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Preface

The introductory physics course, variously known as “‘general physics” or
“college physics,” is usually a two-semester in-depth survey of classical topics
capped off with some selected material from modern physics. Indeed the name
“college physics” has become a euphemism for introductory physics without
calculus. Schaum’s Outline of College Physics was designed to uniquely
complement just such a course, whether given in high school or in college. The
needed mathematical knowledge includes basic algebra, some trigonometry, and a
tiny bit of vector analysis. It is assumed that the reader already has a modest
understanding of algebra. Appendix B is a general review of trigonometry that
serves nicely. Even so, the necessary ideas are developed in place, as needed. And
the same is true of the rudimentary vector analysis that’s required—it too is taught as
the situation requires.

In some ways learning physics is unlike learning most other disciplines. Physics
has a special vocabulary that constitutes a language of its own, a language
immediately transcribed into a symbolic form that is analyzed and extended with
mathematical logic and precision. Words like energy, momentum, current, flux,
interference, capacitance, and so forth, have very specific scientific meanings.
These must be learned promptly and accurately because the discipline builds layer
upon layer; unless you know exactly what velocity is, you cannot know what
acceleration or momentum are, and without them you cannot know what force is,
and on and on. Each chapter in this book begins with a concise summary of the
important ideas, definitions, relationships, laws, rules, and equations that are
associated with the topic under discussion. All of this material constitutes the
conceptual framework of the discourse, and its mastery is certainly challenging in
and of itself, but there’s more to physics than the mere recitation of its principles.

Every physicist who has ever tried to teach this marvelous subject has heard the
universal student lament, “I understand everything; I just can’t do the problems.”
Nonetheless most teachers believe that the “doing” of problems is the crucial
culmination of the entire experience, it’s the ultimate proof of understanding and
competence. The conceptual machinery of definitions and rules and laws all come
together in the process of problem solving as nowhere else. Moreover, insofar as the
problems reflect the realities of our world, the student learns a skill of immense
practical value. This is no easy task; carrying out the analysis of even a
moderately complex problem requires extraordinary intellectual vigilance and
unflagging attention to detail above and beyond just “knowing how to do it.”
Like playing a musical instrument, the student must learn the basics and then
practice, practice, practice. A single missed note in a sonata is overlookable; a
single error in a calculation, however, can propagate through the entire effort
producing an answer that’s completely wrong. Getting it right is what this book is
all about.

Although a selection of new problems has been added, the 9th-edition revision
of this venerable text has concentrated on modernizing the work, and improving the
pedagogy. To that end, the notation has been simplified and made consistent
throughout. For example, force is now symbolized by F and only F;, thus
centripetal force is F¢, weight is Fyy, tension is Fr, normal force is Fy, friction is
Fy, and so on. Work (W) will never again be confused with weight (Fy), and period

iii
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v

SIGNIFICANT FIGURES

(T) will never be mistaken for tension (F7). To better match what’s usually written in
the classroom, a vector is now indicated by a boldface symbol with a tiny arrow
above it. The idea of significant figures is introduced (see Appendix A) and
scrupulously adhered to in every problem. Almost all the definitions have been
revised to make them more precise or to reflect a more modern perspective. Every
drawing has been redrawn so that they are now more accurate, realistic, and
readable.

If you have any comments about this edition, suggestions for the next edition, or
favorite problems you’d like to share, send them to E. Hecht, Adelphi University,
Physics Department, Garden City, NY 11530.

Freeport, NY EuGeNE HEcHT
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Chapter 1

Introduction to Vectors

A SCALAR QUANTITY, or scalar, is one that has nothing to do with spatial direction. Many
physical concepts such as length, time, temperature, mass, density, charge, and volume are scalars;
each has a scale or size, but no associated direction. The number of students in a class, the quan-
tity of sugar in a jar, and the cost of a house are familiar scalar quantities.

Scalars are specified by ordinary numbers and add and subtract in the usual way. Two candies in one
box plus seven in another give nine candies total.

A VECTOR QUANTITY is one that can be specified completely only if we provide both its mag-
nitude (size) and direction. Many physical concepts such as displacement, velocity, acceleration,
force, and momentum are vector quantities. For example, a vector displacement might be a change
in position from a certain point to a second point 2 cm away and in the x-direction from the
first point. As another example, a cord pulling northward on a post gives rise to a vector force
on the post of 20 newtons (N) northward. One newton is 0.225 pound (1.00 N = 0.225 1b). Simi-
larly, a car moving south at 40 km/h has a vector velocity of 40 km/h-soUTH.

A vector quantity can be represented by an arrow drawn to scale. The length of the arrow is
proportional to the magnitude of the vector quantity (2 cm, 20 N, 40 km/h in the above examples).
The direction of the arrow represents the direction of the vector quantity.

In printed material, vectors are often represented by boldface type, such as F. When written by hand,
the designations F and F are commonly used. A vector is not completely defined until we establish some
rules for its behavior.

THE RESULTANT, or sum, of a number of vectors of a particular type (force vectors, for example)
is that single vector that would have the same effect as all the original vectors taken together.

GRAPHICAL ADDITION OF VECTORS (POLYGON METHOD): This method for finding
the resultant R of several vectors (A, B, and C) consists in beginning at any convenient point and
drawing (to scale and in the proper directions) each vector arrow in turn. They may be taken in
any order of succession: A+ B+ C =C+A+B=R. The tail end of each arrow is positioned at
the tip end of the preceding one, as shown in Fig. 1-1.

End

VAN
o

X\W)\\“Sgﬂ
i
==}

>l

Start
Fig. 1-1
1
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2 INTRODUCTION TO VECTORS [CHAP. 1

The resultant is represented by an arrow with its tail end at the starting point and its tip end at the
tip of the last vector added. If R is the resultant, R = |R| is the size or magnitude of the resultant.

PARALLELOGRAM METHOD for adding two vectors: The resultant of two vectors acting at
any angle may be represented by the diagonal of a parallelogram. The two vectors are drawn as
the sides of the parallelogram and the resultant is its diagonal, as shown in Fig. 1-2. The direc-
tion of the resultant is away from the origin of the two vectors.

Fig. 1-2

SUBTRACTION OF VECTORS: To subtract a vector B
of B and add individually to vector A, that is, A — B = A +

—

from a vector A, reverse the direction
(—B).

THE TRIGONOMETRIC FUNCTIONS are defined in relation to a right angle. For the right tri-
angle shown in Fig. 1-3, by definition

i B i A i B
sin 0 — opposite _ B esh= adjacent I opposﬁe _B
hypotenuse C hypotenuse C adjacent A4
We often use these in the forms
B=Csin 6 A= Ccosf B= Atan 60

hypotenuse
c opposite—6
B
0
adjacent-6
A
Fig. 1-3

A COMPONENT OF A VECTOR is its effective value in a given direction. For example, the x-
component of a displacement is the displacement parallel to the x-axis caused by the given displa-
cement. A vector in three dimensions may be considered as the resultant of its component vectors
resolved along any three mutually perpendicular directions. Similarly, a vector in two dimensions
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may be resolved into two component vectors acting along any two mutually perpendlcular direc-
tions. Figure 1-4 shows the vector R and its x and y vector components, R, and R which have
magnitudes

R, =|Rjcos® and || =[R|sin @
or equivalently

R, = Rcos 0 and R, = Rsin 0

COMPONENT METHOD FOR ADDING VECTORS: Each vector is resolved into its x-, y-,
and z-components, with negatively directed components taken as negative. The scalar x-component
R, of the resultant R is the algebraic sum of all the scalar x-components. The scalar y- and z-
components of the resultant are found in a similar way. With the components known, the magni-

tude of the resultant is given by
R=\/R:+ R+ R

In two dimensions, the angle of the resultant with the x-axis can be found from the relation

tan 0 — 2
no=—
a RX

UNIT VECTORS have a magnitude of one and are represented by a boldface symbol topped
with a caret. The special unit vectors i, j, and k are assigned to the x-, y-, and z-axes, respec-
tively. A vector 3i represents a three-unit vector in the +x-direction, whlle —5k represents a five-
unit vector in the —z-direction. A vector R that has scalar x-, y-, and z-components R,, R,, and
R., respectively, can be written as R = Ry i+ Ry] + R.k.

THE DISPLACEMENT: When an object moves from one point in space to another the displa-
cement is the vector from the initial location to the final location. It is independent of the actual
distance traveled.
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Solved Problems

1.1  Using the graphical method, find the resultant of the following two displacements: 2.0 m at 40°
and 4.0 m at 127°, the angles being taken relative to the +x-axis, as is customary. Give your
answer to two significant figures. (See Appendix A on significant figures.)

Choose x- and y-axes as shown in Fig. 1-5 and lay out the displacements to scale, tip to tail from the
origin. Notice that all angles are measured from the +x-axis. The resultant vector R points from starting
point to end point as shown. We measure its length on the scale diagram to find its magnitude, 4.6 m. Using
a protractor, we measure its angle € to be 101°. The resultant displacement is therefore 4.6 m at 101°.

VA
74 210.0°
(25.0 m) cos 30.0° \
X
4.0 m
ﬁ (25.0 m) sin 30.0°
QI—\A 127°
0 2.0m
%40.0° ~
X
Fig. 1-5 Fig. 1-6

1.2 Find the x- and y-components of a 25.0-m displacement at an angle of 210.0°.

The vector displacement and its components are shown in Fig. 1-6. The scalar components are
x-component = —(25.0 m) cos 30.0° = —21.7 m
y-component = —(25.0 m) sin 30.0° = —12.5 m

Notice in particular that each component points in the negative coordinate direction and must therefore be
taken as negative.

1.3  Solve Problem 1.1 by use of rectangular components.

We resolve each vector into rectangular components as shown in Fig. 1-7(a) and (b). (Place a cross-
hatch symbol on the original vector to show that it is replaced by its components.) The resultant has scalar
components of

R, =13m—-241m=-0.88m R, =129 m+3.19m=448m

Notice that components pointing in the negative direction must be assigned a negative value.
The resultant is shown in Fig. 1.7(c); there, we see that

R= \/(0.88 m)? + (448 m)> =4.6 m tan ¢ =

and ¢ = 79°, from which § = 180° — ¢ = 101°. Hence R =4.6 m—101° FroM +x-AX1s; remember vectors
must have their directions stated explicitly.
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YA Ay y
4.0 m ﬁ
2.0m (4.0 m) sin 53°
=3.19m 4.48 m
(2.0 m) sin 40°
=129m
o 127° 0

o 40 530 ¢ R
(2.0 m) cos 40° =1.53 m * (4.0 m) cos 53°=2.41m x 0.88 m X

(@) (b) (c)

Fig. 1-7

1.4  Add the following two force vectors by use of the parallelogram method: 30 N at 30° and 20 N at
140°. Remember that numbers like 30 N and 20 N have two significant figures.

The force vectors are shown in Fig. 1-8(a). We construct a parallelogram using them as sides, as shown

in Fig. 1-8(b). The resultant R is then represented by the diagonal. By measurement, we find that R is 30 N at
72°.

140° 30N

Fig. 1-8

1.5  Four coplanar forces act on a body at point O as shown in Fig. 1-9(a). Find their resultant
graphically.

Starting from O, the four vectors are plotted in turn as shown in Fig. 1-9(b). We place the tail end of
each vector at the tip end of the preceding one. The arrow from O to the tip of the last vector represents the
resultant of the vectors.

20°1 110
100 N 160
110N 30° /
30°/ \45° R 100
20° 80N X
| 0 0 45°
160 N 80
(@) (b)

Fig. 1-9
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We measure R from the scale drawing in Fig. 1-9(b) and find it to be 119 N. Angle « is measured by
protractor and is found to be 37°. Hence the resultant makes an angle § = 180° — 37° = 143° with the
positive x-axis. The resultant is 119 N at 143°.

1.6  The five coplanar forces shown in Fig. 1-10(a) act on an object. Find their resultant.

(1) First we find the x- and y-components of each force. These components are as follows:

Force x-Component y-Component

19.0 N 19.0 N 0N

150 N (15.0 N) cos 60.0° = 7.50 N (15.0 N) sin 60.0° = 13.0 N
16.0 N —(16.0 N) cos 45.0° = —11.3 N (16.0 N) sin 45.0° = 11.3 N
11.0N —(11.0 N) cos 30.0° = —9.53 N —(11.0 N) sin 30.0° = —5.50 N
220N 0N —22.0 N

Notice the + and — signs to indicate direction.

(2) The resultant R has components R, = ¥ F, and R, = ¥ F,, where we read X F, as “the sum of all the x-
force components.” We then have

R, =190N+750N—-113N-953N+0N=+57N
R,=0N+13.0N+113N-550N~-220N=-32N

R=\/R:+R}=65N

(4) Finally, we sketch the resultant as shown in Fig. 1-10(b) and find its angle. We see that

32N
tan ¢ = ﬂ =0.56
from which ¢ =29°. Then 6= 360°—29° = 331°. The resultant is 6.5 N at 331° (or —29°) or
R = 6.5 N—331° FROM +X-AXIS.

(3) The magnitude of the resultant is

y VA
150N
160N

45.0° \6("0 0 \ 57N
— —_—
30.0° 190N x P %
11.0N > 32N

R
220N

Fig. 1-10



CHAP. 1] INTRODUCTION TO VECTORS 7

1.7

1.8

1.9

Solve Problem 1.5 by use of the component method. Give your answer for the magnitude to two
significant figures.

The forces and their components are:

Force x-Component y-Component

80 N 80 N 0

100 N (100 N) cos 45° =71 N (100 N) sin 45° =71 N
110 N —(110 N) cos 30° = —95 N (110 N) sin 30° =55 N
160 N —(160 N) cos 20° = —150 N —(160 N) sin 20° = =55 N

Notice the sign of each component. To find the resultant, we have

R, =SF,=80N+7I N-95N—150 N=—-94 N
R =%F,=04+7IN+55N-5N=71N

The resultant is shown in Fig. 1-11; there, we see that
R=1/(94 N’ + (71 N)> = 1.2 x 10> N

Further, tana = (71 N)/(94 N), from which o = 37°. Therefore the resultant is 118 N at 180° — 37° = 143°
or R = 118 N—143° FROM +X-AXIs.

R 100N

30N
71N

94 N X

Fig. 1-11 Fig. 1-12

A force of 100 N makes an angle of # with the x-axis and has a scalar y-component of 30 N. Find
both the scalar x-component of the force and the angle . (Remember that the number 100 N has
three significant figures whereas 30 N has only two.)

The data are sketched roughly in Fig. 1-12. We wish to find F, and 6. We know that
30 N
100 N
0 = 17.46°, and thus, to two significant figures, # = 17°. Then, using the cos #, we have

F, = (100 N) cos 17.46° = 95 N

sin 6 = =0.30

A child pulls on a rope attached to a sled with a force of 60 N. The rope makes an angle of 40° to
the ground. (a) Compute the effective value of the pull tending to move the sled along the ground.
(b) Compute the force tending to lift the sled vertically.
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As shown in Fig. 1-13, the components of the 60 N force are 39 N and 46 N. (a) The pull along the
ground is the horizontal component, 46 N. (b) The lifting force is the vertical component, 39 N.

F,=60sin40°=39 N
60 N :

40°
F,. =60 cos 40° =46 N X

Fig. 1-13 Fig. 1-14

1.10 A car whose weight is F} is on a ramp which makes an angle 6 to the horizontal. How large a
perpendicular force must the ramp withstand if it is not to break under the car’s weight?

As shown in Fig. 1-14, the car’s weight is a force Fy, that pulls straight down on the car. We take
components of F along the incline and perpendicular to it. The ramp must balance the force component
Fy, cos @ if the car is not to crash through the ramp.

1.11  Express the forces shown in Figs. 1-7(c), 1-10(b), 1-11, and 1-13 in the form R = R,i + R}j + Rk
(leave out the units).

Remembering that plus and minus signs must be used to show direction along an axis, we can write

=L

For Fig. 1-7(c): = —0.88i + 4.48j
For Fig. 1-10(h): R =5.7i—32j
For Fig. 1-11: R = —94i + 71j
For Fig. 1-13: R = 46i + 39j

1.12° Three forces that act on a particle are given by F, = (205 —36j+ 7312) N,
F, = (—17i + 21j — 46k) N, and F; = (—12k) N. Find their resultant vector. Also find the mag-
nitude of the resultant to two significant figures.

We know that

R,=YXF, =20N-17N+0N=3N
R, =%F,=-3N+2IN+0N=—-15N
R.=SF.=73N—-4N—-12N=15N

Since R = in + Ryj + R.k, we find
R =3i— 15+ 15k
To two significant figures, the three-dimensional pythagorean theorem then gives

R=\/R:+ R+ R}=+459 =21 N
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1.13

1.14

1.15

1.16

Perform graphically the following vector additions and subtractions, where A, B, and C are the
vectors shown in Fig. 1-15: () A+B; (b)) A+ B+C; (c)A—B; (d) A+B—C.

See Fig. 1-15(a) through (d). In (c), A — B = A + (—B); that is, to subtract B from A, reverse the
direction of B and add it vectorially to A. Similarly, in (d), A+ B — C = A + B + (—C), where —C is equal
in magnitude but opposite in direction to C.

S
. B B
A , i o
< + B
1e8 . -B
- A e
B T A /
A-B
(@) (b) () (d)
Fig. 1-15

If A = —12i + 25j+ 13k and B = —3j + 7k, find the resultant when A is subtracted from B.
From a purely mathematical approach, we have
B — A = (=3j+ 7k) — (—12i + 25) + 13k)
= —3j+ 7k 4 12i — 25j — 13k = 12i — 28j — 6k

Notice that 12i — 25j — 13k is simply A reversed in direction. Therefore we have, in essence, reversed A and
added it to B.

A boat can travel at a speed of 8 km/h in still water on a lake. In the flowing water of a stream, it
can move at 8§ km/h relative to the water in the stream. If the stream speed is 3 km/h, how fast can
the boat move past a tree on the shore when it is traveling (a) upstream and (b) downstream?

(a) If the water was standing still, the boat’s speed past the tree would be 8 km/h. But the stream is
carrying it in the opposite direction at 3 km/h. Therefore the boat’s speed relative to the tree is
8 km/h — 3 km/h = 5 km/h.

(b) In this case, the stream is carrying the boat in the same direction the boat is trying to move. Hence its
speed past the tree is 8 km/h + 3 km/h = 11 km/h.

A plane is traveling eastward at an airspeed of 500 km/h. But a 90 km/h wind is blowing south-
ward. What are the direction and speed of the plane relative to the ground?

The plane’s resultant velocity is the sum of two velocities, 500 km/h—©gasT and 90 km/h — souTH.
These component velocities are shown in Fig. 1-16. The plane’s resultant velocity is then

R= /(500 km/h)® + (90 km/h)’ = 508 km/h
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1.17

1.18

1.19

1.20

1.21

1.22

1.23

INTRODUCTION TO VECTORS [CHAP. 1
N N
500 km/h
90 km/h
500 km/h 0 = _
-, — - >
a E R E
~ 90 km/h
R
Fig. 1-16 Fig. 1-17
The angle « is given by
90 km/h
t =———=0.18
M@ =500 km/h

from which a = 10°. The plane’s velocity relative to the ground is 508 km/h at 10° south of east.

With the same airspeed as in Problem 1.16, in what direction must the plane head in order to
move due east relative to the Earth?

The sum of the plane’s velocity through the air and the velocity of the wind will be the resultant velocity
of the plane relative to the Earth. This is shown in the vector diagram in Fig. 1-17. Notice that, as required,
the resultant velocity is eastward. Keeping in mind that the wind speed is given to two significant figures, it is
seen that sin § = (90 km/h)(500 km/h), from which § = 10°. The plane should head 10° north of east if it is
to move eastward relative to the Earth.

To find the plane’s eastward speed, we note in the figure that R = (500 km/h) cos 6 = 4.9 x 10° m/h.

Supplementary Problems

Starting from the center of town, a car travels east for 80.0 km and then turns due south for another 192 km,
at which point it runs out of gas. Determine the displacement of the stopped car from the center of
town. Ans. 208 km—67.4° SOUTH OF EAST

A little turtle is placed at the origin of an xy-grid drawn on a large sheet of paper. Each grid box is 1.0 cm by
1.0 cm. The turtle walks around for a while and finally ends up at point (24, 10), that is, 24 boxes along the
x-axis, and 10 boxes along the y-axis. Determine the displacement of the turtle from the origin at the
point. Ans. 26 cm—23° ABOVE X-AXIS

A bug starts at point 4, crawls 8.0 cm east, then 5.0 cm south, 3.0 cm west, and 4.0 cm north to point B.
(a) How far north and east is B from A4? (b) Find the displacement from 4 to B both graphically and
algebraically. Ans.  (a) 5.0 cm—EAsT, 1.0 cm —NORTH; (b) 5.10 cm — 11.3° SOUTH OF EAST

Find the scalar x- and y-components of the following displacements in the xy-plane: (¢) 300 cm at 127° and
(b) 500 cm at 220°. Ans.  (a) —180 cm, 240 cm; (b) —383 cm, —321 cm

Two forces act on a point object as follows: 100 N at 170.0° and 100 N at 50.0°. Find their resultant.
Ans. 100 N at 110°

Starting at the origin of coordinates, the following displacements are made in the xy-plane (that is, the
displacements are coplanar): 60 mm in the +y-direction, 30 mm in the —x-direction, 40 mm at 150°, and
50 mm at 240°. Find the resultant displacement both graphically and algebraically. Ans. 97 mm at 158°
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1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

Compute algebraically the resultant of the following coplanar forces: 100 N at 30°, 141.4 N at 45°, and
100 N at 240°. Check your result graphically. Ans.  0.15 kN at 25°

Compute algebraically the resultant of the following coplanar displacements: 20.0 m at 30.0°, 40.0 m at
120.0°, 25.0 m at 180.0°, 42.0 m at 270.0°, and 12.0 m at 315.0°. Check your answer with a graphical
solution. Ans.  20.1 m at 197°

Two forces, 80 N and 100 N acting at an angle of 60° with each other, pull on an object. (¢) What single
force would replace the two forces? (b) What single force (called the equilibrant) would balance the two
forces? Solve algebraically. Ans.  (a) R: 0.16 kN at 34° with the 80 N force; (b) —R: 0.16 kN at 214° with
the 80 N force

Find algebraically the (a) resultant and (b) equilibrant (see Problem 1.26) of the following coplanar forces:
300 N at exactly 0°, 400 N at 30°, and 400 N at 150°. Ans.  (a) 0.50 kN at 53°; (b) 0.50 kN at 233°

What displacement at 70° has an x-component of 450 m? What is its y-component? Ans. 1.3 km,
1.2 km

What displacement must be added to a 50 cm displacement in the +x-direction to give a resultant displace-
ment of 85 cm at 25°? Ans. 45 cm at 53°

Refer to Fig. 1-18. In terms of vectors A and B, express the vectors (a) B, (b) R, (¢) S, and (d) Q.
Ans. (a) A+B; (b)) B; (¢) =A; (d) A — B

R B
- = 6
Q P
A . A
S
E
— D
B
Fig. 1-18 Fig. 1-19

Refer to Fig. 1-19. In terms of vectors A and B, express the vectors (a) E, (b)) D—C, and (c)
E+D—-C.  Ans. (a) —A—Bor —(A+B); (b) &; (c) —B

A child is holding a wagon from rolling straight back down a driveway that is inclined at 20° to the
horizontal. If the wagon weighs 150 N, with what force must the child pull on the handle if the handle is
parallel to the incline? Ans. S1' N

Repeat Problem 1.32 if the handle is at an angle of 30° above the incline. Ans. 59 N

Find (¢) A+ B+ C, () A — B, and (¢) A — C if A = 7i — 6}, B = —3i + 12j, and C = 4i — 4].
Ans. (a) 8i+ 2j; (b) 10i — 18f; (c) 3i — 2

Find the magnitude and angle of R if R = 7.0i — 12j.  Ans. 14 at —60°
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1.36

1.37

1.38

1.39

1.40

1.41
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Determine the displacement vector that must be added to the displacement (25§ — 16}) m to give a displace-
ment of 7.0 m pointing in the +x-direction? Ans. (—18i+ 16j) m

A force (15i — 16j + 27k) N is added to a force (23j — 40k) N. What is the magnitude of the resultant?
Ans. 21 N

A truck is moving north at a speed of 70 km/h. The exhaust pipe above the truck cab sends out a trail of
smoke that makes an angle of 20° east of south behind the truck. If the wind is blowing directly toward the
east, what is the wind speed at that location? Ans. 25 km/h

A ship is traveling due east at 10 km/h. What must be the speed of a second ship heading 30° east of north if
it is always due north of the first ship? Ans. 20 km/h

A boat, propelled so as to travel with a speed of 0.50 m/s in still water, moves directly across a river that is
60 m wide. The river flows with a speed of 0.30 m/s. (a¢) At what angle, relative to the straight-across
direction, must the boat be pointed? (b) How long does it take the boat to cross the river?
Ans. (a) 37° upstream; (b) 1.5 x 10% s

A reckless drunk is playing with a gun in an airplane that is going directly east at 500 km/h. The drunk
shoots the gun straight up at the ceiling of the plane. The bullet leaves the gun at a speed of 1000 km/h.
According to someone standing on the Earth, what angle does the bullet make with the vertical?
Ans.  26.6°



Chapter 2

Uniformly Accelerated Motion

SPEED is a scalar quantity. If an object takes a time interval ¢ to travel a distance /, then

total distance traveled
time taken

Average speed =

or

/

Vg = 7

Here the distance is the total (along-the-path) length traveled. This is what a car’s odometer reads.

VELOCITY is a vector quantity. If an object undergoes a vector displacement s in a time interval
t, then

vector displacement
time taken

Average velocity =

vy =
V[I’U -

~ | »n|

The direction of the velocity vector is the same as that of the displacement vector. The units of velocity
(and speed) are those of distance divided by time, such as m/s or km/h.

ACCELERATION measures the time rate-of-change of velocity:

change in velocity vector
time taken

Average acceleration =

—

Ve —,
SN
a,,

T

where V; is the initial velocity, v is the final velocity, and 7 is the time interval over which the change
occurred. The units of acceleration are those of velocity divided by time. Typical examples are (m/s)/s (or
m/s?) and (km/h)/s (or km/h-s). Notice that acceleration is a vector quantity. It has the direction of
v, —¥;, the change in velocity. It is nonetheless commonplace to speak of the magnitude of the accel-
eration as just the acceleration, provided there is no ambiguity.

UNIFORMLY ACCELERATED MOTION ALONG A STRAIGHT LINE is an important situa-
tion. In this case, the acceleration vector is constant and lies along the line of the displacement
vector, so that the directions of v and a can be specified with plus and minus signs. If we repre-
sent the displacement by s (positive if in the positive direction, and negative if in the negative
direction), then the motion can be described with the five equations for uniformly accelerated mo-
tion:

13

Copyright 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



14 UNIFORMLY ACCELERATED MOTION [CHAP. 2

S:,U[I’Ut
Ut

Vo = P
vy — v
P

v} = vf + 2as
s = v;t +%a12

Often s is replaced by x or y, and sometimes v, and v; are written as v and v,, respectively.

DIRECTION IS IMPORTANT, and a positive direction must be chosen when analyzing motion
along a line. Either direction may be chosen as positive. If a displacement, velocity, or accelera-
tion is in the opposite direction, it must be taken as negative.

INSTANTANEOUS VELOCITY is the average velocity evaluated for a time interval that ap-
proaches zero. Thus, if an object undergoes a displacement AS in a time At¢, then for that object
the instantaneous velocity is

—

. AS
im —
Ar—0 At
where the notation means that the ratio AS/A¢ is to be evaluated for a time interval A¢ that approaches
Zero.

V:

GRAPHICAL INTERPRETATIONS for motion along a straight line (the x-axis) are as follows:

o The instantaneous velocity of an object at a certain time is the slope of the displacement versus time
graph at that time. It can be positive, negative, or zero.

o The instantaneous acceleration of an object at a certain time is the slope of the velocity versus time
graph at that time.

e For constant-velocity motion, the x-versus-z graph is a straight line. For constant-acceleration
motion, the v-versus-7 graph is a straight line.

e In general (i.e., one-, two-, or three-dimensional motion) the slope at any moment of the distance-
versus-time graph is the speed.

ACCELERATION DUE TO GRAVITY (g): The acceleration of a body moving only under the
force of gravity is g, the gravitational (or free-fall) acceleration, which is directed vertically down-
ward. On Earth, g =9.81m/s? (i.e., 32.2 ft/s?); the value varies slightly from place to place. On
the Moon, the free-fall acceleration is 1.6 m/s>.

VELOCITY COMPONENTS: Suppose that an object moves with a velocity v at some angle 6
up from the x-axis, as would initially be the case with a ball thrown into the air. That velocity
then has x and y vector components (see Fig. 1-4) of ¥, and ¥,. The corresponding scalar compo-
nents of the velocity are

vy = v cos 6 and v, = v sin 6
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and these can turn out to be positive or negative numbers, depending on 6. As a rule, if ¥ is in the first
quadrant, v, > 0 and v, > 0; if ¥ is in the second quadrant, v, <0 and v, > 0; if V is in the third
quadrant, v, < 0 and v, < 0; finally, if v is in the fourth quadrant, v, > 0 and v, < 0. Because these
quantities have signs, and therefore implied directions along known axes, it is common to refer to them
as velocities. The reader will find this usage in many texts, but it is not without pedagogical drawbacks.
Instead, we shall avoid applying the term ‘““velocity” to anything but a vector quantity (written in
boldface with an arrow above) whose direction is explicitly stated. Thus for an object moving with a
velocity v = 100 m/s— WEsT, the scalar value of the velocity along the x-axis is v, = —100 m/s; and the
(always positive) speed is v = 100 m/s.

PROJECTILE PROBLEMS can be solved easily if air friction can be ignored. One simply con-
siders the motion to consist of two independent parts: horizontal motion with a=0 and
Uy = U; = Vg (i.€., constant speed), and vertical motion with a = g = 9.81 m/s> downward.

Solved Problems

2.1 Change the speed 0.200 cm/s to units of kilometers per year.

m (0300 (10757 (3600 2) (2420 (3654 — 3.1
0.200 s = (0.200 /s/) (10 (;ni) (3600/1{) (24/@1,) (365 y) =63.1 y

2.2 A runner makes one lap around a 200-m track in a time of 25 s. What were the runner’s (a)
average speed and (b) average velocity?

(a) From the definition,

distance traveled 200 m

Average speed = =8.0m/s

time taken 25

(b) Because the run ended at the starting point, the displacement vector from starting pont to end point has
zero length. Since v, =§/1,
0 m

‘va’u| :f_om/s

2.3 An object starts from rest with a constant acceleration of 8.00 m/s* along a straight line. Find (a)
the speed at the end of 5.00 s, (b) the average speed for the 5-s interval, and (¢) the distance
traveled in the 5.00 s.

We are interested in the motion for the first 5.00 s. Take the direction of motion to be the +x-direction
(that is, s = x). We know that v; =0, t=15.00 s, and a = 8.00 m/sz. Because the motion is uniformly
accelerated, the five motion equations apply.

(a) v = vy +at = 0+ (8.00 m/s%)(5.00 s) = 40.0 m/s
ix X 40.
(h) vm,:U' —;Uf“ :0+200 m/s =20.0 m/s

(¢)  x=wut+La =0+1(8.00m/s?)(5.005)> =100 m or x=uv,=(20.0 m/s)(5.00s) =100 m
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A truck’s speed increases uniformly from 15 km/h to 60 km/h in 20 s. Determine (@) the average
speed, (b) the acceleration, and (¢) the distance traveled, all in units of meters and seconds.

For the 20 s trip under discussion, taking +x to be in the direction of motion, we have

(1) (1000 ™Y (L)

v = 60 km/h = 16.7 m/s

(a) Vg = 3(Vix + vp) = 3(4.17+16.7) m/s = 10 m/s
v — v (16.7-417)m/s )

(b) a=———= 50 =0.63 m/s

(¢) X = vt = (10.4 m/s)(20 s) =208 m = 0.21 km

A car moves in a straight line and its odometer readings are plotted against time in Fig. 2-1. Find
the instantaneous speed of the car at points 4 and B. What is the car’s average speed? What is its
acceleration?

15—
g L
3 10 B B
g [
a [
5.0 — f
- A }
- }Ax =4.0m
| At=80s.
0 R T
0 10 20
Time (s)
Fig. 2-1

Because the speed is given by the slope Ax/Ar of the tangent line, we take a tangent to the curve at
point A. The tangent line is the curve itself in this case. For the triangle shown at 4, we have

Ax 4.0m

AT 808 " 0.50 m/s

This is also the speed at point B and at every other point on the straight-line graph. It follows that ¢ = 0 and
v, = 0.50 m/s = vy,

An object’s one-dimensional motion along the x-axis is graphed in Fig. 2-2. Describe its motion.

The velocity of the object at any instant is equal to the slope of the displacement—time graph at the point
corresponding to that instant. Because the slope is zero from exactly 1 =0s to t =2.0 s, the object is
standing still during this time interval. At t = 2.0 s, the object begins to move in the +x-direction with
constant-velocity (the slope is positive and constant). For the interval t =2.0sto t =4.0 s,
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2.7

Displacement along the x-axis (m)

2.8

ﬂj_x/ﬂ—xi_3.0m—0m_3.0m
run Iy — 1 T 40s—-20s 20s

Vgp = slope = =1.5m/s
The average velocity is then v,, = 1.5 m/S— POSITIVE X-DIRECTION.

During the interval 1 = 4.0 s to t = 6.0 s, the object is at rest; the slope of the graph is zero and x does
not change for that interval.

From t=6.0 s to 1 =10 s and beyond, the object is moving in the —x-direction; the slope and the
velocity are negative. We have
Xr—x; —20m-30m —50m

, = sl == = B
Uy, = slope =10 100s—6.0s 4.0 s

=—-13m/s

The average velocity is then v,, = 1.3 m/S— NEGATIVE X-DIRECTION.

The vertical motion of an object is graphed in Fig. 2-3. Describe its motion qualitatively, and find
its instantaneous velocity at points 4, B, and C.

B P
I
—~ 12F ;
E L | B
w |
v | |
i 10 - i ; C
g | | |
it S+ | I
VA
= } |
\ g oF ! D
12 g - !
Time (s) g 4l !
B R 1
A At
777777777777777777777777777 2
0 T R T N T L
10 15
Time (s)
Fig. 2-2 Fig. 2-3

Recalling that the instantaneous velocity is given by the slope of the graph, we see that the object is
moving fastest at # = 0. As it rises, it slows and finally stops at B. (The slope there is zero.) Then it begins to
fall back downward at ever-increasing speed.

At point A4, we have
Ay 120m-3.0m _9.0m
At 40s-0s  40s

The velocity at A is positive, so it is in the +y-direction: ¥, = 2.3 m/s— up. At points B and C,

v, = slope = =23m/s

vg = slope = 0m/s
Ay 55m-13.0m _-7.5m

Ve =slope = = e e sy T 65 2 m/s

Because it is negative, the velocity at C is in the —y-direction: Vo = 1.2 m/s— powN. Remember that velocity
is a vector quantity and direction must be specified explicitly.

A ball is dropped from rest at a height of 50 m above the ground. (¢) What is its speed just before
it hits the ground? () How long does it take to reach the ground?
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If we can ignore air friction, the ball is uniformly accelerated until it reaches the ground. Its acceleration
is downward and is 9.81 m/s>. Taking down as positive, we have for the trip:

y=50.0m a=9.81 m/s® v; =0

(a) vjz'-v = v,z}, +2ay = 0+ 2(9.81 m/s*)(50.0 m) = 981 m*/s*
and so vy = 31.3 m/s.
(b) From a = (v, —vy)/t,
ke (31.3—0)m/s:3.19S
a 9.81m/s?

(We could just as well have taken up as positive. How would the calculation have been changed?)

A skier starts from rest and slides 9.0 m down a slope in 3.0 s. In what time after starting will the
skier acquire a speed of 24 m/s? Assume that the acceleration is constant.

We must find the skier’s acceleration from the data concerning the 3.0 s trip. Taking the direction of
motion as the +x-direction, we have t = 3.0 s, v;, =0, and x = 9.0 m. Then x = v, + %at2 gives
2x 18m
=S5 =T a2— 2.0m/s2
t (3.0s)
We can now use this value of a for the longer trip, from the starting point to the place where
v = 24 m/s. For this trip, v, =0, vy =24 m/s, a = 2.0 m/s”. Then, from vy = v; +at,

_ Ux— U 24m/s

A bus moving at a speed of 20 m/s begins to slow at a constant rate of 3.0 m/s each second. Find
how far it goes before stopping.

Take the direction of motion to be the +x-direction. For the trip under consideration, v; = 20 m/s,
v =0m/s,a=-3.0 m/s’. Notice that the bus is not speeding up in the positive motion direction. Instead, it
is slowing in that direction and so its acceleration is negative (a deceleration). Use
v_%x = ’U%,( + 2ax
—(20m/s)*

. =17 _—67
to find Y 2(—3.0m/s?) m

A car moving at 30 m/s slows uniformly to a speed of 10 m/s in a time of 5.0 s. Determine (a) the
acceleration of the car and (b) the distance it moves in the third second.

Let us take the direction of motion to be the +x-direction.

(a) For the 5.0 s interval, we have ¢ = 5.0 s, v;, = 30 m/s, v, = 10 m/s. Using vy = v;, + at gives

~(10-30) m/s )
a= 50s =—-4.0m/s
(b) x = (distance covered in 3.0 s) — (distance covered in 2.0s)

X = (vixt3 +%at%) - (vixt2 +%a[%)
x = vty — 1) +5a(53 — )
Using v, =30 m/s, a = —4.0 m/s>, 1, =2.0's, 13 = 3.0 s gives

x = (30 m/s)(1.0 s) — (2.0m/s%)(5.0 s*) = 2.0m
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2.12

2.13

2.14

The speed of a train is reduced uniformly from 15 m/s to 7.0 m/s while traveling a distance of
90 m. (@) Compute the acceleration. (b)) How much farther will the train travel before coming to
rest, provided the acceleration remains constant?

Let us take the direction of motion to be the +x-direction.
(@) We have v;, = 15 m/s, v = 7.0 m/s, x = 90 m. Then v%v = ’U,Zx + 2ax gives
a=—0.98 m/s*
(b) We now have the new conditions v;, = 7.0 m/s, vy =0, a = —0.98 m/s>. Then

2 2
U = Vi + 2ax

gives X=————>—=25m

A stone is thrown straight upward and it rises to a height of 20 m. With what speed was it
thrown?

Let us take up as the positive y-direction. The stone’s velocity is zero at the top of its path. Then vy, = 0,
y=20m, a = —9.81m/s>. (The minus sign arises because the acceleration due to gravity is always down-
ward and we have taken up to be positive.) We use v%‘, = ’U,z} + 2ay to find

vy = \/~2(-9.81 m/s?)(20 m) =20 m/s

A stone is thrown straight upward with a speed of 20 m/s. It is caught on its way down at a point
5.0 m above where it was thrown. («) How fast was it going when it was caught? () How long did
the trip take?

The situation is shown in Fig. 2-4. Let us take up as positive. Then, for the trip that lasts from the
instant after throwing to the instant before catching, v, = 20 m/s, y = +5.0 m (since it is an upward dis-
placement), a = —9.81 m/s?.

here
5.0m
A
20 m/s
o

Fig. 2-4
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(a) We use v%-v = v,g}, + 2ay to find
v, = (20 m/s)” +2(—9.81 m/s?)(5.0 m) = 302 m*/s’

Uf} = i\/302 1'1'12/52 =17 m/S

We take the negative sign because the stone is moving downward, in the negative direction, at the final
instant.

(b)) We use a = (v — vy,)/t to find
(=17.4—-20) m/s
—9.81 m/s?

Notice that we retain the minus sign on vy,

3.8s

2.15 A ball that is thrown vertically upward on the Moon returns to its starting point in 4.0 s. The
acceleration due to gravity there is 1.60 m/s*> downward. Find the ball’s original speed.

Let us take up as positive. For the trip from beginning to end, y = 0 (it ends at the same level it started
at), a = —1.60 m/s*, 1 = 4.0 s. We use y = v, ¢ + Sar* to find

0 =v;,(4.0 5) +1(~1.60 m/s*)(4.0 s)

from which v;, = 3.2 m/s.

2.16 A baseball is thrown straight upward on the Moon with an initial speed of 35 m/s. Compute (@)
the maximum height reached by the ball, (b) the time taken to reach that height, (¢) its velocity
30 s after it is thrown, and (d ) when the ball’s height is 100 m.

Take up as positive. At the highest point, the ball’s velocity is zero.
(a) From v,zy = v,z‘ + 2ay we have, since g = 1.60 m/s? on the Moon,
0=(35m/s)*+2(-1.60 m/s?)y or  y=0.38 km
(b) From vy = v, + at we have
0=35m/s+ (—=1.60 m/s*)t or (=225
(¢) From vy = v, + at we have
v =35m/s+ (—1.60 m/s*)(30s)  or vy =—13m/s

Because vy is negative and we are taking up as positive, the velocity is directed downward. The ball is on
its way down at 1 = 30 s.

(d) From y = v, +Lar* we have
100 m = (35 m/s)t +1(~1.60 m/s*)*  or  0.807 — 354100 =0

By use of the quadratic formula,

e —b+ Vb2 —4dac
o 2a

we find t = 3.1 s and 41 s. At ¢t = 3.1 s the ball is at 100 m and ascending; at t = 41 s it is at the same
height but descending.

2.17 A ballast bag is dropped from a balloon that is 300 m above the ground and rising at 13 m/s. For
the bag, find (a) the maximum height reached, (b) its position and velocity 5.0 s after it is released,
and (c) the time at which it hits the ground.
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The initial velocity of the bag when released is the same as that of the balloon, 13 m/s upward. Let us
choose up as positive and take y = 0 at the point of release.

