plates. Shear viscosity can also be evaluated from
unlubricated squeezing flow between parallel plates. A number of
methods are available to calculate an average extensional viscosity from
data describing flow through a convergence into a capillary die or slit.

1.3. Stress and Strain

Since rheology is thestudyof thedeformation ofmatter, it isessential
to have a good understanding of stress and strain. Consider a rectan-
gular bar that, due to a tensile force, is slightly elongated (Fig. 1.2). The
initial length of the bar is and the elongated length is where

with representing the increase in length. This deformation

may be thought of in terms of Cauchy strain (also called engineering
strain):

Lo L

L = Lo + δL δL
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[1.1]

or Hencky strain (also called true strain) which is determined by
evaluating an integral from to :

[1.2]

Figure 1.2. Linear extension of a rectangular bar.

Cauchy and Hencky strains are both zero when the material is
unstrained and approximately equal at small strains. The choice of
which strain measure to use is largely a matter of convenience and one
can be calculated from the other:

[1.3]

is preferred for calculating strain resulting from a large deformation.

Another type of deformation commonly found in rheology is simple
shear. The idea can be illustrated with a rectangular bar (Fig. 1.3) of
height . The lower surface is stationary and the upper plate is linearly
displaced by an amount equal to . Each element is subject to the same
level of deformation so the size of the element is not relevant. The angle
of shear, , may be calculated as

εc =
δL
Lo

=
L −Lo

Lo

=
L
Lo

−1

Lo L

εh =
⌠
⌡Lo

L dL
L
= ln(L/Lo)

LL
0

εh = ln(1 + εc)

εh

h
δL

γ



6 Chapter 1. Introduction to Rheology

[1.4]

With small deformations, the angle of shear (in radians) is equal to the
shear strain (also symbolized by ), .

Figure 1.3.  Shear deformation of a rectangular bar.

Figure 1.4.  Typical stresses on a material element.

Stress, defined as a force per unit area and usually expressed in
Pascal (N/m2), may be tensile, compressive, or shear. Nine separate
quantities are required to completely describe the state of stress in a
material. A small element (Fig. 1.4) may be considered in terms of

tan(γ) =
δL
h

γ tanγ = γ

h

L

11

21

23

22

33

1

2

3

x

x

x
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Cartesian coordinates ( ). Stress is indicated as where the first

subscript refers to the orientation of the face upon which the force acts
and the second subscript refers to the direction of the force. Therefore,

is a normal stress acting in the plane perpendicular to in the

direction of and is a shear stress acting in the plane perpendicular

to in the direction of . Normal stresses are considered positive when

they act outward (acting to create a tensile stress) and negative when
they act inward (acting to create a compressive stress).

Stress components may be summarized as a stress tensor written
in the form of a matrix:

[1.5]

A related tensor for strain can also be expressed in matrix form. Basic
laws of mechanics, considering the moment about the axis under
equilibrium conditions, can be used to prove that the stress matrix is
symmetrical:

[1.6]

so

[1.7]

[1.8]

[1.9]

meaning there are only six independent components in the stress tensor
represented by Eq. [1.5].

Equations that show the relationship between stress and strain are
either called rheological equations of state or constitutive equations. In
complex materials these equations may include other variables such as
time, temperature, and pressure. A modulus is defined as the ratio of
stress to strain while a compliance is defined as the ratio of strain to
stress. The word rheogramrefers to a graphof a rheological relationship.

x1,x2,x3 σij

σ11 x1

x1 σ23

x2 x3

σij =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33





σij = σji

σ12 = σ21

σ31 = σ13

σ32 = σ23
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1.4. Solid Behavior

When force is applied to a solid material and the resulting stress
versus strain curve is a straight line through the origin, the material is
obeying Hooke’s law. The relationship may be stated for shear stress
and shear strain as

[1.10]

where is the shear modulus. Hookean materials do not flow and are
linearly elastic. Stress remains constant until the strain is removed
and the material returns to its original shape. Sometimes shape
recovery, though complete, is delayed by some atomistic process. This
time-dependent, or delayed, elastic behavior is known as anelasticity.
Hooke’s law can be used to describe the behavior of many solids (steel,
egg shell, dry pasta, hard candy, etc.) when subjected to small strains,
typically less than 0.01. Large strains often produce brittle fracture or
non-linear behavior.

The behavior of a Hookean solid may be investigated by studying
the uniaxial compression of a cylindrical sample (Fig. 1.5). If a material
is compressed so that it experiences a change in length and radius, then
the normal stress and strain may be calculated:

[1.11]

[1.12]

Figure 1.5 Uniaxial compression of a cylindrical sample.

σ12 =Gγ

G

σ22 =
F
A
=

F

π(Ro)2

εc =
δh
ho

R

hh o

R R
h

Initial Shape Compressed Shape

o
o
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This information can be used to determine Young’s modulus ( ), also
called the modulus of elasticity, of the sample:

[1.13]

If the deformations are large, Hencky strain ( ) should be used to

calculate strain and the area term needed in the stress calculation
should be adjusted for the change in radius caused by compression:

[1.14]

A critical assumption in these calculations is that the sample remains
cylindrical in shape. For this reason lubricated contact surfaces are
often recommended when testing materials such as food gels.

Young’s modulus may also be determined by flexural testing of
beams. In one such test, a cantilever beam of known length (a) is
deflected a distance (d) when a force (F) is applied to the free end of the
beam. This information can be used to calculate Young’s modulus for
materials having a rectangular or circular crossectional area (Fig. 1.6).
Similar calculations can be performed in a three-point bending test (Fig.
1.7) where deflection (d) is measured when a material is subjected to a
force (F) placed midway between two supports. Calculations are sightly
differentdepending onwether-or-not the test material has a rectangular
orcircular shape. Other simple beamtests, such as the doublecantilever
or four-point bending test, yield comparable results. Flexural testing
may have application to solid foods having a well defined geometry such
as dry pasta or hard candy.

In addition to Young’s modulus, Poisson’s ratio ( ) can be defined
from compression data (Fig. 1.5):

[1.15]

Poisson’s ratio may range from 0 to 0.5. Typically, varies from 0.0 for
rigid like materials containing large amounts of air to near 0.5 for liquid
like materials. Values from 0.2 to 0.5 are common for biological
materials with 0.5 representing an incompressible substance like potato

E

E =
σ22
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εh

σ22 =
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ν
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flesh. Tissues with a high level of cellular gas, such as apple flesh, would
have values closer to 0.2. Metals usually have Poisson ratios between
0.25 and 0.35.

Figure 1.6 Deflection of a cantilever beam to determine Young’s modulus.

Figure 1.7 Three-point beam bending test to determine Young’s modulus (b, h,
and D are defined on Fig. 1.6).
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If a material is subjected to a uniform change in external pressure,
it may experience a volumetric change. These quantities are used to
define the bulk modulus ( ):

[1.16]

The bulk modulus of dough is approximately Pa while the value for

steel is Pa. Another common property, bulk compressibility, is
defined as the reciprocal of bulk modulus.

When two material constants describing the behavior of a Hookean
solid are known, the other two can be calculated using any of the fol-
lowing theoretical relationships:

[1.17]

[1.18]

[1.19]

Numerous experimental techniques, applicable to food materials, may
be used to determine Hookean material constants. Methods include
testing in tension, compression and torsion (Mohsenin, 1986; Pola-
kowski and Ripling, 1966; Dally and Ripley, 1965). Hookean properties
of typical materials are presented in the Appendix [6.5].

Linear-elastic and non-linear elastic materials (like rubber) both
return to their original shape when the strain is removed. Food may
be solid in nature but not Hookean. A comparison of curves for linear
elastic (Hookean), elastoplastic and non-linear elastic materials (Fig.
1.8) shows a number of similarities and differences. The elastoplastic
material has Hookean type behavior below the yield stress ( ) but flows

to produce permanent deformation above that value. Margarine and
butter, at room temperature, may behave as elastoplastic substances.
Investigation of this type of material, as a solid or a fluid, depends on
the shear stress being above or below (see Sec. 1.6 for a more detailed

discussion of the yield stress concept and Appendix [6.7] for typical yield
stress values). Furthermore, to fully distinguish fluid from solid like
behavior, the characteristic time of the material and the characteristic
time of the deformation process involved must be considered simulta-
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neously. The Deborah number has been defined to address this issue.
A detailed discussion of the concept, including an example involving
silly putty (the "real solid-liquid") is presented in Sec. 5.5.

Figure 1.8. Deformation curves for linear elastic (Hookean), elastoplastic and
non-linear elastic materials.

Food rheologists also find the failure behavior of solid food (partic-
ularly, brittle materials and firm gels) to be very useful because these
data sometimes correlate well with the conclusions of human sensory
panels (Hamann, 1983; Montejano et al., 1985; Kawanari et al., 1981).
The following terminology (taken from American Society for Testing and
Materials, Standard E-6) is useful in describing the large deformation
behavior involved in the mechanical failure of food:

elastic limit - the greatest stress which a material is capable of sus-
taining without any permanent strain remaining upon complete
release of stress;

proportional limit - the greatest stress which a material is capable of
sustaining without any deviation from Hooke’s Law;

compressive strength - the maximum compressive stress a material
is capable of sustaining;

shear strength - the maximum shear stress a material is capable of
sustaining;

tensile strength - the maximum tensile stress a material is capable
of sustaining;

yield point - the first stress in a test where the increase in strain
occurs without an increase in stress;

o

Linear Elastic Elastoplastic Non-Linear Elastic

Permanent
Deformation

12 12 12
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yield strength - the engineering stress at which a material exhibits
a specified limiting deviation from the proportionality of stress to
strain.

A typical characteristic of brittle solids is that they break when given
a small deformation. Failure testing and fracture mechanics in struc-
tural solids are well developed areas of material science (Callister, 1991)
which offer much to the food rheologist. Evaluating the structural
failure of solid foods in compression, torsion, and sandwich shear modes
were summarized by Hamann (1983). Jagged force-deformation rela-
tionships of crunchy materials may offer alternative texture classifi-
cation criteria for brittle or crunchy foods (Ulbricht et al., 1995; Peleg
and Normand, 1995).

1.5. Fluid Behavior in Steady Shear Flow

1.5.1. Time-Independent Material Functions

Viscometric Functions. Fluids may be studied by subjecting them
to continuous shearing at a constant rate. Ideally, this can be accom-
plished using two parallel plates with a fluid in the gap between them
(Fig. 1.9). The lower plate is fixed and the upper plate moves at a
constant velocity ( ) which can be thought of as an incremental change
in position divided by a small time period, . A force per unit area
on the plate is required for motion resulting in a shear stress ( ) on

the upper plate which, conceptually, could also be considered to be a
layer of fluid.

The flow described above is steady simple shear and the shear rate
(also called the strain rate) is defined as the rate of change of strain:

[1.20]

This definition only applies to streamline (laminar) flow between
parallel plates. It is directly applicable to sliding plate viscometer
described by Dealy and Giacomin (1988). The definition must be
adjusted to account for curved lines such as those found in tube and
rotational viscometers; however, the idea of "maximum speed divided
by gap size" can be useful in estimating shear rates found in particular
applications like brush coating. This idea is explored in more detail in
Sec. 1.9.

u
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Figure 1.9.  Velocity profile between parallel plates.

Rheological testing to determine steady shear behavior is conducted
under laminar flow conditions. In turbulent flow, little information is
generated that can be used to determine material properties. Also, to
be meaningful, data must be collected over the shear rate range
appropriate for the problem in question which may vary widely in
industrial processes (Table 1.1): Sedimentation of particles may involve
very low shear rates, spray drying will involve high shear rates, and
pipe flow of food will usually occur over a moderate shear rate range.
Extrapolating experimental data over a broad range of shear rates is
not recommended because it may introduce significant errors when
evaluating rheological behavior.

Material flow must be considered in three dimensions to completely
describe the state of stress or strain. In steady, simple shear flow the
coordinatesystem may be oriented with the direction of flow so the stress
tensor given by Eq. [1.5] reduces to

[1.21]
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Table 1.1. Shear Rates Typical of Familiar Materials and Processes

Situation  (1/s) Application

Sedimentation of particles in 10-6 - 10-3 Medicines, paints, spices in
a suspending liquid salad dressing

Leveling due to surface ten- 10-2 - 10-1 Frosting, paints, printing inks
sion

Draining under gravity 10-1 - 101 Vats, small food containers,
painting and coating

Extrusion 100 - 103 Snack and pet foods, tooth-
paste, cereals, pasta, poly-
mers

Calendering 101 - 102 Dough Sheeting
Pouring from a bottle 101 - 102 Foods, cosmetics, toiletries
Chewing and swallowing 101 - 102 Foods
Dip coating 101 - 102 Paints, confectionery
Mixing and stirring 101 - 103 Food processing
Pipe flow 100 - 103 Food processing, blood flow
Rubbing 102 - 104 Topical application of creams

and lotions
Brushing 103 - 104 Brush painting, lipstick, nail

polish
Spraying 103 - 105 Spray drying, spray painting,

fuel atomization
High speed coating 104 - 106 Paper
Lubrication 103 - 107 Bearings, gasoline engines

Simple shear flow is also called viscometric flow. It includes axial
flow in a tube, rotational flow between concentric cylinders, rotational
flow between a cone and a plate, and torsional flow (also rotational)
betweenparallel plates. In viscometric flow, three shear-rate-dependent
material functions, collectively called viscometric functions, are needed
to completely establish the state of stress in a fluid. These may be
described as the viscosity function, , and the first and second normal
stress coefficients, and , defined mathematically as

[1.22]

[1.23]
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[1.24]

The first ( ) and second ( ) normal stress differences are

often symbolically represented as and , respectively. is always

positive and considered to be approximately 10 times greater than .

Measurement of is difficult; fortunately, the assumption that

isusually satisfactory. The ratio of , known asthe recoverableshear

(or the recoverable elastic strain), has proven to be a useful parameter
in modeling die swell phenomena in polymers (Tanner, 1988). Some
data on the values of fluid foods have been published (see Appendix

[6.6]).

If a fluid is Newtonian, is a constant (equal to the Newtonian
viscosity) and the first and second normal stress differences are zero.
As approaches zero, elastic fluids tend to display Newtonian behavior.
Viscoelastic fluids simultaneously exhibit obvious fluid-like (viscous)
and solid-like (elastic) behavior. Manifestations of this behavior, due
to a high elastic component, can be very strong and create difficult
problems in process engineering design. These problems are particu-
larly prevalent in the plastic processing industries but also present in
processing foods such as dough, particularly those containing large
quantities of wheat protein.

Fig. 1.10 illustrates several phenomena. During mixing or agitation,
a viscoelastic fluid may climb the impeller shaft in a phenomenon known
as the Weissenberg effect (Fig. 1.10). This can be observed in home
mixing of cake or chocolate brownie batter. When a Newtonian fluid
emerges from a long, round tube into the air, the emerging jet will
normally contract; at low Reynolds numbers it may expand to a diameter
which is 10 to 15% larger than the tube diameter. Normal stress dif-
ferences present in a viscoelastic fluid, however, may cause jet expan-
sions (called die swell) which are two or more times the diameter of the
tube (Fig. 1.10). This behavior contributes to the challenge of designing
extruderdies to produce the desiredshape of many pet, snack, and cereal
foods. Melt fracture, a flow instability causing distorted extrudates, is
also a problem related to fluid viscoelasticity. In addition, highly elastic
fluids may exhibit a tubeless siphon effect (Fig. 1.10).

Ψ2 = f(γ̇) =
σ22 − σ33

(γ̇)2
=

N2

(γ̇)2

σ11 − σ22 σ22 − σ33

N1 N2 N1

N2

N2 N2 = 0

N1/σ12

N1
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Figure 1.10. Weissenberg effect (fluid climbing a rotating rod), tubeless siphon
and jet swell of viscous (Newtonian) and viscoelastic fluids.

The recoil phenomena (Fig. 1.11), where tensile forces in the fluid
cause particles to move backward (snap back) when flow is stopped, may
also be observed in viscoelastic fluids. Other important effects include
drag reduction, extrudate instability, and vortex inhibition. An excel-
lent pictorial summary of the behavior of viscoelastic polymer solutions
in various flow situations has been prepared by Boger and Walters
(1993).

Normal stress data can be collected in steady shear flow using a
number of different techniques (Dealy, 1982): exit pressure differences
in capillary and slit flow, axial flow in an annulus, wall pressure in
concentric cylinder flow, axial thrust in cone and plate as well as parallel
plate flow. In general, these methods have been developed for plastic
melts (and related polymeric materials) with the problems of the plastic
industries providing the main driving force for change.

VISCOUS FLUID VISCOELASTIC FLUID

WEISSENBERG 

EFFECT

TUBELESS
SIPHON

JET SWELL
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Cone and plate systems are most commonly used for obtaining
primary normal stress data and a number of commercial instruments
are available to make these measurements. Obtaining accurate data
for food materials is complicated by various factors such as the presence
of a yield stress, time-dependent behavior and chemical reactions
occurring during processing (e.g., hydration, protein denaturation, and
starch gelatinization). Rheogoniometer is a term sometimes used to
describe an instrument capable of measuring both normal and shear
stresses. Detailed information on testing viscoelastic polymers can be
found in numerous books: Bird et al. (1987), Barnes et al. (1989), Bogue
and White (1970), Darby (1976), Macosko (1994), and Walters (1975).

Figure 1.11. Recoil phenomenon in viscous (Newtonian) and viscoelastic fluids.

Viscometric functions have been very useful in understanding the
behavior of synthetic polymer solutions and melts (polyethylene, poly-
propylene, polystyrene, etc.). From an industrial standpoint, the vis-
cosity function is most important in studying fluid foods and much of
the current work is applied to that area. To date, normal stress data
for foods have not been widely used in food process engineering. This
ispartly due to the fact that other factors oftencomplicate the evaluation
of the fluid dynamics present in various problems. In food extrusion,
for example, flashing (vaporization) of water when the product exits the
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die makes it difficult to predict the influence of normal stress differences
on extrudate expansion. Future research may create significant
advances in the use of normal stress data by the food industry.

Mathematical Models for Inelastic Fluids. The elastic behavior of
many fluid foods is small or can be neglected (materials such as dough
are the exception) leaving the viscosity function as the main area of
interest. This function involves shear stress and shear rate: the rela-
tionship between the two is established from experimental data.
Behavior is visualized as a plot of shear stress versus shear rate, and
the resulting curve is mathematically modeled using various functional
relationships. The simplest type of substance to consider is the New-
tonian fluid where shear stress is directly proportional to shear rate [for
convenience the subscript on will be dropped in the remainder of the

text when dealing exclusively with one dimensional flow]:

[1.25]

with being the constant of proportionality appropriate for a Newtonian
fluid. Using units of N, m2, m, m/s for force, area, length and velocity
gives viscosity as Pa s which is 1 poiseuille or 1000 centipoise (note: 1
Pa s = 1000 cP = 1000 mPa s; 1 P = 100 cP). Dynamic viscosity and
coefficient of viscosity are synonyms for the term "viscosity" in referring
to Newtonian fluids. The reciprocal of viscosity is called fluidity.
Coefficient of viscosity and fluidity are infrequently used terms.
Newtonian fluids may also be described in terms of their kinematic
viscosity ( ) which is equal to the dynamic viscosity divided by density
( ). This is a common practice for non-food materials, particularly
lubricating oils. Viscosity conversion factors are available in Appendix
[6.1].

Newtonian fluids, by definition, have a straight line relationship
between the shear stress and the shear rate with a zero intercept. All
fluids which do not exhibit this behavior may be called non-Newtonian.
Looking at typical Newtonian fluids on a rheogram (Fig. 1.12) reveals
that the slope of the line increases with increasing viscosity.

Van Wazer et al. (1963) discussed the sensitivity of the eye in judging
viscosity of Newtonian liquids. It is difficult for the eye to distinguish
differences in the range of 0.1 to 10 cP. Small differences in viscosity
are clearly seen from approximately 100 to 10,000 cP: something at 800
cP may look twice as thick as something at 400 cP. Above 100,000 cP
it is difficult to make visual distinctions because the materials do not

σ21

σ = µγ̇
µ

ν
µ/ρ
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Figure 1.12. Rheograms for typical Newtonian fluids.

pour and appear, to the casual observer, as solids. As points of reference
the following represent typical Newtonian viscosities at room temper-
ature: air, 0.01 cP; gasoline (petrol), 0.7 cP; water, 1 cP; mercury, 1.5
cP; coffee cream or bicycle oil, 10 cP; vegetable oil, 100 cP; glycerol, 1000
cP; glycerine, 1500 cP; honey, 10,000 cP; tar, 1,000,000 cP. Data for
many Newtonian fluids at different temperatures are presented in
Appendices [6.8], [6.9], and [6.10].

A general relationship to describe the behavior of non-Newtonian
fluids is the Herschel-Bulkley model:

[1.26]

where is the consistency coefficient, is the flow behavior index, and
is the yield stress. This model is appropriate for many fluid foods.

Eq. [1.26] is very convenient because Newtonian, power law (shear-
thinning when or shear-thickening when ) and Bing-
ham plastic behavior may be considered as special cases (Table 1.2, Fig.
1.13). With the Newtonian and Bingham plastic models, is commonly
called the viscosity ( ) and plastic viscosity ( ), respectively. Shear-

thinning and shear-thickening are also referred to as pseudoplastic and
dilatent behavior, respectively; however, shear-thinning and
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shear-thickening are the preferred terms. A typical example of a
shear-thinning material is found in the flow behavior of a 1% aqueous
solution of carrageenan gum as demonstrated in Example Problem
1.14.1. Shear-thickening is considered with a concentrated corn starch
solution in Example Problem 1.14.2.

Table 1.2. Newtonian, Power Law and Bingham Plastic Fluids as Special Cases of
the Herschel-Bulkley Model (Eq. [1.26])

Fluid K n Typical Examples

Herschel-Bulkley > 0 0 < n < > 0 minced fish paste,

raisin paste

Newtonian > 0 1 0 water, fruit juice,

milk, honey, vegeta-

ble oil

shear-thinning > 0 0 < n < 1 0 applesauce, banana

(pseudoplastic) puree, orange juice

concentrate

shear-thickening > 0 1 < n < 0 some types of

(dilatent) honey, 40% raw

corn starch solution

Bingham plastic > 0 1 > 0 tooth paste, tomato

paste

An important characteristic of the Herschel-Bulkley and Bingham
plastic materials is the presence of a yield stress ( ) which represents

a finite stress required to achieve flow. Below the yield stress a material
exhibits solid like characteristics: It stores energy at small strains and
does not level out under the influence of gravity to form a flat surface.
This characteristic is very important in process design and quality
assessment for materials such as butter, yogurt and cheese spread. The
yield stress is a practical, but idealized, concept that will receive addi-
tional discussion in a later section (Sec. 1.6). Typical yield stress values
may be found in Appendix [6.7].
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Figure 1.13.  Curves for typical time-independent fluids.

Figure 1.14. Rheogram of idealized shear-thinning (pseudoplastic) behavior.
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Shear-thinning behavior is very common in fruit and vegetable
products, polymer melts, as well as cosmetic and toiletry products
(Appendices [6.11], [6.12], [6.13]). During flow, these materials may
exhibit three distinct regions (Fig. 1.14): a lower Newtonian region
where the apparent viscosity ( ), called the limiting viscosity at zero

shear rate, is constant with changing shear rates; a middle region where
the apparent viscosity ( ) is changing (decreasing for shear-thinning
fluids) with shear rate and the power law equation is a suitable model
for the phenomenon; and an upper Newtonian region where the slope
of the curve ( ), called the limiting viscosity at infinite shear rate, is

constant with changing shear rates. The middle region is most often
examined when considering the performance of food processing equip-
ment. The lower Newtonian region may be relevant in problems
involving low shear rates such as those related to the sedimentation of
fine particles in fluids. Values of for some viscoelastic fluids are given

in Table 5.4.

Numerous factors influence the selection of the rheological model
used to describe flow behavior of a particular fluid. Many models, in
addition to the power law, Bingham plastic and Herschel-Bulkley
models, have been used to represent the flow behavior of non-Newtonian
fluids. Some of them are summarized in Table 1.3. The Cross,
Reiner-Philippoff, Van Wazer and Powell-Eyring models are useful in
modeling pseudoplastic behavior over low, middle and high shear rate
ranges. Some of the equations, such as the Modified Casson and the
Generalized Herschel-Bulkley, have proven useful in developing
mathematical models to solve food process engineering problems (Ofoli
et al., 1987) involving wide shear rate ranges. Additional rheological
models have been summarized by Holdsworth (1993).

The Casson equation has been adopted by the International Office
of Cocoa and Chocolate for interpreting chocolate flow behavior. The
Casson and Bingham plastic models are similar because they both have
a yield stress. Each, however, will give different values of the fluid
parameters depending on the data range used in the mathematical
analysis. The most reliable value of a yield stress, when determined
from a mathematical intercept, is found using data taken at the lowest
shear rates. This concept is demonstrated in Example Problem 1.14.3
for milk chocolate.

ηo

η

η∞

ηo
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Apparent Viscosity. Apparent viscosity has a precise definition. It
is, as noted in Eq. [1.22], shear stress divided by shear rate:

[1.27]

With Newtonian fluids, the apparent viscosity and the Newtonian
viscosity ( ) are identical but for a power law fluid is

[1.28]

Table 1.3. Rheological Models to Describe the Behavior of Time-
independent Fluids

Model (Source) Equation*

Casson (Casson, 1959)

Modified Casson (Mizrahi and Berk,
1972)

Ellis (Ellis, 1927)

Generalized Herschel-Bulkley (Ofoli et
al., 1987)

Vocadlo (Parzonka and Vocadlo, 1968)

Power Series (Whorlow, 1992)

Carreau (Carreau, 1968)

Cross (Cross, 1965)

Van Wazer (Van Wazer, 1963)

Powell-Eyring (Powell and Eyring, 1944)

Reiner-Philippoff (Philippoff, 1935)

* and are arbitrary constants and power indices, respectively, determined

from experimental data.
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Apparent viscosities for Bingham plastic and Herschel-Bulkley fluids
are determined in a like manner:

[1.29]

[1.30]

decreases with increasing shear rate in shear-thinning and Bingham
plastic substances. In Herschel-Bulkley fluids, apparent viscosity will
decrease with higher shear rates when , but behave in the
opposite manner when Apparent viscosity is constant with
Newtonian materials and increases with increasing shear rate in
shear-thickening fluids (Fig. 1.15).

Figure 1.15. Apparent viscosity of time-independent fluids.

A single point apparent viscosity value is sometimes used as a
measure of mouthfeel of fluid foods: The human perception of thickness
is correlated to the apparent viscosity at approximately 60 s-1. Apparent
viscosity can also be used to illustrate the axiom that taking single point
tests for determining the general behavior of non-Newtonian materials
maycauseseriousproblems. Some quality control instruments designed
for single point tests may produce confusing results. Consider, for
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example, the two Bingham plastic materials shown in Fig. 1.16. The
two curves intersect at 19.89 1/s and an instrument measuring the
apparent viscosity at that shear rate, for each fluid, would give identical
results: = 1.65 Pa s. However, a simple examination of the material
with the hands and eyes would show them to be quite different because
the yield stress of one material is more than 4 times that of the other
material. Clearly, numerous data points (minimum of two for the power
law or Bingham plastic models) are required to evaluate the flow
behavior of non-Newtonian fluids.

Figure 1.16. Rheograms for two Bingham plastic fluids.

Solution Viscosities. It is sometimes useful to determine the visco-
sities of dilute synthetic or biopolymer solutions. When a polymer is
dissolved in a solvent, there is a noticeable increase in the viscosity of
the resulting solution. The viscosities of pure solvents and solutions
can be measured and various values calculated from the resulting data:

[1.31]

[1.32]
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[1.33]

[1.34]

[1.35]

where is the mass concentration of the solution in units of g/dl or
g/100ml. Note that units of reduced, inherent, and intrinsic viscosity
are reciprocal concentration (usually deciliters of solution per grams of
polymer). The intrinsic viscosity has great practical value in molecular
weight determinations of high polymers (Severs, 1962; Morton-Jones,
1989; Grulke, 1994). This concept is based on the Mark-Houwink
relation suggesting that the intrinsic viscosity of a dilute polymer
solution is proportional to the average molecular weight of the solute
raised to a power in the range of 0.5 to 0.9. Values of the proportionality
constant and the exponent are well known for many polymer-solvent
combinations (Progelf and Throne, 1993; Rodriquez, 1982). Solution
viscosities areuseful in understanding the behaviorof some biopolymers
including aqueous solutions of locust bean gum, guar gum, and car-
boxymethylcellulose (Rao, 1986). The intrinsic viscosities of numerous
protein solutions have been summarized by Rha and Pradipasena
(1986).

1.5.2. Time-Dependent Material Functions

Ideally, time-dependent materials are considered to be inelastic with
a viscosity function which depends on time. The response of the sub-
stance to stress is instantaneous and the time-dependent behavior is
due to changes in the structure of the material itself. In contrast, time
effects found in viscoelastic materials arise because the response of
stress to applied strain is not instantaneous and not associated with a
structural change in the material. Also, the time scale of thixotropy may
be quite different than the time scale associated with viscoelasticity:
The most dramatic effects are usually observed in situations involving
short process times. Note too, that real materials may be both time-
dependent and viscoelastic!

reduced viscosity = ηred =
ηsp

C

inherent viscosity = ηinh =
lnηrel

C

intrinsic viscosity = ηint =




ηsp

C


 C → 0

C
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Figure 1.17. Time-dependent behavior of fluids.

Separate terminology has been developed to describe fluids with
time-dependent characteristics. Thixotropic and rheopectic materials
exhibit, respectively, decreasing and increasing shear stress (and
apparent viscosity) over time at a fixed rate of shear (Fig. 1.17). In other
words, thixotropy is time-dependent thinning and rheopexy is time-
dependent thickening. Both phenomena may be irreversible, reversible
or partially reversible. There is general agreement that the term
"thixotropy" refers to the time-dependent decrease in viscosity, due to
shearing, and the subsequent recovery of viscosity when shearing is
removed (Mewis, 1979). Irreversible thixotropy, called rheomalaxis or
rheodestruction, is common in food products and may be a factor in
evaluating yield stress as well as the general flow behavior of a material.
Anti-thixotropy and negative thixotropy are synonyms for rheopexy.

Thixotropy in many fluid foods may be described in terms of the
sol-gel transition phenomenon. This terminology could apply, for
example, to starch-thickened baby food or yogurt. After being man-
ufactured, and placed in a container, these foods slowly develop a three
dimensional network and may be described as gels. When subjected to
shear (by standard rheological testing or mixing with a spoon), structure
is broken down and the materials reach a minimum thickness where
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Figure 1.18. Thixotropic behavior observed in torque decay curves.

they exist in the sol state. In foods that show reversibility, the network
is rebuilt and the gel state reobtained. Irreversible materials remain
in the sol state.

The range of thixotropic behavior is illustrated in Fig. 1.18. Sub-
jected to a constant shear rate, the shear stress will decay over time.
During the rest period the material may completely recover, partially
recover or not recover any of its original structure leading to a high,
medium, or low torque response in the sample. Rotational viscometers
have proven to be very useful in evaluating time-dependent fluid
behavior because (unlike tube viscometers) they easily allow materials
to be subjected to alternate periods of shear and rest.

Step (or linear) changes in shear rate may also be carried out
sequentially with the resulting shear stress observed between steps.
Typical results are depicted in Fig. 1.19. Actual curve segments (such
as 1-2 and 3-4) depend on the relative contribution of structural
breakdown and buildup in the substance. Plotting shear stress versus
shear rate for the increasing and decreasing shear rate values can be
usedto generatehysteresis loops (a difference intheup anddown curves)
for the material. The area between the curves depends on the time-
dependent nature of the substance: it is zero for a time-independent
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fluid. This information may be valuable in comparing different
materials, but it is somewhat subjective because different step change
periods may lead to different hysteresis loops. Similar information can
be generated by subjecting materials to step (or linear) changes in shear
stress and observing the resulting changes in shear rates.

Figure 1.19. Thixotropic behavior observed from step changes in shear rate.

Torque decay data (like that given for a problem in mixer viscometry
described in Example Problem 3.8.22) may be used to model irreversible
thixotropy by adding a structural decay parameter to the Herschel-
Bulkley model to account for breakdown (Tiu and Boger, 1974):

[1.36]

where , the structural parameter, is a function of time. before the
onset of shearing and equals an equilibrium value ( ) obtained after

complete breakdown from shearing. The decay of the structural
parameter with time may be assumed to obey a second order equation:

[1.37]
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where is a rate constant that is a function of shear rate. Then, the

entire model is completely determined by five parameters: ,

and . and are determined under initial shearing conditions

when and . In other words, they are determined from the initial
shear stress in the material, observed at the beginning of a test, for each
shear rate considered.

and are expressed in terms of the apparent viscosity ( ) to
find . Equating the rheological model (Eq. [1.36]) to the definition of

apparent viscosity (which in this case is a function of both shear rate
and the time-dependent apparent viscosity) yields an expression for :

[1.38]

Eq. [1.38] is valid for all values of including at , the equilibrium
value of the apparent viscosity. Differentiating with respect to time,
at a constant shear rate, gives

[1.39]

Using the definition of , Eq. [1.37] and [1.39] may be combined
yielding

[1.40]

Considering the definition of given by Eq. [1.38], this may be rewritten
as

[1.41]

Simplification yields

[1.42]

or

k1

σo,K , n , k1(γ̇)

λe K ,n σo

λ = 1 t = 0

λ λ e η = σ/γ̇
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[1.43]

where

[1.44]

Integrating Eq. [1.43] gives

[1.45]

so

[1.46]

where is the initial value of the apparent viscosity calculated from

the initial ( and ) shear stress and shear rate.

Using Eq. [1.46], a plot versus , at a particular shear rate,

is made to obtain . This is done at numerous shear rates and the

resulting information is used to determine the relation between and

and, from that, the relation between and . This is the final infor-

mation required to completely specify the mathematical model given by
Eq. [1.36] and [1.37].

The above approach has been used to describe the behavior of
mayonnaise (Tiu and Boger, 1974), baby food (Ford and Steffe, 1986),
and buttermilk (Butler and McNulty, 1995). More complex models
which include terms for the recovery of structure are also available
(Cheng, 1973; Ferguson and Kemblowski, 1991). Numerous rheological
models to describe time-dependent behavior have been summarized by
Holdsworth (1993).

1.5.3. Modeling Rheological Behavior of Fluids

Modeling provides a means of representing a large quantity of
rheological data in terms of a simple mathematical expression. Rheo-
grams, summarized in terms of the Herschel-Bulkley equation (Eq.
[1.26]), represent one example of modeling. In this section we will
expand the idea to include temperature and concentration (or moisture
content) effects into single empirical expressions. Many forms of the
equations are possible and one master model, suitable for all situations,

dη
dt

= −a1(η − ηe)
2

a1 =
k1γ̇

σo +K(γ̇)n

⌠
⌡ηo

η
(η − ηe)
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−a1dt
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does not exist. The equations covered here are acceptable for a large
number of practical problems involving homogeneous materials which
do not experience a phase change over the range of conditions under
consideration.

The influence of temperature on the viscosity for Newtonian fluids
can be expressed in terms of an Arrhenius type equation involving the
absolute temperature ( ), the universal gas constant ( ), and the energy
of activation for viscosity ( ):

[1.47]

and are determined from experimental data. Higher values

indicate a more rapid change in viscosity with temperature. The energy
of activation for honey is evaluated in Example Problem 1.14.4.

Considering an unknown viscosity ( ) at any temperature ( ) and a
reference viscosity ( ) at a reference temperature ( ), the constant ( )

may be eliminated from Eq. [1.47] and the resulting equation written
in logarithmic form:

[1.48]

In addition to modeling the viscosity of Newtonian fluids, an Arrhenius
relationship can be used to model the influence of temperature on
apparent viscosity in power law fluids. Considering a constant shear
rate, with the assumption that temperature has a negligible influence
on the flow behavior index, yields

[1.49]

or

[1.50]

Eq. [1.50] can be used to find at any temperature ( ) from appropriate
reference values ( ). Activation energies and reference viscosities

for a number of fluid foods are summarized in Appendix [6.14].
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The effect of temperature on viscosity can also be modeled using a
relationship known as the Williams-Landel-Ferry (WLF) equation
proposed by Williams et al. (1955). A reference viscosity at a reference
temperature, and the numerical value of two constants are needed to
specify the relationship. The WLF equation is very useful in modeling
the viscosity of amorphous foods above the glass transition temperature
(Roos, 1992; Roos, 1995).

The effect of shear rate and temperature can be combined into a
single expression (Harper and El Sahrigi, 1965):

[1.51]

where is an average value of the flow behavior index based on all
temperatures. Eq. [1.51] can also be expressed in terms of shear stress:

[1.52]

The practical value of Eq. [1.52] is demonstrated for concentrated
orange juice in Example Problem 1.14.5. Parameters in the model
( ) were determined using a limited number of data sets taken at

a few specific temperatures. The final model (Eq. [1.52]), however, can
generate a rheogram at any temperature in the range. This is useful
in solving many food engineering problems such as those requiring a
prediction of the fluid velocity profile or pressure drop during tube flow.

Effects of temperature and concentration ( ) on apparent viscosity,
at a constant shear rate, can also be combined into a single relationship
(Vitali and Rao, 1984; Castaldo et al. 1990):

[1.53]

The three constants ( ) must be determined from experimental

data. Shear rate, temperature, and concentration (or moisture content)
can also be combined into a single expression (Mackey et al., 1989):

[1.54]

where the influence of shear rate is given in terms of a power law
function. The parameters ( , , and ) cannot be given an exact

physical interpretation because the sequence of steps used in deter-
mining them influences the magnitude of the constants. Equation

η = f(T, γ̇) =KT exp




Ea

RT




(γ̇)n −1

n

σ = f(T, γ̇) =KT exp




Ea

RT




(γ̇)n

KT,n ,Ea

C

η = f(T,C) =KT ,C exp




Ea

RT




CB

KT ,C,Ea,B

η = f(T, γ̇,C) =Kγ̇,T ,C(γ̇)
n −1 exp







Ea

RT




+B(C)



Kγ̇,T ,C n Ea B



1.6  Yield Stress Phenomena 35

parameters, for example, may be determined using stepwise regression
analysis with the assumption that interaction effects (such as temper-
ature dependence of and ) can be neglected. is a constant which

combines the effects of shear rate, temperature and concentration.

Rheological behavior of fluid foods is complex and influenced by
numerous factors. Eq. [1.54] allows prediction of apparent viscosity on
the basis of shear rate, temperature, and moisture content. Time-
temperature history and strain history may be added to form a more
comprehensive equation (Dolan et al., 1989; Dolan and Steffe, 1990;
Mackey et al., 1989; Morgan et al., 1989) applicable to protein and starch
based dough or slurry systems.

The influence of temperature on the behavior of polymeric materials
may be modeled by determining a shift factor using the principle of
time-temperature superposition (Bird et al., 1987). This technique is
one example of the method of reduced variables (outlined in detail by
Ferry, 1980) which can be expanded to include the effect of concentration
and pressure on rheological behavior. Time-temperature superposition
equates the effect of time and temperature on rheological properties.
The useful consequence of the method is that material behavior can be
investigated in time domains (usually very long or very short) that are
otherwise unavailable due to the experimental limitations. Time-
temperature superposition has proven to be a valuable method in stu-
dying creep and stress relaxation of synthetic polymers (Neilsen and
Landel, 1994); but the technique, which is sometimes applicable to
biological materials, has not been widely applied to foods. Da Silva et
al. (1994) found the time-temperature superposition principle was
inappropriate for modeling the temperature dependence of storage and
loss moduli of pectin dispersions. The idea, however, can provide a
useful empirical method for developing master-curves of rheological
data for many fluid foods. The technique is illustrated in Example
Problem 1.14.5 where a shift factor is calculated for concentrated orange
juice.

1.6. Yield Stress Phenomena

A yield stress ( ) may be defined as the minimum shear stress

required to initiate flow. The existence of a yield stress has been chal-
lenged (Barnes and Walters, 1985) using the argument that everything
flows given sufficient time or very sensitive measuring equipment. This
concept is explored in more detail in Sec. 5.6. From a practical stand-

n b Kγ̇,T ,C

σo
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point, there is little doubt that is an engineering reality (Hartnett

and Hu, 1989) which may strongly influence process engineering
calculations.

Table 1.4. Methods of Determining Yield Stress

Method Description or Parameter Reference
Measured

Extrapolation Shear stress versus shear rate Ofoli et al. (1987)
curve extrapolated to zero Keentok (1982)
shear rate. Yoshimura et al. (1987)

Extrapolation Apparent viscosity versus Van Wazer et al. (1963)
shear stress curve extrapolated Kaletunc-Gencer and Peleg
to infinite apparent viscosity. (1984)

Stress Decay Residual stress on a bob. Lang and Rha (1981)
Stress Decay Residual stress in a back Steffe and Osorio (1987)

extruder (annular pump).
Stress to Initiate Flow Controlled stress rheometers James et al. (1987)

measure the minimum stress
required for flow in traditional
geometries: cone and plate, etc.

Stress to Initiate Flow Stress on a smooth, rough or Lang and Rha (1981);
grooved bob. VocadloandCharles (1971)

Stress to Initiate Flow Stress to move an immersed DeKee et al. (1980)
vertical plate.

Stress to Initiate Flow Stress to causemotion in a tube Cheng (1986)
viscometer.

Stress to Initiate Flow Stress to create vane motion. Nguyen and Boger (1985)
Qiu and Rao (1988)
Yoo et al. (1995)

Stress to Initiate Flow Size of the plug flow radius in Lang and Rha (1981)
an annulus.

Stress to Initiate Flow Force to move material through Goodrich et al. (1989)
a finned, cylindrical cell.

Dynamic Testing Flat response of an oscillatory Cheng (1986)
input.

Vertical Plate Coating Amount of fluid remaining on a Lang and Rha (1981)
plate after withdrawal from Charm (1962)
sample.

Squeezing Flow Deformation between parallel Campanella and Peleg
circular disks. (1987a)

Cone Penetrometer Depth of penetration. Tanaka et al. (1971)

σo
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There are many ways to evaluate the yield stress for fluid like
substances (Table 1.4) and no single, "best" technique can be identified.
Different applications require different methods. One common method
of obtaining a yield stress value is to extrapolate the shear stress versus
shear rate curve back to the shear stress intercept at zero shear rate.
Values obtained using this method will be strongly influenced by the
rheological model (Bingham, Herschel-Bulkley, etc.) and shear rate
range selected to represent the data (Ofoli et al., 1987). This difficulty
is demonstrated for milk chocolate in Example Problem 1.14.3. An
alternative numerical procedure is to plot apparent viscosity versus
shear stress and determine from the point (related to zero shear rate)

where becomes infinite.
Reported yield stress values are actually defined by the rheological

techniques and assumptions used in the measurement. An absolute
yield stress is an elusive property: It is not unusual for a yield stress
obtained by one technique to be very different from one found using a
different method. Cheng (1986) has written an excellent review of the
yield stress problem and shown that the magnitudes of measured values
are closely associated with creep, stress growth, thixotropy, and the
characteristic timesof thesetransient responses. Hedescribed a concept
of static and dynamic yield stresses that has great practical value in
rheological testing of fluid foods.

Many foods, such as starch-thickened baby food (Steffe and Ford,
1985), thicken during storage and exhibit irreversible thixotropic
behavior when stirred before consumption. Chemical changes (e.g.,
starch retrogradation) cause a weak gel structure to form in the material
during storage. This structure is sensitive and easily disrupted by fluid
movement. The yield stress, measured in an undisturbed sample, is the
static yield stress. The yield stress of a completely broken down sample,
often determined from extrapolation of the equilibrium flow curve, is
the dynamic yield stress (Fig. 1.20). A static yield stress may be sig-
nificantly higher than the dynamic yield stress. If the material recovers
its structure during a short period of time (uncommon in food products),
then a rate parameter may be utilized to fully describe rheological
behavior.

The idea of a static and a dynamic yield stress can be explained by
assuming there are two types of structure in a thixotropic fluid (Cheng,
1986). One structure is insensitive to shear rate and serves to define
the dynamic yield stress associated with the equilibrium flow curve. A

σo

η
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Figure 1.20.  Static and dynamic yield stresses.

second structure, the weak structure, forms over a certain period of time
when the sample is at rest. Combined, the two structures cause a
resistance to flow which determines the static yield stress. Behavior
discussed above has been observed, though not mentioned in terms of
the static and dynamic yield stress, for many food products: apple sauce,
banana and peach baby food, mustard, tomato ketchup (Barbosa
Canovas and Peleg, 1983); and meat and yeast extracts (Halomos and
Tiu, 1981). Also, the same terminology (and essentially the same
meaning) was used by Pokorny et al. (1985) to interpret rheological data
for margarine. Yoo et al. (1995) defined a new dimensionless number,
theyieldnumberdefined as thestaticyield stressdividedby thedynamic
yield stress, to differentiate yield stresses.

An important issue in yield stress measurement, particularly from
a quality control standpoint, is reproducibility of the experimental data.
This is critical when comparing the overall characteristics of products
made on different production lines or in different plants. In this situ-
ation the measurement is closely tied to the application and the absolute
value of the yield stress may be unimportant. A "true value (most likely
the dynamic value)," of the yield stress may be essential to properly
design food processing systems like those required in tubular thermal
processing equipment where fluid velocity profiles are critical. Typical
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yield stresses, including data showing differences between the static
and dynamic yield values, are summarized in Appendix [6.7]. The vane
method, a simple and practical means of measuring the yield stress, is
presented in detail in Sec. 3.7.3 and Example Problems 3.8.19, 3.8.20,
and 3.8.21. Evaluating yield stresses using controlled stress rheometers
is discussed in Sec. 3.7.3 and the role of the yield stress in determining
the thickness of a food coating is examined in Example Problem 1.14.6.

1.7. Extensional Flow

Viscometric flow may be defined as that which is indistinguishable
from steady simple shear flow. Additional information may be obtained
from a different type of flow: extensional flow that yields an extensional
viscosity. Pure extensional flow does not involve shearing and is
sometimes referred to as "shear free" flow. In published literature,
elongational viscosity and Trouton viscosity are frequently used syn-
onyms for extensional viscosity. Similarly, elongational flow is a syn-
onym for extensional flow.

Many food processing operations involve extensional deformation
and the molecular orientation caused by extension, versus shear, can
produce unique food products and behavior. The reason shear and
extensional flow have a different influence on material behavior may
be explained by the way in which flow fields orient long molecules of
high molecular weight. In shear flow, the preferred orientation corre-
sponds to the direction of flow; however, the presence of a differential
velocity across the flow field encourages molecules to rotate thereby
reducing the degree of stretching induced in molecular chains. The
tendency of molecules to rotate, versus elongate, depends on the mag-
nitude of the shear field: There is relatively more elongation, less
rotation, at high shear rates. In extensional flow, the situation is very
different. The preferred molecular orientation is in the direction of the
flowfieldbecause thereare nocompeting forces to causerotation. Hence,
extensional flow will induce the maximum stretching of the molecules
producing a chain tension that may result in a large (compared to shear
flow) resistance to deformation.

The nature of the molecule, branched versus linear, may signifi-
cantly influence flowbehavior in extension. In comparable fluid systems
(i.e., high-density polyethylene, a linear molecule, versus low-density
polyethylene, a branched molecule) branched molecules will cause a
fluid to be less tension-thinning then linear molecules. A similar
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argument can be made in comparing the relative stiffness of biopolymer
molecules: Stiffer molecules are more quickly oriented in an extensional
flow field. This phenomenon may be a factor in the choice of a thickening
agent for pancake syrup: Stringiness can be reduced, while maintaining
thickness, when stiffer molecules are selected as additives. Reduced
stringiness leads to what can be called a clean "cut-off" after pouring
syrup from a bottle. An example of a stiff molecule would be the rod-like
biopolymer xanthan compared to sodium alginate or carboxymethyl-
cellulose which exhibit a randon-coil-type conformation in solution
(Padmanabhan, 1995).

Extensional flow is an important aspect of food process engineering
and prevalent in many operations such as dough processing. Sheet
stretching, as well as extrudate drawing, provides a good example of
extensional flow (Fig. 1.21). Converging flow into dies, such as those
found in single and twin screw extruders, involves a combination of
shear and extensional flow; the extensional component of deformation
is illustrated in Fig. 1.21. The analysis of flow in a converging die (see
Sec. 4.4) allows one to separate the pressure drop over the die into the
shear and extensional components. Converging flow may also be
observed when fluid is sucked into a pipe or a straw, or when applying
a food spread with a knife.

One of the most common examples of extensional flow is seen when
stretching warm mozzarella cheese while pulling a slice of pizza away
from the serving pan. Sometimes this behavior is subjectively referred
to as stringiness. A similar observation can be made when pulling apart
a caramel filled candy bar or a pastry with fruit filling. Extensional
deformation is also present in calendering (Fig. 1.22), a standard
operation found in dough sheeting. Gravity induced sagging (Fig. 1.22)
also embodies extensional deformation. This may be observed in a
cut-off apparatus associated with fruit filling systems for pastry prod-
ucts. Extensional flow in this situation is undesirable because it may
contribute to inconsistent levels of fill or an unsightly product
appearance due to smeared filling. Bubble growth from the production
of carbon dioxide gas occurring during dough fermentation, extrudate
expansion from the vaporization of water, and squeezing to achieve
product spreading involve extensional deformation (Fig. 1.23). Exten-
sional flow is also a factor in die swell and mixing, particularly dough
mixing with ribbon blenders.
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Figure 1.21. Extensional flow found in sheet stretching (or extrudate drawing)
and convergence into an extruder die.

Figure 1.22. Extensional flow in calendering and gravity induced sagging.

Sheet Stretching Extruder Die

Calendering Sagging
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Figure 1.23. Extensional flow found in bubble growth and squeezing flow
between lubricated plates.

Although extensional viscosity is clearly a factor in food processing,
our use of this rheological property in engineering design of processes
and equipment is still at an early stage of development. Extensional
flow is also an important factor in the human perception of texture with
regard to the mouthfeel and swallowing of fluid foods and fluid drugs.
In addition, many plastic manufacturing operations involve extensional
flow: compression moulding, thermoforming, blow moulding, fiber
spinning, film blowing, injection moulding, and extrusion.

Extensional viscosity has been measured for various food products.
Leighton et al. (1934) used the sagging beam method developed by
Trouton (1906) to measure the extensional viscosity of ice cream.
Results were presented in terms of apparent viscosity by using the well
known Trouton ratio showing that extensional viscosity is equal to three
times the shear viscosity (see Eq. [1.78]). This appears to be the first
reported measurement of the extensional flow of a food product. Moz-
zarella cheese has been tested in uniaxial tension by Ak and Gunase-
karan (1995). Biaxial extensional flow, produced by squeezing material
between parallel plates, has been used in evaluating cheese
(Campanella et al., 1987; Casiraghi et al., 1985), wheat flour doughs
(Huang and Kokini, 1993; Wikström et al., 1994), gels (Bagley et al.
1985; Christianson et al. 1985), and butter (Rohn, 1993; Shuka et al.,
1995). Data from the Chopin Alveograph, a common dough testing
device where a spherical bubble of material is formed by inflating a
sheet, can be interpreted in terms of biaxial extensional viscosity (Faridi

Bubble Growth Squeezing
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and Rasper, 1987; Launay and Buré, 1977). This technique requires an
accurate determination of the sample geometry before and during
inflation. Doughs have also been evaluated by subjecting them to
uniaxial extension (de Bruijne et al., 1990).

The spinning test (also called extrudate drawing) was applied to
measure the stretchability of melted Mozzarella cheese (Cavella et al.,
1992). Entrance pressure drop from converging flow into a die has been
used to evaluate an extensional viscosity for corn meal dough (Bhat-
tacharya et al., 1994; Padmanabhan and Bhattacharya, 1993; See-
thamraju and Bhattacharya, 1994) and bread dough (Bhattacharya,
1993). Additional methods have been proposed for evaluating the
extensional behavior of polymeric materials (Ferguson and Kemb-
lowski, 1991; James and Walters, 1993; Jones et al., 1987; Macosko,
1994; Petrie, 1979; Tirtaamadja and Sridhar, 1993; Walters, 1975):
bubble collapse, stagnation flow in lubricated and unlubricated dies,
opensiphon (Fano flow), filament stretching, spinning drop tensiometer,
and converging jets. Extensional viscosities for some Newtonian and
non-Newtonian fluids are presented in Appendices [6.15] and [6.16],
respectively. Measurement methods, and example problems, are dis-
cussed in Chapter 4.

Typesof Extensional Flow. There are three basic types of extensional
flow (Fig. 1.24): uniaxial, planar, and biaxial. During uniaxial extension
material is stretchedin one directionwitha corresponding sizereduction
in the other two directions. In planar extension, a flat sheet of material
is stretched in the direction witha corresponding decrease in thickness

( decreases) while the width ( direction) remains unchanged. Biaxial

extension looks like uniaxial compression, but it is usually thought of
as flow which produces a radial tensile stress.

Uniaxial Extension. With a constant density material in uniaxial
extension (Fig. 1.24), the velocity distribution in Cartesian coordinates,
described with the Hencky strain rate, is

x1

x2 x3
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Figure 1.24. Uniaxial, planar, and biaxial extension.

[1.55]

[1.56]

[1.57]

where . Since this flow is axisymmetric, it may also be described

in cylindrical coordinates (it may be helpful to visualize this situation
with the positive axis aligned with the axis, Fig. 1.24):

[1.58]

[1.59]

[1.60]

Pure extensional flow does not involve shear deformation; therefore, all
the shear stress terms are zero:

[1.61]
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Stress is also axisymmetric:

[1.62]

resulting in one normal stress difference that can be used to define the
tensile extensional viscosity:

[1.63]

Materials are considered tension-thinning (or extensional-thinning) if
decreases with increasing values of . They are tension-thickening

(extensional-thickening) if increases with increasing values of .

These terms are analogous to shear-thinning and shear-thickening used
previously (Sec. 1.5.1) to describe changes in apparent viscosity with
shear rate.

Biaxial Extension. The velocity distribution produced by uniaxial
compression causing a biaxial extensional flow (Fig. 1.24) can be
expressed in Cartesian coordinates as

[1.64]

[1.65]

[1.66]

where . Since , biaxial extension can actually be viewed as

a form of tensile deformation. Uniaxial compression, however, should
not be viewed as being simply the opposite of uniaxial tension because
the tendency of molecules to orient themselves is stronger in tension
than compression. Axial symmetry allows the above equations to be
rewritten in cylindrical coordinates (Fig. 1.24) as

[1.67]

[1.68]

[1.69]

Biaxial extensional viscosity is defined in terms of the normal stress
difference and the strain rate:

[1.70]

Planar Extension. In planar extension (Fig. 1.24), the velocity
distribution is
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=
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[1.71]

[1.72]

[1.73]

This type of flow produces two distinct stress differences: and

. Planar extensional viscosity is defined in terms of the most

easily measured stress difference, :

[1.74]

It is difficult to generate planar extensional flow and experimental tests
of this type are less common than those involving tensile or biaxial flow.

Relation Between Extensional and Shear Viscosities. The fol-
lowing limiting relationships between extensional and shear viscosities
can be expected for non-Newtonian fluids at small strains (Dealy, 1994;
Walters, 1975; Petrie, 1979):

[1.75]

[1.76]

[1.77]

Reliable relationships for non-Newtonian fluids at large strains have
not been developed. The above equations may be precisely defined for
the special case of Newtonian fluids:

[1.78]

[1.79]

[1.80]

Eq. [1.78], [1.79], and [1.80] can be used to verify the operation of
extensional viscometers. Clearly, however, a Newtonian fluid must be
extremely viscous to maintain its shape and give the solid-like
appearance required in many extensional flow tests. Extensional
behavior of low viscosity fluids can be evaluated with the method of
opposing jets (Sec. 4.5), by spinning (Sec. 4.6), or by investigating
tubeless siphon behavior (Sec. 4.7).
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Trouton established a mathematical relationship between tensile
extensional viscosity (he called it the coefficient of viscous traction) and
shear viscosity (Trouton, 1906). Presently, data for extensional and
shear viscosities are often compared using a dimensionless ratio known
as the Trouton number ( ):

[1.81]

Since extensional and shear viscosities are functions of different strain
rates, a conventional method of comparison is needed to remove
ambiguity. Based on a consideration of viscoelastic and inelastic fluid
behavior, Jones et al. (1987) advocated the following conventions in
computing the Trouton numbers for uniaxial and planar extensional
flow:

[1.82]

[1.83]

meaning that shear viscosities are calculated at shear rates equal to
or for uniaxial or planar extension, respectively. Using the

similar considerations, Huang and Kokini (1993) showed that the
Trouton number for case of biaxial extension should be calculated as

[1.84]

The Trouton ratio for a Newtonian fluid may be determined from Eq.
[1.78], [1.79], and [1.80]: in tensile extension it is equal to 3; it is 6 and
4, respectively, in biaxial and planar flow. Departure from these
numbers are due to viscoelastic material behavior. Experimental
results may produce considerably higher values.

1.8. Viscoelastic Material Functions
Fluidsthat have a significantelastic componentmay exhibitunusual

behavior (Fig. 1.10; Fig. 1.11): Weissenberg effect (rod climbing),
tubeless siphon, jet expansion, and recoil. Elastic behavior may be
evaluated using viscometric methods to determine the normal stress
differences found in steady shear flow. Alternatively, viscoelastic
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material functions may be determined from experiments involving the
application of unsteady state deformations. Generally, these dynamic
testing techniques may be divided into two major categories: transient
and oscillatory. Transient methods include tests of start-up flow, ces-
sation of steady shear flow, step strain, creep, and recoil. In oscillatory
testing, samples are deformed by the application of harmonically
varying strain which is usually applied over a simple shear field. A
comprehensive review of linear and nonlinear viscoelastic material
functions is summarized in Chapter 5. Steady shear and linear vis-
coelastic material functions can be related (see Sec. 5.7) using various
empirical relationships such as the Cox-Merz rule, the Gleissele’s mirror
relation, and Laun’s rule (Bird et al., 1987).

Creep and Step-Strain (Stress Relaxation). In a creep test,
material is subjected to a constant stress and the corresponding strain
is measured as a function of time, . The data are often plotted in
terms of the shear creep compliance,

[1.85]

versus time. In a step-strain test, commonly called a stress relaxation
test, a constant strain is applied to the test sample and the changing
stress over time is measured, . The data are commonly presented
in terms of a shear stress relaxation modulus,

[1.86]

versus time. Data from creep and stress relaxation tests can also be
described in terms of mechanical (spring and dashpot) analogs (Moh-
senin, 1986; Sherman,1970; Barnes et al., 1989; Polakowski and Ripling
(1966)) which will be considered in more detail in Chapter 5. Creep and
stress relaxation experiments can be conducted in shear, compression,
or tension. Shear creep parameters for various creamy style salad
dressings are given in Appendix [6.19].

Oscillatory Testing. The viscoelastic behavior of fluids can be
determined from dynamic testing where samples are subjected to
oscillatory motion when held in various containment systems, usually
a cone and plate or a parallel plate apparatus. Typically, a sinusoidal
strain is applied to the sample causing some level of stress to be
transmitted through the material. The magnitude and the time lag of
the transmission depend on the viscoelastic nature of the test substance.

γ (t)

J = f(t) =
γ

σconstant

σ(t)

G = f(t) =
σ

γconstant
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In viscous (more liquid like) materials, much of the stress is dissipated
in frictional losses; it is mostly transmitted in highly elastic materials.
Likewise, the time lag (also called the phase lag) is large for highly
viscous substances but small for materials exhibiting a high degree of
elasticity. Investigating this type of phenomena leads to the definition
of various material functions: complex viscosity ( ), dynamic viscosity
( ), complex modulus ( ), loss modulus ( ), and storage modulus ( ).
These functions are discussed in detail in Chapter 5. Sometimes,
oscillatory testing is referred to as "small amplitude oscillatory testing"
because small deformations must be employed to maintain linear vis-
coelastic behavior. Typical oscillatory data for various food products
are summarized in Appendices [6.20], [6.21], and [6.22].

1.9. Attacking Problems in Rheological Testing
Attacking rheological problems involves a critical judgement

regarding the typeof flowbehavior involved and a careful determination
of the appropriate instruments and techniques to use in finding a
solution. A simple classification of material behavior (Fig. 1.25) provides
a useful framework to approach rheological testing of an unknown fluid.
Behavioral extremes would be that of pure Hookean behavior (ideally
elastic material) and pure Newtonian behavior (ideally viscous mate-
rial); hence, these categories have been placed on the upper right and
left extremity of the figure. This symbolizes the fact that all real
materials exhibit both viscous and elastic behavior although one type
of behavior is frequently dominant. Water, for instance, is considered
Newtonian but will show some degree of elasticity under conditions
involving a very short process time, e.g., when a high velocity object
impacts a body of water. In evaluating solids, one is typically looking
at a stress-strain relationship as opposed to a fluid where a shear
stress-shear rate relationship is studied.

When investigating the behavior of a new fluid, one must first
determine if the material can be considered inelastic (purely viscous)
meaning that behavior associated with elasticity (die swell, rod clim-
bing, etc.) is not important in the application. If purely viscous, the next
question deals with time-dependency and involves issues of structural
stability or breakdown when subjected to a shear force. With materials
that are time-independent, a rheogram may be developed and different
mathematical equations (power law, Bingham, Herschel-Bulkley, or
any of those presented in Table 1.3) considered to find a model that
accurately describes flow behavior. Viscoelastic fluids, those showing

η*

η′ G* G ′′ G ′
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Figure 1.25.  Simple classification of rheological behavior.

significant levels of both viscous and elastic behavior, may be tested
using dynamic methods or static techniques (creep or stress relaxation)
with various mechanical models (discussed in Sec. 5.2) being used to
interpret results: Kelvin, Maxwell or Burgers models. Normal stress
differences can be determined from viscometric flow. Extensional
deformation may be used to determine additional material functions
associated with stretching.

Classifying fluids is a valuable way to conceptualize fluid behavior;
however, it is not meant to imply that the types of behavior noted in
Fig. 1.25 are mutually exclusive. A material showing elastic behavior
(such as dough) may simultaneously be shear-thinning and time-
dependent! Other factors, like aging, may also influence rheological
behavior. Tomato ketchup, for example, may be properly described as
a time-independent, shear-thinning, fluid immediately after manufac-
ture but aging often gives the material a weak gel like structure causing
the product to exhibit thixotropic behavior when used by the consumer.
This explains why agitating the ketchup, by stirring or shaking in the
bottle, makes the condiment more pourable. Clearly, the ability to

Fluid (Viscous Behavior) Solid (Elastic Behavior)

Newtonian Non-Newtonian

Time-Dependent

Power Law Bingham Herschel-Bulkley

Rheopectic Thixotropic
Viscoelastic

HookeanNon-Hookean

Fluid-Solid
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Non-Linear Elastic

KelvinMaxwell Burgers

Structural Models
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conceptualize different types of rheological behavior is very important
in the development, or improvement, of many new food products and
processes.

Estimating Shear Rates in Practical Applications. It is very
important that steady shear data be collected over the appropriate shear
rate range. The minimum shear rate is often zero due to the presence
of stationary equipment surfaces. Estimates of the maximum shear
rate found in many processing systems can be obtained from a critical
evaluation of the equipment.

In systems where fluid is closely contained between moving
machinery parts, the maximum shear rate can be estimated from the
velocity difference divided by the separation distance. An example of
this can be found with an anchor impeller turning in a mixing vessel
(Fig. 1.26) where the maximum shear rate is calculated as the tip speed
of the impeller divided by the gap between the impeller and the mixing
tank:

[1.87]

Spreading (butter or margarine) or brushing (frosting or paint) opera-
tions are frequently found in the food industry. In this case (Fig. 1.26),
the maximum shear rate can be estimated from the velocity of the brush
(or knife) divided by the thickness of the coating:

[1.88]

Estimating maximum shear rates in systems with widely spaced
moving parts presents a different problem. Consider, for example, a
paddle mixer in a vessel where so the influence of the wall is
negligible (Fig. 1.27). Experimental data, taken a small distance from
the impeller, can be used to obtain the velocity profile perpendicular to
the axis of rotation. If these data are available, the maximum shear rate
can be estimated from the differential velocity and the height of the
blade (Fig. 1.27):

γ̇max =
dΩ

D −d

γ̇max = u /z

D d
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Figure 1.26. Maximum shear rates found in mixing with an anchor impeller
and brushing.

[1.89]

In the absence of experimental data, the tip speed of the impeller ( )
can be used in place of but this procedure will give an over

estimate of the maximum shear rate because due to the

fact that fluid momentum is rapidly dissipated in the mixing vessel.
Data of fluid velocity in the vicinity of mixing blades have been collected
for a radial flat-blade turbine type mixer (Oldshue, 1983; Koutsakos
and Nienow, 1990).

The maximum shear rate for fluid flow in a tubular geometry (Fig.
1.27) can be determined from the volumetric flow rate ( ) and the inside
radius of the tube:

[1.90]

This calculation is exact for Newtonian fluids but must be modified for
power law materials to include the flow behavior index:

[1.91]
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Figure 1.27. Maximum shear rate in a mixer when  (where  is the vessel
diameter), and flow of a Newtonian fluid in a tube.

Eq. [1.91] is very helpful in estimating the shear rate range needed to
determine rheological data for pipeline design calculations because
many fluid foods exhibit shear-thinning behavior, . These
relationships can also be used in considering flow through tube type
systems such as ointment and tooth paste containers, frosting tubes,
and spray nozzels. The origins of Eq. [1.90] and [1.91] will be clarified
in a later discussion of tube viscometry given in see Sec. 2.2.

1.10. Interfacial Rheology

Both the shear and extensional viscosities discussed in preceding
sections of this chapter are bulk material properties. Flow behavior at
material interfaces, however, can be very different than bulk flow
behavior. Interfacial rheology is a field of study that investigates
deformations occurring at fluid interfaces. Many practical problems
may involve interfacial rheological phenomena: formation, stability and
processing of foams and emulsions; spraying and atomization; selection
of surfactants; and film formation. Bulk and interfacial viscosities can
be related using the Boussinesq number:

u=0
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b
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[1.92]

Interfacial viscosity (usually reported in units of surface poise, sp,
equivalentto 1 g s-1) strongly affects bulk flow behaviorat fluid interfaces
when (Edwards et al., 1991).

Figure 1.28. Disk surface viscometer to measure interfacial shear viscosity.

Various techniques are available to measure interfacial rheological
behavior. These can be divided into indirect methods involving the
examination of velocity profiles or direct methods involving the mea-
surementof interfacial torsion. The disk surface viscometer is a classical
(direct) method of measuring interfacial shear viscosity (Fig. 1.28). In
this system the cup is turned and the resulting torque is measured on
the fixed plate. To determine the interfacial viscosity, the torque con-
tribution is considered in two parts: 1) one part, related to the bulk
viscosity, due to fluid contact under the plate; 2) one part, related to the
interfacial shear viscosity, due to the film induced traction along the
rim of the plate. Interfacial shear viscosity may exhibit Newtonian or
non-Newtonian behavior. Additional instruments to study interfacial
rheology include the deep-channel surface viscometer, biconical inter-
facial viscometer, and various types of knife edge viscometers. Edwards
et al. (1991) gives a detailed summary of numerous measurement

NBo =
interfacial viscosity

bulk viscosity (length scale)

NBo >1

fluid

interface
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techniques for the determination of interfacial shear viscosity. Future
research in interfacial rheology will lead to many improved products
and processes in the food industry.

1.11. Electrorheology

The phenomenon of electrorheology refers to changes in the rheo-
logical behavior due to the imposition an electric field on a material. It
is sometimes called the Winslow effect after W.M. Winslow who
discovered it in 1947 (Winslow, W.M. 1947. U.S. Patent Specification
2417850). There has been a great deal of interest in electrorheological
(ER) fluids for use in various mechanical devices (Block and Kelly,1988):
clutches, brakes, hydraulic valves, active or tunable damper systems,
wide-band-high-power vibrators, chucks, exercise equipment, and
robotic control systems. In the future, ER fluids will have a strong
impact on the automotive industry and may eventually lead to improved
designs for food manufacturing machinery. It may also be possible to
develop unique processing schemes and new products for foods that
exhibit an ER effect. The search for industrially viable electrorheo-
logical fluids has been hindered by the abrasiveness and chemical
instability of candidate materials. Similar possibilities, and problems,
are found with magnetorheological fluids where flow behavior may be
changed with the imposition of a magnetic field.

ER fluids are dispersions of solid particulates, typically 0.1 to 100 m
in diameter, in an insulating (non-conducting) oil. At low shear rates,
in the absence of an electric field, particles are randomly distributed
(Fig. 1.29) and many ER fluids will show nearly Newtonian behavior.
With the application of an electric field, particles become polarized,
causing particle alignment across the electrode gap creating an
enhanced fiber-like structure. This alignment, associated with inherent
electrical charges on the particles, causes ER substances to thicken
dramatically. Application of a voltage causes some materials to develop
high yield stresses characteristic of Bingham plastic behavior. In fact,
the yield stresses can be so high that flow ceases, effectively trans-
forming the material from a liquid to a solid. Results are influenced by
many factors: nature (alternating or direct current) and strength of the
electric field, temperature, composition and volume fraction of particles,
shear rate, rheological and dielectric properties of the dispersing oil.
Extensive experimental work is needed to evaluate the flow behavior of
a particular ER fluid. To fully understand this problem involves a

µ
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Figure 1.29. Particle alignment with and without an electric field (voltage per
unit length) applied across a narrow gap.

careful studyof the interplay between viscous, thermal, and polarization
forces (Zukoski, 1993). Comments similar to the above may be made
for magnetorheological fluids where the magnetic domains of the par-
ticles rotate until they line up with the applied magnetic field.

There are a number of food related ER fluids such as cellulose or
sodiumcarboxymethyl cellulose in liquid paraffin, and starch orgelatine
in olive oil. Milk chocolate is also known to be an ER fluid. Daubert
and Steffe (1996) observed an ER response in this material: milk
chocolate rheograms were shifted upward with an increase in electric
field strength. A typical example of this is illustrated in Fig. 1.30. The
yieldstress, defined by the Casson equation, also increased with voltage.
Temperature changes had a very interesting effect on ER behavior. In
the presence of a voltage, increasing the temperature caused milk
chocolate to thicken producing an upward shift in the rheogram. It
appears that particle polarity was enhanced at higher temperatures.
In the absence of a voltage the usual trend, a decrease in apparent
viscosity with temperature increases, was observed.
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+
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+
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Figure 1.30 Typical influence of electric field strength (DC Volts/mm) on the
flow behavior of molten milk chocolate.

1.12. Viscometers for Process Control and Monitoring
The goal of this section is to provide an overview of the primary

measurement concepts and issues involved in the use of viscometers for
continuous process control or monitoring. All process viscometers used
for food products must conform to appropriate sanitary standards and
accepted practices such as the 3-A and Egg 3-A standards published by
the International Association of Milk, Food and Environmental Sani-
tarians (Des Moines, IA). Many process control viscometers were not
designed for food applications and cannot be modified for acceptable
sanitary operation. Viscometers discussed here are typical of indus-
trially available units which are generally acceptable for use in the food
industry. The current focus is on units that evaluate a steady shear
viscosity. An industrial system to determine extensional viscosity,
based on flow through an orifice (see Sec. 4.4.3), is also available.
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In-line or On-line Installation. Viscometers for process control or
monitoring may be installed using various measurement schemes.
"In-line" systems are installed directly in the process line, usually in a
pipe. These systems are subject to process variations, such as changes
in sample temperature, which may significantly influence sensor out-
put. "On-line" units make measurements on a product side stream, also
called a by-pass loop, taken from the main process flow line. One
advantage of this type of system is that sample variables (including flow
rate, temperature, and pressure) may be controlled during testing. A
third type of process control viscometer is the immersion system
designedfor use in process vessels, particularly mixingtanks. The above
units provide alternatives to "off-line" measurements where a small
sample is removed from the process line and evaluated in a standard
laboratory instrument.

Figure 1.31. Capillary, on-line viscometer using side stream flow.

Measurement Concepts. A side stream capillary viscometer is
illustrated in Fig. 1.31. Sample flow rate is determined by the speed of
the gear pump. The system may be operated in two modes: constant
flow rate or constant pressure. In the constant pressure mode, the gear
pump is driven at the speed required to maintain a set pressure at the
entrance to the capillary. In the constant flow rate mode, the pump

main flow

side stream

gear pump

capillary

pressure
transducer
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speed is fixed and the pressure drop required to force material through
the capillary is measured. Regardless of the mode of operation, viscosity
is directly proportional to the pressure drop across the capillary divided
by the flow rate through the system. A commercial version of the side
stream capillary viscometer, designed primarily for polymer melts, is
produced by Goettfert, Inc. (Rock Hill, SC).

Figure 1.32. Concentric cylinder type in-line viscometer.

An in-line concentric cylinder viscometer measures the torque, on
the inner cylinder, generated by the outer cylinder moving at a fixed
speed (Fig. 1.32). Viscosity is proportional to the torque divided by the
speed of the outer cylinder. The viscometer relies on perforations in the
bob and cup to achieve continuous flow throughout the annular gap
where fluid properties are measured. An alternative rotational vis-
cometer is illustrated in Fig. 1.33. In this case, an off-set cylindrical
element is attached to a rotating shaft causing a gyratory motion of the
sensor. A continuous flow of test fluid moves through a perforated
sheath during testing. Torque required to maintain a fixed speed of
rotation is measured. Viscosity is proportional to the torque required
to maintain a constant speed of rotation. Brookfield Engineering
Laboratories (Stoughton, MA), and C.W. Brabender Instruments (S.
Hackensack, NJ), respectively, produce instruments like those illus-
trated in Fig. 1.32 and 1.33.
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Figure 1.33. In-line viscometer using an off-set rotating element.

Figure 1.34. In-line viscometer using a vibrating rod.
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Figure 1.35. In-line viscometer using a vibrating sphere.

Vibrational viscometers are considered surface loaded systems
because they respond to a thin layer of fluid at the surface of the sensor.
In-line units may involve rod (Fig. 1.34) or spherical (Fig. 1.35) sensors.
In each case, the sensor is driven at a fixed frequency and the power
required to maintain a precise amplitude is measured. Since the
vibrating probe accelerates the fluid, power input is proportional to
product of viscosity and density. Density compensation can be incor-
poratedallowing a direct computation of Newtonian viscosity. Spherical
type vibrational viscometers are manufactured by Nameter (Metuchen,
NJ).

Animmersion type, falling body viscometer is illustrated in Fig. 1.36.
A piston is periodically raised allowing sample to fill the cylindrical
container. During testing, sample is expelled from the cylinder by the
piston which is allowed to fall under the influence of gravity. Using
reference data for standard Newtonian fluids, the falling time is cor-
related to sample viscosity. This concept can also be applied to an on-line
processingsystem. Various fallingpiston viscometers aremanufactured
by Norcross Corporation (Newton, MA).

Practical Considerations in Selecting a Process Control Vis-
cometer. It is important to have a good understanding of the fluid
under consideration before selecting a process control viscometer. The
influence of temperature, ingredient formulation, and processing con-
ditions on flow behavior must be ascertained before quality control or
set-points can be accurately established. Temperature has such a strong

flow

transducer

vibrating sphere
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Figure 1.36. Falling piston, immersion type: (A) loading phase, (B) end of mea-
surement.

influence on rheological behavior that it is usually necessary to either
carefully control it when conducting measurements or compensate for
it when making final calculations.

Process control viscometers are generally designed for Newtonian
fluids where the viscosity is not a function of shear rate. To evaluate
non-Newtonian fluids, multiple data points, taken at different shear
rates are required. Hence, operational shear rates must be established
and matched to the capabilities of the process control viscometer. The
shear rates can be easily estimated in the capillary viscometers (Fig.
1.31) or concentric cylinder systems (Fig. 1.32), but they arevery difficult
to calculate in others such as the unit with the offset rotational element
illustrated in Fig. 1.33. Determining fundamental rheological proper-
ties when shear rates cannot be evaluated is very complex; hence, some
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process control viscometers can only generate comparative flow
behavior data (not absolute rheological properties) for non-Newtonian
fluids.

Process control viscometers may provide a strictly empirical
parameter, an apparent viscosity, or a flow curve if samples are
deformed at multiple shear rates. This information must be correlated
to specific processing factors, such as the amount of cocoa butter in
chocolateor the amount of water intomato paste, before a control scheme
can be initiated. If an on-line instrument is used for quality control,
then quality must be carefully defined and directly related to the rhe-
ological property being measured. Also, the acceptable variation in
quality must be known to establish the proper limits (or set-points)
required in developing a control strategy. All process control viscome-
ters must be calibrated regularly and carefully observed to ensure
satisfactory long term performance.

1.13. Empirical Measurement Methods for Foods

The food industry uses many empirical instruments (Table 1.5) to
measure the flow behavior of food products. These devices are not used
to determine fundamental rheological properties, but results may find
diverse applications: quality control, correlation to sensory data, or even
serve as official standards of identity. Food engineers may find it
necessary to replace empirical devices, like the Bostwick Consistometer
used for pureed foods, with more fundamental instruments to achieve
engineering objectives related to process control. With the exception of
the melt flow indexer for molten polymers, all the instruments discussed
in this section are used for food products.

It is important to recognize the fact that numerous foods are so
complex it is not practical, and in many cases not possible, to measure
their fundamental rheological properties. Carrots, peanuts, peas, or
beans (for example) are non-homogeneous, nonisotropic materials with
complex geometries. Only empirical testing devices, capable of mea-
suring composite material behavior, provide a suitable means of char-
acterizing these foods. Empirical instruments are a valuable and well
established part of the food industry. Since they do not measure
fundamental properties, they may appropriately be called indexers.
Some of the most common units are described in this section. Consult
Bourne (1982) and Brennan (1980) for additional information on eval-
uating food texture.
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Table 1.5. Typical Empirical Testing Instruments and Applications for
Food Products (Summarized from Bourne, 1982)

Device Common Application

Adams Consistometer consistency of semifluid food purees

Armour Tenderometer beef tenderness

Baker Compressimeter staleness of bread

Ballauf Pressure Tester puncture testing of fruit and vegetables

BBIRA Biscuit Texture Meter hardness of cookies and crackers

Bloom Gelometer puncture test of gelatins and gelatin jellies

Bostwick Consistometer flow of baby foods and similar purees

Chatillon Pressure Tester puncture testing of fruit and vegetables

Effi-Gi Pressure Tester puncture testing of fruit and vegetables

Extensigraph behavior of wheat dough

Farinograph baking quality of wheat flour

FMC Pea Tenderometer quality and maturity of fresh green peas

FTC Texture Test System attachments for many foods

GF Texturometer attachments for many foods

Haugh Meter egg quality

Hilker-Guthrie Plummet firmness of cultured cream

Instron Universal Testing Machine attachments for many foods

Kramer Shear Press tenderness of peas and other particulate foods

Magness-Taylor Pressure Tester puncture testing of fruit and vegetables

Marine Colloids Gel Tester puncture test marine extract gels

Mixograph baking quality of wheat flour

Ottawa Pea Tenderometer quality and maturity of fresh green peas

Ottawa Texture Measuring System attachments for many foods

Pabst Texture Tester firmness of particulate foods

Penetrometer firmness of butter and margarine

Plint Cheese Curd Torsiometer setting of cheese curd

Resistograph baking quality of wheat flour

Ridgelimiter stiffness of pectin and fruit jellies

Stevens Compression Response attachments for many foods
Analyzer

Succulometer maturity and quality of fresh sweet corn

SURDD Hardness Tester hardness of fats and waxes

Torry Brown Homogenizer toughness of fish

USDA Consistometer consistency of semifluid food purees

Van Dorran Pressure Tester puncture testing of butter

Warner-Bratzler Shear toughness of meat
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Dough Testing Equipment (Farinograph, Mixograph, Extensi-
graph, Alveograph). Dough - a combination of cereal (usually wheat)
flour, water, yeast, salt, and other ingredients - is probably the most
complex material facing the food rheologist; hence, it is not surprising
that many empirical instruments have been developed to evaluate the
flow behavior of dough. The instruments may be divided into two major
groups: those which measure the power input during dough develop-
ment caused by a mixing action, and those which subject prepared
(developed) dough to an extensional deformation. The following
discussion will describe the major instruments found in each group.
Standard methods for operating these instruments and interpreting
data are published by the American Association of Cereal Chemists (St.
Paul, MN), and the International Association for Cereal Chemistry and
Technology.

One of the most widely used dough mixers is the Farinograph
(D’Appolonia and Kunerth, 1984). This instrument combines dough
ingredients using two Z-shaped mixing blades that rotate, at different
speeds, in opposite directions. Mixing is initiated with dry flour and
water is added from a titrating buret during testing. A dynamometer
is used to record torque on the drive shaft of the mixing blades. Output
is given as a farinogram: a plot of an instrument-dependent parameter
proportional to torque, expressed as a Brabender unit (BU, also called
consistency), versus time. The shape of the farinogram is interpreted
in terms of factors related to flour quality and the behavior of the dough
in the bakery: dough development time, stability, mixing tolerance, and
degree of softening. The amount of water required to give a consistency
of500 BU to a 14% moisture content (wet basis) flour is alsoan important
flour parameter, known as the farinograph water adsorption, deter-
mined using the Farinograph.

An alternative to the Farinograph is the Mixograph which involves
a planetary rotation of vertical pins (lowered into the dough) about
stationary vertical pins attached to the mixing bowl. Torque is recorded
while mixing a fixed amount of flour and water. Results are given in
terms of a mixogram which is interpreted in a manner analogous to that
discussed for the farinogram.

The Extensigraph (Rasper and Preston, 1991) generally conducts
tests on doughs prepared in the Farinograph. A special molding device
shapes the dough into a cylindrical specimen which is placed horizon-
tally into a support system. The ends are clamped firmly in place leaving
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the middle section free for testing. A hook contacts the middle of the
sample and stretches it while moving downward at a constant speed.
The force on the sample, caused by the downward motion of the hook,
is recorded. Results are given as an extensogram, a plot of force (in
Brabender units) versus time and extension, which provides valuable
quality control information for the dough. It is important to note that
materials with similar farinograms may have very different extenso-
grams. The effects of oxidizing agents and enzymes on dough behavior,
for example, can often be evaluated with extensograms.

The Alveograph (Shuey and Tipples, 1980), also called the Chopin
Extensigraph, measures dough behavior when subjecting it to an
extensional deformation. In this instrument, a circular disk is cut from
a sheet of dough and clamped, around its circumference, to the base
plate of the test apparatus. Air flowing through the base plate causes
the dough to expand into a spherically shaped bubble which eventually
ruptures completing the test. The air pressure in the bubble over time
is recorded and plotted as an alveogram. In routine testing, the maxi-
mum height, overall length, and the area under the curve are the pri-
mary parameters taken off the alveogram. Alveograph data have been
used to calculate biaxial extensional viscosity (Faridi and Rasper, 1987;
Launay and Buré, 1977).

Cone Penetrometer. Stiff materials --like butter, peanut butter, or
margarine-- are often assessed for "spreadability" using cone penetra-
tion data. This instrument consists of a weighted cone that is positioned
vertically over the flat surface of the test sample. Cone angles of 20 or
45 degrees are typical. In standard testing, the cone is released into the
sample and the depth of penetration, after a fixed period of time, is
measured. Since test materials have a high yield stress, the cone comes
to rest quickly. Results may be presented in terms of a yield value which
is directly proportional to the weight of the cone assembly and inversely
proportional to the depth of penetration (Haighton, 1959; Sone, 1972).
Operating cone penetrometerswith a constant downward speed, instead
of a constant weight, is also an effective method of obtaining exper-
imental data (Tanaka et al., 1971). Standard methods for testing
lubricating greases involve double angle cones: one cone, with a small
angle, mounted on a second cone with a larger angle.
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Warner-Bratzler Shear. The basic part of this instrument is made
from a 1 mm thick steel blade with a triangular hole cut from it. Metal
bars, one located on each side of the blade, serve two functions: they
orient the blade and push the test sample into the V shaped notch of
the triangular opening. Maximum force to cut through the sample is
recorded. Higher levels of cutting force are associated with increasing
sample toughness. The Warner-Bratzler Shear is extensively used to
evaluate the texture of raw and cooked meats. In these experiments,
careful sample preparation and orientation are essential for obtaining
reproducible results. Other foods such as carrots, celery, rhubarb, and
asparagus have also been tested in this device.

Bostwick Consistometer. The instrument is a simple device used to
evaluate the flow characteristics of pureed foods including applesauce,
catsup, andnumerous baby-foodproducts. These unitsare usually made
of stainless steel and consist of two abutting compartments connected
with a common floor but separated by a spring-loaded gate. The first
compartment is 5 X 5 X 3.8 cm when the gate is lowered. This section
is loaded with fluid at the beginning of the test which is initiated by
pressinga trigger that releases thegate. Fluid flows, under the influence
of gravity, into the second compartment consisting of an inclined trough
which is 5 cm wide, 24 cm long and approximately 2.5 cm high. The
floor of the trough is graduated in 0.5 cm increments and movement
down the trough reflects fluid properties. Measurements are taken after
a specified time (typically 5 to 30 s) and reported as centimeters of travel
from the starting gate. If fluid motion produces a curved surface, the
travel distance of the leading edge is reported. The Bostwick Consis-
tometer is still widely used as a quality control tool by the food industry.
It is difficult to precisely relate Bostwick readings to fundamental
rheological behavior (Vercrusse and Steffe, 1989); however, significant
progress has been made for Newtonian and power law fluids using a
gravity current analysis (McCarthy and Seymour (1994) which showed
Bostwick measurements to be linearly related to apparent viscosity
divided by density raised to the -0.2 power: .

Adams Consistometer. This device measures flow, due to gravity,
over a horizontal plate made of glass, metal, or steel. The plate has a
series of concentric circles, located one-quarter inch apart, radiating out
from the geometric center of the plate. A truncated cone is centered on
the plate and loaded with sample, then vertically raised by hand
allowing material to flow radially outward over the flat surface. After

(η/ρ)−0.2
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a fixed period of time (10 to 30 s is typical), the distance traveled in each
quadrant is measured and the average value is recorded (in inches) as
the "Adams Consistency." The Adams Consistometer is commonly used
to evaluate cream style corn and similar products.

Zhan Viscometer. This device is a well known example of an orifice
viscometer. It consists of a small cup-shaped vessel with a hole (orifice)
in the bottom. The cup is filled with sample which is allowed to dis-
charged through the orifice. Time is measured from the beginning of
discharge until the steady stream coming out of the cup begins to drip.
Discharge time is correlated to viscosity. Zhan type viscometers are
used in many quality control applications.

Visco-Amylograph. The Visco-Amylograph (Shuey and Tipples, 1980)
was designed to evaluate the behavior of starch solutions during gela-
tinization. It consists of a rotating bowl with eight vertical pins and a
matching, suspended element, with seven vertical pins. Torque is
recorded on the upper element during rotation of the bowl. The system
includes a thermoregulator which allows the sample to be heated (the
standard rate is 1.5 C per minute) during testing. When an aqueous
suspension of starch is heated above the gelatinization temperature,
the fluid thickens dramatically. A complete amylograph test usually
involves four distinct thermal periods while the bowl is rotated at a
constant speed: heating, holding, cooling, and holding. Results are
presented as an amylogram which is a plot of torque (given as viscosity
in Brabender units) versus time. Amylograms have proven useful in
evaluating the quality of starch and its behavior as a thickening agent
in many food systems.

Rapid Visco Analyser. This instrument generates data similar to
that provided by the Visco-Amylograph. Small samples, typically 3 to
4 grams of starch in water, are heated in a small mixing vessel with a
pitched paddle impeller. The aluminum mixing vessel and plastic
impeller are both disposable. Samples are subjected to user program
changes in temperature (heating, holding, and cooling) intended to
match processing conditions found in a particular application. Torque,
or instrument viscosity, are measured over time while the sample is
agitated and programmed temperature changes are executed. This
instrument, originally intended to evaluate the quality of Australian
wheat, may be used to examine the quality of a wide variety of food
starches.

°
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Brookfield Rotating Disks and T-Bars. Brookfield Engineering
Laboratories (Stoughton, MA) manufactures a rotational instrument
(called the Brookfield Viscometer) that is extensively used in the food
industry. The most common sensors are flat disks (spindles) attached
to the instrument with a vertical shaft. Disks are available in various
sizes and may be rotated at different speeds. Torque required to
maintain constant rotation is measured. This device can read the vis-
cosity of Newtonian fluids directly because it is calibrated with New-
tonian materials (silicone oils).

Since a thorough analysis of shear rate on the disk is complex
(Williams, 1979), it is difficult to use the Brookfield Viscometer for the
determination of non-Newtonian fluid properties. Simplified
approaches suggested by Mitschka (1982) and Durgueil (1987) are
applicable to some foods. These techniques use numerous constants to
convert torque and angular velocity data into shear stress and shear
rate values, respectively. Briggs (1995) successfully determined the
shear-thinning behavior of banana puree, salad dressing, chocolate
syrup, enchilada sauce, and pancake syrup using Brookfield spindles
and the Mitschka (1982) method of analysis.

Disk sensors can be very useful in obtaining a relative index of food
thickness for the purpose of comparing products or making quality
control judgments. In addition to disks, T-shaped bars are made for the
same purpose. Instruments, equipped with the T-bars, can also be
attached to the Brookfield Helipath Stand which allows the entire
instrument to be lowered during testing. This causes the sensor to take
a spiral path through the sample while torque data are obtained. The
Helipath Stand is typically used for thick pastes and gels where a
rotating disk would be difficult to insert or create a channeling effect
during measurement.

Falling Ball Viscometer. Equations for the falling ball viscometer
are derived in Example Problem 1.14.4. This type of viscometer involves
a vertical tube where a ball is allowed to fall, under the influence of
gravity, through a Newtonian fluid. Viscosity is calculated on the basis
of the time taken to fall a fixed distance. If the vessel diameter is 10
times the ball diameter, wall effects can be neglected.

The rising bubble viscometer represents another application of the
falling ball concept. In this case, a bubble of air is allowed to ascend
through a column of sample. Rising time over a set distance is correlated
to Newtonian viscosity.
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Hoeppler Viscometer. The Hoeppler Viscometer is a variation of the
falling ball concept. In this case, a ball having a diameter slightly
smaller than the cylindrical vessel containing the test fluid, falls
through a tube positioned with a 10 degree inclination from the vertical
position. Time of fall over a set distance is correlated to the viscosity of
Newtonian fluids. Units of this type are sometimes called rolling ball
viscometers because descending spheres may roll along the wall of the
viscometer.

Brabender-FMC Consistometer. This unit was originally designed
to evaluate cream style corn but ithas alsobeen used forketchup, tomato
paste, baby food, and similar products. It is designed to lower a thin,
rectangular shaped, paddle into a sample held in a stainless steel cup.
The cup is rotated at a single speed of 78 rpm. This motion creates a
torque on the paddle that is read from a dial located on the top of the
instrument. Paddles are available in various sizes: 5.08 cm (2 inch) by
3.56 cm (1.4 inch) is typical.

Figure 1.37. Compression-extrusion and Kramer shear cells commonly used to
evaluate the behavior of particulate foods.

blade holder

shear blades

sample holder

Kramer Shear Cell

Compression-Extrusion Cell

annulus



1.13  Empirical Measurement Methods for Foods 71

Compression-Extrusion Cell. This test apparatus (Fig. 1.37) is a
common device used to measure the behavior of particulate foods
(Bourne, 1982). In the compression-extrusion cell (also called a back
extrusion cell), sample compression causes material to flow through the
annulus formed between the plunger and the cylindrical container.
Sample data consist of a curve relating the force on the plunger versus
the distance of plunger travel (or travel time). Curves from different
samples, involving different treatments or varieties, are compared to
establish differences in product texture.

Kramer Shear Cell. The Kramer shear cell (Fig. 1.37) is a well
establishedtool forevaluating thecomposite flowbehavior ofparticulate
foods. A typical system contains 10 shear blades which are 3.2 mm thick
and separated by a distance equal to the thickness (3.2 mm). Bars form
matching slits in the top and bottom of the sample holder. The sample
box is approximately 65 mm wide, long, and deep. During testing, the
sample holder is filled with food and the shear blades (properly aligned
with the bars in the top) are forced through the material until they pass
through the bars in the bottom of the sample holder. Force on the ram
holding the blades is measured over time and correlated to product
firmness.

Simple Compression. Biological materials may be evaluated in terms
of a bioyield point and a rupture point (Mohsenin, 1984). A curve such
as the one illustrated in Fig. 1.38 is typical for solid foods, like fruits
and vegetables, when a cylindrical sample is tested in simple com-
pression. The initial portion of the curve (a-b) is a straight line up to
the linear limit (b). Young’s modulus may be calculated from the stress
andstrain at that point: . A secant ora tangent modulus, defined

at a particular strain, may be calculated if the line is curved (Mohsenin,
1986). The slope of the initial portion of the curve is often taken as an
index of firmness. When stress and strain cannot be calculated, data
may be simply plotted in terms of force and deformation.

The bioyield point (c) is related to a failure in the microstructure of
the material associated with an initial disruption of cellular structure
(Fig. 1.38). It is observed at a stress and strain of and , respectively.

The rupture point (d) of the material, defined by and , correlates to

the macroscopic failure in the sample. With more brittle materials the
rupture point may be very close to the bioyield point: These points may
be widely separated in tough materials. The American Society of

σb/εb = E

σc εc

σd εd
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Figure 1.38. Generalized compression curve for a biological solid.

Agricultural Engineers (ASAE, St. Joseph, MI) has established a
standard method for the compression testing of food materials of convex
shape (ASAE Standard S368.2). It is similar to the simple compression
test described here.

Texture Profile Analysis. Texture refers to the human sensation of
food derived from its rheological behavior during mastication and
swallowing. Obtaining a quantitative description of texture using
instrumental data is very complicated because no instrument can
duplicate human capabilities. From an engineering perspective, the
mouth can be considered an intricate mechanical system and chemical
reactor that can crush, wet, enzymatically degrade, pressurize, heat or
cool, pump, chemically sample for taste, and sense force and tempera-
ture. In addition, this "eating machine" has a sophisticated feedback
control system. Initially there is open loop, feed forward control to set
primary parameters: size of mouth opening, surface selection for first
bite (incisors or molars), etc. Once the food is in the mouth, there is an
adaptive feed back control system with a variable gain -high with
unfamiliar foods, low with everyday foods- that depends on bolus
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development during mastication. This process is influenced by many
factors: volume of the oral cavity, rate of addition of saliva, chemical
composition of saliva, chemical and physical interaction of saliva and
the food, rate of chewing, total number of chews, surface area in contact
with the food, movement of the lips and cheeks, dynamic volume of the
oral cavity during mastication, residence time of the bolus, initial vol-
ume of the bolus, and partial fluid removal (by swallowing) during
chewing. Given the above, it is not surprising that little progress has
been made in correlating fundamental rheological properties to the
human perception of texture. There has been limited success with some
fluid (Christensen, 1987; Kokini and Cussler, 1987; Sherman, 1988) and
solid foods (Hamann and Lanier, 1987; Montejano et al., 1985).

Overall, there are two methods to evaluate food texture: sensory and
instrumental. The sensory method of developing a texture profile
(Muñoz et al. 1992) utilizes a human taste panel and provides the
ultimate testwhich, as discussedabove, cannotbe completely duplicated
by any instrumental procedure. Instrumental methods, however, are
much less costly and time consuming than sensory tests. Moreover,
they often correlate to critical sensory attributes which allow some
measure of consumer acceptability. It is, however, rare for them to stand
alone as a complete test. In any event, they can certainly be very
valuable when used in conjunction with sensory panels. Generating
and interpreting texture profile information, with instrumental or
sensory means, is called Texture Profile Analysis. A double compression
test, the most recognized instrumental means of characterizing the
texture of solid and semi-solid foods, is discussed below.

The idea of texture profiling food was proposed in 1963 (Friedman
et al., 1963; Szczesnaik et al. 1963) and conducted using an instrument
known as the General Foods Texturometer. Bourne (1968 and 1974)
adopted, and extended, the technique to the Instron Universal Testing
Machine where a food sample (bite size pieces of food, usually a 1 cm
cube) is compressed, two times, usually to 80 percent of its original
height. Compression is achieved using parallel plates where one plate
is fixed and the other plate moves with a reciprocating linear cyclical
motion. Since this test is intended to reflect the human perception of
texture, the first and second compression cycles are referred to as the
first bite and second bite, respectively. A generalized texture profile
curve is illustrated in Fig. 1.39. Various textural parameters may be
determined from the curve (Bourne, 1978; Szczesnaik et al. 1963):
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Figure 1.39. Generalized texture profile curve obtained from the Instron Univer-
sal Testing Machine (from Bourne et al., 1978).

Figure 1.40. Texture profile curves (1 = first bite; 2 = second bite) for four food
products (from Bourne, 1978).
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• Fracturability: force at the first major drop in force curve. Popular
terms describing fracturability are crumbly, crunchy, and brittle.

• Hardness 1: force at maximum compression during first bite.
Popular terms describing hardness are soft, firm, and hard.

• Area 1 (area under the solid line up to the dashed line in the first
compression cycle): work done on the sample during the first bite.

• Adhesiveness: Area 3 (area under the zero force line) representing
the work, caused from a tensile force, needed to pull food apart and
separate it from the compression plates. A similar adhesiveness
characteristic is present in the second compression cycle. Popular
terms describing adhesiveness are sticky, tacky, and gooey.

• Adhesive Force: maximum negative force.

• Stringiness: distance food extends before it breaks away from the
compression plates.

• Hardness 2: force at maximum compression during second bite.

• Area 2 (area under the solid line up to the dashed line in the second
compression cycle): work done on the sample during the second bite.

• Springiness: distance or length of compression cycle during the
second bite. Popular terms describing springiness are plastic and
elastic.

• Cohesiveness: the ratio of Area 2 divided by Area 1.

• Gumminess: the product of Hardness (first peak called Hardness
1 in Fig. 1.39) times Cohesiveness. Popular terms describing
gumminess are short, mealy, pasty, and gummy.

• Chewiness: the product of Gumminess times Cohesiveness times
Springiness which is equivalent to Gumminess times Springiness.
Popular terms describing chewiness are tender, chewey, and tough.
Though Chewiness and Gumminess are similar, they are mutually
exclusive. The same product cannot exhibit both Chewiness and
Gumminess: Chewiness refers to solid foods and Gumminess refers
to semi-solid foods (Szczesnaik, 1995).

Typical texture profile curves for apple tissue, frankfurter, cream
cheese, a pretzel stick are shown in Fig. 1.40. Observing these curves
makes it clear that many foods do not exhibit all the textural parameters
defined above. Texture Profile Analysis has proved to be a very useful
technique for examining food products which fracture; however, texture
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profile curves are subject to many variations making the proper inter-
pretationofexperimentaldata challenging. More fundamental analyses
can be attempted using the science of fracture mechanics.

Figure 1.41. Simple melt flow indexer for molten polymers.

Melt Flow Indexer for Polymers. The melt flow indexer is a weight
driven capillary instrument used as a quality control device to charac-
terize the behavior of molten polymers. Although the device is not
employed for food, use of the instrument in the thermoplastics industry
is so widespread that anyone interested in fluid rheology should have
a general awareness of how it operates.

A simple melt flow indexer (Fig. 1.41) is contained within a thermal
jacket which controls sample temperature. A known mass is placed on
the plunger which drives a piston downward causing the sample to be
extruded through the die. Exact dimensions and operating procedures

mass

piston

sample

die

jacket

extrudate



1.14.1  Carrageenan Gum Solution 77

are described by American Society for Testing and Materials (ASTM)
standards. Typical dimensions involve a die diameter of 2.1 mm, and
a ratio of die length to die diameter equal to 4. In a common testing
procedure known as "condition E," a sample (such as polyethylene) is
allowed to come to an equilibrium temperature of 190 C. Then, a 2.16
kg mass is placed on the piston and the molten polymer is extruded from
the die. The weight, in grams, of the extrudate produced in 10 minutes
is the melt flow index, or simply the melt index, of the polymer. Values
of the melt flow index reflect the viscosity of the material: Low viscosity
materials, corresponding to a low molecular weight, have a high melt
flow index. This information is very valuable in the thermoplastics
industry because it correlates well to the quality and processing char-
acteristics of numerous polymers.

1.14. Example Problems

1.14.1. Carrageenan Gum Solution

Rheological data for a 1% aqueous solution of carrageenan gum at 25 C
are available (Table 1.6). Determine the power law parameters and plot
the apparent viscosity curve.

Table 1.6. Steady Shear, Rheological Data for a 1% Aqueous Solution of Carra-
geenan Gum at 25 C (Data from Prentice and Huber, 1983)

(s-1) (Pa) (s-1) (Pa)

9.88 2.61 58.8 8.20
11.4 2.97 75.4 9.08
12.9 2.81 104.1 11.63
14.1 3.44 110.4 10.65
17.6 3.80 120.5 12.75
26.3 4.85 136.5 13.10
42.0 6.61 145.8 14.90
48.6 6.19 187.1 15.85
49.3 5.89 210.2 12.70
55.5 7.22 270.0 20.50

The data were plotted (Fig. 1.42) and an excellent fit was obtained
with linear regression analysis using the power law model: = 0.66 Pa
sn and = 0.60. Other rheological models could be used to fit the
experimental data. Some (like the Newtonian model) would result in
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greater statistical variation while others (like the Herschel-Bulkley
model) would improve the statistical accuracy with which the equation
represents the data.

Figure 1.42. Rheogram for a carrageenan gum solution at 25 C.

Figure 1.43. Apparent viscosity of a carrageenan gum solution at 25 C.
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Apparent viscosity is calculated as and plotted as a function of
shear rate (Fig. 1.43). Mathematically, the curve can be described in
terms of the power law fluid model using and values determined
from the shear stress versus shear rate data:

The data presented in Table 1.6 have also been evaluated in terms of
the Casson, Bingham, and Herschel-Bulkley models in Appendix 6.4
where the method of linear regression analysis is explained.

1.14.2. Concentrated Corn Starch Solution

Examine the rheological information presented (Fig. 1.44) for a con-
centrated (53% wt/wt) solution of raw corn starch and water. Steady
shear data were collected using a conventional cone (4 degree, 60 mm
diameter) and plate apparatus.

Figure 1.44. Rheogram of a 53% (wt/wt) solution of raw corn starch and water
at 25 C.
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The corn starch solution is a concentrated suspension of starch
particles in water. Examination of the apparent viscosity curve (Fig.
1.44) shows initial shear-thinning followed by strong shear-thickening
behavior. At low shear rates ( s-1), the water has a lubricating
effect between the particles and flow is relatively unhindered. With
higher shear rates ( s-1), increased resistance from particle to
particle interaction causes a significant increase in apparent viscosity.
Curve fitting the data, above 4.5 s-1, to the power law model yields:

where = 0.131 Pa s and = 1.72. A flow behavior index equal to 1.72,
a value significantly greater than 1.0, is a numerical indication of a large
shear-thickening effect. The above equation is illustrated as the line
plotted in Fig. 1.44.

Table 1.7. Rheological Data for Swedish Commercial Milk Chocolate at 40 C (Data
from Prentice and Huber, 1983)

(s-1) (Pa) (s-1) (Pa)

0.099 28.6 6.4 123.8
0.140 35.7 7.9 133.3
0.199 42.8 11.5 164.2
0.390 52.4 13.1 178.5
0.790 61.9 15.9 201.1
1.60 71.4 17.9 221.3
2.40 80.9 19.9 235.6
3.90 100.0

A concentrated corn starch solution can provide an excellent visual
and tactile example of shear-thickening behavior. First, a 50 to 55%
(wt/wt) solution consisting of raw corn starch (available in most grocery
stores) and water is required. Next, one must be willing to examine the
material with bare hands. If you slowly move a finger through the
material, the solution feels and appears like a liquid. If the finger is
moved quickly, however, this substance provides much greater
resistance and shows solid-like behavior by fracturing and separating
at the higher shear rate! The material quickly reverts to a liquid-like
appearance at the cessation of movement.

0 < γ̇ <4.5

γ̇ ≥4.5

σ =K(γ̇)n = .131(γ̇)1.72

K n

°

γ̇ σ γ̇ σ
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1.14.3. Milk Chocolate

Rheological data for milk chocolate at 40 C are available (Table 1.7).

Determine the Casson and Bingham plastic model parameters for this
material.

Figure 1.45.  Regression analyses of 40 C milk chocolate applying the Bingham
plastic model over different shear rate ranges.

Data are present for low shear stresses and a plot (Fig. 1.45) of this
information suggests the presence of a yield stress. Casson and Bing-
hamplasticmodel parameterswere calculated over three differentshear
rate ranges (Table 1.8). The results clearly indicate that the model and
shear rate range covered in the analysis have a strong influence on the
yield stress (the dynamic yield stress) calculated from the intercept of
the regression curve. When data at the lower shear rates are empha-
sized, the calculated yield stress decreases. This results in Bingham
yield values ranging from 35.1 to 52.3 Pa.
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Table 1.8. Constants for Bingham Plastic ( ) and Casson
( ) Models Used to Describe the Behavior of 40 C Milk
Chocolate Over Three Shear Rate Ranges

Casson Model Bingham Plastic

r2 r2

(s-1) (Pa.5 s.5) (Pa) (Pa s) (Pa)

0 - 20 2.21 29.7 .99 8.82 62.3 .99
1.6 - 20 2.14 32.3 .99 9.80 48.7 .98
0 - 1.6 3.04 17.8 .89 25.5 35.1 .84

1.14.4. Falling Ball Viscometer for Honey

The effect of temperature on the viscosity of a Newtonian fluid can be
illustrated by considering data from a falling ball viscometer. Derive
(Part a) the falling ball viscometer equations and use them to evaluate
(Part b) the viscosity of honey from the data given in Table 1.9. Also,
evaluate the influence of temperature on honey viscosity using the
Arrhenius equation.

Part a. Consider a sphere (radius= ; density= ) dropping through a
Newtonian fluid (density= ) otherwise at rest. The sphere, traveling

downward at terminal velocity ( ), is subject to three forces: buoyancy

( ), drag ( ) and gravity ( ). A force balance

yields

[1.93]

where the drag term comes from Stoke’s law (Trans. Cambridge Phil.
Soc. Vol. 8, 1845 and Vol. 9, 1851). Simplification of Eq. [1.93] gives

[1.94]

The time ( ) required for the ball to fall a fixed distance ( ) is

[1.95]

so the terminal velocity is

σ = σo + µpl(γ̇)n

σ0.5 = (σo)0.5 +K1(γ̇)0.5 °
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Table 1.9. Falling Ball Viscometer Data for Honey at Six Temperatures

Ball #1 Ball #2 Ball #3

ball diameter ( ), m .00475 .00678 .00792
ball density, kg/m3 7900 7900 7900
length of fall, m 0.20 0.20 0.20
honey density, kg/m3 1400 1400 1400
container diameter ( ), m 0.036 0.036 0.036

= d/D 0.132 0.188 0.220
Faxen correction factor 0.727 0.617 0.559

at 6.5 C, s 270.0 152.5 122.0

at 12.5 C, s 108.3 58.5 46.8

at 20.0 C, s 31.7 17.8 14.4

at 21.5 C, s 25.7 14.4 11.4

at 38.0 C, s 3.0 1.8 1.4

at 48.0 C, s 1.5 1.0 0.9

at 6.5 C, Pa s 107.79 124.04 135.41

at 12.5 C, Pa s 43.22 47.58 51.94

at 20.0 C, Pa s 12.67 14.51 15.98

at 21.5 C, Pa s 10.26 11.67 12.65

at 38.0 C, Pa s 1.20 1.46 1.55

at 48.0 C, Pa s 0.60 0.81 0.99

at 6.5 C, Pa s 78.38 76.59 75.68

at 12.5 C, Pa s 31.43 29.38 29.03

at 20.0 C, Pa s 9.21 8.96 8.93

at 21.5 C, Pa s 7.46 7.20 7.07

at 38.0 C, Pa s 0.87 0.90 0.87

at 48.0 C, Pa s 0.44 0.50 0.56

at 6.5 C, s-1 0.94 1.16 1.24

at 12.5 C, s-1 2.3 3.0 3.2

at 20.0 C, s-1 7.9 9.9 10.5

at 21.5 C, s-1 9.8 12.3 13.3

at 38.0 C, s-1 84.2 98.3 108.2

at 48.0 C, s-1 168.9 176.9 168.4

[1.96]

Substituting Eq. [1.96] into Eq. [1.94] yields
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[1.97]

so

[1.98]

where is the falling ball viscometer constant defined as

[1.99]

Our focus in this section is on the falling ball viscometer. Eq. [1.94],
however, can also be used as a basis for calculating settling velocities
of particles including pigments in paint, and chocolate in milk.

Using Eq. [1.98] and [1.99] the viscosity of a Newtonian fluid can be
calculated directly. It is also possible to calculate the viscosity using a
reference liquid, a Newtonian liquid of known viscosity, to eliminate
errors caused from inaccurate determination of the ball radius or drop
length. is equal for the unknown and reference liquids, therefore,

[1.100]

where the subscripts 1 and 2 refer to the test and reference liquid,
respectively. The maximum shear rate, located at the equator of the
sphere, is (Sherman, 1970):

[1.101]

Eq. [1.100] is acceptable for and cases where the

sphere diameter is less than 1/10 the vessel diameter. If necessary, one
may mathematically account for the presence of the wall when .
Faxen (Arkiv. Mat. Astron. Fyzik. 17(27)1: 1922-1923) showed that the
viscosity calculated using Stoke’s law could be corrected for wall effects
using the following equation:

[1.102]
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where is equal to the sphere diameter ( ) divided by the container
diameter ( ) and is the corrected viscosity. The term in brackets, the

Faxen correction factor, is applicable up to = 0.32. An alternative
expression (Chhabra, 1992) can be used when :

[1.103]

Part b. Raw data for a test involving three spheres, one cylindrical
container andhoney atsix different temperatures arepresented inTable
1.9. The Faxen correction factor, as well as uncorrected (from Eq. [1.97])
and corrected (from Eq. [1.102]) viscosities were calculated from the
experimental data (Table 1.9).

Corrected honey viscosities, taken from Table 1.9, were averaged at
each temperature (Table 1.10) and the data fit (r2=0.99) to the Arrhenius
equation (Eq. [1.47]):

yielding

where: is the temperature in degrees Kelvin; = 1.987 cal/(g-mole K);
= 21,801 cal/ (g-mole); = 5.58 (10-16) Pa s. Results may also be

expressed in terms of a reference viscosity. Using a value of 3.77 Pa s,
calculated at 300 K with the previous relationship, yields

Table 1.10. Average of Corrected Viscosities for Honey

T T

( C) (K) (Pa s)

6.5 278.7 76.88
12.5 285.7 29.95
20.0 293.2 9.03
21.5 294.7 7.25
38.0 311.2 0.88
48.0 321.2 0.50
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The above equations provide convenient expressions for calculating the
viscosity of honey at any temperature from 6.5 C to 48 C.

1.14.5. Orange Juice Concentrate

Rheological data for concentrated orange juice, at four different tem-
peratures, are given in Table 1.11. Describe this data using the rheo-
logical model expressed by Eq. [1.52]:

Also, make a master-curve of the data using 9.5 C as the reference
temperature.

A rheogram (Fig. 1.46), using the power law model, is determined
at each temperature generating a flow behavior index and a consistency
coefficient for each curve (Table 1.12). Using this data, the average flow
behavior index may be calculated:

Table 1.11. Rheological Data for Concentrated Orange Juice (65 Brix, 5.7% Pulp)
Made from Perna Oranges (Data from Vitali and Rao, 1984)

T = -18.8 C T = -5.4 C T = 9.5 C T = 29.2 C

(Pa) (s-1) (Pa) (s-1) (Pa) (s-1) (Pa) (s-1)

14.4 0.5 4.3 0.6 2.6 1.1 3.6 8
24.3 1 6.5 1 10.3 8 7.6 20

141.9 10 38.4 10 17.1 15 13.1 40
240.4 20 65.4 20 29.5 30 17.5 60
327.2 30 88.7 30 50.3 60 31.2 120
408.0 40 111.1 40 69.4 90 54.5 240
483.9 50 131.9 50 103.3 150 94.4 480
555.9 60 151.7 60 153.8 250 141.7 800
635.2 70 171.3 70 199.8 350 170.0 1000
692.5 80 189.4 80 242.8 450 183.2 1100

° °

σ = f(T, γ̇) =KT exp
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RT
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Figure 1.46. Rheograms of orange juice concentrate (Perna oranges: 65  Brix,
5.7% pulp) at four different temperatures.

Temperature dependency of the consistency coefficient (data in
Table 1.12, plotted in Fig. 1.47) may be determined from regression of

Table 1.12. Power Law Fluid Properties for Concentrated Orange Juice at Four
Temperatures

T T

( C) (K) (1/K) (Pa sn) (-)

-18.8 254.4 0.003931 24.37 0.764

-5.4 267.8 0.003734 6.45 0.772

9.5 282.7 0.003538 2.25 0.762

29.2 302.4 0.003307 0.69 0.797
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Figure 1.47. Variation of the consistency coefficient of concentrated orange juice
with temperature.

[1.104]

showing that Pa and K. Hence, the

complete model, giving shear stress as a function of temperature and
shear rate, may be expressed as

or, in terms of apparent viscosity, as

Since the shear stress and apparent viscosity equations may be used
over the entire temperature and shear rate range, they could be very
useful in solving many food process engineering design problems related
to the production of orange juice concentrate. A comparison (Fig. 1.48)
of the full prediction equation with the original data indicate reasonably

0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.004
0.5

1

2

5

10

20

50
K

, P
a 

s
n

1/T, K
-1

Effect of Temperature on K

K =KT exp




Ea

RT





KT = 4.65(10−9) sn Ea/R = 5668.25

σ = 4.646(10−9) exp




5668.3
T




(γ̇).774

η = 4.646(10−9) exp




5668.3
T




(γ̇).774−1.0



1.14.5  Orange Juice Concentrate 89

good results when compared to the case where separate rheograms are
generated for each data set (Fig. 1.46). This level of accuracy is
acceptable in solving most food engineering problems.

Figure 1.48.  Comparison of the raw data and prediction equation for the full
shear rate-temperature model of concentrated orange juice.

A reference temperature of 9.5 C will be used in developing a

master-curve of the experimental data. Note that any value over the
range of temperatures considered could be selected as the reference
temperature. Developing a master curve requires a horizontal shifting
of the data at -18.8 C, -5.4 C, and 29.3 C to the 9.5 C curve (Fig. 1.46).
A dimensionless shift factor ( ) is numerically found to account for the

movement of each curve. Shear stress versus shear rate divided by the
shift factor ( ) are plotted to produce the master-curve.

In this example, a shear stress of 100 Pa will be used as the basis
for determining . Shear rates at Pa are calculated using the

constants provided in Table 1.12. At -18.8 C, for instance,
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Table 1.13. Shear Rates (at = 100 Pa) and Shift Factors

T  at 100 Pa
( C) (1/s) ( - )

-18.8 6.35 6.35 / 145.4 = 0.0437
-5.4 34.83 34.83 / 145.4 = 0.2395
 9.5 145.4 145.4 / 145.4 = 1.000
29.3 514.0 514 / 145.4 = 3.536

and at 9.5 C, the shear rate is calculated as

With this information, the shift factor at -18.8 C is found using the shear
rate at the reference temperature of 9.5 C:

Calculated shear rates and shift factors for each curve are summarized
in Table 1.13.

Table 1.14. Shifted Rheological Data for Concentrated Orange Juice (65 Brix,
5.7% Pulp) Used to Produce the Master-Curve

T=-18.8 C T=-5.4 C T=9.5 C T=29.2 C

(Pa) (s-1) (Pa) (s-1) (Pa) (s-1) (Pa) (s-1)

14.4 11.4 4.3 2.5 2.6 1.1 3.6 2.3
24.3 22.8 6.5 4.2 10.3 8.0 7.6 5.7

141.9 228.8 38.4 41.8 17.1 15.0 13.1 11.3
240.4 457.7 65.4 83.5 29.5 30.0 17.5 17.0
327.2 686.5 88.7 125.3 50.3 60.0 31.2 33.9
408.0 915.3 111.1 167.0 69.4 90.0 54.5 67.9
483.9 1144.2 131.9 208.8 103.3 150.0 94.4 135.7
555.9 1373.0 151.7 250.5 153.8 250.0 141.7 226.2
635.2 1601.8 171.3 292.3 199.8 350.0 170.0 282.8
692.5 1830.7 189.4 334.0 242.8 450.0 183.2 311.1
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Figure 1.49.  Plot of shear stress versus  providing a master-curve of con-
centrated orange juice having a reference temperature of 9.5 C.

Raw data, shifted using appropriate values, are given in Table

1.14 and plotted to produce a master-curve (Fig. 1.49). Horizontal
shifting causes the data to overlap on a single line. Additional analysis
could be performed to determine as a function of temperature by

plotting the information provided in Table 1.13. Master-curves can be
very useful in comparing data from different products such as concen-
trated orange juice made from different varieties of oranges.

1.14.6. Influence of the Yield Stress in Coating Food

Considerthe roleof the fluidyieldstress ( ) incoating foodby examining

potential flow and coating thickness on an inclined plane.

Assuming the shear stress of the air on the free surface is negligible,
a force balance on a fluid on an inclined plane (Fig. 1.50) yields an
equation giving shear stress as a function of (Churchill, 1988):
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Figure 1.50. Coating material on an inclined plane.

[1.105]

where is the distance perpendicular to the plane, is the height or
thickness of the coating fluid layer, is the density of the fluid, is the
angle of inclination, and is the acceleration due to gravity. This
equation shows that the shear stress is a maximum on the surface of
the wall (the inclined plane) and decreases in moving toward the free
surface of the coating; hence, the maximum shear stress may be
expressed as

[1.106]

When the maximum shear stress exceeds the yield stress ( ),

gravity alone will cause flow down the wall producing a gross sagging
phenomenon known as slumping in the paint industry (Patton, 1964).
Similar problems can be observed in food coatings such as milk
chocolate, vanilla frosting, and barbecue sauce.

If , the fluid will remain on the surface of the object being

coated. The maximum coating thickness possible, without material
flowing off the surface, may be calculated in terms of the yield stress
and the angle of inclination:

[1.107]

h

y

σ = f( y) = gρ(h − y) sinθ

y h

ρ θ
g

σmax= f(0) = gρh sinθ

σmax > σo

σo ≥ σmax

hmax =
σo

gρsinθ
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The yield stress concept is a very useful tool for examining the thickness
of food coatings. Equations given above also apply to a vertical wall
where resulting in

[1.108]
sinθ=sin 90°=1

hmax =
σo

gρ



Chapter 2. Tube Viscometry

2.1. Introduction

Tube viscometers are very useful in collecting rheological data.
These instruments may be placed into three basic categories: glass
capillaries (Fig. 2.1), often called U-tube viscometers because of their
resemblance to the letter U; high pressure capillaries (Fig. 2.2); and pipe
viscometers (Fig. 2.3). All establish a pressure difference to create flow.
The major difference between a capillary and a pipe viscometer is the
diameter of the tube. Although there is no clearly defined size at which
a tube should be called a capillary or a pipe, some guidelines can be
offered.

Figure 2.1.  Ostwald and Canon-Fenske glass capillary (U-tube) viscometers.

Diameters in commercial capillary instruments typically range from
0.1 to 4 mm with a variation in entrance angles (Fig. 2.2) of 15 to 90
degrees. Pipe viscometers are usually built "on-site" so size varies
widely. Some may be as small as 7mm in diameter but values greater
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than 12 mm (typically 12 to 32mm) are not uncommon in food appli-
cations. values in tube viscometers range from 2 to 400: The smaller
values are found in the capillary units but are seldom seen in pipe
systems.

Figure 2.2. High pressure capillary viscometer.

In typical operation, the U-tube viscometer is filled by inverting it
into a sample and sucking (into the side with the capillary) fluid into
the fixed sample bulb. The viscometer is turned upright, then placed
in a temperature controlled bath and allowed to reach thermal equi-
librium. After a certain period of time, usually 5 to 10 minutes, the fluid
is allowed to flow down through the capillary. A stopwatch is started
when fluid passes the upper etched line and stopped when the fluid
surface passes the lower etched line. The resulting time is considered
the efflux time for fluid discharge from the bulb and fluid viscosity is
calculated from this value.

U-tube viscometers are designed as gravity operated instruments.
High pressure capillaries, which may also be constructed from glass
tubes but are not "U-shaped," are typically piston driven (Fig. 2.2) or
gas operated. A pump or gas (Fig. 2.3) system can be used to create a

L/D

L

R

Piston

Entrance Angle



96 Chapter 2. Tube Viscometry

driving force in pipe viscometers. These units can be operated at ele-
vated pressures such as those found in aseptic food processing equip-
ment (Dail and Steffe, 1990a and 1990b).

Figure 2.3. Gas driven pipe viscometer.

Raw data for tube viscometers are pressure drop and volumetric flow
rate. The pressure drop is determined from pressure transducers or, in
the case of U-tube viscometers, the height of fluid above a reference
point. In high pressure capillaries, flow rates are calculated from the
assumption that volumetric flow in the piston (or barrel) and the cap-
illary are equivalent. Volumetric flow rate may be determined from the
mass flow rate measured in pipe systems using a mass flow meter or a
weight tank. Density is required for this calculation because the volu-
metric flow rate equals the mass flow rate divided by the density. The
quantity of flow in a glass capillary is fixed by the volume ( ) of the
efflux vessel (Fig. 2.1).

The main focus of the current chapter is time-independent fluids.
Rotational instruments are superior for the investigation of time-
dependent materials because the sample can be maintained in the test
chamber during periodic evaluation. Little attention is given to
evaluating the elastic behavior of fluids from capillary data. Theoret-
ically, it is possible to determine normal stress differences with tube (or
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slit) viscometers from data collected using various methods such as axial
thrust, residual exit pressure, or jet expansion (Walters, 1975; Whorlow,
1992). Generally, these applications have focused on polymers with
minor consideration given to food products. In addition, commercially
available tube viscometers require special modifications to make these
measurements. Normal stress information can be more easily calcu-
lated from axial force data generated on cone and plate viscometers.
Tubularsystems involvingback extrusion (also calledannularpumping)
have alsobeen developed to evaluate power law fluids (Osorio and Steffe,
1986; Steffe and Osorio, 1987).

2.2. Rabinowitsch-Mooney Equation

Derivation of the Basic Equation. Numerous assumptions are
required in developing the Rabinowitch-Mooney equation: flow is lam-
inar and steady, end effects are negligible, fluid is incompressible,
properties are not a function of pressure or time, temperature is
constant, there is no slip at the wall of the tube meaning that the velocity
of the fluid is zero at the wall-fluid interface, and radial and tangential
velocity components are zero.