(a) At the highest point, v, = 0. From p%»v = vﬁ + 2ay,
0=(13m/s)* +2(-9.81 m/s*)y or y=86m

The maximum height is 300 + 8.6 = 308.6 m or 0.31 km.
(b) Take the end point to be its position at ¢ = 5.0 s. Then, from y = v;,¢ + %atz,

y=(13m/s)(5.0 s) +1(-9.81 m/s?)(5.0 s)> = —57.5mor —58 m
So its height is 300 — 58 = 242 m. Also, from vg, = v;, + at,
v = 13 m/s + (=9.81 m/s?)(5.0 s) = —36 m/s
It is on its way down with a velocity of 36 m/s — DOWNWARD.
(¢) Just as it hits the ground, the bag’s displacement is —300 m. Then
y:U,-yt—i-%azz becomes —300m = (13 m/s)t +%(—9.81 m/s?)r
or 4.907 — 13t — 300 = 0. The quadratic formula gives ¢ = 9.3 s and —6.6 s. Only the positive time has
physical meaning, so the required answer is 9.3 s.

We could have avoided the quadratic formula by first computing vy:
vfy = v%, + 2as becomes 1{%‘, = (13 m/s)* +2(—9.81 m/s?)(—300 m)

so that v = +77.8 m/s. Then, using the negative value for v; (Why?) in v, = v+ at gives t = 9.3 s, as
before.

2.18 Asshown in Fig. 2-5, a projectile is fired horizontally with a speed of 30 m/s from the top of a cliff
80 m high. (¢) How long will it take to strike the level ground at the base of the cliff? (b) How far
from the foot of the cliff will it strike? (¢) With what velocity will it strike?

v,=30m/s
O\\\\
80 m
X \\O 30 m/s
o
|
40m/s| |
|
|
|
|
Fig. 2-5

(a) The horizontal and vertical motions are independent of each other. Consider first the vertical motion.
Taking up as positive and y = 0 at the top of the cliff, we have

Y=t + %ayt2

or —80m = 0+1(-9.81 m/s*)7

from which 1 =4.04 s or 4.0 s. Notice that the initial velocity had zero vertical component and so
v; = 0 for the vertical motion.
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(b) Now consider the horizontal motion. For it, a = 0 and so v, = v;, = v = 30 m/s. Then, using the
value of ¢ found in (a), we have

x =wv,t = (30 m/s)(4.04 s) = 121 m or 0.12 km

(¢) The final velocity has a horizontal component of 30 m/s. But its vertical component at 1 = 4.04 s is
given by vy, = v, + a,t as

vy =0+ (—9.8 m/s%)(4.04 s) = —40 m/s

The resultant of these two components is labeled v in Fig. 2-5; we have

v=1/(40 m/s)’ + (30 m/s)> = 50 m/s

The angle 6 as shown is given by tan 6 = 40/30 and is 53°. Hence, v = 50 m/s— 53° BELOW X-AXIS.

2.19 A stunt flier is moving at 15 m/s parallel to the flat ground 100 m below, as shown in Fig. 2-6.
How large must the distance x from plane to target be if a sack of flour released from the plane is
to strike the target?

15 m/s

100 m
Target

Fig. 2-6

Following the same procedure as in Problem 2.18, we use y = v;,t + %a},zz to get
—100 m = 0+ 3 (—9.81 m/s?)s or t=452s
Now x = v, ¢ = (15 m/s)(4.52 s) = 67.8 m or 68 m.

2.20 A baseball is thrown with an initial velocity of 100 m/s at an angle of 30.0° above the horizontal,
as shown in Fig. 2-7. How far from the throwing point will the baseball attain its original level?

Fig. 2-7

We divide the problem into horizontal and vertical parts, for which
v;y = v; cos 30.0° = 86.6 m/s and vy, = v; sin 30.0° = 50.0 m/s

where up is being taken as positive.
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In the vertical problem, y = 0 since the ball returns to its original height. Then
y=uvyt+lar  or  0=(50.0m/s)+1(-9.81 m/s’)

and 1 =10.2 s.
In the horizontal problem, v;, = vy = v, = 86.6 m/s. Therefore,

x =t = (86.6 m/s)(10.2 s) =884 m

2.21 As shown in Fig. 2-8, a ball is thrown from the top of one building toward a tall building 50 m
away. The initial velocity of the ball is 20 m/s—40° ABOVE HORIZONTAL. How far above or below
its original level will the ball strike the opposite wall?

20 m/s

40°

Fig. 2-8

We have

v, = (20 m/s) cos 40° = 15.3 m/s

vy = (20 m/s) sin 40° = 12.9 m/s
Consider first the horizontal motion. For it,

Vix = Uy = vy = 15.3 m/s
Then x = vt gives
50 m = (15.3 m/s)¢ or =3.27s
For the vertical motion, taking down as positive, we have
v =yt +La,? = (=129 m/s)(3.27 s) +1(9.81 m/s?)(3.27 s)> = 105 m = 0.11 km

Since y is positive, and since down is positive, the ball will hit at 0.11 km below the original level.

2.22 (a) Find the range x of a gun which fires a shell with muzzle velocity v at an angle of elevation 6.
(b) Find the angle of elevation 6 of a gun which fires a shell with a muzzle velocity of 120 m/s and
hits a target on the same level but 1300 m distant. (See Fig. 2-9.)

(a) Let t be the time it takes the shell to hit the target. Then, x = v;f or ¢ = x/v;.. Consider the vertical
motion alone, and take up as positive. When the shell strikes the target,

Vertical displacement = 0 = v;,¢ + § (—g)¢

Solving this equation gives ¢ = 2v;,/g. But t = x/v;,, so
x 2u,, or e 20,0y, _ 2(v; cos 6)(v; sin )
Vix g g g
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Fig. 2-9

The formula 2 sin 6 cos 6 = sin 20 can be used to simplify this. After substitution, we get
_ v,g sin 20
g
The maximum range corresponds to § = 45°, since sin 26 has a maximum value of 1 when 26 = 90° or
0 =45°.
(b) From the range equation found in (a), we have
2
sin 20 — % _ (9.81 m/s )(13(2)0 m)
v; (120 m/s)
Therefore, 20 = arcsin 0.885 = 62° and so 6 = 31°.

X

= 0.885

Supplementary Problems

Three kids in a parking lot launch a rocket that rises into the air along a 380-m long arc in 40 s. Determine
its average speed. Ans. 9.5 m/s

According to its computer, a robot that left its closet and traveled 1200 m, had an average speed of 20.0 m/s.
How long did the trip take? Ans.  60.0 s

A car’s odometer reads 22687 km at the start of a trip and 22791 km at the end. The trip took 4.0 hours.
What was the car’s average speed in km/h and in m/s? Ans. 26 km/h, 7.2 m/s

An auto travels at the rate of 25 km/h for 4.0 minutes, then at 50 km/h for 8.0 minutes, and finally at
20 km/h for 2.0 minutes. Find («) the total distance covered in km and (b) the average speed for the complete
trip in m/s. Ans.  (a) 9.0 km; (b) 10.7 m/s or 11 m/s

A runner travels 1.5 laps around a circular track in a time of 50 s. The diameter of the track is 40 m and its
circumference is 126 m. Find (a) the average speed of the runner and (b) the magnitude of the runner’s
average velocity. Be careful here; average speed depends on the total distance traveled, whereas average
velocity depends on the displacement at the end of the particular journey.

Ans. (a) 3.8 m/s; (b) 0.80 m/s

During a race on an oval track, a car travels at an average speed of 200 km/h. (a) How far did it travel in
45.0 min? (b) Determine its average velocity at the end of its third lap. Ans. (a) 150 km; (b) zero
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2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

The following data describe the position of an object along the x-axis as a function of time. Plot the data,
and find the instantaneous velocity of the object at (a) t = 5.0's, (b) 16 s, and (c¢) 23 s. Ans.  (a) 0.018
m/s in the positive x-direction; (b) 0 m/s; (¢) 0.013 m/s in the negative x-direction

1(s) ‘ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

x(cm)‘ 0 40 78 11.3 143 168 18.6 19.7 20.0 195 182 162 135 103 6.7

For the object whose motion is described in Problem 2.29, find its velocity at the following times: (a) 3.0 s,
(b) 10s, and (c¢) 24 s. Ans. (a) 1.9 cm/s in the positive x-direction; (b) 1.1 cm/s in the positive
x-direction; (¢) 1.5 cm/s in the negative x-direction

For the object whose motion is plotted in Fig. 2-3, find its instantaneous velocity at the following times:
(a) 1.0 s, (b) 4.0 s, and (¢) 10 s. Ans. (a) 3.3 m/s in the positive y-direction; (») 1.0 m/s in the positive
y-direction; (¢) 0.83 m/s in the negative y-direction

A body with initial velocity 8.0 m/s moves along a straight line with constant acceleration and travels 640 m
in 40 s. For the 40 s interval, find (a) the average velocity, (b) the final velocity, and (c¢) the acceler-
ation. Ans. (a) 16 m/s; (b) 24 m/s; (c) 0.40 m/s2

A truck starts from rest and moves with a constant acceleration of 5.0 m/s>. Find its speed and the distance
traveled after 4.0 s has elapsed. Ans. 20 m/s, 40 m

A box slides down an incline with uniform acceleration. It starts from rest and attains a speed of 2.7 m/s in
3.0 s. Find (a) the acceleration and (b) the distance moved in the first 6.0 s. Ans. () 0.90 m/s*; (b) 16 m

A car is accelerating uniformly as it passes two checkpoints that are 30 m apart. The time taken between
checkpoints is 4.0 s, and the car’s speed at the first checkpoint is 5.0 m/s. Find the car’s acceleration and its
speed at the second checkpoint. Ans. 1.3 m/s’, 10 m/s

An auto’s velocity increases uniformly from 6.0 m/s to 20 m/s while covering 70 m in a straight line. Find the
acceleration and the time taken. Ans. 2.6 m/s*, 5.4 s

A plane starts from rest and accelerates in a straight line along the ground before takeoff. It moves 600 m in
12 s. Find (@) the acceleration, (b) speed at the end of 12 s, and (¢) the distance moved during the twelfth
second. Ans.  (a) 8.3 m/s%; (b) 0.10 km/s; (¢) 96 m

A train running along a straight track at 30 m/s is slowed uniformly to a stop in 44 s. Find the acceleration
and the stopping distance. Ans. —0.68 m/sz, 0.66 km or 6.6 x 10> m

An object moving at 13 m/s slows uniformly at the rate of 2.0 m/s each second for a time of 6.0 s. Determine
(a) its final speed, (b) its average speed during the 6.0 s, and (¢) the distance moved in the 6.0 s.
Ans. (a) 1.0 m/s; (b) 7.0 m/s; (c) 42 m

A body falls freely from rest. Find (a) its acceleration, () the distance it falls in 3.0 s, (c) its speed after falling
70 m, (d) the time required to reach a speed of 25 m/s, and (¢) the time taken to fall 300 m.
Ans. (a) 9.81 m/sz; (b) 44 m; (¢) 37 m/s; (d) 2.6's; (e) 7.8 s

A marble dropped from a bridge strikes the water in 5.0 s. Calculate (a) the speed with which it strikes and
(b) the height of the bridge. Ans. (a) 49 m/s; (b) 0.12 km or 1.2 x 10> m

A stone is thrown straight downward with initial speed 8.0 m/s from a height of 25 m. Find () the time it
takes to reach the ground and (b) the speed with which it strikes. Ans. (a) 1.6 s; (b) 24 m/s
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A baseball is thrown straight upward with a speed of 30 m/s. (¢) How long will it rise? (b) How high will
it rise? (¢) How long after it leaves the hand will it return to the starting point? (¢ ) When will its speed be
16 m/s? Ans. (a) 3.1s; (b) 46 m; (¢) 6.1 s;(d) 1.4sand 4.7 s

A bottle dropped from a balloon reaches the ground in 20 s. Determine the height of the balloon if () it
was at rest in the air and (b) it was ascending with a speed of 50 m/s when the bottle was dropped.
Ans. 2.0 km; (b) 0.96 km

Two balls are dropped to the ground from different heights. One is dropped 1.5 s after the other, but they
both strike the ground at the same time, 5.0 s after the first was dropped. (¢) What is the difference in the
heights from which they were dropped? (b) From what height was the first ball dropped? Ans. (a) 63 m;
() 0.12 km

A nut comes loose from a bolt on the bottom of an elevator as the elevator is moving up the shaft at
3.00 m/s. The nut strikes the bottom of the shaft in 2.00 s. (a) How far from the bottom of the shaft was the
elevator when the nut fell off? (b)) How far above the bottom was the nut 0.25s after it fell off?
Ans. (a) 13.6 m; (b) 14 m

A marble, rolling with speed 20 cm/s, rolls off the edge of a table that is 80 cm high. (¢) How long does it
take to drop to the floor? (b) How far, horizontally, from the table edge does the marble strike the
floor? Ans. (a) 0.40s; (b) 8.1 cm

A body projected upward from the level ground at an angle of 50° with the horizontal has an initial speed of
40 m/s. (a) How long will it take to hit the ground? (b) How far from the starting point will it strike? (c) At
what angle with the horizontal will it strike? Ans. (a) 6.3 s; (b) 0.16 km; (¢) 50°

A body is projected downward at an angle of 30° with the horizontal from the top of a building 170 m high.
Its initial speed is 40 m/s. (@) How long will it take before striking the ground? () How far from the foot of
the building will it strike? (¢) At what angle with the horizontal will it strike? Ans. (a)4.2 s;(b) 0.15 km;
(c) 60°

A hose lying on the ground shoots a stream of water upward at an angle of 40° to the horizontal. The speed
of the water is 20 m/s as it leaves the hose. How high up will it strike a wall which is 8.0 m away?
Ans. 54 m

A World Series batter hits a home run ball with a velocity of 40 m/s at an angle of 26° above the horizontal.
A fielder who can reach 3.0 m above the ground is backed up against the bleacher wall, which is 110 m from
home plate. The ball was 120 cm above the ground when hit. How high above the fielder’s glove does the ball
pass? Ans. 6.0 m

Prove that a gun will shoot three times as high when its angle of elevation is 60° as when it is 30°, but the
bullet will carry the same horizontal distance.

A ball is thrown upward at an angle of 30° to the horizontal and lands on the top edge of a building that is
20 m away. The top edge is 5.0 m above the throwing point. How fast was the ball thrown?
Ans. 20 m/s

A ball is thrown straight upward with a speed v from a point s meters above the ground. Show that the time
taken for the ball to strike the ground is (v/g)[1 + /1 + (2hg/v?)].



Chapter 3

Newton’s Laws

THE MASS of an object is a measure of the inertia of the object. Inertia is the tendency of a
body at rest to remain at rest, and of a body in motion to continue moving with unchanged
velocity. For several centuries, physicists have found it useful to think of mass as a representation
of the amount of or quantity-of-matter.

THE STANDARD KILOGRAM is an object whose mass is defined to be one kilogram. The
masses of other objects are found by comparison with this mass. A gram mass is equivalent to
exactly 0.001 kg.

FORCE, in general, is the agency of change. In mechanics it is that which changes the velocity
of an object. Force is a vector quantity, having magnitude and direction. An external force is one
whose source lies outside of the system being considered.

THE NET EXTERNAL FORCE acting on an object causes the object to accelerate in the direc-
tion of that force. The acceleration is proportional to the force and inversely proportional to the
mass of the object. (We now know from the Special Theory of Relativity that this statement is
actually an excellent approximation applicable to all situations where the speed is appreciably less
than the speed of light, c.)

THE NEWTON is the SI unit of force. One newton (1 N) is that resultant force which will give
a 1kg mass an acceleration of 1m/s?>. The pound is 4.45N.

NEWTON’S FIRST LAW: An object at rest will remain at rest; an object in motion will continue
in motion with constant velocity, except insofar as it is acted upon by an external force. Force is
the changer of motion.

NEWTON’S SECOND LAW: As stated by Newton, the Second Law was framed in terms of
the concept of momentum. This rigorously correct statement will be treated in Chapter 8. Here
we focus on a less fundamental, but highly useful, variation. If the resultant (or net), force F act-
ing on an object of mass m is not zero, the object accelerates in the direction of the force. The
acceleration a is proportional to the force and inversely proportional to the mass of the object.
With F in newtons, m in kilograms, and & in m/s?, this can be written as

a= or F = ma

S|

The acceleration a has the same direction as the resultant force F.

The vector equation F = ma can be written in terms of components as
EEX‘ = may EF‘ = ma}, EFZ = ma,

where the forces are the components of the external forces acting on the object.

27
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NEWTON’S THIRD LAW: Matter interacts with matter — forces come in pairs. For each force
exerted on one body, there is an equal, but oppositely directed, force on some other body interacting
with it. This is often called the Law of Action and Reaction. Notice that the action and reaction
forces act on the two different interacting objects.

THE LAW OF UNIVERSAL GRAVITATION: When two masses m and m’ gravitationally in-
teract, they attract each other with forces of equal magnitude. For point masses (or spherically
symmetric bodies), the attractive force Fg is given by

!/
mm
Fo=G=

. . —11 21,02 o
where r is the distance between mass centers, and where G = 6.67 x 107" N-m~/kg" when F; is in
newtons, m and m' are in kilograms, and r is in meters.

THE WEIGHT of an object (Fy) is the gravitational force acting downward on the object. On
the Earth, it is the gravitational force exerted on the object by the planet. Its units are newtons
(in the SI) and pounds (in the British system). Because the Earth is not a perfect uniform sphere,
and moreover because it’s spinning, the weight measured by a scale will be very slightly different
from that defined above.

RELATION BETWEEN MASS AND WEIGHT: An object of mass m falling freely toward the
Earth is subject to only one force — the pull of gravity, which we call the weight Fy of the
object. The object’s acceleration due to Fj is the free-fall acceleration g. Therefore, F = ma pro-
vides us with the relation between F = Fy,, a =g, and m; it is Fj = mg. Because, on average,
g =9.81m/s> on Earth, a 1.00kg object weighs 9.81 N at the Earth’s surface.

THE TENSILE FORCE (F7) acting on a string or chain or tendon is the applied force tending
to stretch it. The magnitude of the tensile force is the tension (Fr).

THE FRICTION FORCE (ﬁf) is a tangential force acting on an object that opposes the sliding
of that object on an adjacent surface with which it is in contact. The friction force is parallel to
the surface and opposite to the direction of motion or of impending motion. Only when the
applied force exceeds the maximum static friction force will an object begin to slide.

THE NORMAL FORCE (ﬁN) on an object that is being supported by a surface is the compo-
nent of the supporting force that is perpendicular to the surface.

THE COEFFICIENT OF KINETIC FRICTION (u) is defined for the case in which one surface
is sliding across another at constant speed. It is
friction force  Fy

Fk = hormal force  Fy
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THE COEFFICIENT OF STATIC FRICTION () is defined for the case in which one surface
is just on the verge of sliding across another surface. It is

maximum friction force  F;(max)

Hs normal force ~ Fy

where the maximum friction force occurs when the object is just on the verge of slipping but is none-
theless at rest.

DIMENSIONAL ANALYSIS: All mechanical quantities, such as acceleration and force, can be
expressed in terms of three fundamental dimensions: length L, mass M, and time 7. For example,
acceleration is a length (a distance) divided by (time)?; we say it has the dimensions L/T?, which
we write as [LT~2]. The dimensions of volume are [L3], and those of velocity are [LT~!]. Because
force is mass multiplied by acceleration, its dimensions are [MLT~?]. Dimensions are helpful in
checking equations, since each term of an equation must have the same dimensions. For example,
the dimensions of the equation

s = vt +%al2

are [L] — [LT7[T) + [LT)[T?]

so each term has the dimensions of length. Remember, all terms in an equation must have the same
dimensions. As examples, an equation cannot have a volume [L’] added to an area [L?], or a force
[MLT™?] subtracted from a velocity [L7T~']; these terms do not have the same dimensions.

MATHEMATICAL OPERATIONS WITH UNITS: In every mathematical operation, the units
terms (for example, Ib, cm, ft3, mi/h, m/s*) must be carried along with the numbers and must un-
dergo the same mathematical operations as the numbers.

Quantities cannot be added or subtracted directly unless they have the same units (as well as the
same dimensions). For example, if we are to add algebraically 5 m (length) and 8 cm (length), we must
first convert m to cm or cm to m. However, quantities of any sort can be combined in multiplication or
division, in which the units as well as the numbers obey the algebraic laws of squaring, cancellation, etc.
Thus:

(1) 6m>+2m*>=8m?’ (m? + m* — m?)
(2) 5cm x2cm’ =10 cm? (cm x cm® — cm3)
kg kg
(3) 2m’ x 1500 —5 = 3000 kg <m3 xS kg>
km km km km
@ 2sx3 7 =6 (st—z*T)

15 .
(%) —g3:50m3 g3—>g><ﬁ—>cm3
g/cm g



30

3.1

3.2

33

NEWTON’S LAWS [CHAP. 3

Solved Problems

Find the weight on Earth of a body whose mass is (a) 3.00 kg, (b) 200 g.

The general relation between mass m and weight Fy, is Fy, = mg. In this relation, m must be in kilo-
grams, g in meters per second squared, and Fy, in newtons. On Earth, ¢ = 9.81 m/s*. The acceleration due to
gravity varies from place to place in the universe.

(a) Fy = (3.00 kg)(9.81 m/s?) = 29.4 kg-m/s> = 29.4 N
) Fy = (0.200 kg)(9.81 m/s*) = 1.96 N

A 20.0 kg object that can move freely is subjected to a resultant force of 45.0 N in the
—x-direction. Find the acceleration of the object.

We make use of the second law in component form, X F, =ma,, with X F, = —45.0 N and
m = 20.0 kg. Then

NF, -450N B 2

a, =

where we have used the fact that 1 N = 1 kg:m/s’>. Because the resultant force on the object is in the
—x-direction, its acceleration is also in that direction.

The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord.

We mentally isolate the object for discussion. Two forces act on it, the upward pull of the cord and the
downward pull of gravity. We represent the pull of the cord by Fyr, the tension in the cord. The pull of
gravity, the weight of the object, is Fjy = 50 N. These two forces are shown in the free-body diagram in Fig.
3-1(b).

=Y

Fy=50N

(b)

Fig. 3-1

The forces are already in component form and so we can write the first condition for equilibrium at
once, taking up and to the right as positive directions:

HYF. =0 becomes 0=0

+1XF, =0 becomes Fr—50N=0

from which Fr = 50 N. Thus, when a single vertical cord supports a body at equilibrium, the tension in the
cord equals the weight of the body.
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3.4 A 5.0 kg object is to be given an upward acceleration of 0.30 m/s2 by a rope pulling straight
upward on it. What must be the tension in the rope?

The free-body diagram for the object is shown in Fig. 3-2. The tension in the rope is F7, and the weight
of the object is Fy = mg = (5.0 kg)(9.81 m/sz) =49.1 N. Using ¥ F,, = ma, with up taken as positive, we
have

Fr —mg = ma, or Fr —49.1 N = (5.0 kg)(0.30 m/s?)

from which F; = 50.6 N = 51 N. As a check, we notice that Fy is larger than Fy, as it must be if the object is
to accelerate upward.

=1
~
ol
3
iy

0 R on?
L F,
o B

(a) ()

Fig. 3-2 Fig. 3-3

3.5 A horizontal force of 140 N is needed to pull a 60.0 kg box across the horizontal floor at constant
speed. What is the coefficient of friction between floor and box? Determine it to three significant
figures even though that’s quite unrealistic.

The free-body diagram for the box is shown in Fig. 3-3. Because the box does not move up or down,
a, = 0. Therefore,

L F, = ma, gives Fy —mg = (m)(0 m/s?)

from which we find that Fy = mg = (60.0 kg)(9.81 m/s*) = 588.6 N. Further, because the box is moving
horizontally at constant speed, a, = 0 and so

Y F, = ma, gives 140 N—-F; =0
from which the friction force is F; = 140 N. We then have

F, 140N
S - =0.238
M= T Ss8 6N 0

3.6  The only force acting on a 5.0 kg object has components F, = 20 N and F, = 30 N. Find the
acceleration of the object.

We make use of ¥ F, = ma, and X F,, = ma, to obtain
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_ _ _ 2
a, p” 50 ke 4.0 m/s
Y F 30 N
_Zy_ 77 _ 2
YT TS0 kg 6.0 m/s

These components of the acceleration are shown in Fig. 3-4. From the figure, we see that
a=1/(4.0)* + (6.0)> m/s* = 7.2 m/s’

and 0 = arctan (6.0/4.0) = 56°.

a,=6.0 m/s>

0

a,=4.0m/s?

Fig. 3-4

3.7 A 600 N object is to be given an acceleration of 0.70 m/sz. How large an unbalanced force must
act upon it?

Notice that the weight, not the mass, of the object is given. Assuming the weight was measured on the
Earth, we use Fy, = mg to find

Fy 600 N

=—=———-=61k
g  9.81m/s? &

Now that we know the mass of the object (61 kg) and the desired acceleration (0.70 m/s*), we have

F =ma = (61 kg)(0.70 m/s*) = 43 N

3.8 A constant force acts on a 5.0 kg object and reduces its velocity from 7.0 m/s to 3.0 m/s in a time
of 3.0 s. Find the force.

We must first find the acceleration of the object, which is constant because the force is constant. Taking
the direction of motion as positive, from Chapter 2 we have
vy—v;  —40m/s

_Y _ 2
a=-—— == 1.33 m/s

Now we can use F = ma with m = 5.0 kg:
F=(50keg)(—-1.33m/s?) = —6.7N

The minus sign indicates that the force is a retarding force, directed opposite to the motion.
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3.9

3.10

3.11

3.12

A 400-g block with an initial speed of 80 cm/s slides along a horizontal tabletop against a friction
force of 0.70 N. (a) How far will it slide before stopping? (b) What is the coefficient of friction
between the block and the tabletop?

(a) We take the direction of motion as positive. The only unbalanced force acting on the block is the
friction force, —0.70 N. Therefore,

Y F=ma becomes —0.70 N = (0.400 kg)(a)

from which a = —1.75 m/sz. (Notice that m is always in kilograms.) To find the distance the block
slides, we have v;, = 0.80 m/s, v = 0, and a = —1.75 m/s”. Then v%x — v} = 2ax gives
U — i (0—0.64) m?/s’

Y= T mye) e

(h) Because the vertical forces on the block must cancel, the upward push of the table Fy must equal the
weight mg of the block. Then

__ friction force 0.70 N _ 018
My T (040 kg)(9.81 m/s?)

A 600-kg car is moving on a level road at 30 m/s. (a¢) How large a retarding force (assumed
constant) is required to stop it in a distance of 70 m? () What is the minimum coefficient of
friction between tires and roadway if this is to be possible? Assume the wheels are not locked, in
which case we are dealing with static friction — there’s no sliding.

(a) We must first find the car’s acceleration from a motion equation. It is known that v;, = 30 m/s, v = 0,
and x = 70 m. We use v/zx = v%x + 2ax to find

U= Uk _ 0= 900 m’/s’

_ 2
X qom ~ oHm/s

Now we can write
F = ma = (600 kg)(—6.43 m/s*) = —3860 N = —3.9 kN

(b) The force found in (a) is supplied as the friction force between the tires and roadway. Therefore, the
magnitude of the friction force on the tires is Fy = 3860 N. The coefficient of friction is given by
us = Fy/Fy, where Fy is the normal force. In the present case, the roadway pushes up on the car
with a force equal to the car’s weight. Therefore,

Fy = Fy = mg = (600 kg)(9.81 m/s*) = 5886 N
_F 3860

that [ S )
so tha b Fy 5386 0.66

The coeflicient of friction must be at least 0.66 if the car is to stop within 70 m.

An 8000-kg engine pulls a 40000-kg train along a level track and gives it an acceleration
a; = 1.20 m/s>. What acceleration (ay) would the engine give to a 16 000-kg train?

For a given engine force, the acceleration is inversely proportional to the total mass. Thus

L, ™M _ 8000 kg +40000 ke
27 m, ' 8000 kg + 16000 kg

(1.20 m/s*) = 2.40 m/s’

As shown in Fig. 3-5(a), an object of mass m is supported by a cord. Find the tension in the cord
if the object is (a) at rest, (b) moving at constant velocity, (c¢) accelerating upward with accelera-
tion a = 3g/2, and (d) accelerating downward at a = 0.75g.
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Two forces act on the object: the tension F7 upward and the downward pull of gravity mg. They are
shown in the free-body diagram in Fig. 3-5(b). We take up as the positive direction and write ¥ F, = ma, in
each case.

(a) a, =0: Fr—mg=ma, =0 or Fr=mg

b) a, =0: Fr—mg=ma, =0 or Fr=mg

(0 a, =3g/2: Fr —mg =m(3g/2) or Fr=25mg
(d) a, = —3g/4 Fr —mg =m(—3g/4) or Fr=0.25mg

Notice that the tension in the cord is less than mg in part (d); only then can the object have a downward
acceleration. Can you explain why Fr =0 if a, = —g?

t@’ 1500 N
o O O

Fy=mg

e
—

>

é<
—

Free-body diagram
(b)

Fig. 3-5 Fig. 3-6

A tow rope will break if the tension in it exceeds 1500 N. It is used to tow a 700-kg car along level
ground. What is the largest acceleration the rope can give to the car? (Remember that 1500 has
four significant figures; see Appendix A.)

The forces acting on the car are shown in Fig. 3-6. Only the x-directed force is of importance, because
the y-directed forces balance each other. Indicating the positive direction with a + sign and a little arrow we
write,

X F =ma,  becomes 1500 N = (700kg)(a)

from which a = 2.14 m/s%.

Compute the least acceleration with which a 45-kg woman can slide down a rope if the rope can
withstand a tension of only 300 N.

The weight of the woman is mg = (45 kg)(9.81 m/s?) = 441 N. Because the rope can support only
300 N, the unbalanced downward force F on the woman must be at least 441 N — 300 N = 141 N. Her
minimum downward acceleration is then

F 141N ,
S L '
m 45 kg m/s

A 70-kg box is slid along the floor by a 400-N force as shown in Fig. 3-7. The coefficient of
friction between the box and the floor is 0.50 when the box is sliding. Find the acceleration of the
box.
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3.16

140 N

—
ool

Fig. 3-7

Since the y-directed forces must balance,
Fy =mg = (70 kg)(9.81 m/s?) = 687 N
But the friction force F; is given by
Fr = . Fy = (0.50)(687 N) = 344 N
Now write ¥ F, = ma, for the box, taking the direction of motion as positive:

400 N — 344 N = (70 kg)(a) or  a=0.80 m/s’

Suppose, as shown in Fig. 3-8, that a 70-kg box is pulled by a 400-N force at an angle of 30° to the
horizontal. The coeflicient of kinetic friction is 0.50. Find the acceleration of the box.

70 kg
3 Fy
o —
[l%
Fig. 3-8

Because the box does not move up or down, we have ¥ F, = ma, = 0. From Fig. 3-8, we see that this
equation is

Fy+200 N—mg=20

But mg = (70 kg)(9.81 m/s*) = 687 N, and it follows that F, = 486 N.
We next find the friction force acting on the box:

Fr = Fy = (0.50)(486 N) =243 N
Now let us write 3 F, = ma, for the box. It is
(346 — 243) N = (70 kg)(a,)

from which a, = 1.5 m/s2.
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3.17 A car moving at 20 m/s along a horizontal road has its brakes suddenly applied and eventually
comes to rest. What is the shortest distance in which it can be stopped if the friction coefficient
between tires and road is 0.90? Assume that all four wheels brake identically. If the brakes don’t
lock the car stops via static friction.

The friction force at one wheel, call it wheel 1, is
Fry = pFyvi = pFwn
where Fyy| is the weight carried by wheel 1. We obtain the total friction force Fy by adding such terms for all
four wheels:
Fy = pFwy + wgFwn + psFws + pFwa = p(Fwy + Fya + Fs + Fipa) = pFyy
where Fy, is the total weight of the car. (Notice that we are assuming optimal braking at each wheel.) This
friction force is the only unbalanced force on the car (we neglect wind friction and such). Writing F = ma for
the car with F replaced by —u Fyy gives —u Fy = ma, where m is the car’s mass and the positive direction is
taken as the direction of motion. However, Fj;,, = mg; so the car’s acceleration is
1 F L
= MTw B e = (—0.90)(9.81 m/s?) = —8.8 m/s>
m m
We can find how far the car went before stopping by solving a motion problem. Knowing that v; = 20 m/s,
vy =0, and a = —8.8 m/s>, we find from p)zr — v = 2ax that
0 — 400) m* /s
_ (0=400) m*/s™_ o3 )
—17.6 m/s?

If the four wheels had not all been braking optimally, the stopping distance would have been longer.

3.18 Asshown in Fig. 3-9, a force of 400 N pushes on a 25-kg box. Starting from rest, the box achieves
a velocity of 2.0 m/s in a time of 4.0 s. Find the coefficient of kinetic friction between box and
floor.

275N
1

306 N 40(;)N
50°%!

77777 25 g

v
=y

Fig. 3-9

We will need to find /" by use of F = ma. But first we must find « from a motion problem. We know that
v; =0, v, =2.0 m/s, t = 4.0 s. Using v, = v; + at gives

v —v;  2.0m/s
t  40s

Now we can write ¥ F, = ma,, where a, = a = 0.50 m/s*>. From Fig. 3-9, this equation becomes

257 N—F; = (25 kg)(0.50 m/s?)  or  F=245N

a= =0.50 m/s’

We now wish to use u = Fy/Fy. To find Fy we write ¥ F, = ma, = 0, since no vertical motion occurs.
From Fig. 3-9,

Fy—306 N—(25)(98))N=0 or Fy=55IN
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3.19

3.20

Then

F 245
S W L) Y
M= gy 7551

A 200-N wagon is to be pulled up a 30° incline at constant speed. How large a force parallel to the
incline is needed if friction effects are negligible?

The situation is shown in Fig. 3-10(a). Because the wagon moves at a constant speed along a straight
line, its velocity vector is constant. Therefore the wagon is in translational equilibrium, and the first con-
dition for equilibrium applies to it.

We isolate the wagon as the object. Three nonnegligible forces act on it: (1) the pull of gravity Fj, (its
weight), directed straight down; (2) the force F exerted on the wagon parallel to the incline to pull it up the
incline; (3) the push F)y of the incline that supports the wagon. These three forces are shown in the free-body
diagram in Fig. 3-10(b).

For situations involving inclines, it is convenient to take the x-axis parallel to the incline and the y-axis
perpendicular to it. After taking components along these axes, we can write the first condition for equili-
brium:

+

ANF. =0 becomes F—050Fy =0

NYF, =0 becomes Fy—0.87 Fp =0

+ pl

Solving the first equation and recalling that Fj = 200 N, we find that F = 0.50 F},. The required pulling
force to two significant figures is 0.10 kN.

1><

300\

Fig. 3-10

A 20-kg box sits on an incline as shown in Fig. 3-11. The coefficient of kinetic friction between
box and incline is 0.30. Find the acceleration of the box down the incline.

In solving inclined-plane problems, we take x- and y-axes as shown in the figure, parallel and perpen-
dicular to the incline. We shall find the acceleration by writing > F, = ma,. But first we must find the friction
force F;. Using the fact that cos 30° = 0.866,

F, =ma, =0 gives Fy —0.87mg =0
from which Fy = (0.87)(20 kg)(9.81 m/s*) = 171 N. Now we can find F; from

Fr = mFy = (0.30)(171 N) = 51 N
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Fig. 3-11

Writing ¥ F, = ma,, we have
F; — 0.50mg = ma, or 51 N —(0.50)(20)(9.81) N = (20 kg)(a,)

from which a, = —2.35 m/s®. The box accelerates down the incline at 2.4 m/s>.

When a force of 500 N pushes on a 25-kg box as shown in Fig. 3-12, the acceleration of the box
up the incline is 0.75 m/s”. Find the coefficient of kinetic friction between box and incline.

The acting forces and their components are shown in Fig. 3-12. Notice how the x- and y-axes are taken.
Since the box moves up the incline, the friction force (which always acts to retard the motion) is directed
down the incline.

Let us first find F; by writing X F, = ma,. From Fig. 3-12, using sin 40° = 0.643,

383 N — Fp — (0.64)(25)(9.81) N = (25 kg)(0.75 m/s?)

from which F; =207 N.
We also need Fy. Writing ¥ F, = ma, = 0, and using cos 40° = 0.766, we get

Fy—321N=(0.77)25)(98) N=0 or Fy=5I10N
Fr 207

Th =L 2" _041
en e S TR

Fig. 3-12
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3.22 Two blocks, of masses m; and m,, are pushed by a force F as shown in Fig. 3-13. The coefficient
of friction between each block and the table is 0.40. (¢) What must be the value of F if the blocks
are to have an acceleration of 200 cm/s*? How large a force does m; then exert on m,? Use
m; = 300 g and m, = 500 g. Remember to work in SI units.

The friction forces on the blocks are Fy; = 0.4m;g and Fy, = 0.4m,g. We take the two blocks in
combination as the object for discussion; the horizontal forces on the object from outside (i.e. the external
forces on it) are F, Fy, and Fp,. Although the two blocks do push on each other, the pushes are internal
forces; they are not part of the unbalanced external force on the two-mass object. For that object,

Y F, =ma, becomes F — Fyy — Fp = (my +my)a,

(a) Solving for F and substituting known values, we find
F=040g(m; +my) + (m + my)a, =3.14 N+ 1.60 N =4.7 N

(b) Now consider block m, alone. The forces acting on it in the x-direction are the push of block m; on it
(which we represent by F,) and the retarding friction force Fy, = 0.4m,g. Then, for it,

Y F,=ma, becomes Fy — Fpy = ma,
We know that a, = 2.0 m/s2 and so

Fy=Fp+ma, =196 N+1.00 N=2.96 N=3.0N

v

(70kg)g  (9.0kg)g
Free-body diagram

(@) )

Fig. 3-13 Fig. 3-14

3.23 A cord passing over an easily turned pulley (one that is both massless and frictionless) has
a 7.0-kg mass hanging from one end and a 9.0-kg mass hanging from the other, as shown in
Fig. 3-14. (This arrangement is called Atwood’s machine.) Find the acceleration of the masses and
the tension in the cord.

Because the pulley is easily turned, the tension in the cord will be the same on each side. The forces
acting on each of the two masses are drawn in Fig. 3-14. Recall that the weight of an object is mg.

It is convenient in situations involving objects connected by cords to take the direction of motion as the
positive direction. In the present case, we take up positive for the 7.0-kg mass, and down positive for the
9.0-kg mass. (If we do this, the acceleration will be positive for each mass. Because the cord doesn’t stretch,
the accelerations are numerically equal.) Writing ¥ F,, = ma, for each mass in turn, we have

Fr —(7.0)(9.81) N = (7.0 kg)(a) and (9.0)(9.81) N — Fr = (9.0 kg)(a)
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If we add these two equations, the unknown Fr drops out, giving
(9.0 —7.0)(9.81) N = (16 kg)(a)

for which a = 1.23 m/s>. We can now substitute 1.23 m/s® for a in either equation and obtain F, = 77 N.

3.24 In Fig. 3-15, the coefficient of kinetic friction between block A4 and the table is 0.20. Also,
my = 25 kg, mp = 15 kg. How far will block B drop in the first 3.0 s after the system is released?

A
(@)
S
T
R L || >
F; Fy,
C—
(i
Free-body diagram
(®)
Fig. 3-15

Since, for block 4, there is no motion vertically, the normal force is
Fy =mug = (25 kg)(9.81 m/s*) = 245 N
and Fr =y Fy = (0.20)(245 N) =49 N
We must first find the acceleration of the system and then we can describe its motion. Let us apply
F = ma to each block in turn. Taking the motion direction as positive, we have
Fr — Fr=mya or Fr —49 N = (25 kg)(a)

and mpg — Fr = mpa or — Fr + (15)(9.81) N = (15 kg)(a)
We can eliminate F; by adding the two equations. Then, solving for a, we find a = 2.45 m/s”.
Now we can work a motion problem with a = 2.45 m/s*, v; = 0, 1 = 3.0 s:
y=uvyt+al  gives  y=0+1(245m/s’)(3.05)° =11m
as the distance B falls in the first 3.0 s.

3.25 How large a horizontal force in addition to F; must pull on block 4 in Fig. 3-15 to give it an
acceleration of 0.75 m/s®> toward the left? Assume, as in Problem 3.24, that g = 0.20,
my =25 kg, and mp = 15 kg.

If we were to redraw Fig 3-15 for this case, we would show a force F pulling toward the left on 4. In
addition, the retarding friction force F; should be reversed in direction in the figure. As in Problem 3.24,
Fr =49 N.
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3.26

3.27

We write F = ma for each block in turn, taking the direction of motion to be positive. We have
F—Fr—49 N = (25kg)(0.75m/s*)  and  Fp — (15)(9.81) N = (15 kg)(0.75 m/s?)

We solve the last equation for Fr and substitute in the previous equation. We can then solve for the single
unknown F, and we find it to be 226 N or 0.23 kN.

The coefficient of static friction between a box and the flat bed of a truck is 0.60. What is the
maximum acceleration the truck can have along level ground if the box is not to slide?

The box experiences only one x-directed force, the friction force. When the box is on the verge of
slipping, Fy = u Fy,, where Fy is the weight of the box.

As the truck accelerates, the friction force must cause the box to have the same acceleration as the truck;
otherwise, the box will slip. When the box is not slipping, ¥ F, = ma, applied to the box gives F; = ma,.
However, if the box is on the verge of slipping, F; = p Fy so that u Fy, = ma,. Because Fy, = mg, this gives

a4, = “s;”g = 11,¢ = (0.60)(9.81 m/s>) = 5.9 m/s>

as the maximum acceleration without slipping.

In Fig. 3-16, the two boxes have identical masses of 40 kg. Both experience a sliding friction force
with py = 0.15. Find the acceleration of the boxes and the tension in the tie cord.