The starting point in the derivation of a tube viscometer equation is
a force balance. Consider a fluid flowing through a horizontal tube of
length ( ) and inside radius ( ). A pressure drop ( ) over a fixed length
( ) is causing flow. The force balance, equating the shear stress causing
flow to the shear stress resisting flow (i.e., the fluid), over a core of fluid
(Fig. 2.4) with radius and length yields

[2.1]

which can be solved for the shear stress:

[2.2]

Eq. [2.2] can also be obtained by starting from the general conservation
of momentum equations (Bird et al., 1960; Brodkey and Hershey, 1988;
Darby, 1976; Denn, 1980) as discussed in Example Problem 2.12.1. Eq.
[2.2] depicts the shear stress varying over the pipe from zero at the
center ( ) to a maximum at the wall ( ) where the equation may
be written as

L R δP
L

r L

(δP)πr 2 = σ2πrL

σ = f(r) =
(δP)πr 2

2πrL
=

(δP)r
2L

r = 0 r = R
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Figure 2.4. Core of fluid in tube flow geometry.

[2.3]

To develop the shear rate equations, a differential flow element ( )
must be evaluated. This can be expressed by considering the steady,
laminar flow of fluid moving through an annulus located between the
core, with radius , and the position :

[2.4]

where is the linear velocity at . The total volumetric flow rate is found
by integrating Eq. [2.4] over the radius:

[2.5]

Recognizing that , so that becomes the variable of integra-
tion, allows Eq. [2.5] to be written as

[2.6]

The right hand side of this equation can be integrated by parts:

[2.7]

and simplified by applying the no slip boundary condition which
stipulates that the fluid velocity is zero at the wall of the pipe or,
mathematically, :

R

r

L

Flow

Flow fluid core

σw =
(δP)R

2L

dQ

r r + dr

dQ = u2πrdr

u r

Q = ⌠
⌡0

Q

dQ = π⌠
⌡r = 0

r = R

u2r dr

2rdr = dr2 r 2

Q = π⌠
⌡

r2 = 0

r2 = R2

(u) dr2

Q = πur 2 |
r2 = 0

r2 = R2

− π⌠
⌡

r2 = 0

r2 = R2

r 2 du

u = 0 at r = R
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[2.8]

To further evaluate Eq. [2.8], a number of items must be noted. First,
by assuming steady laminar flow, we know the shear rate is some
function of the shear stress:

[2.9]

or

[2.10]

The negative sign is required in Eq. [2.9] because we assume, as
indicated in Eq. [2.1], the positive direction of to be opposite the
direction of flow. Second, Eq. [2.2] and [2.3] can be combined to give

[2.11]

which, when differentiated, yields

[2.12]

Taking the expression for given by Eq. [2.10], and inserting Eq. [2.12]
for , gives

[2.13]

Using Eq. [2.13] and noting, from Eq. [2.11], that allows

Eq. [2.8] to be rewritten as

[2.14]

Observe the change in the limits of integration: goes from 0 to as
goes from 0 to . Simplifying this expression gives the final general

equation relating shear stress and shear rate:

[2.15]

Eq. [2.15] maybe evaluated bydifferentiation usingLeibnitz’ rule, which
allows an integral of the form

Q = π[(0)R 2 − u(0)2] − π⌠
⌡

r2 = 0

r2 = R2

r 2 du = −π⌠
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r 2 du

−
du
dr

= f(σ)

du = −f(σ) dr

σ
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R
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[2.16]

to be written as
[2.17]

to differentiate the integral. Writing, Eq. [2.15] as
[2.18]

then, applying Leibnitz’ rule on the right hand side, and differentiating
both sides with respect to (which is ) gives

[2.19]

Solving Eq. [2.19] for the shear rate at the wall ( ) yields the well known

Rabinowitsch-Mooney equation:
[2.20]

where the derivative is evaluated at a particular value of . Application

of this equation is demonstrated for soy dough in Example Problem
2.12.2.

Eq. [2.20] can also be expressed in terms of the apparent wall shear
rate, :

[2.21]

where . Further manipulation gives

[2.22]

or
[2.23]

that can be rewritten in the following simplified format:
[2.24]

where
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[2.25]

showing that is the point slope of the versus . If the fluid
behaves as a power law material, the slope of the derivative is a straight
line and . Eq. [2.24] is a convenient form of the Rabinowitsch-
Mooney equation because power law behavior is frequently observed
with fluid foods. Also, slight curvature in the logarithmic plot can often
be ignored. Application of Eq. [2.24] and [2.25] is illustrated for a 1.5%
solution of sodium carboxymethylcellulose in Example Problem 2.12.3.

Newtonian Fluids. In developing the Rabinowitsch-Mooney equation
a general expression relating shear stress to shear rate, Eq. [2.15], was
developed:

This can be solved for a Newtonian fluid by inserting the Newtonian
definition for shear rate, :

[2.26]

Integration of Eq. [2.26] gives

[2.27]

Substituting the shear stress at the wall ( ) into Eq. [2.27]

results in the Poiseuille-Hagen equation:

[2.28]

Eq. [2.28] indicates that the radius has a very strong influence on
the behavior of the system since it is raised to the power four. Also, if
this equation is written in terms of the definition of a Newtonian fluid
( ), then the formula for the shear rate at the wall may be

determined:

[2.29]
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This expression is identical to the one given in Eq. [1.90] (and Fig. 1.27)
for estimating the maximum shear rate of a Newtonian fluid in tube
flow.
Power Law Fluids. Eq. [2.15] can be solved for a power law fluid by
inserting into the equation:

[2.30]

Integration and substitution of gives

[2.31]

If this equation is written in terms of the definition of a power law fluid
( ), then the formula for the shear rate at the wall may be

determined:
[2.32]

Eq. [2.32] is an exact solution for a power law fluid and also useful as
an estimate of the maximum shear rate in tube flow (as indicated in Eq.
[1.91]) for a wide range of fluid foods.
Bingham Plastic Fluids. In a Bingham plastic fluid, the shear rate
is defined in terms of the plastic viscosity and the yield stress:

. This function is discontinuous because there is no

shearing flow at points in the tube near the center where the shear
stress is below the yield stress. Mathematically, for in

the central plug region and for in the outer

portion of the tube. Given the above, it is clear that Eq. [2.15] must be
integrated for each region of the tube to determine the total volumetric
flow rate:

[2.33]

Since shear rate is zero when the shear stress is below the yield stress,
Eq. [2.33] can be simplified to

[2.34]
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which, when integrated, yields the Buckingham-Reiner equation for
flow of a Bingham plastic material in a pipe:

[2.35]

The same technique discussed for Bingham plastics is used to derive
the flow rate equation for Casson fluids in Example Problem 2.12.4.

Herschel-Bulkley Fluids. The volumetric flow rate for a Herschel-
Bulkley fluid ( ), is found using the same method discussed

for the Bingham plastic material:

[2.36]

2.3. Laminar Flow Velocity Profiles

Rheological properties have a strong influence on fluid velocity
profiles in tube flow. Understanding these profiles is important in
developing a clear picture of instrument performance and in making
various food process engineering design calculations such as deter-
mining the appropriate hold tube length for a thermal processing sys-
tem. Since tube viscometers operate in the laminar flow regime, only
laminar flow velocity profiles are presented here. Equations describing
the turbulent velocity of Newtonian and power law fluids are discussed
later in Section 2.11.

Combiningthe shear stress relationship (Eq. [2.2]) and the definition
of a Newtonian fluid (Eq. [1.25]) with the shear rate written as
yields

[2.37]

Integrating this equation, using the no slip boundary condition
( ) to determine the unknown constant, gives an expression
for the velocity profile of a Newtonian fluid:

[2.38]

If the definition of a power law fluid is used, Eq. [2.37] becomes

[2.39]
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The velocity profile is found after integration and application of the no
slip boundary condition:

[2.40]

By combining Eq. [2.40] with the volumetric flow rate equation (Eq.
[2.31]), the relationship between the velocity at and the volumetric
average velocity ( ) may be calculated:

[2.41]

Lower values of the flow behavior index result in a flatter velocity profile
and higher values maximize the difference between the slowest and
fastest fluid elements (Fig. 2.5). The extreme case occurs with at

where . The curve (Fig. 2.5) for a Newtonian fluid is
found at .

Figure 2.5. Laminar velocity profiles for power law fluids with different values
of the flow behavior index.

The maximum velocity, located at the center line where , may
be determined from Eq. [2.41] for any value of the flow behavior index:
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[2.42]

Clearly, the flow behavior index has a very strong influence on the
velocity profile. Velocity profiles for power law fluids in turbulent flow
are very flat by comparison (see Section 2.11, Table 2.7).

In the case of a Bingham plastic fluid, the force balance equation is
[2.43]

which is valid in the outer regions of the pipe where the fluid is subject
to shear. With the no slip boundary condition, Eq. [2.43] may be
integrated to give an expression for the velocity profile between the plug
and the wall of the tube:

[2.44]

for where . The critical radius ( ), which defines the

outer boundary of the plug, may be calculated from the yield stress:
[2.45]

The maximum velocity in the pipe, which is the velocity of the plug in
the center section of the pipe, is found by substituting into Eq.

[2.44]:
[2.46]

which is valid for where .

Combining Eq. [2.44] or Eq. [2.46] with the volumetric flow rate
equation (Eq. [2.35]), the relationship between the velocity at and the
volumetric average velocity ( ) may be calculated as

[2.47]

in the sheared portion of the fluid ( ), and

[2.48]
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in the plug ( ). The value of is defined in terms of the yield stress

or the critical radius: . Plotting these equations show

that increasing the yield stress enlarges the radius of the plug flowing
down the center of the pipe (Fig. 2.6). The curve for a Newtonian fluid
is illustrated by the line with

Figure 2.6. Laminar velocity profiles for Bingham plastic fluids with different
values of .

The same approach described for Bingham plastic fluids can be used
to determine the velocity profile for a Herschel-Bulkley fluid:

[2.49]

Velocity of the plug may be determined by using Eq. [2.49] with ,

calculated from Eq. [2.45].
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2.4. Laminar Flow Criteria

To obtain meaningful rheological data, tube viscometers must
operate in the laminar flow regime. Turbulence is rarely involved in
high pressure capillaries but may be a problem in pipe viscometers with
large diameter tubes or when investigating low viscosity fluids.

The accepted criterion for laminar flow of Newtonian fluids in tube
flow is to maintain a Reynolds number less than 2100: where

. Transition away from laminar flow, however, has been

observed for values between 1225 and 3000. In addition, laminar

flow, under ideal conditions, has been observed for numbers as high

as 50,000 (Grovier and Aziz, 1972). Similar problems exist for non-
Newtonian fluids. Hence, the following discussion can only offer general
guidelines to determine if the flow regime is laminar or turbulent.

As noted above, flow is considered laminar for Newtonian fluids
when the Reynolds number is below the critical value of 2100:

[2.50]

With power law fluids, laminar flow occurs when (Hanks, 1963):

[2.51]

where the term on the right side of the inequality is the critical power
law Reynolds number. The power law Reynolds number is defined as

[2.52]

Plotting Eq. [2.51] shows the critical Reynolds number increasing
sharply to a maximum near , then dropping off withgreater values
of the flow behavior index (Fig. 2.7). Also, for the special case of a
Newtonian fluid ( ) it is equal to the expected value of 2100.

Eq. [2.51] may give a conservative estimate of the critical Reynolds
number. Work by Campos et al. (1994) shows that critical Reynolds
numbers in the range of 4000 (at ) to 3000 (at ) may be
determined using a statistical evaluation procedure. Higher numbers
are also predicted, particularly for , using the equation derived
by Mishra and Tripathi (1973):
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[2.53]

Eq. [2.53] predicts gradually decreasing values of critical Reynolds
numbers from 3480 at to 2357 at . Over , the
Mishra and Tripathi (1973) equation predicts values (Fig. 2.7) very
similar to those given by Eq. [2.51].

Figure 2.7. Variation of the critical power law Reynolds number with .

With tube flow of a Bingham plastic fluid, steady-state laminar flow
can be expected (Hanks, 1963) when

[2.54]

The term on the right side of Eq. [2.54] is the critical Bingham Reynolds
number and , the critical value of , is defined as

[2.55]
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The Hedstrom number and the Bingham Reynolds number are defined
by the following equations:

[2.56]

[2.57]

Critical values of versus (Eq. [2.55]), and the critical Bingham

Reynolds number versus the Hedstrom number (Eq. [2.54]) are plotted
in Fig. 2.8 and 2.9, respectively. These illustrations indicate the
difficulty in achieving turbulence with materials having a significant
yield stress. Note that the Hedstrom number increases with larger
values of the yield stress. Laminar flow criterion is also available (but
not experimentally verified) for Herschel-Bulkley materials (Garcia and
Steffe, 1987).

Figure 2.8. Variation of  with the Hedstrom number.
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2.5. Data Corrections

There are numerous measurement errors which may occur in using
tube viscometers (Table 2.1). Some are generally applicable and others
only apply to specific systems. Data corrections required for high
pressure and pipe viscometers are similar, and constitute the focus of
this section. Glass capillaries (gravity operated U-tube viscometers)
have special requirements which are discussed in Sec. 2.9.

Figure 2.9. Variation of the critical Bingham Reynolds number with the Hed-
strom number.

Kinetic Energy Losses. There is a pressure loss, due to a difference
in kinetic energy, in high pressure capillaries caused by the acceleration
of the fluid from the barrel velocity to the capillary velocity. This
pressure loss ( ) may be expressed in terms of the kinetic energy
correction factor ( ):

[2.58]
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where and are the average capillary and barrel velocities,

respectively. Equations for calculating are available (see Table 2.4 in
Sec. 2.10). Losses due to kinetic energy are generally small and very
difficult to separate from entrance pressure losses. Hence, it is accepted
practice to assume that kinetic energy losses are accounted for in the
entrance effect correction.
End Effects: Entrance Correction. Energy losses due to fluid
divergence at the end of a capillary are small and usually neglected but
entrance losses can be very significant and must be evaluated.

Table 2.1. Sources of Error in Operating Tube Viscometers (from Van Wazer et
al., 1963)

Factor Cause Applicability

Kinetic energy losses Loss of effective pressure because General
of the kinetic energy in the issu-
ing stream.

End effects Energy losses due to viscous or General
elastic behavior when a fluid con-
verges or diverges at the ends of a
capillary

Elastic energy Energy loss by elastic deforma- Viscoelastic materials
tion of the fluid not recovered
during flow in the capillary

Turbulence Departure from laminar flow General
Pressure losses prior Sticking of the piston or energy Cylinder-piston
to the capillary dissipated in the flow of the mate- viscometers

rial within the cylinder before
entering the capillary.

Drainage Liquid adhering to the wall of the Glass capillary
viscometer reservoir. viscometers

Surface-tension Variations in surface tension from Glass capillary
effects one test substance to another. viscometers
Heat effects Conversion of pressure energy High-shear viscometers

into heat energy through flow.
Wall effects Surface phenomena at the Polyphase fluids

 fluid-wall interface.
Effect of time- Variations in the residence time Thixotropic and rheo-
dependent properties in the capillary. pectic materials

The entrance effect correction accounts for excess pressure loss
occurring at the opening of the tube viscometer from sudden changes in
geometry caused by a convergence, and losses in kinetic energy. This
problem may be experimentally evaluated using a number of tubes

u2 u1

α
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Figure 2.10. Bagley plot illustrating entrance effect pressure corrections deter-
mined at three flow rates.

having different ratios (Bagley, 1957). Data of total pressure drop
versus flow rate are collected for each tube. Pressure drop versus
data are plotted at each flow rate (or apparent wall shear rate, )
and the lines are extrapolated to equal to zero. These figures (Fig.
2.10) are sometimes called "Bagley plots." The resulting pressure drop
is the entrance effect pressure loss at a particular flow rate and pipe
diameter. To achieve the greatest level of accuracy, the same procedure
must be followed for each diameter under consideration by using a
number of tubes (at least three) having the same diameter but different
lengths.

Pressure loss at the entrance has also been evaluated by subtracting
orifice die data from capillary data. These calculations are made with
an orifice and capillary of the same diameter using data taken at an
equivalent volumetric flow rate. Results with soy protein isolate show
excellent agreement between this method and the Bagley procedure
discussed previously (Hyashi et al., 1991).

Entrance pressure loss is used to correct the measured pressure drop
values:

[2.59]
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where is the measured pressure drop, and is the entrance

pressure loss. Corrected values of are used in calculating the shear
stress at the wall, Eq. [2.3]. The above technique is demonstrated for
soy dough in Example Problem 2.12.2.

Toms (1958) described an alternative method of eliminating end
effects. The concept involves a long and short tube of equivalent
diameter and sufficient length so both have an internal section where
flow is fully developed. If the volumetric flow rate is the same in both
tubes, then the exit pressure loss ( ) and the entrance pressure loss

( ) are equal for the long (subscript L) and short (subscript S) tubes.

With this idea, the pressure drop across each tube may be written as

[2.60]

and

[2.61]

where and are the pressure losses in tube sections where flow

is fully developed. At constant flow rate, the pressure gradients in the
fully developed sections are equal:

[2.62]

Subtracting Eq. [2.61] from Eq. [2.60], and using Eq. [2.62] yields a
pressure gradient term that is free of end effects:

[2.63]

Eq. [2.63] can be used to calculate the gradient term ( ) in calculating
the wall shear stress from Eq. [2.3]. In practice, numerous tubes would
be used and care taken to be sure is large enough to avoid

significant experimental errors.

Entrance Length. With long tubes, the entrance correction can often
be neglected. Pressure transducers can be strategically placed in pipe
viscometers so that the entrance region does not influence experimental
data. Also, entrance length information may be needed to design, or
evaluate the performance of, tube viscometers.
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There is some published information for estimating the entrance
length ( ) required to obtain 98% of fully developed flow which should

be considered a conservative guideline in the design of tube viscometers.
An approximate equation to calculate for Newtonian fluids in laminar

flow, based on theoretical and experimental studies (Boger, 1982), is

[2.64]

The constant, 0.55, accounts for the entrance effect at very low values
of the Reynolds number. Entrance length equations given for power
law and Bingham plastic fluids discussed subsequently do not have an
analogous term.

Collins and Schowalter (1963) presented entrance length data for
pseudoplastic fluids in laminar flow. Results were given in terms of a
modified power law Reynolds number ( ). There was a linear
relationship from that may be expressed as

[2.65]

Using Eq. [2.52], the modified power law Reynolds number may be
written in terms of as

[2.66]

which can be substituted into Eq. [2.65] yielding

[2.67]

Plotting Eq. [2.67], assuming constant values, shows

increasing with increasing values of the flow behavior index (Fig. 2.11)
when .

Entrance length data have also been published for Bingham plastic
fluids in laminar flow (Michiyosi et al., 1966). Their data may be
summarized with the following equation:
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Figure 2.11. Entrance length of power law fluids.

[2.68]

where, recall, . Plotting Eq. [2.68] illustrates (Fig. 2.12)

decreasing entrance length requirements with greater values of the
yield stress.

With short or medium length tubes, entrance effects must be
experimentally evaluated; however, when tubes are sufficiently long
(easily designed this way with pipe viscometers), the entrance correction
can be neglected. If is in the order of 0.01 problems should be

minimal but tubes may be long. Dervisoglu and Kokini (1986) found,
through trial and error experimentation, that an entrance length of 90
diameters was sufficient to minimize entrance effect errors in studying
various food products including mustard, ketchup, applesauce, and
tomato paste. Care should be exercised with elastic fluids because the
entrance length may be significantly higher than predicted by equations
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Figure 2.12. Entrance length of Bingham plastic fluids.

such as those presented in this section (Whorlow, 1992). A tube vis-
cometer, where the end effect may be neglected due to high values,
is discussed in Example Problem 2.12.3.

Wall Effects - Slip Correction. Slip occurs when a thin layer of fluid,
having a viscosity lower than that of the fluid, forms at the wall of the
tube (or the wall of any viscometer). This may be a problem in food
suspensions like fruit and vegetable purees. Theoretically, the problem
may be attacked by adding an additional term, representing added flow,
to the overall flow rate term. The expression describing the volumetric
flow rate (Eq. [2.15]) may be written as

[2.69]

At constant values of , the above integral term is constant so a slip

velocity may be introduced to account for variations in the measured
values of flow rate:
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[2.70]

where is the effective slip velocity which is assumed to be a function

of the shear stress at the wall. In the absence of slip, .

Eq. [2.70] can be expanded by defining an effective slip coefficient
( ) such that

[2.71]

or
[2.72]

Simplification yields
[2.73]

which is a form of the equation often seen in the literature. Jastrzebski
(1967), however, found that the slip coefficient was a function of the wall
shear stress and also varied inversely with tube radius. To account for
this finding, a corrected slip coefficient ( ) was defined to give a better

mathematical representation of experimental data:
[2.74]

Using , the volumetric flow rate expression is written as

[2.75]

may be evaluated from capillary tube measurements using various
tubes (at least three) having different radii. Experimental data of

versus are plotted at different values of . From this plot,

valuesof at different values of and constant are obtained.

Then, by plotting versus , at constant , can be

determined as the slope of the line (Eq. [2.73]) at each value of . The
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resulting information can be used to evaluate as a function of . If

desired, the same procedure can be followed to find by considering

in place of .

The effective slip coefficient, or the corrected slip coefficient, is used
to correct the volumetric flow rate data:

[2.76]

or

[2.77]

is used in the Rabinowitsch-Mooney equation (Eq. [2.20]) to deter-

mine the shear rate at the wall.

Introducing an effective slip coefficient may be valuable in dealing
with suspensions such as fruit and vegetable purees but can give
physically meaningless results (those producing negative values) for
dense suspensions where sliding friction may be a significant factor. In
these cases it may be more appropriate to model material movements
as plug flow instead of viscous flow. This approach was taken by Jasberg
et al. (1979) in examining the flow of defatted soy flakes in the screw
channel of an extruder.

Kokini and Plutchok (1987) have reported values of the corrected
slip coefficient for applesauce (Table 2.2) and slip velocities for potato
paste are presented in Halliday and Smith (1995). Corrected slip
coefficients were also successfully used by Shukla and Rizvi (1995) to
evaluate the flow behavior of butter.

Viscous Heating. Experimental tests should be designed to avoid
significant temperature increases due to viscous heat dissipation. Vis-
cous heating occurs when any fluid is sheared. Fortunately, serious
experimental errors are generally found only with fluids having a very
high viscosity or in instruments operated at very high shear rates.

To determine the temperature rise due to viscous heating, the
equations of energy and momentum, coupled by the temperature
dependence of viscosity, must be solved. It is not possible to obtain an
exact analytical solution to this problem (Warren, 1988). Reasonable
estimates are possible using simplifying assumptions and a nomograph
outlining a solution of this type is available in Dealy (1982) and
Middleman (1968).
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Table 2.2. Corrected Slip Coefficients for Applesauce Calculated with Tubes having
=65 and Radii of 0.4425 cm, 0.3235 cm and 0.2150 cm (Data from Kokini and

Plutchok, 1987)

Pa m2/(Pa s)

40 .0030
54 .0051
68 .0076
81 .010
95 .013
109 .016
123 .019
136 .022
150 .025

A simple method to evaluate the extent of the problem is discussed
byWhorlow (1992). Heshows that a pressure drop ( ) causinga volume
( ) of material to flow results in work done per second equal to .
This energy causes the mean temperature of the volume to increase by

:

[2.78]

where is the density and is the specific heat of the fluid. Many fluid
foods are aqueous systems having a density and specific heat of
approximately 1000 kg m-3 and 4000 J kg-1 K-1, respectively. If you
assume that a temperature rise of less than 1 C has a negligible effect
on rheological testing, then a pressure drop less than 4,000 kPa
(approximately 40 atmospheres) will not cause a problem due to viscous
heating! It is important to realize that this calculation will overestimate
the magnitude of the problem. The effects of viscous heating problems
may also be evaluated in terms of the Nahme number defined as the
temperature raise due to viscous heating divided by the temperature
change necessary to alter viscosity (Macosko, 1994).

Hole Pressure Error. Sometimes the pressure in a tube is measured
by a transducer communicating with the fluid in the pipe through a
fluid well connected to the pipe. This practice causes curvature in the
flow streamlines which may create errors in the pressure measurement.
With polymer solutions, in particular, the presence of a normal stress
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tends to lift the fluid out of the hole making the measured pressure at
the wall less than the true wall pressure (Bird et al. 1987; Barnes et al.,
1989). This phenomenon is well established and an instrument,
designed to measure normal stress differences, has been developed
using the concept (Lodge, 1988). It is difficult to apply the concept to
fluids with a significant yield stress because these materials would tend
to fill recessed holes hindering the proper transmission of the stress
signal.

In designing capillary viscometers, the hole pressure error can be
eliminated by using identical pressure transducers at each sensing
location. Then, when pressure differences are calculated, the hole
pressure errors cancel out. The problem can also be eliminated by using
flush mounted (diaphragm type) pressure transducers. Hole pressure
errors are minimal for most food materials.

Data Correction Summary. Performing a complete rheological
analysis using tube viscometry requires a great deal of data. A typical
sequence of the steps is illustrated in Fig. 2.13. To evaluate the entrance
effect, tubes having the same radius but different lengths are required.
The entrance effect should be evaluated for each tube radius considered
before the measured pressure drop can be corrected and the shear stress
at the wall calculated. Data from tubes of the same length, having
different radii, are needed to evaluate the slip coefficient so the flow
rate data can be corrected. Next, the Rabinowitsch-Mooney equation is
applied and the rheogram developed. As mentioned previously, viscous
heating and hole pressure errors are usually not a problem with food
materials.

Accounting for slip adds significantly to the computational
requirements. One should note that slip problems will decrease with
increasing tube sizes. Also, before correcting for slip, one should see if
it is present. This can be done by checking results from data collected
using tubes of different radii - at least two tubes with significantly
different radii. After correcting for the end effect, rheograms are
compared. Allowing for differences in the shear rate range, the rheo-
grams for time-independent fluids should be identical in the absence of
slip.



2.6  Yield Stress Evaluation 121

Figure 2.13. Typical sequence of steps required for the analysis of tube viscome-
ter data for time-independent fluids.

2.6. Yield Stress Evaluation

Yield stress may be determined in a tube viscometer from the stress
to initiate fluid movement (Cheng, 1986). Using this method, the
minimum pressure ( ) required to cause flow in a horizontal tube

viscometer is measured. The yield stress is calculated from a force
balance on the fluid (Eq. [2.2]) as

[2.79]

In practice, the pressure drop is slowly increased until flow is observed.
If the structure of the material causes the yield stress to exhibit
time-dependent characteristics, then the rate of change of the applied
pressure may influence results.

2.7. Jet Expansion

Jet expansion (also called die swell or extrudate swell) can be esti-
mated from the primary normal stress difference. Conversely, the
normal stress difference can be estimated from the jet expansion.
Assuming the phenomenon is caused by elastic recoil, due to the sudden
removal of the tube, then swelling can be estimated as (Tanner, 1988)

determine entrance correction for each radius

determine slip coefficient

correct pressure drop data

correct flow rate data

calculate shear stress at the wall

calculate shear rate at the wall

construct rheogram
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[2.80]

where is the diameter of the capillary and is the final diameter of
the extrudate. The first normal stress difference divided by the shear
stress ( ), a term called the recoverable shear (Tanner, 1988),

is evaluated at the tube wall. Although this equation is adequate for
estimation purposes, it excludes some important factors such as
extensional viscosity and vaporization (flashing) of moisture, which may
strongly influence die swell of extruded foods.

Newtonian fluids may exhibit jet expansion having values

ranging from 1.12 at low values to 0.87 at high values (Middle-

man, 1977). Polymer melts may behave similarly at low shear rates but
have numbers from 2 to 4 at high shear rates (Tadmor and Gogos,

1979).

2.8. Slit Viscometry

The development of equations for slit viscometers is analogous to
the methods used in developing tube viscometer equations. Slits can
be constructed at food processing facilities with relative ease. Food
engineers have successfully used them to determine the rheological
properties of various extruded food materials: maize grits and potato
flour (Senouci and Smith, 1988a and 1988b); corn meal (Bhattacharya
and Padmanabhan, 1992), rice flour dough (Altomare et al., 1992), and
wheat flour dough (Gogos and Bhakuni, 1992). This information can be
useful in monitoring product quality and is required for various engi-
neering design calculations.

Slit size is described (Fig. 2.14) in terms of the length ( ) and aspect
ratio ( ) where and are the width and height of the slit, respec-
tively. To neglect edge effects, the aspect ratio should be greater than
10: . The velocity profile for a Newtonian fluid in the slit is

[2.81]

De

D
=




1 +

1
8





σ11 − σ22

σ12





2



1/6

D De

(σ11 − σ22)/σ12

De/D

NRe NRe

De/D

L

w /h w h

w /h > 10

u = f(x2) =




3Q
2hw








1 − 4





x2

h





2





2.8  Slit Viscometry 123

where at the center of the slit and at the outer edge. The

shear rate and shear stress at the wall ( ) for a Newtonian fluid

are

[2.82]

and

[2.83]

where is the pressure drop across the slit of length . The shear
stress equation, Eq. [2.83], is valid for any time-independent fluid.
Newtonian viscosity may be calculated as

[2.84]

To calculate the shear rate for non-Newtonian fluids, a general
equation relating the volumetric flow rate and the shear rate in the slit
is required:

[2.85]

Figure 2.14. Slit viscometer.

x2 = 0 x2 = h /2

x2 = h /2

γ̇w =
6Q

h2w

σw =
δPh
2L

δP L

µ = σw/γ̇w =




δP
L









h3w
12Q





Q =
w
2





h
σw





2
⌠
⌡o

σw

σ f(σ)dσ

L

w
h

Flow

1

2

3

x

x

x



124 Chapter 2. Tube Viscometry

Eq. [2.85] is analogous to Eq. [2.15] that was developed in deriving the
Rabinowitsch-Mooney equation. It may be solved directly for power law
and Bingham plastic fluids:

[2.86]

and
[2.87]

respectively, with the stipulation that for Eq. [2.87].

If an unknown fluid is being tested, a general solution to Eq. [2.85]
(comparable to the Rabinowitsch-Mooney solution) is required:

[2.88]

where the correction factor is defined as
[2.89]

If the fluid is Newtonian, and, if power law, . The
term is called the apparent wall shear rate for slit flow. Note, that after
accounting for geometrical differences between slits and tubes, Eq.
[2.88] and [2.89] are very similar to Eq. [2.24] and [2.25].

The above equations assume fully developed flow in the slit. If
corrections to experimental data are needed, the same methods outlined
for high pressure capillary viscometers are appropriate. It is very
important to evaluate the need for an entrance effect correction when
using short slits and taking as the pressure drop over the entire slit.
A superior method of obtaining experimental data is to use flush
mounted pressure transducers installed directly on the slit. The
transducers (at least three, preferably four) are placed a sufficient
distance from the entrance and exit of the slit so the observed pressure
drop per unit length ( ), required in Eq. [2.83], is linear (Han, 1988).

Exit pressure data froma slit have been used to characterize primary
normal stress differences in molten polymers (Han, 1988). Bhatta-
charya (1993) used this method to examine the influence of gluten levels
on the rheological behavior of bread dough. This procedure involves
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linearly extrapolating pressure profiles through the exit of the slit to
determine the exit pressure ( ). The first normal stress difference is

related to the rate of change of the exit pressure with respect to the
shear rate at the wall:

[2.90]

Obtaining good experimental data using the exit pressure method
is difficultbecause small pressure differences are measured. Han (1988)
argues that the exit pressure method should produce acceptable results
when is above a critical value of approximately 25 kPa. Unfortu-

nately, the exit pressure method is problematic for many foods because
flow does not remain fully developed through the exit of the rheometer
violating the assumption that the pressure gradient is constant over the
entire instrument (Ofoli and Steffe, 1993). The analysis of slit vis-
cometer data for corn syrup is given in Example Problem 2.12.5.

2.9. Glass Capillary (U-Tube) Viscometers

Glass capillary viscometers (U-tube viscometers) are designed to be
gravity operated, and generally limited to use with Newtonian fluids
having viscosities in the range of 0.4 to 20,000 mPa s. Simple configu-
rations are seen in Ostwald and Cannon-Fenske type units (Fig. 2.1).
Sometimes, they are driven with applied external pressure to increase
the viscosity range of the instrument. If the magnitude of the external
pressure makes the magnitude of the static pressure head insignificant
in comparison, the instruments may be used for non-Newtonian fluids
by applying the Rabinowitsch-Mooney equation to the data. This,
however, is a laborious procedure and should not be considered "stan-
dard practice" for glass capillary viscometers.

The driving force in gravity operated glass capillary viscometers is
the hydrostatic head that varies during discharge. This variation in
pressure causes a variation in the shear rate during testing which is
the main reason gravity operated units are unsuitable for non-
Newtonian fluids. With Newtonian fluids the starting point for analysis
is the Poiseuille-Hagen equation (Eq. [2.28]) written in terms of the
volumetric average velocity, :

[2.91]
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where and are the radius and length of the capillary. Pressure drop
over the capillary is generated by a height ( ) of liquid:

[2.92]

may be the average or maximum fluid height, but should be the same
for all measurements. Substitution of Eq. [2.92] into Eq. [2.91] yields

[2.93]

which can also be written as

[2.94]

The efflux time, defined as the time to discharge a fixed volume of
liquid ( ) from the capillary bulb (Fig. 2.1), is

[2.95]

so the average velocity may be expressed in terms of the discharge time:

[2.96]

Substitution of Eq. [2.96] into Eq. [2.94] yields

[2.97]

which can be expressed in terms of a constant as

[2.98]

where , the glass capillary viscometer constant, is defined as

[2.99]

The value of may be computed directly from Eq. [2.99] if an accurate
physical description of the viscometer is provided. One problem with
this method is that small variations in geometry, particularly variations
in the radius due to wide manufacturing tolerances or film build up after
repeated use, may significantly influence the numerical value of .
Hence, it is not surprising that the most common way to use Eq. [2.98]
is to determine the properties of an unknown fluid from the known
properties of a reference fluid. This experimental method may be
implemented by noting that is the same for both fluids, so
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[2.100]

or

[2.101]

where subscripts 1 and 2 refer to the unknown and known fluids,
respectively. A common reference material is water but many com-
mercially produced standards, mainly silicone oils, are also available.
The above method of determining viscosity is usually within acceptable
limits of accuracy but does not account for the various experimental
errors discussed below.

A general working equation which incorporates errors associated
with small variations in capillary radius, end effects, and kinetic energy
may be written in terms of the kinematic viscosity ( ) as (Kawata
et al., 1991)

[2.102]

where (with units of m2/s2) and (with units of m2) are constants for

a particular capillary. When the kinematic viscosities ( ) and flow

times ( ) of two standard liquids are known, the instrument constants

may be calculated:

[2.103]

and

[2.104]

If the viscosity range of a glass capillary viscometer is increased by
operating the instrument with applied external pressure, additional
correction factors are needed (Kawata et al., 1991; Van Wazer et al.,
1963).
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2.10. Pipeline Design Calculations
The purpose of this section is to provide the practical information

necessary to predict pressure drop and power requirements for homo-
geneous, non-time-dependent materials in fluid handling systems.
Rheological properties have a strong influence on the calculations and
this information is needed to select proper pumps and related equipment
when designing large scale tube (pipe) viscometers or commercial fluid
handling systems (Steffe and Morgan, 1986; Steffe and Garcia, 1987).
Although rheological properties can only be evaluated from data taken
in the laminar flow regime, the case of turbulent flow is also presented
to provide a thorough analysis of pipeline design problems commonly
encountered by food process engineers.
Mechanical Energy Balance. The mechanical energy balance for an
incompressible fluid in a pipe may be written as

[2.105]

where , the summation of all friction losses, is

[2.106]

and subscripts 1 and 2 refer to two specific locations in the system. The
friction losses include those from pipes of different diameters and a
contribution from each individual valve, fitting, and similar parts.
is the work output per unit mass and the power requirement of the
system is found by calculating the product of and the mass flow rate.
A negative value of indicates that work is being put into the system
which is the normal function of a pump.

Rheological properties are required to evaluate the mechanical
energy balance equation. Although there are many mathematical
models available to describe flow behavior (Table 1.3), few can be con-
sidered practical for making pressure drop calculations involving pipe
flow. Most pumping problems involving fluid foods can be solved using
the Newtonian, power law or Bingham plastic models. Over simplifi-
cation, however, can cause significant calculation errors (Steffe, 1984).

Fanning Friction Factor. The Fanning friction factor ( ) is defined,
from considerations in dimensional analysis, as the ratio of the wall
shear stress in a pipe to the kinetic energy per unit volume:
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[2.107]

Substituting the definition of the shear stress at the wall of a pipe (Eq.
[2.2]) into Eq. [2.107] gives

[2.108]

where . Hence, the energy loss per unit mass (needed in the

mechanical energy balance) may be expressed in terms of :

[2.109]

Some engineers calculate the friction losses with the Darcy friction
factor which is equal to four times the Fanning friction factor. Pressure
drop calculations may be adjusted for this difference. Final results are
the same using either friction factor. Calculations in this text deal
exclusively with the Fanning friction factor.

In laminar flow, values can be determined from the equations
describing the relationship between pressure drop and flow rate for a
particular fluid. Consider, for example, a Newtonian fluid ( ).Using
Eq. [2.28], the volumetric average velocity for this material, in laminar
tube flow, may be expressed as:

[2.110]

Simplification gives an expression for the pressure drop per unit length:

[2.111]

Substituting Eq. [2.111] into Eq. [2.108] yields the friction factor:

[2.112]

which is a common equation appropriate for predicting friction factors
forNewtonian fluids when . Using the same approach, laminar

flow friction factors for power law and Bingham plastic fluids may be
calculated, respectively, from the following equations:

[2.113]
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and
[2.114]

The above equations are appropriate when the laminar flow criteria,
presented in Section 2.4, are satisfied. Eq. [2.114], plotted in Fig. 2.15,
is an approximation for the Fanning friction factor based on the
assumption that (Heywood, 1991a). This figure illustrates

how the friction factor decreases with larger values of the Bingham
Reynolds number, and increases with larger values of the Hedstrom
number. A larger version of Fig. 2.15, more convenient for problem
solving, is given in Appendix [6.17].

Figure 2.15. Fanning friction factors (from Eq. [2.114]) for Bingham plastic flu-
ids in laminar flow at different values of the Hedstrom Number.

In turbulent flow, friction factors may be determined from empirical
equations (Table 2.3) formulated from experimental data (Grovier and
Aziz, 1972). The equations are only applicable to smooth pipes which
include sanitary piping systems for food. It may be very difficult to
accurately predict transition from laminar to turbulent flow in actual
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Table 2.3. Fanning Friction Factor Equations for Turbulent Flow in Smooth Tubes

Fluid Fanning Friction Factor

Newtonian

where:

Power Law

where:

Bingham Plastic

where:

and

processing systems and the equations given here are only intended for
use in estimating the power requirements for pumping. Curves for
power law fluids in turbulent flow are plotted in Fig. 2.16 (a larger
version of the same plot is given in Appendix [6.18]). Newtonian fluids
are represented by the curve with = 1.0.

Kinetic Energy Evaluation. The kinetic energy term in the
mechanical energy balance can be evaluated if the kinetic energy cor-
rection factor ( ) is known. In turbulent flow of any fluid, .
Expressions to compute values for various fluids in laminar flow are
summarized in Table 2.4. These equations may be given in terms of ,
the flow behavior index, or which is defined as the ratio of the yield
stress ( ) to the shear stress at the wall ( ). Equations provided for

the Bingham plastic and Herschel-Bulkley cases are approximations.

1

√ f
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Figure 2.16. Fanning friction factors (equation given in Table 2.3) for power law
fluids in turbulent flow at different values of the flow behavior index.

An exact, but cumbersome, mathematical equation for the kinetic

energy correction factor of a Herschel-Bulkley fluid has been published

by Osorio and Steffe (1984). Values of , determined from this equation,

are plotted in Fig. 2.17. This figure reveals some interesting features

of the kinetic energy correction factor: values go to 2 as the yield stress

approaches the wall shear stress for all values of ; values increase

with decreasing values of . Overall, the numerical value of ranges

from 0.74 to 2 for Herschel-Bulkley fluids (Osorio and Steffe, 1984). The

minimum value of occurs at as approaches infinity. KE

differences are usually small and often ignored in evaluating power

requirements when selecting pumps.
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Table 2.4. Kinetic Energy Correction Factors for Laminar Flow in Tubes

Fluid , dimensionless

Newtonian 1.0

Power Law

+Bingham Plastic

+Herschel-Bulkley
for 

and

for 

+ Solution for the Bingham plastic material is within 2.5% of the true solution
(Metzner, 1956). Errors in using the Herschel-Bulkley solution are less than 3% for
0.1 1.0 but as high as 14.2% for 0.0 0.1 (Briggs and Steffe, 1995).

Friction Losses: Valves, Fittings, and Similar Parts. Friction loss
coefficients ( ) must be determined from experimental data. In general,

published values are for the turbulent flow of water taken from Crane
(1982). An adequate summary of these numbers may be found in
Sakiadis (1984). Laminar flow data are much more limited. Some are
available for various fluids: Newtonian (Kittredge and Rowley, 1957),
shear-thinning (Banerjee et al., 1994; Lewicki and Skierkowski, 1988;
Steffe et al., 1984) and shear-thickening (Griskey and Green, 1971).
Overall, the quantity of engineering data required to predict pressure
losses in valves and fittings for fluids, particularly non-Newtonian
fluids, in laminar flow is insufficient.

Given this situation, a "rule of thumb" estimation procedure is
needed. First some general observations should be made: a) The
behavior of values for Newtonian and non-Newtonian fluids is similar

(Metzner, 1961; Skelland, 1967), b) values decrease with increasing

pipe diameter (Crane, 1982) -- they may drop as much as 30% in going
from 3/4 to 4 inch (1.9 to 10.2 cm) pipe, c) values sharply increase with

α

σ = µγ̇

α =
2(2n + 1)(5n + 3)

3(3n + 1)2

σ = K(γ̇)n

α =
2

2 − c
σ = µplγ̇ + σo

α = exp(0.168 c − 1.062 n c − 0.954 n .5 − 0.115 c .5 + 0.831)
0.06 ≤ n ≤ 0.38

σ = K(γ̇)n + σo

α = exp(0.849 c − 0.296n c − 0.600 n .5 − 0.602 c .5 + 0.733)
0.38 < n ≤ 1.60

≤ c ≤ ≤ c ≤

kf

kf

kf

kf



134 Chapter 2. Tube Viscometry

Figure 2.17. Kinetic energy correction factors for the laminar flow of Herschel-
Bulkley fluids (from Osorio and Steffe, 1984).

decreasing Reynolds numbers (Cheng, 1970; Kittredge and Rowley,
1957; Lewicki and Skierkowski, 1988; Steffe et al., 1984) in the laminar
flow regime but are constant in the turbulent flow regime (Sakiadis,
1984) and show little change above (Kittredge and Rowley,

1957), d) Entrance pressure losses for power law fluids in laminar flow
decrease with smaller values of the flow behavior index (Collins and
Schowalter, 1963), e) Entrance losses for Bingham plastic fluids
decrease with increasing values of the yield stress when the wall shear
stress ( ) is constant (Michiyosi et al., 1966), f) Resistance to flow
of non-Newtonian fluids in laminar flow, through similar valves, can be
expectedto beup to 133percenthigherthan thatobserved forNewtonian
fluids (Ury, 1966).

Friction loss coefficients for many valves and fittings are summa-
rized in Tables 2.5 and 2.6. values for the sudden contraction, or

expansion, of a Newtonian fluid in turbulent flow, may be found in Crane
(1982). The loss coefficient for a sudden contraction is calculated in
terms of the small and large pipe diameters:
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Table 2.5. Friction Loss Coefficients ( Values) for the Laminar Flow of Newtonian
Fluids through Valves and Fittings (from Sakiadis (1984) with Original Data from
Kittredge and Rowley, 1957)

Type of Fitting or Valve =1000 500 100

90-deg. elbow, short radius 0.9 1.0 7.5
Tee, standard, along run 0.4 0.5 2.5

Branch to line 1.5 1.8 4.9
Gate valve 1.2 1.7 9.9
Globe valve, composition disk 11 12 20

Plug 12 14 19
Angle valve 8 8.5 11
Check valve, swing 4 4.5 17

[2.115]

Losses for a sudden enlargement, or an exit, are determined as

[2.116]

The largest velocity which is the mean velocity in the smallest diameter
pipe, should be used for both contractions and expansions in calculating
the friction loss term ( ) found in Eq. [2.106].

After evaluating the available data for friction loss coefficients in
laminar and turbulent flow, the following "rule-of-thumb" guidelines,
conservative for shear-thinning fluids, are proposed for estimating

values:

1. For Newtonian fluids in laminar or turbulent flow use the data of
Kittredge and Rowley (1957) or Sakiadis (1984), respectively
(Tables 2.5 and 2.6).

2. For non-Newtonian fluids above a Reynolds number ( )

of 500, use data for Newtonian fluids in turbulent flow (Table 2.6).

3. For non-Newtonian fluids in the Reynolds number range of
use the following equation:

kf
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Table 2.6. Friction Loss Coefficients for the Turbulent Flow of Newtonian Fluids
through Valves and Fittings (from Sakiadis, 1984)

Type of Fitting of Valve

45-deg. elbow, standard 0.35
45-deg. elbow, long radius 0.2
90-deg. elbow, standard 0.75

Long radius 0.45
Square or miter 1.3

180-deg. bend, close return 1.5
Tee, standard, along run, branch blanked off 0.4

Used as elbow, entering run 1.0
Used as elbow, entering branch 1.0
Branching flow 1.0

Coupling 0.04
Union 0.04
Gate valve, open 0.17

3/4 open 0.9
1/2 open 4.5
1/4 open 24.0

Diaphragm valve, open 2.3
3/4 open 2.6
1/2 open 4.3
1/4 open 21.0

Globe valve, bevel seat, open 6.0
1/2 open 9.5

Composition seat, open 6.0
1/2 open 8.5

Plug disk, open 9.0
3/4 open 13.0
1/2 open 36.0
1/4 open 112.0

Angle valve, open 2.0
Y or blowoff valve, open 3.0
Plug cock =0 (fully open) 0.0

=5 0.05
=10 0.29
=20 1.56
=40 17.3
=60 206.0

Butterfly valve =0 (fully open) 0.0
=5 0.24
=10 0.52
=20 1.54
=40 10.8
=60 118.0

Check valve, swing 2.0
Disk 10.0
Ball 70.0

Foot valve 15.0
Water meter, disk 7.0

Piston 15.0
Rotary (star-shaped disk) 10.0
Turbine-wheel 6.0

kf

θ °
θ °
θ °
θ °
θ °
θ °
θ °
θ °
θ °
θ °
θ °
θ °
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[2.117]

where is depending on the type of fluid in question.
The constant, , is found for a particular valve or fitting (or related
items like contractions and expansions) by multiplying the tur-
bulent flow friction loss coefficient by 500:

[2.118]

Values of for many standard items may be calculated from the
values provided in Table 2.6. The value of 20 was arbitrarily

set as a lower limit of in Eq. [2.117] because very low values of
the Reynolds number in that equation will generate unreasonably
high values of the friction loss coefficient. Values of will
cover most practical applications for fluid foods. Eq. [2.117] and
[2.118] may also be used for Newtonian fluids when is used

for .

The above guidelines are offered with caution and should only be used
in the absence of actual experimental data. Many factors, such as a
high extensional viscosity, may significantly influence values.

Generalized Pressure Drop Calculation. Metzner (1956) presents
a generalized approach to relate flow rate and pressure drop for time-
independent fluids in laminar flow. The governing equation is

[2.119]

where

[2.120]

and are easily determined from a plot of the experimental data.

There is a strong similarity with the aboveequation andthose describing
the flow of power law fluids in pipes. In fact, for a power law fluid,

[2.121]
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With the general solution, may vary with the shear stress at the wall
and must be evaluated at the particular value of in question.

Eq. [2.119] and [2.120] have practical value when considering direct
scale-up from data taken with a small diameter tube or for cases where
a well defined equation (power law, Bingham plastic or Herschel-
Bulkley) is not applicable. A similar method is available for scale-up
problems involving the turbulent flow of time-independent fluids (Lord
et al., 1967).

Slip and time-dependent behavior may be a problem in predicting
pressure loss in pipes. One solution is to incorporate these effects into
the consistency coefficient. Houska et al. (1988) give an example of this
technique for the transport of minced meat in pipes where incorpo-
rates the property changes due to the aging of the meat and wall slip
as a function of pipe diameter. An exercise in pipeline design is
presented in Example Problem 2.12.6.

2.11. Velocity Profiles In Turbulent Flow

Velocity profiles, critical in thermal processing systems (particularly
in hold tubes), are strongly influenced by rheological properties.
Accurately predicting velocity profiles for fluids in turbulent flow is
difficult. Relationships for Newtonian fluids are reliable. Those for
power law fluids are available but they have not received adequate
experimental verification for fluid foods. Approximate mean, divided
by maximum, velocities are summarized for some conditions in Table
2.7. A detailed discussion of laminar flow profiles is presented in Sec.
2.3.

Newtonian Fluids. Semi-theoretical prediction equations for the
velocityprofile of Newtonianfluids inturbulent floware well established
and presented in terms of three distinct regions of the pipe (Brodkey
and Hershey, 1988):

for the viscous sublayer (called laminar sublayer in some literature)

[2.122]

for the transition zone where turbulent fluctuations are generated

[2.123]

and for the turbulent core

n ′
σw

K ′

u+ = y+ y+ ≤ 5

u+ = −3.05 + (11.513) log10( y+) 5 < y+ < 30
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Table 2.7. Approximate Average and Maximum Velocities for Newtonian and
Power Law Fluids in Tube Flow

Newtonian Fluids

< 2100 4000 104 105 106 107 108

0.5 0.790 0.811 0.849 0.875 0.893 0.907

Power Law Fluids: Laminar Flow

n 0.0 0.3 0.4 0.5 1.0 2.0

1.00 0.68 0.64 0.60 0.50 0.43 0.33

Power Law Fluids: Turbulent Flow

0.2 0.2 0.2 0.5 0.5 0.5

104 105 106 104 105 106

0.92 0.94 0.95 0.86 0.89 0.92

[2.124]

where
[2.125]

and
[2.126]

and
[2.127]

NRe

u/umax

u/umax = (n + 1)/(3n + 1)

∞

u/umax

n

NRe ,PL

u/umax

u+ = 5.5 + (5.756) log10( y+) 30 ≤ y+
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u
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The distance from the pipe wall, , is defined as

[2.128]

Note that the origin of the coordinate system is (by convention) located
at the wall, . Therefore, the velocity is zero at where and
a maximum at the center of the pipe where and . The combined
velocity equations constitute the universal velocity profile.

Once the maximum velocity has been determined, the power law
equation may be used to approximate at other locations:

[2.129]

Eq. [2.129] does a reasonable job predicting velocity profiles in spite of
the fact that it is not dependent on the Reynolds number. Grovier and
Aziz (1972) note that this equation is most appropriate for
and . Also the exponent may vary from at

to at . Maximum velocity, of a turbulent

Newtonian fluid in tube flow, is calculated in Example Problem 2.12.7.

Power Law Fluids. Dodge and Metzner (1959) derived equations to
describe the velocity profile of power law fluids in tube flow. Small errors
were corrected by Skelland (1967) and the final equations presented as

[2.130]

for the laminar sublayer and

[2.131]

for the turbulent core, where incorporates the flow behavior index
and the consistency coefficient needed for the consideration of power
law fluids:

[2.132]

Constants were obtained from friction factor measurements so the
thickness of the laminar sublayer was not obtained. These equations
are applied in Example Problem 2.12.8.

An alternative equation for predicting velocity in the turbulent core
for power law fluids was presented by Clapp (1961):

y

y = R − r

r = R r = R y = 0
r = 0 y = R

1/7
u /umax

u
umax

=




y
R





1/ 7

=




R − r
R





1/ 7

0.1 < y /R < 1.0
3000 < NRe < 100,000 1/6

NRe = 4,000 1/10 NRe = 3,200,000

u+ = ( y+)1/n

u+ =
5.66

n .75
log10( y+) −

0.566

n1.2
+

3.475

n .75



1.960 + 0.815n − 1.628n log10




3 +

1
n








y+

y+ = yn(u*)2 − nρ/K



2.12.1  Conservation of Momentum Equations 141

[2.133]

This equation correlated well with experimental data in which
and .

2.12. Example Problems

2.12.1. Conservation of Momentum Equations

Show that an equation describing the shear stress for a fluid in tube
flow may be determined from the conservation of momentum principle.
Compare the result to Eq. [2.2] which was derived directly from a force
balance. This example problem is included to illustrate an alternative
method of obtaining rheological relationships.

First a number of assumptions must be stated: flow is for an
incompressible fluid under steady, laminar, isothermal conditions;
there are no entrance and exit effects; and flow is parallel to the pipe
wall, i.e., there is no radial or circumferential flow. Then, using cylin-
drical coordinates (Fig. 2.18),

[2.134]

The continuity (conservation of mass) equation may be written as

[2.135]

Under steady conditions with an incompressible fluid ( ) and,
with the assumption that radial and circumferential velocities are zero,
this equation reduces to

[2.136]

indicating that conservation of mass is satisfied and velocity is constant
along the (axial) direction. Considering the above assumptions the
momentum equations (Fig. 2.18) collapse to the following:

[2.137]

[2.138]

[2.139]
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Figure 2.18. Momentum equations in cylindrical coordinates. [Note: P is an
inclusive pressure term which ignores small variation in pressure due to varia-

tions in height ( )].

The and components would integrate to a constant indicating that
does not vary in those directions. It follows that is a function of

only:

[2.140]

Then, we can replace with , and with

to write the component of the momentum equation, Eq. [2.139],
as

[2.141]

or

[2.142]

where is replaced by the constant term, . This is allowed
because the left hand side of Eq. [2.141] is a function of only, and the
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right hand side of the equation is a function of only; hence, both sides
are equal to a constant (the origin of the negative sign will be explained
shortly). Integrating Eq. [2.142] yields

[2.143]

giving

[2.144]

must be zero for the shear stress to be finite at the centerline of the

pipe, therefore,

[2.145]

which, written in one dimensional symbolism, is like Eq. [2.2] found
from a simple force balance:

[2.146]

Eq. [2.146] and [2.2] are equivalent, but appear different, due to the
presence of a negative sign in Eq. [2.146]. This reflects the sign
convention adopted in developing the equations illustrated in Fig. 2.18
and utilized in various textbooks (Bird et al., 1960; Denn, 1980; Brodkey
and Hershey, 1988). In those equations is negative so the negative
sign is required to make the shear stress positive. In this book, however,

was assumed to be a positive number in deriving our initial force
balance (Eq. [2.1]) making a negative sign unnecessary.

2.12.2. Capillary Viscometry - Soy Dough

Data for a defatted soy flour dough from a capillary viscometer are
summarized in Table 2.8. Determine the rheological properties of the
material.

The first step in the analysis is to correct the measured pressure loss
for entrance effects. Pressure losses are plotted (Fig. 2.19) at different
values of for constant apparent wall shear rates, .
Regression analysis of these curves gives the required entrance loss
correction values at = 0. In this particular problem, entrance losses
constitute a very high percentage, over 80% in many trials, of the total
pressure drop across the capillary (Table 2.8).
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Table 2.8. Capillary Viscometer (D=3.18mm) Data for Dough (34.7%) at Room
Temperature Made from Defatted Soy Flour Treated to Cause Protein Denatu-
ration (Data from Morgan, 1979)

(1/s) (1/s) (-) (MPa) (MPa) (MPa) (kPa) (1/s)

47.4 11.9 2 4.21 3.58 0.63 78.75 72.13
47.4 11.9 5 5.21 3.58 1.63 81.50 76.73
47.4 11.9 8 6.14 3.58 2.56 80.00 74.17
94.8 23.7 2 5.46 4.63 0.83 103.75 165.80
94.8 23.7 5 6.81 4.63 2.18 109.00 183.38
94.8 23.7 8 8.02 4.63 3.39 105.94 172.87

190.0 47.5 2 5.25 4.38 0.87 108.75 253.90
190.0 47.5 5 6.80 4.38 2.42 121.00 303.49
190.0 47.5 8 8.30 4.38 3.92 122.50 310.48
948.0 237.0 2 7.68 6.17 1.51 188.75 1457.45
948.0 237.0 5 10.12 6.17 3.95 197.50 1583.76
948.0 237.0 8 12.31 6.17 6.14 191.88 1500.96

* Measured pressure drop; ** Entrance loss pressure correction
*** Corrected pressure drop.

Figure 2.19. Measured pressure drop (including entrance loss) for capillary vis-
cometer data from defatted soy flour.
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Figure 2.20. Capillary data for soy dough corrected for pressure loss.

To determine the shear rate, the Rabinowitsch-Mooney equation
(Eq. [2.20]), must be evaluated:

The relationship between and was plotted (Fig. 2.20) and
determined (by curve fitting) as a power function:

The derivative of this equation is

which can be inserted into the Rabinowitsch-Mooney equation to
determine the shear rate at the wall:
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Q/ (πR 3 ) σw
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Results of this computation are summarized in Table 2.8. After making
these calculations, the basic elements of the rheogram illustrating shear
stress versus shear rate are available for plotting (Fig. 2.21). If the
material is considered to be shear-thinning over the shear rate range
considered, the following fluid parameters are calculated: = 23.3 kPa
sn, = 0.29.

Figure 2.21. Rheogram for soy dough.

2.12.3. Tube Viscometry - 1.5% CMC

Data for a 1.5% aqueous solution of sodium carboxymethylcellulose
(CMC) were collected at room temperature using a capillary tube vis-
cometer (Table 2.9). Determine the rheological properties of this
material. Since the minimum is 248, entrance effects are assumed
to be insignificant. Assume CMC density is equal to 1003 kg/m3.

Regression analysis of versus or ln( ) in the form
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Table 2.9. Rheological Data for a 1.5% Aqueous Solution of Sodium Carboxy-
methylcellulose (CMC; =1003 kg/m3) Collected at Room Temperature (Data from
Middleman, 1968)

(m) (m) (Pa) (m3/s) (Pa) (1/s) (1/s)

2.71E-03 0.944 1.379E+05 5.910E-07 98.97 302.47 409.50
2.71E-03 0.944 2.710E+05 2.950E-06 194.48 1509.78 2044.04
2.71E-03 0.944 4.103E+05 8.320E-06 294.43 4258.10 5764.89
2.71E-03 0.944 5.916E+05 2.100E-05 424.58 10747.61 14550.81
2.71E-03 0.674 1.034E+05 7.330E-07 103.96 375.14 507.89
2.71E-03 0.674 1.379E+05 1.260E-06 138.62 644.86 873.05
2.71E-03 0.674 2.724E+05 7.060E-06 273.77 3613.24 4891.84
2.71E-03 0.674 3.999E+05 1.760E-05 401.99 9007.52 12194.96
2.71E-03 0.674 5.482E+05 3.510E-05 551.00 17963.86 24320.64
1.82E-03 0.634 1.413E+05 1.920E-07 101.44 324.40 439.20
1.82E-03 0.634 1.931E+05 4.770E-07 138.55 805.94 1091.14
1.82E-03 0.634 2.586E+05 8.010E-07 185.56 1353.38 1832.29
1.82E-03 0.634 4.068E+05 2.580E-06 291.95 4359.19 5901.76
1.82E-03 0.634 5.482E+05 5.560E-06 393.39 9394.23 12718.51
1.82E-03 0.634 6.916E+05 9.340E-06 496.31 15780.95 21365.27
1.82E-03 0.452 6.206E+04 6.700E-08 62.47 113.20 156.26
1.82E-03 0.452 1.413E+05 3.500E-07 142.29 591.36 800.63
1.82E-03 0.452 2.137E+05 9.720E-07 215.16 1642.30 2223.45
1.82E-03 0.452 3.103E+05 2.720E-06 312.33 4595.74 6222.01
1.82E-03 0.452 4.103E+05 5.750E-06 412.98 9715.25 13153.14
1.82E-03 0.452 5.171E+05 9.840E-06 520.56 16625.76 22509.02

fits the data well (Fig. 2.22) and yields meaning that

Note also (Fig. 2.22) that data for all tube sizes overlap verifying the
assumption of a negligible entrance effect. Now, may be calculated

using the Rabinowitsch-Mooney equation given in terms of Eq. [2.24]
and [2.25]:

ρ

4Q /(πR3)D L δP Q σw γ̇w

ln(σw) = ln(Constant) + n ′ ln(Γ)

n ′ = 0.414

n ′ =
d(ln(σw))
d(ln(Γ))

= 0.414

γ̇w

γ̇w =




3n ′ + 1
4n ′




Γ =





3(.414) + 1
4(.414)




Γ = 1.35 Γ
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Figure 2.22. Shear stress versus apparent wall shear rate  of
1.5% CMC at room temperature.

Figure 2.23. Rheogram for 1.5% CMC at room temperature.
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Results are summarized in Table 2.9 and plotted in Fig. 2.23. The power
law model was used to represent fluid behavior:

where = 8.14 Pa s .414 and = 0.414. Note, with the power law model,
, as expected.

should be checked, to be certain flow is laminar, using Eq. [2.51]

or Eq. [2.53]. The "worst case," at m and m3/s,
yields m/s and . With , ,

when calculated using Eq. [2.53]. Since 558 < 2581, one may conclude
that flow is laminar for all flow rates under consideration.

In this problem it was assumed the entrance effect was negligible.
The actual entrance length can be estimated from Eq. [2.67]:

Taking the experimental values used in checking for laminar flow yields

Meaning, for this particular case, the laminar flow velocity (as described
by Eq. [2.40]) was 98% fully developed in the 0.271cm diameter tube at
a distance of approximately 6.25cm (approximately 23 diameters) from
the entrance. Since the minimum of this system is 248, it is unlikely
the entrance losses will significantly influence results.