=

wA

Fig. 3-16

Using Fy = pFy, we find that the friction forces on the two boxes are
Fipn = (0.15)(mg)  and Frp = (0.15)(0.87mg)

But m =40 kg, so F;p =59 N and Frg =51 N.
Let us now apply X F, = ma, to each block in turn, taking the direction of motion as positive. This
gives

Fr —59 N = (40 kg)(a) and 0.5mg — Fyr — 51 N = (40 kg)(a)

Solving these two equations for ¢ and Fr gives a = 1.1 m/s2 and Fr = 0.10 kN.
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In the system shown in Fig. 3-17(a), force F accelerates block m1; to the right. Find its acceleration
in terms of F and the coefficient of friction y; at the contact surfaces.

A
v
y
E)
=z

3.29

Fyz -y
P F
T m, = = m, e
Fy, F;
myg Fi mg
(@) (b) (©
Fig. 3-17

The horizontal forces on the blocks are shown in Fig. 3-17(b) and (¢). Block m, is pressed against m; by
its weight m,g. This is the normal force where m; and m, are in contact, so the friction force there is
Fry = wymyg. At the bottom surface of my, however, the normal force is (m; +m,)g. Hence,
F{ = p(m; +my)g. We now write ¥ F, = ma, for each block, taking the direction of motion as positive:

Fr = pymyg = ma and F — Fr — pmyg — e (my +my)g = mya
We can eliminate F; by adding the two equations to obtain
F = 2pumyg — e (my +my)(g) = (my + my)(a)

g F—2mimg
my + niy

from which

In the system of Fig. 3-18, friction and the mass of the pulley are both negligible. Find the
acceleration of m, if m; = 300 g, m, = 500 g, and F = 1.50 N.

-
F
5 my || ——

Ut

Fig. 3-18

Notice that m1; has twice as large an acceleration as m,. (When the pulley moves a distance d, m; moves
a distance 2d.) Also notice that the tension Fr in the cord pulling m is half Fr,, that in the cord pulling the
pulley, because the total force on the pulley must be zero. (F = ma tells us that this is so because the mass of
the pulley is zero.) Writing ¥ F, = ma, for each mass, we have

FT[ = (ml)(za) and F— FT2 = na
However, we know that F7; = %FTz and so the first equation gives Fr, = 4m;a. Substitution in the second
equation yields

P 1.50 N
" 4my+m,  1.20 kg+0.50 kg

F = (4m +my))(a)  or =0.882 m/s’
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3.30

3.31

In Fig. 3-19, the weights of the objects are 200 N and 300 N. The pulleys are essentially friction-
less and massless. Pulley P; has a stationary axle, but pulley P, is free to move up and down. Find
the tensions Fy; and Fp, and the acceleration of each body.

Mass B will rise and mass A will fall. You can see this by noticing that the forces acting on pulley P, are
2Fr, up and F7; down. Since the pulley has no mass, it can have no acceleration, and so Fy; = 2Fp, (the
inertialess object transmits the tension). Twice as large a force is pulling upward on B as on 4.

Let a be the downward acceleration of 4. Then a/2 is the upward acceleration of B. (Why?) We now
write X F,, = ma, for each mass in turn, taking the direction of motion as positive in each case. We have

Fri —300 N = (mp)(3a) and 200 N — Fry = mpa

But m = Fy /g and so m, = (200/9.81) kg and mp = (300/9.81) kg. Further Fr| = 2F,. Substitution of
these values in the two equations allows us to compute Fy, and then Fy; and a. The results are

Fr =327TN Fry =164 N a=178 m/s®

Compute the mass of the Earth, assuming it to be a sphere of radius 6370 km. Give your answer
to three significant figures.

Let M be the mass of the Earth, and m the mass of an object on the Earth’s surface. The weight of the
object is equal to mg. It is also equal to the gravitational force G(Mm)/rz, where r is the Earth’s radius.
Hence,

mg = G—r2

2 2 6 2
. gr’ (9.81 m/s%)(6.37 x 10° m) 24
fi hich M === =597 x 107 k
rom wiie G~ 667x10 1 N-m2/kg % &
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3.42

3.43

3.44
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Supplementary Problems

Once ignited, a small rocket motor on a spacecraft exerts a constant force of 10 N for 7.80 s. During the
burn the rocket causes the 100-kg craft to accelerate uniformly. Determine that acceleration.
Ans. 0.10 m/s®

Typically, a bullet leaves a standard 45-caliber pistol (5.0-in. barrel) at a speed of 262 m/s. If it takes 1 ms to
traverse the barrel, determine the average acceleration experienced by the 16.2-g bullet within the gun and
then compute the average force exerted on it. Ans. 3 x10° m/s*; 0.4 x 10° N

A force acts on a 2-kg mass and gives it an acceleration of 3 m/s>. What acceleration is produced by the same
force when acting on a mass of (a) 1 kg? (b) 4 kg? (c) How large is the force? Ans. (a) 6 m/sz; (b)2 m/sz;
()6 N

An object has a mass of 300 g. (¢) What is its weight on Earth? (b) What is its mass on the Moon? (¢) What
will be its acceleration on the Moon when a 0.500 N resultant force acts on it? Ans. (a) 2.94 N;
(b) 0.300 kg; (¢) 1.67 m/s?

A horizontal cable pulls a 200-kg cart along a horizontal track. The tension in the cable is 500 N. Starting
from rest, (¢) How long will it take the cart to reach a speed of 8.0 m/s? (b) How far will it have
gone? Ans. (a)3.2s;(b) 13 m

A 900-kg car is going 20 m/s along a level road. How large a constant retarding force is required to stop it in
a distance of 30 m? (Hint: First find its deceleration.) Ans. 6.0 kN

A 12.0-g bullet is accelerated from rest to a speed of 700 m/s as it travels 20.0 cm in a gun barrel. Assuming
the acceleration to be constant, how large was the accelerating force? (Be careful of units.)
Ans. 14.7 kN

A 20-kg crate hangs at the end of a long rope. Find its acceleration (magnitude and direction) when the
tension in the rope is () 250 N, (b) 150 N, (¢) zero, (d ) 196 N. Ans. (a)2.7 m/s2 up; () 2.3 m/s2 down;
(c) 9.8 m/s2 down; (d) zero

A 5.0-kg mass hangs at the end of a cord. Find the tension in the cord if the acceleration of the mass is
(a) 1.5 m/s” up, (b) 1.5 m/s> down, (¢) 9.8 m/s*> down.  Ans. (a) 57 N; (b) 42 N; (¢) zero

A 700-N man stands on a scale on the floor of an elevator. The scale records the force it exerts on whatever is
on it. What is the scale reading if the elevator has an acceleration of (a) 1.8 m/s2 up? (b) 1.8 m/s2 down?
(¢) 9.8 m/s> down? Ans.  (a) 0.83 kN; (b) 0.57 kN; (c) zero

Using the scale described in Problem 3.41, a 65.0 kg astronaut weighs himself on the Moon, where
g=1.60 m/sz. What does the scale read? Ans. 104 N

A cord passing over a frictionless, massless pulley has a 4.0-kg object tied to one end and a 12-kg object tied
to the other. Compute the acceleration and the tension in the cord. Ans. 49 m/s*, 59 N

An elevator starts from rest with a constant upward acceleration. It moves 2.0 m in the first 0.60 s. A
passenger in the elevator is holding a 3.0-kg package by a vertical string. What is the tension in the string
during the accelerating process? Ans. 63 N

Just as her parachute opens, a 60-kg parachutist is falling at a speed of 50 m/s. After 0.80 s has passed, the
chute is fully open and her speed has dropped to 12.0 m/s. Find the average retarding force exerted upon the
chutist during this time if the deceleration is uniform. Ans. 2850 N + 588 N = 3438 N = 3.4 kN
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3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

A 300-g mass hangs at the end of a string. A second string hangs from the bottom of that mass and supports
a 900-g mass. («) Find the tension in each string when the masses are accelerating upward at 0.700 m/s>.
() Find the tension in each string when the acceleration is 0.700 m/s> downward. Ans. (a) 12.6 N and
9.45N; (b) 10.9 N and 8.19 N

A 20-kg wagon is pulled along the level ground by a rope inclined at 30° above the horizontal. A friction
force of 30 N opposes the motion. How large is the pulling force if the wagon is moving with («) constant
speed and (b) an acceleration of 0.40 m/s>? Ans. (a) 35 N; (b) 44 N

A 12-kg box is released from the top of an incline that is 5.0 m long and makes an angle of 40° to the
horizontal. A 60-N friction force impedes the motion of the box. (¢) What will be the acceleration of the box
and (b) how long will it take to reach the bottom of the incline? Ans. (a) 1.3 m/s>; (b) 2.8 s

For the situation outlined in Problem 3.48, what is the coefficient of friction between box and incline?
Ans. 0.67

An inclined plane makes an angle of 30° with the horizontal. Find the constant force, applied parallel to the
plane, required to cause a 15-kg box to slide (a) up the plane with acceleration 1.2 m/s2 and (b) down the
incline with acceleration 1.2 m/s*. Neglect friction forces. Ans.  (a) 92 N; (b) 56 N

A horizontal force F is exerted on a 20-kg box to slide it up a 30° incline. The friction force retarding
the motion is 80 N. How large must F be if the acceleration of the moving box is to be (a) zero and
(b) 0.75 m/s*?  Ans. (a) 0.21 kN; (b) 0.22 kN

An inclined plane making an angle of 25° with the horizontal has a pulley at its top. A 30-kg block on the
plane is connected to a freely hanging 20-kg block by means of a cord passing over the pulley. Compute the
distance the 20-kg block will fall in 2.0 s starting from rest. Neglect friction. Ans. 29 m

Repeat Problem 3.52 if the coefficient of friction between block and plane is 0.20. Ans. 0.74 m

A horizontal force of 200 N is required to cause a 15-kg block to slide up a 20° incline with an acceleration of
25 cm/sz. Find (a) the friction force on the block and () the coefficient of friction. Ans. (a) 0.13 kN;
(b) 0.65

Find the acceleration of the blocks in Fig. 3-20 if friction forces are negligible. What is the tension in the cord
connecting them? Ans. 33 m/s?, 13N

4.0kg 5.0kg

F=30N

Fig. 3-20

Repeat Problem 3.55 if the coefficient of kinetic friction between the blocks and the table is 0.30.
Ans. 039 m/s*, 13 N

How large a force F is needed in Fig. 3-21 to pull out the 6.0-kg block with an acceleration of 1.50 m/s” if the
coefficient of friction at its surfaces is 0.40? Ans. 48 N
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2.0
kg

6.0 kg

lm

Fig. 3-21 Fig. 3-22

In Fig. 3-22, how large a force F is needed to give the blocks an acceleration of 3.0 m/s? if the coefficient of
kinetic friction between blocks and table is 0.20? How large a force does the 1.50-kg block then exert on the
2.0-kg block? Ans. 22 N, 15N

(@) What is the smallest force parallel to a 37° incline needed to keep a 100-N weight from sliding down the
incline if the coefficients of static and kinetic friction are both 0.30? (b) What parallel force is required to keep
the weight moving up the incline at constant speed? (c) If the parallel pushing force is 94 N, what will be the
acceleration of the object? (d) If the object in (c¢) starts from rest, how far will it move in 10 s?

Ans.  (a) 36 N; (b) 84 N; (c) 0.98 m/s2 up the plane; (d) 49 m

A 5.0-kg block rests on a 30° incline. The coefficient of static friction between the block and the incline is
0.20. How large a horizontal force must push on the block if the block is to be on the verge of sliding (a) up
the incline and (b) down the incline? Ans. (a) 43 N; (b) 16.6 N

Three blocks with masses 6.0 kg, 9.0 kg, and 10 kg are connected as shown in Fig. 3-23. The coefficient of
friction between the table and the 10-kg block is 0.20. Find (a) the acceleration of the system and (b) the
tension in the cord on the left and in the cord on the right. Ans. (a) 0.39 m/s*; (b) 61 N, 85 N

Fig. 3-23

The Earth’s radius is about 6370 km. An object that has a mass of 20 kg is taken to a height of 160 km
above the Earth’s surface. (¢) What is the object’s mass at this height? (b)) How much does the object weigh
(i.e., how large a gravitational force does it experience) at this height? Ans. (a) 20 kg; (b) 0.19 kN

The radius of the Earth is about 6370 km, while that of Mars is about 3440 km. If an object weighs 200 N on
Earth, what would it weigh, and what would be the acceleration due to gravity, on Mars? The mass of Mars
is 0.11 that of Earth. Ans. 75N, 3.7 m/s2



Chapter 4

Equilibrium Under the Action of Concurrent Forces

CONCURRENT FORCES are forces whose lines of action all pass through a common point.
The forces acting on a point object are concurrent because they all pass through the same point,
the point object.

AN OBJECT IS IN EQUILIBRIUM under the action of concurrent forces provided it is not ac-
celerating.

THE FIRST CONDITION FOR EQUILIBRIUM is the requirement that XF =0 or, in compo-
nent form, that

YF,=YF,=YF.=0
That is, the resultant of all external forces acting on the object must be zero. This condition is sufficient

for equilibrium when the external forces are concurrent. A second condition must also be satisfied if an
object is to be in equilibrium under nonconcurrent forces; it is discussed in Chapter 5.

PROBLEM SOLUTION METHOD (CONCURRENT FORCES):

(1) TIsolate the object for discussion.

(2) Show the forces acting on the isolated object in a diagram (the free-body diagram).
(3) Find the rectangular components of each force.

(4) Write the first condition for equilibrium in equation form.

(5) Solve for the required quantities.

THE WEIGHT OF AN OBJECT (Fj) is essentially the force with which gravity pulls downward
upon it.

THE TENSILE FORCE (ﬁT) acting on a string or cable or chain (or indeed, on any structural
member) is the applied force tending to stretch it. The scalar magnitude of the tensile force is the
tension (Fr).

THE FRICTION FORCE (F;) is a tangential force acting on an object that opposes the sliding
of that object across an adjacent surface with which it is in contact. The friction force is parallel
to the surface and opposite to the direction of motion or of impending motion.

THE NORMAL FORCE (Fy) on an object that is being supported by a surface is the compo-
nent of the supporting force that is perpendicular to the surface.

47
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4.1

4.2

EQUILIBRIUM UNDER THE ACTION OF CONCURRENT FORCES [CHAP. 4

Solved Problems

In Fig. 4-1(a), the tension in the horizontal cord is 30 N as shown. Find the weight of the object.

The tension in cord 1 is equal to the weight of the object hanging from it. Therefore F;; = Fy,, and we
wish to find Fr; or Fy.

Notice that the unknown force Fr; and the known force of 30 N both pull on the knot at point P. It
therefore makes sense to isolate the knot at P as our object. The free-body diagram showing the forces on the
knot is drawn as in Fig. 4-1(b). The force components are also shown there.

We next write the first condition for equilibrium for the knot. From the free-body diagram,

SZYF. =0 becomes 30 N — Fpy cos 40° =0
HTXF=0 becomes Fry sin 40° — Fyy =0

Solving the first equation for Fr, gives Fr, = 39.2 N. Substituting this value in the second equation gives
Fy =25 N as the weight of the object.

VA
Fry
Fr, sin 40°
40° 30N
—
Fr, cos 40° X
Fr=Fy
(a) ()

Fig. 4-1

A rope extends between two poles. A 90-N boy hangs from it as shown in Fig. 4-2(a). Find the
tensions in the two parts of the rope.

We label the two tensions Fp; and Fp,, and isolate the rope at the boy’s hands as the object. The free-
body diagram for the object is shown in Fig. 4-2(b).

After resolving the forces into their components as shown, we can write the first condition for equili-
brium:

HKYF. =0 becomes Fry cos 5.0°— Fry cos 10° =0
+TTXF, =0 becomes Fy) sin 5.0° 4+ Fpy sin 10° — 90N =0
When we evaluate the sines and cosines, these equations become
0.996F 7, —0.985F7 =0 and 0.087F7, + 0.174F7; —90 =0
Solving the first for Fr, gives Fy, = 0.990F 7. Substituting this in the second equation gives
0.086F7; +0.174F7; —90 =0
from which F7; = 0.35 kN. Then, because Fr, = 0.990Fr;, we have Fy, = 0.34 kN.
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— y A
10° X\ —
Fry @ Fr,
FTI o F
Fyp, sin 10° ‘\lo(’f\__/—;?/n-' Fp, sin 5.0°
— L
Fy cos 10° Fp,y c085.0° X
L Yy Fy=90N
(@) (b)
Fig. 4-2

4.3 A 50-N box is slid straight across the floor at constant speed by a force of 25 N, as shown in Fig.
4-3(a). How large a friction force impedes the motion of the box? (b) How large is the normal
force? (¢) Find p; between the box and the floor.

Notice the forces acting on the box, as shown in Fig. 4-3(a). The friction force is F; and the normal
force, the supporting force exerted by the floor, is Fy. The free-body diagram and components are shown in
Fig. 4-3(b). Because the box is moving with constant velocity, it is in equilibrium. The first condition for
equilibrium, taking to the right as positive, tells us that

H3F. =0 or

25cos40° — F; =0

(@) We can solve for the friction force F; at once to find that F; = 19.2 N, or to two significant figures,

Fr=19N.

(b) To find Fy we use the fact that

+TEF,=0 or

Fy+25sin40°—-50=0

Solving gives the normal force as Fy = 33.9 N or, to two significant figures, Fy = 34 N.

(¢) From the definition of p, we have

25N

Fr 192N
= —=—"=0.57
Me =y T339N
y A
25N
‘k M o
Fy 25 sin 40
B Ff 40°
- 25 cos 40° X
50N
Y
()

Fig. 4-3
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4.4

EQUILIBRIUM UNDER THE ACTION OF CONCURRENT FORCES [CHAP. 4

Find the tensions in the ropes shown in Fig. 4-4(a) if the supported object weighs 600 N.

Let us select as our object the knot at 4 because we know one force acting on it. The weight pulls down
on it with a force of 600 N, and so the free-body diagram for the knot is as shown in Fig. 4-4(b). Applying
the first condition for equilibrium to that diagram, we have

HKYF. =0 or Fry cos 60° — Fry cos 60° =0
+TTXF,=0 or Fry sin 60° + Fp, sin 60° — 600 = 0

The first equation yields Fr; = Fr,. (We could have inferred this from the symmetry of the system. Also
symmetry, Frz = Fry4.) Substitution of Fr; for Fr, in the second equation gives Fr; = 346 N, and so
Fr, =346 N also.

Let us now isolate knot B as our object. Its free-body diagram is shown in Fig. 4-4(c). We have already
found that Fr, = 346 N or 0.35 kN and so the equilibrium equations are

HYF. =0 or Fr3 cos 20° — Fps — 346 sin 30° =0
+FTXF,=0 or Fry sin 20° — 346 cos 30° =0
The last equation yields Fr3 = 877 N or 0.88 kN. Substituting this in the prior equation gives Frs = 651 N

or 0.65 kN. As stated previously from symmetry Fry = Fr3 = 877 N or 0.88 kN. How could you have
found Fy, without recourse to symmetry? (Hint: See Fig. 4.4(d).)

v VA VA
Fr Fry
* £
FT3
\
Fry
_ b o s 0 Do Frs
FTZ — |
600 N L 300
\ / P
\ / Fr
Y
() (©) ()]

Fig. 4-4
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4.5

Each of the objects in Fig. 4-5 is in equilibrium. Find the normal force Fy in each case.

200 N

200 N_T
30.0°
- 30.0° F;

4.6

4.7

4.8

Fyy=500N ﬁFN Fp=150N <7

(@) (b) ©

Fig. 4-5

We apply ¥ F, = 0 in each case.

(a) Fy + (200 N) sin 30.0° —500 =0  from which  Fy = 400N
) Fy — (200 N) sin 30.0° — 150 =0 from which Fy =250N
) Fy — (200 N) cos 0 =0 from which Fy = (200 cos ) N

For the situations of Problem 4.5, find the coefficient of kinetic friction if the object is moving
with constant speed. Round off your answers to two significant figures.

We have already found Fy for each case in Problem 4.5. To find F;, the sliding-friction force, we use
3 F, = 0. Then we use the definition of 1.
(@) We have 200 cos 30.0° — Fy = 0 so that Fy = 173 N. Then, p, = F;/Fy = 173/400 = 0.43.
() We have 200 cos 30.0° — Fy = 0 so that F; = 173 N. Then, w; = Fy/Fy = 173/250 = 0.69.

(¢) We have —200 sin 6 4+ F; = 0 so that F; = (200 sin 6) N. Then, p;, = Fy/Fy = (200 sin 0)/(200 cos 6)
= tan 0.

Suppose that in Fig. 4-5(¢) the block is at rest. The angle of the incline is slowly increased. At an
angle 6 = 42°, the block begins to slide. What is the coefficient of static friction between the block
and the incline? (The block and surface are not the same as in Problems 4.5 and 4.6.)

At the instant the block begins to slide, the friction has its critical value. Therefore, i, = F;/Fy at that
instant. Following the method of Problems 4.5 and 4.6, we have
Fy = Fy cos 6 and Fy=Fy sin 0
Therefore, when sliding just starts,
_F_ Fy sin 6
 Fy Fy cos#
But 6 was found by experiment to be 42°. Therefore, p; = tan42° = 0.90.

s =tan 6

Pulled by the 8.0-N block shown in Fig. 4-6(a), the 20-N block slides to the right at a constant
velocity. Find p; between the block and the table. Assume the pulley to be frictionless.

Because it is moving at a constant velocity, the 20-N block is at equilibrium. Since the pulley is
frictionless, the tension in the continuous rope is the same on both sides of the pulley. Thus, we have
FT] — FT2 - 80 N
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20N

(b

Fig. 4-6

Looking at the free-body diagram in Fig. 4-6(b) and recalling that the block is at equilibrium, we have
LYF. =0 or Fy =F7» =80N
+TXF, =0 or Fy=20N
Then, from the definition of i,

F 8ON
2t _%7 N g4
e =g = 20N~ 040

Supplementary Problems

4.9 For the situation shown in Fig. 4-7, find the values of Fy; and Fp, if the object’s weight is
600 N. Ans. 503 N, 783 N

4.10  The following coplanar forces pull on a ring: 200 N at 30.0°, 500 N at 80.0°, 300 N at 240°, and an unknown
force. Find the magnitude and direction of the unknown force if the ring is to be in equilibrium.
Ans. 350 N at 252°
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4.11 In Fig. 4-8, the pulleys are frictionless and the system hangs at equilibrium. If Fy-3, the weight of the object
on the right, is 200 N, what are the values of Fy,; and Fj,? Ans. 260 N, 150 N

Fig. 4-8 Fig. 4-9

4.12  Suppose Fjy; in Fig. 4-8 is 500 N. Find the values of Fy, and Fy; if the system is to hang in equilibrium as
shown. Ans. 288 N, 384 N

4.13 If in Fig. 4-9 the friction between the block and the incline is negligible, how much must the object on the
right weigh if the 200-N block is to remain at rest? Ans. 115N

4.14  The system in Fig. 4-9 remains at rest when Fj = 220 N. What are the magnitude and direction of the
friction force on the 200-N block? Ans. 105 N down the incline

4.15 Find the normal force acting on the block in each of the equilibrium situations shown in Fig. 4-10.

Ans. () 34N; (b) 46N; (¢) 91N

70N
40°

55°
S0N

40° 40°

(@) (b (©

Fig. 4-10

4.16  The block shown in Fig. 4-10(a) slides with constant speed under the action of the force shown. (¢) How
large is the retarding friction force? (b) What is the coefficient of kinetic friction between the block and the
floor? Ans. (a) 12 N; (b) 0.34
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The block shown in Fig. 4-10(b) slides at a constant speed down the incline. (a) How large is the friction force
that opposes its motion? (b) What is the coefficient of sliding (kinetic) friction between the block and the
plane? Ans. (a) 39 N; (b) 0.84

The block in Fig. 4-10(c) just begins to slide up the incline when the pushing force shown is increased to
70 N. (a) What is the critical static friction force on it? (b) What is the value of the coefficient of static
friction? Ans. (a) 15 N; (b) 0.17

If Fj = 40 N in the equilibrium situation shown in Fig. 4-11, find Fr; and Fps. Ans. 58 N, 31 N

Fig. 4-11

Refer to the equilibrium situation shown in Fig. 4-11. The cords are strong enough to withstand a maximum
tension of 80 N. What is the largest value of Fy, that they can support as shown? Ans. 55N

The object in Fig. 4-12 is in equilibrium and has a weight F, = 80 N. Find Fy, Fy», Fr3, and Fry. Give all
answers to two significant figures. Ans. 37 N, 88 N, 77 N, 0.14 kN
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4.22  The pulleys shown in Fig. 4-13 have negligible weight and friction. What is the value of Fy if the system is at
equilibrium? Ans. 185N

4.23 In Fig. 4-14, the system is in equilibrium. (¢) What is the maximum value that Fj, can have if the friction
force on the 40-N block cannot exceed 12.0 N? (b) What is the coefficient of static friction between the block
and the tabletop? Ans. (a) 6.9 N; (b) 0.30

40N

Fig. 4-14

4.24  The system in Fig. 4-14 is just on the verge of slipping. If Fj; = 8.0 N, what is the coefficient of static friction
between the block and tabletop? Ans. 0.35



Chapter 5

Equilibrium of a Rigid Body Under Coplanar Forces

THE TORQUE (OR MOMENT) about an axis, due to a force, is a measure of the effectiveness
of the force in producing rotation about that axis. It is defined in the following way:

Torque =t =rF sin 0

where r is the radial distance from the axis to the point of application of the force, and € is the acute
angle between the lines-of-action of ¥ and F, as shown in Fig. 5-1(a). Often this definition is written in
terms of the lever arm of the force, which is the perpendicular distance from the axis to the line of the
force, as shown in Fig. 5-1(b). Because the lever arm is simply r sin 6, the torque becomes

T = (F)(lever arm)

The units of torque are newton-meters (N-m). Plus and minus signs can be assigned to torques; for
example, a torque that tends to cause counterclockwise rotation about the axis is positive, whereas one
causing clockwise rotation is negative.

(a) ()

Fig. 5-1

THE TWO CONDITIONS FOR EQUILIBRIUM of a rigid object under the action of coplanar
forces are

(1) The first or force condition: The vector sum of all forces acting on the body must be zero:
YF.=0 LF,=0

where the plane of the coplanar forces is taken to be the xy-plane.

(2) The second or torque condition: Take an axis perpendicular to the plane of the coplanar forces. Call
the torques that tend to cause clockwise rotation about the axis negative, and counterclockwise
torques positive; then the sum of all the torques acting on the object must be zero:

HXt=0
56
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THE CENTER OF GRAVITY of an object is the point at which the entire weight of the object
may be considered concentrated; i.e., the line-of-action of the weight passes through the center of
gravity. A single vertically upward directed force, equal in magnitude to the weight of the object
and applied through its center of gravity, will keep the object in equilibrium.

THE POSITION OF THE AXIS IS ARBITRARY: If the sum of the torques is zero about one
axis for a body that obeys the force condition, it is zero about all other axes parallel to the first.
We can choose the axis in such a way that the line of an unknown force passes through the in-
tersection of the axis and the plane of the forces. The angle # between r and F is then zero;
hence, that particular unknown force exerts zero torque and therefore does not appear in the
torque equation.

Solved Problems

5.1 Find the torque about axis 4 in Fig. 5-2 due to each of the forces shown.

T~—=_ -
Lever // T = 25N 20N
arm / 250
/
90°
m
4 80¢ 10N
Fig. 5-2

We use t = rF sin 0, recalling that clockwise torques are negative while counterclockwise torques are
positive. The torques due to the three forces are

For 1I0N: 1= —(0.80 m)(10 N)(sin 90°) = —8.0 N-m
For 25 N: T = +(0.80 m)(25 N)(sin 25°) = +8.5 N-m
For 20 N: T = +£(0.80 m)(20 N)(sin 0°) =0

The line of the 20-N force goes through the axis and so # = 0° for it. Or, put another way, because the line of
the force passes through the axis, its lever arm is zero. Either way, the torque is zero for this (and any) force
whose line passes through the axis.

5.2 A uniform beam of length L weighs 200 N and holds a 450-N object as shown in Fig. 5-3. Find
the magnitudes of the forces exerted on the beam by the two supports at its ends. Assume the
lengths are exact.

Rather than draw a separate free-body diagram, we show the forces on the object being considered (the
beam) in Fig. 5-3. Because the beam is uniform, its center of gravity is at its geometric center. Thus the
weight of the beam (200 N) is shown acting at the beam’s center. The forces F; and F, are exerted on the
beam by the supports. Because there are no x-directed forces acting on the beam, we have only two
equations to write for this equilibrium situation: ¥ F}, = 0 and ¥t = 0.
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L2 L/4 L/4

200N Support

450 N

@450N

Fig. 5-3

+TXF,=0 becomes Fi+F,—200N—-450N =0

Before the torque equation is written, an axis must be chosen. We choose it at 4, so that the unknown force
F; will pass through it and exert no torque. The torque equation is then

MY T = —(L/2)(200 N)(sin 90°) — (3L/4)(450 N)(sin 90°) + LF; sin 90° = 0

Dividing through the equation by L and solving for F,, we find that F, = 438 N.
To find F; we substitute the value of F, in the force equation, obtaining F; = 212 N.

A uniform, 100-N pipe is used as a lever, as shown in Fig. 5-4. Where must the fulcrum (the
support point) be placed if a 500-N weight at one end is to balance a 200-N weight at the other
end? What is the reaction force exerted by the support on the pipe?

The forces in question are shown in Fig. 5-4, where Fj is the reaction force of the support on the pipe.
We assume that the support point is at a distance x from one end. Let us take the axis to be at the support
point. Then the torque equation, ¥+)X 1t = 0, becomes

+(x)(200N)(sin 90°) 4+ (x — L/2)(100 N)(sin 90°) — (L — x)(500 N)(sin 90°) = 0
This simplifies to
(800N)(x) = (550 N)(L)

and so x = 0.69L. The support should be placed 0.69 of the way from the lighter-loaded end.
To find the load Fg held by the support, we use +T ¥ F), = 0, which gives

—200N — 100N — 500N =0
from which Fr = 800 N.

L2

200 N 100 N

500N Y

Fig. 5-4
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5.4

5.5

5.6

Where must a 0.80-kIN object be hung on a uniform, horizontal, rigid 100-N pole so that a girl
pushing up at one end supports one-third as much as a woman pushing up at the other end?

The situation is shown in Fig. 5-5. We represent the force exerted by the girl as F, and that by the
woman as 3F. Take the axis point at the left end. Then the torque equation becomes

—(x)(800N)(sin 90°) — (L/2)(100 N)(sin 90°) + (L)(F)(sin 90°) =0
A second equation we can write is X F,, = 0, or
3F —800N - 100N+ F =0
from which F = 225 N. Substitution of this value in the torque equation gives
(800N)(x) = (225N)(L) — (100N)(L/2)
from which x = 0.22L. The load should be hung 0.22 of the way from the woman to the girl.

3L/4
L2
. | s
L2 4
. 100N F F
Y
800 N 200N
300 N
\
X
y ™ 400N
Fig. 5-5 Fig. 5-6

A uniform, 0.20-kN board of length L has two objects hanging from it: 300 N at exactly L/3
from one end, and 400 N at exactly 3L/4 from the same end. What single additional force acting
on the board will cause the board to be in equilibrium?

The situation is shown in Fig. 5-6, where I is the force we wish to find. For equilibrium, ¥ F,, = 0 and so

F =400 N+ 200 N +300 N =900 N

Because the board is to be in equilibrium, we are free to choose the axis anywhere. Choose it at point 4.
Then ¥t =0 gives

+(x)(F)(sin 90°) — (3L/4)(400 N)(sin 90°) — (L/2)(200 N)(sin 90°) — (L/3)(300 N)(sin 90°) =0
Using F = 900 N, we find that x = 0.56L. The required force is 0.90 kN upward at 0.56L from the left end.

The right-angle rule (or square) shown in Fig. 5-7 hangs at rest from a peg as shown. It is made of
a uniform metal sheet. One arm is L cm long, while the other is 2L cm long. Find (to two
significant figures) the angle 8 at which it will hang.

If the rule is not too wide, we can approximate it as two thin rods of lengths L and 2L joined
perpendicularly at A. Let v be the weight of each centimeter of rule. Then the forces acting on the rule
are as indicated in Fig. 5-7, where Fj is the upward reaction force of the peg.
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Fig. 5-7

Let us write the torque equation using point 4 as the axis. Because t = rF sin 6 and because the torque
about 4 due to Fjy is zero, the torque equation becomes
+(L/2)(yL)[sin (90° — 0)] — (L)(2yL)(sin §) =0
Recall that sin (90° — ) = cos 6. After making this substitution and dividing by 2vL? cos 6, we find that
sin 6 1

cosH_tangzz

which yields 6 = 14°.

Consider the situation shown in Fig. 5-8(a). The uniform 0.60-kN beam is hinged at P. Find the
tension in the tie rope and the components of the reaction force exerted by the hinge on the beam.
Give your answers to two significant figures.

The reaction forces acting on the beam are shown in Fig. 5-8(b), where the force exerted by the hinge is
represented by its components, Fry and Fgy. The torque equation about P as axis is

+(3L/4)(T)(sin 40°) — (L)(800 N)(sin 90°) — (L/2)(600 N)(sin 90°) = 0

800N
(@) ®)

Fig. 5-8
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5.8

5.9

(We take the axis at P because then Fry and Fgp do not appear in the torque equation.) Solution of this
equation yields Fr = 2280 N or to two significant figures F; = 2.3 kN.
To find Fry and Fgy we write

HYF. =0 or — Frcos 40° + Fry =0
+TXF, =0 or Fr sin 40° + Fgy — 600 — 800 = 0
Since we know Fr, these equations give Fry = 1750 N or 1.8 kN and Fg, = 65.6 N or 66 N.

A uniform, 0.40-kN boom is supported as shown in Fig. 5-9(a). Find the tension in the tie rope
and the force exerted on the boom by the pin at P.

The forces acting on the boom are shown in Fig. 5-9(b). Take the pin as axis. The torque equation is
then

+(3L/4)(Fr)(sin 50°) — (L/2)(400 N)(sin 40°) — (L)(2000 N)(sin 40°) =0
from which F7 = 2460 N or 2.5 kN. We now write:
i)EFY:O or FRH—FTZO
and so Fpy = 2.5 kN. Also
LF,=0 or Fry —2000 N —400 N =0

and so Fry = 2.4 kN. Fgy and Fry are the components of the reaction force at the pin. The magnitude of
this force is

(2400)* + (2460)* = 3.4 kN
The tangent of the angle it makes with the horizontal is tan 6 = 2400/2460, and so 6 = 44°.

(@) ()

Fig. 5-9

As shown in Fig. 5-10, hinges 4 and B hold a uniform, 400-N door in place. If the upper hinge
happens to support the entire weight of the door, find the forces exerted on the door at both
hinges. The width of the door is exactly /1/2, where 4 is the distance between the hinges.
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A
FRV y
F
<« 1y

400 N

Fig. 5-10

The forces acting on the door are shown in Fig. 5-10. Only a horizonal force acts at B, because the upper
hinge is assumed to support the door’s weight. Let us take torques about point A as axis:

HX1=0 becomes + (h)(F)(sin 90.0°) — (//4)(400 N)(sin 90.0°) =0
from which F = 100 N. We also have
HYF. =0 or F—Fry=0
TXF,=0 or Fry—400 N=0
We find from these that Fzy = 100 N and Fgy = 400 N.
For the resultant reaction force Fi on the hinge at A, we have
Fgr = 1/ (400)* + (100)> = 412 N
The tangent of the angle that F, makes with the negative x-direction is Fg) /Fgy and so the angle is

arctan 4.00 = 76.0°

A ladder leans against a smooth wall, as shown in Fig. 5-11. (By a “‘smooth” wall, we mean that
the wall exerts on the ladder only a force that is perpendicular to the wall. There is no friction
force.) The ladder weighs 200 N and its center of gravity is 0.40L from the base, where L is the
ladder’s length. (¢) How large a friction force must exist at the base of the ladder if it is not to slip?
(b) What is the necessary coefficient of static friction?

(a) We wish to find the friction force F;. Notice that no friction force exists at the top of the ladder. Taking
torques about point A4 gives the torque equation

(421, = —(0.40L)(200 N)(sin 40°) 4+ (L)(Fy,)(sin 50°) =0
Solving gives Fy, = 67.1 N. We can also write

EFYZO or Ff*FNZZO
S$F,=0 or  Fy —200=0

and so F; = 67 N and Fy; = 0.20 kN.
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5.11

Ff
FN]
Fig. 5-11
F 671
b y=—=——=034
(b) M= = 200

For the situation shown in Fig. 5-12(a), find F7, Fy,, and Fy3. The boom is uniform and weighs
800 N.

Let us first apply the force condition to point A. The appropriate free-body diagram is shown in
Fig. 5-12(h). We then have

Fry cos 50.0°—2000 N =0 and Fry — Fp, sin 50.0° =0

From the first of these we find Fr, = 3.11 kN; then the second equation gives Fy; = 2.38 kN.
Let us now isolate the boom and apply the equilibrium conditions to it. The appropriate free-body
diagram is shown in Fig. 5-12(¢). The torque equation, for torques taken about point C, is

L1, = +(L)(Fp3)(sin 20.0°) — (L)(3110 N)(sin 90.0°) — (L/2)(800 N)(sin 40.0°) = 0

Solving for Fr3, we find it to be 9.84 kN. If it were required, we could find Fry and Fgy by using the x- and
y-force equations.

50.0°

Fpy=3.11kN

2000 N

(a) (® ©

Fig. 5-12
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5.14
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Supplementary Problems

As shown in Fig. 5-13, two people sit in a car that weighs 8000 N. The person in front weighs 700 N, while
the one in the back weighs 900 N. Call L the distance between the front and back wheels. The car’s center of
gravity is a distance 0.400L behind the front wheels. How much force does each front wheel and each back
wheel support if the people are seated along the centerline of the car? Ans.  2.09 kN, 2.71 kN

Fig. 5-13

Two people, at the ends of a uniform beam that weighs 400 N, hold the beam at an angle of 25.0° to the
horizontal. How large a vertical force must each person furnish to the beam? Ans. 200 N

Repeat Problem 5.13 if a 140-N child sits on the beam at a point one-fourth of the way along the beam from
its lower end. Ans. 235 N, 305 N

As shown in Fig. 5-14, the uniform, 1600-N beam is hinged at one end and held by a tie rope at the other.
Determine the tension F; in the rope and the force components at the hinge. Ans.  Fr =0.67 kN,
FRH - 067 kN, FRV - 16 kN

Tie rope

(S8

Fig. 5-14 Fig. 5-15

The uniform beam shown in Fig. 5-15 weighs 500 N and supports a 700-N load. Find the tension in the tie
rope and the force of the hinge on the beam. Ans. 2.9 kN, 2.0 kN at 35° below the horizontal
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5.17 The arm shown in Fig. 5-16 supports a 4.0-kg sphere. The mass of the hand and forearm together is 3.0 kg
and its weight acts at a point 15cm from the elbow. Determine the force exerted by the biceps
muscle. Ans. 0.13 kN

il

Triceps

Biceps
Radius
Ulna

4.5 cm —>|

38 cm

Fig. 5-16

5.18 The mobile shown in Fig. 5-17 hangs at equilibrium. It consists of objects held by vertical strings. Object 3
weighs 1.40 N, while each of the identical uniform horizontal bars weighs 0.50 N. Find (@) the weights of
objects 1 and 2, and (b) the tension in the upper string. Ans. (a) 1.5N, 14 N; (b) 53N

2L/3 L3

L2 L2

Fig. 5-17

5.19  The hinges of a uniform door weighing 200 N are 2.5 m apart. One hinge is a distance d from the top of the
door, while the other is a distance d from the bottom. The door is 1.0 m wide. The weight of the door is
supported by the lower hinge. Determine the forces exerted by the hinges on the door. Ans. The
horizontal force at the upper hinge is 40 N. The force at the lower hinge is 0.20 kN at 79° above the
horizontal.
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5.20  The uniform bar shown in Fig. 5-18 weighs 40 N and is subjected to the forces shown. Find the magnitude,
location, and direction of the force needed to keep the bar in equilibrium. Ans.  0.11 kN, 0.68L from
right end, at 49°

S0N 80N

0.20L 0.60 L 0.20L

60 N
70N

Fig. 5-18 Fig. 5-19

5.21  The uniform, 120-N board shown in Fig. 5-19 is supported by two ropes as shown. A 0.40-kN weight is
suspended one-quarter of the way from the left end. Find Fy|, Fr,, and the angle § made by the left
rope. Ans.  0.19 kN, 0.37 kN, 14°

5.22  The foot of a ladder rests against a wall and its top is held by a tie rope, as shown in Fig. 5-20. The ladder
weighs 100 N, and its center of gravity is 0.40 of its length from the foot. A 150-N child hangs from a rung
that is 0.20 of the length from the top. Determine the tension in the tie rope and the components of the force
on the foot of the ladder. Ans. Fr =0.12 kN, Fgry = 0.12 kN, Fg;, = 0.25 kN

Ti
E@T ie rope %
©

500N

Tie rope

: ;

Fig. 5-20 Fig. 5-21

5.23 A truss is made by hinging two uniform, 150-N rafters as shown in Fig. 5-21. They rest on an essentially
frictionless floor and are held together by a tie rope. A 500-N load is held at their apex. Find the tension in
the tie rope. Ans.  0.28 kN
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5.24

5.25

5.26

5.27

5.28

A 900-N lawn roller is to be pulled over a 5.0-cm high curb as shown in Fig. 5-22. The radius of the roller is
25 cm. What minimum pulling force is needed if the angle § made by the handle is (a) 0° and (b) 30°? (Hint:
Find the force needed to keep the roller balanced against the edge of the curb, just clear of the
ground.) Ans. (a) 0.68 kN; (b) 0.55 kN

Fig. 5-22 Fig. 5-23

In Fig. 5-23, the uniform beam weighs 500 N. If the tie rope can support 1800 N, what is the maximum value
the load Fy can have? Ans.  0.93 kN

The beam in Fig. 5-24 has negligible weight. If the system hangs in equilibrium when Fy; = 500 N, what is
the value of Fy,? Ans.  0.64 kN

Fig. 5-24

Repeat Problem 5.26, but now find Fy if Fy, is 500 N. The beam weighs 300 N and is uniform.
Ans. 0.56 kN

An object is subjected to the forces shown in Fig. 5-25. What single force F applied at a point on the x-axis
will balance these forces? (First find its components, and then find the force.) Where on the x-axis should the
force be applied? Ans. F, =232 N, F,, = —338 N; F =410 N at —55.5% at x =2.14 m
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Yy
300 N

2.50 m
|
i x
i 1.50 m
|
e

150N
Fig. 5-25

5.29  The solid uniform disk of radius » shown in Fig. 5-26 can turn freely on an axle through its center. A hole of
diameter D is drilled through the disk; its center is a distance r from the axle. The weight of the material
drilled out is Fy,. Find the weight Fy, of an object hung from a string wound on the disk that will hold the
disk at equilibrium in the position shown. Ans.  Fy = Fyy,(r/b) cos 0




Chapter 6

Work, Energy, and Power

THE WORK done by a force is defined as the product of that force times the parallel distance
over which it acts. Consider the simple case of straight-line motion shown in Fig. 6-1, where a
force F acts on a body that simultaneously undergoes a vector displacement §. The component of
F in the direction of §is F cos §. The work W done by the force F is defined to be the compo-
nent of F in the direction of the displacement, multiplied by the displacement:

W = (F cos 0)(s) = Fs cos 6

Notice that 6 is the angle between the force and displacement vectors. Work is a scalar quantity.