2.12.4. Casson Model: Flow Rate Equation
Derive the relationship between volumetric flow rate and pressure drop
for a Casson fluid in laminar tube flow.

The starting point in the solution is Eq. [2.15] giving the general
flow rate relationship in tube flow:

The Casson equation, given in Table 1.3, is

[2.147]

which can easily be solved for the shear rate:

σw = 8.14(γ̇w).414

K n

n = n ′

NRe,PL

Q = 3.510(10−5)D = 0.00271
u = 6.09 NRe,PL = 558 n = 0.414 (NRe,PL)

critical
= 2581

XE

DNRe,PL

= (−.125n + .175) (8n − 1)




3n + 1
4n





n

XE = .00271(558) (−.125(.414) + .175) (8.414 − 1) 



3(.414) + 1
4(.414)
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= .0625 m

L/D

Q

πR 3
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(σw)3
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⌡0

σw

(σ)2f(σ) dσ

σ.5 = σo
.5 + K1(γ̇).5
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[2.148]

Eq. [2.148] may be substituted into the flow rate equation: Recognizing
that the presence of the yield stress makes the flow discontinuous gives

[2.149]

The first integral term in Eq. [2.149] is zero because in the central

plug region of the tube where ; therefore,

[2.150]

Expansion, integration, and algebraic manipulation yields the final
solution:

[2.151]

Since , Eq. [2.151] provides the relationship between

volumetric flow rate and pressure drop for a Casson fluid.

2.12.5. Slit Viscometry - Corn Syrup

Data (Table 2.10) for high fructose corn syrup were collected at 28 C
using a slit viscometer. Determine the rheological properties of this
material. Pressure drops were measured with flush mounted trans-
ducers in the region of the slit where flow was fully developed.

The apparent wall shear rate ( ) and shear stress ( )

were calculated (Table 2.10) and plotted (Fig. 2.24) to find from
Eq. [2.89]:
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n ′ = 0.97

n ′ =
d ln(σw)
d ln(γ̇w)

= 0.97
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Table 2.10. Slit (Fig. 2.14: =0.3375 cm, = 8.89 cm, = 33.02 cm) Flow Data
of High Fructose Corn Syrup at 28 C

(m3/s) (1/s) (Pa/m) (kPa) (1/s)

6.16 E-6 44.3 2.28 3.63 44.8
8.16 E-6 54.6 3.01 4.78 55.2
9.65 E-6 64.6 3.55 5.63 65.3
10.0 E-6 73.4 4.02 6.39 74.2
12.2 E-6 81.6 4.39 6.98 82.4
13.8 E-6 92.6 4.86 7.71 93.6
15.1 E-6 101.4 5.30 8.41 102.4
16.2 E-6 108.6 5.58 8.86 109.8

Figure 2.24. Shear stress versus apparent wall shear rate for slit flow data of
high fructose corn syrup at 28 C.

A value of this close to 1.0 indicates the expected Newtonian
behavior. Using Eq. [2.88], the shear rate was evaluated (Table 2.10).
The rheogram was plotted (Fig. 2.25) and fit with a linear equation:
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Showing the viscosity of the sample is 78.7 Pa s. The intercept, 374.6
Pa, is a mathematical consequence of the statistical procedure and
should not be interpreted as an absolute value of the yield stress.

Figure 2.25. Rheogram for high fructose corn syrup at 28 C.

2.12.6. Friction Losses in Pumping

Consider the typical flow problem illustrated in Fig. 2.26. Assume the
plug disk valve is open. The system has a 0.0348 m diameter pipe with
a volumetric flow rate of 0.00157 m3/s (1.97 kg/s) resulting in a volu-
metric average velocity of 1.66 m/s. The fluid density is equal to 1250
kg/m3 and the pressure drop across the strainer is 100 kPa. Determine
the friction losses in the system, and calculate the work input and
pressure drop across the pump for the following two cases involving
power law fluids: Case 1) Assume = 5.2 Pa sn and = 0.45; Case 2)
Assume = 0.25 Pa sn and = 0.45.

Solving the mechanical energy balance equation, Eq. [2.105], for
work output yields

σw = 374.6 + 78.7 γ̇w
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Figure 2.26. Pumping system for a power law fluid.

Subscripts 1 and 2 refer to the fluid level in the input tank and the exit
point of the system, respectively. The pressure at points 1 and 2 is equal
to one atmosphere, therefore, . As a worst case for pumping,

assume a near empty tank ( ). Also, assume a large diameter

input tank making . These considerations simplify the above

equation to

where ( ) represents the work input per unit mass. The summation
term, given by Eq. [2.106], includes friction losses in straight pipe, fit-
tings, and the strainer:

or

Pressure drop across the pump is
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The power requirement would be found by calculating the product of
work input and mass flow rate.

Solution to Case 1: = 5.2 Pa sn and = 0.45. Using Eq. [2.52],

is calculated to be 323.9, a laminar flow value of . Friction loss

coefficients are determined from Eq. [2.115], Eq. [2.117], Eq. [2.118],
and Table 2.6 yielding:

and the friction factor is calculated from Eq. [2.113]:

Using the above values, the total friction loss is

The kinetic energy correction factor is found from the laminar flow
equation for power law fluids (Table 2.4):

With this information, the calculations for work input and pressure drop
can be completed:

and

(δP)p = (−W)ρ

K n NRe,PL

NRe,PL

kf,entrance =
(.5)500
323.9

= 0.77

kf,valve =
(9) (500)

323.9
= 13.89

kf,elbow =
(.45) (500)

323.9
= .69

f =
16

323.9
= .0494

∑ F =
2(.0494) (1.66)2 (10.5)

.0348
+ (0.77 + 13.89 + 3(.69))

(1.66)2

2
+ 80.0 = 185.2 J/kg

α =
2(2n + 1) (5n + 3)

3(3n + 1)2
=

2(2(.45) + 1) (5(.45) + 3)
3(3(.45) + 1)2

= 1.2

−W = 9.81(2.5) +
(1.66)2

1.2
+ 185.2 = 212.0 J/kg

(δP)p = (212.0) (1250) = 265 kPa
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Solution to Case 2: = 0.25 Pa sn and = 0.45. Using Eq. [2.52],
is calculated as 6,737. The critical value of , determined from

Eq. [2.51], is

meaning the flow is turbulent since 6,737 > 2,394. Friction loss coeffi-
cients may be determined from Eq. [2.115], and Table 2.6: ;

; . The friction factor is found by iteration of

(equation from Table 2.4)

yielding = 0.0052. Then,

Inturbulent flow, the kinetic energycorrection factor is equal to 2. Then,
the work input and pressure drop are calculated as

and

2.12.7. Turbulent Flow - Newtonian Fluid

A common problem facing food process engineers is to predict the
maximum velocity found during flow in tubes. Determine, given the
following data, the maximum velocity in the pipe: Pa s;

m; m/s; kg/m3. Also, calculate the velocity at
a point halfway between the center-line and the wall of the pipe.

The Reynolds number for a Newtonian fluid is calculated as

which is sufficient to conclude that flow is in the turbulent regime. The
friction factor equation for Newtonian fluids in turbulent flow (see Table
2.3) is:

K n

NRe,PL NRe,PL

(NRe,PL)
critical

=
6464(.45) (2 + .45)(2 + .45)/(1 + .45)

(1 + 3(.45))2
= 2,394.

kf,entrance = 0.55

kf,valve = 9 kf,elbow = 0.45

1

√ f
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4

(.45)0.75





log10[(6736.6)f (1 − (.45/2))] −




0.4

(.45)1.2





f

∑ F =
2(.0052) (1.66)2 (10.5)

.0348
+ (.5 + 9 + 3(.45))

(1.66)2

2
+ 80.0 = 103.6 J/kg

−W = 9.81(2.5) +
(1.66)2

2
+ 103.6 = 129.5 J/kg

(δP)p = (129.5) (1250) = 162 kPa

µ = 0.012
D = 0.0348 u = 1.66 ρ = 1250

NRe =
ρDu

µ
=

1250(.0348)1.66
0.012

= 6017.5
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Solving for gives

The velocity is maximum at the center-line where and . It
must be calculated from the friction velocity, Eq. [2.127]:

Calculations proceed using Eq. [2.126] and [2.124]:

and

The maximum velocity may be found from the definition (Eq. [2.125])
of the turbulent velocity, , as

Withthis information,velocitiesat other locationscan alsobe estimated.
The 1/7 power law equation (Eq. [2.129]) may be used to approximate

at the velocity halfway between the center-line and the wall

( ):

giving

2.12.8. Turbulent Flow - Power Law Fluid
Determine the maximum velocity of a power law fluid in a pipe given
the following information: Pa sn; m; m/s;

kg/m3; .

The Reynolds number (Eq. [2.52]) is

1

√ f
= 4.0 log10(NRe√ f ) − 0.4 = 4.0 log10((6017.5)√ f ) − 0.4

f

f = 0.0089
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2

= 1.66√.0089
2

= .1107 m/s
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.012

= 200.64

u+ = 5.5 + 5.756 log10( y+) = 5.5 + 5.756 log10(200.64) = 18.753
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allowing to be calculated (equation presented in Table 2.3) from:

yielding

Velocity is maximum at the center-line where . The friction
velocity (Eq. [2.127]) is

is calculated using Eq. [2.132] as:

Then, is determined from Eq. [2.131]:

The maximum velocity is found from the definition (Eq. [2.125]) of the
turbulent velocity ( ) as

f
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u* = u√ f
2
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2

= .0846 m/s
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= 22.75

u+ = u /u*

umax = u+u* = (22.64).0846 = 1.92 m/s



Chapter 3. Rotational Viscometry

3.1. Introduction

Traditional rotational viscometers include cone and plate, parallel
plate, and concentric cylinder units operated under steady shear con-
ditions Fig. 1.1). They may also be capable of operating in an oscillatory
mode which will be considered in the discussion of viscoelasticity,
Chapter 5. Cone and plate systems are sometimes capable of deter-
mining normal stress differences. Concentric cylinder systems have
been used in research to evaluate these differences (Padden and DeWitt,
1954); however, commercial instruments of this type are not available.
Mixer viscometry, a "less traditional" method in rotational viscometry,
is also presented because it has excellent utility in solving many rheo-
logical problems found in the food industry.

3.2. Concentric Cylinder Viscometry

3.2.1. Derivation of the Basic Equation

The concentric cylinder viscometer is a very common instrument
that will operate in a moderate shear rate range making it a good choice
for collecting data used in many engineering calculations. A number of
assumptions are made in developing the mathematical relationships
describing instrument performance: flow is laminar and steady, end
effects are negligible, test fluid is incompressible, properties are not a
function of pressure, temperature is constant, there is no slip at the
walls of the instrument, and radial and axial velocity components are
zero. The derivation presented here is based on a physical setup known
as the Searle system where the bob rotates and the cup is stationary:
It is also applicable to a Couette-type system in which the cup rotates
and the bob is stationary. Most concentric cylinder viscometers are
Searle-type systems. Unfortunately, it is not uncommon for the word
"Couette" to be used in referring to any concentric cylinder system.

When the bob rotates at a constant speed and the cup is stationary
(Fig. 3.1), the instrument measures the torque ( ) required to maintain
a constant angular velocity of the bob ( ). The opposing torque comes
from the shear stress exerted on the bob by the fluid. A force balance
yields

[3.1]

M
Ω

M = 2πrhrσ = 2πhr 2σ
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where is any location in the fluid, . Solving Eq. [3.1] for the
shear stress shows that decreases in moving from the bob to the cup:

[3.2]

Utilizing Eq. [3.2], the shear stress at the bob ( ) can be defined as

[3.3]

Figure 3.1.  Typical concentric cylinder testing apparatus (based in DIN 53018)
showing a bob with recessed top and bottom to minimize end effects.

To determine shear rate, consider the linear velocity at in terms
of the angular velocity ( ) at :

[3.4]

The derivative of the velocity with respect to the radius is

[3.5]

r Rb ≤ r ≤ Rc

σ

σ = f(r) =
M

2πhr 2

r = Rb

σb =
M

2πhRb
2

h

Rb

Rc

r

ω r

u = rω

du
dr

=
r dω
dr

+ ω



160 Chapter 3. Rotational Viscometry

Since is related to the rotation of the entire body, it does not relate to
internal shearing; therefore, Eq. [3.5] can be written as

[3.6]

Using the definition of shear rate developed in Eq. [2.9], may be defined
in terms of :

[3.7]

To relate angular velocity to shear stress, note that torque is constant
with steady flow so an expression for may be determined from Eq.
[3.2]:

[3.8]

Differentiating Eq. [3.8] with respect to the shear stress yields

[3.9]

Substituting the value of torque defined by Eq. [3.1] into Eq. [3.9] gives

[3.10]

or, with simplification,

[3.11]

The shear rate is some function of the shear stress, hence,

[3.12]

Solving Eq. [3.12] for the differential of the angular velocity yields

[3.13]

which can be expressed in terms of by substituting Eq. [3.11] into
Eq. [3.13]:

[3.14]
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Integrating Eq. [3.14] over the fluid present in the annulus results in a
general expression for the angular velocity of the bob ( ) as a function
of the shear stress in the gap:

[3.15]

Note that the limits of integration are an expression of the no slip
boundary condition assumed in the derivation: Angular velocity is zero
at the cup (the stationary surface), and equal to at the bob (the moving
surface). The left hand side of Eq. [3.15] is easily integrated resulting
in the following equation relating angular velocity to shear stress:

[3.16]

The solution of Eq. [3.16] depends on which is dictated by the
behavior of the fluid in question. It can be solved directly if the functional
relationship between shear stress and shear rate is known. Eq. [3.15]
isused as the starting point in Example Problem 3.8.5 to find the velocity
profile of a power law fluid in a concentric cylinder system.

Eq. [3.15] reflects a general solution for concentric cylinder vis-
cometers because the limits of the integral could be easily changed to
the case where the bob is stationary and the cup rotates (torque is equal
in magnitude, but opposite in sign if measured on the cup) or even a
situation where the bob and cup are both rotating. It is important to
recognize the fact that Eq. [3.16] is analogous to the general solution
(Eq. [2.15]) developed for tube viscometers. Both provide an overall
starting point in developing mathematical relationships for specific
types of fluids.

Application to Newtonian Fluids. The relationship between shear
stress and shear rate for a Newtonian fluid is, by definition,

[3.17]

Substituting this into the general expression for given by Eq. [3.16]
yields

[3.18]
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then,

[3.19]

Using Eq. [3.2] for shear stress allows Eq. [3.19] to be written in terms
of the system geometry and the torque response of the instrument:

[3.20]

Rearrangement gives a simplified expression, called the Margules
equation, describing the behavior of a Newtonian fluid in a concentric
cylinder system:

[3.21]

This equation clearly indicates that experimental data for Newtonian
fluids will show torque to be directly proportional to bob speed.

Application to Power Law Fluids. With a power law fluid, the
relationship between shear stress and shear rate is

[3.22]

which can be substituted into Eq. [3.16] yielding

[3.23]

or, after integration,

[3.24]

Using Eq. [3.2], an alternative expression for the power law fluid is
obtained:

[3.25]

Eq. [3.25] reveals that torque is not directly proportional to bob speed
because it is strongly influenced by the flow behavior index.

Application to Bingham Plastic Fluids. A Bingham plastic fluid
has the following relationship between shear stress and shear rate:
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[3.26]

Substituting Eq. [3.26] into Eq. [3.16] yields

[3.27]

Integration and substitution of Eq. [3.2] provides the general relation-
ship (known as the Reiner-Riwlin equation) between the torque, angular
velocity, and system geometry:

[3.28]

This equation is valid only when the yield stress is exceeded at all points
in the fluid meaning that the minimum shear stress must greater than
the yield stress:

[3.29]

is the minimum torque required to overcome the yield stress. If

evaluating fluid behavior near the limits described by Eq. [3.29], the
yield stress should be determined before conducting standard tests in
Searle-type concentric cylinder viscometers. This can be accomplished
with various techniques, such as the vane method discussed in Sec.
3.7.3, With that data, one can calculate the minimum rotational speed
of the bob required to insure shearing throughout the cylindrical gap
(see Example Problem 3.8.1). In Couette systems, applying sufficient
torque to rotate the cup assures shear flow in the entire annulus because
the minimum shear stress occurs at .

3.2.2. Shear Rate Calculations

Numerous methods of estimating shear rates in concentric cylinder
viscometers have been proposed (Table 3.1) and many of those tech-
niques are discussed in books by various authors: Whorlow (1992), Van
Wazer et al. (1963), and Darby (1976). A few of the more practical
approximation techniques are summarized in the current work.
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Table 3.1. Some Mathematical Techniques for Analyzing Data from Concentric
Cylinder Viscometers

Solution Source

Shear rate calculation, multiple bobs. Krieger, I.M. and S.H. Maron (1954)
Mean shear stress, small gaps. Mooney, M. (1931)
Shear rate at the bob. Krieger, I.M. and H. Elrod (1953)
Fluids following Ellis equation. Van Wazer et al. (1963)
Fluids following Herschel-Bulkley equation. Van Wazer et al. (1963)
Fluids following Eyring equation. Van Wazer et al. (1963)
Fluids following Casson equation. Murata, T. and S. Oka (1968)
Fluids following Vocadlo equation. Parzonka, W. and J. Vocadlo (1968)

The error in using approximations can be calculated by evaluating
the exact versus the approximate solution. Accuracy is improved as the
approximation becomes more sophisticated. When studying fluid foods,
the simple shear, Newtonian or power law approximations are often
adequate.

Simple Shear Approximation. With a very narrow annulus
( ), the curvature of the walls is negligible and the system

approaches simple shear. Assuming a uniform shear rate across the
gap gives

[3.30]

where . When calculating shear rates with Eq. [3.30] a

corresponding average shear stress should be used:

[3.31]

The error involved in using Eq. [3.30] for power law fluids is investigated
in Example Problem 3.8.2.

Newtonian Approximation. The shear rate at the bob for a New-
tonian fluid is determined from the definition of a Newtonian fluid as

[3.32]
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Commercial viscometers frequently use this equation to approximate
shear rate, often in the form of a representative (average) shear rate.
The derivation of Eq. [3.32] is presented in Example Problem 3.8.3 and
the representative shear rate concept, developed using this equation, is
examined in Example Problem 3.8.4.
Power Law Approximation. Considering the definition of a power
law fluid, an equation for the shear rate at the bob can be derived as

[3.33]

The complete development of Eq. [3.33] is given in Example Problem
3.8.5.

Using Eq. [3.33] requires a numerical value of the flow behavior
index. It may be determined directly by considering the power law
equation with Eq. [3.33] used as the expression for shear rate:

[3.34]

Taking the logarithm of each side, Eq. [3.34] may be written as
[3.35]

which, by evaluating the derivative with respect to , provides a
simple expression for the flow behavior index:

[3.36]

Since , Eq. [3.36] may also be written as

[3.37]

Hence, for power law fluids, is the slope (a straight line) of , or
, versus . Once is known, Eq. [3.33] can be easily evaluated.

Krieger Method. The general force balance on the bob gave the
relationship between shear stress and shear rate as (Eq. [3.16])
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Taking the derivative of this expression with respect to the shear stress
at the bob yields (Krieger and Maron, 1952)

[3.38]

From Eq. [3.1]

[3.39]

so

[3.40]

and

[3.41]

Substitution and simplification, using Eq. [3.40] and [3.41], transforms
Eq. [3.38] into

[3.42]

A solution (a suitableexpression for shearrate at the bob) to equation
Eq. [3.42] requires the evaluation of an infinite series. The best solutions
are those which involve a series where a good approximation can be
obtained by evaluating a small number of terms. An excellent solution
to Eq. [3.42], one which truncates an infinite series after the first term,
was developed by Krieger (1968) and recommended by Yang and Krieger
(1978):

[3.43]

where:

[3.44]

[3.45]

and

dΩ
dσb

=
1
2





f(σb)
σb

−




f(σc)
σc









dσc

dσb









M
2πh

= σr 2 =  constant

σcRc
2 = σbRb

2

dσc

dσb

=




Rb

Rc





2

=
1

α2

dΩ
dσb

=
1

2σb





f(σb) −
f(σb)

α2





γ̇b = f(σb) =




2Ω
s









α2/ s

α2/ s − 1




(1 + s 2s ′g)

1/s =




σb

Ω




dΩ
dσb

=
d(ln Ω)
d(ln σb)

=
d(ln Ω)
d(lnM)

s ′ = σb

d(1/s)
dσb

=
d(1/s)

d(ln σb)
=

d(1/s)
d(lnM)



3.2.2  Shear Rate Calculations 167

[3.46]

with , the argument of the function given by Eq. [3.46], defined as
. In concentric cylinder viscometers, is typically in the range

of 1.01 to 1.40 with smaller values being more common. Eq. [3.43] is
acceptable over this range of , most accurate at small values of , and
good in many cases for values up to 2.0 (Yang and Krieger, 1978).

Figure 3.2.  Plot of Eq. [3.46], , in Krieger (1968) solution for calculating
shear rate at the bob of a concentric cylinder viscometer.

The Krieger solution (Eq. [3.43]) is very close to the power law
approximation. In fact, with a power law fluid, and the Krieger
equation becomes the power law solution given by Eq. [3.33]. It is also
important to note that the maximum value of is approximately 0.1
(Fig. 3.2) and, when calculating the correction factor in Eq. [3.43], this
number is multiplied by other small numbers. Hence, the power law
expression for shear rate, with found at each value of , is an excellent

approximation for the shear rate at the bob:
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[3.47]

where is defined by Eq. [3.44].

Other solutions to Eq. [3.42] have been summarized by Yang and
Krieger (1978). Darby (1985) has discussed the problem of concentric
cylinder viscometer data reduction for materials with a yield stress and
found the power law approximation to give acceptable results in the
majority of practical situations. Best results, however, are obtained
with prior knowledge of the yield stress so complete shearing in the
annulus can be assured (Nguyen and Boger, 1987). The utility of various
shear rate approximation equations is illustrated in Example Problem
3.8.6. This example also presents the Krieger and Maron (1952) solution
to Eq. [3.42] for calculating the shear rate at the bob in a concentric
cylinder system.

3.2.3. Finite Bob in an Infinite Cup

When , the case of a finite bob in an infinite cup, is very

small so Eq. [3.42] becomes

[3.48]

Solving this expression for the shear rate at the bob and multiplying
numerator and denominator by , then simplifying, gives

[3.49]

Eq. [3.49] provides an easy means of determining the shear rate at the
bob in an infinite cup. The solution may be useful in tests involving
very large beakers or industrial scale food vats. It is clearly valid for
any time-independent material without a yield stress. Remarkably, it
is also valid for fluids with a yield stress (the yield stress problem is
discussed latter in this section).

Shear rate equations developed for concentric cylinder systems can
also be used for the infinite cup case by making the appropriate
allowance for geometry. This idea is illustrated for a power law fluid,
tomato ketchup, in Example Problem 3.8.7. Errors involved in using
the infinite cup approximation depend on geometry as well as fluid
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properties (see Example Problem 3.8.8). A general problem illustrating
the infinite cup calculation technique is given for salad dressing in
Example Problem 3.8.9.

Eq. [3.49] may also be used to calculate an exact solution for the
shear rate at the bob in concentric cylinder systems (Nguyen and Boger,
1987) when the fluid in the annulus is only partially sheared, i.e., when
Eq. [3.29] is violated and the minimum shear stress is less than the
yield stress. In this situation, the yield stress ( ) may be substituted

for in Eq. [3.16], then differentiated to yield an expression similar to

Eq. [3.38]:

[3.50]

Since the second term within the brackets is zero, Eq. [3.50] becomes
Eq. [3.48] which can be simplified to Eq. [3.49]. Therefore, the solution
for a single cylinder rotating in an infinite medium and the solution for
the case of a bob rotating in an annulus with partially sheared fluid are
identical! This surprising result means that Eq. [3.49] can be used in
a vat (or beaker) containing material with a yield stress if the bob is
placed sufficiently far into the container so wall effects are not a source
of error. The appropriate distance from the wall can be estimated from
Eq. [3.2]. This idea is illustrated in Example Problem 3.8.10.

3.3. Cone and Plate Viscometry

Using a cone and plate apparatus (Fig. 3.3), the shear stress versus
shear rate curve may usually be obtained directly so the calculations
are quite simple. The instrument is a moderate shear rate device which
is inappropriate for fluids with large particles because the cone angle
( ) is small, preferably less than 0.09 rad (5 degrees). In operating a
cone and plate viscometer, the apex of the cone almost touches the plate
and fluid fills the gap. The cone is rotated at a known angular velocity
( ) andthe resultingtorque ( ) is measuredon the fixed plateor through
the cone. Some instruments are designed with rotating plates and fixed
cones.

Flow in a cone and plate viscometer can be very complex requiring
a laborious solution of the fundamental equations of motion (Walters,
1975). However, when using a small cone angle (less than 5 degrees),
sufficiently low rotational speeds, and with no errors due to surface
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tension effects at the free fluid surface (surface should be spherical in
shape with a radius of curvature equal to the cone radius), the shear
rate at may be calculated as

[3.51]

indicating that the shear rate is constant throughout the gap. This is
one of the main advantages of a cone and plate viscometer. With the
small angles found in typical fixtures, .

To develop an expression for shear stress, consider the differential
torque on an annular ring of thickness dr:

[3.52]

Figure 3.3.  Cone and plate (left), and parallel plate (right) sensors.

Eq. [3.52] is integrated over the radius to find the total torque response:
[3.53]

Since the shear rate is constant in the gap, the shear stress is also
constant in that area so . Then, Eq. [3.53] can be simplified to

[3.54]

hence,
[3.55]
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This result shows that , like , is constant throughout the gap. Using
Eq. [3.51] and [3.55], shearrate and shearstresscan be easily calculated.
By varying the angular velocity, cone angle and cone radius, a wide
variety of conditions can be tested. If a specific model is selected,
rheological properties can be calculated directly. The following equa-
tion, for example, would apply to power law fluids:

[3.56]

Figure 3.4.  Cone and plate system showing pressure distribution on a plate for
a viscoelastic fluid.

Fluids which have a significant elastic component will produce a
measurable pressure distribution in the direction perpendicular to the
shear field (Fig. 3.4). Some cone and plate viscometers allow mea-
surement of the resulting normal (axial direction) force on the cone
making it possible to calculate the first normal stress difference, noted
in Eq. [1.23], as (Walters, 1995):

[3.57]
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The normal force difference increases with the shear rate for viscoelastic
fluids: It is equal to zero for Newtonian fluids. Expected torque response
and data analyses for cone and plate systems are investigated in
Example Problems 3.8.11 and 3.8.12, respectively.

3.4. Parallel Plate Viscometry (Torsional Flow)

Shear rate in a parallel plate apparatus (Fig. 3.3) is a function of

[3.58]

so the shear rate at the rim of the plate ( ) is

[3.59]

Shear stress must be determined from the torque response of the
instrument which is evaluated by constructing a force balance equation
on the disk and integrating over the radius. The same procedure was
followed in the previous section for the cone and plate viscometer.

With the cone and plate system, the shear stress was constant
allowing Eq. [3.53] to be easily evaluated. In a parallel plate system,
however, the shear stress is a function of the radius making the inte-
gration more complicated. Eq. [3.53] may be written in a simplified form
as

[3.60]

Using Eq. [3.58], the variable of integration may be changed from to
. Making the appropriate substitutions ( and ),

and evaluating the integral from 0 to , yields

[3.61]

Dividing each side of Eq. [3.61] by and simplifying the result gives

[3.62]
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[3.63]

Differentiating Eq. [3.63] with respect to , using Leibnitz’ rule (Eq.

[2.16] and [2.17]) on the right hand side, gives an independent term for
:

[3.64]

Simplification of Eq. [3.64] provides an expression for the shear stress
at the rim of the plate ( ):

[3.65]

or

[3.66]

where, recall, . This expression is similar in form to the

Rabinowitsch-Mooney equation, Eq. [2.20]. Application of Eq. [3.66] is
demonstrated for a 3% hydroxypropyl methylcellulose solution in
Example Problem 3.8.13.

The relationship between and can be evaluated directly for
particular types of behavior. With a Newtonian fluid

[3.67]

which can be substituted into Eq. [3.60]:

[3.68]

yielding, after integration and simplification,

[3.69]

When written in this form, it is clear that for Newtonian

fluids. The same procedure can be followed for power law fluids giving
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[3.70]

showing that the shear stress at the rim for a power law fluid depends
on the numerical value of the flow behavior index:

[3.71]

Considering the above relationships, one can see that the derivative
term in Eq. [3.66] is equal to one for Newtonian fluids and for power
law fluids.

Parallel plate systems, using axial thrust data, can be used to cal-
culate the second normal stress difference (noted in Eq. [1.24]) provided
the first normal stress difference has been determined from cone and
plate measurements (Walters, 1975):

[3.72]

If is known, this equation can be used to determine . However,

since is very small compared to , it is often reasonable to assume

that the normal stress determined from parallel plate data is a good
approximation of .

3.5. Corrections: Concentric Cylinder
End Correction. It is important to account for the influence of the
bottom of the cylinder on the torque response of the system. This surface
is in contact with the fluid but not taken into account in the force balance
given by Eq. [3.1].

To determine the end correction, torque (or instrument scale divi-
sion) is measured at a fixed rate of rotation when the annulus is filled
to various heights (Fig. 3.5). Resulting data are plotted (Fig. 3.6) as
torque versus the height of fluid in contact with the immersed length
of the bob. The curve should be linear with the slope equal to the torque
requiredto maintain the fixed rate of rotation per unit length of cylinder.
Effective height ( ) is determined from the intercept by extrapolating

to a value of zero torque (Fig. 3.6). This technique is illustrated in
Example Problem 3.8.14 for the tapered bob of a Hercules high-shear
viscometer.
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Figure 3.5. Illustration of  values used in determining end correction.

Figure 3.6. End correction for a concentric cylinder system using a graphical
technique to determine .

Effective height values are used in the previous equations developed
for concentric cylinder systems. The Margules equation (Eq. [3.21]), for
example, would be expressed as
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[3.73]

The value of given in Eq. [3.1] is replaced by which, together,

may be thought of as the effective height of the bob. An end correction
calculated for a particular bob with a standard Newtonian fluid provides
a general approximation for To obtain maximum accuracy, the end

correction should be evaluated for each fluid and rotational speed under
consideration. This procedure, however, is very laborious and not
considered standard practice.

The end correction can also be evaluated in terms of an equivalent
torque ( ) generated by a fluid in contact with the bottom of the sensor.

This idea is illustrated for three different speeds in Fig. 3.7. can be

plotted as a function of to determine the relationship between the two
parameters. The torque correction is subtracted from the measured
torque in calculating the shear stress at the bob:

[3.74]

Correcting for end effects with or should yield identical results.

Various bob designs have been developed to minimize end effects.
Bobs can be made with a reservoir at the top and a recessed bottom.
This bob design, shown in Fig. 3.1, is based on a German standard (DIN
53018) developed by the German Institute for Standardization
(Deutsches Institut für Normung). End effect problems can also be
reduced by designing the bottom with a slight angle (called a Mooney-
Couette bob, Fig. 3.8) in an effort to make the shear rate at the bottom
equivalent to the shear rate in the annulus. The proper angle ( ) can
be calculated by equating the annular shear rate to the shear rate in
the gap (see Example Problem 3.8.15). Problems with large particulates
and sensor alignment limit the usefulness of Mooney-Couette systems.
Other methods, such as using a mercury interface at the bottom of the
bob (Princen, 1986), have also been proposed.
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Figure 3.7. End correction for a concentric cylinder system using a graphical
technique to determine a torque correction at different speeds.

Figure 3.8.  Mooney-Couette bob design.

Viscous Heating. Temperature increase in a fluid during rheological
testing can be caused by the viscous generation of heat. It may be a
serious problem in some experiments because rheological properties are
strongly influenced by temperature. The purpose of this section is to
provide a means of determining if a significant temperature increase
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may occur during testing. If the problem is serious (it will always exist)
appropriate action must be taken. Most viscometers are designed with
effective temperature control systems that minimize viscous heating
problems by rapidly removing the excess heat generated during testing.

To address viscous heating, the case of uniform shearing between
parallel plates (Fig. 1.9) may be considered (Dealy, 1982). A concentric
cylinder system can be approximated using this idea when the gap is
narrow ( ). This is a one dimensional problem where it is

assumed that plates are separated by a distance , with at the

bottom plate and at the top plate. Also, assume the fluid is

Newtonian with a viscosity that does not vary with temperature. In
this case the differential equation relating temperature and location,
under steady state conditions, is

[3.75]

where is the fluid thermal conductivity. is the viscous energy
generated per unit time per unit volume expressed in units of J s-1 m-3.
Shear rate is considered to be uniform throughout the gap. The solution
to Eq. [3.75] is

[3.76]

where and are constants which depend on the boundary conditions

of the problem being considered. Solutions for two different cases follow.
The various scenarios should be visualized in terms of the propensity
of heat to move through the cup and (or) the bob surfaces during
shearing.

Both surfaces are maintained at the same temperature ( ). In this

situation the boundary conditions are at , and at ,

which allow the constants in Eq. [3.76] to be determined: ,

. Substituting these values back into Eq. [3.76] allows the

temperature to be expressed as a function of position between the plates:

[3.77]
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meaning temperature distribution is parabolic and the maximum
temperature occurs at the midplane:

[3.78]

Hence, the temperature rise in the gap is equal to indicating

that minimizing the size of the gap ( ), analogous to having a

smaller value of , is beneficial in reducing viscous heating problems.

One surface is adiabatic and the other surface is maintained at . In

this case the boundary conditions are at and at

allowing determination of the constants: and .

Substitution of these values into Eq. [3.76] yields the temperature
distribution function:

[3.79]

The distribution is parabolic with the maximum temperature occurring
at the adiabatic surface where :

[3.80]

Comparing this result to the case where both surfaces are maintained
at indicates the temperature variation in a sample may be four times

greater when one surface is considered adiabatic. Eq. [3.80] has been
applied to tomato ketchup in Example Problem 3.8.16.

Effect of temperature variation on viscosity. Problems associated with
viscous heating will depend on the extent to which rheological properties
are sensitive to temperature. Dealy (1982) gave an example in which
viscosity was expressed as an exponential function of temperature:

[3.81]

or

[3.82]
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where is the viscosity at and is a constant, numerically dependent

on the fluid in question. Assuming is the wall temperature, the ratio

of the maximum to the minimum viscosity is

[3.83]

Considering the case when both walls are maintained at , Eq. [3.78]

can be substituted into Eq. [3.83] yielding:

[3.84]

Meaning, for example, if the variation in viscosity during testing is to
be less than 10%, then

[3.85]

making it necessary to maintain the following inequality:

[3.86]

In the situation where one wall is maintained at and the other wall

is adiabatic, the viscosity ratio may be evaluated by combining Eq. [3.83]
and [3.80]:

[3.87]

To maintain a viscosity variation of less than 10%

[3.88]

Although the above calculations are not quantitatively exact for
non-Newtonian fluids, they do illustrate the relative importance of
different experimental variables. Analytical solutions for power law
fluids in couette flow -where the consistency coefficient is expressed as
a power series of temperature and the flow behavior index is assumed
to be independent of temperature- are cumbersome, but available
(Middleman, 1968).
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Wall Effects (Slip). Wall effects due to separation in multiphase
materials may cause errors in concentric cylinder systems similar to
those discussed for tube viscometers in Sec. 2.5. Oldroyd (1956) sug-
gested that slip may be considered in terms of the general expression
for angular velocity (Eq. [3.16]) by adding a slip velocity ( ) that is a

function of wall shear stress at the bob and the cup:

[3.89]

In the absence of slip, the slip velocity is zero and this equation reduces
to Eq. [3.16]. Using the method of Mooney (1931), it is possible to correct
for slip in concentric cylinder viscometers. The method requires
numerous bobs because measurements are required at different values
of .

A simple slip evaluation method, requiring two series of measure-
ments in two different measuring sets, that have different gap widths,
has also been suggested (Kiljanski, 1989). Cheng and Parker (1976)
presenteda methodof determining wall-slip based onthe use ofa smooth
and a rough bob. They also urged caution in investigating slip because
fluids exhibiting that phenomenon may have accompanying particulate
behavior which may mask slip and complicate data treatment. A related
procedure was proposed by Yoshimura and Prud’homme (1988). If slip
is a serious problem, mixer viscometry should be evaluated as an
alternate experimental method.

The Mooney technique was used by Qiu and Rao (1989) to evaluate
slip in apple sauce, a typical food dispersion of solid particles in a liquid.
This work represents one of the few thorough studies dealing with slip
in a food product. The investigators found that the wall slip correction
did notsignificantly influence the flow behavior index (theaverage value
for applesauce was 0.253), but increased the consistency coefficient: An
average consistency coefficient equal to 37.53 Pa sn was found for typical
applesauce and the slip correction caused this value to increase by an
average of 5% to a value of 39.40 Pa sn. Qui and Rao (1989) also made
a very interesting observation when they said "Due to the fortuitous
opposite effects of correction for non-Newtonian behavior (it increases
themagnitudes of shear rates) and correction for slipeffects (itdecreases
the magnitudes of shear rates), it appears that for food suspensions
Newtonian shear rates uncorrected for slip may be closer to the shear

us

Ω = −
1
2

⌠
⌡σb

σc

f(σ)
dσ
σ

+
(us)

bob

Rb

+
(us)

cup

Rc

Rc/Rb



182 Chapter 3. Rotational Viscometry

rates corrected for both non-Newtonian behavior and for wall slip." They
cautioned that this conjecture should be verified before applying it to
any particular product.

Secondary Flow. Equations developed for the analysis of rheological
data assume that the streamlines are circular, i.e., flow is laminar.
When an inner cylinder rotates in a concentric cylinder system, the fluid
near the inner surface tries to move outward due to centrifugal forces.
This movement may create non-streamline flow due to the presence of
"Taylor vortices" (G.I. Taylor (1923. Phil. Trans. Roy. Soc. (London), Ser.
A 223: 289). Such vortices may occur for Newtonian fluids when
(Whorlow, 1992)

[3.90]

In a Couette type system where the outer surface (the cup) is rotated,
the inertial forces have a stabilizing effect and flow is laminar at much
higher shear rates. Consult Larson (1992) for a detailed analysis of flow
instabilities in concentric cylinder systems. Application of Eq. [3.90] is
presented in Example Problem 3.8.6 and 3.8.17.

Cavitation. The formation and collapse of vapor cavities, known as
cavitation, may occur in a high shear environment when the radial
pressure drop is sufficient to cause partial vaporization of the sample.
By considering the Bernoulli equation in terms of the mechanical energy
balance (Eq. [2.105]), one finds (Sakiadis, 1984) that cavitation will occur
when where is the linear velocity of the bob or cup,

whichever is greater. The left hand side of the equation ( ) is related
to the pressure drop ( ) across the gap: . If present, cavi-
tation may cause erroneous torque responses in a concentric cylinder
viscometer. Cavitation is not a significant problem in food rheology
because it is usually not present when laminar flow conditions are
maintained. The cavitation problem is examined in Example Problem
3.8.17.

3.6. Corrections: Cone and Plate, and Parallel Plate

Sources of error in cone and plate, and parallel plate systems are
similar and include the following (Dealy, 1982): viscous heating, sec-
ondary flow, shear rate nonuniformity due to large angles, edge effects,
and non-ideal geometry (also a problem in concentric cylinder systems).
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It is difficult, however, to numerically quantify these problems. Devi-
ation from ideal geometry, involving eccentricity or incorrect angles,
may be monitored by visual inspection. The temperature increase in
cone and plate systems can be estimated in terms of the Brinkman
number (Powell, 1988) defined as the rate of heat generated by viscous
dissipation divided by the rate of heat conduction to the surface of the
fluid containment system. Viscous heating is rarely a problem when
testing biological materials in cone and plate, or parallel plate, systems.

Edge Effects. One type of edge effect, sample skin formation from
dehydration, can be minimized by applying a thin coating of oil on the
outer surface of the sample. Some rheometers come equipped with a
solvent trap to reduce loss of volatiles and subsequent edge effects. A
second edge effect, known as edge failure, may be observed with thick
foods. Even at rather low shear rates, the sample may appear to be
recessed at the center but flowing out on the top and bottom surfaces of
the material. Typically, a sharp drop in torque is observed at the onset
of edge failure. This problem may be the governing factor in establishing
maximum shear rates in cone and plate, and parallel plate testing.

Slip. Slip correction methodology for parallel plate systems, based on
a comparison of shear stress versus shear rate at different gap settings,
has been presented by Yoshimura and Prud’homme (1988). This
analysis is similar to that presented in Sec. 2.5 for evaluating a slip
correction factor for capillary viscometers. In the absence of slip, plots
of torque ( ) versus the apparent shear rate at the rim ( ), deter-
mined using a single plate (constant radius) but different gap heights,
will yield identical curves. This fact is very useful in checking for slip
because data sets can be collected, on the same sample, by running rate
sweeps at successively smaller values of .

Truncated Cones. Errors associated with truncated cones (Fig. 3.9)
may be investigated as a deviation from ideal geometry. Fortunately,
the maximum error introduced by the truncation can be easily esti-
mated. Torque in the conical section is calculated from Eq. [3.54] using

, the radius of the truncated portion, as the lower limit of the integral:

M ΩR /h

h

RT
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Figure 3.9. Ideal and truncated cone design.

[3.91]

The percent maximum error in torque in the conical section is

[3.92]

After substituting the appropriate expressions, Eq. [3.55] for the ideal
torque and Eq. [3.91] for the approximate torque, Eq. [3.92] becomes

[3.93]

or, with simplification,

[3.94]
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Using Eq. [3.94], the maximum error can be calculated. If, for example,
is or , then the percent maximum error is 0.1 and 0.8,

respectively. In actual operation, the true error is less thanthe predicted
value because the truncated section of the cone also contributes some
torque during measurement.

3.7. Mixer Viscometry

Extensive work has been conducted on mixer viscometry (Castell-
Perez and Steffe, 1992). The technique has been used mostly for non-
reacting biological materials but also applied in evaluating the
workability of fresh concrete (Tattersall and Banfill, 1983), and to
chemorheological studies involving starch gelatinization (Dolan and
Steffe, 1990; Steffe et al., 1989). Mixer viscometry may be useful to the
food engineer in evaluating difficult fluids like those exhibiting slip or
time-dependent behavior, and those having large particles or particle
settling problems. Some concepts, such as the matching viscosity
method of determining the mixer viscometer constant, are also useful
in developing models to simulate the shear history found in complex
food processing equipment such as scrape-surface heat exchangers.

An unusual type of mixer viscometer, known as the helical screw
rheometer, was proposed by Kraynik et al. (1984) and successfully used
for tomato products (Tamura et al., 1989). The instrument consists of
a helical screw in a tight fitting barrel and resembles a single screw
extruder with a closed discharge. Screw rotation maintains particle
suspension, and rheological properties are correlated to pressure drop
over the length of the screw. The helical screw rheometer is not com-
mercially available but has potential for future applications in on-line
viscometry.

In past years, significant advances have been made in our under-
standing of commercial mixing and related processes (Harnby et al.,
1985; Holland and Chapman, 1966; Nagata, 1975; Oldshue, 1983;
Silvester, 1985;Skelland, 1983;Sweeney, 1978; Ulbrecht and Patterson,
1985; Uhl and Gary, 1986). Original ideas in mixer viscometry came
fromconceptsdeveloped to address industrialproblems so a short review
ofcommercial mixing isappropriate before examining mixer viscometry.

Commercial Mixing. The terms mixing, blending and dispersing are
sometimes used interchangeably. Mixing can be defined as a unit
operation which involves the intermingling of two or more dissimilar

RT 0.1R 0.2R
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materials to obtain a desired degree of uniformity. It is usually
accomplished by mechanical agitation which creates motion in the
material being processed.

In mixing, an agitator induces material flow by imparting inertial
forces to the fluid which, if not significantly dampened by viscous forces,
cause fluid motion at some distance away from the impeller. When
materials are so thick that fluid cannot be convected away from the
stirrer, mixing is accomplished by the bulk movement of material due
to physical displacement by the agitator.

Mixer impellers for low viscosity fluids may be divided into axial and
radial flow types. With axial flow impellers, such as the marine type
and fixed blade turbines, top-to-bottom motion is promoted by placing
blades at an angle of less than 90 degrees with the angle of rotation.
Radial flow impellers, including flat and curved blade turbines, have
blades which are mounted parallel to the vertical axis of the drive shaft.
Anchor type agitators (Fig. 1.26) are commonly used for high viscosity
materials. They may have a close-clearance between the impeller and
the tank to enhance heat transfer. Extremely high viscosity materials
including pastes, dough, and meat emulsions rely on helical ribbons,
screws or kneaders for mixing.

Dimensional Analysis. Mixing is a complex process that does not
lend itself to rigorous analytical treatment. Studies on the subject, and
most practical results, have come from dimensional analysis and sim-
ilarity theory (Gupta, 1984; Langharr, 1980; Murphy, 1950). The most
common technique involves the Buckingham pi theorem discussed
below.

If physical variables influence a process, then the basic equation
relating the variables may be written as

[3.95]

The Buckingham pi theorem states that a relationship may be found
between independent dimensionless groups of variables, called pi
groups, which have fewer terms than the basic equations:

[3.96]

where with defined as

[3.97]

The pi groups are

m

f1(x1, x2, x3, x4, …,xm) = 0

f2(Π1, Π2, Π3, …, Πi) = 0

i < m i

i = m − j
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[3.98]

[3.99]

[3.100]

where , , and are constants determined from the

dimensions of the physical variables. In most cases, is the number of
fundamental dimensions (such as length, mass and time) involved in
theproblem. Eq. [3.96] isdetermined from experimentaldata. Reducing
the number of variables by dimensional analysis has an obvious
advantage of reducing the amount of data required to model mixing
systems.

Power Consumption in Fluid Mixing. In fluid mixing, dimensional
analysis shows that the power number is a function of many dimen-
sionless variables:

[3.101]

where:

[3.102]

[3.103]

[3.104]

[3.105]

[3.106]

The power is equal to the productof torque and angularvelocity: .
and are the viscosity function (Eq. [1.22]) and the first normal stress

coefficient (Eq. [1.23]), respectively. Numerous geometrical dimen-
sionless numbers may be considered for a typical mixer (Fig. 3.10): ,

, , , , , width of baffle divided by the impeller

diameter, number of impeller blades, impeller pitch, and number of
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baffles. To be consistent with the previous work on rotational visco-
metry, the angular speed is given in units of rad/s instead of rev/s or
revs/min which are frequently used in investigating commercial mixing.

Figure 3.10.  Typical mixer viscometer apparatus with paddle type impeller and
water jacket for temperature control.

In geometrically similar systems, Eq. [3.101] may be simplified to

[3.107]

where the power number ( ) represents the ratio of the applied force

to the opposing inertial force. The impeller Reynolds number ( )

represents the ratio of the inertial to the opposing viscous force in the
mixing system and defines laminar, transitional, and turbulent flow in
the mixing vessel. It is generally accepted that laminar flow exists for

and turbulent flow is assured at . [Note: if is

formulated with speed expressed as rev/s instead of rad/s, laminar and
turbulent flows are found at and , respectively.

Different units, rev/s versus rad/s, cause the numbers to be different by
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a factor or .] The transition region is large and depends on the
particular system in question. In some cases, turbulent flow may be
present with an impeller Reynolds number as low as 1900.

The Froude number ( ) reflects the ratio of inertial to gravitational

forces and is used to account for the effect of vortexing on the power
number. It may be important in unbaffled systems operating at high
impeller Reynolds numbers but can be ignored at low speed, and in most
baffled systems. The Weber number ( ) represents the ratio of the

inertial force to surface tension force. It should be considered in systems
where interfacial effects are important such as those found in two phase
dispersions. Viscoelastic behavior is characterized by the Weissenberg
number ( ) defined as the ratio of the primary normal stress coefficient

(Eq. [1.23]) times the angular velocity, divided by the apparent viscosity
function (Eq. [1.22]). The influence of liquid elasticity on power con-
sumption is not clear but thought to be small (Ulbrecht and Carreau,
1985).

With a single phase fluid operating at low speed, or in a baffled
system, the power number can be expressed with the impeller Reynolds
number alone:

[3.108]

or

[3.109]

The general functional relationship may be stated as

[3.110]

where and depend on the geometry of the system and the flow regime
present during mixing. when , and when

. The values of and in the intermediate region will

depend on the particular mixing system under consideration.

Holland and Chapman (1966) provide power versus Reynolds
number solutions for a wide range of mixing systems. Relationships for
some standard mixers are provided in Sakiadis (1984). Power curves
are independent of scale and depend only on the geometry of the system.
When the power curve is available for a particular configuration, it may
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be used to calculate the power requirement given various agitator
speeds, liquid viscosities, and densities. Other references (Ulbrecht and
Carreau, 1985; Nagata, 1975) may also be consulted for power con-
sumption information related to mixing with helical screws, ribbons,
and draught tubes.

3.7.1. Mixer Viscometry: Power Law Fluids
Mixer viscometry, typically conducted using flag or pitched paddle

impellers (Fig. 3.11), has been used extensively for power law fluids
(Castell-Perez and Steffe, 1990; Castell-Perez and Steffe, 1992).
Techniques have been developed for estimating power law fluid prop-
erties that are useful for quality control and engineering design appli-
cations. Shear rate estimation methods have been developed to allow
fluid properties to be calculated over an appropriate shear rate range.
They are also useful in determining the degree of mixing action present
when evaluating process performance characteristics involving particle
motion and gas dispersion.
Power Consumption and Average Shear Rate

Mixer viscometry is an important tool for investigating power law
fluids. Working equations are developed by first considering a New-
tonian fluid in laminar flow ( ). When , and may be

neglected (surface tension, elastic, and vortexing effects are
insignificant), the power consumption equation (Eq. [3.110]) may be
written as

[3.111]

or, incorporating Eq. [3.102] and [3.103], as
[3.112]

Eq. [3.112] may be used for power law fluids ( ) if the Newtonian

fluid viscosity ( ) is replaced by an apparent viscosity ( )

evaluated at an average shear rate ( ) defined as

[3.113]

where is the mixer viscometer constant having units of 1/rad (units
of 1/rev are found in some published works). is unique for any
particular physical system and must be determined from experimental
data.
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In mixer viscometry, there are two primary techniques for deter-
mining : the "slope method" and the "viscosity matching method."
These methods are presented in the following discussion.

Figure 3.11.  Typical impellers used in mixer viscometry.

Evaluation of

Slope Method. Substitution of Eq. [3.113], and the power law apparent
viscosity for the Newtonian viscosity, into a simplified formof Eq. [3.112]
gives

[3.114]

or, after simplifying and taking logarithms,

[3.115]

Using power law fluids with different known values of and , a plot

of versus is used to determine from the slope

of the line which is equal to . If the plot is a straight line, then

the approximation proposed ( ) in Eq. [3.113] is valid.
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One must exercise care in using the slope method for calculating the
mixer viscometer constant. Small errors in determining the slope of the
line will result in large errors in because of the logarithmic rela-
tionship between the two numbers. By convention, base 10 logarithms
were used in Eq. [3.115]: Identical results would be obtained using base
. Determination of using the slope method is illustrated in Example

Problem 3.8.18.
MatchingViscosity Method. This technique involves the comparison
of power curves for Newtonian and non-Newtonian fluids using the idea
of matching viscosities. The phrase "matching viscosities" refers to the
assumption that the average shear rate for a non-Newtonian fluid is
equal to the average shear rate for a Newtonian fluid when the New-
tonian viscosity equals the apparent viscosity of the non-Newtonian
fluid. The technique is excellent for determining the average shear rate
in a mixer and is also useful to food process engineers in evaluating the
performance of commercial equipment (e.g., a scraped-surface heat
exchanger) having poorly defined shear fields.

UsingNewtonian fluids such as silicone oil or corn syrup in the mixer
viscometer, the constant is determined from the slope of experimental
data presented in the form of Eq. [3.111]. With a routine viscometer
(like a concentric cylinder or cone and plate system) and traditional
rheological techniques, the properties ( and ) of a power law fluid are
determined. This "standard" (or reference) power law material is then
placed in the mixer viscometer, and mixed at a constant speed. is

determined and the resulting "average viscosity" calculated using the
power number expression for the Newtonian fluids. This equation,
found by combining Eq. [3.111] and [3.103], is

[3.116]

Next, the matchingviscosity assumptionis appliedand anaverageshear
rate ( ) calculated. First, assume,

[3.117]

then, substitute Eq. [3.117] into Eq. [3.116],
[3.118]
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Figure 3.12.  Matching viscosity method to calculate average shear rate.

and solve for the average shear rate:

[3.119]

The matching viscosity procedure to evaluate the average shear rate
is summarized in Fig. 3.12:

Step 1. Power number relationship is established for Newtonian
fluids and the numerical value of is determined using Eq.
[3.111];
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Step 2. At a steady impeller speed, the power number is measured
for a non-Newtonian fluid;

Step3.Newtonianand non-Newtonian powernumbersare setequal
and the corresponding impeller Reynolds number, from the
Newtonian fluid data, is evaluated;

Step 4. "Viscosity" is calculated from the information generated in
Step 3 using Eq. [3.116];

Step 5. Matching viscosity assumption is applied so the Newtonian
andapparent viscosities are set equal as indicated in Eq. [3.117];

Step 6. Taking the apparent viscosity and power law fluid param-
eters, average shear rate is calculated using Eq. [3.119] written
in terms of where .

is calculated as . Steps 2-6 should be repeated at numerous
impeller speeds to determine how may vary with . An average value
of may be taken to represent the constant required in Eq. [3.113].

Comparison of Calculation Methods. There are various
advantages anddisadvantages to considerbefore usingthe slope method
(SM) or the matching viscosity method (MVM). SM and MVM both
require power law fluid "standards" (reference fluids) to determine
that, with an appropriate selection of fluids, will cover a suitable range
of flow behavior indices. Fewer reference fluids may be needed using
the MVM. The main advantage of the SM is the simplicity of the cal-
culations; however, problems with accuracy may occur due to the high
sensitivity of with the slope of a logarithmic plot. In comparison to
SM, the MVM is somewhat laborious due to the larger amount of data
handling. Results from the SM and MVM are similar. The effective
shearrates of flag and star impellers were evaluated using both methods
by Rao and Cooley (1984). Results from that work showed the two
methods to be in good agreement. Briggs (1995) reached a similar
conclusion working with flag impellers. MVM would be the method of
choice for engineers attempting to evaluate average shear rates in
complex processing equipment.

Values and Variables Influencing . Skelland (1983) has sum-
marized values of mixer viscometer constants ( ) and power curves for
many commercial mixers. Using the average shear rate concept to
calculate an apparent viscosity value, Nagata (1975) determined power
correlations of Bingham plastic materials for turbine, anchor, and rib-

η = d2ΩρNPo/Aη

k ′ γ̇a/Ω
k ′ Ω

k ′

k ′

k ′

k ′

k ′ k ′
k ′



3.7.1  Mixer Viscometry: Power Law Fluids 195

bon mixers. Bowen (1986) has presented an informative discussion
related to the determination of average and maximum shear rates for
radial flow turbine mixers. A mixer viscometer constant has been
determined for the Brabender Viscograph by Wood and Goff (1973), and
for a flag impeller rotated in a number 303 can by Rao (1975).

Using the slope method, Steffe and Ford (1985) found = 4.47 rad-1

for the Haake MV cup and pitched paddle impeller (Fig. 3.11). The
pitched paddle impeller can be particularly useful in maintaining par-
ticle suspension in samples exhibiting sedimentation problems. Raw
data, and analytical procedures for the determination of , used by
Steffe and Ford (1985) are presented in Example Problem 3.8.18.

Castell-Perez and Steffe (1990) studied shear rate evaluation using
paddle impellers (Fig. 3.10) for power law fluids. The effects of numerous
factors on the determination of were considered. Results showed that

was higher with less shear-thinning fluids, increases with a
decrease in rotational speed and reaches an almost constant value when
operating at speeds greater that 0.33 rev/s (20 rev/min), and tends to
decrease with an increase in the ratio of the impeller to cup diameter
( ). The effort resulted in a number of recommendations for practical
work in mixer viscometry involving paddle-type impellers: if possible,
select a system with a small gap, > 0.709; if the system to be used
has a large gap, determine the effect of fluid properties on ; and use a
minimum impeller speed of 0.33 rev/s (20 rev/min).

Briggs (1995) found values for the flag impeller described in Fig.
3.13. Fluid samples were held in a Brookfield (Brookfield Engineering
Laboratories, Stoughton, MA) small sample cup having a height of 6.48
cm, and an inside diameter of 1.90 cm making . Data were
collected over speeds ranging from 0.5 to 100 rev/min (0.5 to 10.5 rad/s).
Both the slope and matching viscosity methods were found to produce
similar results for shear-thinning fluid foods. The slope analysis pro-
duced a constant value of the mixer viscometer constant: rad-1.
This value (and ) is recommended for routine analysis. The small
sample cup and flag impeller provide a simple, yet powerful, tool for the
rheological investigation of fluid foods.

Determination of Non-Newtonian Fluid Properties

Evaluating versus . The relationship between power

and angular velocity for a power law fluid was established in Eq. [3.114]:
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Figure 3.13.  Flag impeller used by Castell-Perez et al. (1993) and Briggs
(1995).

Substituting , and solving for the torque yields

[3.120]
or, in terms of logarithms,

[3.121]

The flow behavior index can be found as the slope of versus

. The constant ( ) is not required for the deter-

mination of : It may be used to estimate , if and are known. The
value of , however, may be found without by applying Eq. [3.120] to
two fluids, one with unknown properties (fluid indicated with subscript
) and a reference fluid with known properties (fluid indicated with

subscript ):
[3.122]
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and

[3.123]

Dividing by , Eq. [3.122] by Eq. [3.123], gives

[3.124]

which may be solved for :

[3.125]

The properties of the known fluid ( and ) are determined using

conventional rheological methods. is found as the slope of Eq. [3.121]

and is determined using the slope or matching viscosity method.
Under some conditions the calculation of may be greatly simplified:

If and is close to , then is approximately . Mixer

viscometry techniques discussed above are used to determine power law
fluid properties in Example Problem 3.8.18.

Applying the Matching Viscosity Assumption. Power law fluid
properties may also be estimated using the matching viscosity
assumption. An average apparent viscosity is calculated using Eq.
[3.116] at an average shear rate defined by Eq. [3.113], . Then,

fluid properties are found by regression analysis of with an

appropriate set of experimental data. This technique is illustrated in
Example Problem 3.8.18.

One advantage of using the matching viscosity assumption is that
it easily allows the investigation of a wide array of non-Newtonian
behavior. Although the average shear rate determined using power law
fluids can be considered "exact" for these materials, it may also be
considered a shear rate approximation for other types of fluids. This is
analogous to the way in which Eq. [3.32], the Newtonian approximation,
may be used to estimate the shear rate of a non-Newtonian fluid in a
concentric cylinder apparatus.
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Using the Concentric Cylinder Analogy. Fluid properties may be
determined from shear stress and shear rate approximations developed
from a concentric cylinder analogy. Mixing systems (identical to the
one illustrated in Fig. 3.10) using different cylindrical cups and paddle
impellers were considered by Castell-Perez et al. (1991) in developing
rheograms for power law fluids. The research assumed that mixers
were analogous to concentric cylinder systems. This work showed that
the average shear stress and average shear rate could be estimated from
geometrical parameters and the flow behavior index using the following
equations:

[3.126]

and

[3.127]

for and with and
. The flow behavior index is found as the slope of Eq. [3.121].

Castell-Perez et al. (1993) determined shear stress and shear rate
estimates for power law fluids using a flag impeller (Fig. 3.13):

[3.128]

and

[3.129]

where , the equivalent diameter, is equal to the length of the impeller

blade plus the diameter of the blade shaft. Dimensions of the impeller
used in the Castell-Perez et al. (1993) study are given in Fig. 3.13: The
equivalent diameter for that geometry is equal to 1.0 cm. Blade
thickness was 0.1 cm. Values of were limited to the range of 0.27
to 0.59; however, the influence of diameter was minimal in that range
making it acceptable to assume in Eq. [3.129]. With this
assumption, it is possible to obtain a reasonable estimate of the average
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shear rate without knowing the flow behavior index. The greatest level
of accuracy, however, is obtained using the flow behavior index calcu-
lated from the relationship given in Eq. [3.121].

3.7.2. Mixer Viscometry: Bingham Plastic Fluids

Power law fluids have been studied extensively using mixer visco-
metry, but little work has been done with materials exhibiting a yield
stress (Castell-Perez and Steffe, 1992). Nagata (1975) investigated
power consumption in mixing Bingham plastics and some success has
been reported using mixer viscometry methods on fresh concrete
showing Bingham plastic behavior (Tattersall and Banfill, 1983).

Determination of Fluid Properties. Using the Newtonian rela-
tionshipbetween and , assuming ,and usingthe definition

of apparent viscosity for a Bingham plastic fluid ( ), yields

[3.130]

Substituting the definition of (Eq. [3.102]) into Eq. [3.130], recog-

nizing that , then simplifying the resulting equation gives an
expression relating torque and speed in a mixer viscometer:

[3.131]

which, after additional manipulation, becomes

[3.132]

Collecting mixer viscometer data of torque versus angular velocity for
a Bingham plastic and plotting the result will provide a slope ( )

and an intercept ( ) that reflect the rheological properties of the

fluid. If and are known, plastic viscosity and the yield stress can
be calculated.

Evaluation of . Theoretically, can be determined with the same
matching viscosity technique discussed for power law fluids. Using the
relationship for Newtonian fluids, Eq. [3.111], is determined from data
involving standard Newtonian materials. Taking data with a tradi-
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tional instrument, such as a concentric cylinder viscometer, the prop-
erties of a "standard" (or reference) Bingham plastic fluid are evaluated.
This material is placed in a mixer viscometer and mixed at constant
speed ( ) allowing determination of . Using that information, the

"viscosity" is calculated from Eq. [3.116]:

[3.133]

The matching viscosity assumption ( ) is applied:

[3.134]

and the average shear rate determined:

[3.135]

UsingEq. [3.113], is found as . If the behavior of differentreference
fluids is evaluated, the influence of angular velocity and fluid properties
on can be investigated.

The presence of a yield stress in a mixer means there will be areas
in the system where . This creates plug flow and "dead spots" that

may adversely influence results. Work by Nagata et al. (1970) indicates
that may be a function of the yield stress.

3.7.3. Yield Stress Calculation: Vane Method

Yield stress can be determined using the same basic equipment
required in mixer viscometry. In the vane method, the stress to initiate
flow from a vane immersed in test material is measured (Nguyen and
Boger, 1985). Vane and vessel dimensions (Fig. 3.14) should stay within
specified limits (Steffe, 1992): ; ; or

if the vane is completely immersed in the sample; where is
the diameter of the container if circular, or the minimum crossectional
dimension if some other shape is used. Vanes with 4 (Nguyen and Boger,
1985), 6 and 8 blades (Qiu and Rao, 1988) have been used. All produce
similar results.
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If you assume the test material yields along a cylindrical surface
(shaft excluded), then the total torque ( ) to overcome the yield stress

of the fluid is

[3.136]

where is the shear stress on the end surfaces (top and bottom).

Simplification of Eq. [3.136] yields

[3.137]

Assume varies with the radius according to a power relationship:

[3.138]

where is a constant. This assumption is somewhat arbitrary, but
reasonable. Substituting Eq. [3.138] into [3.137] yields

[3.139]

which, with simplification, gives

Figure 3.14. Vane, with 4 blades, and vessel for yield stress determination.
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[3.140]

or, if solved for the yield stress:

[3.141]

Errors in using Eq. [3.141] for decrease with larger values of
. If , errors less than or equal to 3.7 percent may be obtained

when (Steffe, 1992). The assumption that is usually
satisfactory. It is certainly acceptable when making a quality control
comparison between products or when simple, quick solutions are
needed. To eliminate error due to the upper end effect, the top surface
of the vane may be placed even with the fluid ( , Fig. 3.14) giving

(assuming ) the following torque equation at the yield point:

[3.142]

This expression was used by Yoshimura et al. (1987) to evaluate the
yield stresses of various non-food emulsions.

Error associated with the stress distribution over the ends can be
avoided if Eq. [3.137] is used to determine the yield stress: A plot of

versus is made using data collected from vanes having the same
diameter but different lengths. The yield stress is calculated from the
slope of the resulting line which is equal to . This procedure

should be used if there is any doubt regarding the validity of the
assumption that or when more precise values of the yield stress
are needed.

When measuring the static yield stress (discussed in Sec. 1.6), vanes
should be carefully placed in the sample to minimize disruption to
surrounding material. In quality control work, it may be possible to use
the food container itself as thetest vessel to minimize sample disruption.
When measuring the dynamic yield stress, sample disruption is not a
problem because the weak structure is already destroyed from prior
handling operations such asmixing or pumping. This assumption would
be invalid if the material was able to rapidly rebuild internal structure.
Rapid redevelopment of structure is unusual in food products.
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Figure 3.15. Typical torque time response when operating the vane in the con-
trolled rate mode.

Modes of Operation. The vane may be operated in two modes when
collecting experimental data: controlled rate or controlled stress. A
typical curve for testing in the controlled rate mode (Fig. 3.15) shows a
steady increase in torque up to a peak value ( ) followed by a gradual

decline until reaching an equilibrium level. In a sample completely
broken down prior to testing, the peak torque would represent the
dynamic yield stress. In an undisturbed sample taken from storage,
the peak torque would represent the static yield stress; however, in this
type of controlled rate test, some weak structural bonds may be dis-
rupted before the peak torque is reached perhaps causing the measured
value to be lower than that found in a controlled stress experiment.

In the controlled rate mode, various speeds of operation have been
considered. Speeds as low as possible should be used, preferably no
higher than 1.0 rpm (Steffe, 1992). Velocities of greater magnitude will
alter results for many products. The angle of rotation at which yield
occurs, needed to determine the strain at failure, depends on many
factors: type of material being tested, size of the vane, angular velocity
of the vane, and the wind-up characteristics of the viscometer. Calcu-
lating yield stress using the vane method in the controlled rate mode is
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or
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investigated in Example Problems 3.8.19 and 3.8.20. Wind-up
characteristics of rotational viscometers are discussed latter in this
section.

Vanes can also be operated in the controlled stress mode. In
experimentation, the torque (or stress) is increased until flow is
observed. Data may show the angle of rotation (related to strain) as a
function of time with stepped increases in torque. When the yield stress
is exceeded, the strain will increase rapidly with time. In a typical plot,
the torque at yield ( ) is between torque levels M4 and M5 (Fig. 3.16).

Figure 3.16. Typical response curve when operating the vane in the controlled
stress mode.

Testing in the controlled stress mode has the implicit assumption
(which is easily tested experimentally) that results are not time-
dependent so the amount of time spent at each stress level has no
influence on the outcome. Fig. 3.16 shows changes in strain increasing
slightly (but remaining constant) with each stepped increase in torque
below the failure torque. In a time-dependent material the plot may
exhibit a gradual increase in strain, in addition to the step increase,
during the holding period at torque levels M1 through M4 (Fig. 3.16).
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Controlled stress rheometers may allow the application of a ramped
(linear) increase in stress. This will produce a strain response that is
unique for the material being tested. Results may be plotted to show
changes in strain over time, or the corresponding changes in strain with
torque or stress (Fig. 3.17). Behavior is very different depending on
whetheror not thematerial isdemonstrating solid or fluid-like behavior.
There would be a linear relationship between stress and strain with
Hookean behavior. When the yield stress is exceeded, the onset of flow
causes a dramatic change in strain. If the strain response (Fig. 3.17) is
considered in terms of two curves, one for the case where and the

other for , the point of intersection may be defined as the peak

torque ( ) required in the yield stress calculation. The actual yield

stresswould be foundat the intersection point if stress, instead of torque,
is plotted. When a break point is evident, this is a convenient method
of determining the yield stress from controlled stress data. Logarithmic
plots may be useful in amplifying differences.

Figure 3.17.  Strain-stress curve showing the location of the yield stress when a
linear increase in stress is applied to the sample.
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The idea of investigating the relationship between strain and stress
to determine a yield stress can be applied to samples held within fixtures
other than vanes: concentric cylinder, cone and plate, and parallel plate.
Data for Colgate Toothpaste Gel, collected at room temperature using
a cone and plate apparatus, are presented in Fig. 3.18. The information
was obtained by subjecting the sample to a linear change in shear stress,
from 1 Pa to 5 Pa, over a period of 500 s. Strain is held near zero until
the applied stress exceeds the yield stress (approximately 2.1 Pa) where
a substantial increase in strain is observed (Fig. 3.18). Many samples
do not produce such clearly defined differences. Data in the early portion
of the strain - stress curve (Fig. 3.17) can also be used to calculate a
shear modulus.

Figure 3.18.  Strain-stress data for presheared Colgate Toothpaste Gel, at 25 C,
collected on a cone (60mm diameter, 4 ) and plate rheometer.

Numerous means of evaluating the yield stress are noted in Table
1.4. Most cannot measure a static yield stress because sample structure
is broken down during testing. Also, the experimental difficulties of
many approaches make them unattractive. Overall, the vane method
has much to offer someone in need of a yield stress measurement: The
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technique involves a simple theory that can produce quick, reproducible
results. Operating the vane in the controlled rate, versus controlled
stress, mode offers some advantages because it produces unequivocal
results ( is precisely defined in the controlled rate mode) which are

the most sensitive to differences between static and dynamic yield
stresses (Yoo et al., 1995). In addition, controlled rate instruments are
generally less expensive and more durable than controlled stress units.

Wind-up Characteristics of Rotational Viscometers. It is
important to understand the physical characteristics of the torque
sensor when considering yield stress measurements using a rotational
viscometer. Two typical torque measuring concepts, used in controlled
rate instruments, are illustrated in Fig. 3.19. In one system, force is
transferred through the sample from the bottom plate causing the
deflection of a coiled spring. Spring deformation is measured and cor-
related to torque. Full scale wind-up (how much the upper plate must
rotate before the full scale torque is measured) is high for this type of
system, often reaching as much as 80 degrees.

Figure 3.19. Rotational viscometers with coil spring (high wind-up) and torsion
bar (low wind-up) torque sensing elements.
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A system with low wind-up is also illustrated in Fig. 3.19. In this
system the deflection of a torsion bar is correlated to torque. Full scale
deflection is achieved with very low wind-up values often in the range
of 1 to 2 degrees. The wind-up characteristics of two viscometers, one
with a spring type system and the other with a torsion bar, are con-
sidered in Example Problem 3.8.21.

Figure 3.20. Parallel plate viscometer with air bearing sensor support.

Controlled stress instruments use an air bearing to provide "fric-
tionless" movement of the upper fixture (Fig. 3.20) and a drag cup motor
to generate controlled torque on the shaft. A position indicator is used
to measure displacement. Wind-up in controlled stress systems is
essentially zero.

3.7.4. Investigating Rheomalaxis

Mixer viscometry can be a useful, and simple, method of subjectively
quantifying rheomalaxis (irreversible structural breakdown) because
damage is minimized during loading. The impellerof a mixer viscometer
is placed in an undisturbed sample and torque decay data are collected
at various speeds (at least three). A new, undisturbed, sample is
required for each test. Raw data are plotted as shown in Fig. 3.21. A
cross plot of the data is made: first, one finds torque at time zero (start

air air

airair

sample

position

air bearing
fixed plate

drag cup
motor

indicator
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of test) and equilibrium time (after the curve becomes horizontal) for
each angular velocity, then torque ( ) versus angular velocity ( ) is
plotted. The area between the resulting initial and equilibrium time
curves reflects the degree of rheomalaxis in the sample. If the initial
and equilibrium torque curves are modeled as functions and ,

respectively, the area ( ) between the curves may be calculated as

[3.143]

has the units of power, N m s-1. If is large, the power required to
mix an undisturbed sample is high compared to that required for a fully
broken down sample. If the material is not time-dependent, . Since
this is an empirical testing method, identical equipment and testing
procedures must be followed to compare different samples. The above
concept is illustrated for strained apricots in Example Problem 3.8.22.

Figure 3.21. Raw and cross plotted data to quantify rheomalatic behavior.

Torque decay data can provide a useful quality control parameter
for comparing the structure of different food products by considering
energy levels required for mixing. Power ( ) versus time, at a constant
value of , is plotted so the area under the resulting curve represents
the mechanical energy input to the sample. Samples requiring low
energy levels for mixing reflect structural breakdown in the material
when compared to similar, but non-time-dependent, fluids. One can
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investigate recovery of sample structure by introducing a rest period,
then repeating the test procedure. To make meaningful comparisons,
the volume of sample subjected to agitation during testing must be
constant. This energy analysis concept is examined in Example Problem
3.8.22.

Mixer viscometry data can also be used to evaluate a structural
parameter for rheomalatic materials, such as defined by Eq. [1.37]
(Ford and Steffe, 1986), or to model torque decay with a simple expo-
nential equation (Steffe and Ford, 1985).

3.7.5. Defining An Effective Viscosity

A simple approach can be used to characterize non-time-dependent
fluids for the purpose of quality control. In this case absolute rheological
properties are not needed or difficult to obtain: Only a representative
flow curve, which can be compared to a reference flow curve, is required.
The reference flow curve is determined from products considered to be
acceptable for the intended market.

An effective viscosity may be defined in terms of mixing parameters:

[3.144]

where is equal to the diameter of the impeller. Since effective viscosity
is a relative value, other parameters, such as the volume of the mixing
vessel or the sample volume swept through by the impeller, could be
used in place of . Equipment, sample volume and impeller orientation
should be constant for all tests. Eq. [3.144] is similar to Eq. [3.116] with
the assumption that and the recognition that .

One can assume that effective viscosity is directly proportional to
apparent viscosity, and angular velocity is directly proportional to shear
rate. These values can be plotted to determine effective rheological
properties to characterize samples. Suitable quality control criteria can
be developed using this concept. The effective viscosity idea is applied
to strained apricots in Example Problem 3.8.18.

3.8. Example Problems

3.8.1. Bob Speed for a Bingham Plastic Fluid

Consider testing a Bingham plastic fluid (yield stress = 13 Pa ; plastic
viscosity = 1.7 Pa s) in a Searle-type (the bob rotates and the cup is

λ

ηeffective =
M

Ω d3

d

d3

NPo = M /(d5Ω2ρ)A = 1.0
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stationary) concentric cylinder viscometer with values ( ) of

1.1, 1.3, and 1.5. In each case, estimate the minimum angular velocity
of the bob required to achieve flow at the wall of the cup, thus, assuring
complete flow in the annulus.

Eq. [3.29] states that

Therefore, the minimum value of torque to achieve flow at is

[3.145]

The equation relating torque to angular velocity in this system,
assuming flow throughout the annulus, is given by Eq. [3.28]:

Using Eq. [3.145], the minimum torque expression, the minimum
angular velocity may be calculated:

[3.146]

or, given the above expression for minimum torque,

[3.147]

Simplification, and substitution of , yields a general expression

for the minimum angular velocity of the bob:

[3.148]

This equation indicates the critical importance of gap size in deter-
mining minimum angular velocity. Using the specified yield stress and
the plastic viscosity gives

[3.149]
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Substituting the specified values of into Eq. [3.149] produces the
following results:

 , rad/s

1.1 0.074 (0.71 rpm)
1.3 0.63 (6.04 rpm)
1.5 1.67 (15.95 rpm)
2.0 6.16 (58.82 rpm)

The minimum bob speed to maintain flow of a Bingham plastic fluid
in the annulus increases rapidly as the size of the gap increases.
Therefore, small gaps, appropriate for given particle size limitations,
are preferred to large gaps.

3.8.2. Simple Shear in Power Law Fluids

Determine the error involved in using the simple shear approximation
for power law fluids at different values of .

To solve this problem, both the approximate (Eq. [3.30]) and actual
(Eq. [3.33]) solutions must be considered:

[3.150]

[3.151]

The "% Error" may be calculated as

[3.152]

Substituting Eq. [3.150] and Eq. [3.151] into Eq. [3.152] yields

[3.153]

which describes the error expected for different values of and .
Results are best seen in graphical form (Fig. 3.22). To keep error to a
minimum, smaller gaps (reflected in smaller values of ) are needed for
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lower values of the flow behavior index. If and , error
involved in using the simple shear approximation will be less than 6%:
At and , the error will exceed 10%.

3.8.3. Newtonian Fluid in a Concentric Cylinder

Determine an expression for the shear rate as a function of the radius
for a Newtonian fluid in the annulus of a concentric cylinder viscometer.
Using this expression, determine the shear rate at the bob and cup.

A Newtonian fluid is defined (Eq. [1.25]) as

and the equation giving the shear stress in the annulus (Eq. [3.2]) is

Figure 3.22. Error (Eq [3.153]) in shear rate calculation when using the simple
shear approximation for a power law fluid in a concentric cylinder system
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for . Combining the above equations, the shear rate may be

written as
[3.154]

Eq. [3.21] states that

which can be solved for torque as
[3.155]

where, recall, . Substituting Eq. [3.155] into Eq. [3.154] gives

the shear rate as a function of the radius for any constant value of the
angular velocity:

[3.156]

where . The expressions for the shear rate at the bob ( , given

previously as Eq. [3.32]) and cup ( ) can be easily calculated from Eq.

[3.156]:

[3.157]

3.8.4. Representative (Average) Shear Rate
Fig. 3.23 shows a popular bob design based on a German standard (DIN
53019) developed by the German Institute for Standardization,
Deutsches Institut für Normung, known by the DIN acronym. The
following restrictions are given for dimensional considerations:

; ; ; ; . Preferred

dimensions are also stated: ; ; ; ; .

No preferred dimension is given for . Note that is the apex angle

of the cone at the bottom of the inner cylinder, and the summation of
values ( ) is equal to the fluid level in the cup.
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Figure 3.23.  Bob and cup design based on German standard, DIN 53018.

DIN 53019 states that the bob and cup combination illustrated in
Fig. 3.23 can be used in conjunction with representative values (average
values) of the shear stress and the shear rate in determining rheological
behavior of Newtonian and non-Newtonian fluids. The representative
shear stress, defined as the average shear stress between the bob and
the cup, was presented in Eq. [3.31]:

where has been added to account for both the top and bottom end

effects. The DIN standard states that for the preferred geo-

metrical relations allowing the working equation for average shear
stress to be written as

[3.158]
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Question: Taking the Newtonian approximation for shear rate (Eq.
[3.32]), determine the representative shear rate that would be appro-
priate in evaluating the rheogram.

The representative shear rate is the average shear rate ( ) between

the bob and the cup:

[3.159]

Using the values of and (Eq. [3.32] and Eq. [3.157]) given in Example

Problem 3.8.3, Eq. [3.159] can be written as

[3.160]

Manipulation yields a simple equation to calculate the representative
shear rate:

[3.161]

A rheogram can be developed from representative values of shear
stress and shear rate. These equations are often used in the computer
software calculations found in commercially available concentric cyl-
inder viscometers. This idea is applicable to most concentric cylinder
systems with narrow gaps ( ). When using the average shear

rate equation for bobs having an end geometry different than that
illustrated in Fig. 3.23, the average shear stress equation would need
to be adjusted for different values of . If applied to the bob shown in

Fig. 3.1, for example, the value of would be smaller than the value of

specified by the DIN standard. Theoretical justification for using
representative shear stress and shear rate values may be found in
Giesekus and Langer (1977).

3.8.5. Concentric Cylinder Viscometer: Power Law Fluid

Develop an expression for the shear rate at the bob for a power law fluid
in a concentric cylinder viscometer. Also derive an equation describing
the fluid velocity profile found in this system. Assume the viscometer
is a Searle system where the bob rotates and the cup is stationary.
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This problem can be solved using the same approach taken in
Example Problem 3.8.3. By considering the definition of a power law
fluid ( ) and the force balance on a bob (Eq. [3.2]), the following
expression for the shear rate in the annulus is obtained:

[3.162]

Then, the shear rate at the bob is

[3.163]

However, from Eq. [3.25],

Solving this equation for and substituting the result into the above
expression for yields

[3.164]

or, using , Eq. [3.164] becomes

which provides the final solution given earlier as Eq. [3.33].

To derive an equation for the velocity profile of a power law fluid in
a concentric cylinder viscometer, start with Eq. [3.15]:

Changing the limits of integration, and substituting , yields

[3.165]

or, after integration,
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[3.166]

Using Eq. [3.2], Eq. [3.166] can be written as a function of the radius:

[3.167]

Simplification gives

[3.168]

which can be used to generate an expression for a dimensionless velocity
profile in the gap:

[3.169]

where . As expected, at , and at .

3.8.6. Concentric Cylinder Data - Tomato Ketchup

Givenrawdata for tomatoketchup (Table 3.2),determinethe rheological
properties of the fluid. Use the power law approximation for shear rate
presented in Eq. [3.33]:

Also evaluate the alternative equation for given by Heywood (1991b).

The first step in finding the shear rate at the bob is to calculate the
flow behavior index. Regression analysis of versus yields

meaning, from Eq. [3.37], that

With this result and the equation for , the shear rate at each value of

may be calculated. Shear stress at the bob is determined from Eq.
[3.3]:
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Table 3.2. Data and Results for a Rheological Test for Tomato Ketchup at 25 C
Conducted using a Concentric Cylinder Viscometer: =60.00 mm; =21.00 mm;

=20.04 mm; =1050 kg/m3.

RPM

(rad/s) (N m) (Pa) (1/s)

1 0.105 -2.256 0.00346 -5.666 22.85 2.60
2 0.209 -1.563 0.00398 -5.526 26.29 5.19
4 0.419 -0.870 0.00484 -5.331 31.97 10.39
8 0.838 -0.177 0.00606 -5.106 40.03 20.77

16 1.676 0.516 0.00709 -4.949 46.83 41.55
32 3.351 1.209 0.00848 -4.770 56.01 83.10
64 6.702 1.902 0.01060 -4.547 70.01 166.20
128 13.404 2.596 0.01460 -4.227 96.43 332.39
256 26.808 3.289 0.01970 -3.927 130.12 664.78

Results of these calculations are presented in Table 3.2.

Assuming a power law model to represent the rheogram of this
material gives an excellent representation of the data and a value for
the consistency coefficient ( ) equal to 15.73 Pa sn. Since this material
exhibits power law behavior, the results are almost identical to those
found using the Krieger approximation (Eq. [3.47]) because is
essentially equal to . In addition, one can observe that simple and
Newtonian shear rate equations (Eq. [3.30] and [3.32]) give, at best,
gross approximations. Considering the shear rate at 256 rpm (26.808
rad/s) for both cases gives

and

Although, these values are the same order of magnitude as the power
law approximation of 664.78 s-1, the error would be unacceptable in most
cases.
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To check for potential problems due to secondary flow Eq. [3.90] must
be evaluated:

Recall that Taylor vortices may be expected when this inequality is
satisfied. Although the equation was established for Newtonian fluids,
a reasonable assessment of the current problem can be obtained by
substituting the apparent viscosity ( ) for . Taking the worst case

(highest speed) the calculation can be made as

which is clearly much less than

meaning errors due to the presence of secondary flow are negligible.

Heywood (1991b) offered the following equation to determine the
shear rate at the bob in a concentric cylinder system:

[3.170]

where

[3.171]

and

[3.172]

Eq. [3.170] is a simplified form of an infinite series solution of Eq [3.42]
given by Krieger and Maron (1952). To evaluate Eq. [3.170] for the
special case of a power law fluid one must recognize, by observing Eq.
[3.37], that and . Making these substitutions, Eq. [3.170]
becomes

[3.173]

In the case of tomato ketchup, and .
Substituting these values into the Krieger and Maron solution yields
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The exact power law solution is

meaning the above equations to calculate shear rate are equivalent to
the second decimal place.

3.8.7. Infinite Cup - Single Point Test

A viscometer with a single bob, and no cup, is to be used in developing
a single point quality control test for tomato ketchup (at 25 C) when
held in a large vat. If the instrument is run at 50 rpm, what apparent
viscosity would be expected?

Previous work (Example Problem 3.8.6) with a concentric cylinder
instrument yielded power law parameters for the fluid: = 15.73 Pa sn

and = 0.307 . The shear rate at the bob for this material in a concentric
cylinder system (Eq. [3.33]) is

In a vat, which equals is large so the term in brackets is effectively
one. Therefore, the shear rate may be expressed as

allowing the shear rate at 50 rpm to be calculated:

With this value of the shear rate, the expected apparent viscosity may
be determined:

3.8.8. Infinite Cup Approximation - Power Law Fluid

Determine the error involved in using the infinite cup approximation
for power law fluids at different values of .
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Figure 3.24. Error (Eq. [3.177]) in using the infinite cup solution for power law
fluids in a concentric cylinder system ( ).

The approximate solution is found from Eq. [3.49] by noting (Eq.
[3.36]) that for a power law fluid:
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The actual solution, provided Eq. [3.33], is
[3.175]

The "% Error" may be calculated as
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Substituting Eq. [3.174] and Eq. [3.175] into Eq. [3.176] yields
[3.177]
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which gives the error expected for different values of and . Plotting
the results (Fig. 3.24) makes it clear that larger containers are required
(larger ) to keep error to acceptable levels as the flow behavior index
increases. With , must be greater than 3 to keep the error below
5%. The technique of error determination used above (and in Example
Problem 3.8.2) can be very helpful in evaluating the assumptions made
in the "automatic" calculations of commercial instruments.

3.8.9. Infinite Cup - Salad Dressing
Rheological data (Table 3.3) for Kraft French salad dressing were col-
lected using a concentric cylinder geometry with the following dimen-
sions: bob radius = 20.04 mm; cup radius = 73.00 mm; bob height = 60.00
mm. The bob has a recessed top and bottom like the one illustrated in
Fig. 3.1 so we will assume end effects are negligible. Using the infinite
cup assumption, determine the rheological properties of this time-
independent material.

Table 3.3. Rheological Data for Kraft French Salad Dressing at 22 C [Concentric
Cylinder System: =20.04 mm, =73.00 mm, =60.00 mm]

(rad/s) (N m) (Pa) (1/s)

0.146 0.000609 4.02 0.79
0.512 0.000998 6.59 2.77
1.036 0.001264 8.35 5.60
2.087 0.001623 10.72 11.28
4.163 0.002033 13.43 22.50
6.276 0.002430 16.05 33.92
8.359 0.002708 17.89 45.18
10.490 0.002970 19.62 56.70
12.590 0.003149 20.80 68.05
14.680 0.003335 22.03 79.35
16.770 0.003509 23.18 90.65

Shear stress at the bob is calculated from Eq. [3.3] as

The shear rate may be determined from Eq. [3.49] as

n α

α
n = 0.6 α

°
Rb Rc h

Ω M σb γ̇b

σb =
M

2πhRb
2

γ̇b = (2Ω)
d(ln Ω)
d(ln σb)
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Figure 3.25. Logarithmic plot of angular velocity versus shear stress for Kraft
French salad dressing.

Figure 3.26. Rheogram for Kraft French salad dressing at 22 C.
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Regression of the data indicates a good fit of the logarithmic plot (Fig.
3.25) with a slope of 2.73:

Knowing the slope, the shear rate can be calculated as

With the shear stress and shear rate data computed (Table 3.3), the
rheogram may be plotted (Fig. 3.26), power law constants determined
(more regression analysis) and the final model presented:

Note, the slope of the logarithmic plot is the reciprocal of the flow
behavior index ( ) because, as stated in the previous
example problem, the infinite cup solution for a power law fluid is

Also, in consulting Fig. 3.24, one can see the error in using the infinite
cup approximation for and should be less
than 0.5%.

3.8.10. Infinite Cup - Yield Stress Materials

Under what conditions could Eq. [3.49], an expression to determine the
shear rate at the bob in an infinite cup, be used for a vat containing a
material with a yield stress?

Knowing the yield stress, the critical radius ( ) can be calculated

by considering Eq. [3.2]:

[3.178]

where is the maximum torque generated by the instrument during

testing. defines the sheared area of the sample in the vat when fluid

motion is due only to bob rotation.

d(ln Ω)
d(ln σb)

= 2.73

γ̇b = (2Ω)2.73

σ = 4.43(γ̇).37

1/n = 1/0.37 ≈ 2.7

γ̇b =
2Ω
n

α = 73.00/20.04 = 3.64 n = 0.37

Ro

Ro = √Mmax

2πhσo

Mmax

Ro
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Figure 3.27. Bob placement, showing sheared area, in a vat full of fluid having a
yield stress.

The instrument should be positioned (Fig. 3.27) so the center of the
bob is, at a minimum, a distance equal to from the wall of the vat.

Under these conditions, the physical situation in the vat is analogous
to having a concentric cylinder system, witha partiallysheared annulus;
hence, Eq. [3.49] should give satisfactory results.

3.8.11. Cone and Plate - Speed and Torque Range
Assume tomato ketchup will be tested in a cone and plate viscometer
so the results can be compared with those found in the concentric cyl-
inder tests. Using a cone with an angle of 0.0524 rad (3 degrees) and a
diameter of 5.0 cm, what speed and torque response would be needed
to cover an experimental shear rate range of 1 to 100 s-1?

Ina cone and platesystem, the relationship between angularvelocity
and shear rate is given by rearranging Eq. [3.51]:

Using this expression, the minimum and maximum velocities may be
calculated as

R
o

vat wall

bob

sheared area

Ro

Ω = γ̇ (tan θ)
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and

To cover the shear rate range of 1 to 100 s-1 the instrument should have
a minimum speed range of 0.5 to 50 rpm. The required torque capability
of the instrument may be considered from Eq. [3.55]:

Rearranging this expression, and incorporating the definition of the
shear stress for a power law fluid yields

Substituting the appropriate numbers (from Example 3.8.6:
Pa sn, ) and calculating the results gives

and

To test samples over the shear rate range of 1 to 100 s-1 the instrument
torque response must include the range from 5,150 to 21,2000 dyne cm.

3.8.12. Cone and Plate - Salad Dressing

Rheological data (Table 3.4) were collected for Kraft French salad
dressing using a cone and plate system. Determine if a power law model
will adequately describe the behavior of this material.

Using Eq. [3.51] and [3.55], the shear rate and shear stress can be
calculated directly from the raw data:

and

Ωmin = 1(tan(0.0524)) = 0.0524 rad /s(0.50 rpm)

Ωmax = 100(tan(0.0524)) = 0.524 rad /s(5.00 rpm)

σ =
3M

2πR 3

M =
2πR 3σ

3
=

2πR 3K(γ̇)n

3

K = 15.73

n = 0.307

Mmin =
2π(.05/2)3 (15.73) (1).307

3
= 0.000515 N m = 5, 150.0 dyne cm

Mmax =
2π(.05/2)3 (15.73) (100).307

3
= 0.00212 N m = 21, 000 dyne cm

γ̇ =
Ω

tan θ

σ =
3M

2πR 3



228 Chapter 3. Rotational Viscometry

Table 3.4. Cone and Plate Data ( =25mm; =0.02 rad) for Kraft French Salad
Dressing at 22 C

rad/s N m 1/s Pa

0.002 1.34E-4 0.10 4.09
0.005 1.65E-4 0.25 5.04
0.013 2.16E-4 0.63 6.60
0.025 2.59E-4 1.25 7.91
0.040 2.98E-4 1.99 9.11
0.063 3.42E-4 3.16 10.45
0.100 3.97E-4 5.01 12.13
0.159 4.58E-4 7.94 14.00
0.252 5.28E-4 12.59 16.13
0.399 6.24E-4 19.95 19.07
0.632 7.33E-4 31.62 22.40
1.002 8.70E-4 50.11 26.59

Figure 3.28. Rheogram for Kraft French salad dressing (22 C) determined from
cone and plate data.
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Regression analysis of the results (Table 3.4 and Fig. 3.28) yields a
statistically acceptable fit to the experimental data as

where = 7.64 Pa sn and = 0.303. These results are different than
those found in Example Problem 3.8.9 when evaluating Kraft French
salad dressing using the infinite cup assumption with a concentric
cylinder viscometer. Differences may be due to various factors such as
analytical assumptions, natural biological variability, and differences
in shear rate coverage. More experimental data would be required to
resolve these issues.

3.8.13. Parallel Plate - Methylcellulose Solution

Data for a 3% hydroxypropyl methylcellulose solution have been col-
lected using a parallel plate viscometer (Table 3.5). Generate a rheo-
gram for this material.

Table 3.5. Parallel Plate Data ( =25mm; =0.70mm) for a 3% Aqueous Solution
of Hydroxypropyl Methylcellulose (Methocel K4M, Dow Chemical Co.) at 24.2
C

ln ln 
N m 1/s Pa

0.116E-4 0.0127 -11.36 -4.37 0.5
0.211E-4 0.0198 -10.77 -3.92 0.8
0.334E-4 0.0317 -10.31 -3.45 1.3
0.442E-4 0.0503 -10.03 -2.99 1.7
0.807E-4 0.0797 -9.42 -2.53 3.2
1.259E-4 0.1262 -8.98 -2.07 4.9
2.029E-4 0.1999 -8.50 -1.61 7.9
2.979E-4 0.3166 -8.12 -1.15 11.7
4.536E-4 0.5016 -7.70 -0.69 17.8
6.687E-4 0.7945 -7.31 -0.23 26.2
9.343E-4 1.258 -6.98 0.23 36.6
12.900E-4 1.994 -6.65 0.69 50.5
17.270E-4 3.158 -6.36 1.15 67.6
22.700E-4 5.003 -6.09 1.61 88.8
29.260E-4 7.925 -5.83 2.07 114.5
37.320E-4 12.55 -5.59 2.53 146.0

The shear rate at the rim of the plate was determined, by considering
angular velocity and geometry, from Eq. [3.59] as

σ = 7.64(γ̇).303

K n

R h

°

M γ̇R M γ̇R σR



230 Chapter 3. Rotational Viscometry

and shear stress was calculated with Eq. [3.66]:

Using linear regression, the following relationship was determined from
the torque and shear rate data (Fig. 3.29):

which identifies the slope term as

Figure 3.29. Torque versus shear rate for 3% aqueous solution of hydroxypropyl
methylcellulose at 24.2 C.

This result can be used to evaluate the shear stress at the rim for each
torque value:

γ̇R =
ΩR
h

σR = f(γ̇R) =
M

2πR 3




3 +

d ln(M)
d ln(γ̇R)





ln(M) = −7.12 + .934 ln(γ̇R)

d ln(M)
d ln(γ̇R)

= .934
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Shear stress values calculated from this equation are presented in Table
3.5 and plotted in Fig. 3.30. Using the power law model, values of the
consistency coefficient and the flow behavior index were determined:
= 25.3 Pa sn and = 0.83.

Figure 3.30. Flow behavior of a 3% aqueous solution of hydroxypropyl methyl-
cellulose (Methocel K4M, Dow Chemical Co.) at 24.2 C.

3.8.14. End Effect Calculation for a Cylindrical Bob

Determine the bottom end effect ( ) for the bob ( = 1.95 cm) and cup

( = 2.00 cm) combination illustrated in Fig. 3.31.

σR =
M

2πR 3
[3 + .934]

K

n

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Shear Rate, 1/s

S
he

ar
 S

tr
es

s,
 P

a

°

ho Rb

Rc



232 Chapter 3. Rotational Viscometry

Figure 3.31. Bob and cup combination tested for end effect correction.

Figure 3.32. End effect data for the "A-bob" of the Hercules high-shear
viscometer.
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The end correction for the bottom of the bob was evaluated from
torque data taken at three fixed bob speeds with different values of
(Fig. 3.32) using the technique presented in Sec. 3.5. Note that is
measured from the top of the cone shaped projection of the bob. All tests
were run at room temperature with a Dow Corning 200 fluid which is
a dimethyl-silicone material having the following characteristics at
25 C: Newtonian behavior with = 95.63 cP , and = 0.965 g cm-3.

Torque data were plotted (Fig. 3.32) as at three speeds:
600 rpm, 900 rpm, and 1100 rpm. values were determined (Table

3.6) from linear regression coefficients: at , . Correlation

coefficients were 0.99 for each curve. Results showed the magnitude of
the end effect increasing with increasing speed going from 0.141 cm at
600 rpm to 0.182 cm at 1100 rpm. An average value of = 0.158 cm is

recommended for making practical end effect corrections over the rpm
range considered.

Table 3.6. Linear Regression Parameters ( ) Relating Torque
( ) and Length ( ) of Bob Immersed in Fluid to Evaluate End Effect
Correction ( )

600 rpm 900 rpm 1100 rpm

, dyne 61.74 92.48 113.72

, dyne cm 8.68 14.04 20.67

, cm 0.141 0.152 0.182

3.8.15. Bob Angle for a Mooney-Couette Viscometer

The Mooney-Couette viscometer is a concentric cylinder system con-
structed so the bob has a conical bottomwhich almost touchesthe bottom
surface of the cup (Fig. 3.8). If the system is designed so the shear rate
in the bottom gap is equal to the shear rate in the annulus, the end effect
can be significantly reduced. Determine the bottom angle required to

h
h

° µ ρ
M = ah + b

ho

M = 0 ho = −b /a

ho

M = ah + b

M h
ho

a

b

ho
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redesign a concentric cylinder bob so the shear rate in the conical and
annular gaps are equal. Also explain how the end effect can be incor-
porated into the shear stress calculation. Assume the bob under con-
sideration has the following dimensions: , ,

.

The Newtonian approximation (Eq. [3.32]) can provide a reasonable
estimate of the shear rate in the gap:

where:

One can solve for the required cone angle by equating the shear rates
in the conical section, given by Eq. [3.51], to the shear rate in the gap:

Solving for yields

so

Therefore, making a bob with a bottom angle (Fig. 3.8) of 2.56 degrees
will result in an apparatus where the shear rate in the annulus and
bottom gap are approximately equal. If the simple shear approximation
(Eq. [3.30]) is used in the determination, a slightly larger angle of 2.75
degrees is calculated.

The end effect can be incorporated into the calculation of the shear
stress at the bob by finding a numerical value for . When ignoring the

end effect, shear stress at bob is given by Eq. [3.3]:

and the shear stress in the conical section is taken from Eq. [3.55] as

Rc = 21.00 mm Rb = 20.04 mm

h = 60.00 mm

γ̇b = 2Ω




α2

α2 − 1





α =
Rc

Rb

=
21.00
20.04

= 1.048

Ω
tan(θ)

= 2Ω




α2

α2 − 1





tan(θ)

tan(θ) =
1
2





α2 − 1

α2





=
1
2





1.0482 − 1

1.0482





= 0.0447

θ = .0447 radians = .0447




360
2π





= 2.56 degrees

ho

σb =
M

2πhRb
2
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With the Mooney-Couette sensor the radius of the cone and the bob are
equal, , so the above equation may be written as

[3.179]

Assuming the shear stress contribution in the conical section can be
calculated in terms of , the shear stresses for the bob and the cup can

be equated:

[3.180]

Solving for the effective height yields

[3.181]

UsingEq. ]3.181], theoverall shearstress in theMooney-Couette system
can be calculated in terms of the effective height:

[3.182]

3.8.16. Viscous Heating
Considering a previous problem (Example Problem 3.8.6) dealing with
concentric cylinder data for tomato ketchup, estimate the extent of
viscous heating that may occur during data collection.

To consider the worst case, take the highest shear rate given, 664.78
s-1. Also, assume the bob surface is adiabatic and the cup wall is
maintained at a constant temperature equal to . Then, the maximum

temperature difference found at the surface of the bob may be estimated
as (Eq. [3.80])

This expression can be evaluated after substituting an apparent vis-
cosity function for the Newtonian viscosity and the size of the annulus
for :

σ =
3M

2πR 3

R = Rb

σ =
3M

2πRb
3

ho

M

2πhoRb
2

=
3M

2πRb
3

ho =
Rb

3

σb =
M

2π(h + ho)Rb
2

=
M

2π(h + Rb/3)Rb
2

To

Tmax − To =
µ ˙(γ)2s 2

2k

s
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Assuming a thermal conductivity of 0.516 W/(m K) and, using rheo-
logical properties determined in Example Problem 3.8.6 ( = 15.73 Pa
sn and = 0.307), yields

A temperature increase of this magnitude will usually have a negligible
influence on experimental results.

3.8.17. Cavitation in Concentric Cylinder Systems

Given a concentric cylinder system like the one illustrated in Fig. 3.31
( , , ), what bob speed is required to

produce cavitation in 40 C water?

At atmospheric pressure (101.35 kPa), water at 40 C has the fol-
lowing properties: = 7.38 kPa, = 992.2 kg m-3, . Con-

sidering the cavitation criterion given in Sec 3.5 yields

When > 13.76 m/s, bob speed is 6738 rpm and cavitation may be
present.

In checking the thermodynamic properties of water, one finds that
the vapor pressure of water varies from 1.4 kPa at 12 C to 19.9 kPa at
60 C. Therefore, the speed required to achieve cavitation in water is
higher at lower temperatures. Minimum speeds required to produce
cavitation can be increased in pressurized systems: They will decrease
in systems held under a vacuum.

It is interesting to compare the speed required for cavitation and the
formation of Taylor vortices. Vortex formation is expected when the
inequality expressed by Eq. [3.90] is satisfied:

or

Tmax − To =
K(γ̇)n − 1 (γ̇)2 (Rc − Rb)2

2k

K
n

Tmax − To =
15.73(664.78).307 − 1 (664.78)2 (.02100 − .02004)2

2(.516)
= .069 °C

Rb = 1.95 cm Rc = 2.00 cm h = 5.00 cm

°

°
Pvap ρ µ = 0.6529 cP

u >√ 2(Patm − Pvap)
ρ

=√2(101.35 − 7.38) (1000)
992.2

= 13.76 m/s

u

°
°

ΩRb(Rc − Rb)ρ
µ

> 41.3√Rc

Rc − Rb
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Meaning that Taylor vortices can be expected when bob speeds exceed
168.3 rpm. In this example, the minimum bob speed required for vortex
formation is much lower than the minimum speed needed for the onset
of cavitation. It would be unusual to develop cavitation problems when
testing food products. In general, the laminar flow assumption would
be violated before the onset of cavitation.

3.8.18. Mixer Viscometry

A mixer viscometer was used to determine the rheological properties of
a starch-thickened baby food product, strained apricots at 25 C. The
material was mixed sufficiently to remove time-dependent effects.
Mixer viscometer data were collected using a rotational viscometer
equipped witha cup (insideradius =0.021 m),and Haake pitched-paddle
impeller (blade diameter = 0.04143 m, blade height = 0.02692 m)
illustrated in Fig. 3.11. Rheological properties ( and ) stated in Table
3.7 were determined using concentric cylinder data, with Eq. [3.3] to
calculate shear stress, the Krieger method to calculate shear rate (Eq.
[3.47]), and standard statistical methods to evaluate the rheogram.

Questions: Part a. Taking the raw data for corn syrup and various
aqueous solutions found in Table 3.7, determine the mixer viscometer
constant ( ) using the slope method. Part b. Using the data for strained
apricots given in Table 3.8, calculate the flow behavior index and the
consistency coefficient of the product. Compare different methods of
evaluation. Part c. Using the data for strained apricots (Table 3.8),
determine an effective viscosity flow curve for this material which may
be used for quality control purposes.

Part a. First, the raw data are manipulated into the appropriate form
(Table 3.7) and plotted (Fig. 3.33). Regression analysis of

versus ( ) as specified in Eq. [3.115],

Ω(.0195) (.02 − .0195)992.2
.0006529

> 41.3√ .02
.02 − .0195

Ω > 17.63 rad/s or 168.3 rpm

°

K n

k ′

log10(P /(KΩn + 1d3)) 1 − n
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Table 3.7. Raw (first three columns) and Manipulated Data used to Determine the
Mixer Viscometer Constant. [ ] Data from: Steffe and
Ford (1985)

Fluid
(Pa sn) (-) (N m/s) (-)

2.5% 16.55 0.513 0.0585 0.487 3.0882 0.4897
Hydroxypropyl 15.56 0.520 0.0573 0.480 3.1762 0.5019

Methylcellulose 16.61 0.505 0.0577 0.495 3.0799 0.4885
15.90 0.513 0.0562 0.487 3.0881 0.4897

2.0% 7.29 0.574 0.0300 0.426 3.2141 0.5071
Hydroxypropyl 6.94 0.586 0.0311 0.414 3.4236 0.5345

Methylcellulose 6.72 0.588 0.0306 0.412 3.4661 0.5398
7.06 0.576 0.0308 0.424 3.3948 0.5308

1.5% 2.10 0.676 0.0129 0.324 3.9776 0.5996
Hydroxypropyl 2.16 0.672 0.0127 0.328 3.8352 0.5838

Methylcellulose 2.16 0.675 0.0130 0.325 3.9042 0.5915
2.10 0.680 0.0129 0.320 3.9484 0.5964

1.0% 1.84 0.560 0.0072 0.440 3.1532 0.4988
Hydroxypropyl 1.26 0.605 0.0058 0.395 3.4136 0.5332

Methylcellulose 0.85 0.683 0.0054 0.317 4.0685 0.6094
1.83 0.504 0.0063 0.496 3.0385 0.4827

Corn Syrup 2.70 1.000 0.0488 0.000 6.4520 0.8097
2.84 0.992 0.0474 0.008 6.0462 0.7815
2.64 1.000 0.0482 0.000 6.5175 0.8141

1.5% Guar Gum 30.98 0.158 0.0328 0.842 1.7762 0.2495
31.65 0.159 0.0339 0.841 1.7936 0.2537
27.39 0.169 0.0316 0.831 1.8968 0.2780

1.0% Guar Gum 7.28 0.275 0.0113 0.725 2.1002 0.3223
4.93 0.292 0.0083 0.708 2.2159 0.3455
7.99 0.266 0.0121 0.734 2.0832 0.3187
8.62 0.237 0.0123 0.763 2.0704 0.3160

10.76 0.224 0.0143 0.776 1.9749 0.2955

gives a good straight line fit ( ) with , and a slope
equal to -0.6503 meaning that

so

Ω = 60 rpm = 6.283 rad/s

K n P = MΩ 1 − n P

KΩn + 1d3
log10





P

KΩn + 1d3





log10





P

KΩn + 1d3





= log10(A) − (1 − n) log10(k ′)

r 2 = 0.99 log10 A = 0.803

− log10(k ′) = −0.6503
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Also since , rad-1.

Figure 3.33.  Plot of data needed to determine the mixer viscometer constant ( )
using the slope method.

Part b. Raw data are manipulated into the appropriate form (Table
3.8). Evaluation of Eq. [3.121],

using linear regression analysis yields and

with . may be found without using the numerical
value of , as , from Eq. [3.125],

Taking data at 60 rpm (mid-range value) and the average values of the
1%hydroxypropylmethylcellulose as theknown fluidgives: =0.00533

k ′ = 4.47 rad −1

log10 = 0.803 A = 6.35
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Table 3.8. Raw (first two columns) and Manipulated Mixer Viscometer Data for
Strained Apricots at 25 C

Speed

(rpm) (rad/s) (N m) (Pa s) (1/s) (Pa s)

20 2.094 0.00332 0.321 -2.479 3.511 9.36 22.30
40 4.189 0.00429 0.622 -2.368 2.268 18.72 14.40
60 6.283 0.00533 0.798 -2.273 1.879 28.09 11.93
80 8.378 0.00556 0.923 -2.255 1.470 37.45 9.33
100 10.47 0.00607 1.020 -2.217 1.284 46.81 8.15
120 12.57 0.00655 1.099 -2.184 1.154 56.17 7.33

N m; = 6.283 rad/s; = 0.378; = 4.47 rad-1; = 0.588; =

0.000984 N m; = 1.45 Pa sn. Substituting these values into the above

equation yields

Each "standard" or reference fluid used in determining gives a slightly
different value of . Variations of 5 to 10% have been observed with

this method of calculation (Steffe and Ford, 1985).

The consistency coefficient may also be found using the known value
of and the intercept determined from our evaluation of Eq. [3.121]:

Substituting known values gives

which can be solved for the consistency coefficient:

This compares reasonably well with the value of 15.77 Pa sn found
previously, and probably gives a more accurate indication of sample
behavior.

With a known value of , power law fluid properties can also be
determined by applying the matching viscosity assumption to the raw
data. An average apparent viscosity may be found using Eq. [3.116]
written as

°

Ω M log10 Ω log10 M η γ̇a MΩ−1d−3

Ωx = Ωy nx k ′ ny My

Ky

Kx =
(.00533) (1.45) (6.28).588 (4.47).588

(.000984) (6.28).378 (4.47).378
= 15.77 Pa s n

k ′
Kx

A

log10[d3AK(k ′)n − 1] = −2.597

log10[(.04143)3 (6.35)K(4.47).378 − 1] = −2.597

K = 14.22 Pa s n

k ′
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Since was found to be 6.35 rad-1 and the diameter was given ( =
0.04143 m), apparent viscosity can be directly calculated from the
torque:

The mixer viscometer constant was determined to be 4.47 rad-1 so the
average shear rate is

and , evaluated using the above equations, are given in Table 3.8.
Assuming power law fluid behavior, these terms are related as

or

Regression analysis of the data, using this relationship, yields

and Pa sn. Since and are directly proportional to and ,

respectively, results are the same as those found previously. Note that
average shear stress could also be calculated as , and regression

analysis could be preformed on versus .

Part c. An effective viscosity can be calculated on the basis of Eq.
[3.144]:

Numerical values of this term are given in Table 3.8 and plotted as a
function of angular velocity in Fig. 3.34. Assuming effective viscosity
is directly proportional to apparent viscosity and angular velocity is
directly proportional to shear rate, the viscosity may be modeled as a
power law function:

η =
d2Ωρ

A
(NPo) =

d2Ωρ
A





MΩ
d5Ω3ρ





=
M

Ad3Ω

A d

η =
M

6.35(.04143)3Ω

γ̇a = k ′Ω = 4.47Ω

η γ̇a

η = K(γ̇a)n − 1

ln η = ln K + (n − 1) ln γ̇a

n = 0.378

K = 14.22 η γ̇a M Ω

η/γ̇a

σa γ̇a

ηeffective =
M

Ω d3
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Figure 3.34.  Effective viscosity of strained apricots at 25 C determined from
mixer viscometry data.

[3.183]

where may be defined as an effective consistency coefficient (Pa )

and as an effective flow behavior index (dimensionless). Performing
a regression analysis on the data gave

meaning = 35.59 Pa and = 0.378. This expression is plotted as

the line displayed in Fig. 3.34. Due to the definition of effective viscosity,
the value of is unique to the fluid in question with respect to the
experimentalequipment employed; , however, is numerically the same
as the value of the flow behavior index found in Part b. These results
could be compared to those from a reference fluid (product found
acceptable in the market place) and used in making quality control
decisions in a commercial food processing operation.
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3.8.19. Vane Method - Sizing the Viscometer

The vane method will be used to investigate various food products that
have yield stresses ranging from 10 to 150 Pa. Vane speed is 0.1 rpm
(or as low as possible) and the dimensions of the vane are = 26.15 mm
and = 1.92. It is proposed that one of the following Brookfield vis-
cometers be used for this task (Note, 1 N m = 107 dyne cm):

Instrument Model Full Scale Torque Range (dyne cm)

LV Series 673.7

RV Series 7,187

HAT Series 14,374

HBT Series 57,496

Part a. Determine the feasibility of using one of the above viscometers
for the proposed yield stress measurement. Part b. Design an appro-
priate sample container for yield stress measurement and specify the
minimum sample size required for conducting each experiment.

Part a. The torque range required to determine the specified yield
stresses must be evaluated. Assuming the vane is fully immersed in
the sample, and , the peak torque is evaluated from Eq. [3.141] as

Therefore the range of maximum torque response will be

or

or

According to the torque capabilities of the instruments, none are suf-
ficient to handle the job. The HBT, which has the maximum torque
capacity, can measure a yield stress with the following maximum value:

d
h /d

m = 0

Mo = σo








πd3

2









h
d

+
1
3









= σo








π(.02615)3

2








1.92 +

1
3









= 6.329(10−5)σo

6.329(10−5) (10) < Mo < 6.329(10−5) (150)

6.329(10−4) N m < Mo < 9.494(10−3) N m 

6, 329 dyne cm < Mo < 94, 940 dyne cm 

σo =




57496

6.329(10−5)



10−7 = 90.85 Pa
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One solution to this problem is to work with Brookfield to "special order"
an instrument with a larger spring constant. Alternatively, a smaller
vane could be utilized to reduce the torque requirements of the
instrument.

Part b. Typical container dimensions, suggested in Sec. [3.7.3] and
illustrated in Fig. 3.14, may be calculated from the size of the vane. If

m and , then m. The minimum container
size can be calculated from this information:

 m

 m

 m

With these results, the minimum sample volume may be determined:

A minimum sample volume of 192.1 cm3 is needed to perform the test.

3.8.20. Vane Method to Find Yield Stresses

Calculate the static and dynamic yield stresses, using both the single
point and slope methods, with the data for tomato ketchup found in
Table 3.9. Data for calculating static yield stresses were collected using
undisturbed samples. Dynamic stress data were taken from stirred
samples where gentle agitation eliminated the time-dependent struc-
ture of the material. Vanes were completely immersed in the sample
following the guidelines for vane and vessel dimensions given in Sec.
3.3.7 and summarized in the previous example problem.

Eq. [3.141] is needed to calculate the yield stress using the single
point method:

d = 0.02615 h /d = 1.92 h = 0.05021

D/d ≥ 2.0  so  D ≥ 2.0(d) = 0.0523

Z1/d ≥ 1.0  so  Z1 ≥ 1.0(d) = 0.02615

Z2/d ≥ 0.5  so  Z1 ≥ 0.5(d) = 0.01308

 min. sample = π




D
2





2

(z1 + h + z2)

 min. sample = π




0.0523
2





2

(0.02615 + 0.05021 + 0.01308) = 1.921(10−4) m3 = 192.1 cm3
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Table 3.9. Raw Data, and Yield Stresses, for Tomato Ketchup at 21 C Taken with
a Brookfield Viscometer Having a Full Scale Torque of 0.00575 N m Using a Vane
with 4 Blades having a Diameter of 2.5 cm.

Stress Torque Torque Vane Height Yield Stress1

(% total) (N m) (cm) (Pa)

Static 30.00 0.00173 5.0 30.12
Static 29.25 0.00168 5.0 29.37
Static 27.50 0.00158 5.0 27.61
Static 26.00 0.00150 5.0 26.11
Static 34.00 0.00196 6.6 26.79
Static 37.25 0.00214 6.6 29.35
Static 38.00 0.00219 6.6 29.94
Static 47.50 0.00273 9.0 28.29
Static 48.00 0.00276 9.0 28.59
Static 48.75 0.00280 9.0 29.04

Average 28.52
SDEV 1.33

Dynamic 22.50 0.00129 5.0 22.59
Dynamic 22.50 0.00129 5.0 22.59
Dynamic 21.00 0.00121 5.0 21.08
Dynamic 20.00 0.00115 5.0 20.08
Dynamic 25.33 0.00146 6.6 19.96
Dynamic 26.50 0.00152 6.6 20.87
Dynamic 27.50 0.00158 6.6 21.67
Dynamic 37.00 0.00213 9.0 22.04
Dynamic 35.00 0.00201 9.0 20.85
Dynamic 36.00 0.00207 9.0 21.44
Dynamic 34.75 0.00200 9.0 20.70

Average 21.26
SDEV 0.90

1 Yield Stress calculated by the single point method, Eq. [3.141].

Assuming , this expression can be reduced to

°

σo =
2Mo

πd3





h
d

+
1

m + 3




−1

m = 0

σo =
6Mo

πd2(3h + d)
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A typical calculation can be used to illustrate the method. If, for example
(see first data line, Table 3.9), , ,

and , then . Results for each trial, as well as

average values, are given in Table 3.9.

Eq. [3.137] is required to calculate the yield stress using the slope
method:

Noting that the integral term is constant, versus may be plotted

as

[3.184]

The slope ( ) of the best fitting line through the data points will include
the yield stress:

[3.185]

therefore,

[3.186]

This technique must be performed separately for static and dynamic
data sets. Data are plotted (Fig. 3.35), and slopes are found from a
standard linear regression program, allowing the static and dynamic
yield stresses to be calculated from Eq. [3.186]:

and

Reasonablygood agreementwas found between yieldstressescalculated
using the slope and single point methods (Table 3.10). Single point yield
stresses are averaged values taken from Table 3.9.

Mo = 0.3(0.00575) = 0.00173 N m d = 0.025 m

h = 0.050 m σo = 30.12 Pa

Mo =
πhd2

2
σo + 4π⌠

⌡0

d / 2

r 2σe dr

Mo h

Mo = a h + constant

a

a =
πd2σo

2

σo =
2a

πd2

(σo)
static

=
2a

πd2
=

2(0.0285)
π(0.025)2

= 29.03 Pa

(σo)
dynamic

=
2a

πd2
=

2(0.0205)
π(0.025)2

= 20.88 Pa
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Figure 3.35. Plot of the raw data needed to determine the yield stress using the
slope method.

Table 3.10. Comparison of Yield Stresses Calculated for Tomato Ketchup at 21 C.

Method Static Yield Stress Dynamic Yield Stress
(Pa) (Pa)

Single Point 28.52 21.26
Slope 29.03 20.88

3.8.21. Vane Rotation in Yield Stress Calculation

Typical data, for undisturbed tomato ketchup at 23 C, collected to
determine the yield stress using the vane method, are illustrated in Fig.
3.36 and 3.37. The data in each figure are taken with two instruments
having different wind-up characteristics: the Brookfield uses a coiled
spring and the Haake instrument uses a torsion bar type system (Fig.
3.19). Both systems have rotating vanes and stationary sample holders.
Given the characteristics of each instrument (Table 3.11), determine
the amount of vane rotation (Fig. 3.38) which has occurred between the
start of the test and the time the peak torque value ( ) is observed.

Also, compare yield stresses calculated from each curve (Fig. 3.36 and
Fig. 3.37) using the single point method.
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Figure 3.36. Torque response for 23 C ketchup obtained using the Brookfield
HBDT viscometer and a vane with 4 blades.

Figure 3.37. Torque response for 23 C ketchup obtained using the Haake VT500
viscometer and a vane with 4 blades.
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Figure 3.38. Movement of a 4-bladed vane during yield stress testing.

Table 3.11. Vane Rotation Data and Instrument Characteristics for Two Vis-
cometers.

Haake Brookfield
VT500 HBDT

Vane height ( ), cm 6.0 6.6

Vane diameter ( ), cm 4.0 2.5

Full Scale Torque, N cm 2.0 0.575

Full Scale Wind-up, degree 1.0 80

Time to Peak Torque, s 1.3 18

Peak Torque ( ), N cm 0.605 0.184

Test Speed, rev/min (degree/sec) 2 (12) 0.5 (3.0)

Zero-Load Rotation at Peak Torque, degree 15.6 54.0

Wind-up at Peak Torque, degree 0.3 25.6

Actual Rotation at Peak Torque, degree 15.3 28.4

Yield Stress ( ) from Eq. [3.141], Pa 32.8 28.4

Initial Vane Position

Vane Position at Peak Torque

Angle of Rotation

h

d

Mo

σo
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The maximum torque measured in the VT500 test was 0.605 N cm.
Since the full scale torque of this instrument is 2 N cm and the full scale
wind-up is 1 degree, the wind-up in this experiment was approximately
0.605 (1) / 2 = 0.3 degrees. The test was run with an impeller speed of
2 rpm or 12 degrees /s. Taking the time to achieve peak torque as 1.3
s means that an unrestricted impeller would travel 1.3 (12) = 15.6
degrees. This is referred to as the zero-load rotation. After accounting
forwind-up, the actual VT500vane rotation can be calculated as 15.6-0.3
= 15.3 degrees. The comparable value for the Brookfield is 28.4 degrees
(Table 3.11).

Static yield stresses were calculated using Eq. [3.141] with the
assumption that = 0. The value measured with the Brookfield ( =

25.1 Pa) is lower than the value measured by the VT500 ( = 32.8 Pa).

This is due, in part, to the different wind-up characteristics of each
viscometer: At full scale torque, the VT500 wind-up is 1 degree and the
Brookfield wind-up is approximately 80 degrees. The combination of
vane speed and wind-up caused a greater amount of vane rotation in
the Brookfield during testing. This produced greater fluid motion which
subsequently reduced peak torque values. Differences in the wind-up
characteristics of rotational viscometers should always be taken into
considerationwhen evaluating yield stresses determined using the vane
method. These differences may be particularly important when the
yield stresses under consideration exhibit strong time-dependent
behavior.

3.8.22. Rheomalaxis from Mixer Viscometer Data
Torque decay data for starch thickened strained apricots were collected
at various angular velocities (Table 3.12, Fig. 3.39). The material was
rheomalactic, i.e., no structural recovery was evident in a reasonable
period of time (three hours). Evaluate the relative degree of irreversible
thixotropy in this material by calculating the area between the initial
and equilibrium torque curves. Also determine the energy input to the
sample when the impeller is rotated at 3.14 rad/s for approximately 10
minutes. (Note: data in Table 3.12 could also be used to evaluate the
parameters in the thixotropy model given by Eq. [1.36].)

Initial and equilibrium torque values, obtained from the raw data,
are plotted on Fig. 3.40 and summarized in Table 3.13. Fitting these
curves to a power equation (any equation which adequately fits the data
would be acceptable) yields:

m σo

σo
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Table 3.12. Torque Decay Data for Starch Thickened, Strained Apricots at 22 C
Collected with a Rotational Viscometer using a Cup ( =21.00 mm) and Pitched
Paddle Impeller (Fig. 3.11)

     Torque, N m
Time (min.) 1.05 rad/s 1.57 rad/s 2.09 rad/s 2.62 rad/s 3.14 rad/s

0.42 0.00301 0.00324 0.00369 0.00404 0.00424
1.223 0.00259 0.00292 0.00324 0.00348 0.00369
2.023 0.00240 0.00280 0.00310 0.00330 0.00354
2.821 0.00238 0.00272 0.00299 0.00322 0.00340
3.623 0.00230 0.00266 0.00293 0.00312 0.00332
4.421 0.00224 0.00260 0.00287 0.00306 0.00326
5.223 0.00219 0.00255 0.00284 0.00303 0.00321
6.023 0.00214 0.00251 0.00279 0.00298 0.00315
6.821 0.00210 0.00245 0.00273 0.00294 0.00311
7.623 0.00205 0.00242 0.00270 0.00292 0.00309
8.421 0.00201 0.00238 0.00267 0.00287 0.00304
9.223 0.00198 0.00237 0.00265 0.00286 0.00301
10.02 0.00194 0.00234 0.00262 0.00282 0.00298
10.83 0.00192 0.00230 0.00260 0.00280 0.00297
11.63 0.00190 0.00228 0.00258 0.00277 0.00295
12.43 0.00188 0.00227 0.00255 0.00275 0.00293
13.23 0.00186 0.00224 0.00254 0.00273 0.00289
14.03 0.00184 0.00223 0.00253 0.00270 0.00288
14.83 0.00182 0.00220 0.00250 0.00269 0.00286
15.63 0.00180 0.00218 0.00248 0.00267 0.00286

and

The area between the two curves is found from Eq. [3.143]:

°
Rc

Minitial = .00290(Ω).33

Mequilibrium = .00179(Ω).42

∆ = ⌠
⌡Ωlow

Ωhigh

[Minitial − Mequlibrium]dΩ
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Figure 3.39.  Torque decay data for strained apricots at 22 C.