If F and § are in the same direction, cos @ = cos 0° = 1 and W = Fs. But, if F and § are in opposite
directions, then cos 6 = cos 180° = —1 and W = —Fy; the work is negative. Forces such as friction often
slow the motion of an object and are then opposite in direction to the displacement. Such forces usually
do negative work. Inasmuch as the friction force opposes the motion of an object the work done in
overcoming friction (along any path, curved or straight) equals the product of F; and the path-length
traveled. Thus, if an object is dragged against friction, back to the point where the journey started, work
is done even if the net displacement is zero.

Work is the transfer of energy from one entity to another by way of the action of a force applied
over a distance. The point of application of the force must move if work is to be done.

THE UNIT OF WORK in the SI is the newton-meter, called the joule (J). One joule is the work
done by a force of 1 N when it displaces an object 1 m in the direction of the force. Other units
sometimes used for work are the erg, where 1erg =10""J, and the foot-pound (ft-Ib), where
1 ft-lb = 1.355J.

ENERGY is a measure of the change imparted to a system. It is given to an object when a force
does work on the object. The amount of energy transferred to the object equals the work done.
Further, when an object does work, it loses an amount of energy equal to the work it does.
Energy and work have the same units, joules. Energy, like work, is a scalar quantity. An object
that is capable of doing work possesses energy.

KINETIC ENERGY (KE) is the energy possessed by an object because it is in motion. If an
object of mass m is moving with a speed v, it has translational KE given by

KE = %mvz

When m is in kg and v is in m/s, the units of KE are joules.

GRAVITATIONAL POTENTIAL ENERGY (PEg) is the energy possessed by an object because
of the gravitational interaction. In falling through a vertical distance /, a mass m can do work in
the amount mgh. We define the PEg of an object relative to an arbitrary zero level, often the
Earth’s surface. If the object is at a height & above the zero (or reference) level, its

PEg = mgh

where g is the acceleration due to gravity. Notice that mg is the weight of the object. The units of PEg are
joules when m is in kg, g is in m/sz, and % is in m.

69

Copyright 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



70 WORK, ENERGY, AND POWER [CHAP. 6

THE WORK-ENERGY THEOREM: When work is done on a point mass or a rigid body, and
there is no change in PE, the energy imparted can only appear as KE. Insofar as a body is not
totally rigid, however, energy can be transferred to its parts and the work done on it will not
precisely equal its change in KE.

CONSERVATION OF ENERGY: Energy can neither be created nor destroyed, but only trans-
formed from one kind to another. (Mass can be regarded as one form of energy. Ordinarily, the
conversion of mass into energy, and vice versa, predicted by the Special Theory of Relativity can
be ignored. This subject is treated in Chapter 41.)

POWER is the time rate of doing work:

work done by a force

- - = force x speed
time taken to do this work p

Average power =

where the speed is measured in the direction of the force applied to the object. More generally, power is
the rate of transfer of energy. In the SI, the unit of power is the watt (W), and 1W =1 J/s.
Another unit of power often used is the horsepower: 1hp = 746 W.

THE KILOWATT-HOUR is a unit of energy. If a force is doing work at a rate of 1 kilowattt
(which is 1000 J/s), then in 1 hour it will do 1 kW-h of work:

1 kW-h=3.6x10°J=3.6 MJ

Solved Problems

6.1 In Fig. 6-1, assume that the object is being pulled along the ground by a 75-N force directed 28°
above the horizontal. How much work does the force do in pulling the object 8.0 m?

F F
0\
Fcos6
S

Fig. 6-1

The work done is equal to the product of the displacement, 8.0 m, and the component of the force that
is parallel to the displacement, (75 N)(cos 28°). Thus,

W = (75 N)(cos 28°)(8.0 m) = 0.53 kJ
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6.2

6.3

6.4

6.5

A block moves up a 30° incline under the action of certain forces, three of which are shown in
Fig. 6-2. F, is horizontal and of magnitude 40 N. F, is normal to the plane and of magnitude
20 N. F; is parallel to the plane and of magnitude 30 N. Determine the work done by each force
as the block (and point of application of each force) moves 80 cm up the incline.

Fig. 6-2

The component of F, along the direction of the displacement is
F) cos 30° = (40 N)(0.866) = 34.6 N
Hence the work done by F, is (34.6 N)(0.80 m) = 28 J. (Notice that the distance must be expressed in
meters.)
Because it has no component in the direction of the displacement, F, does no work.

The component of F; in the direction of the displacement is 30 N. Hence the work done by F; is
(30 N)(0.80 m) =24 1J.

A 300-g object slides 80 cm along a horizontal tabletop. How much work is done in overcoming
friction between the object and the table if the coefficient of kinetic friction is 0.20?

We first find the friction force. Since the normal force equals the weight of the object,
Fr = e Fy = (0.20)(0.300 kg)(9.81 m/s*) = 0.588 N

The work done overcoming friction is Frs cos f. Because the friction force is opposite in direction to the
displacement, 6 = 180°. Therefore,
Work = Fps cos 180° = (0.588 N)(0.80 m)(—1) = —0.47 J

The work is negative because the friction force slows the object; it decreases the object’s kinetic energy.

How much work is done against gravity in lifting a 3.0-kg object through a vertical distance of
40 cm?

An external force is needed to lift an object. If the object is lifted at constant speed, the lifting force must
equal the weight of the object. The work done by the lifting force is what we refer to as work done against
gravity. Because the lifting force is mg, where m is the mass of the object, we have

Work = (mg)(h)(cos 6) = (3.0 kg x 9.81 N)(0.40 m)(1) =121J

In general, the work done against gravity in lifting an object of mass m through a vertical distance / is mgh.

How much work is done on an object by the force that supports it as the object is lowered
through a vertical distance #? How much work does the gravitational force on it do in this
same process?
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6.7

6.8

6.9
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The supporting force is mg, where m is the mass of the object. It is directed upward while the displace-
ment is downward. Hence the work it does is
Fs cos 6 = (mg)(h)(cos 180°) = —mgh
The force of gravity acting on the object is also mg, but it is directed downward in the same direction as the
displacement. The work done on the object by the force of gravity is therefore

Fs cos 0 = (mg)(h)(cos 0°) = mgh

A ladder 3.0 m long and weighing 200 N has its center of gravity 120 cm from the bottom. At its
top end is a 50-N weight. Compute the work required to raise the ladder from a horizontal
position on the ground to a vertical position.

The work done (against gravity) consists of two parts, the work to raise the center of gravity 1.20 m and
the work to raise the weight at the end through 3.0 m. Therefore
Work done = (200 N)(1.20 m) + (50 N)(3.0 m) = 0.39 kJ

Compute the work done against gravity by a pump that discharges 600 liters of fuel oil into a tank
20 m above the pump’s intake. One cubic centimeter of fuel oil has a mass of 0.82 g. One liter is
1000 cm’.

The mass lifted is

CHI3

. g\ _ _
(600 liters) <1000 liter> (0.82 cm3) =492000 g = 492 kg

The lifting work is then
Work = (mg)(h) = (492 kg x 9.81 m/s?)(20 m) = 96 kJ

A 2.0-kg mass falls 400 cm. (¢) How much work was done on it by the gravitational force?
() How much PEg did it lose?

Gravity pulls with a force mg on the object, and the displacement is 4 m in the direction of the force.
The work done by gravity is therefore
(mg)(4.00 m) = (2.0 kg x 9.81 N)(4.00 m) =78 J

The change in PEg of the object is mgh, — mgh;, where h; and & are the initial and final heights of the
object above the reference level. We then have

Change in PEg = mgh, — mgh; = mg(hy — h;) = (2.0 kg x 9.81 N)(=4.0 m) = —78 ]
The loss in PEg is 78 J.

A force of 1.50 N acts on a 0.20-kg cart so as to accelerate it along an air track. The track and
force are horizontal and in line. How fast is the cart going after acceleration from rest through
30 cm, if friction is negligible?

The work done by the force causes, and is equal to, the increase in KE of the cart. Therefore,

Work done = (KE), 4 — (KE) or Fs cos 0° = lmv_% -0

start -2

Substituting gives
(1.50 N)(0.30 m) = £(0.20 kg)v;

from which vy = 2.1m/s.
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6.10

6.11

6.12

6.13

6.14

A 0.50-kg block slides across a tabletop with an initial velocity of 20 cm/s and comes to rest in a
distance of 70 cm. Find the average friction force that retarded its motion.

The KE of the block is decreased because of the slowing action of the friction force. That is,

Change in KE of block = work done on block by friction force

Lo — Ly —
5 MVf — 3 mv; = Fps cos §

Because the friction force on the block is opposite in direction to the displacement, cos § = —1. Using
v =0, v; = 0.20 m/s, and s = 0.70 m, we find

0 —1(0.50 kg)(0.20 m/s)* = (F;)(0.70 m)(—1)
from which F; = 0.014 N.

A car going 15 m/s is brought to rest in a distance of 2.0 m as it strikes a pile of dirt. How large an
average force is exerted by seatbelts on a 90-kg passenger as the car is stopped?

We assume the seatbelts stop the passenger in 2.0 m. The force F they apply acts through a distance of
2.0 m and decreases the passenger’s KE to zero. So
Change in KE of passenger = work done by F
0 —1(90 kg)(15 m/s*) = (F)(2.0 m)(—1)

where cos # = —1 because the restraining force on the passenger is opposite in direction to the displacement.
Solving, we find F = 5.1 kN.

A projectile is shot upward from the earth with a speed of 20 m/s. How high is it when its speed is
8.0 m/s? Ignore air friction.
Because the projectile’s energy is conserved, we have
Change in KE +change in PEg =0
%mvz — %mv,z + (mg)(h, —h)=0
We wish to find /2, — h;. After a little algebra, we obtain

2.2 2 2
h,-—h,-:—U/ Or :_(8.0 m/s) (202m/s) 7m
: 2g 2(9.81 m/s?)

In an Atwood machine (see Problem 3.23) the two masses are 800 g and 700 g. The system is
released from rest. How fast is the 800-g mass moving after it has fallen 120 cm?

The 700-g mass rises 120 cm while the 800-g mass falls 120 cm, so the net change in PEg is
Change in PEg = (0.70 kg)(9.81 m/s*)(1.20 m) — (0.80 kg)(9.81 m/s*)(1.20 m) = —1.18 J

which is a loss in PEg. Because energy is conserved, the KE of the masses must increase by 1.18 J.
Therefore,

Change in KE = 1.18 J = 1(0.70 kg)(v} — v7) +1(0.80 kg) (v — v7)

The system started from rest, so v; = 0. We solve the above equation for v, and find v, = 1.25 m/s.

Figure 6-3 shows a bead sliding on a wire. If friction forces are negligible and the bead has a speed
of 200 cm/s at 4, what will be its speed (a) at point B? (b) At point C?
We know the energy of the bead is conserved, so we can write
Change in KE + change in PEg =0
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4 »

C
80 cm
50 cm
B

Fig. 6-3

L} —Smuf + mg(hy — hy) =0

(a) Here, v; =2.0 m/s, h; = 0.80 m, and /&, = 0. Using these values, while noticing that m cancels out, gives
A
vy = 4.4 m/s.
(b) Here, v; = 2.0 m/s, h; = 0.80 m, and &, = 0.50 m. Using these values gives vy = 3.1 m/s.

6.15 Suppose the bead in Fig. 6-3 has a mass of 15 g and a speed of 2.0 m/s at 4, and it stops as it
reaches point C. The length of the wire from 4 to C is 250 cm. How large an average friction
force opposed the motion of the bead?

When the bead moves from A4 to C, it experiences a change in its total energy: it loses both KE and PEg.
This total energy change is equal to the work done on the bead by the friction force. Therefore,

Change in PEg + change in KE = work done by friction force

mg(he — hy) +1m(vg — %) = Fys cos 0

Notice that cos § = —1, ve =0, vy =2.0 m/s, he —hy = —0.30 m, s =2.50 m, and m = 0.015 kg. Using
these values, we find that F;y = 0.030 N.

6.16 A 1200-kg car is coasting down a 30° hill as shown in Fig. 6-4. At a time when the car’s speed is
12 m/s, the driver applies the brakes. What constant force F (parallel to the road) must result if
the car is to stop after traveling 100 m?

100 sin 30°

The change in total energy of the car (KE + PEg) is equal to the work done on it by the braking force
F. This work is Fs cos 180° because F retards the car’s motion. We have

Ym(vf — of) + mg(hy — ) = Fs(—1)
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where m = 1200 kg
’l)j' =0
v;=12m/s
hy —h; = (100 m) sin 30°
s =100 m

With these values, the equation yields F = 6.7 kN.

6.17 A ball at the end of a 180-cm long string swings as a pendulum as shown in Fig. 6-5. The ball’s
speed is 400 cm/s as it passes through its lowest position. (@) To what height / above this position
will it rise before stopping? (b) What angle does the pendulum then make to the vertical?

(@) The pull of the string on the ball is always perpendicular to the ball’s motion, and therefore does no
work on the ball. Consequently, the ball’s total energy remains constant; it loses KE but gains a like
amount of PEg. That is,

Change in KE + change in PEg =0

Imv; — mo} + mgh =0

Since vy = 0 and v; = 4.00 m/s, we find 2 = 0.816 m as the height to which the ball rises.
(b) From Fig. 6-5,

eithil 0.816
e A I 1
which gives 6 = 56.9°.
v
»
25°
Fig. 6-5 Fig. 6-6

6.18 A 500-g block is shot up the incline in Fig. 6-6 with an initial speed of 200 cm/s. How far up the
incline will it go if the coefficient of friction between it and the incline is 0.150?

We first find the friction force on the block as
Fy = puFy — p(mg cos 25°)

As the block slides up the incline a distance D, it rises a distance D sin 25.0°. Because the change in
energy of the block equals the work done on it by the friction force, we have

Change in KE + change in PEg = F;D cos 180°

Im(vj —v7) + mg(D sin 25.0°) = —F;D
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6.20

6.21

6.22
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We calculated F; above, and we know v; = 2.00 m/s and vy = 0. Notice that the mass of the block cancels
out in this case (but only because F; is given in terms of it). Substitution gives D = 0.365 m.

A 60000-kg train is being pulled up a 1.0 percent grade (it rises 1.0 m for each horizontal 100 m)
by a drawbar pull of 3.0 kN. The friction force opposing the motion of the train is 4.0 kN. The
train’s initial speed is 12 m/s. Through what horizontal distance s will the train move before its
speed is reduced to 9.0 m/s?

The change in total energy of the train is due to the work of the friction force and the drawbar pull:

Change in KE + change in PEg = Wy awbar + Whiiction

Im(v} — v7) + mg(0.010s) = (3000 N)(5)(1) + (4000 N)(s)(~1)
from which s =275 m = 0.28 km.

An advertisement claims that a certain 1200-kg car can accelerate from rest to a speed of 25 m/s
in a time of 8.0 s. What average power must the motor produce to cause this acceleration? Ignore
friction losses.
The work done in accelerating the car is given by
Work done = change in KE = 1m(v; — v7)
The time taken for this work is 8.0 s. Therefore,

work (1200 kg)(25 m/s)’

P = = =47 kW
oW = Yime 8.0s ’
Converting from watts to horsepower, we have
1 hp
Power = (46900 W) <746 W) =63 hp

A 0.25-hp motor is used to lift a load at the rate of 5.0 cm/s. How great a load can it lift at this
constant speed?

We assume the power output of the motor to be 0.25 hp = 186.5 W. In 1.0 s, the load mg is lifted a
distance of 0.050 m. Therefore,
Work done in 1.0 s = (weight)(height change in 1.0 s) = (mg)(0.050 m)
By definition, power = work/time, so that

(mg)(0.050 m)
1.0s
Using ¢ = 9.81 m/s, we find that m = 381 kg. The motor can lift a load of about 0.38 x 10° kg at this speed.

186.5 W =

Repeat Problem 6.20 if the data apply to a car going up a 20° incline.

Work must be done to lift the car as well as to accelerate it:
Work done = change in KE + change in PEg
= Im(v} —3) + mg(y — h)

where iy — h; = s sin 20° and s is the total distance the car travels in the 8 s under consideration. Knowing
v; =0, v, =25 m/s, and ¢ = 8.0 s, we have

5 = Vgt =% (v; 4+ v7)t = 100 m
Then  Work done = 1 (1200 kg)(625 m?/s%) + (1200 kg)(9.81 m/s*)(100 m)(sin 20°) = 0.78 x 10° kJ
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6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

from which Power = 78LOIZJ =97 kW =0.13 x 10° hp

In unloading grain from the hold of a ship, an elevator lifts the grain through a distance of 12 m.
Grain is discharged at the top of the elevator at a rate of 2.0 kg each second, and the discharge
speed of each grain particle is 3.0 m/s. Find the minimum-horsepower motor that can elevate
grain in this way.

The power output of the motor is

change in KE + change in PEg _ $m(v} — v}) + mgh
time taken B t
m
== [1(9.0 m*/s?) + (9.81 m/s”)(12 m)]

Power =

The mass transported per second, m/t, is 2.0 kg/s. Using this value gives the power as 0.24 kW.

Supplementary Problems

A force of 3.0 N acts through a distance of 12 m in the direction of the force. Find the work done.
Ans. 36]

A 4.0-kg object is lifted 1.5 m. (¢) How much work is done against the Earth’s gravity? (b) Repeat if the
object is lowered instead of lifted. Ans. (a) 59 J; (b) =59 ]

A uniform rectangular marble slab is 3.4 m long and 2.0 m wide. It has a mass of 180 kg. If it is originally
lying on the flat ground, how much work is needed to stand it on end? Ans. 3.0 kJ

How large a force is required to accelerate a 1300-kg car from rest to a speed of 20 m/s in a distance of
80 m? Ans. 3.3 kN

A 1200-kg car going 30 m/s applies its brakes and skids to rest. If the friction force between the sliding tires
and the pavement is 6000 N, how far does the car skid before coming to rest? Ans. 90 m

A proton (m = 1.67 x 107" kg) that has a speed of 5.0 x 10° m/s passes through a metal film of thickness
0.010 mm and emerges with a speed of 2.0 x 10° m/s. How large an average force opposed its motion
through the film?  Ans. 1.8 x107° N

A 200-kg cart is pushed slowly up an incline. How much work does the pushing force do in moving the cart
up to a platform 1.5 m above the starting point if friction is negligible? Ans. 2.9 kJ

Repeat Problem 6.30 if the distance along the incline to the platform is 7.0 m and a friction force of 150 N
opposes the motion. Ans. 4.0 k]

A 50000-kg freight car is pulled 800 m up along a 1.20 percent grade at constant speed. (¢) Find the work
done against gravity by the drawbar pull. (b) If the friction force retarding the motion is 1500 N, find the
total work done. Ans.  (a) 4.70 MJ; (b) 5.90 MJ

A 60-kg woman walks up a flight of stairs that connects two floors 3.0 m apart. (¢) How much lifting work is
done on the woman? (b) How much lifting work is done by the woman? (¢) By how much does the woman’s
PEg change? Ans. (a) 1.8 kJ; (b) 1.8 kJ; (¢) 1.8 kJ
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A pump lifts water from a lake to a large tank 20 m above the lake. How much work against gravity does the
pump do as it transfers 5.0 m® of water to the tank? One cubic meter of water has a mass of 1000 kg.
Ans. 9.8 x10°J

Just before striking the ground, a 2.0-kg mass has 400 J of KE. If friction can be ignored, from what height
was it dropped? Ans. 20.0 m

A 0.50-kg ball falls past a window that is 1.50 m in vertical length. (¢) How much did the KE of the ball
increase as it fell past the window? (b) If its speed was 3.0 m/s at the top of the window, what was its speed at
the bottom? Ans. (a) 7.4 J; (b) 6.2 m/s

At sea level a nitrogen molecule in the air has an average translational KE of 6.2 x 102" J. Its mass is
4.7 x 1072 kg. (a) If the molecule could shoot straight up without striking other air molecules, how high
would it rise? (b) What is the molecule’s initial speed? Ans. 14 km; (b) 0.51 km/s

The coefficient of sliding friction between a 900-kg car and the pavement is 0.80. If the car is moving at
25 m/s along level pavement when it begins to skid to a stop, how far will it go before stopping?
Ans. 40 m

Consider the simple pendulum shown in Fig. 6-7. (a) If it is released from point 4, what will be the speed of
the ball as it passes through point C? (b) What is the ball’s speed at point B? Ans. (a) 3.8 m/s;
(b) 3.4 m/s

Fig. 6-7 Fig. 6-8

A 1200-kg car coasts from rest down a driveway that is inclined 20° to the horizontal and is 15 m long. How
fast is the car going at the end of the driveway if (a) friction is negligible and (b) a friction force of 3000 N
opposes the motion? Ans. (a) 10 m/s; (b) 5.1 m/s

The driver of a 1200-kg car notices that the car slows from 20 m/s to 15 m/s as it coasts a distance of 130 m
along level ground. How large a force opposes the motion? Ans.  0.81 kN

A 2000-kg elevator rises from rest in the basement to the fourth floor, a distance of 25 m. As it passes the
fourth floor, its speed is 3.0 m/s. There is a constant frictional force of 500 N. Calculate the work done by
the lifting mechanism. Ans. 0.51 MJ

Figure 6-8 shows a bead sliding on a wire. How large must height /; be if the bead, starting at rest at A4, is to
have a speed of 200 cm/s at point B? Ignore friction. Ans. 20.4 cm
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In Fig. 6-8, i; = 50.0 cm, /1, = 30.0 cm, and the length along the wire from 4 to C is 400 cm. A 3.00-g bead
released at A coasts to point C and stops. How large an average friction force opposed its motion?
Ans.  1.47 mN

In Fig. 6-8, h; =200 cm, /, = 150 cm, and at 4 the 3.00-g bead has a downward speed along the wire of
800 cmy/s. (@) How fast is the bead moving as it passes point B if friction is negligible? (b)) How much energy
did the bead lose to friction work if it rises to a height of 20.0 cm above C after it leaves the wire?
Ans. (a) 10.2 m/s; (b) 105 mJ

Calculate the average horsepower required to raise a 150-kg drum to a height of 20 m in a time of
1.0 minute. Ans. 0.66 hp

Compute the power output of a machine that lifts a 500-kg crate through a height of 20.0 m in a time of
60.0 s. Ans. 1.63 kW

An engine expends 40.0 hp in propelling a car along a level track at 15.0 m/s. How large is the total retarding
force acting on the car? Ans. 1.99 kN

A 1000-kg auto travels up a 3.0 percent grade at 20 m/s. Find the horsepower required, neglecting friction.
Ans. 7.9 hp

A 900-kg car whose motor delivers a maximum power of 40.0 hp to its wheels can maintain a steady speed of
130 km/h on a horizontal roadway. How large is the friction force that impedes its motion at this speed?
Ans. 826 N

Water flows from a reservoir at the rate of 3000 kg/min, to a turbine 120 m below. If the efficiency of the
turbine is 80 percent, compute the horsepower output of the turbine. Neglect friction in the pipe and the
small KE of the water leaving the turbine. Ans. 63 hp

Find the mass of the largest box that a 40-hp engine can pull along a level road at 15 m/s if the friction
coefficient between road and box is 0.15. Ans. 1.4 x10° kg

A 1300-kg car is to accelerate from rest to a speed of 30.0 m/s in a time of 12.0 s as it climbs a 15.0° hill.
Assuming uniform acceleration, what minimum horsepower is needed to accelerate the car in this way?
Ans. 132 hp



Chapter 7

Simple Machines

A MACHINE is any device by which the magnitude, direction, or method of application of a
force is changed so as to achieve some advantage. Examples of simple machines are the lever,
inclined plane, pulley, crank and axle, and jackscrew.

THE PRINCIPLE OF WORK that applies to a continuously operating machine is as follows:
Work input = useful work output + work to overcome friction

In machines that operate for only a short time, some of the input work may be used to store energy
within the machine. An internal spring might be stretched, or a movable pulley might be raised, for
example.

MECHANICAL ADVANTAGE: The actual mechanical advantage (AMA) of a machine is

force exerted by machine on load

AMA = force ratio = -
force used to operate machine

The ideal mechanical advantage (IMA) of a machine is

distance moved by input force

IMA = dist: tio =
1stance ratio distance moved by load

Because friction is always present, the AMA is always less than the IMA. In general, both the AMA and
IMA are greater than one.

THE EFFICIENCY of a machine is

. work output ower output
Efficiency = . but _p - P
work input power input

The efficiency is also equal to the ratio AMA/IMA.

Solved Problems

7.1  Ina particular hoist system, the load is lifted 10 cm for each 70 cm of movement of the rope that
operates the device. What is the smallest input force that could possibly lift a 5.0-kN load?

The most advantageous situation possible is that in which all the input work is used to lift the load, i.e.,
in which friction and other loss mechanisms are negligible. In that case,

Work input = lifting work

If the load is lifted a distance s, the lifting work is (5.0 kN)(s). The input force F, however, must work
through a distance 7.0s. The above equation then becomes

(F)(7.0s) = (5.0 kKN)(s)
which gives F' = 0.71 kN as the smallest possible force required.

80
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7.2 A hoisting machine lifts a 3000-kg load a height of 8.00 m in a time of 20.0 s. The power supplied
to the engine is 18.0 hp. Compute (a) the work output, (b) the power output and power input, and
(c) the efficiency of the engine and hoist system.
(@) Work output = (lifting force) x (height) = (3000 x 9.81 N)(8.00 m) = 235 kJ

work output 235 kJ

P = = =118k
() ower output time taken 20.0 s 8 kW
746 k
Power input = (18.0 hp) (W) = 13.4 kW
. power output 11.8 kW
Effi = = =0.881 = 83.1
(c) fereney power input  13.4 kW 088 88.1%
or Efficiency = work output _ 235 kI =0.877=87.7%

work input  (13.4 kJ/s)(20.0 s)

The efficiency is 88%:; the differences arise from the rounding off process.

7.3  What power in kW is supplied to a 12.0-hp motor having an efficiency of 90.0 percent when it is
delivering its full rated output?

From the definition of efficiency,

power output _ (12.0 hp)(0.746 kW /hp)

efficiency 0.900 =995 kW

Power input =

7.4  For the three levers shown in Fig. 7-1, determine the vertical forces F;, F,, and F; required to
support the load Fj = 90 N. Neglect the weights of the levers. Also find the IMA, AMA, and
efficiency for each system.

% 40m %Z.Om% % 3.0m A
IF A | AI‘Om
| v F—x>

(@) (b (©)

Fig. 7-1

In each case, we take torques about the fulcrum point as axis. If we assume that the lifting is occurring
slowly at constant speed, then the systems are in equilibrium; the clockwise torques balance the counter-
clockwise torques. (Recall that torque = rF sin 6.)

Clockwise torque = counterclockwise torque

(a) (2.0 m)(90 N)(1) = (4.0 m)(F;)(1) from which  F; =45 N
b) (1.0 m)(90 N)(1) = (3.0 m)(F,)(1) from which F, =30 N
(o) (2.0 m)(90 N)(1) = (5.0 m)(F3) sin 60° from which  F; =42 N

To find the IMA of the system in Fig. 7-1(«), we notice that the load moves only half as far as the input
force, and so

IMA = distance ratio = 2.0
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Similarly, in Fig. 7-1(b). IMA = 3/1 = 3. In Fig. 7-1(c), however, the lever arm is (5.0 m)sin 60° = 4.33 m
and so the distance ratio is 4.33/2 = 2.16. To summarize,

Lever (a) Lever (b) Lever (c)
IMA 2.0 3.0 2.2
90 N 90 N 90 N
AMA BN 20 N0 AoN 22
Eff. 1.0 1.0 1.0

The efficiencies are 1.0 because we have neglected friction at the fulcrums.

7.5  Determine the force F required to lift a 100-N load Fy, with each of the pulley systems shown in
Fig. 7-2. Neglect friction and the weights of the pulleys.

(a) (®) © () (e)
Fig. 7-2

(a) Load Fy is supported by two ropes; each rope exerts an upward pull of Fy = %F w- Because the rope is
continuous and the pulleys are frictionless, F; = F. Then

F=Fr=%1Fy=%(100N)=50 N
(b) Here, too, the load is supported by the tensions in two ropes, Fr and F, where F; = F. Then
Fr+F=Fy or F=1F;=50N
(¢) Let Fy| and Fp, be tensions around pulleys 4 and B, respectively. Pulley 4 is in equilibrium, so
Fri+Fr—Fy=0 or  Fp =1Fy
Pulley B, too, is in equilibrium, so
Fro+Fry—Fp =0 or  Fry=%Fp =1Fy

But F = Fr, and so F = { Fjy =25 N.
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(d) Four ropes, each with the same tension Fr, support the load Fj. Therefore,
4Fp  =Fy  andso  F=Fp =1Fy=25N
(e) We see at once F = Fr;. Because the pulley on the left is in equilibrium, we have
Fry—Fprp —F=0
But Fry = F and so Fy, = 2F. The pulley on the right is also in equilibrium, and so
Fri+Frp+Fr—Fy=0

Recalling that Fy = F and that Fp, = 2F gives 4F = Fy, so F =25 N.

7.6  Using the wheel and axle shown in Fig. 7-3, a 400-N load can be raised by a force of 50 N applied
to the rim of the wheel. The radii of the wheel and axle are 85 cm and 6.0 cm, respectively.
Determine the IMA, AMA, and efficiency of the machine.

We know that in one turn of the wheel-axle system, a length of cord equal to the circumference of the
wheel or axle will be wound or unwound.

distance moved by F 27R  85cm

IMA = — — — 14

distance moved by Fyr  27r 6.0 cm

400 N

AMA = fi tio=———=28.0

orce ratio = ==
. AMA 8.0

EfﬁCIency = m = m =0.56 = 56%
aF
Sk 3.0m
JL F,y=(20)(9.81)N
Fig. 7-3 Fig. 7-4

7.7  The inclined plane shown in Fig. 7-4 is 15 m long and rises 3.0 m. (¢) What force F parallel to the
plane is required to slide a 20-kg box up the plane if friction is neglected? () What is the IMA of
the plane? (¢) Find the AMA and efficiency if a 64-N force is actually required.

(a) There are several ways to approach this. Let us consider energy. Since there is no friction, the work
done by the pushing force, (F)(15 m), must equal the lifting work done, (20 kg)(9.81 m/sz)(3.0 m).
Equating these two expressions and solving for F gives F = 39 N.

_ distance moved by F 15m 5.0

b IMA = = =
(5) distance Fyy is lifted 3.0 m
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. Fp 196N
(¢) AMA = force ratio = FTUN - 3.06 =3.1
, AMA  3.06
EfﬁCISIle = m = W =0.61 = 61%

Or, as a check,

work output  (Fy/)(3.0 m)
work input — (F)(15m)

Efficiency = =0.61 =61%

As shown in Fig. 7-5, a jackscrew has a lever arm of 40 cm and a pitch of 5.0 mm. If the efficiency
is 30 percent, what horizontal force F applied perpendicularly at the end of the lever arm is
required to lift a load Fy of 270 kg?

Ey

5.0 mm

Fig. 7-5

When the jack handle is moved around one complete circle, the input force moves a distance
27r = 27(0.40 m)
while the load is lifted a distance of 0.0050 m. The IMA is therefore

27(0.40 m)

_ 3
00050 m 0.50 x 10

IMA = distance ratio =

Since efficiency = AMA/IMA, we have
AMA = (efficiency)(IMA) = (0.30)(502) = 0.15 x 10°
But AMA = (load lifted)/(input force) and so

p_ load lifted _ (270kg)(9.81 m/s?)
T AMA 151

=18N

A differential pulley (chain hoist) is shown in Fig. 7-6. Two toothed pulleys of radii r = 10 cm and
R =11 cm are fastened together and turn on the same axle. A continuous chain passes over the
smaller (10 cm) pulley, then around the movable pulley at the bottom, and finally around the
11 cm pulley. The operator exerts a downward force F on the chain to lift the load Fy .
(a) Determine the IMA. (b) What is the efficiency of the machine if an applied force of 50 N is
required to lift a load of 700 N?



CHAP. 7] SIMPLE MACHINES 85

Fig. 7-6

(a) Suppose that the force F moves down a distance sufficient to cause the upper rigid system of pulleys to
turn one revolution. Then the smaller upper pulley unwinds a length of chain equal to its circumference,
27r, while the larger upper pulley winds a length 27 R. As a result, the chain supporting the lower pulley
is shortened by a length 2R — 2zr. The load Fyy is lifted half this distance, or

1(2rR = 2nr) =7m(R —7r)
when the input force moves a distance 27 R. Therefore,

IMA distance moved by ¥  27R 2R 22cm _

= = = = =22
distance moved by Fjy #(R—r) R—r 1.0cm

(b) From the data,
_ load lifted 700 N

AMA = = =14
input force 50 N
and
. AMA 14
EffiClenCy = m = Z =0.64 = 64%

Supplementary Problems

7.10 A motor furnishes 120 hp to a device that lifts a 5000-kg load to a height of 13.0 m in a time of 20 s. Find the
efficiency of the machine. Ans. 36%

7.11  Refer back to Fig. 7-2(d). If a force of 200 N is required to lift a 50-kg load, find the IMA, AMA, and
efficiency for the system. Ans. 4,2.5,61%
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7.12

7.13

7.14

7.15

7.16
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In Fig. 7-7, the 300-N load is balanced by a force F' in both systems. Assuming efficiencies of 100 percent,
how large is F in each system? Assume all ropes to be vertical. Ans.  (a) 100 N; (b) 75.0 N

Fig. 7-7

With a certain machine, the applied force moves 3.3 m to raise a load 8.0 cm. Find the (a) IMA and
(b) AMA if the efficiency is 60 percent. What load can be lifted by an applied force of 50 N if the efficiency is
(¢) 100 percent and (d ) 60 percent? Ans.  (a)41; (b) 25;(¢) 2.1 kN; (d) 1.2 kN

With a wheel and axle, a force of 80 N applied to the rim of the wheel can lift a load of 640 N. The diameters
of the wheel and axle are 36 cm and 4.0 cm, respectively. Determine the AMA, IMA, and efficiency of the
machine. Ans. 8.0, 9.0, 89%

A certain hydraulic jack in a gas station lifts a 900-kg car a distance of 0.25 cm when a force of 150 N pushes
a piston through a distance of 20 cm. Find the IMA, AMA, and efficiency. Ans. 80, 59, 74%

The screw of a certain press has a pitch of 0.20 cm. The diameter of the wheel to which a tangential turning
force F is applied is 55 cm. If the efficiency is 40 percent, how large must F be to produce a force of 12 kN in
the press? Ans. 35N

The diameters of the two upper pulleys of a chain hoist (Fig. 7-6) are 18 cm and 16 cm. If the efficiency of the
hoist is 45 percent, what force is required to lift a 400-kg crate? Ans. 0.48 kN



Chapter 8

Impulse and Momentum

THE LINEAR MOMENTUM (p) of a body is the product of its mass (m) and velocity (¥):
Linear momentum = (mass of body) (velocity of body)
p=mv

Momentum is a vector quantity whose direction is that of the velocity. The units of momentum are
kg-m/s in the SI.

AN IMPULSE is the product of a force (F) and the time interval (Af) over which the force acts:
Impulse = (force) (length of time the force acts)

Impulse is a vector quantity whose direction is that of the force. Its units are N-s in the SI.

AN IMPULSE CAUSES A CHANGE IN MOMENTUM: The change of momentum produced
by an impulse is equal to the impulse in both magnitude and direction. Thus, if a constant force
F acting for a time Ar on a body of mass m changes its velocity from an initial value v; to a
final value ¥, then
Impulse = change in momentum
FAL=m(V, —¥,)

Newton’s Second Law, as he gave it, is F = Ap/At from which it follows that F At = Ap. Moreover,
F At = A(mv) and if m is constant F At = m(v, — ¥,).

CONSERVATION OF LINEAR MOMENTUM: If the net external force acting on a system of
objects is zero, the vector sum of the momenta of the objects will remain constant.

IN COLLISIONS AND EXPLOSIONS, the vector sum of the momenta just before the event
equals the vector sum of the momenta just after the event. The vector sum of the momenta of
the objects involved does not change during the collision or explosion.
Thus, when two bodies of masses m; and m, collide,
Total momentum before impact = total momentum after impact
mlﬁ'l + m2ﬁz = Wl]V] + le\_fz
where u; and u, are the velocities before impact, and v; and ¥, are the velocities after. In one dimension,
in component form,
MUy + Moy = MUy + MVsy

and similarly for the y- and z-components. Remember that vector quantities are always boldfaced and
velocity is a vector. On the other hand, v, u,,, v;,, and v,, are the scalar values of the velocities (they

can be positive or negative). A positive direction is initally selected and vectors pointing opposite to this
have negative numerical scalar values.
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A PERFECTLY ELASTIC COLLISION is one in which the sum of the translational KEs of the
objects is not changed during the collision. In the case of two bodies,

1 2,1 2 _ 1 2 1 2
zmlul —|—§m2u2 = §m11)1 —|—§m2112

COEFFICIENT OF RESTITUTION: For any collision between two bodies in which the bodies
move only along a single straight line (e.g., the x-axis), a coefficient of restitution e is defined. It
is a pure number given by
Uax — Vix
e =——
Uy — Uy
where u;, and u,, are values before impact, and v, and v,, are values after impact. Notice that
|u1c — us,| 1s the relative speed of approach and |v,, — vy, is the relative speed of recession.
For a perfectly elastic collision, ¢ = 1. For inelastic collisions, e < 1. If the bodies stick together after
collision, e = 0.

THE CENTER OF MASS of an object (of mass m) is the single point that moves in the same
way as a point mass (of mass m) would move when subjected to the same external forces that
act on the object. That is, if the resultant force acting on an object (or system of objects) of
mass m is F, the acceleration of the center of mass of the object (or system) is given by
A = f/ m.

If the object is considered to be composed of tiny masses n1;, m,, ms, and so on, at coordinates
(x1,1,21), (X2,)2,22), and so on, then the coordinates of the center of mass are given by

. X xm; on = Y ym; Xz,
cm T cm T
by m;

Z
by m; em Zm,—

where the sums extend over all masses composing the object. In a uniform gravitational field, the center
of mass and the center of gravity coincide.

Solved Problems

8.1  An 8.0-g bullet is fired horizontally into a 9.00-kg cube of wood, which is at rest, and sticks in it.
The cube is free to move and has a speed of 40 cm/s after impact. Find the initial velocity of the
bullet.

Consider the system (cube + bullet). The velocity, and hence the momentum, of the cube before impact
is zero. Take the bullet’s initial motion to be positive in the positive x-direction. The momentum conserva-
tion law tells us that

Momentum of system before impact = momentum of system after impact
(momentum of bullet) + (momentum of cube) = (momentum of bullet + cube)
mpug, + Mmcve, = (mp + me)v,
(0.008 0 kg)vp, + 0 = (9.008 kg)(0.40 m/s)

Solving gives vy, = 0.45 km/s and so vz = 0.45 km/s— POSITIVE X-DIRECTION.



CHAP. §] IMPULSE AND MOMENTUM 89

8.2

8.3

8.4

8.5

A 16-g mass is moving in the +x-direction at 30 cm/s while a 4.0-g mass is moving in the
—x-direction at 50 cm/s. They collide head on and stick together. Find their velocity after the
collision.

Let the 16-g mass be m; and the 4.0-g mass be m,.
Take the +x-direction to be positive. That means that the velocity of the 4.0-g mass has a scalar value of
vy, = —50 cm/s. We apply the law of conservation of momentum to the system consisting of the two masses:
Momentum before impact = momentum after impact
My + myvy, = (my + ma)v,
(0.016 kg)(0.30 m/s) + (0.0040 kg)(—0.50 m/s) = (0.020 kg)v,
v, = +0.14 m/s

(Notice that the 4.0-g mass has negative momentum.) Hence, v = 0.14 m/s— POSITIVE X-DIRECTION.

A 2.0-kg brick is moving at a speed of 6.0 m/s. How large a force F is needed to stop the brick in a
time of 7.0 x 107* s?

Let us solve this by use of the impulse equation:

Impulse on brick = change in momentum of brick
F At = mvy — my;
F(7.0 x 107*s) = 0 — (2.0 kg)(6.0 m/s)

from which F = —1.7 x 10* N. The minus sign indicates that the force opposes the motion.