Figure 3.40. "Initial" and "equilibrium" torque curves for apricots at 22 C.
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Evaluating the integral with the appropriate torque curves and limits
yields

is a relative measure of thixotropy; when none is present

Table 3.13. "Initial" and "Equilibrium" Torque values, for Strained Apricots, at Different
Angular Velocities

     Torque, N m
"Initial" "Equilibrium"

(rad/s) (after 0.42 min.) (after 15.6 min.)

1.05 .00301 .00180
1.57 .00324 .00218
2.09 .00369 .00248
2.62 .00404 .00267
3.14 .00424 .00286

Torque decay curves also provide a practical way of evaluating
thixotropy by considering the energy input to the sample. Data (Table
3.12) taken at an impeller angular velocity of 3.14 rad/s may be replotted
in terms of power ( ) versus time. The area under the resulting
power decay curve (Fig. 3.41) represents the mechanical energy input
to the sample.

The power decay data were fit to a simple mathematical model
yielding

which is the line plotted on Fig. 3.41. The exponent in this equation is
an index of thixotropy: More negative values indicate a rapid rate of
structural breakdown, and a value of zero means the sample is not
time-dependent. Using the above equation, the energy input over the
period of time (Table 3.12) under consideration (t = 0.42 min = 25.2 s to
t = 10.02 min = 601.2 s) is easily calculated:

∆ = ⌠
⌡Ω = 1.05

Ω = 3.14

(.00290(Ω).33 − .00179(Ω).42)dΩ = .00261 N m s −1

∆ ∆ = 0.

Ω

P = MΩ

P = .0186(t)−.108

Energy Input = ⌠
⌡t = 25.2

t = 601.2

.0186(t)−.108dt = 5.91 N m



254 Chapter 3. Rotational Viscometry

In contrast, if there was no thixotropy, the energy required to maintain
= 3.14 rad/s over the same time would be approximately

0.00424(3.14)(601.2 - 25.2) = 7.67 N m. This calculation assumes the
power level is constant and equal to the initial value when no time-
dependent behavior is present.

Figure 3.41. Power decay curves obtained for strained apricots at 22 C with a
constant impeller velocity of 3.14 rad/s.

Torque or power decay data curves can provide a useful measure of
thixotropy. Results depend on the particular mixing system and sample
volume used in the study. These factors must be kept constant to make
meaningful sample to sample comparisons. Temperature is also a
significant factor which should be carefully controlled during testing.
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Chapter 4. Extensional Flow

4.1. Introduction

A basic knowledge of extensional viscosity is essential for under-
standing many flow situations found in the food industry. The three
basic types of extensional flow - uniaxial, biaxial, and planar - along
with numerous applications of extensional deformation are described
inSection1.7. Experimental methodsto determine extensionalviscosity
are discussed in this chapter. Techniques involving tension (stretching
or pulling), squeezing flow (flow between parallel plates being pushed
together), converging flow into a die, flow into opposing jets, spinning,
and the tubeless siphon phenomenon (Fano flow) are presented. In
addition, alternative interpretations of squeezing flow data are con-
sidered because of the relative ease with which this experiment can be
conducted in a laboratory. Biaxial extension, produced by lubricated
squeezing flow, is considered in terms of steady shear properties (Sec.
4.8.1). Similar considerations are made in the case of non-lubricated
squeezing flow (Sec. 4.8.2) which generates a combined shear and
extensional deformation.

4.2. Uniaxial Extension

Consider the uniaxial extension (Fig. 1.24) of a material where one
end is stationary and the other end is moving at some velocity, . This

can be accomplished experimentally if one end is fixed (by gluing or
clamping) and the other end is pulled by a moving clamp, wrapping it
around a rod, or pulling it between rotating gears. The differential
Hencky strain (Eq. [1.2]: ) describing displacement is

[4.1]

and the strain rate is

[4.2]

Since is the velocity at the end of the sample, the strain rate can
be expressed as

[4.3]

u1

εh = ln(L/Lo)

dεh =
dL
L

ε̇h =
dεh

dt
=

1
L

dL
dt

dL /dt

ε̇h =
u1

L
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If the velocity is held constant ( ) during experimentation, then the

strain rate would continually decrease during elongation due to
increasing values of . At very low speeds, a constant velocity test may
approximate a constant strain rate; however, to maintain a truly
constant value of the strain rate, the velocity of the moving end of the
sample must be increased during testing.

Integrating Eq. [4.2] for a constant strain rate ( ), using as the

initial sample length, gives

[4.4]

resulting in the following expression for as a function of time:

[4.5]

To produce a constant strain rate, Eq. [4.3] shows that .

Combining this expression and Eq. [4.5] demonstrates that the velocity
at the moving end of the sample must exponentially increase over time
to maintain a constant strain rate:

[4.6]

Assuming the material is incompressible, the volume is constant so

[4.7]

where is the initial crossectional area. Combining Eq. [4.5] and [4.7]

shows the crossectional area of the sample must decrease exponentially
during testing as a consequence of the exponential change in length:

[4.8]

The normal stress difference over the material defines the net tensile
stress:

[4.9]

is the force required to stretch the sample. Using Eq. [4.7], the
stretching stress can be expressed as

[4.10]

In an ideal stretching experiment the strain is increased to a
constant value ( ) instantaneously:

[4.11]

u1 = uo

L

ε̇ho Lo

⌠
⌡0

t

ε̇hodt = ⌠
⌡Lo

L dL
L

L

L = f(t) = Lo exp(ε̇hot)
L = u1/ε̇ho

u1 = f(t) = ε̇hoLo exp(ε̇hot)

AL = AoLo

Ao

A = f(t) = Ao exp(− ε̇hot)

σE = σ11 − σ22 =
F
A

F

σE =
FL

AoLo

εho

ε̇h = ε̇ho     for    t ≥ 0
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which establishes the velocity function described by Eq. [4.6]. The force
( ) required to maintain is experimentally determined during

testing. Results may be presented in terms of the tensile growth function
defined by combining Eq. [4.5] and [4.10]:

[4.12]

The stress growth function becomes equal to the tensile viscosity as time
goes to infinity and a constant value of the stress ( ) is obtained:

[4.13]

where and . Bagley and Christianson (1988) have

noted that this limit may not be observed over experimentally practical
time periods.

Meissner (1972) devised a method of achieving a constant strain rate
in polymer melts using a device (Fig. 4.1) consisting of two sets of counter
rotating gears moving at constant speeds. The strain rate is related to
the constant sample velocities, in opposite directions ( and ), located

a constant distance ( ) apart:

[4.14]

Constant velocities can be used because the sample length is constant.
The tensile force, required to maintain a constant strain rate, is
measured during testing and used to calculate the stretching stress.
Extensional viscosity is determined from Eq. [4.12]. In the original
device (Meissner, 1972), samples were supported in a silicone oil bath.
Rheometrics, Inc. (Piscataway, NJ), introduced a commercial version of
this instrument, intended for polymer melts, which uses an inert gas to
support the sample.

F(t) ε̇ho

ηE
+ = f(ε̇ho, t) =

σE

ε̇ho

=
FL

AoLoε̇ho

=
F exp(ε̇hot)

Aoε̇ho

σE

ηE = lim
t → ∞

ηE
+

ηE
+ = f(ε̇ho, t)ηE = f(ε̇ho)

ua ub

Lo

ε̇ho =
ua + ub

Lo
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Figure 4.1. Counter rotating clamps, based on the design of Meissner (1972), to
achieve a constant strain rate in uniaxial extension.

4.3. Biaxial Extension

Biaxial extension can be achieved in a lubricated squeezing flow
between parallel plates. Fig. 4.2 illustrates the normal case where the
lower plate is fixed and the upper plate moves vertically downward.
During squeezing, the cylindrical shape is maintained while the area
in contact with the plate increases as the height of the sample decreases.
Test samples are lubricated with a lower viscosity liquid.

The importance of proper lubrication cannot be underestimated.
Unlubricated samples require more force to achieve deformation than
that required for lubricated samples (Christianson et al., 1985). This
is even true in food materials, such as butter (Fig. 4.3), that have a high
fat content and may appear to be self-lubricating. The extra force is
needed to overcome the friction introduced by the shear deformation
that occurs in unlubricated testing. Perfectly lubricated samples
experience only extensional deformation.

Lo

sample
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Figure 4.2. Flow between lubricated parallel plates to create sample deformation
in biaxial extension.

Figure 4.3. Force versus compression for lubricated and unlubricated squeezing
flow of butter at 15 C: = 15 mm,  = 14mm,  = 100 mm/min. (Data from

Rohm, 1993))
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The velocity distribution in biaxial extension can be expressed in
terms of Hencky strain as

[4.15]

[4.16]

[4.17]

where . These equations are a slightly modified version of Eq.

[1.67], [1.68] and [1.69]. Compressive strain in the vertical direction is

[4.18]

where , the height separating the plates. The strain rate is

[4.19]

To produce a constant strain rate during experimentation, the
velocity of the moving plate must decrease as the plates approach each
other. Following the same procedure given for uniaxial extension, the
strain rate equation describing vertical motion (Eq. [4.19]) can be
integrated to give

[4.20]

or

[4.21]

where is the initial sample thickness. Eq. [4.21] shows that the

distance separating the plates must exponentially decrease over time.
Assuming the material is incompressible and the volume is constant
yields:

[4.22]

where is the initial area of the sample in contact with one plate.

Biaxial strain is instantaneously increased to a constant value ( )

in an ideal experiment:

[4.23]

which determines the platespacing requirements specifiedby Eq. [4.21].
Biaxial stress (radial net stretching stress) is determined from the
squeezing force ( ) which is measured during testing:
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[4.24]

A biaxial extensional growth function is defined by combining Eq. [4.21]
and Eq. [4.24]

[4.25]

The stress growth function becomes equal to the biaxial extensional
viscosity as time goes to infinity and a constant value of the net
stretching stress ( ) is obtained:

[4.26]

where and . Obtaining steady-state conditions

during experimentation may be difficult. Comparing growth functions
(Eq. [4.25]) alone may be sufficient to distinguish food samples.

If the lubricated squeezing flow experiment is operated so the
downward velocity of the upper plate is constant and the bottom plate
is fixed (the common mode of operation in testing equipment such as
the Instron Universal Testing Machine), then sample height decreases
linearly:

[4.27]
The biaxial extensional strain rate (also called the radial extension rate)
is equal to one-half the vertical Hencky strain rate:

[4.28]

Extensional viscosity is calculated from the net stretching stress and
the strain rate:

[4.29]

is obtained from one of the following equations depending on the

degree of fill between the plates during testing:
[4.30]

or
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[4.31]

where is the radius of the sample, is the radius of the plate, and
is the experimentally determined force pushing down on the upper plate.
When the gap is filling with an incompressible material, the sample
volume is constant making . This expression can be solved

for allowing Eq. [4.30] to be calculated in terms of :

[4.32]

where is the initial radius of the sample.

High levels of strain can result in loss of lubrication between plates,
and subsequent introduction of shear flow into the experiment. The
maximum strain can be calculated as

[4.33]

According to Macosko (1994), loss of lubrication is typical when the
maximumstrain isnear 1.0. Macosko (1994)also notes that the decrease
in lubricant thickness ( ) is approximately equal to the square of root
of the gap:

[4.34]

where is the initial thickness of the lubricant. Furthermore, he

recommends (based on Secor, 1988) the following criterion for lubrica-
tion:

[4.35]

where and are the Newtonian shear viscosities of the lubricant and

test sample, respectively. These results give us valuable insight into
the lubrication problem. Unfortunately, they are not directly applicable
to the biaxial extension of non-Newtonian foods. Experimental condi-
tions used in lubricated squeezing flow of some food materials are
summarized in Table 4.1.
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Typical data analysis of biaxial extensional flow, for the case where
the bottom plate is fixed and the upper plate moves downward at a
constant velocity, is discussed in Example Problems 4.9.1. Results show
a typical change (sharp increase followed by a gradual decrease) in
extensional viscosity with strain rate. Example Problem 4.9.2 illus-
trates how results from individual tests, such as the one given in
Example 4.9.1, can be combined to examine the tension-thinning (or
tension-thickening) characteristics of a sample.

Table 4.1. Product, Initial Sample Size, Lubricant, and Test Conditions used to
Determine Biaxial Extensional Viscosity in Lubricated Squeezing Flow

Product lubricant Reference
 (cm) (cm) (cm/min)

butter 1.5 2.80 paraffin oil1 0.1,1.0,10 Rohm, 1993
butter 1.0 3.67 cooking oil2 0.05 Shukla et al.,

1995
starch 1.2-4.0 3.85 paraffin oil3 0.5 Christianson
gels et al., 1985
cheese 2.0-4.0 2.85 paraffin oil3 0.5 - 5.0 Casiraghi et

al., 1985
cheese 3.18 silicone oil4 1.0 Campanella et

al., 1987
wheat 2.0 3.1 paraffin oil3 0.2 - 5.0 Bagley and
dough Christianson,

1986
wheat 0.54-1.92 5.72-8.0 Super Lube5 constant Huang and
dough stress Kokini, 1993
1 Merck 7174; 70 mPa s at 20 C; 2 PAM, American Home Foods; 3 USP/TCC white,
light. Fisher Scientific Co.; 4 Dow Corning 500; 5 Super Lube, Inc., Bohemia, NY

4.4. Flow Through a Converging Die

Flow into a convergence involves an energy loss due to shear and an
additional loss due to the extension (stretching) of fluid streamlines.
Converging flow is sometimes called uncontrolled flow because fluid
streamlines are a function of fluid properties. It is also not pure
extensional flow because it involves a combination of both shear and
extensional deformation. Analyses described here are based on sepa-
rating the entrance pressure drop into two components: one due to shear
and the other due to extension. An alternative method, called the sink
flowanalysis based on thework of Metzner andMetzner (1970), assumes

ho Ro uz

µ ≤ °
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pure (no shear) extensional flow. This method requires knowledge of
an angle of convergence typically found from flowvisualization. Another
technique, involving energy principles, has been developed by Binding
(1988).

Figure 4.4. Shear (showing velocity profile) and extensional flow components
causing pressure drop in a convergence.

4.4.1. Cogswell’s Equations

Cogswell (1972) assumed the entry pressure drop over an area of
converging flow, from a circular barrel into a capillary die, was made
up of two components, one related to shear flow and one related to
extensional flow (Fig. 4.4):

[4.36]

This flow situation could be referred to as unlubricated, constrained
convergence (Cogswell, 1978). It is assumed that no slip occurs at the
wall.

The pressure drop due to shear can be derived by considering the
differential pressure drop (based on the power law form of the flow rate
equation, Eq. [2.31]) over the length at radius (Fig. 4.5):

Shear Flow Extensional Flow

δPen = δPen ,S + δPen ,E

dl r
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Figure 4.5. Geometry for converging flow from a barrel of radius  into a capil-
lary die of radius .

[4.37]

Since , . Substituting this equation into Eq. [4.37]
yields

[4.38]

which must be integrated between the die and the barrel:

[4.39]

Evaluating the integral and simplifying the result yields the component
of the pressure drop in the convergence due to shear flow:

[4.40]

where , the apparent wall shear rate in the die.

The volumetric average velocity at any particular crossection of the
die is
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[4.41]

Eq. [4.41] may be differentiated to give the average extensional strain
rate at each crossection:

[4.42]

Unlike the shear rate, this expression does not depend on the form of
thevelocity profile. The differential pressure drop, due to the dissipation
of extensional energy, may be written in terms of an average extensional
stress acting on an annulus:

[4.43]

or, recognizing that is negligible, Eq. [4.43] is simply

[4.44]

Assuming a power law relationship between the average stress and
the average strain rate,

[4.45]

allows Eq. [4.44] to be rewritten as
[4.46]

Substituting Eq. [4.42], for the average strain rate, into Eq. [4.46] yields
[4.47]

Eq. [4.47] must be integrated between the radius of the capillary ( )
and the radius of the barrel ( ) to determine the component of the

entrance pressure loss due to extensional flow:
[4.48]

Evaluating the integrals and simplifying the result gives
[4.49]
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Taking the logarithm of this equation yields

[4.50]

which can be used in regression analysis to calculate from the slope
of the line, and from the intercept. Values of and may be used

to calculate the average extensional viscosity:

[4.51]

where is the average extensional strain rate at the die (where )

computed from Eq. [4.42] as

[4.52]

Using the above equations, the following procedure can be utilized
to calculate extensional viscosity from die entry pressure data:

1. Determine the total entrance pressure loss ( ) using the Bagley

procedure discussed in Sec. 2.5. Also, determine the shear flow
rheological parameters ( ) using standard methods in capillary
viscometry presented in Chapter 2. Although it may be convenient
to find shear properties from capillary data, any standard rheo-
logical technique could be used to determine and .

2. Using Eq. [4.40], find the pressure drop in the convergence due to
shear flow, .

3. Subtract this from , found in Step 1, to yield the component of

the pressure drop in the entrance due to extensional flow, .

4. Use Eq. [4.50] in a regression analysis procedure to evaluate and
. Calculate the strain rate and the extensional viscosity from

Eq. [4.52] and [4.51], respectively.

The preceding equations describe behavior acceptably up to die
angles of approximately 45 degrees (Gibson, 1988). When , shear
flow is dominant; when , materials may form their own conver-
gence pattern (Cogswell, 1981) resulting in an unknown entry angle.
Formation of a product convergence pattern will be a function of the
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rheological properties. It may be a particularly significant problem with
foods having a high yield stress. Cogswell’s equations are used to
investigate soy dough in Example Problem 4.9.3.

Cogswell (1972) formulated expressions for the net average exten-
sional stress and net average extensional strain for flat entry dies (Fig.
4.5 with ) as

[4.53]

and

[4.54]

where is the apparent shear viscosity based on a power law rela-
tionship: . The average extensional viscosity is easily calcu-
lated from Eq. [4.53] and [4.54]:

[4.55]

Eq. [4.55] is very convenient for making a rapid comparison between
fluids.

An alternative analysis for converging flow has been proposed by
Binding (1988) and used to evaluate corn meal dough (Padmanabhan
and Bhattacharya, 1993) and polymer melts (Padmanabhan and
Bhattacharya, 1994). The technique involves axis-symmetric flow but
emphasizes planar contraction which involves the convergence from a
rectangular channel into a rectangular orifice. Also, a refined version
of Cogswell’s method has been proposed, and successfully used for
molten polymers, by Bersted (1993). This analysis does not require a
constant extensional viscosity in the convergence, but an iterative
procedure is needed to find a solution to the pressure drop equations.

4.4.2. Gibson’s Equations

Using spherical coordinates, Gibson (1988) developed a method of
determining extensional viscosity for the full range of die angles up to
90degrees. The analysis includeda power lawmodel (Eq. [4.45]) relating
average extensional stress and strain. Components of the pressure drop
due to shear flow and extensional flow were found to be
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[4.56]

where is expressed in radians and

[4.57]

respectively. The die exit effect integral( ) was given as a function of
and the angle of convergence:

[4.58]

can be integrated directly at but a numerical solution is required
at other values of . Solutions to Eq. [4.58] covering most practical
situations are given in Table 4.2 and Fig. 4.6. Interpolation between
different values of and die entry angles (Table 4.2) does not introduce
a significant level of error. Equations given in Fig. 4.6 were generated
from linear regression analyses of the information provided in Table
4.2.

The average die exit elongational strain rate is

[4.59]

Procedures for finding , , and are the same as those outlined,

in the preceding section, for Cogswell’s method. Values of and are

determined from raw data of versus . Taking the logarithm of

Eq. [4.57] yields

[4.60]

showing that is the slope of the resulting line. The numerical value
of is determined from the intercept. Extensional viscosity is

calculated from Eq. [4.51] with defined by Eq. [4.59]. The last term

in Eq. [4.60] (equal to ) is small and often negligible for die angles
less than 45 degrees. This analysis, like that of Cogswell, may be
complicated by the tendency of foods with a high yield stress to form a
natural angle of convergence. Gibson’s equations are used to investigate
soy dough in Example Problem 4.9.4.
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Table 4.2. Numerical Solutions of the Die Exit Effect Integral (from Gibson, 1988):

0.1 0.0660 0.1558 0.2882 0.4677 0.7003
0.2 0.0629 0.1535 0.2892 0.4730 0.7080
0.3 0.0601 0.1515 0.2904 0.4787 0.7162
0.4 0.0575 0.1497 0.2920 0.4848 0.7249
0.5 0.0550 0.1481 0.2939 0.4913 0.7339
0.6 0.0528 0.1467 0.2961 0.4983 0.7434
0.7 0.0507 0.1455 0.2985 0.5055 0.7533
0.8 0.0488 0.1444 0.3011 0.5132 0.7636
0.9 0.0470 0.1435 0.3040 0.5212 0.7743
1.0 0.0453 0.1427 0.3071 0.5295 0.7854
1.2 0.0422 0.1414 0.3139 0.5472 0.8087
1.4 0.0394 0.1406 0.3215 0.5662 0.8334
1.6 0.0370 0.1401 0.3299 0.5865 0.8597
1.8 0.0348 0.1399 0.3391 0.6082 0.8874
2.0 0.0328 0.1399 0.3490 0.6313 0.9167

Figure 4.6. Numerical solutions of the die exit effect integral for different values
of the extensional flow behavior index ( ) and die entry angles.
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4.4.3. Empirical Method

Extensional viscosity may be estimated using a standard material.
Assuming making (from Eq. [4.51]) , and that the shear

contribution to the pressure loss is small, then Eq. [4.49] shows that an
average extensional viscosity is proportional to the entrance pressure
drop divided by the apparent wall shear rate in the die:

[4.61]

where is a dimensionless constant assumed to be a function of the
system geometry, not strain rate or the rheological properties of the
sample. The numerical value of could be estimated using a standard
Newtonian material with a known value of .

Eq. [4.61] can also be used with a zero length die where it is assumed
the entire pressure drop is the entrance loss. This idea is illustrated in
Fig. 4.7 where a plunger, moving downward at a constant velocity ( ),

is forcing material through an orifice with a 90 degree entry angle. The
entrance pressure loss is calculated from the force on the plunger and
the crossectional area of the barrel: . Assuming the test

material is incompressible, the volumetric flow through the orifice is a
function of the plunger velocity ( ). Given Eq. [4.61] and the

above definitions, extensional viscosity may be estimated as

[4.62]

Eq. [4.62] can be used, for both tapered or flat entry dies, as the basis
of a quality control test if making a relative comparison between the
extensional viscosities of similar foods. A commercially manufactured
on-line system (Rheometrics, Inc., Piscatawa, NJ), based on this prin-
ciple, is available to the food industry. The unit has been used
successfully with cookie and cracker dough. It should be noted that
could be a function of the strain rate and the rheological properties of
the test substance. This may be particularly important for high yield
stress materials tested in instruments constructed with large entry
angles. Menjivar et al. (1992) used data from a zero length die to
calculate Trouton ratios which correlated well with the extrudate swell
behavior of wheat flour doughs.
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Figure 4.7. Flow through an orifice (zero-length die) controlled by the constant
downward velocity of the plunger.

4.5. Opposing Jets

In the method of opposing jets, opposing nozzles are completely
immersed in a test fluid (Fig. 4.8). Using a vacuum, fluid is sucked into
the nozzles creating uniaxial extensional flow in the region between
them. This flow causes a tensile stress which, if unrestrained, would
cause thenozzles to approacheach other. In experimentation,one nozzle
is fixed and the other nozzle is restrained from movement but allowed
to transmit a resultant force to an appropriate transducer. A momentum
balance indicates that pressure and momentum forces cancel, so the
force ( )measured at thetransducer representsthe tensilestress (Fuller
et al., 1987). An opposing jet device could also be used to create uniaxial
compressive flow if fluid was forced to move out of the nozzles instead
of being sucked into them.
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Figure 4.8. Opposing jets configuration to achieve uniaxial extensional flow by
sucking fluid into the nozzles.

The average extensional strain rate may be taken as the mean
velocity at the nozzle divided by one-half the distance separating the
nozzles:

[4.63]

where is the distance separating the nozzles, is the total volumetric
flow rate into both nozzles, and is the cross-sectional flow area of the
nozzle. Extensional viscosity is calculated by dividing the mean tensile
stress ( ) by the strain rate:

[4.64]

Since the strain rate is an average value and the residence time of fluid
elements entering the orifice is non-uniform, the value calculated using
Eq. [4.64] should be considered an average extensional viscosity.

Using the opposing jetmethod, Fuller et al. (1987) were able to obtain
good results (approximately correct Trouton ratios) for Newtonian fluids
consisting of glycerin-water mixtures. Only qualitative differences,
however, were observed for non-Newtonian fluids made from polymers
(Xanthan gum and polyacrylamide) dissolved in mixtures of glycerin
and water. In the Fuller et al. (1987) experiments, a nozzle diameter
of 1mm was used and, in most testing, the separation distance between
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nozzles was 1mm. A commercial instrument based on the opposing jet
principle is available (Rheometrics, Inc., Piscatawa, NJ). This method
of measurement may yield valuable results for numerous fluid food
systems such as pancake syrup where stringiness (formation of thin
threads) is an important factor in evaluating quality. Similar consid-
erations may be associated with thickened drinks and oral drugs using
a fluid carrier (cough syrup, pain drugs, and antibiotics).

4.6. Spinning

Figure 4.9. Spinning apparatus to evaluate extensional viscosity.

Spinning is a method of evaluating extensional viscosity of moderate
viscosity fluids by subjecting the sample to a uniaxial elongation.
Extrudate drawing, melt spinning, and fiber spinning are synonyms for
the procedure. The test is conducted by extruding a sample from a small
diameter tube on to a rotating drum or wheel (Fig. 4.9). Extension rates
experienced by the material may be varied by changing the wind-up
speed of the drum. Stress on the sample is determined from the force
measured on the drum.
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Experimental data froma spinning test is ordinarily evaluated using
a simplified analysis producing average values. Assuming the extension
rate is constant over the length of the sample, the average rate of
extension may be calculated as

[4.65]

where and are the mean velocities at points 1 and 2 separated by

a distance equal to (Fig. 4.9). Taking as the volumetric flow rate
through the extrusion tube, Eq. [4.65] may be written as

[4.66]

where and are the radii at points 1 and 2, respectively. These radii

are usually determined by photographic methods. Strain imposed on
the sample during testing is calculated as

[4.67]

An average extensional stress is determined from the tensile force
on the sample:

[4.68]

where is taken as the average radius over the length of the sample:
. Using Eq. [4.66] and [4.68], an average extensional

viscosity may be calculated:

[4.69]

Spinning tests have commonly been conducted on polymer melts and
solutions. The method has also been used as a means of evaluating the
stretchability of Mozzarella cheese (Cavella et al., 1992). This research
showed that cheese reached a maximum stretchability over a well
defined temperature range. Experimentation also allowed an accurate
evaluation of maximum elongation and sample strength. Information
of this type may be very useful in comparing and screening different
Mozzarella cheeses for use with pizza and pasta products.

ε̇E =
u2 − u1

L

u1 u2

L Q

ε̇E =
1
L





Q

πR2
2
−

Q

πR1
2





=
Q
πL





1

R2
2
−

1

R1
2





R1 R2

εE = ln




u2

u1





= ln




R1
2

R2
2





σE =
F

πR 2

R

R = (R1 + R2)/2

ηE =
σE

ε̇E

=
FL

R 2Q






R2
2

1 − 


R2

R1




2








276 Chapter 4. Extensional Flow

4.7. Tubeless Siphon (Fano Flow)

Figure 4.10. Apparatus to evaluate extensional viscosity using the tubeless
siphon phenomenon.

Data collected employing the tubeless siphon phenomenon (also
called open siphon or Fano flow) are useful in evaluating extensional
behavior. Testing is carried out using a low pressure reservoir with a
protruding capillary tube (Fig. 4.10). The upper container is lowered
until the tube touches the fluid contained in the bottom vessel. Then,
the vacuum is applied and the tube is slowly raised allowing a free
standing column of fluid to be formed. An advantage of this method,
over the spinning technique, is that the sample receives less severe
treatment prior to testing. Strain rates and extensional viscosities can
be calculated using the same considerations discussed for spinning.
Comparative data can be easily collected merely by determining the
maximum column height that can be obtained with a constant vacuum.

4.8. Steady Shear Properties from Squeezing Flow Data
Biaxial extensional viscosity can be determined from squeezing flow

data (Sec. 4.3). Alternative interpretations of these data are presented
in this section. Power law fluid properties, for example, can also be

vacuum
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estimated from squeezing flow data. In addition, parallel plate equip-
ment can be used to produce a combined shear and extensional flow
when the interface between the plate and the fluid is not lubricated so
the sample adheres firmly to the plate. In this case, Newtonian and
power law fluid properties as well as yield stresses may be calculated.
Squeezing flow data may also provide empirical information that can
form the basis of a useful quality control test.

4.8.1. Lubricated Squeezing Flow

Squeezing flow between parallel plates can be achieved in many food
rheology laboratories. When this deformation is executed between
lubricated plates, biaxial extensional flow is achieved and an exten-
sional viscosity can be calculated. Data from lubricated squeezing flow
may also be evaluated in a manner that produces steady shear fluid
parameters. This is advantageous in some cases. Food materials, for
example, that have a high fat content (raw meat emulsions, butter,
margarine, soft cheese, etc.) may violate the no slip boundary condition
required in a traditional viscometer. True slip, however, is a necessary
condition in lubricated squeezing flow. Campanella and Peleg (1987c)
have taken advantage of this idea in evaluating the power law flow
behavior of peanut butter. Squeezing flow can also be useful for very
thick fluids which are difficult to load into conventional viscometers.

Figure 4.11. Lubricated squeezing flow with sample completely filling the gap
between two parallel plates.

R

F(t)

h(t)
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In lubricated squeezing flow of a power law fluid with a system
having a fixed bottom plate, and constant sample area in contact with
the plates (meaning the gap between the plates is completely full during
testing, Fig. 4.11), the force ( ) required to maintain a constant down-
ward velocity ( ) of the upper plate is (Campanella and Peleg, 1987c),

for a power law fluid,

[4.70]

where . Taking the logarithm of each side yields

[4.71]

where:

[4.72]

Power law fluid parameters ( ) may be determined from linear
regression of experimental data using Eq. [4.71]. Early data points
should be neglected: Only the linear portion of the curve, where steady
flow is present, should be used in the analysis. This technique is
demonstrated to evaluate the behavior of peanut butter in Example
Problem 4.9.5.

The squeezing flow solution for a power law fluid in the case of flow
under a constant force, producing a constant stress when the gap is
completely full (Fig. 4.11) during testing, is (Campanella and Peleg,
1987c)

[4.73]

where:

[4.74]

and is a constant force applied to the sample through the upper plate.
Since contains both unknown properties, multiple experiments with

at least two different loads are required to determine the numerical
values of and .
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The potential error introduced by the existence of a yield stress
during lubricated squeezing flow should not be overlooked. Fortunately,
this problem is not serious regardless of whether or not a yield stress is
present: In constant deformation experiments flow will occur irre-
spective of the yield stress, and in constant stress experiments, applied
stresses must exceed the yield stress for flow to occur (Campanella and
Peleg, 1987a).

It is instructive to consider the theoretical relationship between the
power law fluid parameters determined by the above procedures and
extensional viscosity. Consider, for example, data obtained in the
constant displacement mode. Eq. [4.70], involving steady shear
parameters for power law fluids ( ), may be rewritten as

[4.75]

which, by considering Eq. [4.28] and [4.31], is equivalent to
[4.76]

Since , Eq. [4.76] can be expressed as

[4.77]

or, in terms of biaxial extensional viscosity as,
[4.78]

A comparable expression for tensile extensional viscosity was given
earlier as Eq. [4.51]. For the special case of a Newtonian fluid ( and

),Eq. [4.78] shows the extensional viscosity to be six times the shear
viscosity as predicted by Eq. [1.79].

4.8.2. Nonlubricated Squeezing Flow
Nonlubricated squeezing flow produces a barreling effect (Fig. 4.12)

due to shear flow caused by adhesion of the sample to the plates. The
resulting complex flow is not purely viscometric or extensional, but some
combination of each. Equations relating the force required to move the
plates and plate separation distance can be derived by assuming specific
constitutive relationships. The device originally made to produce
nonlubricated squeezing flow was called a parallel plate plastometer
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(Dienes and Klemm, 1946). That terminology is still common today, but
the published literature contains numerous synonyms for the parallel
plate plastometer (Bird and Leider, 1974): parallel plate viscometer,
compression plastometer, transverse flow viscometer, and paral-
lel-plate plastimeter. More recently (Covey and Stanmore, 1981), it has
been called the squeeze film viscometer.

Figure 4.12. Flow between lubricated and nonlubricated parallel plates.

It is important to remember that the equations presented in this
section are based on the no-slip premise which may be enhanced when
testing with metal fixtures by using various methods such as pitted
plates, an adhesive like cyanoacrylate ester (Superglue), emery paper
attached with double adhesive tape (Rhom and Weidinger, 1993), or by
coating the plates with spray lacquer and ordinary sand (Nolan et al.,
1989;NavackisandBagley, 1983). Unlessotherwise noted, thesolutions
presented in this section are for the case of a fully loaded gap. Initial
sample size is important: A sufficient amount of material to produce a
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value of , where equals the radius of the plate and is the

initial height of the sample (also the initial distance between the plates),
is recommended (Dienes and Klemm, 1946). Development of the fol-
lowing equations also ignores elastic effects which could be significant
at high squeezing rates.

Newtonian Fluids. Derivations and solutions for Newtonian fluids
and power law fluids are given in Bird et al. (1987) and Leider and Bird
(1974). The nonlubricated squeezing flow of a Newtonian fluid, in an
experimental system using an immobile bottom plate with a fully loaded
gap, is (Winther et al., 1991)

[4.79]

where and , the force required to maintain a

constant downward velocity of the upper plate. Eq. [4.79] is known as
the Stefan equation. The viscosity can be calculated as the slope of
versus determined from regression analysis.

The shear rate, evaluated from the velocity profile in the gap, is
(Winther et al., 1991; Churchill, 1988)

[4.80]

where is the distance from the center line and is the vertical distance
from the horizontal midplane of the sample. A maximum shear rate is
found at and :

[4.81]

The average shear rate is equal to of the maximum shear rate.

The case for squeezing flow of a Newtonian fluid with a constant
force, full gap, can be determined by integrating the Stefan equation.
First, it must be recognized that , so Eq. [4.79] may be written

as

[4.82]
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where is the constant force applied to the sample. This equation is
easily integrated to give

[4.83]

The constant of integration is evaluated from the initial condition that
at making . Substituting this into Eq. [4.83], and

simplifying the result, produces the final solution:

[4.84]

Viscosity can be calculated from the slope of versus . Also, if the

viscosity was known, could be determined by solving for .

Power Law Fluids. The nonlubricated squeezing flow of a power law
fluid, in an experimental system using an immobile bottom plate with
a full gap, is (Winther et al., 1991)

[4.85]

where . Eq. [4.85] is known as the Scott equation and it

reduces to the Stefan equation when . Winther et al. (1991) suggest
evaluating Eq. [4.85] by multiplying both sides by giving

[4.86]

then, taking the logarithm of each side of the equation, to get

[4.87]

Using Eq. [4.87], may be found from the slope of versus .

The value of is determined from the intercept. Since the inertia terms
in the equations of motion are neglected in developing Eq. [4.87], the
earliest data points may not lie on the line and should be neglected. The
average shear rate for a power law fluid in nonlubricated squeezing flow
is (Winther et al., 1991)
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[4.88]

Integrating Eq. [4.85] can produce a solution for describing the case
where a constant weight is used to deform a power law fluid. This
problem has been solved by Leider and Bird (1974).

Yield Stress Evaluation. Nonlubricated squeezing flow has been used
to evaluate the behavior of Bingham plastic and Herschel-Bulkley fluids
(Covey and Stanmore, 1981). General solutions are somewhat cum-
bersome but the work verified a simple procedure to determine the yield
stress of semi-solid materials. In testing, a constant force ( ) is placed
on samples which completely fill the gap between parallel plates. The
yield stress is calculated on the basis of the asymptotic or residual
thickness ( ) of the sample:

[4.89]

The technique works reasonably well when the materials tested have a
high yield stress and the rate of deformation produced by the constant
force is small. Campanella and Peleg (1987a) used this method to
evaluate the yield stresses of tomato ketchup, mustard, and mayon-
naise. Also, valuesof theyield stress, fora /treacle paste, determined

with Eq. [4.89] compared well to those found by extrapolation of a
rheogram to zero shear rate (Covey and Stanmore, 1981).

4.9. Example Problems

4.9.1. Biaxial Extension of Processed Cheese Spread

Given the data in Table 4.3, determine the biaxial extensional strain
rate and the extensional viscosity of processed cheese spread. Also
calculate the maximum strain found during testing. Data are for the
lubricated squeezing flow between parallel plateswhere thegap is filling
during experimentation (Fig. 4.12). The lower plate is fixed and the
upper plate is moving downward with a constant velocity. Paraffin oil
was used as the lubricant.
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Table 4.3. Data for the Lubricated Squeezing Flow ( = 0.04 m, = 0.057 m,
= 0.0005 m/min) of Processed Cheese Spread at 7 C (Data from Casiraghi et al.,
1985)

compression

(N) (m) (m) (1/s) (1/s) (MPa s)

5.1 0.0014 0.0386 0.000108 0.000216 4.5
13.8 0.0027 0.0373 0.000112 0.000227 11.3
22.9 0.0048 0.0352 0.000118 0.000236 16.7
29.6 0.0067 0.0333 0.000125 0.000250 19.3
39.1 0.0094 0.0306 0.000136 0.000272 21.5
50.0 0.0120 0.0279 0.000149 0.000298 22.9
59.5 0.0141 0.0258 0.000161 0.000322 23.3
69.7 0.0160 0.0240 0.000174 0.000348 23.5
80.8 0.0180 0.0220 0.000189 0.000378 23.0
91.5 0.0200 0.0199 0.000209 0.000418 21.3
106.3 0.0227 0.0173 0.000241 0.000482 18.7
137.1 0.0260 0.0140 0.000298 0.000596 15.8
192.3 0.0294 0.0106 0.000392 0.000784 12.7

Figure 4.13. Raw data of force versus compression for the lubricated squeezing
flow of processed cheese spread at 7 C.
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Plotting the raw data (Fig. 4.13) clearly illustrates the change in force
during compression. Results are summarized in Table 4.3 and the
following equations show the computations needed to generate the first
row of information:

Biaxial extensional viscosity, plotted in terms of the Hencky strain rate,
is illustrated in Fig. 4.14. The maximum strain found during testing is
calculated from Eq. [4.33]:

Since this value is less than 1.0, it is unlikely that experimental errors
associated with lubricant loss occurred during testing.

Figure 4.14. Biaxial extensional viscosity of processed cheese spread at 7 C.
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4.9.2. Biaxial Extension of Butter

Biaxial extension data are available for butter at 15 C and 20 C (Fig.
4.15). These tests were conducted using parallel plates with a fixed
lower plate. The upper plate was lowered at different downward velo-
cities indicated by the crosshead speeds. All samples had an initial
diameterof 28 mm and an initial height of 15mm. Evaluate the behavior
of this material.

Figure 4.15. Biaxial extensional viscosity of butter at 15 C and 20 C (Data from
Rohm, 1993).

Higher crosshead speeds produced larger strain rates. In each test,
a sharp initial increase was followed by a gradual decline, similar to the
results found for processed cheese spread (Fig. 4.14) in the previous
example. Plotting a line through the downward slope of each data set
(dashed line, Fig. 4.15) suggest a power law relationship between vis-
cosity and strain rate. Fitting the line through representative points
yields
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and

The slope terms given above are analogous to used to express the
relationship (Eq. [1.28]) between apparent viscosity and shear rate in
a standard power law fluid. Hence, the results could be interpreted as
extensional-thinning behavior. Similar results have been observed for
processed cheese spread. Other materials, such as mozzarella cheese,
show a levelingoff ofextensional viscosity after the initial sharp increase
(Casiraghi et al., 1985) making the interpretation of data much more
difficult.

4.9.3. 45  Converging Die, Cogswell’s Method

Taking the capillary viscometer data for soy dough presented in
Example 2.12.2, estimate the extensional viscosity assuming that the
entrance pressure loss can be divided into two separate components:
one related to shear and one related to extensional flow. Data from
Table 2.8 are summarized in Table 4.4. Assume the material forms a
natural convergence angle of in the die. Solve the
problem using Cogswell’s equations presented in Sec. 4.4.1.

Analysis of the data conducted in Example 2.12.2 generated values
of the flow behavior index and the consistency coefficient: = 0.29, =
23,300 Pa sn. Eq. [4.40] must be evaluated to determine the component
of the entrance pressure drop due to shear:

Given, = 0.00159 m and = 0.0075 m, the equation may be simplified:

Calculating for each value of shows that the pressure drop,

due to shear flow, is a small portion of the total pressure drop at the
entrance (Table 4.4). The component of the entrance pressure drop due
to extensional flow is found from Eq. [4.36]:

ηB = 9.55(104) (ε̇h).08 − 1             at 15°C

ηB = 3.55(104) (ε̇h).10 − 1             at 20°C
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Results are summarized in Table 4.4.

Extensional flow parameters may be estimated from regression of
Eq. [4.50]:

yielding the slope,

and intercept,

Substituting appropriate values into the intercept equation gives

which can be solved for the extensional consistency coefficient:

Average extensional viscosity is determined from Eq. [4.51]:

with the average extensional strain rate at the die evaluated from Eq.
[4.52]:

The Trouton number ( ) is calculated from Eq. [1.82] where is

evaluated, as uniaxial extension, at a shear rate numerically equal to
:

Results are summarized in Table 4.4.
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Table 4.4. Capillary Viscometer Data for Defatted Soy Flour Dough (34.7%) at
Room Temperature (Data from Morgan, 1979)

(1/s) (MPa) (k Pa) (MPa) (1/s) (kPa sm) (kPa sn) (-)

47.4 3.58 139.5 3.58 23.7 65.1 1.65 39
47.4 3.58 139.5 3.58 23.7 65.1 1.65 39
47.4 3.58 139.5 3.58 23.7 65.1 1.65 39
94.8 4.63 170.6 4.63 47.4 38.2 1.01 38
94.8 4.63 170.6 4.63 47.4 38.2 1.01 38
94.8 4.63 170.6 4.63 47.4 38.2 1.01 38

190.0 4.38 208.7 4.38 95.0 21.2 0.614 35
190.0 4.38 208.7 4.38 95.0 21.2 0.614 35
190.0 4.38 208.7 4.38 95.0 21.2 0.614 35
948.0 6.17 332.6 6.17 474 5.44 0.196 28
948.0 6.17 332.6 6.17 474 5.44 0.196 28
948.0 6.17 332.6 6.17 474 5.44 0.196 28

4.9.4. 45  Converging Die, Gibson’s Method

Reexamine the soy dough data given in the previous example problem
using Gibson’s equations (Sec. 4.4.2) to separate the pressure drop into
the shear and extensional components. Assume the natural angle of
convergence ( ) produced by the material is radians or 45 degrees.

Analysis of the data conducted in Example 2.12.2 gave values of the
flow behavior index and the consistency coefficient: = 0.29, = 23,300
Pa sn. Eq. [4.56] must be evaluated to determine the component of the
entrance pressure drop due to shear:

Given, = 0.00159 m and = 0.0075 m, the equation may be simplified:

Entrance pressure loss due to extensional flow is found, from Eq. [4.36],
as

Results of the pressure loss calculations are summarized in Table 4.5.
Using these data, extensional flow parameters are estimated from
regression of Eq. [4.60]:
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Table 4.5. Capillary Viscometer Data for Defatted Soy Flour Dough (34.7%) at
Room Temperature (Data from Morgan, 1979)

(1/s) (MPa) (k Pa) (MPa) (1/s) (kPa s m) (kPa sn) (-)

47.4 3.58 162.3 3.42 14.3 92.1 2.38 39
47.4 3.58 162.3 3.42 14.3 92.1 2.38 39
47.4 3.58 162.3 3.42 14.3 92.1 2.38 39
94.8 4.63 198.4 4.43 28.6 51.4 1.46 35
94.8 4.63 198.4 4.43 28.6 51.4 1.46 35
94.8 4.63 198.4 4.43 28.6 51.4 1.46 35

190.0 4.38 242.7 4.14 57.4 28.6 0.889 32
190.0 4.38 242.7 4.14 57.4 28.6 0.889 32
190.0 4.38 242.7 4.14 57.4 28.6 0.889 32
948.0 6.17 386.8 5.78 286 7.40 0.284 26
948.0 6.17 386.8 5.78 286 7.40 0.284 26
948.0 6.17 386.8 5.78 286 7.40 0.284 26

yielding the slope,

and intercept,

Substituting known values into the intercept equation gives

which can be solved for the extensional consistency coefficient:

Hence, the average extensional viscosity can be expressed as

where the average extensional strain rate at the die is determined from
Eq. [4.59]:
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The Trouton number ( ) is calculated from Eq. [1.82] where is

evaluated at a shear rate of :

Results are given in Table 4.5.

Comparing solutions from the Cogswell (Table 4.4) and Gibson
(Table 4.5) methods shows practically identical Trouton Numbers.
Values of the extensional and steady shear viscosities are the same order
of magnitude but significantly different. Since fluid motion in a con-
vergence has both shear and extensional components, it is not consid-
eredpure flowmaking itdifficult to saythat one method isquantitatively
superior to the other. Both are reasonable and provide a good basis for
investigating extensional flow of food in a convergence.

4.9.5. Lubricated Squeezing Flow of Peanut Butter

Data for the lubricated squeezing flow of peanut butter were collected
for the case of constant displacement and constant area (Fig. 4.11, Table
4.6). Assume power law fluid behavior, and determine the steady shear
rheological properties ( and ) of the material. Also, compute the
biaxial extensional strain rate and the comparable shear rate.

Using the linear portion of the curve (Fig. 4.16: ) where
steady flow has been achieved, regression of Eq. [4.71],

where, from Eq. [4.72],

yields = 0.79 and = -2.118. Solving for gives

The biaxial extensional strain rate is

ε̇E,R =
Γ (sin θ) (1 + cos θ)

4
=

Γ (sin(π/4)) (1 + cos(π/4))
4

= Γ(.302)

ηE/η η
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Figure 4.16. Raw data of force versus reciprocal height for the lubricated squeez-
ing flow of peanut butter at 23 C.

and a comparable shear rate, based on our consideration of the Trouton
number (Eq. [1.84]), is

Sample calculations for the first data point ( = 230 m-1) included in
the straight line relationship between and , are

and

Results are summarized in Table 4.6. The approximate shear rate range
covered in determining and was 0.00332 to 0.00938 s-1.
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Table 4.6. Lubricated Squeezing Flow ( = 7.14 mm, = 0.0318 m, = 0.05
cm/min) Data for Peanut Butter at 23 C (Data from Campanella and Peleg, 1987c)

F  h(t) 1/h(t)  ln (F) ln(1/h(t))

N mm 1/m 1/s 1/s

2.25 6.67 150 0.811 5.012 - -
3.16 6.25 160 1.151 5.075 - -
4.50 5.88 170 1.504 5.136 - -
5.75 5.56 180 1.749 5.193 - -
6.90 5.26 190 1.932 5.247 - -
7.50 5.00 200 2.015 5.298 - -
8.50 4.44 230 2.140 5.438 9.58E-4 3.32E-3
9.50 3.85 260 2.251 5.561 1.08E-3 3.75E-3
10.9 3.33 300 2.389 5.704 1.25E-3 4.33E-3
12.3 3.03 330 2.509 5.799 1.38E-3 4.76E-3
14.0 2.50 400 2.639 5.991 1.67E-3 5.77E-3
15.3 2.27 440 2.728 6.087 1.83E-3 6.35E-3
16.7 1.96 510 2.815 6.234 2.13E-3 7.36E-3
18.2 1.67 600 2.901 6.397 2.50E-3 8.66E-3
19.5 1.54 650 2.970 6.477 2.71E-3 9.38E-3

ho R uz

°

γ̇ =√12 ε̇Bε̇B



Chapter 5. Viscoelasticity

5.1. Introduction

Rheology is the science of the deformation and flow of matter. There
are three ways to deform a substance: shear, extension, and bulk
compression. Shear and extensional deformation have been thoroughly
discussed in earlier chapters. Bulk compression, where a uniform
change in external pressure produces a volumetric change in the
material, was briefly discussed in defining the bulk modulus (Sec. 1.4).
It is possible to conduct tests in all three modes of deformation, under
steady state or dynamic conditions, and compare the resulting moduli
and compliances (Ferry, 1980). This chapter will focus on viscoelastic
material functions determined from shear and extensional deformation
data. Bulk compression testing is not considered here because tech-
nology in the area is not well developed. Future research may show the
concept to be valuable in defining a pressure dependent viscosity
function to examine high pressure processes such as food extrusion.

Viscoelastic Material Functions. In Chapters 2 (Tube Viscometry)
and 3 (Rotational Viscometry) the emphasis was on measurement
methods to determine flow curves for non-Newtonian materials under
steady shear conditions. All foods have unique flow curves and this
information is very useful in a large number of industrial applications.
Clearly, from an engineering standpoint, the steady flow curve is the
mostvaluable way to characterize the rheological behavior of fluid foods.
Steady shear viscosity is a property of all fluids regardless of whether
or not they exhibit elastic behavior; however, many phenomena cannot
be described by the viscosity function alone and elastic behavior must
be taken into consideration. This chapter will investigate experimental
methods to generate data that reflect the combined viscous and elastic
character of materials.

In steady shear, viscoelastic fluids exhibit normal stresses and
measuring them provides one way of characterizing elasticity. Normal
stress differences (Eq. [1.23] and Eq. [1.24]) can be measured on rota-
tional rheometers produced by various instrument companies. Com-
putations (Eq. [3.57]) require an evaluation of axial force under steady
shear conditions. Unsteady state shear measurements provide a
dynamic means of evaluating viscoelasticity. The two major categories
of unsteady shear testing are transient and oscillatory.
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Table 5.1. Material Functions Determined in Transient Shear Flow Experiments

Start-up flow: Material at rest is suddenly subjected to a constant shear rate.
• Shear stress growth function
• First normal stress growth function
• Second normal stress growth function

Cessation of steady shear flow: Material undergoing steady state shear flow is
suddenly brought to rest.

• Shear stress decay function
• First normal stress decay function
• Second normal stress decay function

Step strain: Material at rest is given a sudden step increase in strain.
• Shear stress relaxation function
• First normal stress relaxation function
• Second normal stress relaxation function

Creep: Material at rest is given a sudden step increase in stress.
• Shear creep compliance
• Steady-state compliance

Recoil: Stress, in a fluid in steady state shear flow, is suddenly brought to zero.
Material is constrained in one direction and recoil (the degree of retraction) is mea-
sured in the second direction.

• Recoil function
• Ultimate recoil function

Transient shear testing (Table 5.1) is a category that includes
numerous measurement concepts: start-up flow, cessation of steady
shear flow, step strain, creep, and recoil. Data generated using these
methods may lead to numerous material functions (Table 5.1) such as
the shear stress growth function, shear stress decay function, shear
stress relaxation function, shear creep compliance, and the recoil
function. In oscillatory testing, a sample is subjected to harmonically
varying (usually sinusoidal) small amplitude deformations in a simple
shear field. Various companies make instruments to accomplish
oscillatory tests which have proved their usefulness in addressing
numerous food industry problems. Many functions (Table 5.2) can be
generated from oscillatory experiments. A comprehensive list of vis-
coelastic material functions and coefficients is available in Dealy (1994).

Extensional flow was investigated in Chapter 4. What has been
discussed above, relative to shear flow, is also true for extensional flow.
The extensional viscosity function is determined in steady-state
extensional flow, but transient experiments generate data which reflect
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the viscoelastic character of the material. The following tests, for
example, could be conducted in tensile extension: tensile start-up, ces-
sation of steady tensile extension, tensile step strain, tensile creep, and
tensile recoil. This type of experimental testing leads to numerous
viscoelastic material functions (Table 5.3). Similar functions could be
generated for experiments involving biaxial or planar extensional flow.

Table 5.2. Material Functions Determined in Oscillatory Shear Testing (Har-
monically Varying Simple Shear) Experiments

• Complex viscosity
• Dynamic viscosity
• Out-of-phase component of the complex viscosity
• Complex shear modulus
• Shear storage modulus
• Shear loss modulus
• Complex shear compliance
• Shear storage compliance
• Shear loss compliance

Linear Versus Non-linear Viscoelasticity. In process engineering,
data on viscoelasticity may be very helpful in understanding various
problems. Shear creep data, for example, are useful in examining
gravity driven phenomena such as coating and sagging. This infor-
mation can also be an invaluable tool in product development. Means
of evaluating linear viscoelastic behavior are the primary foci of this
chapter. When materials are tested in the linear range, material
functions do not depend on the magnitude of the stress, the magnitude
of the deforming strain, or the rate of application of the strain. If linear,
an applied stress will produce a proportional strain response. Doubling
the stress, for example, will double the strain response. The linear range
of testing is determined from experimental data. Testing can easily
enter the non-linear range by applying excessive strain (usually greater
than 1%) or high deformation rates to a sample.

The importance of large deformation (non-linear) behavior in food
rheology should not be overlooked. Many processes, such as mastication
and swallowing, are only accomplished with very large deformations.
Collecting viscoelastic data relevant to this type of problem involves
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testing in the non-linear range of behavior. These data may be useful
in attacking practical problems; however, from a fundamental stand-
point, they can only be used for comparative purposes because the
theoretical complexity of non-linear viscoelasticity makes it impractical
for most applications. More research is needed in this area.

Table 5.3. Experimental Tests and Material functions Determined in Transient
Tensile Extension

Tensile start-up: Material at rest is suddenly subjected to a constant extensional
strain rate.

• Tensile stress growth function

Cessation of steady tensile extension: Material subjected to a steady state
extensional strain rate is suddenly brought to rest.

• Tensile stress decay coefficient

Tensile step strain: Material at rest is given a sudden step increase in strain.
• Tensile relaxation modulus

Tensile creep: Material at rest is given a sudden step increase in tensile stress.
• Tensile creep compliance
• Tensile creep rate decay function

Tensile recoil: Material subject to steady state stress and strain has the stress
suddenly reduced to zero.

• Tensile recoil function
• Ultimate tensile recoil function

5.2. Transient Tests for Viscoelasticity

In this section, three typical transient tests of viscoelasticity are
presented: step strain (stress relaxation), creep, and start-up flow.
These tests involve small strains and can be conducted with commer-
cially available or easily constructed instruments. Although there are
numerous potential experimental methods (Table 5.1 and 5.3) to
elucidate viscoelasticity, many are difficult to perform and questionable
for use on food products. Practical rheology is application driven so the
most appropriate test for a particular material depends on the problem
under consideration. Tests described in this section have all been
conducted on food, and produced useful results.
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5.2.1. Mechanical Analogues
Massless mechanical models, composed of springs and dashpots, are

useful in conceptualizing rheological behavior. The spring is considered
an ideal solid element obeying Hooke’s law:

[5.1]

and the dashpot is considered an ideal fluid element obeying Newton’s
law:

[5.2]

Springs and dashpots can be connected in various ways to portray the
behavior of viscoelastic materials; however, a particular combination of
elements is not unique becausemany different combinations can be used
to model the same set of experimental data. The most common
mechanical analogs of rheological behavior are the Maxwell and Kelvin
(sometimes called Kelvin-Voigt) models depicted in Fig. 5.1.

Figure 5.1. Maxwell and Kelvin models.

Mechanical analogues provide a useful means of investigating creep
and step strain data. These data may also be presented in terms of
various compliance and modulus distribution functions (or spectra) as
well as electrical models (Mohsenin, 1986; Polakowski and Ripling,
1966; Sherman, 1970; Barnes et al., 1989; Whorlow, 1992; Ferry, 1980).
In addition, step strain and creep curves can be normalized and pres-
ented in linear form (Peleg, 1980). This technique can be quite useful
in biological materials where it is often difficult to achieve equilibrium
conditions.

σ = Gγ

σ = µγ̇

Maxwell

G

Kelvin

G
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5.2.2. Step Strain (Stress Relaxation)
In a step strain test the sample is given an instantaneous strain and

the stress required to maintain the deformation is observed as a function
of time. This experiment is commonly known as a "stress relaxation"
test and it may be conducted in shear, uniaxial tension, or uniaxial
compression. Stress relaxation data may also be obtained by subjecting
a fluid to a constant rate of strain (in, for example, a concentric cylinder
viscometer), then suddenly stopping the deformation and observing the
change in stress over time.

Figure 5.2. Stress relaxation curves.

A wide range of behavior may be observed in stress relaxation tests
(Fig. 5.2). No relaxation would be observed in ideal elastic materials
while ideal viscous substances would relax instantaneously. Viscoe-
lastic materials would relax gradually with the end point depending on
the molecular structure of the material being tested: stress in
viscoelastic solids would decay to an equilibrium stress ( ), but the

residual stress in viscoelastic liquids would be zero.
Stress relaxation data are commonly presented in terms of a stress

relaxation modulus:
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[5.3]

If a material is perfectly elastic, the relaxation modulus is equal to the
shear modulus defined by Eq. [1.10]: . is a similar, but
time-dependent, quantity determined from experimental data. Curves
of the stress relaxation modulus versus time, generated at different
levels of strain, overlap if data are collected in the linear viscoelastic
region of material behavior. Related functions (Ferry, 1980) can be
found in tension ( ) and bulk compression ( ).

The Maxwell model, one which contains a Hookean spring in series
with a Newtonian dashpot, has frequently been used to interpret stress
relaxation data for viscoelastic liquids, particularly polymeric liquids.
The total shear strain in a Maxwell fluid element (Fig. 5.1) is equal to
the sum of the strain in the spring and the dashpot:

[5.4]

Differentiating Eq. [5.4] with respect to time, and using the definitions
provided by Eq. [5.1] and [5.2], yields

[5.5]

or

[5.6]

where the relaxation time (also called the characteristic time of a
Maxwell fluid) is defined as

[5.7]

Although an exact definition of is difficult, it can be thought of as the

time it takes a macromolecule to be stretched out when deformed.
Relaxation times for common fluids vary a great deal as shown by the
information in Table 5.4. The above equations are presented in terms
of shear deformation. If testing is conducted in uniaxial tension or
compression, then the relaxation time can be thought of in terms of an
extensional viscosity ( ) and Young’s modulus ( ).
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γconstant
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Table 5.4. Relaxation Time and Limiting Viscosity at Zero Shear for various
Viscoelastic Fluids (Source: Tanner, 1985).

Fluid T

( C) (s) (Pa s)

Water 20 1E-12 0.001
Mineral oil 30 7E-10 0.5
Poly-dimethylsiloxane 30 1E-6 0.3

125 1.7E-4 100
Low-density polyethylene 115 10 2E5

240 0.1 3000
High-density polyethylene 180 0.07 2000

220 0.05 1000
High-impact polystyrene 170 7 2E5

210 3 1E5
0.5% Hydroxyethyl-cellulose 27 0.1 1.3
 in water
Glass 27 > 1E5 > 1E18

The Maxwell model is useful in understanding stress relaxation
data. Consider a step strain (stress relaxation) experiment where there
is a sudden application of a constant shear strain, . When the strain

is constant, the shear rate is equal to zero ( ) and Eq. [5.6] becomes
[5.8]

This equation may be integrated using the initial condition that

at :
[5.9]

or, after evaluating the integral,
[5.10]

Eq. [5.10] describes the gradual relaxation of stress (from to zero)

after the application of a sudden strain. The relationship provides a
means of determining the relaxation time: is the time it takes for the

stress to decay to 1/e (approximately 36.8%) of its initial value.
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Experimental data show that the Maxwell model does not account
for the stress relaxation behavior of many viscoelastic materials because
it does not include an equilibrium stress ( ). This problem may be

addressedfor numerousfoods by constructing a model which has a single
Maxwell element connected in parallel with a spring. The stress
relaxation equation described by this mechanical model (Fig. 5.3a) is

[5.11]

with the free spring (where ) accounting for the equilibrium

stress (Fig. 5.4). The relaxation time is defined in terms of the standard
Maxwell portion of the model: . Application of Eq. [5.11] is

illustrated in Example Problem 5.8.1.

Figure 5.3. Maxwell elements in parallel with a spring: a) one Maxwell element
and a free spring, b) three Maxwell elements and a free spring.

Added complexity can be obtained by constructing a more general-
ized Maxwell model consisting of several Maxwell elements in parallel
with an independent spring. If the system is subjected to a constant
strain, the total stress is the sum of the individual stresses in each
element. In a four element model, a model containing three Maxwell
elements and a spring (Fig. 5.3b), the solution for stress as a function
of time is

[5.12]
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or

[5.13]

where the subscripts refer to different mechanical elements in the
system. Each Maxwell element may have a different relaxation time.
This concept can be generalized to determine a relaxation spectra for a
viscoelastic material (Ferry, 1980). Eq. [5.10], [5.11], [5.12], and [5.13]
can be expressed in terms of the relaxation modulus, defined by Eq.
[5.3], by dividing each equation by the applied strain.