A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges
with a speed of 90 m/s. What average force impeded its motion through the plastic?

Use the impulse equation to find the force F on the bullet as it takes a time At to pass through the
plastic. Taking the initial direction of motion to be positive,

FAt = mvy — my;

We can find Ar by assuming uniform deceleration and using x =v,¢? where x=0.020 m and
gy = 5 (v; +v7) = 195 m/s. This gives Ar = 1.026 x 10~* s. Then

(F)(1.026 x 10™* 5) = (0.015 kg)(90 m/s) — (0.015 kg)(300 m/s)

which gives F = —3.1 x 10* N as the average retarding force. How could this problem have been solved
using F = ma instead of the impulse equation? By using energy methods?

The nucleus of an atom has a mass of 3.80 x 107> kg and is at rest. The nucleus is radioactive
and suddenly ejects a particle of mass 6.6 x 107" kg and speed 1.5 x 10’ m/s. Find the recoil
speed of the nucleus that is left behind.

Take the direction of the ejected particle as positive. We are given, m,; = 3.80 x 1072 kg,
m, = 6.6 x 10777 kg, m,; = m,; —m, = 3.73 x 1072 kg, and v, = 1.5 x 107 m/s; find the final speed of
the nucleus, v,,. The momentum of the system is conserved during the explosion.
Momentum before = momentum after
0 = myp vy =+ myvpy

0= (3.73 x 107> kg)(v,) + (6.6 x 107 kg)(1.5 x 10" m/s)
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Solving gives
(6.6 x 1072 kg)(1.5x 10" m/s)  10.0 x 107
3.73 x 1075 kg T 373%x 107

The fact that this is negative tells us that the velocity vector of the nucleus points in the negative direction,
opposite to the velocity of the particle.

=2.7x10° m/s

—Uyy =

A 0.25-kg ball moving in the +x-direction at 13 m/s is hit by a bat. Its final velocity is 19 m/s in
the —x-direction. The bat acts on the ball for 0.010 s. Find the average force F exerted on the ball
by the bat.

We have v; = 13 m/s and vy = —19 m/s. Taking the initial direction of motion as positive, the impulse
equation then gives
F At = mvy — my;
F(0.010 ) = (0.25 kg)(—19 m/s) — (0.25 kg)(13 m/s)

from which F = —0.80 kN.

Two girls (masses m; and m,) are on roller skates and stand at rest, close to each other and face to
face. Girl 1 pushes squarely against girl 2 and sends her moving backward. Assuming the girls
move freely on their skates, with what speed does girl 1 move?

We take the two girls to comprise the system under consideration. The problem states that girl 2 moves
“backward,” so let that be the negative direction; therefore the “forward” direction is positive. There is no
resultant external force on the system (the push of one girl on the other is an internal force), and so
momentum is conserved:

Momentum before = momentum after

0 = mv; + myv,
from which vV =——

Girl 1 recoils with this speed. Notice that if m,/m; is very large, v; is much larger than v,. The velocity of girl
1, ¥}, points in the positive forward direction. The velocity of girl 2, ¥,, points in the negative backward
direction. If we put numbers into the equation, v, would have to be negative and v; would come out positive.

As shown in Fig. 8-1, a 15-g bullet is fired horizontally into a 3.000-kg block of wood suspended
by a long cord. The bullet sticks in the block. Compute the speed of the bullet if the impact causes
the block to swing 10 cm above its initial level.

7 =y, —=-
S’ 15¢

3.000 kg

Fig. 8-1
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8.9

8.10

8.11

Consider first the collision of block and bullet. During the collision, momentum is conserved, so

Momentum just before = momentum just after
(0.015 kg)v 4+ 0 = (3.015 kg) V'

where v is the initial speed of the bullet, and V is the speed of block and bullet just after collision.
We have two unknowns in this equation. To find another equation, we can use the fact that the block
swings 10 cm high. If we let PEg = 0 at the initial level of the block, energy conservation gives

KE just after collision = final PEg
1(3.015 kg) V> = (3.015 kg)(9.81 m/s*)(0.10 m)

From this we find /' = 1.40 m/s. Substituting this in the previous equation gives v = 0.28 km/s for the speed
of the bullet.

Notice that we cannot write the conservation of energy equation %mv2 = (m+ M)gh, where
m = 0.015 kg and M = 3.000 kg because energy is lost (through friction) in the collision process.

Three masses are placed on the x-axis: 200 g at x =0, 500 g at x =30 cm, and 400 g at
x = 70 cm. Find their center of mass.

S, (0)(0.20 kg) + (0.30 m)(0.50 kg) + (0.70 m)(0.40 kg)

Xom = - —0.39
Yom = o (0.20 + 0.50 + 0.40) kg o

The y- and z-coordinates of the mass center are zero.

A system consists of the following masses in the xy-plane: 4.0 kg at coordinates (x =0,
y=>5.0m), 7.0 kg at (3.0 m, 8.0 m), and 5.0 kg at (—3.0 m, —6.0 m). Find the position of its
center of mass.

_ S _ (0)(40 ke) + (30 m)(7.0 ke) + (-3.0m)(50ke) _ o
Yem =TS, 4.0 +7.0 1+ 5.0) kg -

o _ Zym; _ (5.0 m)(4.0 kg) + (8.0 m)(7.0 kg) + (—6.0 m)(5.0 kg) _ 290 m
Tom =S, 16 kg -

and z.,, = 0.

Two identical railroad cars sit on a horizontal track, with a distance D between their centers. By
means of a cable between them, a winch on one is used to pull the two together. (a) Describe their
relative motion. (b) Repeat if the mass of one car is three times that of the other.

The forces due to the cable on the two cars are internal forces for the two-car system. The net external
force on the system is zero, and so its center of mass does not move, even though each car moves toward the
other. Taking the origin of coordinates at the mass center, we have
Ympx;  myxy + X,

Sm; omy+m,

Xem = 0=
where x; and x, are the positions of the centers of the two cars.

(a) If my = m,, this equation becomes
X1+ X
2

The two cars approach the center of mass, which is originally midway between the two cars (that is,
D/2 from each), in such a way that their centers are always equidistant from it.

0=

or X1 = —Xp

(b) If my = 3m,, then we have

_ 3}’)/12)(:] +m2x2 o 3.’(31 +X2

3]’}12 =+ niy 4
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from which x; = —x,/3. The two cars approach each other in such a way that the mass center remains
motionless and the heavier car is always one-third as far away from it as the lighter car.

Originally, because |x||+ |x,| =D, we had x,/3+x, =D. So m, was originally a distance
X, = 3D/4 from the mass center, and m; was a distance D/4 from it.

8.12 A pendulum consisting of a ball of mass m is released from the position shown in Fig. 8-2 and

8.13

strikes a block of mass M. The block slides a distance D before stopping under the action of a
steady friction force 0.20Mg. Find D if the ball rebounds to an angle of 20°.

Fig. 8-2

The pendulum ball falls through a height (L — L cos 37°) = 0.201L and rebounds to a height
(L — L cos 20°) = 0.060 3L. Because (mgh),,, = (mv?)pouom for the ball, its speed at the bottom is
v =+/2gh.

Although KE is not conserved in the collision, momentum is. Therefore, for the collision,

Momentum just before = momentum just after
my/2g(0.201L) + 0 = —m+/2g(0.0603L) + MV

where V is the velocity of the block just after the collision. (Notice the minus sign on the momentum of the
rebounding ball.) Solving this equation, we find

m
= "0.981/gL
V=170981\e

The block uses up its translational KE doing work against friction as it slides a distance D. Therefore,
2

IMV*=FD  or %M(O.%SgL)(%) (0.2Mg)(D)

from which D = 2.4(m/M)*L.

Two balls of equal mass approach the coordinate origin, one moving downward along the
+y-axis at 2.00 m/s and the other moving to the right along the —x-axis at 3.00 m/s. After
they collide, one ball moves out to the right along the +x-axis at 1.20 m/s. Find the scalar x
and y velocity components of the other ball.

Take up and to the right as positive. Momentum is conserved in the collision, so we can write
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(momentum before), = (momentum after)

RY

or m(3.00 m/s) + 0 = m(1.20 m/s) + muv,
and (momentum before), = (momentum after),
or 04 m(—2.00 m/s) = 0 4 mv,

(Why the minus sign?) Solving, we find that v, = 1.80 m/s and v, = —2.00 m/s.

8.14 A 7500-kg truck traveling at 5.0 m/s east collides with a 1500-kg car moving at 20 m/s in a
direction 30° south of west. After collision, the two vehicles remain tangled together. With
what speed and in what direction does the wreckage begin to move?

The original momenta are shown in Fig. 8-3(a), while the final momentum MYV is shown in Fig. 8-3(b).
Momentum must be conserved in both the north and east directions. Therefore,
(momentum before)y = (momentum after)g
(7500 kg)(5.0 m/s) — (1500 kg)[(20 m/s) cos 30°] = Muvg
where M = 7500 kg + 1500 kg = 9000 kg, and vg is the scalar eastward component of the velocity of the
wreckage.
(momentum before)y = (momentum after)y
(7500 kg)(0) — (1500 kg)[(20 m/s) sin 30°] = Moy
The first equation gives vg = 1.28 m/s, and the second gives vy = —1.67 m/s. The resultant is
v= \/(1.67 m/s)® + (1.28 m/s)* = 2.1 m/s
The angle ¢ in Fig. 8-3(b) is
1.67 .
0 = arctan (m) =353
N N
1500 kg x 20 m/s
7500 kg X 5.0 m/s 30° y Mo,
- E 0 E
Mv,,
Mv
(@) ®
Fig. 8-3
8.15 Two identical balls collide head-on. The initial velocity of one is 0.75 m/s — EAsT, while that of

the other is 0.43 m/s— wesT. If the collision is perfectly elastic, what is the final velocity of each
ball?

Since the collision is head-on, all motion takes place along a straight line. Take east as positive and call
the mass of each ball m. Momentum is conserved in a collision, so we can write
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Momentum before = momentum after
m(0.75 m/s) + m(—0.43 m/s) = mv; + mv,
where v; and v, are the final values. This equation simplifies to
0.32 m/s = vy + vy (1)
Because the collision is assumed to be perfectly elastic, KE is also conserved. Thus,
KE before = KE after
Im(0.75 m/s)” +1m(0.43 m/s)” = Lot + L mo}
This equation can be simplified to
0.747 = v} + v} 2)
We can solve for v, in (/) to get v, = 0.32 — v; and substitute this in (2). This yields
0.747 = (0.32 — v))* + v%

from which 207 — 0.64v; — 0.645 =0
Using the quadratic formula, we find that

0.64 £ 1/(0.64)* + 5.16
v = y)
from which v; = 0.75 m/s or —0.43 m/s. Substitution back into Eq. (1) gives v, = —0.43 m/s or 0.75 m/s.
Two choices for answers are available:
(v =0.75 m/s, v, = —0.43 m/s) and (v = =043 m/s, v, =0.75 m/s)

We must discard the first choice because it implies that the balls continue on unchanged; that is to say, no
collision occurred. The correct answer is therefore v; = —0.43 m/s and v, = 0.75 m/s, which tells us that in a
perfectly elastic, head-on collision between equal masses, the two bodies simply exchange velocities. Hence
V) = 0.43 m/s—wesT and v, = 0.75 m/s— EAST.

=0.16+0.59m/s

Alternative Method

If we recall that e = 1 for a perfectly elastic head-on collision, then

_27n becomes 1= e
T —u ecome = (075 m/s) — (—0.43 m/s)

which gives
1)2—1}1:1.181’1’1/8 (3)

Equations (/) and (3) determine v; and v, uniquely.

A 1.0-kg ball moving at 12 m/s collides head-on with a 2.0-kg ball moving in the opposite
direction at 24 m/s. Determine the motion of each after impact if (a) e =2/3, (b) the balls
stick together, and (c¢) the collision is perfectly elastic.

In all three cases momentum is conserved, and so we can write
Momentum before = momentum after
(1.0 kg)(12 m/s) + (2.0 kg)(—24 m/s) = (1.0 kg)v; + (2.0 kg)v,
which becomes
=36 m/s = v; + 2v,

(@) When e=2/3,

I becomes 2_ Y2~ U
T —uy 37 (12m/s) — (=24 m/s)
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from which 24 m/s = v, — v;. Combining this with the momentum equation found above gives
v, = —4.0 m/s and v; = —28 m/s.

(b) In this case v; = v, = v and so the momentum equation becomes

3v=-36 m/s or v=—12m/s

(¢) Heree=1, so

Uy — Vg Uy — U
== becomes 1=

T~ (12 m/s) — (—24 m/s)

from which v, — v; = 36 m/s. Adding this to the momentum equation gives v, = 0. Using this value for
v, then gives v; = —36 m/s.

8.17 A ball is dropped from a height /& above a tile floor and rebounds to a height of 0.654. Find the
coefficient of restitution between ball and floor.

The initial and final velocities of the floor, u; and v;, are zero. Therefore,
Uy — Uy

e
Uy —u U

But we can write equations for the interchange of PEg and KE both before and after the bounce:
mgh = Lmuj and  mg(0.65h) = Lmuv3
Therefore, taking down as positive, we have u, = v/2gh and v, = —/1.30gh. Substitution gives

V1.30gh
= =+0.65=0.81
¢ V2gh

8.18 The two balls shown in Fig. 8-4 collide and bounce off each other as shown. (¢) What is the final
velocity of the 500-g ball if the 800-g ball has a speed of 15 cm/s after the collision? (b) Is the
collision perfectly elastic?

AN 50 cm/s

0 -~
30e¢m/s 00000 TTTTTTTTTTOTTToC T (} Q 500¢g
800 ¢ Q P el T

Fig. 8-4

(a) Take motion to the right as positive. From the law of conservation of momentum,

(momentum before), = (momentum after),
(0.80 kg)(0.30 m/s) + (0.50 kg)(—0.5 m/s) = (0.80 kg)[(0.15 m/s) cos 30°] + (0.50 kg)v,

from which v, = —0.228 m/s. Taking motion upward as positive,

(momentum before), = (momentum after),
0 = (0.80 kg)[—(0.15 m/s) sin 30°] 4 (0.50 kg)v,
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from which v, = 0.120 m/s. Then

v= /R + 0= \/(70.228 m/s)? + (0.120 m/s)* = 0.26 m/s
and v = 0.26 m/s— RIGHT.

Also, for the angle 6 shown in Fig. 8-4,

0.120 .
0 = arctan (m> =28

(b) Total KE before = 1(0.80 kg)(0.30 m/s)* +1(0.50 kg)(0.50 m/s)* = 0.099 J
Total KE after =1(0.80 kg)(0.15 m/s)* +1(0.50 kg)(0.26 m/s)* = 0.026 J

Because KE is lost in the collision, it is not perfectly elastic.

What force is exerted on a stationary flat plate held perpendicular to a jet of water as shown in
Fig. 8-5? The horizontal speed of the water is 80 cm/s, and 30 mL of the water hits the plate each
second. Assume the water moves parallel to the plate after striking it. One milliliter (mL) of water
has a mass of 1.00 g.

80 cm/s

Fig. 8-5

The plate exerts an impulse on the water and changes its horizontal momentum. Taking the direction to
the right as positive,

(impulse), = change in x-directed momentum
F, At = (anX)ﬁnul - (I’}’Z’UX)

initial
Let us take ¢ to be 1.00 s so that m will be the mass that strikes in 1.00 s, namely 30 g. Then the above
equation becomes

F.(1.00 s) = (0.030 kg)(0 m/s) — (0.030 kg)(0.80 m/s)

from which F, = —0.024 N. This is the force of the plate on the water. The law of action and reaction tells us
that the jet exerts an equal but opposite force on the plate.

A rocket standing on its launch platform points straight upward. Its jet engines are activated and
eject gas at a rate of 1500 kg/s. The molecules are expelled with a speed of 50 km/s. How much
mass can the rocket initially have if it is slowly to rise because of the thrust of the engines?

Because the motion of the rocket itself is negligible in comparison to the speed of the expelled gas, we
can assume the gas to be accelerated from rest to a speed of 50 km/s. The impulse required to provide this
acceleration to a mass m of gas is
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8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

F At = my; — my; = m(50000 m/s) — 0
from which F = (50000 m/s) %
But we are told that the mass ejected per second (m2/Ar) is 1500 kg/s, and so the force exerted on the expelled
gas is
F = (50000 m/s)(1500 kg/s) = 75 MN
An equal but opposite reaction force acts on the rocket, and this is the upward thrust on the rocket. The
engines can therefore support a weight of 75 MN, so the maximum mass the rocket could have is
weight 75 x 10° N
g 98l m/s?

Mocker = =7.7 % 10° kg

Supplementary Problems

Typically, a tennis ball hit during a serve travels away at about 51 m/s. If the ball is at rest mid-air when
struck, and it has a mass of 0.058 kg, what is the change in its momentum on leaving the racket?
Ans. 3.0 kg-m/s

During a soccer game a ball (of mass 0.425 kg), which is initially at rest, is kicked by one of the players. The
ball moves off at a speed of 26 m/s. Given that the impact lasted for 8.0 ms, what was the average force
exerted on the ball? Ans. 1.4 kN

A 40000-kg freight car is coasting at a speed of 5.0 m/s along a straight track when it strikes a 30 000-kg
stationary freight car and couples to it. What will be their combined speed after impact? Ans. 2.9 m/s

An empty 15000-kg coal car is coasting on a level track at 5.00 m/s. Suddenly 5000 kg of coal is dumped
into it from directly above it. The coal initially has zero horizontal velocity. Find the final speed of the
car. Ans. 3.75 m/s.

Sand drops at a rate of 2000 kg/min from the bottom of a hopper onto a belt conveyer moving horizontally
at 250 m/min. Determine the force needed to drive the conveyer, neglecting friction. Ans. 139 N

Two bodies of masses 8 kg and 4 kg move along the x-axis in opposite directions with velocities of 11 m/s—
POSITIVE X-DIRECTION and 7 m/s— NEGATIVE X-DIRECTION, respectively. They collide and stick together. Find
their velocity just after collision. Ans. 5 m/s— POSITIVE X-DIRECTION

A 1200-kg gun mounted on wheels shoots an 8.00-kg projectile with a muzzle velocity of 600 m/s at an angle
of 30.0° above the horizontal. Find the horizontal recoil speed of the gun. Ans. 3.46 m/s

Three masses are placed on the y-axis: 2 kg at y = 300 cm, 6 kg at y = 150 cm, and 4 kg at y = —75 cm.
Find their center of mass. Ans. y=1m

Four masses are positioned in the xy-plane as follows: 300 g at (x =0, y =2.0 m), 500 g at (—2.0 m,
—3.0m), 700 g at (50 cm, 30 cm), and 900 g at (—80 cm, 150 cm). Find their center of mass.
Ans. x=-0.57Tm, y=0.28 m

A ball of mass m sits at the coordinate origin when it explodes into two pieces that shoot along the x-axis in
opposite directions. When one of the pieces (which has mass 0.270m) is at x = 70 cm, where is the other
piece? (Hint: What happens to the mass center?) Ans. at x = —26 cm
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A ball of mass m at rest at the coordinate origin explodes into three equal pieces. At a certain instant, one
piece is on the x-axis at x = 40 cm and another is at x = 20 cm, y = —60 cm. Where is the third piece at that
instant? Ans. at x = —60 cm, y = 60 cm

A 2.0-kg block of wood rests on a long tabletop. A 5.0-g bullet moving horizontally with a speed of 150 m/s
is shot into the block and sticks in it. The block then slides 270 cm along the table and stops. () Find the
speed of the block just after impact. (b) Find the friction force between block and table.

Ans.  (a) 0.37 m/s; (b) 0.052 N

A 2.0-kg block of wood rests on a tabletop. A 7.0-g bullet is shot straight up through a hole in the table
beneath the block. The bullet lodges in the block, and the block flies 25 cm above the tabletop. How fast was
the bullet going initially? Ans.  0.64 km/s

A 6000-kg truck traveling north at 5.0 m/s collides with a 4000-kg truck moving west at 15 m/s. If the two
trucks remain locked together after impact, with what speed and in what direction do they move immediately
after the collision? Ans. 6.7 m/s at 27° north of west

What average resisting force must act on a 3.0-kg mass to reduce its speed from 65 cm/s to 15 cm/s in
0.20 s? Ans. 75N

A 7.00-g bullet moving horizontally at 200 m/s strikes and passes through a 150-g tin can sitting on a post.
Just after impact, the can has a horizontal speed of 180 cm/s. What was the bullet’s speed after leaving the
can? Ans. 161 m/s

Two balls of equal mass, moving with speeds of 3 m/s, collide head-on. Find the speed of each after impact if
(a) they stick together, (b) the collision is perfectly elastic, (¢) the coefficient of restitution is 1/3.
Ans. (a) 0 m/s; (b) each rebounds at 3 m/s; (c¢) each rebounds at 1 m/s

A 90-g ball moving at 100 cm/s collides head-on with a stationary 10-g ball. Determine the speed of each
after impact if (@) they stick together, (b) the collision is perfectly elastic, (¢) the coefficient of restitution is
0.90. Ans.  (a) 90 cm/s; (b) 80 cm/s, 1.8 m/s; (¢) 81 cm/s, 1.7 m/s

A ball is dropped onto a horizontal floor. It reaches a height of 144 ¢cm on the first bounce, and 81 cm on the
second bounce. Find («) the coefficient of restitution between the ball and floor and (b) the height it attains
on the third bounce. Ans. (a) 0.75; (b) 46 cm

Two identical balls undergo a collision at the origin of coordinates. Before collision their scalar velocity
components are (i, = 40 cm/s, u, = 0) and (u, = —30 cm/s, u, = 20 cm/s). After collision, the first ball is
standing still. Find the scalar velocity components of the second ball. Ans. v, =10 cm/s, v, = 20 cm/s

Two identical balls traveling parallel to the x-axis have speeds of 30 cm/s and are oppositely directed. They
collide perfectly elastically. After collision, one ball is moving at an angle of 30° above the +x-axis. Find its
speed and the velocity of the other ball. Ans. 30 cm/s, 30 cm/s at 30° below the —x-axis (opposite to the
first ball)

(a) What minimum thrust must the jet engines of a 2.0 x 10° kg rocket have if the rocket is to be able to rise
from the Earth when aimed straight upward? (b) If the engines eject fuel at the rate of 20 kg/s, how fast must
the gaseous fuel be moving as it leaves the engines? Neglect the small change in the mass of the rocket due to
the ejected fuel.  Ans. (a) 20 x 10° N: (b) 98 km/s



Chapter 9

Angular Motion in a Plane

ANGULAR DISPLACEMENT () is usually expressed in radians, in degrees, or in revolutions:
1 rev = 360° = 27 rad or 1 rad = 57.3°

One radian is the angle subtended at the center of a circle by an arc equal in length to the radius of the
circle. Thus an angle 6 in radians is given in terms of the arc length / it subtends on a circle of radius r by

0=-
r
The radian measure of an angle is a dimensionless number. Radians, like degrees, are not a physical unit
— the radian is not expressable in meters, kilograms, or seconds. Nonetheless, we will use the abbrevia-
tion rad to remind us that we are working with radians.

THE ANGULAR SPEED (w) of an object whose axis of rotation is fixed is the rate at which its
angular coordinate, the angular displacement ¢, changes with time. If § changes from 6; to 6 in
a time ¢, then the average angular speed is

O —0;

Wyy = =
av
t

The units of w,, are exclusively rad/s. Since each complete turn or cycle of a revolving system carries it
through 27 rad

w =27f

where f is the frequency in revolutions per second, rotations per second, or cycles per second. Accord-
ingly, w is also called the angular frequency. We can associate a direction with w and thereby create a
vector quantity @. Thus if the fingers of the right hand curve around in the direction of rotation, the
thumb points along the axis of rotation in the direction of @, the angular velocity vector.

THE ANGULAR ACCELERATION («) of an object whose axis of rotation is fixed is the rate
at which its angular speed changes with time. If the angular speed changes uniformly from w; to
wy in a time ¢, then the angular acceleration is constant and

_ 9w

ot

(67

The units of « are typically rad/s?, rev/min?, and such. It is possible to associate a direction with Aw, and
therefore with o, thereby specifying the angular acceleration vector @, but we will have no need to do so
here.

EQUATIONS FOR UNIFORMLY ACCELERATED ANGULAR MOTION are exactly analogous
to those for uniformly accelerated linear motion. In the usual notation we have:
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Linear Angular
Vay = %(’Ui + ’U/) Wyy = %(wl + a)/)
S = Vgt 0 = w,,t
vy =v; +at wr = w; + ot

vf = v,z + 2as

s = v,-z—i—%atz

ag%- = a),2 + 2a6

0 = w;it + %atz

Taken alone, the second of these equations is just the definition of average speed, so it is valid whether
the acceleration is constant or not.

RELATIONS BETWEEN ANGULAR AND TANGENTIAL QUANTITIES: When a wheel of
radius r rotates about an axis whose direction is fixed, a point on the rim of the wheel is de-
scribed in terms of the circumferential distance / it has moved, its tangential speed v, and its tan-
gential acceleration ay. These quantities are related to the angular quantities 0, w, and «, which
describe the rotation of the wheel, through the relations

[=r0 V= rw ar =ra

provided radian measure is used for 6, w, and «. By simple reasoning, / can be shown to be the length of
belt wound on the wheel or the distance the wheel would roll (without slipping) if free to do so. In such
cases, v and ay refer to the tangential speed and acceleration of a point on the belt or of the center of the
wheel.

CENTRIPETAL ACCELERATION (ac): A point mass m moving with constant speed v around
a circle of radius r is undergoing acceleration. Although the magnitude of its linear velocity is
not changing, the direction of the velocity is continually changing. This change in velocity gives
rise to an acceleration ac of the mass, directed toward the center of the circle. We call this accel-
eration the centripetal acceleration; its magnitude is given by
(tangential speed)? B v

€ 7 radius of circular path  r

where v is the speed of the mass around the perimeter of the circle.

Because v = rw, we also have ac = rw”®, where » must be in rad/s. Notice that the word ““accelera-
tion” is commonly used in physics as either a scalar or a vector quantity. Fortunately, there’s usually no
ambiguity.

THE CENTRIPETAL FORCE (F) is the force that must act on a mass m moving in a circular
path of radius r to give it the centripetal acceleration v?/r. From F = ma, we have

where F is directed toward the center of the circular path.
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Solved Problems

9.1 Express each of the following in terms of the other angular measures: (a) 28°, (b) rev/s,
(c) 2.18 rad/s

R I rev
(a) 28° = (28 deg) (360 deg) = 0.078 rev
27 rad
= (28 deg) (360 deg) = 0.49 rad
_ revy (360 deg\ = deg
() 7(025 )(lrev)igOT
rev\ (2w rad 7 rad
= (025 % )(uev)*zT
rad rad\ /360 deg deg
(c) 218——(218 )(27rrad> 125 .
rad 1 rev rev
=(2.18 0.347 —
( ) (27r I‘dd)

9.2  The bob of a pendulum 90 cm long swings through a 15-cm arc, as shown in Fig. 9-1. Find the
angle 6, in radians and in degrees, through which it swings.

Fig. 9-1

Recall that / = rf applies only to angles in radian measure. Therefore, in radians

[ 0.15m
Then in degrees 6 = (0.167 rad) <360 deg) =9.6°
27 rad

9.3 A fan turns at a rate of 900 rpm (i.e., rev/min). (¢) Find the angular speed of any point on one of
the fan blades. (») Find the tangential speed of the tip of a blade if the distance from the center to
the tip is 20.0 cm.
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rev rev
— 900~ — 15.0—
(a) S =900 =150~
and since w = 27f
w= 94.2?

for all points of the fan blade.

(b) The tangential speed is wr, where w must be in rad/s. Therefore,
v=or = (94.2 rad/s)(0.200 m) = 18.8 m/s

Notice that the rad does not carry through the equations properly — we insert it and delete it as needed.

A belt passes over a wheel of radius 25 cm, as shown in Fig. 9-2. If a point on the belt has a speed
of 5.0 m/s, how fast is the wheel turning?

N

5.0 m/s

Fig. 9-2
v 50m/s _ rad
Tr025m s

As a rule, ® comes out in units of s~' and the rad must be inserted ad hoc.

A wheel of 40-cm radius rotates on a stationary axle. It is uniformly speeded up from rest to a
speed of 900 rpm in a time of 20 s. Find (a) the constant angular acceleration of the wheel and (b)
the tangential acceleration of a point on its rim.

(a) Because the acceleration is constant, we can use the definition o = (o, — ;) /1 to get

rad\ /900 rev rad rev
- (zﬂa) <T) s ) - (2” 7) (05 o rd

=47
20 s s?

rad m

(b)  Then ar = ra = (0.40 m) (4.7?) =188 =19 m/s’

72}

A pulley of 5.0-cm radius, on a motor, is turning at 30 rev/s and slows down uniformly to 20 rev/s
in 2.0 s. Calculate (a) the angular acceleration of the motor, (b) the number of revolutions it
makes in this time, and (c) the length of belt it winds in this time.



CHAP. 9] ANGULAR MOTION IN A PLANE 103

9.7

9.8

9.9

_op—w , (20-30) rad/s 2
(a) a=——= 2 70 s = —107 rad/s
(b) 0 = wyt =% (0 + w;)t = (1007 rad/s)(2.0 s) = 1007 rad

(¢) With 6 =314 rad
/=70 =(0.050m)(314 rad) = 16 m

A car has wheels of radius 30 cm. It starts from rest and accelerates uniformly to a speed of
15 m/s in a time of 8.0 s. Find the angular acceleration of its wheels and the number of rotations
one wheel makes in this time.

We know that ar = (vy — v;)/t, and so
_15m/s

_ 2
ar = — oo = 1.875m/s

Then a = ra gives
_ar 1875 m/szi 5
== — = 6.2 rad/s

Notice that we must introduce the proper angular measure, radians.
Now we can use 0 = w;t + S ar* to find

0 =0-+1(6.2rad/s*)(8.0 5)* = 200 rad
and

1 rev
27 rad

(200 rad)( > =32 rev

The spin-drier of a washing machine revolving at 900 rpm slows down uniformly to 300 rpm
while making 50 revolutions. Find (@) the angular acceleration and (b) the time required to turn
through these 50 revolutions.

We easily find that 900 rev/min = 15.0 rev/s = 30.07 rad/s and 300 rev/min = 5.00 rev/s = 10.07 rad/s.
(a) From a)_,z- = w? 4 2ab, we have

22 2 2
o —w;  (10.0m rad/s)” — (30.07 rad/s) 2
_ = =-4.0 d
20 2(1007 rad) ™ rad/s

«

(b) Because w,, =% (w; + ws) = 20.07 rad/s, 6 = w,,! yields

0 1007 rad

" wg  200rrad/s 50

A 200-g object is tied to the end of a cord and whirled in a horizontal circle of radius 1.20 m at a
constant 3.0 rev/s. Assume that the cord is horizontal, i.c., that gravity can be neglected. Deter-
mine (a) the acceleration of the object and (b) the tension in the cord.

(a) The object is not accelerating tangentially to the circle but is undergoing a radial, or centripetal,
acceleration given by
2
v 2
ac=—=r
cT
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where @ must be in rad/s. Since 3.0 rev/s = 6.0x rad/s,
ac = (6.0m rad/s)*(1.20 m) = 426 m/s* = 0.43 km/s’

(b) To cause the acceleration found in (), the cord must pull on the 0.200-kg mass with a centripetal force
given by

Fe = mac = (0.200 kg)(426 m/s*) = 85 N

This is the tension in the cord.

What is the maximum speed at which a car can round a curve of 25-m radius on a level road if the
coefficient of static friction between the tires and road is 0.80?

The radial force required to keep the car in the curved path (the centripetal force) is supplied by the
force of friction between the tires and the road. If the mass of the car is m, then the maximum friction (and
centripetal) force is 0.80mg; this arises when the car is on the verge of skidding sideways. Therefore, the
maximum speed is given by

ﬂ’l’U2

——=080mg or  v=1/080gr= \/(0.80)(9.81 m/s?)(25 m) = 14 m/s

A spaceship orbits the Moon at a height of 20000 m. Assuming it to be subject only to the
gravitational pull of the Moon, find its speed and the time it takes for one orbit. For the Moon,
m,, = 7.34 x 10** kg and r = 1.738 x 10° m.

The gravitational force of the Moon on the ship supplies the required centripetal force:

2
_ mgmy,  mgv

RrR? R
where R is the radius of the orbit. Solving, we find that

1N m2 kol 2
. |Gy, (6.67 x 10~ N-m?/kg )(7.346>< 10* kg) —1.67 km/s
R (1.738 +0.0200) x 10° m

G

from which we find that

2
Time for one orbit = L 6.62 x 10* s = 110 min
v

As shown in Fig. 9-3, a ball B is fastened to one end of a 24-cm string, and the other end is held
fixed at point Q. The ball whirls in the horizontal circle shown. Find the speed of the ball in its
circular path if the string makes an angle of 30° to the vertical.

The only forces acting on the ball are the ball’s weight mg and the tension F; in the cord. The tension
must do two things: (1) balance the weight of the ball by means of its vertical component, Fy cos 30°; (2)
supply the required centripetal force by means of its horizontal component, F; sin 30°. Therefore we can
write

o

Fr cos30° = mg and Frsin30° = my.
;

Solving for Fr in the first equation and substituting it in the second gives

2
W = T or V =1/ l’g(0577)

However, r = BC = (0.24 m) sin30° = 0.12 m and g = 9.81 m/sz, from which v = 0.82 m/s.

mg sin30°  mv
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Fcos 30°

Fig. 9-3

9.13 As shown in Fig. 9-4, a 20-g bead slides from rest at 4 along a frictionless wire. If /1 is 25 cm and
R is 5.0 cm, how large a force must the wire exert on the bead when it is at (a) point B and (b)

point D?
TN
F
h
mg
Vv
(b)
Fig. 9-4
(@) As a general rule, remember to keep a few more numerical figures in the intermediate steps of the

calculation than are to be found in the answer. This will avoid round-off errors. Let us first find the
speed of the bead at point B. It has fallen through a distance 7 — 2R and so its loss in PEg is
mg(h — 2R). This must equal its KE at point B:

Lmv* = mg(h — 2R)

2

where v is the speed of the bead at point B. Hence,

v=1/2g(h—2R) = \/2(9.81 m/s2)(0.15 m) = 1.716 m/s

As shown in Fig. 9-4(b), two forces act on the bead when it is at B: (1) the weight of the bead mg and (2)
the (assumed downward) force F of the wire on the bead. Together, these two forces must supply the
required centripetal force, nmv? /R, if the bead is to follow the circular path. We therefore write
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2

muv
F=""
mg + R
2 2
171
or F= W’TZ’ — mg = (0.020 kg) {(01)56() - 9.81> m/sz] —0.98 N

The wire must exert a 0.98 N downward force on the bead to hold it in a circular path.

The situation is similar at point D, but now the weight is perpendicular to the direction of the required
centripetal force. Therefore the wire alone must furnish it. Proceeding as before, we have

v=\/2g(h— R) = /2(9.81 m/s)(0.20 m) = 1.98 m/s

2 2
) _mv~ (0.020 kg)(1.98 m/s)”
and F=—%= 0.050 m = 16N

9.14 As shown in Fig. 9-5, a 0.90-kg body attached to a cord is whirled in a vertical circle of radius
2.50 m. (a) What minimum speed v, must it have at the top of the circle so as not to depart from
the circular path? (b) Under condition (a), what speed v, will the object have at the bottom of the
circle? (¢) Find the tension Fg;, in the cord when the body is at the bottom of the circle and
moving with the critical speed vj.

(@)

()

As Fig. 9-5 shows, two radial forces act on the object at the top: (1) its weight mg and (2) the tension
Fr;. The resultant of these two forces must supply the required centripetal force.

o

mv
TZMg+FTt

For a given r, v will be smallest when F7, = 0. In that case,

2
muy

—=mg or v, = /18
;

Using r = 2.50 m and g = 9.81 m/s® gives v, = 4.95 m/s as the speed at the top.

In traveling from bottom to top, the body rises a distance 2r. Therefore, with v, = 4.95 m/s as the speed
at the top and with v, as the speed at the bottom, conservation of energy gives

KE at bottom = KE at top + PEg at top

b 2
muy =Lmu; + mg(2r)
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where we have chosen the bottom of the circle as the zero level for PEg. Notice that m cancels. Using
v, =4.95 m/s, r =2.50 m, and g = 9.81 m/s’ gives v, = 11.1 m/s.

(¢) When the object is at the bottom of its path, we see from Fig. 9-5 that the unbalanced radial force on it
is Fr, — mg. This force supplies the required centripetal force:

mos
Fry —mg= e

Using m = 0.90 kg, g =9.81 m/s?, v, = 11.1 m/s, and r = 2.50 m gives

2
FT,,_m<g+Ur”> —53N

9.15 A curve of radius 30 m is to be banked so that a car may make the turn at a speed of 13 m/s
without depending on friction. What must be the slope of the curve (the banking angle)?

The situation is shown in Fig. 9-6 if friction is absent. Only two forces act upon the car: (1) the weight
mg of the car and (2) the normal force F exerted by the pavement on the car.

The force Fy must do two things: (1) its vertical component, F cos 6, must balance the car’s weight; (2)
its horizontal component, Fy sin#, must supply the required centripetal force. We can therefore write

2
Fy cos = mg and Fy sing ="
;

Dividing the second equation by the first causes Fy and m to cancel and gives

2 2
tan 6 =L :—(13 m/s)
gr  (9.81 m/s?)(30 m)
From this we find that 6, the banking angle, must be 30°.

=0.575

radius = 30 m

Fig. 9-6

9.16 As shown in Fig. 9-7, a cylindrical shell of inner radius r rotates at angular speed w. A wooden
block rests against the inner surface and rotates with it. If the coefficient of static friction between
block and surface is u,, how fast must the shell be rotating if the block is not to slip and fall?
Assume r = 150 cm and p, = 0.30.

The surface holds the block in place by pushing on it with centripetal force me’r. This force is
perpendicular to the surface; it is the normal force that supplies a friction force to the block so it will not
slide down. Because Fy = uFy and Fy = mre?, we have
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Fig. 9-7

Ff - /’LSFN = .us’nrwz

This friction force must balance the weight mg of the block if it is not to slip. Therefore,
_ L2 _ 4
mg = pmre or W=,/
V par

9.81 m/s?
=|———=4"7rad/s =0.74
1) 030)(1.50 m) rad/s rev/s

Inserting the given values, we find

Supplementary Problems

Convert (a) 50.0 rev to radians, (b) 487 rad to revolutions, (¢) 72.0 rps to rad/s, (d) 1.50 x 10% rpm to rad/s,
(e) 22.0 rad/s to rpm, ( /) 2.000 rad/s to deg/s. Ans. (a) 314 rad; (b) 24 rev; (c) 452 rad/s; (d) 157 rad/s;
(e) 210 rev/min; ( ) 114.6 deg/s

Express 40.0 deg/s in (a) rev/s, (b) rev/min, and (c) rad/s. Ans. (a) 0.111 rev/s; (b) 6.67 rev/min; (c)
0.698 rad/s

A flywheel turns at 480 rpm. Compute the angular speed at any point on the wheel and the tangential speed
30.0 cm from the center. Ans.  50.3 rad/s, 15.1 m/s

It is desired that the outer edge of a grinding wheel 9.0 cm in radius move at a rate of 6.0 m/s. (a) Determine
the angular speed of the wheel. (b)) What length of thread could be wound on the rim of the wheel in 3.0 s
when it is turning at this rate? Ans. (a) 67 rad/s; (b) 18 m

Through how many radians does a point on the Earth’s surface move in 6.00 h as a result of the Earth’s
rotation? What is the speed of a point on the equator? Take the radius of the Earth to be
6370 km. Ans. 1.57 rad, 463 m/s

A wheel 25.0 cm in radius turning at 120 rpm increases its frequency to 660 rpm in 9.00 s. Find (a) the
constant angular acceleration in rad/s’, and (b) the tangential acceleration of a point on its
rim.  Ans. (a) 6.28 rad/s’; (b) 157 cm/s’
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9.34

9.35

9.36

9.37

The angular speed of a disk decreases uniformly from 12.00 to 4.00 rad/s in 16.0 s. Compute the angular
acceleration and the number of revolutions made in this time. Ans. —0.500 rad/sz, 20.4 rev

A car wheel 30 cm in radius is turning at a rate of 8.0 rev/s when the car begins to slow uniformly to rest in a
time of 14 s. Find the number of revolutions made by the wheel and the distance the car goes in the
14 s. Ans. 56 rev, 0.11 km

A wheel revolving at 6.00 rev/s has an angular acceleration of 4.00 rad/s>. Find the number of turns the
wheel must make to reach 26.0 rev/s, and the time required. Ans. 502 rev, 314 s

A string wound on the rim of a wheel 20 cm in diameter is pulled out at a rate of 75 cm/s. Through how
many revolutions will the wheel have turned by the time that 9.0 m of string has been unwound? How long
will it take? Ans. 14 rev, 12 s

A mass of 1.5 kg moves in a circle of radius 25 cm at a constant 2.0 rev/s. Calculate (a) the tangential speed,
(b) the acceleration, and (c¢) the required centripetal force for the motion. Ans. (@) 3.1 m/s; (b) 39 m/s’
radially inward; (¢) 59 N

(a) Compute the radial acceleration of a point at the equator of the Earth. (b) Repeat for the north pole of
the Earth. Take the radius of the Earth to be 6.37 x 10° m. Ans.  (a) 0.0337 m/s?; (b) zero

A car moving at 5.0 m/s tries to round a corner in a circular arc of 8.0 m radius. The roadway is flat. How
large must the coefficient of friction be between wheels and roadway if the car is not to skid? Ans. 0.32

A box rests at a point 2.0 m from the axis of a horizontal circular platform. The coefficient of static friction
between box and platform is 0.25. As the rate of rotation of the platform is slowly increased from zero, at
what angular speed will the box first slide? Ans. 1.1 rad/s

A stone rests in a pail that is moved in a vertical circle of radius 60 cm. What is the least speed the stone must
have as it rounds the top of the circle if it is to remain in contact with the pail? Ans. 2.4 m/s

A pendulum 80.0 cm long is pulled to the side, so that its bob is raised 20.0 cm from its lowest position, and
is then released. As the 50.0 g bob moves through its lowest position, (¢) what is its speed and (b) what is the
tension in the pendulum cord? Ans. (a) 1.98 m/s; (b) 0.735 N

Refer back to Fig. 9-4. How large must / be (in terms of R) if the frictionless wire is to exert no force on the
bead as it passes through point B? Assume the bead is released from rest at A. Ans. 2.5R

If, in Fig. 9-4 and in Problem 9.33, 7 = 2.5R, how large a force will the 50-g bead exert on the wire as it
passes through point C? Ans. 29 N

A satellite orbits the Earth at a height of 200 km in a circle of radius 6570 km. Find the speed of the satellite
and the time taken to complete one revolution. Assume the Earth’s mass is 6.0 x 10** kg. (Hint: The
gravitational force provides the centripetal force.) Ans. 7.8 km/s, 88 min

A roller coaster is just barely moving as it goes over the top of the hill. It rolls nearly without friction down
the hill and then up over a lower hill that has a radius of curvature of 15 m. How much higher must the first
hill be than the second if the passengers are to exert no force on the seat as they pass over the top of the lower
hill? Ans. 7.5 m

The human body can safely stand an acceleration 9.00 times that due to gravity. With what minimum radius
of curvature may a pilot safely turn the plane upward at the end of a dive if the plane’s speed is 770 km/h?
Ans. 519 m
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A 60.0 kg glider pilot traveling in a glider at 40.0 m/s wishes to turn an inside vertical loop such that he
exerts a force of 350 N on the seat when the glider is at the top of the loop. What must be the radius of the
loop under these conditions? (Hint: Gravity and the seat exert forces on the pilot.) Ans. 102 m

Suppose the Earth is a perfect sphere with R = 6370 km. If a person weighs exactly 600.0 N at the north
pole, how much will the person weigh at the equator? (Hint: The upward push of the scale on the person is
what the scale will read and is what we are calling the weight in this case.) Ans. 5979 N

A mass m hangs at the end of a pendulum of length L which is released at an angle of 40.0° to the vertical.
Find the tension in the pendulum cord when it makes an angle of 20.0° to the vertical. (Hint: Resolve the
weight along and perpendicular to the cord.) Ans. 1.29mg



Chapter 10

Rigid-Body Rotation
THE TORQUE (OR MOMENT) due to a force about an axis was defined in Chapter 5.