Figure 5.4. Typical stress relaxation curve modeled with Eq. [5.11] describing a
single Maxwell element in parallel with a spring.

Peleg and Normand (1983) noted two major problems in collecting
stress relaxation data for foods: 1) When subjected to large deformation
they usually exhibit non-linear viscoelastic behavior; 2) Natural
instability or biological activity make it difficult to determine equilib-
rium mechanical parameters. To overcome these difficulties, they
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suggest stress relaxation data be calculated as a normalized stress (a
normalized force term is also acceptable) and fit to the following linear
equation:

[5.14]

where is the initial stress, is the decreasing stress at time , and

and are constants. The reciprocal of depicts the initial decay rate

and is a hypothetical value of the asymptotic normalized force. Fitting

experimental data to Eq. [5.14] is a quick and effective way to handle
stress relaxation data for many foods. Typical values of and are

summarized in Table 5.5. Also, the technique is illustrated for apple
tissue in Example Problem 5.8.2.

Table 5.5. Stress Relaxation Parameters of Eq. [5.14] for Various Biological
Materials (Source: Peleg and Normand, 1983)

Material

(s or min) -

Cheddar Cheese 3.23 min 1.11
Corn Grains 10.9 min 5.18

Low Methoxyl Pectin 68.2 s 1.21
Gel (No.31)
Pea Beans 2.41 s 2.26

Potato Flesh 4.40 s 1.56

5.2.3. Creep and Recovery
In a creep test, an instantaneous stress is applied to the sample and

the change in strain (called the creep) is observed over time. When the
stress is released, some recovery may be observed as the material
attempts a return to the original shape. Increased availability of con-
trolled stress rheometers has greatly improved our ability to conduct
shear creep and recovery experiments on a wide variety of materials.
These tests can be particularly useful in studying the behavior existing
in constant stress environments such as those found in leveling, sedi-
mentation, and coating applications where gravity is the driving force.

σo t

σo − σ
= k1 + k2 t

σo σ t k1

k2 k1

k2

k1 k2

k1 k2
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Creep experiments can also be conducted in uniaxial tension or
compression. The analytical methods presented in this section have
been used to study typical fluid foods like salad dressing (Paredes et al.,
1989), and very complex bodies such as whole oranges (Chuma et al.,
1978).

Figure 5.5. Creep and recovery curves.

Idealized creep and recovery curves are illustrated in Fig. 5.5.
Subjected to a constant stress, strain in an ideal elastic material would
be constant due to the lack of flow, and the material would return to the
original shape upon removal of stress. An ideal viscous material would
show steady flow, producing a linearresponse to stress with the inability
to recover any of the imposed deformation. Viscoelastic materials (e.g.,
bread dough) would exhibit a nonlinear response to strain and, due to
their ability to recover some structure by storing energy, show a per-
manent deformation less than the total deformation applied to the
sample. This strain recovery, or creep recovery, is also called recoil and
may be investigated in terms of a recoil function (Dealy, 1994).

Creep data may be described in terms of a creep compliance function:
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[5.15]

Compliance curves generated at different stress levels overlap when
data are collected in the range of linear viscoelastic behavior. With a
perfectly elastic solid, , the reciprocal of the shear modulus;
however, different time patterns in experimental testing mean that

. Eq. [5.15] is presented in terms of shear deformation.
Similar material functions (Ferry, 1980) can be determined from creep
data generated in tension ( ) and bulk compression ( ) studies.

To develop a mechanical analog describing creep behavior, the
starting point is the Kelvin model (Fig. 5.1) which contains a spring
connected in parallel with a dashpot. When this system is subjected to
shear strain, the spring and dashpot are strained equally:

[5.16]

The total shear stress ( ) caused by the deformation is the sum of the
individual shear stresses which, using Eq. [5.1] and Eq. [5.2], can be
written as

[5.17]

Differentiating Eq. [5.17] with respect to time yields

[5.18]

where the retardation time ( ) is unique for any substance. If a

material was a Hookean solid, the retardation time would be zero and
the maximum strain would be obtained immediately with the applica-
tion of stress: Time to achieve maximum strain in viscoelastic materials
is delayed (or retarded). The retardation time can be thought of in terms
of extensional viscosity ( ) and Young’s modulus ( ) if testing is

conducted in uniaxial tension or compression.

In creep, where the material is allowed to flow after being subjected
to a constant shear stress ( ), the change in stress with time is zero

( ) and the solution to Eq. [5.18] is

[5.19]
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showing that the initial strain is zero ( at ). Eq. [5.19] predicts
a strain that asymptotically approaches the maximum strain ( )

associated with the spring. is the time taken for the delayed strain

to reach approximately 63.2% (1-1/e) of the final value. Materials with
a large retardation time reach full deformation slowly.

The Kelvin model (Fig. 5.1) shows excellent elastic retardation but
is not general enough to model creep in many biological materials. The
solution to this problem is to use a Burgers model (Fig. 5.6) which is a
Kelvin and a Maxwell model placed in series. Data following this
mechanicalanalog show aninitial elastic response dueto the free spring,
retarded elastic behavior related to the parallel spring-dashpot
combination, and Newtonian type flow after long periods of time due to
the free dashpot (Fig. 5.7):

[5.20]

where , the retardation time of the Kelvin portion of the model.

Figure 5.6. Four element Burgers model.

The Burgers model can also be expressed in terms of creep com-
pliance by dividing Eq. [5.20] by the constant stress:

[5.21]

Writing the result as a creep compliance function (Eq. [5.15]) yields
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[5.22]

where is the instantaneous compliance, is the retarded compliance,

is the retardation time ( ) of the Kelvin component, and is the

Newtonian viscosity of the free dashpot. The sum of and is called

the steady state compliance. Using the same procedure, Eq. [5.19] could
also be expressed in term of the creep compliance function. The Burgers
model (Fig. 5.6), less the free spring ( ), is sometimes called the Jeffreys

model. Eq. [5.22] is applied to skim milk curd in Example Problem 5.8.3.
Parameters of Eq. [5.22], for creamy salad dressing, are given in
Appendix 6.19.

Figure 5.7.  Typical creep curve showing where various elements of the Burgers
model (Fig. 5.6 and Eq. [5.20]) describe flow behavior.

When conducting creep experiments, controlled stress rheometers
allow one to measure the strain recovered when the constant stress is
removed. The complete creep and recovery curve may be expressed
using the Burgers model (Fig. 5.6). When calculated as compliance, the
creep is given by Eq. [5.22] for where is the time when the

constant stress is removed. At the beginning of creep, there is an
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instantaneous change in compliance ( ) due to the spring in the

Maxwell portion of the model (Fig. 5.8). Then, the Kelvin component
producesan exponential change in compliance related to the retardation
time. After sufficient time has passed, the independent dashpot (Fig.
5.6) generates a purely viscous response. Data from the linear portion
of the creep curve (Fig. 5.8) are related to two parameters: the slope is
equal to ; and the intercept, sometimes called the steady state

compliance, is equal to .

Figure 5.8. Compliance and recovery (or recoil) curves showing compliance
parameters for the Burgers model (Fig. 5.6 and Eq. [5.22]).

At , the stress is removed ( ) and there is an instantaneous

change in compliance (Fig. 5.8) equal to . The free dashpot causes

permanent deformation in the material related to a compliance of .

This factor is directly related to the non-recoverable sample strain of
. If a substance obeying the Burgers model is tested in the linear
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viscoelastic region of material behavior, then the values of and

determined from the creep curve will be equal to the values of and

determined from the recovery curve.
If necessary, additional Kelvin elements can be added to the Burgers

model to better represent experimental data. Mathematically, this idea
can be described with the following equation:

[5.23]

where is the total numberof Kelvin elements inthe model, each having
a unique retarded compliance and retardation time. A system with two
Kelvin elements ( ) was used by Halim and Shoemaker (1990) to
model skim milk curd. This model is explored in Example Problem 5.8.3.
The same equation worked well for Purkayastha et al. (1985) in
evaluating the compressive creep behavior of potato flesh and cheddar
cheese. Balaban et al. (1988) presented systematic procedures to
determine the constants involved in Eq. [5.23]. Some advanced
rheometers provide computer software to generate appropriate con-
stants. A simple linearized model (presented inExample Problem5.8.3),
similar to Eq. [5.14], has been suggested by Peleg (1980) to characterize
the creep of biological materials.

5.2.4. Start-Up Flow (Stress Overshoot)
During start-up flow, a shear rate is suddenly imposed on a vis-

coelastic fluid held previously at rest. Shear stress produced by this
transient deformation displays an initial overshoot before reaching a
steady-state value; hence, the phenomenon is commonly referred to as
stress overshoot. Results can be used to produce a shear stress growth
function. The general behavior can be modeled using an empirical
equationdeveloped by Leider and Bird (1974) which includes rheological
properties related to the first normal stress difference, and the shear
rate. This equation, usually called the Bird-Leider equation, is
expressed as a function of time and the applied shear rate:

[5.24]

where:
[5.25]
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[5.26]

[5.27]

is the time constant while and are adjustable parameters. Over
short periods of time, the equation models the elastic response (sudden
overshoot) of the material. Once the peak torque is reached, exponential
decay is simulated. After long periods of time, the Bird-Leider equation
collapses to the standard power law equation:

[5.28]

Typical curves of Eq. [5.24], modeling the behavior of mayonnaise, are
illustrated in Fig. 5.9. The information is plotted in terms of a
dimensionless shear stress:

[5.29]

Figure 5.9. Typical stress overshoot curves at various shear rates for mayonnaise
at 25 C (based on data from Kokini and Dickie, 1981).
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The Bird-Leider equation was used by Kokini and Dickie (1981) and
Dickie and Kokini (1982) to evaluate stress overshoot data for various
foods including ketchup, mustard, mayonnaise, apple butter, butter,
margarine, and canned frosting. The authors concluded that the rela-
tionship provided a moderately good prediction of peak shear stress and
peak times but gave only a crude prediction of stress decay. Campanella
and Peleg (1987b) were able to get a better fit of stress growth data for
mayonnaise using a more complex model proposed by Larson (1985).
The Bird-Leider equation, in strictly empirical form ( not
required) has also been used to interpret stress overshoot behavior in
cream (Prentice, 1992). Stress overshoot data were found useful in
modeling the human perception of fluid thickness in the mouth (Dickie
and Kokini, 1983).

5.3. Oscillatory Testing

In oscillatory instruments, samples are subjected to harmonically
varying stress or strain. This testing procedure is the most common
dynamic method for studying the viscoelastic behavior of food. Results
are very sensitive to chemical composition and physical structure so
they are useful in a variety of applications including gel strength
evaluation, monitoring starch gelatinization, studying the glass
transition phenomenon, observing protein coagulation or denaturation,
evaluating curd formation in dairy products, cheese melting, texture
development in bakery and meat products, shelf-life testing, and cor-
relation of rheological properties to human sensory perception. Food
scientists have found oscillatory testing instruments to be particularly
valuable tools for product development work.

Oscillatory testing may be conducted in tension, bulk compression,
or shear. Typical commercial instruments operate in the shear defor-
mation mode and this is the predominant testing method used for food.
Shear strain may be generated using parallel plate, cone and plate, or
concentric cylinder fixtures. Dynamic testing instruments may be
divided into two general categories: controlled rate instruments where
the deformation (strain) is fixed and stress is measured, and controlled
stress instruments where the stress amplitude is fixed and the defor-
mation is measured. Both produce similar results. The emphasis in
this section is on fluid and semi-solid foods. Dynamic testing of solid
foods has been reviewed by Rao and Skinner (1986).

K , n , K ′, n ′
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Application of Stress and Strain. A number of assumptions are
made in developing the mathematical equations to describe oscillatory
testing: strain is the same at all points in the sample, sample inertia
may be neglected, and the material behaves as a linear viscoelastic
substance. When these assumptions are violated, more complex ana-
lytical considerations enter the problem (Whorlow, 1992).

In oscillatory tests, materials are subjected to deformation (in con-
trolled rate instruments) or stress (in controlled stress instruments)
which varies harmonically with time. Sinusoidial, simple shear is
typical. To illustrate the concept, consider two rectangular plates ori-
ented parallel to each other (Fig. 5.10). The lower plate is fixed and the
upper plate is allowed to move back and forth in a horizontal direction.
Assume the sample being tested is located between the plates of a
controlled rate device. Suppose the strain in the material between the
plates is a function of time defined as

[5.30]

where is the amplitude of the strain equal to when the motion of

the upper plate is . is the frequency expressed in rad/s which
is equivalent to hertz. The period of time required to complete
one cycle is equal to . If the two plates (Fig. 5.10) were separated
by a distance of 1.5 mm and the upper moved 0.3 mm from the center
line, then the maximum strain amplitude may be calculated as 0.2 or
20%: . A 10% strain could be achieved by main-

taining mm and moving the plate 0.15 mm.

Figure 5.10.  Oscillatory strain between rectangular plates.
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Effects of changing the amplitude and frequency on the input strain
function are illustrated in Fig. 5.11. Doubling the amplitude from 0.1
(Curve 2) to 0.2 (Curve 1 or Curve 3) doubles the height of the curve.
Doubling the frequency from 1 rad/s (Curve 1) to 2 rad/s (Curve 2 or
Curve 3) cuts, by one-half, the time between peaks of the two curves.

Using a sine wave for strain input results in a periodic shear rate
found by taking the derivative of Eq. [5.30]:

[5.31]

which can be evaluated as

[5.32]

With a small strain amplitude (so the material will behave in a linear
viscoelasticmanner), the following shearstress is produced by the strain
input:

[5.33]

where is the amplitude of the shear stress (not to be confused with

the yield stress symbolized by in earlier chapters) and is the phase

lag or phase shift (also called the mechanical loss angle) relative to the
strain. The time period associated with the phase lag is equal to .

can be thought of as the peak force per unit area received by the

stationary plate (Fig. 5.10). Dividing both sides of Eq. [5.33] by yields

[5.34]

The complete results of small amplitude oscillatory tests can be
described by plots of the amplitude ratio ( ) and the phase shift ( )

as frequency dependent functions. These parameters alone, however,
are not commonly used to describe results and other material functions
(which may all be written in terms of and ) have been defined.

The shear stress output produced by a sinusoidal strain input may
be written as

dγ
dt
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Figure 5.11. Strain input functions showing variations in frequency and strain
amplitude: Curve 1) , ; Curve 2) , ; Curve 3)

, .

[5.35]

(called the shear storage modulus) and (called the shear loss
modulus) are both functions of frequency and can be expressed in terms
of the amplitude ratio and the phase shift:

[5.36]

and

[5.37]

may be interpreted as the component of the stress in phase with

the strain: may be interpreted as the component of the stress 90

out of phase with the strain. Additional frequency dependent material
functions (Table 5.2) include the complex modulus ( ), complex vis-
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cosity ( ), dynamic viscosity ( ), out of phase component of the complex
viscosity ( ), complex compliance ( ), storage compliance ( ), and the
loss compliance ( ):

[5.38]

[5.39]

[5.40]

[5.41]

[5.42]

[5.43]

[5.44]

Although , it is important to note that and .
Oscillatory data for various food products may be found in Appendices
[6.20], [6.21], and [6.22].

Using Eq. [5.40], Eq. [5.35] can be expressed as

[5.45]

which is an excellent equation to represent material behavior because
it clearly indicates the elastic ( ) and viscous ( ) nature of a
substance. This idea is expanded in Sec. 5.5 to explain the behavior of
"silly putty" using the Deborah number concept.

Another popular material function used to describe viscoelastic
behavior is the tangent of the phase shift or phase angle (called tan
delta) which is also a function of frequency:

[5.46]

This parameter is directly related to the energy lost per cycle divided
by the energy stored per cycle. Since , can vary from zero
to infinity. Observations of polymer systems give the following
numerical ranges for : very high for dilute solutions, 0.2 to 0.3 for
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amorphous polymers, low (near 0.01) for glassy crystalline polymers and
gels. Values of for typical food systems (dilute solution, concen-
trated solution, and gel) are considered in Sec. 5.4.

To better understand the viscoelastic parameters defined above, it
is helpful to look at behavior which is solely Hookean or solely Newto-
nian. If a material is a Hookean solid, the stress and strain are in phase
and . Hence, and are also equal to 0 because there is no viscous
dissipation of energy. In this case, is a constant equal to the shear
modulus ( ). If a material behaves as a Newtonian fluid, the stress (Eq.
[5.33]) and strain (Eq. [5.30]) are 90 degrees out of phase ( ); hence,
the shear rate (Eq. [5.32]) is also 90 degrees out of phase with the shear
stress. In this case, and are zero because the material does not
store energy. Then, is constant and equal to the Newtonian viscosity
( ). Similar behavior is often observed for non-Newtonian fluids as the
frequency approaches zero.

Further assessment of the phase lag concept can help clarify the
meaning of given as part of the amplitude ratio in Eq. [5.34]. As the

phase lag approaches zero, force is transmitted through the sample (Fig.
5.10) quickly and the changes in stress are observed at nearly the same
time as the applied deformation produces strain. In solids, rapid force
transmission is due to the crystalline nature of the material. The
amount of force transmitted for a given strain depends on the material
modulus. In a Hookean solid the maximum force per unit area trans-
mitted through the sample ( ) is equal to the shear modulus times the

maximum strain ( ). Viscous heating absorbs some energy in

viscoelastic materials resulting in smaller values of .

The phase lag approaches the maximum value of with fluids
exhibiting a high degree of Newtonian behavior. The maximum force
per unit area ( ) transmitted through a Newtonian fluid depends on

the maximum shear rate induced during deformation. Considering Eq.
[5.32], the maximum shear rate is frequency dependent and may be
calculated as . Consequently, is equal to the maximum shear rate

times the viscosity ( ) for a Newtonian fluid. is larger in vis-

coelastic materials that have less tendency to flow: In these substances,
greater force is transmitted through the sample because the viscous
dissipation of energy is smaller.

tan δ
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The Maxwell fluid model (Fig. 5.1) is often used to interpret data
from dynamic testing of polymeric liquids. If the strain input is har-
monic, , then . This relationship (Eq. [5.32])

can be substituted into Eq. [5.6] and the resulting differential equation
solvedto produce a numberof frequency dependentrheological functions
for Maxwell fluids:

[5.47]

[5.48]

[5.49]

[5.50]

where , the relaxation time of a Maxwell fluid, is equal to . Looking

at experimental data may allow material constants of the Maxwell
model to be evaluated from the asymptotes: as goes to zero, goes to

; and as goes to infinity, goes to . These ideas are used in Sec.
5.5 to examine the behavior of "silly putty."

Comparison of Moduli and Compliances. The mathematical
relationships presented in this section are for shear deformation.
Analogous moduli and compliances can be defined for the tension (or
compression) and bulk compression modes of deformation (Table 5.6).
These functions are generally more difficult to measure than shear
functions and few data are available in the published literature.
Analogues for the relaxation modulus and creep compliance are also
presented in Table 5.6.

Typical Operating Modes of an Oscillatory Testing Instrument.
Commercially available oscillatory instruments will operate in
numerous modes. A strain or stress sweep, conducted by varying the
amplitude of the input signal at a constant frequency (Fig. 5.12), is used
to determine the limits of linear viscoelastic behavior by identifying a
critical value of the sweep parameter. In the linear region (Fig. 5.13),
rheological properties are not strain or stress dependent. Storage and

γ = γo sin(ω t) γ̇ = γoωcos(ω t)

G ′ =
Gω2λrel

2

1 + ω2λrel
2

G ′′ =
Gωλrel

1 + ω2λrel
2

η′ =
η

1 + ω2λrel
2

tan δ =
G ′′
G ′

=
1

ωλrel

λrel µ/G

ω η′
η ω G ′ G



5.3  Oscillatory Testing 319

loss moduli versus the sweep parameter are plotted in Fig. 5.13. Some
experimenters prefer to plot combined material functions such as the
complex modulus or the complex viscosity.

Table 5.6. Comparison of Moduli and Compliances Determined in Oscillatory
Testing Using Three Modes of Deformation: Shear, Bulk Compression, and Ten-
sion (Ferry, 1980).

Shear Bulk Compression Tension

Complex Modulus

Storage Modulus

Loss Modulus

Complex Compliance

Storage Compliance

Loss Compliance

Relaxation Modulus

Creep Compliance

Figure 5.12. Strain or stress sweep mode in oscillatory testing.
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Figure 5.13. Typical response to a strain or stress sweep showing the linear vis-
coelastic region defined by the critical value of the sweep parameter.

Strain and stress sweeps are conducted on controlled rate and
controlled stress instruments, respectively. It has been suggested that
stress sweeps produce superior results (Holland, 1994); however, both
strain and stress sweeps are known to provide an excellent basis for
comparing the viscoelastic nature food products. In addition to esta-
blishing the linear viscoelastic range of the sweep parameter, strain and
stress sweeps have been used to differentiate weak and strong gels:
Strong gels may remain in the linear viscoelastic region over greater
strains than weak gels.

The frequency sweep is probably the most common mode of oscil-
latory testing because it shows how the viscous and elastic behavior of
the material changes with the rate of application of strain or stress. In
this test the frequency is increased while the amplitude of the input
signal (stress or strain) is held constant (Fig. 5.14). Frequency sweeps
are very useful in comparing, sometimes called "finger printing," dif-
ferent food products or in comparing the effects of various ingredients
and processing treatments on viscoelasticity. Materials usually exhibit
more solid like characteristics at higher frequencies.
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Figure 5.14. Frequency sweep mode in oscillatory testing.

An isothermal time sweep, where frequency and amplitude are
constant over time, can indicate time-dependent structural changes
such as those associated with firming of cheese curd or yogurt. A time
sweep (Fig. 5.15) may be conducted in conjunction with a controlled
change in temperature (Fig. 5.16). This type of testing is very useful in
studying problems that involve temperature induced changes in rheo-
logical behavior. Typical examples associated with heating would
include the softening of chocolate or cheese due to the melting of fat,
gelation to form pectin gels, thickening of solutions from starch gela-
tinization, and firming of meat or egg products caused by protein
denaturation. The studyof time-dependent flowbehavior resulting from
chemical reactions such as these is called chemorheology.

Strain in Rotational-Type Fixtures. Parallel plate, cone and plate,
and concentric cylinder fixtures are the preferred geometries for sub-
jecting fluid and semi-solid foods to an oscillatory strain. In a parallel
plate apparatus, such as that used in a traditional parallel plate
viscometer (Fig. 5.17), the shear strain is a function of the radius. It
varies from zero at the center of the sample ( ) to a maximum at the
outer edge of the plate ( ). Maximum strain ( ) is calculated as the

distancetraveled at therim of theupper plate ( )dividedby thedistance
between the plates ( ):
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Figure 5.15. Time sweep mode in oscillatory testing.

Figure 5.16. Controlled temperature changes in oscillatory testing.
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[5.51]

Assume experimentation starts with the system at rest, then the sample
is subjected to a sine wave strain function described by Eq. [5.30]. The
plate will move through a positive sweep angle ( ), then pass through
the starting position while rotating to a negative value of the sweep
angle ( ). (in radians) is the amount of angular travel of the upper
plate from the starting position to the point of maximum rotation. At
this point the maximum strain is induced in the sample. To achieve,
for example, a 10% maximum strain in a parallel plate apparatus with
50 mm diameter plates separated by a distance of 2.0 mm will require
the following sweep angle:

[5.52]

A sweep angle resulting in a strain of 10% or less is usually required to
stay in the region of linear viscoelastic material behavior.

Figure 5.17.  Sweep angle in a parallel plate apparatus.
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Shear strain in a cone and plate fixture (Fig. 3.3) is uniform
throughout the gap and equal to the sweep angle divided by the tangent
of the cone angle:

[5.53]

Recall that for the preferred cone angles, rad (4 degrees).

Shear strain in a concentric cylinder fixture (Fig. 3.1) is a function of
the radius. In the case where the bob rotates and the cup is fixed, the
maximum strain occurs at the bob:

[5.54]

where, recall, . When the bob is fixed and the cup rotates, the

maximum strain occurs at the cup:

[5.55]

Shear stresses for parallel plate, cone and plate, and concentric cylinder
fixtures are calculated using the appropriate expressions developed in
Chapter 3: Eq. [3.71] with , Eq. [3.55], and Eq. [3.3], respectively.

5.4. Typical Oscillatory Data

Single FrequencyTests. Typical input and output fora dilute solution
showing Newtonian type behavior is illustrated in Fig. 5.18 with
accompanying data in Table 5.7. In this case, an input strain amplitude
of 10% ( ) with a constant frequency of 10 rad/s gives an input

strain function of . The output stress function is shifted by
1.48 rad (85 ) and shows an amplitude ratio of 0.1 ( ):

[5.56]

Typical output data for a gel showing very elastic (solid like) behavior
and a concentrated solution showing viscoelastic behavior are seen in
Fig. 5.19 with companion data in Table 5.7. The input strain function
is the same as that shown in Fig. 5.18: .
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Figure 5.18.  Typical input and output for a dilute solution showing Newtonian
like behavior at a constant frequency of 10 rad/s.

Table 5.7. Typical Output for a Dilute Solution (Newtonian Behavior), Gel (Elastic
Behavior) and a Concentrated Solution (Viscoelastic Behavior) from a Strain Input
Function having a Frequency of 10 rad/s and a Strain Amplitude of 10 Percent:

Dilute Solution Gel Concentrated
Solution

, rad (degrees) 1.48 (85 ) 0.0698 (4 ) 0.873 (50 )

, Pa 0.100 5200 200

, Pa 0.00907 5187 129

, Pa 0.0996 363 153

, Pa s 0.00996 36.3 0.140

, Pa s 0.000907 518.7 12.9

, Pa s 0.010 520.0 20.0

10.9 0.0699 1.19
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Figure 5.19. Typical output (Input: ) for a gel showing elastic
type behavior and a concentrated solution showing viscoelastic behavior.

Output stress for the gel (Fig. 5.19) has a small phase shift,

rad (4 ), but a large amplitude ratio ( Pa) producing the

following shear stress function:
[5.57]

The output stress for the concentrated solution has a greater phase shift,
rad (50 ), and an amplitude ratio between the dilute solution

and the gel ( Pa):
[5.58]

Normalized Strain and Stress. Input and output at a particular
frequency may also be visualized in terms of a normalized strain,

[5.59]

and a normalized stress,
[5.60]
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Values of and range from -1.0 to 1.0.

The normalized strain input function is the same for the three
materials currently under consideration:

[5.61]

Normalized stress output functions are

[5.62]

for the dilute solution,

[5.63]

for the concentrated solution, and

[5.64]

for the gel. Eq. [5.61] through [5.64] are plotted in Fig. 5.20. Phase
shifts for the dilute solution (1.48 rad) and the concentrated solution
(0.873 rad) are indicatedon the figure. The phase shift for thegel (0.0698
rad) is small but still visible. Advanced rheometers may provide a
continuously updated display of these (or equivalent) waveforms during
oscillatory testing. This information can be very useful in determining
whether or not the material being tested is displaying viscoelastic
behavior. It can also be used to detect distorted waveforms that may
produce misleading results.

Further consideration of Fig. 5.20 can provide added physical
meaning to the phase lag phenomenon. Frequency of the strain input
is 10 rad/s so the frequency of the output signals for each material (dilute
solution, concentrated solution, and gel) is also 10 rad/s. The period of
time required to complete a sine wave strain cycle is . In this
experiment, the period is equal to or 0.628 s. The maximum phase
lag ( ) which can occur is meaning the stress signal, corresponding
to a particular strain input, could be observed at a maximum of

s after the strain is applied. Stress is observed
1.48/10 = 0.148 s after the strain in the dilute solution because is 1.48
rad. This is close to maximum phase lag expected for a Newtonian fluid
at the 10 rad/s test frequency. A value of 0.0698 rad (the minimum
possible value of is zero) for the gel means the stress signal is 0.0698/10
= 0.00698 s behind the strain input. This Hookean-like behavior is not

γ* σ*

γ* =
γ
γo

= 0.1 sin(10 t)/0.1

σ* =
σ
σo

= 0.01 sin(10 t + 1.148)/0.01

σ* =
σ
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= 20 sin(10 t + 0.873)/20
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σ
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Figure 5.20.  Normalized curves for input strain ( ) and output stresses
( ) showing the phase shift for a dilute solution (1.48 rad or 85 ) and a con-

centrated solution (0.873 rad or 50 ).

unusual due to the high level of molecular structure present in a gel.
The lag period of 0.0873 s found for the concentrated solution represents
a signal transmission time between the dilute solution and the gel.
Clearly, the concentrated solution has more structure than the dilute
solution but significantly less than the gel.

Frequency Sweeps. Fig. 5.18, 5.19, 5.20 illustrate rheological
behavior at a single frequency of 10 rad/s. To effectively characterize
the rheological behavior of these substances, material functions should
be determined over a wide range of frequencies using the frequency
sweep testing concept illustrated in Fig. 5.14. Data may be plotted with
the frequency given as radians per second or hertz by recognizing that
1 hz = 1 cycle/s = 2 rad/s. The choice is essentially a matter of individual
preference.
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A dilute solution, a concentrated solution, and a gel show distinctive
behavior (Fig. 5.21, 5.22 and 5.23) when subjected to a frequency sweep.
With a dilute solution (Fig. 5.21), is larger than over the entire
frequency range but approach each other at higher frequencies. and

curves intersect at the middle of the frequency range for the con-
centrated solution (Fig. 5.22) showing a clear tendency for more solid-
like behavior at higher frequencies. The crossover frequency is
sometimes a useful criterion for product evaluation. It occurs when

, the point where the phase lag ( ) equals . is significantly
higher than throughout the frequency range for the gel (Fig. 5.23).
It is meaningful to observe that moduli are a strong function of frequency
in the dilute and concentrated solutions, but practically constant with
the gel. Alternate ways of plotting oscillatory data are discussed in
Example Problem 5.8.4.

Figure 5.21. Mechanical spectra for a dilute solution made from 5% dextrin
(Data from Ross-Murphy, 1988).
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Figure 5.22. Mechanical spectra for a concentrated solution made from 5%
lambda carrageenan (Data from Ross-Murphy, 1988).

Figure 5.23. Mechanical spectra for a gel made from 1% agar (Data from Ross-
Murphy, 1988).
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Analysis of the Phase Lag ( ). The tendency of the dilute solution
and the concentrated solution to exhibit more fluid or solid-like behavior
with increasing frequency can be examined in more detailby considering
the frequency dependence of the phase lag. First, the data shown in
Fig. 5.21, 5.22, and 5.23 are summarized in the form of power law
equations (Table 5.8). Using this information the phase lag may be
calculated from the loss and storage moduli: . Results
are illustrated in Fig. 5.24. The maximum phase lag which can be
observed is found with a Newtonian fluid: The minimum value is
zero found with a Hookean solid. High values of at low frequencies
indicate a tendency toward more fluid-like behavior for both the dilute
and concentrated solutions at low deformation rates. More solid-like
behavior is observed for these solutions at the high deformation rates
associated with high frequencies. The phase lag for the gel (Fig. 5.24)
is practically constant indicating consistent solid-like behavior over the
entire frequency range.

Table 5.8.  Values of the storage modulus ( ) and the loss

modulus ( ) for typical materials: dilute solution (Fig. 5.21),
concentrated solution (Fig. 5.22), and gel (Fig. 5.23).

Material
(Pa sb) ( - ) (Pa sd) ( - ) (rad/s)

Dilute Solution .00028 1.66 .01186 .934 .1 - 100

Concentrated Solution 16.26 .840 27.78 .520 .01 - 100

Gel 5626 .0371 344.7 .0145 .01 - 100

Time to Complete an Oscillatory Test. Oscillatory data for a par-
ticular frequency must be collected over one complete sine wave cycle,
and two or three cycles may be needed to obtain equilibrium values. It
is important to consider the time required to complete low frequency
tests when selecting a frequency range for the experimentation. If, for
example, a test was conducted at a low frequency of = 0.01 rad s-1,
then the time required to complete one cycle can be calculated
( ) as 10.5 minutes. Therefore, it would take at least 31.5
minutes to obtain a single pair of and values if three cycles were
needed! It is usually unnecessary to collect dynamic data at frequencies

δ

δ =arctan(G ′′/ G ′)

π/2
δ

G ′ = aωb

G ′′ = cωd

a b c d ω

ω

2π/(.01) (60)
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Figure 5.24.  Variation of the phase lag ( ) with frequency ( ) for typical mate-
rials.  The upper limit is represented by a Newtonian fluid ( ) and the

lower limit by a Hooke solid ( ).

less than 0.01 rad s-1 and a lower limit of = 0.1 rad s-1 is often adequate.
In contrast, the time required to complete one cycle at a frequency of
100 rad s-1, a suitable upper limit for many experiments, is 0.063 s
meaning that a three cycle test could be completed in less than 0.19 s.

5.5. Deborah Number

Marcus Reiner (Reiner, 1964) proposed the Deborah number as a
means of distinguishing between solids and liquids. The number, named
after the prophetess Deborah, is based on his interpretation of a biblical
passage found in Judges 5:5. He stated that Deborah’s song, given after
the victory over the Philistines, could be translated as "The mountains
flowed before the Lord." His point was that mountains could flow before
God, not before man, because the time of observation for God is infinite.
(A similar argument could be made from Psalm 97:5: "The mountains
melt like wax before the Lord.") Thus, Prof. Reiner recognized the need
to consider the time of the process as a factor when characterizing a
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substance as a solid or a liquid. This idea has not been extensively
applied to food products but still provides a very useful means for
understanding the behavior of viscoelastic materials.

The Deborah number is defined as

[5.65]

where is the characteristic time of the material and is the

characteristic time of the process. for a Maxwell fluid and

for a Kelvin solid (Fig. 5.1). Giving a precise definition of

is more difficult. It is related to the time scale of the deformation and
is roughly equal to the length scale in the flow direction divided by the
mean velocity. It might be the reciprocal of frequency for an oscillating
surface, or the time for a particle to pass through a converging die and
experience the subsequent increase in velocity. Any process must be
investigated individually but Deborah numbers tend to be high for
processes such as fiber spinning and plastic moulding but low for
extrusion.

All the viscometric flow situations described in Chapters 2, 3 and 4
involve low values of the Deborah Number. Creep and stress relaxation
discussed in this chapter also involve low Deborah Number values. The
other main topic of this chapter, oscillatory testing, involves both low
and moderate values of the Deborah Number. Changes in the phase
lag with increasing frequency for the dilute and concentrated solutions
illustrated in Fig. 5.24 demonstrate the concept. Although the char-
acteristic time of the material is unaffected by oscillatory testing, the
characteristic time of the process is inversely proportional to the
frequency; therefore, as the frequency increases, the Deborah Number
increases causing the solutions to exhibit the more solid-like charac-
teristics associated with lower values of the phase lag (Fig. 5.24).

It is important to remember that all materials are viscoelastic, but
the viscous or the elastic character may dominate in certain situations.
Pipkin (1986), suggests that the characteristic time of a material may
be provisionally considered as an order-of-magnitude estimate for how
long it takes the substance to complete a stress relaxation process. If
a material is an ideal elastic solid, , and no relaxation occurs.

With an ideal viscous material, , meaning relaxation is imme-

NDe =
tmaterial

tprocess

tmaterial tprocess

λrel = tmaterial

λret = tmaterial tprocess

tmaterial = ∞

tmaterial = 0
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diate. The characteristic time of water is on the order of 10-12 s and the
characteristic time for window glass (a super cooled liquid at room
temperature) is greater than 105 s. Hence, when water is deformed,
elastic effects are difficult to observe because the material relaxes so
quickly. Conversely, the viscous behavior of glass is not easily observed
because the response to the deforming force (gravity) on a vertical pane
is very slow; consequently, decades are needed for observable changes
to occur. The characteristic time of the material and the process must
be examined together to determine if viscous or elastic type behavior
will dominate a particular flow problem. Materials exhibit pronounced
viscoelastic behavior when these times are similar in magnitude.

The previous discussion provides insight concerning how the
numerical value of can be used as a measure of the degree of vis-

coelasticity. If , the stress is proportional to the viscosity times

the shear rate and the material behaves as a viscous liquid. On the
other hand, if , then stress is proportional to the modulus of

rigidity times the strain and the material behaves like an elastic solid.
If the is on the order of one, materials will show viscoelastic behavior.

When is very high, the model for a Hookean solid may best describe

material behavior. The Newtonian model may be the best choice when
very small are present.

To further expand the concept of the Deborah number, consider data
from a common silicone polymer known as "bouncing putty" or "silly
putty". This substance, sold as a toy for children, is interesting because
it has a relaxation time well within the limits of human perception. If
the material is assumed to behave as a Maxwell fluid, constants may
be determined from the asymptotes found in Fig. 5.25. Taking the limit
(as goes to infinity) of Eq. [5.47] shows that Pa and
taking the limit (as goes to zero) of Eq. [5.49] indicates that

Pa s. Using these values, the relaxation time can be
calculated: s.

NDe

NDe 1

NDe 1

NDe

NDe

NDe

ω G ′ = G = 260, 000

ω
η′ = η = 80, 000

λrel = η/G = 0.31
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Figure 5.25. Oscillatory shear measurements on a silicone polymer (Data from
Denn, 1980).

Continued analysis of silly putty shows that Pa and
Pa s at rad/s. Expressing this in terms of the shear stress

given by Eq. [5.45] yields

[5.66]

Clearly, the elastic portion of the equation ( ) dominates the
mathematical relationship. Assuming , the Deborah number for

this case can be is approximated as

[5.67]

which is a numerical value of sufficient magnitude to indicate that
significant elastic effects would be present. The characteristic time of
the process would be much lower, causing the Deborah number to be
much higher, in situations where silly putty bounces when dropped and
shows brittle fracture when pulled quickly.
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Viewing the problem at a low frequency ( rad/s), Pa
and Pa s, gives a shear stress equation (Eq. [5.45]) of

[5.68]

Testing under these conditions result in a low value of the Deborah
number:

[5.69]

At low frequency (long characteristic time of the process), the Deborah
number is very small and the viscous component ( ) dominates
material behavior explaining why the substance flows, as a liquid, when
pulled slowly. Given the above discussion, one can conclude that
advertising silly putty as the "real solid-liquid" is technically acceptable.

5.6. Experimental Difficulties in Oscillatory Testing of Food

There are various sources of error which may be particularly prob-
lematic when testing food products using oscillatory methods. Many
foods may not exhibit a well defined strain or stress range where the
principle of linear viscoelasticity applies. This may be due to non-
homogeneous samples, the presence of wall slip, or time-dependent
material behavior. Preshearing with steady rotation, before conducting
oscillatory tests, can be useful in controlling (or eliminating) thixotropy
in some materials. Serrated or roughened surfaces may be effective in
dealing with wall slip. Special surfaces have been used, for example,
in testing cracker and cookie doughs (Menjivar, 1994), and cheddar
cheese (Rosenberg et al., 1995).

The presence of a yield stress may also cause serious difficulties in
oscillatory testing of food. This problem was observed many years ago
by Elliot and Ganz (1971, 1977) in studies involving mayonnaise, salad
dressing, and margarine. If the applied strain causes the resulting
stress to exceed the yield stress, then the output sin wave will be
truncated due to partial flow of the material. This deviant behavior is
illustrated in Fig. 5.26 where the peak values of the normalized stress
are equal to 0.7: . Since the yield stress is equal to 70% of

the maximum shear stress ( ), cannot exceed 0.7.

ω =0.1 G ′ = 200

η′ = 80, 000

σ = G ′γ + η′γ̇ =200 γ +80, 000 γ̇

NDe =
λrel

tprocess

=
λrel

(γoω)−1
= 0.31(.1) (.1) = 0.003

80, 000 γ̇

σ* = σ/σo ≤ 0.7

σ*σo
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The transition from solid-like to fluid-like behavior may be thought
of in terms of a critical strain or stress, below which the material behaves
as an elastic solid. Applied stresses which exceed the yield stress cause
a deviation from solid-like behavior resulting in a non-sinusoidal output
wave; consequently, measured values of the storage and loss moduli do
not fall within the scope of linear viscoelasticity. These moduli, although
quite useful in comparing different food products, will be a function of
both the strain (or stress) amplitude and frequency (Yoshimura and
Purd’homme, 1987). The problem can be further complicated by the fact
that the yield stress itself may be a time-dependent parameter for many
food products (Steffe, 1992).

Figure 5.26. Stress output when the applied strain takes the material outside the
regime where the material exhibits solid-like behavior.

The above explanation of the yield stress issue in oscillatory testing
illustrates the dilemma, but may oversimplify the problem. An alter-
native approach is to assume that the yield stress does not exist and
everything flows. This means that even materials appearing to have a
very solid-like nature would, given sufficient time, flow. Barnes et al.
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(1987) mention growing evidence showing that concentrated systems
(e.g., gels, margarine, ice cream, and stiff pastes) flow at very low
stresses. They explain that the hypothesis of a yield stress, and the
subsequent observation that a material does not flow, could be inter-
preted to mean that the material has a very high zero shear viscosity.
Normal window glass, for example, has a zero shear viscosity greater
than 1018 Pa s. This material appears to be solid but given sufficient
time (decades) shows observable changes due to flow. Latter work
(Barnes, 1992) has acknowledged scientific evidence suggesting the
presence of a yield stress in non-interacting and flocculated suspensions.
Regardless of the explanation for deviant behavior, oscillatory infor-
mation is of limited usefulness if data are not collected within the linear
viscoelastic range of the material behavior.

5.7. Viscometric and Linear Viscoelastic Functions

Normal stress functions arise from the viscoelastic nature of
materials; therefore, it is reasonable to expect linear viscoelastic
material functions determined from oscillatory testing to be related to
steady shear behavior. Exact relationships can be determined in the
lower limits of shear rate and frequency (Walters, 1975):

[5.70]

and

[5.71]

where, recall (Eq. [1.23]), . Although their use-

fullness is limited because they only apply at low frequencies and shear
rates, the above equations have proven to be valid for numerous polymer
melts and solutions.

Cox and Merz (1958) observed that the complex viscosity is nearly
equal to the steady shear viscosity when the shear rate and frequency
are equal:

[5.72]

This empirical relationship, now referred to as the "Cox-Merz rule," may
be useful for materials that are more easily tested under oscillatory
instead of steady shear conditions. The rule may, for example, apply to

η′ | ω →0 = η |γ̇ → 0
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ω2



 ω →0
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 γ̇ → 0

Ψ1 = f(γ̇) = (σ11 − σ22)/(γ̇)2

η* = η |ω =γ̇
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polymeric fluids that have a large normal stress difference, leading to
a Weissenberg effect (rod climbing), that complicates steady shear
testing.

The Cox-Merz rule seems to work well with many synthetic and
biopolymer dispersions (da Silva and Rao, 1992). Rao and Cooley (1992)
found that Eq. [5.72] could be applied to tomato paste by introducing a
simple shift factor into the computation: Complex viscosity was evalu-
ated at a frequency of where , the shift factor, was equal to
approximately 0.0074. Bistany and Kokini (1983) found the Cox-Merz
rule to be inapplicable to various foods. In the same work, however, the
following relationships were able to effectively relate steady shear and
dynamic rheological properties:

[5.73]

and

[5.74]

where , , , and are empirical constants determined from

experimental data. Values of these constants for various foods are given
in Table 5.9. The corresponding normal stress differences and power
law fluid properties (needed to calculate apparent viscosity) for the foods
listed in Table 5.9 are given in Appendix [6.6].

Doraiswamy et al. (1991) proposed an extended Cox-Merz rule
relating the complex viscosity to the steady shear viscosity. They found
that a plot of the complex viscosity versus was equivalent to a plot

of the apparent viscosity versus shear rate. was defined as the

"effective shear rate" where is the strain amplitude given in Eq. [5.30].

The equivalence of complex and steady shear viscosities was found to
be valid over a wide range of parameters involving concentrated sus-
pensions having yield stresses.

α ω α
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Table 5.9. Empirical Constants* for Eq. [5.73] and [5.74] (Source: Kokini, 1992)

Food

Whipped cream cheese 93.21 0.750 13.87 1.146
Cool Whip 50.13 1.400 6.16 1.098
Stick Butter 49.64 0.986 0.79 1.204
Whipped butter 43.26 0.948 33.42 1.255
Stick margarine 35.48 0.934 1.28 1.140
Ketchup 13.97 0.940 14.45 1.069
Peanut butter 13.18 1.266 1.66 1.124
Squeeze margarine 11.12 1.084 52.48 1.022
Canned frosting 4.40 1.208 4.89 1.098
Marshmallow fluff 3.53 0.988 1.26 0.810

* Data collected at room temperature over a shear rate and frequency range of 0.1

to 100 s-1. Units of and used in Eq. [5.73] and [5.74] are rad s-1, s-1,

Pa, Pa s 2, Pa s and Pa s, respectively.

Table 5.10. Stress Relaxation Data from Compression Testing of Apple Tissue at
Room Temperature (Cylindrical Sample: Length = 2 cm, Diameter = 2 cm)

(s) (Pa) (s)

0.0 754
0.6 601 3.0
1.2 572 5.0
1.8 562 7.1
2.4 549 8.8
3.0 536 10.4
3.6 526 11.9
6.0 504 18.1
9.0 484 25.1
12.0 468 31.6
15.0 461 38.6
18.0 452 44.9
24.0 435 56.7
30.0 426 69.0
42.0 409 91.8
54.0 406 117.0

C α C ′ α′

ω,γ̇,G ′, Ψ1, η* η

t σ σo t

σo − σ
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5.8. Example Problems

5.8.1. Generalized Maxwell Model of Stress Relaxation
Using the generalized Maxwell model (Eq. [5.11]), estimate the relax-
ation time ( ) of the apple tissue described by the data presented in

Table 5.10.

Recall Eq. [5.11], with referring to the stress in compression:

Assume the material has reached equilibrium at the completion of the
test so = 406 Pa. Then, regression of the data (Fig. 5.27) using the

logarithmic transformation of Eq. [5.11],

yields s-1 or s, and Pa making

= 606.75 Pa. Note that the value of , determined from the regression

parameter, is lower than the experimental value of 754 Pa given for the
initial stress in Table 5.10.

Figure 5.27. Stress relaxation data for apple tissue modeled using Eq. [5.11].
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5.8.2. Linearized Stress Relaxation

Stress relaxation data for apple tissue are given in Table 5.10 with the
raw data plotted in Fig. 5.28. Determine the coefficients for the nor-
malized stress equation proposed by Peleg and Normand (1983), Eq.
[5.14]:

where the value of is taken from Table 5.10 as 754 Pa.

Linear regression of this equation (an excellent fit) yields the fol-
lowing: = 4.52 s, = 2.12. Linearized data are plotted in Fig. 5.29.

Results are comparable to those reported for potato flesh (Table 5.5:

= 4.40 s, = 1.56).

Figure 5.28. Stress relaxation data for apple tissue at room temperature.
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Figure 5.29. Normalized stress relaxation data for apple tissue.

5.8.3. Analysis of Creep Compliance Data

Estimate the parameters of the four parameter Burgers model (Fig. 5.6)
to represent the shear creep compliance data given in Table 5.11.
Compare the resulting curve to the 6 parameter model (Fig. 5.30) for-
mulated by adding an additional Kelvin element to the Burgers model.
Also, determine the parameters for the simple linearized creep
compliance model suggested by Peleg (1980).

The Burgers model, expressed in terms of the creep compliance
function, is described by Eq. [5.22]:

Model parameters may be estimated using the following procedure:

1. The instantaneous compliance, , is determined from the original

data (Curve 1 on Fig. 5.31 or Table 5.11) at as 0.00220
cm2/dyne.
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Table 5.11. Shear Creep Compliance of Skim Milk Curd Fortified with -casein
(Data from Halim and Shoemaker, 1990)

Data Time Ja Jb Jc t/Jd

Point (s) (cm2/dyne) (cm2/dyne) (cm2/dyne) (s dyne/cm2)

1 0 0.00220 0.00220 0.00220 0
2 0.89 0.00249 0.00237 0.00241 357
3 2.01 0.00264 0.00257 0.00262 761
4 3.79 0.00293 0.00284 0.00287 1,293
5 8.93 0.00331 0.00337 0.00328 2,698
6 14.06 0.00355 0.00369 0.00352 3,961
7 18.97 0.00372 0.00389 0.00369 5,099
8 23.44 0.00386 0.00401 0.00382 6,073
9 28.71 0.00398 0.00411 0.00395 7,241

10 34.02 0.00408 0.00419 0.00406 8,338
11 39.06 0.00418 0.00426 0.00416 9,344
12 44.20 0.00426 0.00432 0.00424 10,376
13 48.88 0.00434 0.00437 0.00432 11,263
14 58.48 0.00447 0.00447 0.00445 13,083
15 68.97 0.00458 0.00458 0.00458 15,059
16 78.57 0.00469 0.00468 0.00469 16,752
17 93.75 0.00485 0.00484 0.00485 19,330
18 109.25 0.00499 0.00500 0.00502 21,894
19 118.97 0.00509 0.00509 0.00512 23,373

a raw data;b predicted using 4parameter Burgers model;c predicted using 6parameter
model; d calculated from raw data

2. Subtract from Curve 1 to generate Curve 2 (Fig. 5.31). Using

the straight portion of the curve (the last six data points, ),
linear regression analysis yields and from the intercept and

slope of

[5.75]

as = 0.00168 cm2/dyne and = 97,847 P. Note that reflects

the fully extended (equlibrated) Kelvin element making the
exponential term in the original equation equal to zero.

α

J0

t ≥ 58.48
J1 µ0

( J − J0 ) = J1 +
t

µ0

J1 µ0 J1
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3. Using the exponential portion of the data (the first 8 data points,
s), the retardation time is determined from linear regres-

sion analysis (including a logarithmic transformation of the data)
over of

[5.76]

as = 8.635 s.

Figure 5.30. Six parameter model for creep compliance.

Substituting the constants found above, the complete Burgers model
may be expressed as

t ≤ 28.71

J <J1 +J0

ln
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Figure 5.31. Shear creep compliance of skim milk curd fortified with -casein.

A comparison of the curve predicted with the above equation and actual
data reveals (Fig. 5.31, Table 5.11) that the Burgers model adequately
represents the data; however, better accuracy is obtained using a more
complex 6 parameter model (Fig. 5.30) described by Eq. [5.23], with

, as

[5.77]

where:

[5.78]

and

[5.79]
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The constants in Eq. [5.77] (for the same -casein fortified skin milk
curd under consideration) were determined by Halim and Shoemaker
(1990), using nonlinear curve fitting procedures, with the following
result:

Comparing this prediction equation to the raw data shows that it does
an excellent job modeling the shear creep compliance (Fig. 5.31, Table
5.11).

Figure 5.32. Linearized shear creep compliance of skim milk curd fortified with
-casein.

Peleg (1980) suggested that creep data could be modeled with the
following linear equation:

[5.80]

α

J = 0.0022 + 0.00064
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Regression analysis of the data, using Eq. [5.80], yielded dyne

cm-2 s and dyne cm-2 with . Raw data and the resulting

curve are plotted in Fig. 5.32. The 6 parameter model involves complex
curve fitting, but gives a very accurate representation of experimental
data. The simple linear equation is less precise, but often adequate for
investigating practical creep problems involving biological materials.

5.8.4. Plotting Oscillatory Data
Develop alternative plots showing the dynamic behavior of the con-
centrated solution (5% lambda carrageenan solution) illustrated in Fig.
5.21.

The data given in Fig. 5.22 were fit to a power law model resulting
in the following equations (Table 5.8):

and

Using these equations other rheological parameters can be easily cal-
culated:

Results are presented in Fig. 5.33.

Two very useful methods of representing mechanical spectra are to
plot the storage modulus and the loss modulus, or the storage modulus
and the dynamic viscosity. Crossover points (Fig. 5.33), such as the one
provided by the intersection of and , may provide useful bench-
marks for comparing products or treatments. In this case the crossover
occurs at a frequency of 5.61 rad/s. Since at that point, it is also
the frequency where the tangent of the phase angle ( ) is equal to 1

k1 = 1050.8

r 2 = 0.99k2 = 196.6

G ′ = 16.26(ω).84

G ′′ = 27.78(ω).52

η′ =
G ′′
ω

= 27.78(ω)−.48

η′′ =
G ′
ω

= 16.26(ω)−.16

tan δ =
G ′′
G ′

= 1.71(ω)−.32

G* =√ (G ′)2 + (G ′′) 2 =√ (16.26(ω).84)2 + (27.78(ω).52)2

η* =√ (η′) 2 + (η′′) 2 =√ (27.78(ω)−.48)2 + (16.26(ω)−.16)2

G ′ G ′′

G ′ = G ′′
tan δ
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Figure 5.33. Oscillatory testing results for a 5% lambda carrageenan solution.

because . Observing changes in is a useful means of evalu-
ating the transition from liquid-like to solid-like behavior: tan delta
decreases with more solid-like behavior. Combined parameters, and

, are also useful in looking at overall rheological behavior. A popular
combination is to plot the variation of , , and with frequency. In
some cases, single point measurements are useful: , measured at 50
rad/s, correlates wellwith the humanperception of thickness orviscosity
(Hill, 1991; Hill et al., 1995).
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6. Appendices

6.1. Conversion Factors and SI Prefixes

Density
1 g cm-3 = 1000 kg m-3 = 62.428 lbm ft-3 = 0.0361 lbm in-3

1 lbm ft-3 = 16.0185 kg m-3

Force
1 N = 1 kg m s-2 = 105 dyne = 0.22481 lbf = 0.102 kgf
1 lbf = 4.448 N = 0.4536 kgf
1 dyne = 1 g cm s-2 = 10-5 N

Length
1 m = 100 cm = 1000 mm = 106 m = 3.2808 ft = 39.37 in = 1.0936 yd
1 in = 2.54 cm = 25.40 mm = 0.0254 m = 0.0833 ft = 0.02778 yd

Power
1 hp = 550 ft lbf s-1 = 745.70 W = 0.7457 kW = 0.7068 Btu s-1

1 Btu hr-1 = 0.2931 W = 0.2931 J s-1

Pressure and Stress
1 bar = 105 N m-2 = 105 Pa = 14.5038 lbf in-2 = 0.987 atm = 10.2 m at 4 C
1 Pa = 1 N m-2 = 10 dyne cm-2 = 9.8692 (10-6) atm = 0.1020 kgf m-2

1 lbf in-2 = 6895 Pa = 6.804 (10-2)atm = 6.895 kPa = 2.307 ft at 4 C
1 dyne cm-2 = 0.10 Pa = 10-6 bar = 0.987 (10-6) atm
1 atm = 1.01325 (105) N m-2 = 101.325 kPa = 14.696 psi = 1.013 bar = 760 torr
1 atm = 760 mm Hg at 0 C = 33.90 ft at 4 C = 1.013 (106) dyne cm-2

Revolution and Rotational Speed
1 rev = 1 cycle = 2 rad
1 Hz = 1 cycle/s = 1 rev/s = 2 rad/s = 6.283 rad/s
1 rev/min = 0.1047 rad/s

Temperature
TKelvin = TCelsius+ 273.15
TKelvin = (TFahrenheit+ 459.67) / 1.8
TFahrenheit= 1.8 TCelsius+ 32
TCelsius= (TFahrenheit- 32) / 1.8

Torque, Energy, and Work
1 N m = 100 N cm = 1 J = 1 kg m2 s-2 = 107 dyne cm = 8.85 in lbf
1 dyne cm = 10-7 N m = 10-5 N cm

Viscosity (Absolute or Dynamic, followed by Kinematic)
1 P = 1 dyne s cm-2 = 0.1 Pa s = 100 cP = 100 mPa s
1 Pa s = 1000 cP = 10 P = 1 kg m-1 s-1 = 1 N s m-2 = 0.67197 lbm ft-1 s-1

1 cP = 1 mPa s = 0.001 Pa s = 0.01 P
1 lbm ft-1 s-1 = 1.4882 kg m-1s-1 = 1488.2 cP = 2.0885 (10-2) lbf s ft-2

kinematic viscosity (cSt) = absolute viscosity (cP) / density (g cm-3)
1 cSt = 0.000001 m2 s-1 = 1 mm2 s-1 = 5.58001 in2 hr-1 = 0.00155 in2 s-1

1 St = 100 cSt = 0.0001 m2 s-1

1 m2 s-1 = 10-5 cSt = 10.7639 ft2 s-1

Volume
1 m3 = 106 cm3 = 103 L (liter) = 264.17 gal (US) = 35.315 ft3 = 219.97 gal (UK)
1 ft 3 = 0.028317 m3 = 7.481 gal (US) = 28.317 L = 6.2288 gal(UK)
1 gal (US) = 4 qt = 3.7854 L = 3785.4 cm3 = 0.8327 gal (UK) = 0.003785 m3

µ

H2O °

H2O °

° H2O °

π
π
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SI Prefixes

Factor Prefix Symbol Factor Prefix Symbol

1018 exa E 10-1 deci d

1015 peta P 10-2 centi c

1012 tera T 10-3 milli m

109 giga G 10-6 micro

106 mega M 10-9 nano n

103 kilo k 10-12 pico p

102 hecto h 10-15 femto f

101 deka da 10-18 atto a

6.2. Greek Alphabet

Alpha Nu

Beta Xi

Gamma Omicron

Delta Pi

Epsilon Rho

Zeta Sigma

Eta Tau

Theta Upsilon

Iota Phi

Kappa Chi

Lambda Psi

Mu Omega

µ

Α   α Ν   ν

Β   β Ξ   ξ

Γ   γ Ο   ο

∆   δ Π   π

Ε   ε Ρ   ρ

Ζ   ζ Σ   σ

Η   η Τ   τ

Θ   θ Υ   υ

Ι   ι Φ   φ

Κ   κ Χ    χ

Λ   λ Ψ   ψ

Μ   µ Ω   ω
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6.3. Mathematics: Roots, Powers, and Logarithms

Roots and Powers*

Logarithms*

If , then is the logarithm of to the base where is a

finite positive number other than 1. Also, if then . In
this text, values of equal to 10 and are used meaning

and

The following properties of logarithms, expressed in terms of base
, are true for any base:

* Based on a summary given in Hudson, R.G. 1939. The Engineers’ Manual (second edition, 25th
printing). John Wiley & Sons, NY.

an =a a a a … to n factors a−n =
1

an

am an =am +n am

an
=am −n

(ab)n = anbn 



a
b




n

=
an

bn

(am)n = (an)m =amn ( n√ a )
n
=a

a
1

n = n√ a a
m

n =
n√am

n√ab = ( n√ a ) ( n√ b ) n√ a
b

=
n√ a
n√ b

logb N = x x N b b

bx =N logb N = x
b e

log10N = x     or    10x =N

loge N = lnN = x     or    ex =exp(x) =N

e

ln(MN) = ln(M) + ln(N)
ln




M
N



= ln(M) − ln(N)

ln(Ma) =a ln(M) ln
a√Mc

 =
c
a

ln(M)
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6.4. Linear Regression Analysis of Two Variables

Linear regression is a statistical method of fitting two variables
to a linear equation:

The constants, (the intercept) and (the slope), are calculated with
the following formulas:

where:

= number of observations in the sample

= mean of x values

= mean of y values

The method of least squares minimizes the sum of the squared
error between the actual and estimated values: and are found
using a procedure which minimizes

where is the value to be estimated and is the corresponding
estimate of at . Computations are easily done using computer
spread-sheet programs or hand calculators.

A measure of correlation between two variables can be defined in
terms of the sample correlation coefficient ( ) which can take on
values between -1 and 1. A correlation value of zero means there
is no association. A value of -1 means there is a perfect negative
correlation and a value of +1 means there is a perfect positive cor-
relation (Fig. 6.1). Correlation may also be expressed in terms of
the coefficient of determination, . When , all points fall on the
predicted line. If , there is as much variation in the estimate
of as there is in the variable meaning that any observed fluc-
tuations are due to random variations in .

The standard error of the estimate can also be a useful measure
of how well the regression line fits the data. This parameter is
calculated as

y = a +b x

a b

b =
n ∑

i = 1

n

xi yi − ∑
i = 1

n

xi ∑
i = 1

n

yi

n ∑
i = 1

n

(xi)2−
 ∑i = 1

n

xi



2

a = y −bx

n

x

y

a b

n ∑
i = 1

n

( yi − yx)
2

yi yx

y x

r

r2 r2 = 1
r2 = 0

y y
y
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where:

= the standard error of the estimate of on

Properties of the standard error of the estimate are analogous to
those of standard deviation. Assuming a sufficiently large sample,
pairs of lines constructed parallel to the regression line of on , at
vertical distances of , 2 and 3 , should include 68%, 95%
and 99.7% (respectively) of the sample data points.

Figure 6.1. Relationship between  and  for a perfect positive correlation (r =
1), a perfect negative correlation (r = -1), and no correlation (r = 0).

Example Problem. Determine the power law, Bingham plastic,
Casson, and Herschel-Bulkley model parameters from the data for
the carrageenan gum solution given in Table 6.1.