THE MOMENT OF INERTIA () of a body is a measure of the rotational inertia of the body.
If an object that is free to rotate about an axis is difficult to set into rotation, its moment of in-
ertia about that axis is large. An object with small 7 has little rotational inertia.

If a body is considered to be made up of tiny masses m;, m,, mjs ..., at respective distance ry, r,, rs,
..., from an axis, its moment of inertia about the axis is

2 2 2 2
I =myri +myrs +nm3rs + -+ = g m;r;

The units of 7 are kg-m?.
It is convenient to define a radius of gyration (k) for an object about an axis by the relation

I =Mk

where M is the total mass of the object. Hence k is the distance a point mass M must be from the axis if
the point mass is to have the same [ as the object.

TORQUE AND ANGULAR ACCELERATION: A torque 7, acting on a body of moment of
inertia I, produces in it an angular acceleration « given by

T=1a

Here, 7, I, and « are all computed with respect to the same axis. As for units, 7isin N-m, 7 is in kg~m2,
and o must be in rad/s’.

THE KINETIC ENERGY OF ROTATION (KE,) of a mass whose moment of inertia about an
axis is I, and which is rotating about the axis with angular velocity w, is

KE, = 110’

where the energy is in joules and w must be in rad/s.

COMBINED ROTATION AND TRANSLATION: The KE of a rolling ball or other rolling ob-
ject of mass M is the sum of (1) its rotational KE about an axis through its center of mass
(Chapter 8) and (2) the translational KE of an equivalent point mass moving with the center of
mass. In symbols,

KE o = 10" +1 Mo

Note that 7 is the moment of inertia of the object about an axis through its mass center.

THE WORK (W) done on a rotating body during an angular displacement 6 by a constant
torque 7 is given by

W=r76
where W is in joules and # must be in radians.
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THE POWER (P) transmitted to a body by a torque is given by
P=70w

where 7 is the applied torque about the axis of rotation, and w is the angular speed, about that same axis.
Radian measure must be used for w.

ANGULAR MOMENTUM is a vector quantity that has magnitude /w and is directed along the
axis of rotation. If the net torque on a body is zero, its angular momentum will remain un-
changed in both magnitude and direction. This is the Law of Conservation of Angular Momentum.

ANGULAR IMPULSE has magnitude 7¢, where ¢ is the time during which the constant torque 7
acts on the object. In analogy to the linear case, an angular impulse 77 on a body causes a
change in angular momentum of the body given by

Tt =lw; — lw;

PARALLEL-AXIS THEOREM: The moment of inertia / of a body about an axis parallel to
an axis through the center of mass is
I =1, + MK

where I ,,= moment of inertia about an axis through the center of mass
M = total mass of the body
h = perpendicular distance between the two parallel axes

The moments of inertia (about an axis through the center of mass) of several uniform objects, each
of mass M, are shown in Fig. 10-1.

’ @EZZ 47

Hoop or hollow Uniform disk Uniform Uniform rectangular Uniform
cylinder or cylinder rod block sphere
I=Mr? I1=31Mr? =L ML? 1= M@+ b%) =M

Fig. 10-1

ANALOGOUS LINEAR AND ANGULAR QUANTITIES:

Linear displacement s < angular displacement 6
Linear speed v < angular speed 10)
Linear acceleration ar <«  angular acceleration @
Mass (inertia) m  « moment of inertia 1
Force F < torque T
Linear momentum mv <«  angular momentum lo
Linear impulse Ft < angular impulse Tt
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If, in the equations for linear motion, we replace linear quantities by the corresponding angular quan-
tities, we get the corresponding equations for angular motion. Thus, we have

Linear: F = ma KE = %mv2 W=Fs P=Fv
Angular: T =l KE, = %Ia)2 W=7160 P=10

In these equations, 0, w, and « must be expressed in radian measure.

10.1

10.2

10.3

Solved Problems

A wheel of mass 6.0 kg and radius of gyration 40 cm is rotating at 300 rpm. Find its moment of
inertia and its rotational KE.
I = MK* = (6.0 kg)(0.40 m)* = 0.96 kg-m?
The rotational KE is %Iwz, where @ must be in rad/s. We have
revy (I min\ /27 rad
= Ve ) () =314
@ (300min) (60.0 s) ( 1 rev ) 314 rad/s

50 KE, = 11w’ = 1(0.96 kg-m*)(31.4 rad/s)* = 0.47 kJ

A 500-g uniform sphere of 7.0-cm radius spins at 30 rev/s on an axis through its center. Find its
(a) KE,, (b) angular momentum, and (c¢) radius of gyration.

We need the moment of inertia of a uniform sphere about an axis through its center. From Fig. 10-1,
[ =2Mr* = (0.40)(0.50 kg)(0.070 m)* = 0.000 98 kg-m’
(@) Knowing that w = 30 rev/s = 188 rad/s, we have
KE, = 170 = 1(0.00098 kg-m*)(188 rad/s)” = 0.017 kJ
Notice that w must be in rad/s.
(b) Its angular momentum is
Tw = (0.000 98 kg-m?)(188 rad/s) = 0.18 kg-m*/s

¢) For any object, I = Mk>, where k is the radius of gyration. Therefore,
y obj

i /0.000 98 kg - m?
=4/—=4/————————=0.044d m =44
k I 0.50 ke 0.044 m cm

Notice that this is a reasonable value in view of the fact that the radius of the sphere is 7.0 cm.

An airplane propeller has a mass of 70 kg and a radius of gyration of 75 cm. Find its moment of
inertia. How large a torque is needed to give it an angular acceleration of 4.0 rev/s*?

I = MI* = (70 kg)(0.75 m)* = 39 kg-m’

. 2
To use 7 = I, we must have « in rad/s":

d
a= (4.0 re_zv) (271'&) = 8.07 rad/s’
s rev

Then 7=1Ia = (39 kg-m?)(8.07 rad/s*) = 0.99 kN-m
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As shown in Fig. 10-2, a constant force of 40 N is applied tangentially to the rim of a wheel with
20-cm radius. The wheel has a moment of inertia of 30 kg-m?. Find () the angular acceleration,
(b) the angular speed after 4.0 s from rest, and (c¢) the number of revolutions made in that 4.0 s.
(d) Show that the work done on the wheel in the 4.0 s is equal to the KE, of the wheel after 4.0 s.

Fig. 10-2

(@) Using 7 = I, we have
(40 N)(0.20 m) = (30 kg-m*)«
from which a = 0.267 rad/s> or 0.27 rad/s’.
(b) We use oy = w; + at to find
wr =04 (0.267 rad/s?)(4.0 s) = 1.07 rad/s = 1.1 rad/s

(¢) Because 0 = w,t =1 (w; + w;)t, we have

0 =1(1.07 rad/s)(4.0 s) = 2.14 rad

which is equivalent to 0.34 rev.
(d) We know that work = torque x 6, and so
Work = (40 N x 0.20 m)(2.14 rad) =17 J

Notice that radian measure must be used. The final KE, is %Ia)? and so

KE, =1(30 kg-m*)(1.07 rad/s)* = 17 J

1
2

The work done equals KE,.

The wheel on a grinder is a uniform 0.90-kg disk of 8.0-cm radius. It coasts uniformly to rest from
1400 rpm in a time of 35 s. How large a friction torque slows its motion?

We will first find « from a motion problem; then we will use 7 = Ia to find 7. We know that

J = 1400 rev/min = 23.3 rev/s, and since @ = 27f, w; = 146 rad/s and w; = 0. Therefore,

o —w;  —146 rad/s 2
== - — 421
. 15 s rad/s

(07

We also need I. For a uniform disk,
I =1Mr* =1(0.90 kg)(0.080 m)* = 2.9 x 107 kg - m?
Then 7=1Ia = (0.0029 kg-m?)(—4.2 rad/s*) = =12 x 107> N-m
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10.6

10.7

10.8

Rework Problem 10.5 using the relation between work and energy.

The wheel originally had KE,, but, as the wheel slowed, this energy was lost doing friction work. We
therefore write

Initial KE, = work done against friction torque
%Iw,2 =70
To find 6, we note that
0 = Wyt = (0; + wp)t = $ (146 rad/s)(35 s) = 2550 rad
From Problem 10.5, 7 = 0.0029 kg-m? and so the work-energy equation is
1(0.0029 kg-m?)(146 rad/s)* = 7(2550 rad)
from which 7 = 0.012 N-m or 1.2 x 107> N-m.

A flywheel has a moment of inertia of 3.8 kg-m?. What constant torque is required to increase its
frequency from 2.0 rev/s to 5.0 rev/s in 6.0 revolutions?

Given
0 = 127 rad w; = 4.0m rad/s wy = 107 rad/s
we can write
Work done on wheel = change in KE, of wheel
7O = %Ia)_?- — %Ia),2
()(127 rad) = 1 (3.8 kg-m?)[(1007* — 167%) (rad/s)’]

which gives 7 = 42 N-m. Notice in all of these problems that radians and seconds must be used.

As shown in Fig. 10-3, a mass m =400 g hangs from the rim of a wheel of radius » = 15 cm.
When released from rest, the mass falls 2.0 m in 6.5 s. Find the moment of inertia of the wheel.
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We will write 7 = I« for the wheel and F = ma for the mass. But first we find @ from a motion problem,
using y = vt + Sar’:
20m=0+1a(6.55s)
which gives a = 0.095 m/sz. Then, from ar = ar,
0.095 m/s”
o= aTT = WH;I{S = 0.63 rad /s’
The net force on the mass m is mg — Fr and so F = ma becomes
mg — Fr = may
(0.40 kg)(9.81 m/s?) — Fy = (0.40 kg)(0.095 m/s?)

from which F; = 3.88 N.
Now we write 7 = I« for the wheel:

(Fr)(r)=1Ia  or  (3.88 N)(0.15 m) = 7(0.63 rad/s®)
from which 7 = 0.92 kg-m?.

Repeat Problem 10.8 using energy considerations.
Originally the mass m had PEg = mgh, where & = 2.0 m. It loses all this PEg, and an equal amount of
KE results. Part of this KE is translational KE of the mass, and the rest is KE, of the wheel:
Original PEg = final KE of m + final KE, of wheel
mgh = %mv% +%Ia)j%
To find v, we note that v; = 0, y =2 m, and t = 6.5 5. (Observe that a # g for the mass, because it does not
fall freely.) Then

20m
Vo = { =S5, = 0308 m/s
and v, =1 (v; + vy) with v; = 0 gives
vy = 204, = 0.616 m/s
Moreover, v = wr gives
S 0.616 m/s
STy T 005m

Substitution in the energy equation gives
(0.40 kg)(9.81 m/s?)(2.0 m) = 1(0.40 kg)(0.62 m/s)* +11(4.1 rad/s)*
from which 7 = 0.92 kg-m?.

=4.1rad/s

The moment of inertia of the pulley system in Fig. 10-4 is 7 = 1.70 kg~m2, while r; = 50 cm and
r, = 20 cm. Find the angular acceleration of the pulley system and the tensions Fy; and Fp,.

Note at the beginning that a = ar gives oy = (0.50 m)« and a = (0.20 m)a. We shall write F = ma for
both masses and 7 = I« for the wheel, taking the direction of motion to be the positive direction:
(2.0)(9.81) N — Fp = 2q, or 19.6 N—Fr = (1.0 m)a
Fry—(1.8)(981) N=1.8a, or Fr,—17.6 N=(0.36 m)x
(Fri)(r1) = (Fra)(r2) = Ia or  (0.50 m)Fy, — (0.20 m)Fp, = (1.70 kg-m?)ax

These three equations have three unknowns. We solve for Fz; in the first equation and substitute it in the
third to obtain

(9.81 N-m) — (0.50 m)a — (0.20 m)Fy = (1.70 kg-m*)ax
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(2.0)09.81)N  (1.8)(9.81)N

Fig. 10-4

We solve this equation for Fr, and substitute in the second equation to obtain
—1la+49 — 17.6 = 0.36«

from which o = 2.8 rad/s’.
We can now go back to the first equation to find Fy; = 17 N, and to the second to find Fr, = 19 N.

10.11 Use energy methods to find how fast the 2.0-kg mass in Fig. 10-4 is falling after it has fallen 1.5 m
from rest. Use the same values for 7, r;, and r, as in Problem 10.10.

If the angular speed of the wheel is w, then v; = rjw and v, = r,w. As the wheel turns through an angle
0, the 2.0-kg mass falls through a distance s; and the 1.8-kg mass rises a distance s5:

81 Ay . ry
f=—=—= from which Sy =8 —
rnoon r

From energy conservation, because PEg is lost and KE is gained,
Mg — MagSy) = %mlv% + %mﬂ% + %Iw2
Since
s, = (20/50)(1.5 m) = 0.60 m v; = (0.50 m) @ v, = (0.20 m) w
we can solve to find w = 4.07 rad/s. Then

v; = rjo = (0.50 m)(4.07 rad/s) = 2.0 m/s

10.12 A motor runs at 20 rev/s and supplies a torque of 75 N-m. What horsepower is it delivering?
Using w = 20 rev/s = 407 rad/s, we have
P =7w= (75 N-m)(407 rad/s) = 9.4 kW = 13 hp
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The driving wheel of a belt drive attached to an electric motor has a diameter of 38 cm and
operates at 1200 rpm. The tension in the belt is 130 N on the slack side, and 600 N on the tight
side. Find the horsepower transmitted to the wheel by the belt.

We make use of P = 7w. In this case two torques, due to the two parts of the belt, act on the wheel. We
have

S =1200 rev/min = 20 rev/s
and ® = 407 rad/s

therefore P = [(600 — 130)(0.19) N-m]|(407 rad/s) = 11 kW =15 hp

A 0.75-hp motor acts for 8.0 s on an initially nonrotating wheel having a moment of inertia
2.0 kg-m?. Find the angular speed developed in the wheel, assuming no losses.

Work done by motor in 8.0 s = KE of wheel after 8.0 s
(power) x (time) = 17w’
(0.75 hp)(746 W /hp) x (8.0 s) = 1(2.0 kg-m*)w’

from which w = 67 rad/s.

As shown in Fig. 10-5, a uniform solid sphere rolls on a horizontal surface at 20 m/s and then
rolls up the incline. If friction losses are negligible, what will be the value of /4 where the ball

Fig. 10-5

stops?

The rotational and translational KE of the sphere at the bottom will be changed to PEg when it stops.
We therefore write

(% Mo + %Iwz)slarl = (Mgh)eng

But for a solid sphere, I = %Mrz, Also, w = v/r. The above equation becomes
1 , 12 2\ (02 I, 1, B 2

Using v = 20 m/s gives 7 = 29 m. Notice that the answer does not depend upon the mass of the ball or the
angle of the incline.

Starting from rest, a hoop of 20-cm radius rolls down a hill to a point 5.0 m below its starting
point. How fast is it rotating at that point?

PEg at start = (KE, + KE,) at end
Mgh = %Iw2 +%M’U2



CHAP. 10] RIGID-BODY ROTATION 119

But I = My for a hoop and v = wr. The above equation becomes

Mgh = lez 2 lez 2

from which \/ (9.81 m/s*)( 5 0 m) =35rad/s
(0.20 m

10.17 As a solid disk rolls over the top of a hill on a track, its speed is 80 cm/s. If friction losses are
negligible, how fast is the disk moving when it is 18 cm below the top?

At the top, the disk has translational and rotational KE, plus its PEg relative to the point 18 cm lower.
At the final point, the PEg has been transformed to more KE of rotation and translation. We therefore
write, with 4 = 18 cm

(KE, + KE, ) + Mgh = (KE, +KE,).4
%MU,Z +%1w,2 + Mgh = %Mv% +%Iw}
For a solid disk, 7 = %Mrz. Also, w = v/r Substituting these values and simplifying give
L 4R eh = bR+
But v; = 0.80 m/s and & = 0.18 m. Substitution gives vy = 1.7 m/s.

10.18 Find the moment of inertia of the four masses shown in Fig. 10-6 relative to an axis perpendicular
to the page and extending (a) through point 4 and (b) through point B.

2 kg B 3 kg
¢ R =9
| N -7 |
| < 1 120 cm
AT |
| 7 AN }
e S|
R
5kg 250 cm 4kg
Fig. 10-6

(@) From the definition of moment of inertia,
I =mr +ms+ -+ myry = (2.0 kg+3.0kg+4.0kg+5.0 kg)(rz)

where r is half the length of the diagonal:

r=1,/(120 m)* + (250 m)> = 1.39 m

Thus, I =27 kg-m?.
(b) We cannot use the parallel-axis theorem here because neither 4 nor B is at the center of mass.
Hence we proceed as before. Because r=1.25m for the 2.0- and 3.0-kg masses, while

(1.20)* + (1.25)* = 1.733 for the other two masses,

Iy = (2.0 kg + 3.0 kg)(1.25 m)> + (5.0 kg + 4.0 kg)(1.733 m)* = 33 kg-m’
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The uniform circular disk in Fig. 10-7 has mass 6.5 kg and diameter 80 cm. Compute its moment
of inertia about an axis perpendicular to the page (a) through G and (b) through A.

(a) I =1 Mr* =1(6.5 kg)(0.40 m)* = 0.52 kg-m?
(b) By the result of (a) and the parallel-axis theorem,

Iy = I+ MK =0.52 kg-m” + (6.5kg)(0.22 m)* = 0.83 kg-m?’

Mg

Fig. 10-7 Fig. 10-8

A large roller in the form of a uniform cylinder is pulled by a tractor to compact earth; it has a
1.80-m diameter and weighs 10 kN. If frictional losses can be ignored, what average horsepower
must the tractor provide to accelerate it from rest to a speed of 4.0 m/s in a horizontal distance of
3.0 m?

The power is equal to the work done by the tractor divided by the time it takes. The tractor does the
following work:

Work = (AKE), + (AKE), = L Iw; + 1muv;
We have v, = 4.0 m/s, w; = vy /r = 4.44 rad/s, and m = 10000/9.81 = 1019 kg. The moment of inertia of
the cylinder is
I =1m? =1(1019 kg)(0.90 m)* = 413 kg-m’

Substituting these values, we find the work required to be 12.23 kJ.
We still need the time taken to do this work. Because the roller went 3.0 m with an average velocity
Vgy =% (4 +0) = 2.0 m/s, we have

s 30m
v, 20m/s
work 12 2301J 1 hp
Then Power = e~ 15s — (8150 W)<746 W) =11 hp

As shown in Fig. 10-8, a thin uniform rod 4B of mass M and length L is hinged at end 4 to the
level floor. It originally stands vertically. If allowed to fall to the floor as shown, with what
angular speed will it strike the floor?
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The moment of inertia about a transverse axis through end 4 is

12 2 3
As the rod falls to the floor, the center of mass G falls a distance L/2. We can write
PEg lost by rod = KE, gained by rod

L\ 1 [(ML* ,
Mg(z)z( 3 )“’

1 L\? ML
IA:IG+Mh2:—ML2+M(—) =

from which w = +/3g/L.

10.22 A man stands on a freely rotating platform, as shown in Fig. 10-9. With his arms extended, his
rotation frequency is 0.25 rev/s. But when he draws them in, his frequency is 0.80 rev/s. Find the
ratio of his moment of inertia in the first case to that in the second.

Fig. 10-9

Because there is no torque on the system (why?), the law of conservation of angular momentum tells us
that

Angular momentum before = angular momentum after

liw; = Iywy
Or, since we desire 7;/1y,

I oy 0.80rev/s

I o 025rev/s



122

RIGID-BODY ROTATION [CHAP. 10

10.23 A disk of moment of inertia /; is rotating freely with angular speed w; when a second, nonrotat-

ing, disk with moment of inertia I, is dropped on it (Fig. 10-10). The two then rotate as a unit.
Find the final angular speed.

From the law of conservation of angular momentum,

Angular momentum before = angular momentum after
Ilwl +12(0) = Ilw+12w

- Lo,
T L+5

Solving gives

Fig. 10-10

10.24 A disk like the lower one in Fig. 10-10 has moment of inertia /; about the axis shown. What will

10.25

be its new moment of inertia if a tiny mass M is set on it at a distance R from its center?

The definition of moment of inertia tells us that, for the disk plus added mass,

1= mri+ MR’
disk

where the sum extends over all the masses composing the original disk. Since the value of that sum is given as
I,, the new moment of inertia is / = I, + MR>.

A disk like the lower one in Fig. 10-10 has 7 = 0.0150 kg-m? and is turning at 3.0 rev/s. A trickle
of sand falls onto the disk at a distance of 20 cm from the axis and builds a 20-cm radius ring of
sand on it. How much sand must fall on the disk for it to slow to 2.0 rev/s?

When a mass Am of sand falls onto the disk, the moment of inertia of the disk is increased by an
amount *Am, as shown in the preceding problem. After a mass m has fallen on the disk, its moment of
inertia has increased to I + mr?. Because the sand originally had no angular momentum, the law of con-
servation of momentum gives

(momentum before) = (momentum after) or lw; = (I + mrz)a)f

from which

m =

I(w; —wy)  (0.0150 kg-m?)(6.0m — 4.07) rad/s
2

= =0.19k
roy (0.040 m2)(4.07 rad/s) &
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10.26

10.27

10.28

10.29

10.30

10.31

10.32

10.33

10.34

10.35

10.36

10.37

10.38

10.39

10.40

10.41

Supplementary Problems

A force of 200 N acts tangentially on the rim of a wheel 25 cm in radius. (¢) Find the torque. (b) Repeat if
the force makes an angle of 40° to a spoke of the wheel. Ans. (a) 50 N-m; (b) 32 N-m

A certain 8.0-kg wheel has a radius of gyration of 25 cm. (¢) What is its moment of inertia? (b) How large a
torque is required to give it an angular acceleration of 3.0 rad/s*? Ans. (a) 0.50 kg-m?; (b) 1.5 N-m

Determine the constant torque that must be applied to a 50-kg flywheel, with radius of gyration 40 cm, to
give it a frequency of 300 rpm in 10 s if it’s initially at rest. Ans. 25 N-m

A 4.0-kg wheel of 20 cm radius of gyration is rotating at 360 rpm. The retarding frictional torque is
0.12 N-m. Compute the time it will take the wheel to coast to rest. Ans. 50 s

Compute the rotational KE of a 25-kg wheel rotating at 6.0 rev/s if the radius of gyration of the wheel is
22 cm. Ans.  0.86 kJ

A cord 3.0 m long is coiled around the axle of a wheel. The cord is pulled with a constant force of 40 N.
When the cord leaves the axle, the wheel is rotating at 2.0 rev/s. Determine the moment of inertia of the
wheel and axle. Neglect friction. (Hint: The easiest solution is by the energy method.) Ans. 1.5 kg-m?

A 500-g wheel that has a moment of inertia of 0.015 kg-m? is initially turning at 30 rev/s. It coasts to rest
after 163 rev. How large is the torque that slowed it? Ans. 0.26 N-m

When 100 J of work is done upon a flywheel, its angular speed increases from 60 rev/min to 180 rev/min.
What is its moment of inertia? Ans.  0.63 kg-m’

A 5.0-kg wheel with radius of gyration 20 cm is to be given a frequency of 10 rev/s in 25 revolutions from
rest. Find the constant unbalanced torque required. Ans. 2.5 N-m

An electric motor runs at 900 rpm and delivers 2.0 hp. How much torque does it deliver? Ans. 16 N-m

The driving side of a belt has a tension of 1600 N, and the slack side has 500 N tension. The belt turns a
pulley 40 cm in radius at a rate of 300 rpm. This pulley drives a dynamo having 90 percent efficiency. How
many kilowatts are being delivered by the dynamo? Ans. 12 kW

A 25-kg wheel has a radius of 40 cm and turns freely on a horizontal axis. The radius of gyration of the
wheel is 30 cm. A 1.2-kg mass hangs at the end of a cord that is wound around the rim of the wheel. This
mass falls and causes the wheel to rotate. Find the acceleration of the falling mass and the tension in the
cord. Ans. 0.77 m/s>, 11 N

A wheel and axle having a total moment of inertia of 0.0020 kg-m? is caused to rotate about a horizontal
axis by means of an 800-g mass attached to a cord wrapped around the axle. The radius of the axle is 2.0 cm.
Starting from rest, how far must the mass fall to give the wheel a rotational rate of 3.0 rev/s?
Ans. 5.3 cm

A 20-kg solid disk (/ :%Mrz) rolls on a horizontal surface at the rate of 4.0 m/s. Compute its total
KE. Ans. 0.24 kJ

A 6.0-kg bowling ball (I = 2Mr?/5) starts from rest and rolls down a gradual slope until it reaches a point
80 cm lower than its starting point. How fast is it then moving? Ignore friction losses. Ans. 3.3 m/s

A tiny solid ball (1 = 2Mr? /5) rolls without slipping on the inside surface of a hemisphere as shown in Fig.
10-11. (The ball is much smaller than shown.) If the ball is released at 4, how fast is it moving as it passes (a)
point B, and (b) point C? Ans. (a) 2.65 m/s; (b) 2.32 m/s
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Fig. 10-11

8.5 cm

Compute the radius of gyration of a solid disk of diameter 24 cm about an axis through its center of mass
Ans.

10.42
and perpendicular to its face.
In Fig. 10-12 are shown four masses that are held at the corners of a square by a very light frame. What is the
moment of inertia of the system about an axis perpendicular to the page (a) through 4 and (b) through

10.43
(a) 1.4 kg-m%; (b) 2.1 kg-m>
-

Ans.

B?

Fig. 10-13

70¢g

Fig. 10-12

10.44 Determine the moment of inertia (a) of a vertical thin hoop of mass 2 kg and radius 9 cm about a horizontal,
parallel axis at its rim; (b) of a solid sphere of mass 2 kg and radius 5 cm about an axis tangent to the

(@) I=Mr>+Mr*=003kg-m* (b) I =2Mr> + Mr*=7x 10" kg-m’

5.0 rad/s, 5.0 m/s

Ans.
Rod 04 in Fig. 10-13 is a meterstick. It is hinged at O so that it can turn in a vertical plane. It is held
Ans.

sphere.
horizontally and then released. Compute the angular speed of the rod and the linear speed of its free end as it

10.45
10.46 Suppose that a satellite ship orbits the Moon in an elliptical orbit. At its closest point to the Moon it has a
Ans. 1y Jre

passes through the position shown in the figure. (Hint: Show that I = mL? /3.)
speed v, and a radius 7. from the center of the Moon. At its farthest point, it has a speed v, and a radius r;.

Find the ratio v./v,. (Hint: At the closest and farthest points, the relation v = rw is valid.)
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10.47

10.48

10.49

A large horizontal disk is rotating on a vertical axis through its center; for the disk, I = 4000 kg-m?. The
disk is coasting at a rate of 0.150 rev/s when a 90.0-kg person drops onto the disk from an overhanging tree
limb. The person lands and remains at a distance of 3.00 m from the axis of rotation. What will be the rate of
rotation after the person has landed? Ans.  0.125 rev/s

A neutron star is formed when an object such as our Sun collapses. Suppose a uniform spherical star of mass
M and radius R collapses to a uniform sphere of radius 107> R. If the original star has a rotation rate of 1 rev
each 25 days (as does the Sun), what will be the rotation rate of the neutron star? Ans. 5% 10° rev/s

A 90-kg person stands at the edge of a stationary children’s merry-go-round (essentially a disk) at a distance
of 5.0 m from its center. The person starts to walk around the perimeter of the disk at a speed of 0.80 m/s
relative to the ground. What rotation rate does this motion give to the disk if gy = 20000 kg-m?? (Hint:
For the person, I = mrz.) Ans.  0.018 rad/s



Chapter 11

Simple Harmonic Motion and Springs

THE PERIOD (7) of a cyclic system, one that is vibrating or rotating in a repetitive fashion, is
the time required for the system to complete one full cycle. In the case of vibration it is the total
time for the combined back and forth motion of the system. The period is the number of seconds

per cycle.

THE FREQUENCY (f) is the number of vibrations made per unit time or the number of cycles
per second. Because (T) is the time for one cycle, f =1/T. The unit of frequency is the heriz
where one cycle/s is one hertz (Hz).

THE GRAPH OF A VIBRATORY MOTION shown in Fig. 11-1 depicts the up-and-down oscil-
lation of a mass at the end of a spring. One complete cycle is from a to b, or from ¢ to d, or
from e to f. The time taken for one cycle is T, the period.

Displacement ()

Y=>X =
\ql)
ksl
£
Equilibrium E:.
position ~o <
y= P b Time

e S

Fx#ﬂ c d

Fig. 11-1

THE DISPLACEMENT (x or y) is the distance of the vibrating object from its equilibrium posi-
tion (normal rest position), i.e., from the center of its vibration path. The maximum displacement

is called the amplitude (see Fig. 11-1).

A RESTORING FORCE is one that opposes the displacement of the system; it is necessary if
vibration is to occur. In other words, a restoring force is always directed so as to push or pull
the system back to its equilibrium (normal rest) position. For a mass at the end of a spring, the
stretched spring pulls the mass back toward the equilibrium position, while the compressed spring
pushes the mass back toward the equilibrium position.

126
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SIMPLE HARMONIC MOTION (SHM) is the vibratory motion which a system that obeys
Hooke’s Law undergoes. The motion illustrated in Fig. 11-1 is SHM. Because of the resemblance
of its graph to a sine or cosine curve, SHM is frequently called sinusoidal motion. A central fea-
ture of SHM is that the system oscillates at a single constant frequency. That’s what makes it
“simple” harmonic.

A HOOKEAN SYSTEM (a spring, wire, rod, etc.) is one that returns to its original configuration
after being distorted and then released. Moreover, when such a system is stretched a distance x (for
compression, x is negative), the restoring force exerted by the spring is given by Hooke’s Law

F = —kx

The minus sign indicates that the restoring force is always opposite in direction to the displacement. The
spring constant k has units of N/m and is a measure of the stiffness of the spring. Most springs obey
Hooke’s Law for small distortions.

It is sometimes useful to express Hooke’s Law in terms of F, the external force needed to stretch
the spring a given amount x. This force is the negative of the restoring force, and so

Fo = kx

THE ELASTIC POTENTIAL ENERGY stored in a Hookean spring (PE,) that is distorted a dis-
tance x is %kxz. If the amplitude of motion is x, for a mass at the end of a spring, then the
energy of the vibrating system is 1kxj at all times. However, this energy is completely stored in
the spring only when x = +x, that is, when the mass has its maximum displacement.

ENERGY INTERCHANGE between kinetic and potential energy occurs constantly in a vibrating
system. When the system passes through its equilibrium position, KE = maximum and PE, = 0.
When the system has its maximum displacement, then KE =0 and PE, = maximum. From the
law of conservation of energy, in the absence of friction-type losses,

KE + PE, = constant
For a mass m at the end of a spring (whose own mass is negligible), this becomes
%mvz + %kx2 = %kx%

where x, is the amplitude of the motion.

SPEED IN SHM is determined via the above energy equation as

k
ol =5 - )

ACCELERATION IN SHM is determined via Hooke’s Law, F = —kx, and F = ma; once displaced
and released the restoring force drives the system. Equating these two expressions for F gives

k
a=——x
m
The minus sign indicates that the direction of @ (and F) is always opposite to the direction of the

displacement X. Keep in mind that neither F nor & are constant.
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REFERENCE CIRCLE: Suppose that a point P moves with constant speed vy around a circle,
as shown in Fig. 11-2. This circle is called the reference circle for SHM. Point A is the projection
of point P on the x-axis, which coincides with the horizontal diameter of the circle. The motion
of point 4 back and forth about point O as center is SHM. The amplitude of the motion is x,
the radius of the circle. The time taken for P to go around the circle once is the period T of the
motion. The velocity, vy, of point 4 has a scalar x-component of

v, = —7 sin 0

When this quantity is positive v, points in the positive x-direction, when it’s negative v, points in the
negative x-direction.

Once around

in time TK

Displacement
X

Fig. 11-2

PERIOD IN SHM: The period T of a SHM is the time taken for point P to go once around
the reference circle in Fig. 11-2. Therefore,

2mr  2wx
T2 _ 2770
Vo Vo

But vy is the maximum speed of point 4 in Fig. 11-2, that is, v, is the value of |v,| in SHM when x = 0:

k . k
o, =1/(x3 —x*)—  gives vy = xo\/:
m m

This then gives the period of SHM to be
m
T =2m/—
e

for a Hookean spring system.

ACCELERATION IN TERMS OF 7: Eliminating the quantity k/m between the two equations
a=—(k/m)x and T =2m\/m/k, we find
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THE SIMPLE PENDULUM very nearly undergoes SHM if its angle of swing is not too large.
The period of vibration for a pendulum of length L at a location where the gravitational accel-

eration is g is given by
L
T =2m[—
8

SHM can be expressed in analytic form by reference to Fig. 11-2 where we see that the horizon-
tal displacement of point P is given by x = x( cos 6. Since 6 = wt = 2nft, where the angular fre-
quency o = 2rf is the angular velocity of the reference point on the circle, we have

X = X( cos 27ft = x( cos wt
Similarly, the vertical component of the motion of point P is given by
¥y = X, sin 27ft = x sin wt

Also from the figure, v, = vy sin 27ft.

Solved Problems

11.1 For the motion shown in Fig. 11-3, what are the amplitude, period, and frequency?

x (cm)

0.75 | mmmmmmm e e e e e

t(s)

075 M M M M

Fig. 11-3

The amplitude is the maximum displacement from the equilibrium position and so is 0.75 cm. The
period is the time for one complete cycle, the time from A4 to B, for example. Therefore the period is 0.20 s.
The frequency is

1 1
= T=020s" 5.0 cycles/s = 5.0 Hz

11.2 A spring makes 12 vibrations in 40 s. Find the period and frequency of the vibration.

clapsed time _ 405 _ 5 ,_vibrationsmade 12 _ 4y,
elapsed time 40 s

"~ vibrations made 12
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11.5
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When a 400-g mass is hung at the end of a vertical spring, the spring stetches 35 cm. What is the
spring constant of the spring, and how much further will it stretch if an additional 400-g mass is
hung from it?

We use F, = ky, where
Foq = mg = (0.400 kg)(9.81m/s*) = 3.92 N

F 392N
With an additional 400-g load, the total force stretching the spring is 7.84 N. Then
F 7.84 N
y_7_711.2N/m_0'70m_2X350m

Provided it’s Hookean, each 400-g load stretches the spring by the same amount, whether or not the spring is
already loaded.

A 200-g mass vibrates horizontally without friction at the end of a horizontal spring for which
k = 7.0 N/m. The mass is displaced 5.0 cm from equilibrium and released. Find (a) its maximum
speed and (b) its speed when it is 3.0 cm from equilibrium. (¢) What is its acceleration in each of
these cases?

From the conservation of energy,
122 1,2 1.2
skxg = 3mv” +5kx

where k = 7.0 N/m, xy = 0.050 m, and m = 0.200 kg. Solving for v gives

(a) The speed is a maximum when x = 0; that is, when the mass is passing through the equilibrium
position:
k [7.0 N/m

v = \/M [(0.050)* — (0.030)%] m? = 0.24 m/s

(b) When x = 0.030 m,

0.200 kg

(¢) By use of F =ma and F = kx, we have

a= %x = (35577 (x)

which yields @ = 0 when the mass is at x = 0 and @ = 1.1 m/s> when x = 0.030 m.

A 50-g mass vibrates in SHM at the end of a spring. The amplitude of the motion is 12 cm, and
the period is 1.70 s. Find: (a) the frequency, (b) the spring constant, (¢) the maximum speed of the
mass, (d) the maximum acceleration of the mass, (¢) the speed when the displacement is 6.0 cm,
and ( /') the acceleration when x = 6.0 cm.

1

=——=0.588 Hz

(a) S =7 1705

(b) Since T =2m\/m/k,

N =



CHAP. 11] SIMPLE HARMONIC MOTION AND SPRINGS 131

11.6

11.7

_4n’m _47°(0.050 kg)

= =0.68 N/m
T° (1.70 s)? /
k [0.68 N/m
(C) Vo =x0\/;= (012 m) Wolig:ollél m/s
(d) Froma = —(k/m)x it is seen that ¢ has maximum magnitude when x has maximum magnitude, that is,

at the endpoints x = +x,. Thus,

k 0.68 N/m
ay=—Xg=————

— _ 2
™ = 0,050 kg (0.12m) = 1.6 m/s

(e) From |v| = /(x3 — x?)(k/m),

~J10.12 m)? — (0.06 m)?](0.68 N/m)
|v| = \/ 0,050 kg) =0.38 m/s
. ~ k__ 068N/m B )

A 50-g mass hangs at the end of a Hookean spring. When 20 g more is added to the end of the
spring, it stretches 7.0 cm more. (a) Find the spring constant. (b) If the 20 g is now removed, what
will be the period of the motion?

(@) Under the weight of the 50-g mass, F,,, ; = kx;, where x; is the original stretching of the spring. When
20 g more is added, the force becomes Fiy | + Foy o = k(x| + x,), where F, , is the weight of 20 g and
X, is the stretching it causes. Subtracting the two force equations gives

Foin = kx2

(Note that this is the same as F,,, = kx, where F,,, is the additional stretching force and x is the amount
of stretch due to it. Hence we could have ignored the fact that the spring had the 50-g mass at its end to
begin with.) Solving for k, we get

Feyi (0 020 kg)(9.81 m/s?)
X2 0.070 m

m [0.050 kg

As shown in Fig. 11-4, a long, light piece of spring steel is clamped at its lower end and a 2.0-kg
ball is fastened to its top end. A horizontal force of 8.0 N is required to displace the ball 20 cm to
one side as shown. Assume the system to undergo SHM when released. Find (a) the force
constant of the spring and (b) the period with which the ball will vibrate back and forth.

k= =28 N/m

_external force Fiy 8.0 N
displacement x ~ 0.20 m

B m [20kg
(b) T727T\/;727r 40N/m714

(a) =40 N/m
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Fig. 11-4

When a mass m is hung on a spring, the spring stretches 6.0 cm. Determine its period of vibration
if it is then pulled down a little and released.

Since
Foxt _ mg
X 0.060 m

we have T = 27r\/% =2, /0'020 M 0495

Two identical springs have k =20 N/m. A 0.30-kg mass is connected to them as shown in
Fig. 11-5(a) and (b). Find the period of motion for each system. Ignore friction forces.

k=

(a) Consider what happens when the mass is given a displacement x > 0. One spring will be stretched x and
the other will be compressed x. They will each exert a force of magnitude (20 N/m)x on the mass in the
direction opposite to the displacement. Hence the total restoring force will be

F = —(20 N/m)x — (20 N/m)x = —(40 N/m)x

Comparison with F = —kx tells us that the system has a spring constant of kK = 40 N/m. Hence,

m 10.30 kg
T—27r\/%—27r 40N/m—0.54s

(a) (%)

Fig. 11-5
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11.10

11.11

11.12

(b) When the mass is displaced a distance y downward, each spring is stretched a distance y. The net
restoring force on the mass is then

F=—(20 N/m)y — (20 N/m)y = —(40 N/m)y

Comparison with F = —ky shows k to be 40 N/m, the same as in (a). Hence the period in this case is
also 0.54 s.

In a certain engine, a piston undergoes vertical SHM with amplitude 7.0 cm. A washer rests on
top of the piston. As the motor speed is slowly increased, at what frequency will the washer no
longer stay in contact with the piston?

The maximum downward acceleration of the washer will be that for free fall, g. If the piston accelerates
downward faster than this, the washer will lose contact.
In SHM, the acceleration is given in terms of the displacement and the period as

4r®
a=— ?X
(To see this, notice that « = —F/m = —kx/m. But from T = 2m\/m/k, we have k = 47r2m/T2, which then
gives the above expression for a.) With the upward direction chosen as positive, the largest downward (most
negative) acceleration occurs for x = +x5 = 0.070 m; it is

47?
=77
The washer will separate from the piston when « first becomes equal to g. Therefore, the critical period for
the SHM, T., is given by

47’ 0.070
%(0.070 m)=g or T.=2m]/ . M _053s

This corresponds to the frequency f, = 1/T,. = 1.9 Hz. The washer will separate from the piston if the
piston’s frequency exceeds 1.9 cycles/s.

dg (0.070 m)

A 20-kg electric motor is mounted on four vertical springs, each having a spring constant of
30 N/cm. Find the period with which the motor vibrates vertically.

As in Problem 11.9, we may replace the springs by an equivalent single spring. Its force constant will be
4(3000 N/m) or 12000 N/m. Then

m [ 20 kg
T_27r\/%_27r m—026s

Mercury is poured into a glass U-tube. Normally, the mercury stands at equal heights in the two
columns, but, when disturbed, it oscillates back and forth from arm to arm. (See Fig. 11-6.) One
centimeter of the mercury column has a mass of 15.0 g. Suppose the column is displaced as shown
and released, and it vibrates back and forth without friction. Compute (a) the effective spring
constant of the motion and () its period of oscillation.

(@) When the mercury is displaced x m from equilibrium as shown, the restoring force is the weight of the
unbalanced column of length 2x. The mercury has a mass of 1.50 kilograms per meter. The mass of the
column is therefore (2x)(1.50 kg), and so its weight is mg = (29.4 kg-m/s*)(x). Therefore, the restoring
force is

F = (29.4 N/m)(x)

which is of the form F = kx with k£ = 29.4 N/m. This is the effective spring constant for the motion.
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J)}
)
J)
a

AR
T/

Fig. 11-6 Fig. 11-7

(b) The period of motion is

T= 2m/%: 1.16VM s

where M is the total mass of mercury in the U-tube, i.e., the total mass being moved by the restoring
force.

Compute the acceleration due to gravity at a place where a simple pendulum 150.3 cm long
makes 100.0 cycles in 246.7 s.

246.7 s
We he = =2.467
e have 1000 s
Squaring T = 2m/L/g and solving for g gives us
a7°

g=—zl= 9.749 m/s’

The 200-g mass shown in Fig. 11-7 is pushed to the left against the spring and compresses the
spring 15 cm from its equilibrium position. The system is then released, and the mass shoots to
the right. If friction can be ignored, how fast will the mass be moving as it shoots away? Assume
the mass of the spring to be very small.

When the spring is compressed, energy is stored in it. That energy is %kx(z), where xq = 0.15 m. After
release, this energy will be given to the mass as KE. When the spring passes through the equilibrium position,
all the PE, will be changed to KE. (Since the mass of the spring is small, its KE can be ignored.) Therefore,

Original PE, = final KE of mass

1 2 _ 1 2
skxy =3mv

1(400 N/m)(0.15 m)* = 1(0.200 kg)»?

from which v = 6.7 m/s.

Suppose that, in Fig. 11-7, the 200-g mass initially moves to the left at a speed of 8.0 m/s. It
strikes the spring and becomes attached to it. (¢) How far does it compress the spring? (b) If the
system then oscillates back and forth, what is the amplitude of the oscillation? Ignore friction and
the small mass of the spring.
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Because the spring can be considered massless, all the KE of the mass will go into compressing the
spring. We can therefore write

Original KE of mass = final PE,
Imvg = Lkxg
where vy = 8.0 m/s and x; is the maximum compression of the spring. For m = 0.200 kg and
k =400 N/m, the above relation gives x, = 0.179 m = 0.18 m.

The spring compresses 0.179 m from its equilibrium position. At that point, all the energy of the
spring—mass system is PE,. As the spring pushes the mass back toward the right, the mass moves
through the equilibrium position. The mass stops at a point to the right of the equilibrium position
where the energy is again all PE,. Since no losses occurred, the same energy must be stored in the
stretched spring as in the compressed spring. Therefore, it will be stretched x; = 0.18 m from the
equilibrium point. The amplitude of oscillation is therefore 0.18 m.

11.16 In Fig. 11-8, the 2.0-kg mass is released when the spring is unstretched. Neglecting the inertia and
friction of the pulley and the mass of the spring and string, find («) the amplitude of the resulting
oscillation and (b) its center or equilibrium point.

11.17

(a)

(®)

k=300 N/m

Fig. 11-8

Suppose the mass falls a distance /i before stopping. At that time, the PEg it lost (mgh) will be stored in
the spring, so that

1
mgh:zkh2 or 11:2’7;(—g=0.13m

The mass will stop in its upward motion when the energy of the system is all recovered as PEg.
Therefore it will rise 0.13 m above its lowest position. The amplitude is thus 0.13/2 = 0.065 m.

The center point of the motion is a distance of 0.065 m below the point from which the mass was
released, i.e., a distance equal to half the total travel below the highest point.

A 3.0-g particle at the end of a spring moves according to the equation y = 0.75 sin 637 where y is
in centimeters and ¢ is in seconds. Find the amplitude and frequency of its motion, its position at
t =0.020 s, and the spring constant.

The equation of motion is y = y, sin 27ft. By comparison, we see that the amplitude is y, = 0.75 cm.

Also,

2nf =63s'  from which /=10 Hz
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11.26
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(Note that the argument of the sine must be dimensionless; because 7 is in seconds, 27/ must have the unit
1/s.)
When ¢ = 0.020 s, we have
y=0.75 sin (1.26rad) = (0.75)(0.952) = 0.71 cm

Notice that the argument of the sine is in radians, not degrees.
To find the spring constant, we use f = (1/27)/k/m to get

k =4m*f*m =119 N/m = 12 N/m

Supplementary Problems

A pendulum is timed as it swings back and forth. The clock is started when the bob is at the left end of its
swing. When the bob returns to the left end for the 90th return, the clock reads 60.0 s. What is the period of
vibration? The frequency? Ans. 0.667 s, 1.50 Hz

A 300-g mass at the end of a Hookean spring vibrates up and down in such a way that it is 2.0 cm above the
tabletop at its lowest point and 16 cm above at its highest point. Its period is 4.0 s. Determine (a) the
amplitude of vibration, () the spring constant, (¢) the speed and acceleration of the mass when it is 9 cm
above the table top, (d) the speed and acceleration of the mass when it is 12 cm above the table-
top. Ans.  (a) 7.0 cm; (b) 0.74 N/m; (c) 0.11 m/s; zero; (d) 0.099 m/s, 0.074 m/s2

A coiled Hookean spring is stretched 10 cm when a 1.5-kg mass is hung from it. Suppose a 4.0-kg mass
hangs from the spring and is set into vibration with an amplitude of 12 cm. Find («) the force constant of the
spring, (b) the maximum restoring force acting on the vibrating body, (¢) the period of vibration, (d) the
maximum speed and the maximum acceleration of the vibrating object, and (e) the speed and acceleration
when the displacement is 9 cm. Ans. (a) 0.15 kN/m; (b) 18 N; (¢) 1.0s; (d) 0.73 m/s, 4.4 m/sz;
(e) 0.48 m/s, 3.3 m/s’

A 2.5-kg mass undergoes SHM and makes exactly 3 vibrations each second. Compute the acceleration and
the restoring force acting on the body when its displacement from the equilibrium position is 5.0 cm.
Ans. 18 m/s?, 44 N

A 300-g mass at the end of a spring oscillates with an amplitude of 7.0 cm and a frequency of 1.80 Hz.
(a) Find its maximum speed and maximum acceleration. (b) What is its speed when it is 3.0 cm from its
equilibrium position? Ans.  (a) 0.79 m/s, 8.9 m/sz; (b) 0.72 m/s

A certain Hookean spring is stretched 20 cm when a given mass is hung from it. What is the frequency of
vibration of the mass if pulled down a little and released? Ans. 1.1 Hz

A 300-g mass at the end of a spring executes SHM with a period of 2.4 s. Find the period of oscillation of a
133-g mass attached to the same spring. Ans. 1.6s

With a 50-g mass at its end, a spring undergoes SHM with a frequency of 0.70 Hz. How much work is done
in stretching the spring 15 cm from its unstretched length? How much energy is then stored in the
spring? Ans. 0.0117J,0.011)

In a situation similar to that shown in Fig. 11-7, a mass is pressed back against a light spring for which
k =400 N/m. The mass compresses the spring 8.0 cm and is then released. After sliding 55 cm along the flat
table from the point of release, the mass comes to rest. How large a friction force opposed its motion?
Ans. 23 N



CHAP. 11] SIMPLE HARMONIC MOTION AND SPRINGS 137

11.27

11.28
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11.31

11.32

11.33

11.34

11.35

A 500-g mass is attached to the end of an initially unstretched vertical spring for which k = 30 N/m. The
mass is then released, so that it falls and stretches the spring. How far will it fall before stopping? (Hint: The
PEg lost by the mass must appear as PE,.) Ans. 33 cm

A popgun uses a spring for which £ = 20 N/cm. When cocked, the spring is compressed 3.0 cm. How high
can the gun shoot a 5.0-g projectile? Ans. 18 m

A cubical block vibrates horizontally in SHM with an amplitude of 8.0 cm and a frequency of 1.50 Hz. If a
smaller block sitting on it is not to slide, what is the minimum value that the coefficient of static friction
between the two blocks can have? Ans. 0.72

Find the frequency of vibration on Mars for a simple pendulum that is 50 cm long. Objects weigh 0.40 as
much on Mars as on the Earth. Ans. 0.45 Hz

A “‘seconds pendulum” beats seconds; that is, it takes 1 s for half a cycle. (¢) What is the length of a simple
“seconds pendulum” at a place where g = 9.80 m/s2? (b) What is the length there of a pendulum for which
T =1.00s? Ans. (a) 99.3 cm; (b) 24.8 cm

Show that the natural period of vertical oscillation of a mass hung on a Hookean spring is the same as the
period of a simple pendulum whose length is equal to the elongation the mass causes when hung on the

spring.

A particle that is at the origin of coordinates at exactly t = 0 vibrates about the origin along the y-axis with a
frequency of 20 Hz and an amplitude of 3.0 cm. Give its equation of motion in centimeters.
Ans. y =3.0 sin 125.6¢

A particle vibrates according to the equation x = 20 cos 16¢, where x is in centimeters. Find its amplitude,
frequency, and position at exactly 1 =0 s. Ans. 20 cm, 2.6 Hz, x = 20 cm

A particle oscillates according to the equation y = 5.0 cos 23¢, where y is in centimeters. Find its frequency
of oscillation and its position at = 0.15 s. Ans. 3.7 Hz, —4.8 cm



Chapter 12

Density; Elasticity

THE MASS DENSITY (p) of a material is its mass per unit volume:

mass of body m

P = Yolume of body Vv

The SI unit for mass density is kg/m3 , although g/cm3 is also used: 1000 kg/m3 =1 g/cm3. The density of
water is close to 1000 kg/m”’.

THE SPECIFIC GRAVITY (sp gr) of a substance is the ratio of the density of the substance to
the density of some standard substance. The standard is usually water (at 4°C) for liquids and
solids, while for gases, it is usually air.
p
Pstandard

sp gr =

Since sp gr is a dimensionless ratio, it has the same value for all systems of units.

ELASTICITY is the property by which a body returns to its original size and shape when the
forces that deformed it are removed.

THE STRESS (o) experienced within a solid is the magnitude of the force acting (F), divided by
the area (A4) over which it acts:

force
Stress = -
area of surface on which force acts
F
o=—
A

Its SI unit is the pascal (Pa), where 1 Pa = 1 N/mz. Thus, if a cane supports a load the stress at any point
within the cane is the load divided by the cross-sectional area at that point; the narrowest regions
experience the greatest stress.

STRAIN (¢) is the fractional deformation resulting from a stress. It is measured as the ratio of
the change in some dimension of a body to the original dimension in which the change occurred.
change in dimension

Strain = —— - -
original dimension

Thus, the normal strain under an axial load is the change in length (AL) over the original length Lj:
. AL
=T

Strain has no units because it is a ratio of like quantities. The exact definition of strain for various
situations is given later.
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THE ELASTIC LIMIT of a body is the smallest stress that will produce a permanent distortion
in the body. When a stress in excess of this limit is applied, the body will not return exactly to
its original state after the stress is removed.

YOUNG’S MODULUS (Y) or the modulus of elasticity, is defined as

stress

Modulus of elasticity = -
strain

The modulus has the same units as stress. A large modulus means that a large stress is required to
produce a given strain — the object is rigid.

F/A _ FL,

Accordingly, = ALJL, ~ AAL

Its SI unit is Pa. Unlike the constant k in Hooke’s Law, the value of Y depends only on the material of
the wire or rod, and not on its dimensions or configuration. Consequently, Young’s modulus is an
important basic measure of the mechanical behavior of materials.

THE BULK MODULUS (B) describes the volume elasticity of a material. Suppose that a uni-
formly distributed compressive force acts on the surface of an object and is directed perpendicular

to the surface at all points. Then if F is the force acting on and perpendicular to an area A4, we
define

P A=P=—
ressure on Y
The SI unit for pressure is Pa.
Suppose that the pressure on an object of original volume V) is increased by an amount AP. The
pressure increase causes a volume change AV, where AV will be negative. We then define

Volume stress = AP Volume strain = — %
0
Then Bulk modulus = strgss
strain
B AP VyAP
- AVV, AV

The minus sign is used so as to cancel the negative numerical value of AV and thereby make B a positive
number. The bulk modulus has the units of pressure.
The reciprocal of the bulk modulus is called the compressibility K of the substance.

THE SHEAR MODULUS (S) describes the shape elasticity of a material. Suppose, as shown in
Fig. 12-1, that equal and opposite tangential forces F act on a rectangular block. These shearing
forces distort the block as indicated, but its volume remains unchanged. We define



140

Then

that case
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tangential force acting
area of surface being sheared

Shearing stress =

gy = Z
distance sheared

distance between surfaces

Shearing strain =
AL
& = —
Ly
stress
strain

G F/A
 AL/Ly AAL

Shear modulus =
_ FL,

Since AL is usually very small, the ratio AL/ L, is equal approximately to the shear angle « in radians. In

Ay
LT T F
e / —_—
//// | / 4 7 /
AL] 7 / /
/
/I } / / ,/
/ | // /
LO \rl }/, /’ //
v/ L L /
-7 /
F // -7 > /
- — —
{ > - A y /fw
-7 /
Fig. 12-1

Solved Problems

Find the density and specific gravity of gasoline if 51 g occupies 75 cm®.
0.051 k
£ —68x 10> kg/m’

. mass
Density = = —
volume 75 x 107% m
op or — density of gasoline 6.8 x 10 kg/m3 — 0.68
P &= " density of water 1000 kg/m?
=0.68

mass of 75 cm’ gasoline 5l g
T 75¢g

sp gr =
P g mass of 75 cm?® water

or

12.2  What volume does 300 g of mercury occupy? The density of mercury is 13600 kg/m’

From p=m/V,
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12.3

124

12.5

12.6

12.7

12.8

V:T— 0.300 kg

> = 13 600 kgjm? 221 x 1073 m® =22.1 em®

The specific gravity of cast iron is 7.20. Find its density and the mass of 60.0 cm® of it.

We make use of

density of substance
sp gr = -
density of water

and p=

<I3

From the first equation,
Density of iron = (sp gr)(density of water) = (7.20)(1000 kg/m*) = 7200 kg/m’
s0 Mass of 60.0 cm® = pV = (7200 kg/m*)(60.0 x 10~° m?) = 0.432 kg

The mass of a calibrated flask is 25.0 g when empty, 75.0 g when filled with water, and 88.0 g
when filled with glycerin. Find the specific gravity of glycerin.

From the data, the mass of the glycerin in the flask is 63.0 g, while an equal volume of water has a mass
of 50.0 g. Then
__mass of glycerin 63.0 g

= =12
mass of water 500 g 6

Sp gr

A calibrated flask has a mass of 30.0 g when empty, 81.0 g when filled with water, and 68.0 g
when filled with an oil. Find the density of the oil.

We first find the volume of the flask from p = m/V, using the water data:

M _(81.0-300) x 10 kg

-6 3
; 1000 kg/m3 =510x10°m

Then, for the oil,

my (68.0 —30.0) x 107 kg 3
p=—a = =745 k
Poil =73 510 x 106 m? g/m

A solid cube of aluminum is 2.00 cm on each edge. The density of aluminum is 2700 kg/m®. Find
the mass of the cube.

Mass of cube = pV = (2700 kg/m?)(0.0200 m)* = 0.0216 kg = 21.6 g

What is the mass of one liter (1000 cm?) of cottonseed oil of density 926 kg/m>*? How much does
it weigh?

m = pV = (926 kg/m*)(1000 x 107° m?) = 0.926 kg
Weight = mg = (0.926 kg)(9.81 m/s?) = 9.08 N

An electrolytic tin-plating process gives a tin coating that is 7.50 x 10~ c¢m thick. How large an
area can be coated with 0.500 kg of tin? The density of tin is 7300 kg/m>.

The volume of 0.500 kg of tin is given by p = m/V to be

pomo 0500ke o5 005 m?
p 7300 kg/m’
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The volume of a film with area 4 and thickness ¢ is V' = At. Solving for A4, we find
vV 685x107° m’

A==

e — 2
{75010 m Sm

as the area that can be covered.

A thin sheet of gold foil has an area of 3.12 cm” and a mass of 6.50 mg. How thick is the sheet?
The density of gold is 19300 kg/m>.

One milligram is 107 kg, so the mass of the sheet is 6.50 x 107° kg. Its volume is
V = (area) x (thickness) = (3.12 x 10~* m?)(r)
where 7 is the thickness of the sheet. We equate this expression for the volume to m/p to get

_ 6.50 x 107® kg
32 x107*mA)(r)=—~2— "2
(312> 107 m)(T) = 75350 g/’

from which 7 = 1.08 x 107° m = 1.08 pm.

The mass of a liter of milk is 1.032 kg. The butterfat that it contains has a density of 865 kg/m?
when pure, and it constitutes exactly 4 percent of the milk by volume. What is the density of the
fat-free skimmed milk?

Volume of fat in 1000 cm®of milk = 4% x 1000 cm® = 40.0 cm?®

Mass of 40.0 cm® fat = Vp = (40.0 x 107 m*)(865 kg/m?) = 0.034 6 kg

Density of skimmed milk = mass__ (1032 — 0.0346)7kg ;= 1.04 x 10° kg/m’
volume (1000 — 40.0) x 107° m?

A metal wire 75.0 cm long and 0.130 cm in diameter stretches 0.0350 cm when a load of 8.00 kg
is hung on its end. Find the stress, the strain, and the Young’s modulus for the material of the
wire.

2
o= £ BOKIOSI M) _ 54, 157 N/m? = 591 x 107 Pa
A" (650 x 104 m)

AL 0.0350 cm

=——= =4. 10
€=, T 750em 67X 10

591 x 10" P
=TT X0 T8 197 % 10" Pa =127 GPa
e 4.67 x 1074

A solid cylindrical steel column is 4.0 m long and 9.0 cm in diameter. What will be its decrease in
length when carrying a load of 80 000 kg? ¥ = 1.9 x 10" Pa.

We first find
Cross-sectional area of column = 72 = 7(0.045 m)> = 6.36 x 10> m?
Then, from Y = (F/A)/(AL/Ly) we have

4
AL — FLy _ [(8.00 x 107)(9.81) N](4.0 m) —26x10° m —2.6mm
AY (636 x 1073 m?)(1.9 x 10'! Pa)

Atmospheric pressure is about 1.01 x 10° Pa. How large a force does the atmosphere exert on a
2.0 cm? area on the top of your head?
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12.14

12.15

12.16

12.17

Because P = F/A, where F is perpendicular to 4, we have F = PA. Assuming that 2.0 cm? of your head
is flat (nearly correct) and that the force due to the atmosphere is perpendicular to the surface (as it is), we
have

F=PA=(101x10° N/m*)(20x 107 m?) =20 N

A 60-kg woman stands on a light, cubical box that is 5.0 cm on each edge. The box sits on the
floor. What pressure does the box exert on the floor?
F (60)(9.81) N

p=_=_DV0) N 5 4%10° N/m>
4 (50x 1072 m)? /

The bulk modulus of water is 2.1 GPa. Compute the volume contraction of 100 mL of water
when subjected to a pressure of 1.5 MPa.

From B=—AP/(AV/V,), we get

Vo AP (100 mL)(1.5 x 10° Pa)

AV =—
B 2.1 x 10° Pa

= —0.071 mL

A box-shaped piece of gelatin dessert has a top area of 15 cm? and a height of 3.0 cm. When a
shearing force of 0.50 N is applied to the upper surface, the upper surface displaces 4.0 mm
relative to the bottom surface. What are the shearing stress, the shearing strain, and the shear
modulus for the gelatin?

_ tangential force  0.50 N

= = =0.33 kP
: area of face 15 x 1074 m? a
displacement  0.40 cm
= = =0.1
& height 3.0 cm 0.13
0.33 kPa

A 15-kg ball of radius 4.0 cm is suspended from a point 2.94 m above the floor by an iron wire of
unstretched length 2.85 m. The diameter of the wire is 0.090 cm, and its Young’s modulus is
180 GPa. If the ball is set swinging so that its center passes through the lowest point at 5.0 m/s, by
how much does the bottom of the ball clear the floor?

Call the tension in the wire F7 when the ball is swinging through the lowest point. Since F7 must supply
the centripetal force as well as balance the weight,

2
m 25
Fr :mg—i——v = m<9.81 +—)
r r
all in proper SI units. This is complicated, because r is the distance from the pivot to the center of the ball
when the wire is stretched, and so it is rq + Ar, where ry, the unstretched length of the pendulum, is

rg =2.85m+0.040 m =2.89 m

and where Ar is as yet unknown. However, the unstretched distance from the pivot to the bottom of the ball
is 2.85 m + 0.080 m = 2.93 m, and so the maximum possible value for Ar is
294m—293m=0.0l m

We will therefore incur no more than a 1/3 percent error in r by using r =ry = 2.89 m. This gives
Fr =277 N. Under this tension, the wire stretches by
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A= Lo _ (277 N)2(2.85 m) =69%x107° m
AY " 7(4.5 x 107* m)*(1.80 x 10! Pa)

Hence the ball misses by
2.94 m — (2.8540.0069 + 0.080) m = 0.0031 m = 3.1 mm

To check the approximation we have made, we could use r = 2.90 m, its maximum possible value. Then
we find that AL = 6.9 mm, showing that the approximation has caused negligible error.

A vertical wire 5.0 m long and of 0.008 8 cm? cross-sectional area has ¥ = 200 GPa. A 2.0-kg
object is fastened to its end and stretches the wire elastically. If the object is now pulled down a
little and released, the object undergoes vertical SHM. Find the period of its vibration.

The force constant of the wire acting as a vertical spring is given by k = F/AL, where AL is the
deformation produced by the force (weight) F. But, from F/4 = Y(AL/L,),

_F A4y (88x1077 m?)(2.00 x 10" Pa)
TALT Ly, 5.0 m

Then for the period we have
T:27T\/E:27r __20ke (047
k 35 x 10 N/m

=35 kN/m

Supplementary Problems

Find the density and specific gravity of ethyl alcohol if 63.3 g occupies 80.0 mL. Ans. 791 kg/m®, 0.791
Determine the volume of 200 g of carbon tetrachloride, for which sp gr = 1.60. Ans. 125 mL
The density of aluminum is 2.70 g/cm®. What volume does 2.00 kg occupy? Ans. 740 cm®

Determine the mass of an aluminum cube that is 5.00 cm on each edge. The density of aluminum is
2700 kg/m>.  Ans. 0.338 kg

A drum holds 200 kg of water or 132 kg of gasoline. Determine for the gasoline (a) its sp gr and (b) p in
kg/m®.  Ans. (a) 0.660; (b) 660 kg/m*

Air has a density of 1.29 kg/m® under standard conditions. What is the mass of air in a room with dimen-
sions 10.0 m x 8.00 m x 3.00 m? Ans. 310 kg

What is the density of the material in the nucleus of the hydrogen atom? The nucleus can be considered to be
a sphere of radius 1.2 x 107" m, and its mass is 1.67 x 10727 kg. The volume of a sphere is (4/3)mr .
Ans. 2.3 x 10" kg/m®

To determine the inner radius of a uniform capillary tube, the tube is filled with mercury. A column of
mercury 2.375 cm long is found to have a mass of 0.24 g. What is the inner radius r of the tube? The density
of mercury is 13600 kg/m®, and the volume of a right circular cylinder is 712 h. Ans.  0.49 mm

Battery acid has sp gr = 1.285 and is 38.0 percent sulfuric acid by weight. What mass of sulfuric acid is
contained in a liter of battery acid? Ans. 488 g



CHAP. 12] DENSITY; ELASTICITY 145

12.28

12.29

12.30

12.31

12.32

12.33

12.34

12.35

12.36

12.37

A thin, semitransparent film of gold (p = 19300 kg/m?) has an area of 14.5 cm? and a mass of 1.93 mg. ()
What is the volume of 1.93 mg of gold? (b) What is the thickness of the film in angstroms, where
1A =10"""m? (¢) Gold atoms have a diameter of about 5A. How many atoms thick is the
film?  Ans. (a) 1.00 x 107'°m?; () 690 A; (¢) 138 atoms thick

In an unhealthy, dusty cement mill, there were 2.6 x 10° dust particles (sp gr = 3.0) per cubic meter
of air. Assuming the particles to be spheres of 2.0 um diameter, calculate the mass of dust
(a)ina20m x 15 m x 8.0 m room and (b) inhaled in each average breath of 400-cm® volume. Ans. (a)
78 g; (b) 13 ug

An iron rod 4.00 m long and 0.500 cm? in cross-section stretches 1.00 mm when a mass of 225 kg is hung
from its lower end. Compute Young’s modulus for the iron. Ans. 176 GPa

A load of 50 kg is applied to the lower end of a steel rod 80 cm long and 0.60 cm in diameter. How much will
the rod stretch? ¥ = 190 GPa for steel. Ans. 73 pm

A platform is suspended by four wires at its corners. The wires are 3.0 m long and have a diameter of
2.0 mm. Young’s modulus for the material of the wires is 180 GPa. How far will the platform drop (due to
elongation of the wires) if a 50-kg load is placed at the center of the platform? Ans.  0.65 mm

Determine the fractional change in volume as the pressure of the atmosphere (1 x 10° Pa) around a metal
block is reduced to zero by placing the block in vacuum. The bulk modulus for the metal is
125 GPa.  Ans. 8x 107

Compute the volume change of a solid copper cube, 40 mm on each edge, when subjected to a pressure of
20 MPa. The bulk modulus for copper is 125 GPa. Ans.  —10mm?

The compressibility of water is 5.0 x 107" m?/N. Find the decrease in volume of 100 mL of water when
subjected to a pressure of 15 MPa. Ans. 0.75 mL

Two parallel and opposite forces, each 4000 N, are applied tangentially to the upper and lower faces of a
cubical metal block 25 cm on a side. Find the angle of shear and the displacement of the upper surface
relative to the lower surface. The shear modulus for the metal is 80 GPa. Ans. 8.0 x 107 rad,
2.0x 10 "m

A 60-kg motor sits on four cylindrical rubber blocks. Each cylinder has a height of 3.0 cm and a cross-
sectional area of 15 cm?. The shear modulus for this rubber is 2.0 MPa. (a) If a sideways force of 300 N is
applied to the motor, how far will it move sideways? (b) With what frequency will the motor vibrate back
and forth sideways if disturbed? Ans. (a) 0.075 cm; (b) 13 Hz



Chapter 13

Fluids at Rest

THE AVERAGE PRESSURE on a surface of area A is found as force divided by area, where it
is stipulated that the force must be perpendicular (normal) to the area:

force acting normal to an area
area over which the force is distributed

Average pressure =

P_F
T4

Recall that the SI unit for pressure is the pascal (Pa), and 1 Pa = 1 N/m?.

STANDARD ATMOSPHERIC PRESSURE is 1.01 x 10° Pa, and this is equivalent to 14.7 Ib/in.%.
Other units used for pressure are

1 atmosphere (atm) = 1.013 x 10° Pa
1 torr = I mm of mercury (mmHg) = 133.32 Pa
1 Ib/in.> = 6.895 kPa

THE HYDROSTATIC PRESSURE due to a column of fluid of height # and mass density p is
P = pgh

PASCAL’S PRINCIPLE: When the pressure on any part of a confined fluid (liquid or gas) is
changed, the pressure on every other part of the fluid is also changed by the same amount.

ARCHIMEDES’ PRINCIPLE: A body wholly or partly immersed in a fluid is buoyed up by a
force equal to the weight of the fluid it displaces. The buoyant force can be considered to act
vertically upward through the center of gravity of the displaced fluid.

Fp = buoyant force = weight of displaced fluid

The buoyant force on an object of volume V' that is totally immersed in a fluid of density p; is p, Vg, and
the weight of the object is py Vg, where p; is the density of the object. Therefore, the net upward force on
the submerged object is

Fyet(upward) = Vg(py — po)

Solved Problems

13.1  An 80-kg metal cylinder, 2.0 m long and with each end of area 25 cm?, stands vertically on one
end. What pressure does the cylinder exert on the floor?
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13.2

13.3

13.4

13.5

13.6

13.7

2
P normal force _ (80 kg)(9.81 m/s%) —31x10° Pa
area 25 x 107* m?

Atmospheric pressure is about 1.0 x 10> Pa. How large a force does the still air in a room exert
on the inside of a window pane that is 40 cm x 80 cm?

The atmosphere exerts a force normal to any surface placed in it. Consequently, the force on the
window pane is perpendicular to the pane and is given by

F=PA4=(10x 10° N/m*)(0.40 x 0.80 m*) =3.2 x 10* N

Of course, a nearly equal force due to the atmosphere on the outside keeps the window from breaking.

Find the pressure due to the fluid at a depth of 76 cm in still («) water (p,, = 1.00 g/em’) and (b)
mercury (p = 13.6 g/em?).

(a) P = p,gh = (1000kg/m*)(9.81 m/s*)(0.76 m) = 7450 N/m* = 7.5 kPa

(b) P = pgh = (13600 kg/m*)(9.81 m/s*)(0.76 m) = 1.01 x 10° N/m” ~ 1.0 atm

When a submarine dives to a depth of 120 m, to how large a total pressure is its exterior surface
subjected? The density of seawater is about 1.03 g/cm®.

P = atmospheric pressure + pressure of water
= 1.01 x 10°N/m* + pgh = 1.01 x 10° N/m* + (1030 kg/m?)(9.81 m/s*)(120 m)
=1.01 x 10° N/m? + 12.1 x 10° N/m? = 13.1 x 10° N/m* = 1.31 MPa

How high would water rise in the pipes of a building if the water pressure gauge shows the
pressure at the ground floor to be 270 kPa (about 40 1b/in.2)?

Water pressure gauges read the excess pressure due to the water, that is, the difference between the
pressure in the water and the pressure of the atmosphere. The water pressure at the bottom of the highest
column that can be supported is 270 kPa. Therefore, P = p,,gh gives

P 2.70 x 10° N/m?

het _ ~275
pvg (1000 kg/m?)(9.81 m/s2) m

A reservoir dam holds an 8.00-km? lake behind it. Just behind the dam, the lake is 12.0 m deep.
What is the water pressure (a) at the base of the dam and (b) at a point 3.0 m down from the
lake’s surface?

The area of the lake behind the dam has no effect on the pressure against the dam. At any point,
P =py,gh.
(a) P = (1000 kg/m*)(9.81 m/s*)(12.0 m) = 118 kPa

(b) P = (1000 kg/m?)(9.81 m/s*)(3.0 m) = 29 kPa

A weighted piston confines a fluid density p in a closed container, as shown in Fig. 13.1. The
combined weight of piston and weight is 200 N, and the cross-sectional area of the piston is
A =8.0cm’ Find the total pressure at point B if the fluid is mercury and h =25 cm
(prg = 13600 kg/m?). What would an ordinary pressure gauge read at B?



148

13.8

139

FLUIDS AT REST [CHAP. 13

Notice what Pascal’s principle tells us about the pressure applied to the fluid by the piston and atmo-
sphere: This added pressure is applied at all points within the fluid. Therefore the total pressure at B is
composed of three parts:

Pressure of atmosphere = 1.0 x 10° Pa

. . F 200 N
Pressure due to piston and weight = W T3 = 25X 10° Pa
A 8.0x10"m

Pressure due to height / of fluid = hpg = 0.33 x 10° Pa
In this case, the pressure of the fluid itself is relatively small. We have
Total pressure at B = 3.8 x 10° Pa
The gauge pressure does not include atmospheric pressure. Therefore,

Gauge pressure at B =2.8 x 10° Pa

[

Fig. 13-1 Fig. 13-2

In a hydraulic press such as the one shown in Fig. 13-2, the large piston has cross-sectional area
A; =200 cm? and the small piston has cross-sectional area 4, = 5.0 cm?. If a force of 250 N is
applied to the small piston, find the force F; on the large piston.

By Pascal’s principle,

. . F, F
Pressure under large piston = pressure under small piston or A—l = A—2
1 2
A 200
that F,=—F,=—250N = 10kN
so Hha T T 0

For the system shown in Fig. 13-3, the cylinder on the left, at L, has a mass of 600 kg and a cross-
sectional area of 800 cm?. The piston on the right, at S, has a cross-sectional area of 25 cm” and a
negligible weight. If the apparatus is filled with oil (p = 0.78 g/em®), find the force F required to
hold the system in equilibrium as shown.

The pressures at points H; and H, are equal because they are at the same level in a single connected
fluid. Therefore,
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L || 600kg

Fig. 13-3

Pressure at H; = pressure at H,
pressure due to pressure due to F
(left piston ) - <and right piston
(600)(9.81) N F
0.0800m>  25x 10 *m
from which F = 31 N.

) + (pressure due to 8.0 m of oil)

S+ (8.0 m)(780 kg/m’)(9.81 m/s%)

A barrel will rupture when the gauge pressure within it reaches 350 kPa. It is attached to the
lower end of a vertical pipe, with the pipe and barrel filled with oil (p = 890 kg/m?). How long
can the pipe be if the barrel is not to rupture?

From P = pgh we have

P 350 x 10> N/m?
h=1 = =40.1
' T pg (9.81 m/s?)(890 kg/m’) m

A vertical test tube has 2.0 cm of oil (p = 0.80 g/cm?) floating on 8.0 cm of water. What is the
pressure at the bottom of the tube due to the fluid in it?

P = p1ghy + prgh, = (800 kg/m*)(9.81 m/s?)(0.020 m) + (1000 kg/m?)(9.81 m/s*)(0.080 m)
= 0.94 kPa

As shown in Fig. 13-4, a column of water 40 cm high supports a 31-cm column of an unknown
fluid. What is the density of the unknown fluid?

The pressures at point 4 due to the two fluids must be equal (or the one with the higher pressure would
push the lower-pressure fluid away). Therefore,

Pressure due to water = pressure due to unknown fluid

pi1ght = paghy

from which Py = Z—Ipl = %(1000 kg/m?) = 1290 kg/m* = 1.3 x 10* kg/m*
2
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40 cm
31 cm

Fig. 13-4 Fig. 13-5

The U-tube device connected to the tank in Fig. 13-5 is called a manometer. As you can see, the
mercury in the tube stands higher in one side than the other. What is the pressure in the tank if
atmospheric pressure is 76 cm of mercury? The density of mercury is 13.6 g/cm?.

Pressure at 4; = pressure at A,
(P in tank) + (P due to 5 cm mercury) = (P due to atmosphere)

P+ (0.05 m)(13 600 kg/m?)(9.81 m/s*) = (0.76 m)(13 600 kg/m?*)(9.81 m/s?)

from which P = 95 kPa.
Or, more simply perhaps, we could note that the pressure in the tank is 5.0 cm of mercury /lower than
atmospheric. So the pressure is 71 cm of mercury, which is 94.6 kPa.

The mass of a block of aluminum is 25.0 g. (¢) What is its volume? (b) What will be the tension in
a string that suspends the block when the block is totally submerged in water? The density of
aluminum is 2700 kg/m>.

(@) Because p =m/V, we have

pom_ 00250ke o0 1076 m3 = 9.26 em®
p 2700 kg/m?

(b) The block displaces 9.26 x 107 m® of water when submerged, so the buoyant force on it is

Fp = weight of displaced water = (volume)(p of water)(g)
= (9.26 x 107 m*)(1000 kg/m?*)(9.81 m/s*) = 0.0908 N

The tension in the supporting cord plus the buoyant force must equal the weight of the block if it is to
be in equilibrium (see Fig. 13-6). That is, Fy + Fp = mg, from which

Fr =mg — Fp = (0.0250 kg)(9.81 m/s>) —0.0908 N = 0.154 N

A piece of alloy has a measured mass of 86 g in air and 73 g when immersed in water. Find its
volume and its density.

Figure 13-6 shows the situation when the object is in water. From the figure, Fp + F; = mg, so
Fp =(0.086)(9.81) N — (0.073)(9.81) N = (0.013)(9.81) N
But Fp must be equal to the weight of the displaced water.
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ALy

Fig. 13-6

Fp = weight of water = (mass of water)(g)
= (volume of water)(density of water)(g)

or (0.013)(9.81) N = ¥/(1000 kg/m*)(9.81 m/s?)
from which ¥ = 1.3 x 107> m>. This is also the volume of the piece of alloy. Therefore,
mass 0.086 kg 3 3
f alloy = = =6.6 x 10° kg/m’
pOb ARy = Solume 1.3 x 105 m> 6.6 10" ke/m

13.16 A solid aluminum cylinder with p = 2700 kg/m® has a measured mass of 67 g in air and 45 g
when immersed in turpentine. Determine the density of turpentine.

The Fjp acting on the immersed cylinder is
Fg=(0.067 — 0.045)(9.81) N = (0.022)(9.81) N

This is also the weight of the displaced turpentine.
The volume of the cylinder is, from p = m/V,
m 0.067 kg

. -5 3
V of cyllnder:;:m:ZS x 107 m

This is also the volume of the displaced turpentine. We therefore have, for the turpentine,
mass _ (weight)/g  (0.022)(9.81)/(9.81) kg

" volume  volume 2.48 x 1073 m

8.9 x 10* kg/m’

13.17 A glass stopper has a mass of 2.50 g when measured in air, 1.50 g in water, and 0.70 g in sulfuric
acid. What is the density of the acid? Its specific gravity?

The Fj on the stopper in water is (0.00250 — 0.00150)(9.81) N. This is the weight of the displaced
water. Since p =m/V, or pg = Fy,/V, we have
weight
rg
(0.00100)(9.81) N

V= =1.00 x 10°° m*
(1000 kg/m?)(9.81 m/s?) mem

Volume of stopper = volume of displaced water =

The buoyant force in acid is

[(2.50 — 0.70) x 107](9.81) N = (0.00180)(9.81) N
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But this is equal to the weight of displaced acid, mg. Since p =m/V, and since m = 0.00180 kg and
¥ =1.00 x 107° m?, we have

. 0.001 80 kg ; ;
facid=—————"-=18x10"k
PO A = 100 % 106 m? x 107 ke/m
Then, for the acid,
Spar — pofacid 1800 18

p of water 1000

Alternative Method

Weight of displaced water = [(2.50 — 1.50) x 107%](9.81) N
Weight of displaced acid = [(2.50 — 0.70) x 107°](9.81) N

weight of displaced acid 180

=—=1.
weight of equal volume of displaced water  1.00 8

SO sp gr of acid =

Then, since sp gr of acid = (p of acid)/(p of water), we have

p of acid = (sp gr of acid)(p of water)=(1.8)(1000 kg/m®) = 1.8 x 10° kg/m*

The density of ice is 917 kg/m’. What fraction of the volume of a piece of ice will be above water
when floating in fresh water?

The piece of ice will float in the water, since its density is less than 1000 kg/m?>, the density of water. As
it does,

Fp = weight of displaced water = weight of piece of ice

But the weight of the ice is p;.gV’, where V' is the volume of the piece. In addition, the weight of the displaced
water is p,.gV’, where V' is the volume of the displaced water. Substituting in the above equation gives

PicegV = pugV’
Pice 917

ylr=tiey o 2Ly 09171
P 1000

The fraction of the volume that is above water is then
V—v' vV-0917V

=1-0917=0.
% % 0.917 = 0.083

A 60-kg rectangular box, open at the top, has base dimensions 1.0 m by 0.80 m and depth 0.50 m.
(a) How deep will it sink in fresh water? (b) What weight Fyy, of ballast will cause it to sink to a
depth of 30 cm?

(@) Assuming that the box floats, we have
Fp = weight of displaced water = weight of box
(1000 kg/m*)(9.81 m/s?)(1.0 m x 0.80 m x y) = (60 kg)(9.81 m/s*)

where y is the depth the box sinks. Solving gives y = 0.075 m. Because this is smaller than 0.50 m, our
assumption is shown to be correct.

(b) Fp = weight of box + weight of ballast
But the Fj is equal to the weight of the displaced water. Therefore, the above equation becomes
(1000 kg/m*)(9.81 m/s*)(1.0 m x 0.80 m x 0.30 m) = (60)(9.81) N + Fy,
from which Fy;, = 1760 N = 1.8 kN. So the ballast must have a mass of (1760/9.81) kg = 180 kg.
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A foam plastic (p, = 0.58 g/cm®) is to be used as a life preserver. What volume of plastic must be
used if it is to keep 20 percent (by volume) of an 80-kg man above water in a lake? The average
density of the man is 1.04 g/cm®.