Linear regression can only be performed on a linear equation of
the form . The Bingham plastic model already exists in this
form; however, the other models may require a transformation of
the data before they can be presented in a linear form. A summary

sy,x =√∑i = 1

n

(yi − yx)2

n −2

sy,x y x

y x
sy,x sy,x sy,x

r = -1

r = 1

r = 0

x

y

y x

y = a +bx
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Table 6.1. Raw and Transformed Data of a 1% aqueous solution of carrageenan
gum at 25 C (Data from Prentice and Huber, 1983)

2.61 9.88 0.96 2.29 1.62 3.14 0.412
2.97 11.4 1.09 2.43 1.72 3.38 0.626
2.81 12.9 1.03 2.56 1.68 3.59 0.536
3.44 14.1 1.24 2.65 1.85 3.75 0.850
3.80 17.6 1.34 2.87 1.95 4.20 0.993
4.85 26.3 1.58 3.27 2.20 5.13 1.322
6.61 42.0 1.89 3.74 2.57 6.48 1.707
6.19 48.6 1.82 3.88 2.49 6.97 1.627
5.89 49.3 1.77 3.90 2.43 7.02 1.567
7.22 55.5 1.98 4.02 2.69 7.45 1.812
8.20 58.8 2.10 4.07 2.86 7.67 1.960
9.08 75.4 2.21 4.32 3.01 8.68 2.076

11.63 104.1 2.45 4.65 3.41 10.20 2.354
10.65 110.4 2.37 4.70 3.26 10.51 2.257
12.75 120.5 2.55 4.79 3.57 10.98 2.455
13.10 136.5 2.57 4.92 3.62 11.68 2.484
14.90 145.8 2.70 4.98 3.86 12.07 2.624
15.85 187.1 2.76 5.23 3.98 13.68 2.691
12.70 210.2 2.54 5.35 3.56 14.50 2.451
20.50 270.0 3.02 5.60 4.53 16.43 2.965

of this transformation, and regression results, are given in Table
6.2. Note that the yield stress for the Herschel-Bulkley model must
be estimated before linear regression can proceed. Estimating ,

, and simultaneously would require a nonlinear estimation
procedure.

Information presented in Table 6.2 can be presented in terms of the
models under investigation:

Bingham, :
Pa, Pa s

Herschel-Bulkley, :
Pa, Pa sn,

Casson, :
Pa, Pa.5 s.5

Power Law, :
Pa sn,

°

(σ).5 (γ̇).5σ γ̇ lnσ ln γ̇ ln(σ−1.1)

σo

K n

σ = µpl(γ̇) + σo

σo = 3.20 µpl = 0.066

σ =K(γ̇)n + σo

σo = 1.10 K = 0.306 n = 0.74

(σ).5=K1(γ̇).5+ (σo).5

σo = 1.16 K1 = 0.211

σ =K(γ̇)n

K = 0.66 n = 0.60
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Coefficients of determination (Table 6.2) indicate that the power law
and Herschel-Bulkley equations provide the best model of the
experimental data.

Table 6.2. Linear regression parameters for different rheological models.

Model

Bingham 0.92 1.44

Power Law 0.98 0.094

Casson 0.96 0.179
*Herschel- 0.98 0.119
Bulkley

* Pa was determined from a graphical analysis of the data.

r2y x a b sy,x

σ γ̇ σo = 3.20 µpl = 0.066

lnσ ln γ̇ lnK = −0.411 n = 0.60

(σ).5 (γ̇).5 (σo).5 = 1.078 K1 = 0.211

ln(σ− σo) ln γ̇ lnK = −1.185 n = 0.74

σo = 1.1
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6.5. Hookean Properties

Material Material
(N m-2) (N m-2)

Soft foam rubber 102 Carrots (2-4) x 107

Rubber 8 x 105 Pears (1.2-3) x 107

Dry Spaghetti 0.3 x 1010 Potatoes (0.6-1.4) x 107

Lead 1.0 x 1010 Apples raw (0.6-1.4) x 107

Concrete 1.7 x 1010 Gelatin (gel) 0.02 x 107

Glass 7 x 1010 Peach (0.2-2) x 107

Iron 8 x 1010 Banana (0.08-0.3) x 107

Steel 25 x 1010

Material Material
( - ) ( - )

Cheddar cheese 0.50 Copper 0.33

Potato tissue 0.49 Steel 0.30

Rubber 0.49 Glass 0.24

Apple tissue 0.37 Bread-crumbs 0.00

Apple 0.21-0.34 Cork 0.00

Material Material
(N m-2) (N m-2)

Dough 1.4 x 106 Silver 1011

Rubber 1.9 x 107 Steel 1.6 x 1011

Granite 3 x 1010 Glass 3.9 x 1010

Source: Lewis, 1987.

E E

ν ν

K K
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6.6. Steady Shear and Normal Stress Difference

Product* ( ) (-) ( ) (-)

Apple butter 222.90 0.145 156.03 0.566

Canned frosting 355.84 0.117 816.11 0.244

Honey 15.39 0.989 - -

Ketchup 29.10 0.136 39.47 0.258

Marshmallow cream 563.10 0.379 185.45 0.127

Mayonnaise 100.13 0.131 256.40 -0.048

Mustard 35.05 0.196 65.69 0.136

Peanut butter 501.13 0.065 3785.00 0.175

Stick butter 199.29 0.085 3403.00 0.393

Stick margarine 297.58 0.074 3010.13 0.299

Squeeze margarine 8.68 0.124 15.70 0.168

Tub margarine 106.68 0.077 177.20 0.358

Whipped butter 312.30 0.057 110.76 0.476

Whipped cream cheese 422.30 0.058 363.70 0.418

Whipped desert topping 35.98 0.120 138.00 0.309

* Data were collected over a shear rate of 0.1 to 100 s-1 at 30.5 C

Source: Dickie and Kokini, 1983.

K n K ′ n ′
Pa sn Pa sn ′

°

σ =K(γ̇)n

N1 = σ11− σ22 =K ′(γ̇)n ′
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6.7. Yield Stress of Fluid Foods

Product  (Pa) Measurement Method Source

Ketchup 22.8 extrapolation Ofoli et al. (1987)

Mustard 34.0 extrapolation Ofoli et al. (1987)

Miracle Whip 54.3 extrapolation Ofoli et al. (1987)

Apricot Puree 17.4 extrapolation Ofoli et al. (1987)

Milk Chocolate 10.9 extrapolation Ofoli et al. (1987)

Minced Fish Paste 1600-2300 extrapolation Nakayama et
al.(1980)

Mayonnaise 24.8-26.9 stress to initiate flow De Kee et al.(1980)

Ketchup 15.4-16.0 stress to initiate flow De Kee et al.(1980)

Tomato Paste 83.9-84.9 stress to initiate flow De Kee et al.(1980)

Raw Meat Batter 17.9 extrapolation Toledo et al.(1977)

Tomato Puree 23.0 stress decay Charm(1962)

Applesauce 58.6 stress decay Charm(1962)

Tomato Paste 107-135 squeezing flow Campanella and
Peleg(1987)

Ketchup 18-30 squeezing flow Campanella and
Peleg(1987)

Mustard 52-78 squeezing flow Campanella and
Peleg(1987)

Mayonnaise 81-91 squeezing flow Campanella and
Peleg(1987)

Applesauce 45-87 squeezing flow Campanella and
Peleg(1987)

Applesauce 46-82 vane method Qiu and Rao(1988)

Ketchup 26-30 vane method Missaire et al.
(1990)

Spaghetti Sauce 24-28 vane method Missaire et al.
(1990)

Tomato Puree 25-34 vane method Missaire et al.
(1990)

Pumpkin Filling 20 vane method Missaire et al.
(1990)

Applesauce 38-46 vane method Missaire et al.
(1990)

Baby food, pears 49 vane method Missaire et al.
(1990)

Baby food, 25 vane method Missaire et al.
peaches (1990)

Baby food, carrots 71 vane method Missaire et al.
(1990)

σo
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Static and Dynamic Yield Stresses of Food Products

Product* Static Yield Dynamic Yield
Stress Stress
(Pa) (Pa)

Tomato puree, Brand A 34.4 3.7 28.1 4.2

Tomato puree, Brand B 30.0 4.2 27.6 3.4

Apple sauce, Brand A 77.3 0.0 48.2 4.7

Apple sauce, Brand B 48.2 4.7 38.0 4.7

Tomato ketchup, Brand A 51.3 5.0 40.6 4.5

Tomato ketchup, Brand A 43.2 3.4 39.6 3.4

Spaghetti sauce, Brand A 26.3 4.5 18.3 0.0

Spaghetti sauce, Brand B 24.8 3.4 21.9 0.0

Baby food, pears 31.8 5.0 24.8 4.0

Baby food, carrots 64.0 4.0 35.7 5.0

Baby food, peaches 22.9 3.4 20.1 3.4

Mayonnaise, Brand A 204.4 5.0 112.6 4.0

Mayonnaise, Brand B 163.8 4.2 99.4 4.0

Mustard, Brand A 82.5 5.0 53.1 5.3

Mustard, Brand B 103.8 5.0 53.4 5.0

* Data were collected at 25 C by using the vane method operating
in the controlled rate mode. Source: Yoo et al., 1995.

Briggs and Steffe (1996) determined the yield stress of frozen ice
cream using the vane method. Results were summarized with the
following equations:

where is the yield stress in Pa, and is the temperature in .
These equations are valid over the range of temperatures typically
maintained for hand-dipped ice cream: -12 to -16 . Yield
stresses, ranging from 2.5 to 8.0 kPa, decreased with reductions in
temperature. Chocolate had sightly higher values than vanilla.

± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±
± ±

°

σo = 22.33 exp(−.37T)        for chocolate ice cream

σo = 39.32 exp(−.33T)        for vanilla ice cream

σo T °C

°C °C
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6.8. Newtonian Fluids

Product T
( C) (cP)

Acetic acid 15 1.31
18 1.30

25.2 1.155
30 1.04
41 1.00
59 0.70
70 0.60
100 0.43

Acetone -42.5 0.695
-30.0 0.575
-20.9 0.510
-13.0 0.470
-10.0 0.450

0 0.399
15 0.337
25 0.316
30 0.295
41 0.280

Ethanol -32.01 3.84
-17.59 2.68
-0.30 1.80

0 1.773
10 1.466
20 1.200
30 1.003
40 0.834
50 0.702
60 0.592
70 0.504

Glycol 20 19.9
40 9.13
60 4.95
80 3.02
100 1.99

Glycerin -42 6.71E6
-36 2.05E6
-25 2.62E5
-20 1.34E5

-15.4 6.65E4
-10.8 3.55E4
-4.2 1.49E4

µ
°
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0 1.21E4
6 6260
15 2330
20 1490
25 954
30 629

Mercury -20 1.855
-10 1.764
0 1.685
10 1.615
20 1.554
30 1.499
40 1.450
50 1.407
60 1.367
70 1.331
80 1.298
90 1.268
100 1.240
150 1.300
200 1.052
250 0.995
300 0.950
340 0.921

Water  0 1.787
 5 1.519
10 1.307
15 1.139
20 1.002
25 0.8904
30 0.7975
35 0.7194
40 0.6529
45 0.5960
50 0.5468
55 0.5040
60 0.4665
65 0.4335
70 0.4042
75 0.3781
80 0.3547
85 0.3337
90 0.3147
95 0.2975
100 0.2818

Source: Weast et al., 1984.
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Viscosity Prediction Equations for Various Liquids

Equation 1

Equation 2

Equation 3

where is in units of Pa s and T in degrees Kelvin.

Material Eq. # T range(K)

Acetic Acid 2 1.2106x106 -3.6612 270-390

Corn Oil 3 -3.5581 -263.32 183.60 290-340

Corn Syrup: DE=100, 3 -4.4500 -234.80 159.91 280-360
20% dry substance

Corn Syrup: DE=42.9, 3 -4.0137 -129.07 201.23 280-360
20% dry substance

Corn Syrup: DE=35.4, 1 -5.5478 868.35 280-360
20% dry substance

Corn Syrup: DE=35.4, 3 -3.8025 -258.10 186.88 280-360
50% dry substance

Corn Syrup: DE=42.9, 3 -3.9975 -267.36 182.96 280-360
50% dry substance

Corn Syrup: DE=75.4, 1 -5.8508 924.84 201.23 280-360
20% dry substance

Ethanol 3 -5.5972 -846.95 -24.124 210-350

Ethylene Glycol 3 -4.5448 -417.05 146.53 280-420

Groundnut Oil 3 -3.9621 -407.46 151.23 290-340

Rapseed Oil 3 -4.4802 -597.20 1119.99 290-340

Soybean Oil 3 -4.4977 -581.28 115.71 290-340

Sunflower Oil 3 -3.6505 -304.27 168.98 290-340

Water 3 -4.5318 -220.57 149.39 270-380

Source: Viswanath and Natarajan, 1989.

log(µ) = A + (B /T)

µ = ATB

log(µ) = A +B /(C −T)

µ

A B C
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Viscosity (centipoise) of Sucrose Solutions

% sucrose by weight
T (oC) 20 40 60

0 3.818 14.82 -
5 3.166 11.60 -
10 2.662 9.830 113.90
15 2.275 7.496 74.90
20 1.967 6.223 56.70
25 1.710 5.206 44.02
35 1.336 3.776 26.62
40 1.197 3.261 21.30
45 1.074 2.858 17.24
50 0.974 2.506 14.06
55 0.887 2.227 11.71
60 0.811 1.989 9.87
65 0.745 1.785 8.37
70 0.688 1.614 7.18
80 0.592 1.339 5.42
85 0.552 1.226 4.75
90 - 1.127 4.17
95 - 1.041 3.73

Source: International Critical Tables 5:23 (1917).

Viscosity (centipoise) of Ethanol-Water Mixtures

Concentration of ethanol, % by weight

T (oC) 10 20 30 40 50 60 70 80 90 100

0 3.311 5.32 6.94 7.14 6.58 5.75 4.76 3.69 2.73 1.77
5 2.58 4.06 5.29 5.59 5.26 4.63 3.91 3.12 2.31 1.62
10 2.18 3.16 4.05 4.39 4.18 3.77 3.27 2.71 2.10 1.47
15 1.79 2.62 3.26 3.53 3.44 3.14 2.77 2.31 1.80 1.33
20 1.54 2.18 2.71 2.91 2.87 2.67 2.37 2.01 1.61 1.20
25 1.32 1.82 2.18 2.35 2.40 2.24 2.04 1.75 1.42 1.10
30 1.16 1.55 1.87 2.02 2.02 1.93 1.77 1.53 1.28 1.00
35 1.01 1.33 1.58 1.72 1.72 1.66 1.53 1.36 1.15 0.91
60 0.91 1.16 1.37 1.48 1.50 1.45 1.34 1.20 1.04 0.83

Source: Matz, 1962.
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Viscosity (centipoise) of Corn Syrup

1DS T ( F) 2DE=35.4 DE=42.9 DE=53.7 DE=75.4 DE=92.4

85 60 0 0 457000 -
80 7080000 1410000 537000 83200 -

100 1000000 227000 85200 17000 -
120 188000 50100 20000 4270 -
140 44900 13000 6310 1660 -
160 13000 5190 2290 589 -
180 4420 1760 944 275 -

80 60 266000 89100 24000 -
80 126000 59600 17800 4570 -

100 29900 15000 5010 1550 -
120 9810 4840 1800 603 -
140 3350 1860 785 282 -
160 1410 851 367 141 -
180 687 386 196 75.9 -

75 60 39800 18200 7590 6030 -
80 10000 5390 2140 741 501

100 3020 1880 807 331 211
120 1260 817 372 159 106
140 620 389 191 83.2 56.2
160 325 197 103 47.9 32.4
180 180 110 62 28.8 19.5

65 60 1060 560 389 178 -
80 398 237 159 77.6 56.2

100 182 119 83.2 45.7 30.7
120 108 69.2 47.3 26.3 18.6
140 67.9 43.4 29.0 16.2 12.2
160 43.2 26.6 18.6 10.7 8.41
180 29.0 17.8 12.6 7.76 5.96

50 60 54.6 34.0 33.5 18.6 -
80 30.0 19.5 18.4 11.8 9.66

100 18.5 12.0 11.6 7.94 6.31
120 12.9 8.51 7.71 5.50 4.39
140 9.44 6.31 5.43 3.24 3.20
160 6.92 4.49 4.03 3.02 2.50
180 5.27 3.55 3.16 2.19 1.97

35 60 9.16 7.16 7.5 5.13 -
80 6.31 4.75 4.95 3.22 3.35

100 4.52 3.29 3.35 2.74 2.41
120 3.35 2.51 2.51 2.07 1.78
140 2.66 1.99 1.88 1.57 1.41
160 2.20 1.59 1.56 1.27 1.12
180 1.68 1.33 1.26 1.00 0.944

20 60 2.90 2.82 2.63 2.26 -
80 2.24 2.04 1.94 1.70 1.72

100 1.78 1.45 1.45 1.33 1.27
120 1.35 1.14 1.12 1.06 1.00
140 1.12 0.922 0.908 0.832 0.804
160 1.00 0.759 0.794 0.692 0.689
180 0.773 0.673 0.668 0.562 0.576

1DS = Percent Dry Substance; 2DE = Dextrose Equivalent
Source: Erickson et al., 1966.

°
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6.9. Dairy, Fish and Meat Products

Product T

( C) (-) (Pa sn) (Pa) (s-1)

Cream, 10% fat 40 1.0 .00148 - -
60 1.0 .00107 - -
80 1.0 .00083 - -

Cream, 20% fat 40 1.0 .00238 - -
60 1.0 .00171 - -
80 1.0 .00129 - -

Cream, 30% fat 40 1.0 .00395 - -
60 1.0 .00289 - -
80 1.0 .00220 - -

Cream, 40% fat 40 1.0 .00690 - -
60 1.0 .00510 - -
80 1.0 .00395 - -

Minced fish paste 3-6 .91 8.55 1600.0 67-238
Raw, Meat Batters
151    132    68.83 15 .156 639.3 1.53 300-500
18.7   12.9   65.9 15 .104 858.0 .28 300-500
22.5   12.1   63.2 15 .209 429.5 0 300-500
30.0   10.4   57.5 15 .341 160.2 27.8 300-500
33.8    9.5   54.5 15 .390 103.3 17.9 300-500
45.0    6.9   45.9 15 .723 14.0 2.3 300-500
45.0    6.9   45.9 15 .685 17.9 27.6 300-500
67.3   28.9    1.8 15 .205 306.8 0 300-500

Milk, homogenized 20 1.0 .002000 - -
30 1.0 .001500 - -
40 1.0 .001100 - -
50 1.0 .000950 - -
60 1.0 .000775 - -
70 1.0 .00070 - -
80 1.0 .00060 - -

Milk, raw 0 1.0 .00344 - -
5 1.0 .00305 - -
10 1.0 .00264 - -
20 1.0 .00199 - -
25 1.0 .00170 - -
30 1.0 .00149 - -
35 1.0 .00134 - -
40 1.0 .00123 - -

1 %Fat;2 %Protein;3 %MC
Source: Steffe et al., 1986.

n K σo γ̇
°
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6.10. Oils and Miscellaneous Products

Product % Total T
Solids ( C) (-) (Pa sn) (Pa) (s-1)

Chocolate, melted - 46.1 .574 .57 1.16 -
Honey - -

Buckwheat 18.6 24.8 1.0 3.86 - -
Golden Rod 19.4 24.3 1.0 2.93 - -
Sage 18.6 25.9 1.0 8.88 - -
Sweet Clover 17.0 24.7 1.0 7.20 - -
White Clover 18.2 25.2 1.0 4.80 - -

Mayonnaise - 25 .55 6.4 - 30-1300
- 25 .60 4.2 - 40-1100

Mustard - 25 .39 18.5 - 30-1300
- 25 .34 27.0 - 40-1100

Oils
Castor - 10 1.0 2.42 - -

- 30 1.0 .451 - -
- 40 1.0 .231 - -
- 100 1.0 .0169 - -

Corn - 38 1.0 .0317 - -
- 25 1.0 .0565 - -

Cottonseed - 20 1.0 .0704 - -
- 38 1.0 .0306 - -

Linseed - 50 1.0 .0176 - -
- 90 1.0 .0071 - -

Olive - 10 1.0 .1380 - -
- 40 1.0 .0363 - -
- 70 1.0 .0124 - -

Peanut - 25.5 1.0 .0656 - -
- 38.0 1.0 .0251 - -
- 21.1 1.0 .0647 - .32-64
- 37.8 1.0 .0387 - .32-64
- 54.4 1.0 .0268 - .32-64

Rapeseed - 0.0 1.0 2.530 - -
- 20.0 1.0 .163 - -
- 30.0 1.0 .096 - -

Safflower - 38.0 1.0 .0286 - -
- 25.0 1.0 .0522 - -

Sesame - 38.0 1.0 .0324 - -
Soybean - 30.0 1.0 .0406 - -

- 50.0 1.0 .0206 - -
- 90.0 1.0 .0078 - -

Sunflower - 38.0 1.0 .0311 - -

Source: Steffe et al., 1986.

n K σo γ̇
°
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6.11. Fruit and Vegetable Products

Product % Total T
Solids ( C) (-) (Pa sn) (s-1)

Apple
Pulp - 25.0 .084 65.03 -
Sauce 11.6 27 .28 12.7 160-340

11.0 30 .30 11.6 5-50
11.0 82.2 .30 9.0 5-50

Sauce 10.5 26 .45 7.32 .78-1260
9.6 26 .45 5.63 .78-1260
8.5 26 .44 4.18 .78-1260

Apricots
Puree 17.7 26.6 .29 5.4 -

23.4 26.6 .35 11.2 -
41.4 26.6 .35 54.0 -
44.3 26.6 .37 56.0 .5-80
51.4 26.6 .36 108.0 .5-80
55.2 26.6 .34 152.0 .5-80
59.3 26.6 .32 300.0 .5-80

Reliable,
Conc., green 27.0 4.4 .25 170.0 3.3-137

27.0 25 .22 141.0 3.3-137
" ripe 24.1 4.4 .25 67.0 3.3-137

24.1 25 .22 54.0 3.3-137
" ripened 25.6 4.4 .24 85.0 3.3-137

25.6 25 .26 71.0 3.3-137
" overripe 26.0 4.4 .27 90.0 3.3-137

26.0 25 .30 67.0 3.3-137
Banana

Puree A - 23.8 .458 6.5 -
Puree B - 23.8 .333 10.7 -
Puree - 22 .283 107.3 28-200
(17.7 Brix)

Blueberry
Pie Filling - 20 .426 6.08 3.3-530

Carrot
Puree - 25 .228 24.16 -

Green Bean
Puree - 25 .246 16.91 -

Guava
Puree - 23.4 .494 39.98 15-400
(10.3 Brix)

Mango
Puree - 24.2 .334 20.58 15-1000
(9.3 Brix)

n K γ̇
°
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Orange Juice
Concentrate
Hamlin, early - 25 .585 4.121 0-500
42-5 Brix - 15 .602 5.973 0-500

- 0 .676 9.157 0-500
- -10 .705 14.25 0-500

Hamlin, late - 25 .725 1.930 0.500
41.1 Brix - 15 .560 8.118 0.500

- 0 .620 1.754 0-500
- -10 .708 13.87 0-500

Pineapple, - 25 .643 2.613 0-500
early
40.3 Brix - 15 .587 5.887 0-500

- 0 .681 8.938 0-500
- -10 .713 12.18 0-500

Pineapple, late - 25 .532 8.564 0-500
41.8 Brix - 15 .538 13.43 0-500

- 0 .636 18.58 0-500
- -10 .629 36.41 0-500

Valencia, early - 25 .583 5.059 0-500
43.0 Brix - 15 .609 6.714 0-500

- -10 .619 27.16 0-500
Valencia, late - 25 .538 8.417 0-500

- 15 .568 11.80 0-500
41.9 Brix - 0 .644 18.75 0-500

- -10 .628 41.41 0-500
Naval

65.1 Brix - -18.5 .71 29.2 -
- -14.1 .76 14.6 -
- -9.3 .74 10.8 -
- -5.0 .72 7.9 -
- -0.7 .71 5.9 -
- 10.1 .73 2.7 -
- 19.9 .72 1.6 -
- 29.5 .74 .9 -

Papaya
Puree - 26.0 .528 9.09 20-450
(7.3 Brix)

Peach
Pie Filling - 20.0 .46 20.22 1.-140
Puree 10.9 26.6 .44 .94 -

17.0 26.6 .55 1.38 -
21.9 26.6 .55 2.11 -
26.0 26.6 .40 13.4 80-1000
29.6 26.6 .40 18.0 80-1000
37.5 26.6 .38 44.0 -
40.1 26.6 .35 58.5 2-300
49.8 26.6 .34 85.5 2-300
58.4 26.6 .34 440.0 -

Puree 11.7 30.0 .28 7.2 5-50
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11.7 82.2 .27 5.8 5-50
10.0 27.0 .34 4.5 160-3200

Pear
Puree 15.2 26.6 .35 4.25 -

24.3 26.6 .39 5.75 -
33.4 26.6 .38 38.5 80-1000
37.6 26.6 .38 49.7 -
39.5 26.6 .38 64.8 2-300
47.6 26.6 .33 120.0 .5-1000
49.3 26.6 .34 170.0 -
51.3 26.6 .34 205.0 -
45.8 32.2 .479 35.5 -
45.8 48.8 .477 26.0 -
45.8 65.5 .484 20.0 -
45.8 82.2 .481 16.0 -
14.0 30.0 .35 5.6 5-50
14.0 82.2 .35 4.6 5-50

Plum
Puree 14.0 30.0 .34 2.2 5-50

14.0 82.2 .34 2.0 5-50
Squash

Puree A - 25 .149 20.65 -
Puree B - 25 .281 11.42 -

Tomato
Juice Conc. 5.8 32.2 .59 .223 500-800

5.8 38.8 .54 .27 500-800
5.8 65.5 .47 .37 500-800
12.8 32.2 .43 2.0 500-800
12.8 48.8 .43 2.28 500-800
12.8 65.5 .34 2.28 500-800
12.8 82.2 .35 2.12 500-800
16.0 32.2 .45 3.16 500-800
16.0 48.8 .45 2.77 500-800
16.0 65.5 .40 3.18 500-800
16.0 82.2 .38 3.27 500-800
25.0 32.2 .41 12.9 500-800
25.0 48.8 .42 10.5 500-800
25.0 65.5 .43 8.0 500-800
25.0 82.2 .43 6.1 500-800
30.0 32.2 .40 18.7 500-800
30.0 48.8 .42 15.1 500-800
30.0 65.5 .43 11.7 500-800
30.0 82.2 .45 7.9 500-800

Source: Steffe et al., 1986.
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6.12. Polymer Melts

Polymer T

( C) (-) (Pa sn) (Pa sn) (s-1)

High impact 170 0.20 7.58 x 104 2.1 x 105 100-7000
polystyrene 190 0.21 4.57 x 104 1.48 x 105 100-7000

210 0.19 3.61 x 104 1.05 x 105 100-7000
Polystyrene 190 0.22 4.47 x 104 1.4 x 104 100-4500

210 0.25 2.38 x 104 9.2 x 103 100-4000
225 0.28 1.56 x 104 6.6 x 103 100-5000

Styrene Acrylonitril 190 0.21 9.0 x 104 2.2 x 104 100-9000
220 0.27 3.22 x 104 9.0 x 103 100-8000
250 0.35 1.11 x 104 4.2 x 103 100-8000

Thermoplastic 200 0.27 2.75 x 104 3.6 x 104 100-5000
 olefin 220 0.30 1.83 x 104 2.15 x 104 100-4000

240 0.28 1.99 x 104 1.35 x 104 100-3000
Acrylonitrile buta- 170 0.25 1.19 x 105 7.95 x 104 100-5500

diene styrene 190 0.25 6.29 x 104 4.4 x 104 100-6000
210 0.25 3.93 x 104 2.6 x 104 100-7000

Polypropylene 180 0.37 6.79 x 103 4.21 x 103 100-4000
190 0.41 4.89 x 103 3.02 x 103 100-3500
200 0.41 4.35 x 103 205 x 103 100-4000

Ethylene ethyl 170 0.38 1.21 x 104 5.4 x 103 100-6000
acrylate 190 0.43 6.91 x 103 3.5 x 103 100-4000

210 0.48 3.77 x 103 2.3 x 103 100-6000
High density 180 0.56 6.19 x 103 2.1 x 103 100-1000

polyethylene 200 0.59 4.68 x 103 1.52 x 103 100-1000
220 0.61 3.73 x 103 1.17 x 103 100-1000

Low density 160 0.41 9.36 x 103 6.3 x 103 100-4000
polyethylene 180 0.46 5.21 x 103 3.2 x 103 100-6500

200 0.47 4.31 x 103 1.7 x 103 100-6000
Nylon 220 0.63 2.62 x 103 1.6 x 103 100-2500

230 0.66 1.95 x 103 1.3 x 103 100-2000
235 0.66 1.81 x 103 1.1 x 103 100-2300

Polymethylmetha- 220 0.19 8.83 x 104 1.3 x 103 100-6000
crylate 240 0.25 4.27 x 104 6.0 x 103 100-6000

260 0.27 2.62 x 104 2.9 x 103 100-7000
Polycarbonate 280 0.64 8.39 x 103 1.54 x 103 100-1000

300 0.67 4.31 x 103 8.0 x 102 100-1000
320 0.80 1.08 x 103 4.2 x 102 100-1000

Source: Tadmor, Z. and C.G. Gogos. 1979.

n K ηo γ̇
°
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6.13. Cosmetic and Toiletry Products

Approximate parameters, at 25 C, for the apparent viscosity func-
tion based on the power law form of the model:

(Curve #): Product
( - ) (Pa s ) (1/s)

1: Shine On Lasting Color Nail Enamel*  0.86 754 3.0 - 99

2: Cover Girl Marathon Mascara* 0.24 191 0.1 - 75

3: Muppets Toothpaste, Bubble Gum Gel 0.28 117 0.1 - 90

4: Johnson’s Baby Sunblock Lotion* 0.28 75 0.1 - 50

5: Pond’s Cold Cream* 0.45 25 0.3 - 90

6: Oil of Olay Beauty Fluid 0.22 26 0.1 - 90

7: Head & Shoulders Shampoo 1.0 4 0.1 - 6

8: Jergens Lotion Enriched Liquid Soap 1.0 4 0.1 - 6

* Average values, original data indicate some time-dependent behavior.
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Approximate parameters, at 25 C, for the apparent viscosity func-
tion based on the power law form of the model:

(Curve #): Product
( - ) (Pa s ) (1/s)

1: Colgate Toothpaste* 0.22 121.7 3.0 - 700

2: Suave Balsam & Protein Shampoo 0.95 11.1 20.0 - 700

3: Vaseline Intensive Care Lotion 0.34 13.7 0.09 - 750

4: Moisturizing Sunblock Lotion* 0.32 9.1 0.05 - 700

5: Baby Magic Baby Lotion* 0.38 6.7 0.02 - 700

6: BAN Antiperspirant/Deodorant Roll-on 0.52 3.3 1.5 - 750

7: Dry Idea Dry Roll-on Deodorant 0.13 9.5 12.0 750

* Average values, original data indicate some time-dependent behavior.
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6.14. Energy of Activation for Flow for Fluid Foods

Fluid food Concentration  at 50 C 1

(-)  (kcal/g (mPa sn)
mol)

Depectinized apple 75  Brix 1.0 14.2 150.0

juice a 50  Brix 1.0 8.4 4.0

30  Brix 1.0 6.3 1.6

15  Brix 1.0 5.3 0.7

Cloudy apple juice a 40  Brix 1.0 5.8 4.9

30  Brix 1.0 5.1 2.0

Concord grape juice a 50  Brix 1.0 6.9 15.0

30  Brix 1.0 6.2 1.8

Cloudy apple juice a 65.5  Brix 0.65 9.1 258.5

50.0  Brix 0.85 6.1 25.0

Apple sauce a 11.0  Brix 0.30 1.2 730.0

Peach puree a 11.7  Brix 0.30 1.7 190.0

Pear puree a 16.0  Brix 0.30 1.9 375.0

Filtered orange juice b 18.0  Brix 1.0 5.8 1.5

10  Brix 1.0 5.3 0.8

Whole egg c 75 Wt.% water 1.0 5.9 3.7

Stabilized egg white c 88 Wt.% water 1.0 5.9 1.9

Plain yolk c 55 Wt.% water 1.0 6.4 48.2

Salted yolk c 10 Wt.% salt 1.0 8.3 153.0

Sugared yolk c 10 Wt.% sugar 1.0 6.9 32.1

1 = apparent viscosity at 100 1/s.

Source: a Rao (1986); b Saravacos (1970); c Scalzo et al. (1970)
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6.15. Extensional Viscosities of Newtonian Fluids

Trouton Ratio
Liquid (Pa s) (s-1) (-)

Silicone Oil 102.5 0.5-10 2.4-3.6

Polybutene 24 1.6-5 2.7-3.3

Polybutene 23 2-10 2.6-3.8

Corn Syrup 25 - 4

Oil 750 0.08-0.14 3.1-3.5

Maltose Sryup 104 2-5 5

Glycerol-water 0.357 4000-9000 1.7-3.4

Glycerol-water 0.4-1.7 40-180 2.7-3.3

Glycerol-water 0.12-0.25 200-4000 2.4-3.9

Viscasil 30 1-30 2.4-3.9

Source: Gupta and Sridhar, 1987.

ηE ε̇h
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6.16. Extensional Viscosities of Non-Newtonian Fluids

Solute Solvent Conc. Trouton

(%) (s-1) ( ) Ratio
(-)

PAA Glycerol 1.5 0.1-10 2-8E3 -
PAA Water 1.0 8-230 2.4-250 -
PAA Glycerol 1.0 1-10 - 0.1-6.0
PAA Glycerol 0.175-0.5 0.17-1.4 - 20-1000
PAA Glycerol 0.5 0.1-0.2 1-5E4 -
PAA Maltose 0.1 0.5-5.0 - 70
PAA Water 0.1 100-750 - 3000
PAA Water 0.1 40-80 - 250-400
PAA Water 0.01-0.5 33-19000 - 500-29000
PAA Corn Syrup 0.05 - - 300
PAA Glycerol 0.01-0.03 4-17 30-100 -
PAA Glycerol 0.005-0.05 50-1400 1-100 -
PAA Water 0.0051 50-800 0.5-25 -
PEO Sucrose 3.0 1-20 20-500 -
PEO Glycerol 3.0 0.4-2.0 0.4-7.0E6 -
PEO Water 0.1 100-750 8-11.4 -
PEO Water 0.1 40-80 - 1500-2400
PIB Decalin 6.4-11.6 2-100 0.5-7 -
PIB Kerosene 3.0-4.0 3-100 - 1.2-40
PIB Polybutene 0.18 0.4-3.0 - 3-30
XG Glycerol 0.03-0.05 20-40 1-10 -
XG Glycerol 0.005-0.01 50-1400 1-8 -
HPC Water 2.0 0.1-1.0 - 2.0-5.0
HPC Acetic Acid 40.0 0.01-10.0 - 10
HC Jet Fuel 0.4-1.0 3-40 - 80-2000
PU DMF 18-30 - 8-30 -

PAA,polyacrylamide; PEO,polyethylene oxide; PIB,poly-isobutylene;XG,
xanthan gum; HPC, hydroxy-propylcellulose; HC, hydrocarbon; PU,
polyurethane; DMF, dimethylformamide.

Source: Gupta and Sridhar, 1987.

ε̇h ηE

Pa s
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6.18. Fanning Friction Factors: Power Law Fluids
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6.19. Creep (Burgers Model) of Salad Dressing

Creamy-style Salad
Dressing at 2.8 C (cm2 dyne-1) (cm2 dyne-1) (s) (P)

Regular, bottled1 0.000704 0.00100 16.2 79800
Reduced Calorie, bottled1 0.00182 0.00192 43.2 148800
Regular, bottled1 0.000490 0.000481 18.5 587400
Reduced Calorie, bottled1 0.000870 0.00370 26.1 672000
Regular, dry mix2 0.00161 0.000980 8.92 19800
Regular, dry mix2 0.00164 0.00208 2.42 3600

1 Constant Applied Shear Stress: = 55.2 dyne cm2

2 Constant Applied Shear Stress: = 22.8 dyne cm2

Source: Paredes et al., 1989

The above constants were determined for the Bugers model (Eq.
[5.22]) written in terms of the shear creep compliance function:

Results are typical of creamy-style salad dressing purchased in a
bottle or made from dry mix. Creep testing may be useful in con-
sidering the stability of salad dressing.
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°
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6.20. Oscillatory Data for Butter

Approximatemathematical parameters describing the above curves:
and

T
( C) (Pa s1+b) ( - ) (Pa sd) ( - )

 5 1,073,300 -1.0 4,395,900 0.18

10   350,100 -1.0 1,339,500 0.16

15   140,400 -1.0   561,400 0.16

20    35,000 -1.0   151,700 0.17
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6.21. Oscillatory Data Iota-Carrageenan Gel

This figure illustrates the effect of temperature in transforming a

gel into a solution. Iota-carrageenan (1%) was prepared by dis-

persing the gum in cold water and heating for 15 min. The frequency

sweep was conducted at a strain amplitude of 8% using a coaxial

cylinder geometry ( ). A structured gel is observed at 25 C

where the storage modulus is only slightly dependent on frequency.

The storage modulus and the loss modulus are almost the same at

35 C. Behavior typical of a macromolecular solution (the storage

modulus is less than the loss modulus) is observed at 39 C.
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6.22. Storage and Loss Moduli of Fluid Foods

                     

Product
( C) (Pa sb) ( - ) (Pa sd) ( - ) (rad/s)

Mustard1

fine 25  800.6 0.120  149.5 0.177 0.01 - 100

standard 25  897.5 0.130  185.9 0.171 0.01 - 100

course 25 1160.0 0.135  265.0 0.139 0.01 - 100

Tomato Paste2 40 8434.0 0.117 2101.0 0.153 5.0 - 55.0

Blueberry Pie 40 278.3 0.17 64.2 0.26 1 - 100
Filling3

85 237.9 0.13 45.5 0.26 1-100

Cookie Dough4 RT* 4.66E7 1.49 1.20E7 1.30 0.01-100

Cracker Dough4 RT* 6.50E6 1.24 2.10E6 1.12 0.01-100

Mozzarella
Cheese5

natural 70 22,700 0.17 10,300 0.19 0.01 - 100

with 1% Ca 70 59,200 0.20 19,800 0.14 0.01 - 100
caseinate

with 2% Ca 70 15,900 0.21 19,800 0.16 0.01 - 100
caseinate

*RT = Room Temperature
1 from Aguilar et al., 1991.
2 from Rao and Cooley, 1992.
3 from Steffe et al., 1989.
4 from Menjivar and Faridi, 1994.
5 from Nolan et al., 1989.

G ′ = aωb G ′′ = cωd

T a b c d ω
°
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Nomenclature

shift factor, dimensionless

area, m2

initial sample area, m2

height of mixer blade, m
bulk compression creep compliance, Pa-1

bulk compression complex compliance, Pa-1

bulk compression storage compliance, Pa-1

bulk compression loss compliance, Pa-1

, dimensionless
specific heat, J kg-1 K-1

mass concentration, g/dl or g/100 ml
impeller blade or vane diameter, m
equivalent diameter, m
diameter, m
tensile creep compliance, Pa-1

tensile complex compliance, Pa-1

tensile storage compliance, Pa-1

tensile loss compliance, Pa-1

diameter of extrudate, m
Young’s modulus or modulus of elasticity, Pa
tensile relaxation modulus, Pa
energy of activation for flow, cal/g mole

tensile complex modulus, Pa

tensile storage modulus, Pa
tensile loss modulus, Pa
Fanning friction factor, dimensionless
force, N
acceleration due to gravity, 9.81 m s-2

shear modulus, Pa
shear relaxation modulus, Pa

shear complex modulus, Pa

aT

A

Ao

b

B

B *

B ′
B ′′
c σo/σw

cp

C

d
de

D
D

D*

D ′
D ′′
De

E

E

Ea

E *

E ′
E ′′
f

F

g

G

G

G*



386 Nomenclature

shear storage modulus, Pa
shear loss modulus, Pa
height, m
asympotic or residual thickness, m

effective height, m

initial sample height, m

shear creep compliance, Pa-1

instantaneous compliance, Pa-1

retarded compliance, Pa-1

shear complex compliance, Pa-1

shear storage compliance, Pa-1

shear loss compliance, Pa-1

falling ball viscometer constant [ ], m2 s-2

glass capillary viscometer constant [ ], m2 s-2

thermal conductivity, W m-1 K-1

friction loss coefficient, dimensionless

mixer viscometer constant, rad-1

bulk modulus, Pa
consistency coefficient, Pa sn

bulk compression relaxation modulus, Pa

bulk compression complex modulus, Pa

bulk compression storage modulus, Pa
bulk compression loss modulus, Pa
extensional consistency coefficient, Pa sm

temperature dependent constant

temperature and concentration dependent constant

shear rate, temperature and conc. dependent constant

variable length, m
length, m
initial length or length of undeformed sample, m

extensional flow behavior index, dimensionless
torque, N m

G ′
G ′′
h

ha

ho

ho

J

J0

J1

J *

J ′
J ′′

2R 2g /(9L)k

ghπR 4/(8LV)k

k

kf

k ′
K

K

K

K*

K ′
K ′′
KE

KT

KT ,C

Kγ̇,T ,C

l

L

Lo

m

M
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torque to overcome yield stress, N m

end effect torque on a bob, N m

flow behavior index, dimensionless
average flow behavior index, dimensionless
first normal stress difference [ ], Pa

second normal stress difference [ ], Pa

Boussinesq number, dimensionless

Deborah number, dimensionless

Froude number [ ], dimensionless

Hedstrom number [ ], dimensionless

power number [ ], dimensionless

Newtonian fluid Reynolds number [ ], dimensionless

Bingham fluid Reynolds number [ ], dimensionless

impeller Reynolds number [ ], dimensionless

Power law fluid Reynolds number, dimensionless

Trouton ratio, dimensionless

Weber number [ ], dimensionless

Weissenberg number [ ], dimensionless

power input to a mixer [ ], N m s-1

pressure, Pa
static pressure (absolute) in the undisturbed flow, Pa

exit pressure (absolute) of a slit viscometer, Pa

exit pressure of a slit viscometer, Pa

liquid vapor pressure (absolute), Pa

volumetric flow rate in a pipe, m3 s-1

measured volumetric flow rate, m3 s-1

volumetric flow rate without slip, m3 s-1

radial coordinate, m
universal gas constant, 1.987 cal/(g-mole K)
radius, m

Mo

Me

n

n

N1 σ11 − σ22

N2 σ22 − σ33

NBo

NDe

Ω2d /gNFr

D2σoρ/(µpl)2NHe

P /(d5Ω3ρ)NPo

NRe Duρ/µ

NRe,B Duρ/µpl

d2Ωρ/µNRe,I

NRe,PL

NTr

ρN2d3/σstNWe

NWi Ψ1Ω/η

P MΩ
P

Patm

Pex

Pex

Pvap

Q

Qm

Qws

r

R

R
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bob radius, m

radius of barrel in converging die, m

cup radius, m

radius of undeformed cylinder, m

initial radius of sample, m

critical radius, m

radius of shaft, m

radius of truncated portion of cone, m

time, s
temperature, K or C
reference temperature, K or C

velocity, m s-1

turbulent velocity [ ], dimensionless

friction velocity [ ], m s-1

velocity in the and directions, m s-1

velocity in the , and directions, m s-1

effective slip velocity, m s-1

terminal velocity, m s-1

volumetric average velocity [ ], m s-1

volume of mixing vessel, m3

volume of a glass capillary viscometer bulb, m3

width of slit or blade, m
work output per unit mass, J kg-1

constant force, N
Cartesian coordinates, m

pipe length required for fully developed flow, m

distance from pipe wall into fluid [ ], m

distance from the tube wall [ ], dimensionless

height above a reference plane, m
distance between two points (mixer viscometer), m
axial coordinate, m

Rb

Rb

Rc

Ro

Ro

Ro

Rs

RT

t

T °
Tr °

u

u+ u /u*

√σw/ρ = u√f /2u*

u1,u2,u3 x1,x2 x3

ur,uz,uθ r z θ

us

ut

Q/(πR 2)u

V

V

w

W

W

x1,x2,x3

XE

y R − r

y+ u*ρy /µ
z

z

z
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, dimensionless
, dimensionless

kinetic energy correction factor, dimensionless
effective slip coefficient [ ], m Pa-1 s-1

corrected slip coefficient [ ], m2 Pa-1 s-1

angle of shear, rad
shear strain, dimensionless
amplitude of strain function [ ], dimensionless

constant shear strain, dimensionless

strain at the rim of a parallel plate, dimensionless

normalized shear strain ( ), dimensionless

shear rate, s-1

average shear rate, s-1

shear rate at the bob, s-1

shear rate at the rim of a parallel plate, s-1

shear rate at the wall, s-1

apparent wall shear rate [ ], s-1

phase shift or phase angle, rad
change in height, m
linear displacement, Pa
pressure drop, Pa
entrance pressure loss, Pa

entrance pressure loss due to extensional flow, Pa

entrance pressure loss due to shear flow, Pa

radial displacement, Pa
change in time, s
Cauchy strain [ ], dimensionless

Hencky strain [ ], dimensionless

Hencky strain rate, s-1

constant Hencky strain rate, s-1

biaxial extensional strain rate, s-1

α Rc/Rb

α d /D
α
β us/σw

βc βR

γ
γ
γo γ = γo sin(ωt)

γo

γR

γ* γ/γo

γ̇
γ̇a

γ̇b

γ̇R

γ̇w

4Q/(πR 3)Γ
δ
δh

δL

δP

δPen

δPen ,E

δPen ,S

δR

δt

εc (L − Lo)/Lo

εh ln(L/Lo)

ε̇h

ε̇ho

ε̇B
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constant biaxial extensional strain rate, s-1

average extensional strain rate in converging flow, s-1

average extensional strain rate at the die, s-1

apparent viscosity, Pa s
biaxial extensional viscosity, Pa s

biaxial growth function, Pa s

equilibrium apparent viscosity, Pa s

tensile extensional viscosity, Pa s

tensile growth function, Pa s

inherent viscosity, dl g-1

intrinsic viscosity, dl g-1

limiting viscosity at zero shear rate, Pa s

planar extensional viscosity, Pa s

reference apparent viscosity, Pa s

reduced viscosity, dl g-1

relative viscosity, dimensionless

specific viscosity, dimensionless

limiting viscosity at infinite shear rate, Pa s

complex viscosity, Pa s

dynamic viscosity, Pa s

out of phase component of , Pa s

angle, rad
apex angle of cone at bottom of bob, degrees
half angle of converging die, degrees or rad
circumferential coordinate, rad
structural parameter, dimensionless
time constant in Bird-Leider equation, dimensionless
equilibrium value of structural parameter, , dimensionless

relaxation time, s

retardation time, s

Newtonian viscosity, Pa s

ε̇Bo

ε̇E

ε̇E,R

η
ηB

ηB
+

ηe

ηE

ηE
+

ηinh

ηint

ηo

ηP

ηr

ηred

ηrel

ηsp

η∞

η*

η′

η*η′′
θ
θ
θ
θ
λ
λ
λe λ

λrel

λret

µ
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corrected viscosity, Pa s

plastic viscosity of a Bingham fluid, Pa s
reference Newtonian viscosity, Pa s
kinematic viscosity ( ), m2 s-1

Poisson’s ratio, dimensionless
density, kg m-3

liquid density, kg m-3

sphere density, kg m-3

shear stress, Pa
average shear stress, Pa

shear stress at bob, Pa

biaxial (radial) stretching stress, Pa

shear stress at cup, Pa

shear stress on ends of vane, Pa

equilibrium shear stress, Pa

tensile stretching stress, Pa

constant tensile stretching stress, Pa

stress on plane perpendicular to i in the direction of j, Pa

yield stress, Pa

initial shear stress, Pa

constant shear stress, Pa

amplitude of the stress function [ ], Pa

shear stress at the rim of a parallel plate, Pa

surface tension, N m-1

shear stress at the wall of tube or slit, Pa

normalized shear stress ( ), dimensionless

shear stress growth function, Pa

die exit effect integral, dimensionless
sweep angle, rad
first normal stress coefficient, Pa s2

second normal stress coefficient, Pa s2

µc

µpl

µr

ν µ/ρ
ν
ρ
ρl

ρs

σ
σa

σb

σB

σc

σe

σe

σE

σEo

σij

σo

σo

σo

σo σ = σo sin(ωt − δ)

σR

σst

σw

σ* σ/σo

σ21
+

Φ
Ψ
Ψ1

Ψ2



392 Nomenclature

angular velocity at r, rad s-1

angular velocity [2 (rpm)/60], rad s-1

ω
Ω π
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Index

Activation energy, 33, 85
Adams Consistometer, 67
Adhesiveness, 75
Agar gel, 330
Alveograph, 66
Amplitude ratio, 314
Anelasticity, 8
Angle of shear, 5
Apparent viscosity, 24
Apparent wall shear rate, 100
Apple tissue, 340, 343
Apricots, 240, 250
Arrhenius equation, 33, 85
Average shear rate, 165, 216
Average shear stress, 215

Bagley plot, 112
Biaxial extension, 45
Bingham plastic fluid

definition, 20
in concentric cylinder viscometer,
163
in mixer viscometer, 199
minimum bob speed, 210
tube flow rate, 103
tube velocity profile, 105

Bioyield point, 71
Bird-Leider equation, 310
Bostwick Consistometer, 67
Boussinesq number, 53
Brabender-FMC Consistometer, 70
Brinkman number, 183
Brookfield Viscometer, 69
Bubble growth, 40
Buckingham pi theorem, 186
Buckingham-Reiner equation, 103
Bulk compression, 294
Bulk modulus, 11
Bulk viscosity, 53
Burgers model, 50, 307, 343

Butter, 258

Calendering, 40
Cannon-Fenske viscometer, 3, 94
Cantilever beam, 10
Capillary viscometer, 94

errors in operating, 110
Carrageenan gum solution, 77
Casson equation, 24

with milk chocolate, 82
Casson fluid, 149
Cauchy strain, 4
Cavitation, 182, 236
Cessation of steady shear flow, 48,
295
Cessation of steady tensile extension,
297
Characteristic time

of material, 333
of process, 333

Cheese spread, 283
Chemorheology, 321
Chewiness, 75
CMC solution, 146
Coating, 91
Coefficient of viscosity, 19
Cogswell’s equations, 264, 287
Cohesiveiness, 75
Complex compliance, 316
Complex modulus, 49, 315
Complex viscosity, 49, 315
Compression-extrusion cell, 70, 71
Compressive stress, 6
Concentric cylinder viscometry, 158

Bingham plastic fluids, 162
cavitation, 236
end correction, 174
Krieger method, 165
Newtonian approximation, 164
Newtonian fluids, 161
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power law approximation, 165
power law fluids, 162
secondary flow, 182
shear rate calculations, 163
simple shear approximation, 164
viscous heating, 177
wall effects (slip), 181

Cone and plate viscometry, 3, 169,
226, 227

truncated cone, 183
Cone penetrometer, 66
Conservation of momentum equa-
tions, 141
Constitutive equation, 1, 7
Converging die, 263, 287, 289
Corn starch, 79
Corn syrup, 150
Couette system, 158
Cox-Merz rule, 48, 338
Creep, 48, 295, 304
Creep compliance, 48, 305, 343
Critical radius

from bob, 225
tube flow, 105

Cross equation, 24

Darcy friction factor, 129
Data corrections

concentric cylinder viscometer, 174
cone and plate viscometer, 182
parallel plate viscometer, 182
tube viscometer, 110

Deborah number, 12, 332
Dextrin solution, 329
Die exit effect integral, 269
Die swell

see jet expansion

Dilatent behavior, 20
Dimensional analysis, 186
DIN standard, 176, 214
Disk surface viscometer, 54
Dough testing equipment, 65
Dynamic viscosity, 19, 49, 316, 348

Edge failure, 183
Elastic behavior, 49
Elastic solids, 8
Elastoplastic material, 11
Electrorheology, 55
Ellis equation, 24
Elongational viscosity, 39
End correction

concentric cylinder viscometer, 174
tube viscometer, 111

Energy of activation, 33, 85
Entrance length in tube, 114
Equation of state, 7
Extensigraph, 65
Extensional-thickening, 45
Extensional-thinning, 45
Extensional flow, 39

biaxial, 43, 258, 283
planar, 43
tensile, 43
uniaxial, 255

Extensional viscosity, 39
biaxial, 45
planar, 46
tensile, 45

Extrudate diameter, 122
Extrudate drawing, 40, 274
Extrudate swell

see jet expansion

Falling ball viscometer, 69, 82
Fanning friction factor, 128, 131
Fano flow, 276
Farinograph, 65
Fiber spinning, 274
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Finite bob in infinite cup, 168
First normal stress difference

definition, 16
from cone and plate data, 171
in jet expansion, 122

Flexural testing, 9
Fluidity, 19
FMC Consistometer, 70
Fracturability, 75
Frequency sweep, 320
Friction loss coefficient, 133, 135,
136
Froude number, 189

Gibson’s equations, 268, 289
Glass capillary viscometer, 2, 94, 125

kinetic energy correction, 127
Glass transition temperature, 34
Gleissels’s mirror relation, 48
Gumminess, 75

Hardness, 75
Hedstrom number, 109
Helical screw rheometer, 185
Helipath Stand, 69
Hencky strain, 5
Herschel-Bulkley fluid, 20

tube flow rate, 103
tube velocity profile, 106

Hoeppler Viscometer, 70
Hole pressure error, 120
Honey, 82
Hooke’s law, 8, 298
Hookean behavior, 49
Hystersis loop, 29

Impeller Reynolds number, 188
Inelastic fluids, 19
Infinite cup solution, 168, 221, 223,
225
Inherent viscosity, 27
Interfacial rheology, 53
Interfacial viscometer, 54

Intrinsic viscosity, 27

Jet expansion, 16, 47, 121

Kelvin model, 50, 298, 306
Kinematic viscosity, 19, 127
Kinetic energy correction, 110, 127
Kinetic energy correction factor, 131,
133
Kramer Shear Cell, 70, 71
Krieger method, 165

Lambda carrageenan solution, 330
Laminar flow criteria

concentric cylinder viscometer, 182
tube viscometer, 107

Laun’s rule, 48
Leibnitz’ rule, 99, 173
Limiting viscosity

at infinite shear, 23
at zero shear, 23

Linear elastic material, 11
Linear viscoelastic behavior, 47, 49,
318
Linear viscoelasticity, 296
Loss compliance, 316
Loss modulus, 49, 315, 348
Lubricated squeezing flow, 277

Magnetorheological fluids, 55
Margules equation, 162
Matching viscosity method, 192
Maxwell model, 50, 298, 318, 341
Mechanical analogues, 298
Mechanical energy balance, 128, 152
Melt flow index, 77
Melt Flow Indexer, 76
Melt fracture, 16
Melt spinning, 274
Milk chocolate, 81
Mixer viscometer, 3
Mixer viscometer constant

definition, 190
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matching viscosity method, 193,
199
slope method, 191
variables influencing, 194

Mixer viscometry, 185
average shear rate, 190
Bingham plastic fluids, 199
matching viscosity method, 192,
194
power law fluids, 190, 195, 237
rheomalaxis, 208
slope method, 191, 194

Mixing
commercial, 185
impellers, 186
power consumption, 187

Mixograph, 65
Modeling rheological behavior, 32

concentration effects, 34
shear effects, 86
temperature effects, 34, 86

Modulus of elasticity
see Young’s modulus

Mooney-Couette bob, 176, 233

Nahme number, 119
Newtonian behavior, 49
Newtonian fluid

definition, 19
in concentric cylinder viscometer,
162, 213
in glass capillary viscometer, 125
in parallel plate viscometer, 173
in slit viscometer, 122
tube flow rate, 101
tube velocity profile, 103
turbulent pipe flow, 138, 155

Non-linear elastic material, 11
Non-linear viscoelasticity, 296
Normal stress coefficient, 15
Normal stress difference, 16

On-line viscometer

capillary flow type, 58
concentric cylinder type, 59
falling piston type, 62
off-set rotating sensor, 60
vibrating rod type, 60
vibrating sphere type, 61

Opposing jets, 272
Orange juice concentrate, 86
Orifice viscometer, 68
Oscillatory testing, 48, 336

application of stress and strain, 313
frequency sweep, 321
operating modes, 318
strain sweep, 320
temperature changes, 322
time sweep, 322
typical data, 324

Ostwald viscometer, 94

Parallel plate plastometer, 280
Parallel plate viscometer, 3
Parallel plate viscometry, 172, 229
Peanut butter, 291
Phase shift, 314
Pipe viscometer, 3, 94, 96
Pipeline design calculations, 128
Planar extension, 45
Poiseuille-Hagen equation, 101, 125
Poisson’s ratio, 9
Powell-Eyring equation, 24
Power law fluid, 20

in concentric cylinder viscometer,
162, 212, 216
in cone and plate viscometer, 171
in mixer viscometer, 195
in parallel plate viscometer, 173
tube flow rate, 102
tube velocity profile, 104
turbulent pipe flow, 140, 156

Power number, 188
Pseudoplastic behavior, 20
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Rabinowitsch-Mooney equation, 97,
100, 145, 147
Rapid Visco Analyser, 68
Recoil, 17, 47, 48, 295, 305
Recoverable shear, 122
Reduced viscosity, 27
Reiner-Philippoff equation, 24
Reiner-Riwlin equation, 163
Relative viscosity, 27
Relaxation time, 301, 341
Representative shear rate, 165, 216
Representative shear stress, 215
Reynolds number

Bingham, 108
Newtonian, 107
power law, 107

Rheodestruction, 28
Rheogoniometer, 18
Rheogram, 19
Rheological equation of state, 1, 7
Rheological instruments, 2
Rheomalaxis, 28

evaluation by mixer viscometry,
208, 250

Rheopectic material, 28
Rising bubble viscometer, 69
Rod climbing, 47
Rolling ball viscometer, 70
Rupture point, 71

Sagging, 40
Salad dressing, 223, 227
Scott equation, 282
Searle system, 158
Second normal stress difference

definition, 16
from parallel plate data, 174

Secondary flow, 182
Shear-thickening, 20
Shear-thinning, 20, 23
Shear modulus, 8, 300
Shear rate

definition, 13
in mixing, 51
in spreading or brushing, 51
tube flow, 52
typical values, 15

Shear stress, 6, 13
Sheet stretching, 40
Silicone polymer, 335
Silly putty, 334
Simple compression, 71
Sink flow analysis, 263
Skim milk curd, 343
Slip

concentric cylinder viscometer, 181
oscillatory testing, 336
tube viscometer, 116

Slit viscometry, 122, 150
Slope method, 191
Small amplitude oscillatory testing,
49
Sodium carboxymethylcellulose solu-
tion, 146
Sol-gel transition, 28
Solid behavior

elastoplastic, 12
linear elastic, 12
non-linear elastic, 12

Solution viscosities, 27
Soy dough, 143, 287, 289
Specific viscosity, 27
Spinning, 274
Spreadability, 66
Springiness, 75
Squeeze film viscometer, 280
Squeezing flow, 276

lubricated, 277, 291
nonlubricated, 279

Start-up flow, 48, 295, 310
Steady shear flow, 13
Stefan equation, 281
Step strain, 48, 295, 299
Stoke’s law, 82
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Storage compliance, 316
Storage modulus, 49, 315, 348
Strain, 4, 313

axial, 9
Cauchy, 4
concentric cylinders, 324
cone and plate, 324
engineering, 4
Hencky, 5
lateral, 9
rotational, parallel plates, 321
true, 5
volumetric, 11

Strain sweep, 318
Stress, 4, 313

compressive, 7
tensile, 7

Stress overshoot, 310
mayonnaise, 311

Stress relaxation, 48, 299, 342
Stress relaxation modulus, 48, 299
Stress sweep, 318
Stress tensor, 14
Stringiness, 75
Structural parameter, 30
Surface loading, 4

T-bars, 69
Tan delta, 316, 348
Taylor vortices, 182
Tensile creep, 297
Tensile recoil, 297
Tensile start-up, 297
Tensile step strain, 297
Tensile stress, 6
Tension-thickening, 45
Tension-thinning, 45
Texture Profile Analysis, 72, 73
Texture profile curve, 74
Thixotropic material, 28

structure, 37
Three-point bending, 10

Time-dependent functions, 27, 50
Time-dependent thickening, 28
Time-dependent thinning, 28
Time-independent functions, 13, 49
Time sweep, 321
Tomato ketchup, 218, 226, 235
Torsional flow

see parallel plate viscometry
Trouton number, 47, 288, 291
Trouton viscosity, 39
Truncated cone, 183
Tubeless siphon, 16, 47, 276
Turbulent pipe flow, 138

Uniaxial compression, 8
Uniaxial extension, 43
Unlubricated squeezing flow, 279
Unsteady shear testing

oscillatory, 294
transient, 294

U-tube viscometer, 94

Vane method
see yield stress

Velocity profile in tube flow
Bingham plastic fluid, 105
Herschel-Bulkley fluid, 106
Newtonian fluid, 103
power law fluid, 104
turbulent flow, 138

Vibrational viscometer, 4
Visco-Amylograph, 68
Viscoelastic behavior

mechanical analogues, 298
Viscoelastic functions, 338
Viscometric flow, 15
Viscometric functions, 13, 15, 338
Viscosity

apparent, 24
extensional, 39
inherent, 26
intrinsic, 26
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limiting at infinite shear, 23
limiting at zero shear, 23, 301
reduced, 26
relative, 26
solution, 26
specific, 26

Viscous behavior, 49
Viscous heating

concentric cylinder viscometer, 177,
235
tube flow, 118

Volume loaded viscometer, 4

Wall effects
see slip

Warner-Bratzler Shear, 67
Weber number, 189
Weissenberg number, 189
Weissenberg effect, 16, 47
Williams-Landel-Ferry equation, 34
Wind-up characteristics, 207, 250

Yield number, 38
Yield stress

concentric cylinder viscometer, 163
definition, 35
dynamic, 37, 202
in Bingham plastic fluid, 21
in Herschel-Bulkley fluid, 21
measurement methods, 36
oscillatory testing, 336
static, 37, 202
tube viscometer, 121
vane method, 200, 243, 244, 247

Young’s modulus, 9

Zahn viscometer, 68
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