At equilibrium we have
Fp on man + Fp on plastic = weight of man + weight of plastic
(Pw)(0.80V,,)g + P Vg8 = P Ving + Py V8
or (Pw = Pp)Vyp = (pm — 0.80p,,) V'

where subscripts m, w, and p refer to man, water, and plastic, respectively.
But p,,V,, = 80 kg and so ¥,, = (80/1040) m’. Substitution gives

[(1000 — 580) kg/m’]V, = [(1040 — 800) kg/m*][(80/1040) m’]
from which ¥, = 0.044 m’.

A partly filled beaker of water sits on a scale, and its weight is 2.30 N. When a piece of metal
suspended from a thread is totally immersed in the beaker (but not touching bottom), the scale
reads 2.75 N. What is the volume of the metal?

The water exerts an upward buoyant force on the metal. According to the law of action and reaction,
the metal exerts an equal downward force on the water. It is this force that increases the scale reading from
2.30 N to 2.75 N. Hence the buoyant force is 2.75 — 2.30 = 0.45 N. Then, because

Fjz = weight of displaced water = p, gV = (1000 kg/m*)(9.81 m/s*)(V)
we have the volume of the displaced water, and of the piece of metal, as

045N

-6 3 3

A piece of pure gold (p =19.3 g/em?) is suspected to have a hollow center. It has a mass of
38.25 g when measured in air and 36.22 g in water. What is the volume of the central hole in the
gold?

From p=m/V,

0.03825 kg
19300 kg/m?
(38.25 —36.22) x 1073 kg

1000 kg/m?
Volume of hole = (2.030 — 1.982) cm® = 0.048 cm®

Volume of 38.25 g of pure gold = =1.982 x 10~ m?

Volume of displaced water = =2.030 x 107 m?

A wooden cylinder has mass m and base area A. It floats in water with its axis vertical. Show that
the cylinder undergoes SHM if given a small vertical displacement. Find the frequency of its
motion.

When the cylinder is pushed down a distance y, it displaces an additional volume 4y of water. Because
this additional displaced volume has mass Ayp,,, an additional buoyant force Ayp,g acts on the cylinder,
where p,, is the density of water. This is an unbalanced force on the cylinder and is a restoring force. In
addition, the force is proportional to the displacement and so is a Hooke’s Law force. Therefore the cylinder
will undergo SHM, as described in Chapter 11.

Comparing Fz = Ap,.gy with Hooke’s Law in the form F = ky, we see that the spring constant for the
motion is k = Ap,.g. This, acting on the cylinder of mass m, causes it to have a vibrational frequency of

f_l\/?_l [4p.g
T 2rVm T 27\ om
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What must be the volume V' of a 5.0-kg balloon filled with helium (py, = 0.178 kg/m3) if it is to
lift a 30-kg load? Use py;, = 1.29 kg/m°.
The buoyant force, Vp,;,g, must lift the weight of the balloon, its load, and the helium within it:
Vpairg = (35 kg)(g) + Vpueg

k k
which gives V= ke ke

= = =32m’
Pair — PHe 1.11 kg/rn2 "

Find the density p of a fluid at a depth % in terms of its density p, at the surface.

If a mass m of fluid has volume ¥V, at the surface, then it will have volume ¥, — AV at a depth /. The
density at depth / is then
m m

while  py=—

Py, " AV Ve

1% _ VO o 1

po Vo= AV 1 (AV/V,)

However, from Chapter 12, the bulk modulus is B= P/(AV/V,) and so AV /V, = P/B. Making this
substitution, we obtain

which gives

p 1
pp 1—P/B
If we assume that p is close to py, then the pressure at depth £ is approximately pogh, and so
p 1

oo 1— (pogh/B)

Supplementary Problems

A 60-kg performer balances on a cane. The end of the cane in contact with the floor has an area of 0.92 cm?.
Find the pressure exerted on the floor by the cane. (Neglect the weight of the cane.) Ans. 6.4 MPa

A certain town receives its water directly from a water tower. If the top of the water in the tower is 26.0 m
above the water faucet in a house, what should be the water pressure at the faucet? (Neglect the effects of
other water users.) Ans. 255 kPa

At a height of 10 km (33000 ft) above sea level, atmospheric pressure is about 210 mm of mercury. What is
the resultant normal force on a 600 cm? window of an airplane flying at this height? Assume the pressure
inside the plane is 760 mm of mercury. The density of mercury is 13 600 kg/m3. Ans. 4.4 kN

A narrow tube is sealed onto a tank as shown in Fig. 13-7. The base of the tank has an area of 80 cm?.
(a) Find the force on the bottom of the tank due to oil when the tank and capillary are filled with oil
(p=0.72 g/cm3) to the height 4. (b) Repeat for 4,. Ans.  (a) 11 N downward; (b) 20 N downward

Repeat Problem 13.29, but now find the force on the top wall of the tank due to the oil. Ans. (a) 1.1 N
upward; (b) 9.6 N upward

Compute the pressure required for a water supply system that will raise water 50.0 m vertically.
Ans. 490 kPa
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— ) N hy=35cm

18 cm hy=20cm

Fig. 13-7

The area of a piston of a force pump is 8.0 cm’. What force must be applied to the piston to raise oil
(p=0.78 g/cmz) to a height of 6.0 m? Assume the upper end of the oil is open to the atmosphere.
Ans. 3TN

The diameter of the large piston of a hydraulic press is 20 cm, and the area of the small piston is 0.50 cm?. If
a force of 400 N is applied to the small piston, (a) what is the resulting force exerted on the large piston?
(b)) What is the increase in pressure underneath the small piston? (¢) Underneath the large
piston? Ans. (a) 2.5 x 10° N; (b) 8.0 MPa; (¢) 8.0 MPa

A metal cube, 2.00 cm on each side, has a density of 6600 kg/m>. Find its apparent mass when it is totally
submerged in water. Ans. 448 g

A solid wooden cube, 30.0 cm on each edge, can be totally submerged in water if it is pushed downward with
a force of 54.0 N. What is the density of the wood? Ans. 800 kg/m’

A metal object “weighs” 26.0 g in air and 21.48 g when totally immersed in water. What is the volume of the
object? Its mass density? Ans. 4.55 cm®, 5.72 x 10° kg/m?

A solid piece of aluminum (p = 2.70 g/cm?) has a mass of 8.35 g when measured in air. If it is hung from a
thread and submerged in a vat of oil (p=0.75 g/cm3), what will be the tension in the thread?
Ans. 0.059 N

A beaker contains oil of density 0.80 g/cm3. By means of a thread, a 1.6-cm cube of aluminum
(p=2.70 g/em?) is submerged in the oil. Find the tension in the thread. Ans. 0.076 N

A tank containing oil of sp gr = 0.80 rests on a scale and weighs 78.6 N. By means of a wire, a 6.0 cm cube
of aluminum, sp gr = 2.70, is submerged in the oil. Find (a) the tension in the wire and (b) the scale reading if
none of the oil overflows. Ans. (a) 4.0 N; (b) 80 N

Downward forces of 45.0 N and 15.0 N, respectively, are required to keep a plastic block totally immersed in
water and in oil. If the volume of the block is 8000 cm?, find the density of the oil. Ans. 620 kg/m®

Determine the unbalanced force acting on an iron ball (r = 1.5 cm, p = 7.8 g/cm®) when just released while
totally immersed in (a) water and (b) mercury (p = 13.6 g/cm3). What will be the initial acceleration of the
ball in each case? Ans. (a) 0.94 N down, 8.6 m/s2 down; (b) 0.80 N up, 7.3 m/s2 up



156

13.42

13.43

13.44

13.45

13.46

13.47

13.48

13.49

13.50

13.51

FLUIDS AT REST [CHAP. 13

A 2.0 cm cube of metal is suspended by a thread attached to a scale. The cube appears to have a mass of
47.3 g when measured submerged in water. What will its mass appear to be when submerged in glycerin,
sp gr = 1.26? (Hint: Find p too.) Ans. 45 ¢g

A balloon and its gondola have a total (empty) mass of 2.0 x 10? kg. When filled, the balloon contains
900 m® of helium at a density of 0.183 kg/m>. Find the added load, in addition to its own weight, that the
balloon can lift. The density of air is 1.29 kg/m®. Ans. 7.8 kN

A certain piece of metal has a measured mass of 5.00 g in air, 3.00 g in water, and 3.24 g in benzene.
Determine the mass density of the metal and of the benzene. Ans.  2.50 x 10° kg/m®, 880 kg/m*

A spring, which may be either bronze (sp gr 8.8) or brass (sp gr 8.4), has a mass of 1.26 g when measured in
air and 1.11 g in water. Which is it? Ans. brass

What fraction of the volume of a piece of quartz (p = 2.65 g/cm®) will be submerged when it is floating in a
container of mercury (p = 13.6 g/em’)? Ans.  0.195

A cube of wood floating in water supports a 200-g mass resting on the center of its top face. When the mass is
removed, the cube rises 2.00 cm. Determine the volume of the cube. Ans. 1.00 x 10° cm®

A cork has a measured mass of 5.0 g in air. A sinker has a measured mass of 86 g in water. The cork is
attached to the sinker and both together have a measured mass of 71 g when under water. What is the
density of the cork? Ans. 2.5 x 107 kg/m’

A glass of water has a 10-cm’ ice cube floating in it. The glass is filled to the brim with cold water. By the
time the ice cube has completely melted, how much water will have flowed out of the glass? The sp gr of ice is
0.92. Ans. none

A glass tube is bent into the form of a U. A 50.0 cm height of olive oil in one arm is found to balance 46.0 cm
of water in the other. What is the density of the olive 0il? Ans. 920 kg/m®

On a day when the pressure of the atmosphere is 1.000 x 10° Pa, a chemist distills a liquid under slightly
reduced pressure. The pressure within the distillation chamber is read by an oil-filled manometer (density of
oil = 0.78 g/cm®). The difference in heights on the two sides of the manometer is 27 cm. What is the pressure
in the distillation chamber? Ans. 98 kPa



Chapter 14

Fluids in Motion

FLUID FLOW OR DISCHARGE (J): When a fluid that fills a pipe flows through the pipe
with an average speed v, the flow or discharge J is

J=Av
where A is the cross-sectional area of the pipe. The units of J are m®/s in the SI and ft*/s in U.S.

customary units.
Sometimes J is called the rate of flow or the discharge rate.

EQUATION OF CONTINUITY: Suppose an incompressible (constant-density) fluid fills a pipe
and flows through it. Suppose further that the cross-sectional area of the pipe is 4; at one point
and A, at another. Since the flow through A4; must equal the flow through A4,, one has

J = Av; = A,v, = constant

where v; and v, are the average fluid speeds over 4, and 4,, respectively.

THE SHEAR RATE of a fluid is the rate at which the shear strain within the fluid is changing.

Because strain has no units, the SI unit for shear rate is s~'.

THE VISCOSITY (1) of a fluid is a measure of how large a shear stress is required to produce
unit shear rate. Its unit is that of stress per unit shear rate, or Pa-s in the SI. Another SI unit
is the N-s/m? (or kg/m-s), called the poiseuille (Pl): 1Pl =1kg/m-s =1 Pa-s. Other units used
are the poise (P), where 1 P =0.1, and the centipoise (cP), where 1 cP = 1073 Pl. A viscous fluid,
such as tar, has large 7.

POISEUILLE’S LAW: The fluid flow through a cylindrical pipe of length L and cross-sectional
radius R is given by

:WR4(P1'_P0)

J
&nL

where P; — P, is the pressure difference between the two ends of the pipe (input minus output).

THE WORK DONE BY A PISTON in forcing a volume ¥V of fluid into a cylinder against an
opposing pressure P is given by PV

THE WORK DONE BY A PRESSURE P acting on a surface of area 4 as the surface moves
through a distance Ax normal to the surface (thereby displacing a volume 4 Ax = AV) is

Work = PAAx = PAV

157
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BERNOULLI’'S EQUATION for the steady flow of a continuous stream of fluid: Consider two
different points along the stream path. Let point 1 be at a height 4, and let v, p;, and P; be
the fluid-speed, density, and pressure at that point. Similarly define /4, vy, p2, and P, for point 2.
Then, provided the fluid is incompressible and has negligible viscosity,

Py +1pvi + hipg = Py +1pv3 + hopg

where p; = p, = p and g is the acceleration due to gravity.

TORRICELLI’S THEOREM: Suppose that a tank contains liquid and is open to the atmo-
sphere at its top. If an orifice (opening) exists in the tank at a distance & below the top of the
liquid, then the speed of outflow from the orifice is \/2gh, provided the liquid obeys Bernoulli’s
equation and the top of the liquid may be regarded as motionless.

THE REYNOLDS NUMBER (Ng) is a dimensionless number that applies to a fluid of viscosity
n and density p flowing with speed v through a pipe (or past an obstacle) with diameter D:

__pvD
Ui

For systems of the same geometry, flows will usually be similar provided their Reynolds numbers are
close. Turbulent flow occurs if Ny for the flow exceeds about 2000 for pipes or about 10 for obstacles.

Ng

Solved Problems

14.1 Oil flows through a pipe 8.0 cm in diameter, at an average speed of 4.0 m/s. What is the flow J in
m?®/s and m’/h?

J = Av = 71(0.040 m)*(4.0 m/s) = 0.020 m* /s
= (0.020 m?/s)(3600 s/h) = 72 m*/h

14.2 Exactly 250 mL of fluid flows out of a tube whose inner diameter is 7.0 mm in a time of 41 s.
What is the average speed of the fluid in the tube?

From J = Av, since | mL = 107° m3,

(250 x 107% m?) /(41 s)
7(0.003 5 m)*

Uzﬁz —0.16 m/s

143 A 14 cm inner diameter (i.d.) water main furnishes water (through intermediate pipes) to a
1.00 cm i.d. faucet pipe. If the average speed in the faucet pipe is 3.0 cm/s, what will be the
average speed it causes in the water main?

The two flows are equal. From the continuity equation, we have
J = Alvl = A2’U2
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Letting 1 be the faucet and 2 be the water main, we have

A 7 1\’
vy =0 A—; = T—r; = (3.0 cm/s) (ﬁ) =0.015 cm/s
2

How much water will flow in 30.0 s through 200 mm of capillary tube of 1.50 mm i.d., if the
pressure differential across the tube is 5.00 cm of mercury? The viscosity of water is 0.801 cP and
p for mercury is 13 600 kg/m>.

We shall make use of Poiseuille’s Law with
P, — P, = pgh = (13600 kg/m*)(9.81 m/s*)(0.0500 m) = 6660 N/m>

Kk )
and 1= (0.801 c1>)<10*3 %) =8.01 x 10 kg/m-s

Thus, we have
4 —4 _\4 2
P, — P 7.5x%x1 6660 N
g =T Pz Py)  m(7.5x 0 m) (6660 N/m7) 55 10-6 m?/s = 5.2 mL/s
8nL 8(8.01 x 10~ kg/m-s)(0.200 m)

In 30.0 s, the quantity that would flow out of the tube is (5.2 mL/s)(30 s) = 1.6 x 10> mL.

An artery in a certain person has been reduced to half its original inside diameter by deposits on
the inner artery wall. By what factor will the blood flow through the artery be reduced if the
pressure differential across the artery has remained unchanged?

From Poiseuille’s Law, J o #*. Therefore,
Joriginal Toriginal 2

Under the same pressure differential, compare the flow of water through a pipe to the flow of
SAE No. 10 oil.  for water is 0.801 cP; n for the oil is 200 cP.

From Poiseuille’s Law, J o 1/7. Therefore,

Juaer 200 cP
_ Y 5
J()il 0.801 cP 30

so the flow of water is 250 times as large as that of the oil under the same pressure differential.

Calculate the power output of the heart if, in each heartbeat, it pumps 75 mL of blood at an
average pressure of 100 mmHg. Assume 65 heartbeats per minute.

The work done by the heart is P AV. In one minute, AV = (65)(75 x 10~ m?). Also

1.01 x 10° Pa

=133x10*P
760 mmHg SR

P = (100 mmHg)

work _ (133 x 10* Pa)[(65)(75 x 10~° m?)]

=1.1W
time 60 s

SO Power =

What volume of water will escape per minute from an open-top tank through an opening 3.0 cm
in diameter that is 5.0 m below the water level in the tank? (See Fig. 14-1.)

We can use Bernoulli’s equation, with 1 representing the top level and 2 the orifice. Then P; = P, and
hy =50m, h, =0.
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1
o 5.0m
- .
S : 4
Fig. 14-1

Py +3pvi +hipg = Py+1pv3 + hypg
Lpvi + hipg = pv3 + hapg

If the tank is large, v; can be approximated as zero. Then, solving for v,, we obtain Torricelli’s equation:

vy = /2g(h — ) = 1/2(9.81 m/s)(5.0 m) = 9.9 m/s

and the flow is given by
J =04, = (9.9 m/s)m(1.5 x 107> m)* = 7.0 x 107> m>/s = 0.42 m* /min

A water tank springs a leak at position 2 in Fig. 14-2, where the water pressure is 500 kPa. What
is the velocity of escape of the water through the hole?

R DI PAI

Fig. 14-2

We use Bernoulli’s equation with P, — P, = 5.00 x 10° N/m?, h; = h,, and the approximation v; = 0.
Then

(Py = Py) + (hy — hy)pg =} pv3

2(P, — P 2(5. 103 N/m?
whence vy = (7 2)= (500 x 10 {m):31.6 m/s
p 1000 kg/m-

Water flows at the rate of 30 mL/s through an opening at the bottom of a tank in which the water
is 4.0 m deep. Calculate the rate of escape of the water if an added pressure of 50 kPa is applied to
the top of the water.
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14.11

From Bernoulli’s equation in the case where v; is essentially zero,

(Py = Py) + (hy — hy)pg = %PU%
We can write this twice, before the pressure is added and after.
(P1 = P2)iegore + (h1 = h2)pg = (03 pegore
(Pr = P2)pegore + 5 % 10° N/m* + (hy = hy)pg = 3 p(03) yier
If the opening and the top of the tank are originally at atmospheric pressure, then
(P1 = P2)before = 0

and division of the second equation by the first gives

(v%)after _5x 104 N/m2 + (hy — hy)pg
(V3)before (Il — hy)pg

But (hy — hy)pg = (4.0 m)(1000 kg/m?*)(9.81 m/s*) = 3.9 x 10* N/m?

4 2
Therefore, (92)afier _ [89x10 N/m — 151
(UZ)before 3.9 x 104 N/m2

Since J = Aw, this can be written as

J,
ZAler 151 or  Juper = (30 mL/s)(1.51) = 45 mL/s
Jbefore

161

How much work W is done by a pump in raising 5.00 m® of water 20.0 m and forcing it into a

main at a gauge pressure of 150 kPa?

W = (work to raise water) + (work to push it in) = mgh+ P AV

W = (5.00 m*)(1000 kg/m?*)(9.81 m/s*)(20.0 m) + (1.50 x 10° N/m?)(5.00 m*) = 1.73 x 10° J

14.12 A horizontal pipe has a constriction in it, as shown in Fig. 14-3. At point 1 the diameter is 6.0 cm,
while at point 2 it is only 2.0 cm. At point 1, v; = 2.0 m/s and P, = 180 kPa. Calculate v, and P,.

We have two unknowns and will need two equations. Using Bernoulli’s equation with /; = h,, we have

2 2 > 2
Py +3pvi = Py +3p0) or  Pi+ip(vy —vy) =Py

Fig. 14-3

Furthermore, v; = 2.0 m/s, and the equation of continuity tells us that

2
vy = v, % — (2.0 m/s) (%) — (2.0 m/s)(9.0) = 18 m /s
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Substituting then gives
1.80 x 10° N/m* +1 (1000 kg/m*)[(2.0 m/s)* — (18 m/s)’] = P,
from which P, = 0.20 x 10° N/m? = 20 kPa.

What must be the gauge pressure in a large fire hose if the nozzle is to shoot water straight
upward to a height of 30.0 m?

To rise to a height A, a projectile must have an initial speed /2gh. (We obtain this by equating %mv% to
mgh.) We can find this speed in terms of the difference between the pressures inside and outside the hose (the
gauge pressure) by writing Bernoulli’s equation for points just inside and outside the nozzle:

Piy + 390t + hinpg = Powt + 3 V2w + houpg
Here h,, ~ h;, and because the hose is large v;, ~ 0, therefore
Py — Poy = %Pvgut
Substitution of v/2gh for v, gives
Py, — Py = pgh = (1000 kg/m*)(9.81 m/s)(30.0 m) = 294 kPa

How could you obtain this latter equation directly from Torricelli’s Theorem?

At what rate does water flow from a 0.80 cm i.d. faucet if the water pressure is 200 kPa?
We use Bernoulli’s equation for points just inside and outside the faucet:
Pin + 3000 + hinpg = Pou + 3 prau + howpg
Taking /oy = hy, and Py, — Py, = 200 kPa, we have

2
Vi — i = (200 x 10° Pa)=
P

Assuming vizn < vfmt, we solve to obtain v,, = 20 m/s. The flow rate is then

J =04 = (20 m/s)(xr*) = (20 m/s)(7)(0.16 x 107* m*) = 1.0 x 107° m*/s

The pipe shown in Fig. 14-4 has a diameter of 16 cm at section 1 and 10 cm at section 2. At
section 1 the pressure is 200 kPa. Point 2 is 6.0 m higher than point 1. When oil of density 800
kg/m® flows at a rate of 0.030 m’/s, find the pressure at point 2 if viscous effects are negligible.

From J = v;4; = v,4, we have

3
(1 :i:—OOSO m /S 3= 1.49 m/S
Ay 7(8.0 x 1072 m)
J 0.030 m’
= = 000 e s

T4 7(50x 102 m)
We can now use Bernoulli’s equation:

P +%PU% +pg(hy —hy) = P, +%pv%
Setting P; = 2.00 x 10° N/m? i, — h; = 6 m and p = 800 kg/m* gives

P, =2.00 x 10° N/m’ +1(800 kg/m?)[(1.49 m/s)* — (3.82 m/s)’] — (800 kg/m*)(9.81 m/s*)(6.0 m)
= 1.48 x 10° N/m? = 1.5 x 10° kPa.
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6.0 m

Fig. 14-4 Fig. 14-5

14.16 A venturi meter equipped with a differential mercury manometer is shown in Fig. 14-5. At the
inlet, point 1, the diameter is 12 cm, while at the throat, point 2, the diameter is 6.0 cm. What is
the flow J of water through the meter if the mercury manometer reading is 22 cm? The density of
mercury is 13.6 g/em®.

From the manometer reading we obtain
P, — P, = pgh = (13600 kg/m?)(9.81 m/s?)(0.22 m) = 2.93 x 10* N/m?

Since J = v1 4| = v24,, we have v; = J/A, and v, = J/A4,. Using Bernoulli’s equation with #; — /1, =0
gives

(P1 = Py) +1p(vf —v3) =0
11
2.93 x 10* N/m? + 1(1000 kg/m”) (E - P)JZ -0
1 2
where
Ay =7} = 7(0.060)> m* =0.01131 m*>  and A, = 73 = 7(0.030)> m*> = 0.0028 m?
Substitution then gives J = 0.022 m’/s.

14.17 A wind tunnel is to be used with a 20 cm high model car to approximately reproduce the situation
in which a 550 ¢cm high car is moving at 15 m/s. What should be the wind speed in the tunnel? Is
the flow likely to be turbulent?

We want the Reynolds number Ny to be the same in both cases, so that the situations will be similar.

That is, we want
Np— (va) _ (va)
n tunnel n air

Both p and 7 are the same in the two cases, so we have

. D,
v,D, =v,D, from which v, = UHF" = (15 m/s)(550/20) = 0.41 km/s
!
To investigate turbulence, we evaluate Ny using p = 1.29 kg/m> and 5 = 1.8 x 10> Pa-s for air. We find
that Nz = 5.9 x 10%, a value far in excess of that required for turbulent flow. The flow will obviously be
turbulent.
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Supplementary Problems

Oil flows through a 4.0 cm id. pipe at an average speed of 2.5 m/s. Find the flow in m’/s and
em’/s.  Ans. 3.1x107° m’/s =3.1 x 10° cm? /s

Compute the average speed of water in a pipe having an i.d. of 5.0 cm and delivering 2.5 m’® of water per
hour. Ans.  0.35 m/s

The speed of glycerin flowing in a 5.0 cm i.d. pipe is 0.54 m/s. Find the fluid’s speed in a 3.0 cm i.d. pipe that
connects with it, both pipes flowing full. Ans. 1.5 m/s

How long will it take for 500 mL of water to flow through a 15 cm long, 3.0 mm i.d. pipe, if the pressure
differential across the pipe is 4.0 kPa? The viscosity of water is 0.80 cP. Ans. 7.5

A molten plastic flows out of a tube that is 8.0 cm long at a rate of 13 cm®/min when the pressure differential
between the two ends of the tube is 18 cm of mercury. Find the viscosity of the plastic. The i.d. of the tube is
1.30 mm. The density of mercury is 13.6 g/em®. Ans. 0.097 kg/m-s =97 cP

In a horizontal pipe system, a pipe (i.d. 4.0 mm) that is 20 cm long connects in line to a pipe (i.d. 5.0 mm)
that is 30 cm long. When a viscous fluid is being pushed through the pipes at a steady rate, what is the ratio
of the pressure difference across the 20-cm pipe to that across the 30-cm pipe? Ans. 1.6

A hypodermic needle of length 3.0 cm and i.d. 0.45 mm is used to draw blood (7 = 4.0 mPl). Assuming the
pressure differential across the needle is 80 cmHg, how long does it take to draw 15 mL? Ans. 17s

In a blood transfusion, blood flows from a bottle at atmospheric pressure into a patient’s vein in which the
pressure is 20 mmHg higher than atmospheric. The bottle is 95 cm higher than the vein, and the needle into
the vein has a length of 3.0 cm and an i.d. of 0.45 mm. How much blood flows into the vein each minute?
For blood, = 0.0040 Pa-s and p = 1005 kg/m>.  Ans. 3.4 cm’

How much work does the piston in a hydraulic system do during one 2.0-cm stroke if the end area of the
piston is 0.75 cm? and the pressure in the hydraulic fluid is 50 kPa? Ans. 75 m]

A large open tank of nonviscous liquid springs a leak 4.5 m below the top of the liquid. What is the
theoretical velocity of outflow from the hole? If the area of the hole is 0.25 cm?, how much liquid would
escape in exactly 1 minute? Ans. 9.4 m/s, 0.014 1 m’

Find the flow in liters/s of a nonviscous liquid through an opening 0.50 cm? in area and 2.5 m below the level
of the liquid in an open tank. Ans. 0.35 liter/s

Calculate the theoretical velocity of efflux of water from an aperture that is 8.0 m below the surface of water
in a large tank, if an added pressure of 140 kPa is applied to the surface of the water. Ans. 21 m/s

What horsepower is required to force 8.0 m® of water per minute into a water main at a pressure of
220 kPa? Ans. 39 hp

A pump lifts water at the rate of 9.0 liters/s from a lake through a 5.0 cm i.d. pipe and discharges it into the
air at a point 16 m above the level of the water in the lake. What are the theoretical (a) velocity of the water
at the point of discharge and (b) power delivered by the pump. Ans. (a) 4.6 m/s; (b) 2.0 hp

Water flows steadily through a horizontal pipe of varying cross-section. At one place the pressure is 130 kPa
and the speed is 0.60 m/s. Determine the pressure at another place in the same pipe where the speed is 9.0
m/s. Ans. 90 kPa.
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A pipe of varying inner diameter carries water. At point 1 the diameter is 20 cm and the pressure is 130 kPa.
At point 2, which is 4.0 m higher than point 1, the diameter is 30 cm. If the flow is 0.080 m®/s, what is the
pressure at the second point? Ans. 93 kPa

Fuel oil of density 820 kg/m® flows through a venturi meter having a throat diameter of 4.0 cm and an
entrance diameter of 8.0 cm. The pressure drop between entrance and throat is 16 cm of mercury. Find the
flow. The density of mercury is 13 600 kg/m3. Ans. 93 x 1073 m3/s

Find the maximum amount of water that can flow through a 3.0 cm i.d. pipe per minute without turbulence.
Take the maximum Reynolds number for nonturbulent flow to be 2000. For water at 20°C,
n=10x10"Pa-s. Ans. 0.0028 m?

How fast can a raindrop (r = 1.5 mm) fall through air if the flow around it is to be close to turbulent, i.e., for
N close to 10? For air, n= 1.8 x 107> Pa-s and p = 1.29 kg/m3. Ans. 4.6 cm/s



Chapter 15

Thermal Expansion

TEMPERATURE may be measured on the Celsius scale, on which the freezing point of water is
at 0°C, and the boiling point (under standard conditions) is at 100 °C. The Kelvin (or absolute)
scale is displaced 273.15 Celsius-size degrees from the Celsius scale, so that the freezing point of
water is 273.15 K and the boiling point is 373.15 K. Absolute zero, a temperature discussed
further in Chapter 16, is at 0 K (—273.15°C). The still-used Fahrenheit scale is related to the Cel-
sius scale by

Fahrenheit temperature = % (Celsius temperature) + 32

LINEAR EXPANSION OF SOLIDS: When a solid is subjected to a rise in temperature AT, its
increase in length AL is very nearly proportional to its initial length L, multiplied by AT. That
18,

AL = aLy AT

where the proportionality constant « is called the coefficient of linear expansion. The value of « depends
on the nature of the substance. For our purposes we can take « to be constant independent of 7,
although that’s rarely, if ever, exactly true.

From the above equation, « is the change in length per unit initial length per degree change in
temperature. For example, if a 1.000000 cm length of brass becomes 1.000019 cm long when the
temperature is raised 1.0 °C, the linear expansion coefficient for brass is

AL 0.000019 cm

= = =1.9x107°°C™
LoAT ~ (1.0 em)(1.0°C) x107°C

«

AREA EXPANSION: If an area Ay expands to Ay + AA when subjected to a temperature rise
AT, then

where 7 is the coefficient of area expansion. For isotropic solids (those that expand in the same way in all
directions), v = 2a approximately.

VOLUME EXPANSION: If a volume V, changes by an amount A}V when subjected to a tem-
perature change of AT, then

AV = BVy AT

where 3 is the coefficient of volume expansion. This can be either an increase or decrease in volume. For
isotropic solids, 8 = 3a approximately.

166

Copyright 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



CHAP. 15] THERMAL EXPANSION 167

15.1

15.2

15.3
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15.6

Solved Problems

A copper bar is 80 cm long at 15 °C. What is the increase in length when it is heated to 35°C? The
linear expansion coefficient for copper is 1.7 x 107> °C "

AL =aLyAT = (1.7 x 107°°C1)(0.80m)[(35 — 15)°C] = 2.7 x 10 * m

A cylinder of diameter 1.000 00 cm at 30 °C is to be slid into a hole in a steel plate. The hole has a
diameter of 0.99970 cm at 30°C. To what temperature must the plate be heated? For steel,
a=11x107°C"

The plate will expand in the same way whether or not there is a hole in it. Hence the hole expands in the
same way a circle of steel filling it would expand. We want the diameter of the hole to change by

AL = (1.00000 — 0.99970) cm = 0.000 30 cm
Using AL = aLy AT, we find
AT:£: 0.0003100m _70C
aly (1.1 x 1073 °C71)(0.999 70 cm)

The temperature of the plate must be 30 + 27 = 57°C

A steel tape is calibrated at 20 °C. On a cold day when the temperature is —15 °C, what will be the
percent error in the tape? oy = 1.1 x 107> °C7 1.

For a temperature change from 20 °C to —15°C, we have AT = —35°C. Then,

AL
T =a AT =(11x 107°°C 1) (=35°C) = —3.9 x 10* = —0.039%
0

A copper rod (a=170x107°C™") is 20cm longer than an aluminum rod
(=220 x 1073 OC_l). How long should the copper rod be if the difference in their lengths is
to be independent of temperature?

For their difference in lengths not to change with temperature, AL must be the same for both rods
under the same temperature change. That is,

(CYLO AT) = (O[LO AT)

copper

or (1.70 x 1072 °C YLy AT = (2.20 x 107°°C ") (Ly — 0.20 m) AT

aluminum

where L, is the length of the copper rod, and AT is the same for both rods. Solving, we find that
LO =0.88 m.

At 20.0°C a steel ball (o = 1.10 x 107> °C™") has a diameter of 0.900 0 cm, while the diameter of
a hole in an aluminum plate (o = 2.20 x 107> oC_l) 15 0.899 0 cm. At what temperature (the same
for both) will the ball just pass through the hole?

At a temperature AT higher than 20.0 °C, we wish the diameters of the hole and of the ball to be equal:

0.9000 cm + (0.9000 cm)(1.10 x 107°°C™") AT = 0.8990 cm + (0.8990 cm)(2.20 x 107°°C") AT

Solving for AT, we find AT = 101 °C. Because the original temperature was 20.0 °C, the final temperature
must be 121 °C.

A steel tape measures the length of a copper rod as 90.00 cm when both are at 10°C, the
calibration temperature for the tape. What would the tape read for the length of the rod when
both are at 30 °C? ageq = 1.1 x 107 °C™"5 agopper = 1.7 x 1072 °C"
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At 30°C, the copper rod will be of length
Ly(1 + o AT)
while adjacent “centimeter’” marks on the steel tape will be separated by a distance of
(1.000 cm)(1 4+ o, AT)
Therefore, the number of “centimeters’ read on the tape will be

Ly(1 4+ a,AT) (90.00 cm)[1 + (1.7 x 107> °C~")(20°C)] 90001+3.4><10’4

(Lem)(1+a,AT)  (1.000 cm)[1 + (1.1 x 1073 °C~1)(20°C)] TTl422x 107

Using the approximation

1+ x
for x small compared to 1, we have
14+34x107* 4 L 4 4
90.00 ————————— =~ 90.00(1 + 3.4 x 107")(1 =22 x 107") = 90.00(1 + 3.4 x 107" —2.2 x 10
1+22%10° (134> 107( x107) (134 x107)

=90.00+0.0108
The tape will read 90.01 cm.

A glass flask is filled “to the mark™ with 50.00 cm® of mercury at 18 °C. If the flask and its
contents are heated to 38 °C, how much mercury will be above the mark? ag,es = 9.0 x 10°6°Cc!
and Bereary = 182 x 107°°C.

We shall take Byjas = 3g1aes @ @ good approximation. The flask interior will expand just as though it
were a solid piece of glass. Thus,
Volume of mercury above mark = (AV for mercury) — (AV for glass)
= BuVo AT = B Vo AT = (B — B)Vo AT
= [(182 = 27) x 107°C~"](50.00 cm?)[(38 — 18) °C]

=0.15 cm®

The density of mercury at exactly 0°C is 13600 kg/m’, and its volume expansion coefficient is
1.82 x 107*°C~!. Calculate the density of mercury at 50.0 °C.

Let

po = density of mercury at 0°C

p1 = density of mercury at 50 °C

Vo = volume of m kg of mercury at 0°C
V| = volume of m kg of mercury at 50°C

By conservation of mass, m = pyVy = p; V1, from which

Vo Vo 1
A YN A TN INT)

P1 = Po

AV

But —
u Ve

=p[AT =(1.82 % 1074 °C1)(50.0°C) = 0.009 10
Substitution into the first equation then gives

p1 = (13600 kg/m?) = 13.5 x 10* kg/m’?

1
140.00910
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Show that the density of a liquid or solid changes in the following way with temperature:
Ap = —pBAT.
Consider a mass m of liquid in a volume V), for which p, = m/V,. After a temperature change AT, the
volume will be
V=Vy+ V,BAT
and the density will be

m m
PSS AT
But m/Vy = py, and so this can be written as
p(1+BAT) = py
Thus we find that
Ap=p—py=—pBAT

In practice, p is close enough to p, so that we can say Ap ~ —pySAT.

Solve Problem 15.8 using the result of Problem 15.9.
We have
Ap = —(13600 kg/m*)(182 x 107¢°C~1)(50.0°C) = —124 kg/m’

50 — 124 kg/m* = 13.5 x 10° kg/m’

Pso°c = Po°c

A steel wire of 2.0 mm? cross-section is held straight (but under no tension) by attaching it firmly
to two points a distance 1.50 m apart at 30 °C. If the temperature now decreases to —10 °C, and if
the two tie points remain fixed, what will be the tension in the wire? For steel,
a=11x107°C"and ¥ =2.0 x 10" N/m*.

If it were free to do so, the wire would contract a distance AL as it cooled, where
AL =aLyAT = (1.1 x 107°°C")(1.5 m)(40°C) = 6.6 x 10 * m

But the ends are fixed. As a result, forces at the ends must, in effect, stretch the wire this same length AL.
Therefore, from Y = (F/A)(AL/Ly), we have

_ YAAL (2.0 x 10" N/m?)(2.0 x 107 m?)(6.6 x 10™* m)

Tension = F = Iy 150 m =176 N =0.18 kN

Strictly, we should have substituted (1.5 — 6.6 x 10~*) m for L in the expression for the tension. How-
ever, the error incurred in not doing so is negligible.

When a building is constructed at —10°C, a steel beam (cross-sectional area 45 cm?) is put in
place with its ends cemented in pillars. If the sealed ends cannot move, what will be the compres-
sional force in the beam when the temperature is 25°C? For this kind of steel,
a=11x107°C""and ¥ =2.0 x 10" N/m?.

We proceed much as in Problem 15.11:

AL
T =aAT =(11x 107°°C7")(35°C) =3.85 x 10°*
0

50 F= YA% = (2.0 x 10" N/m?)(45 x 107* m?)(3.85 x 107*) = 3.5 x 10° N
0
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Supplementary Problems

Compute the increase in length of 50 m of copper wire when its temperature changes from 12 °C to 32 °C.
For copper, o = 1.7 x 1073 °C™1. Ans. 1.7 cm

A rod 3.0 m long is found to have expanded 0.091 cm in length after a temperature rise of 60 °C. What is «
for the material of the rod? Ans. 5.1 x 107%°C™!

At 15.0°C, a bare wheel has a diameter of 30.000 cm, and the inside diameter of a steel rim is 29.930 cm. To
what temperature must the rim be heated so as to slip over the wheel? For this type of steel,
a=1.10x107°C".  Ans. 227°C

An iron ball has a diameter of 6 cm and is 0.010 mm too large to pass through a hole in a brass plate when
the ball and plate are at a temperature of 30 °C. At what temperature (the same for ball and plate) will the
ball just pass through the hole? a=12x10"°°C™" and 1.9 x107°°C™! for iron and brass,
respectively. Ans. 54°C

(@) An aluminum measuring rod, which is correct at 5.0 °C, measures a certain distance as 88.42 cm at
35.0 °C. Determine the error in measuring the distance due to the expansion of the rod. () If this aluminum
rod measures a length of steel as 88.42 cm at 35.0 °C, what is the correct length of the steel at 35°C? The
coefficient of linear expansion of aluminum is 22 x 1076 °C~!. Ans.  (a) 0.058 cm; (b) 88 cm

A solid sphere of mass m and radius b is spinning freely on its axis with angular velocity w,. When heated by
an amount AT, its angular velocity changes to w. Find wy/w if the linear expansion coefficient for the
material of the sphere is a. Ans. 1420 AT + (« AT)?

Calculate the increase in volume of 100 cm® of mercury when its temperature changes from 10°C to 35°C.
The volume coefficient of expansion of mercury is 0.000 18 °C~L. Ans.  0.45 cm®

The coefficient of linear expansion of glass is 9.0 x 107 °C~'. If a specific gravity bottle holds 50.000 mL at
15°C, find its capacity at 25°C. Ans.  50.014 mL

Determine the change in volume of a block of cast iron 5.0cm x 10 cm x 6.0 cm, when the temperature
changes from 15°C to 47°C. The coefficient of linear expansion of cast iron is
0.000010°C™".  Ans. 0.29 cm®

A glass vessel is filled with exactly 1 liter of turpentine at 20 °C. What volume of the liquid will overflow if the
temperature is raised to 86°C? The coefficient of linear expansion of the glass is 9.0 x 1076°C~!; the
coefficient of volume expansion of turpentine is 97 x 107> °C~". Ans. 62 mL

The density of gold is 19.30 g/cm3 at 20.0°C, and the coefficient of linear expansion is 14.3 x 107¢°C~!.
Compute the density of gold at 90.0°C. Ans. 19.2 g/cm3



Chapter 16

Ideal Gases

AN IDEAL (OR PERFECT) GAS is one that obeys the Ideal Gas Law, given below. At low to
moderate pressures, and at temperatures not too low, the following common gases can be consid-
ered ideal: air, nitrogen, oxygen, helium, hydrogen, and neon. Almost any chemically stable gas
behaves ideally if it is far removed from conditions under which it will liquefy or solidify. In
other words, a real gas behaves like an ideal gas when its atoms or molecules are so far apart
that they do not appreciably interact with one another.

ONE MOLE OF A SUBSTANCE is the amount of the substance that contains as many particles
as there are atoms in exactly 12 grams (0.012 kg) of the isotope carbon-12. It follows that one
kilomole (kmol) of a substance is the mass (in kg) that is numerically equal to the molecular
(or atomic) mass of the substance. For example, the molecular mass of hydrogen gas, H, is 2
kg/kmol; hence there are 2 kg in | kmol of H;. Similarly, there are 32 kg in 1 kmol of O,, and
28 kg in 1 kmol of N,. We shall always use kilomoles and kilograms in our calculations. Some-
times the term molecular (or atomic) weight is used, rather than molecular mass, but the latter is
correct.

IDEAL GAS LAW: The absolute pressure P of n kilomoles of gas contained in a volume V is
related to the absolute temperature 7 by

PV =nRT

where R = 8314 J/kmol - K is called the universal gas constant. If the volume contains m kilograms of gas
that has a molecular (or atomic) mass M, then n = m/M.

SPECIAL CASES of the Ideal Gas Law, obtained by holding all but two of its parameters con-
stant, are

Boyle's Law (n, T constant) : PV = constant

Charles’ Law (n, P constant) : = constant

Gay-Lussac’s Law (n, V constant) : = constant

Nl N

ABSOLUTE ZERO: With n and P constant (Charles’ Law), the volume decreases linearly with
T and (if the gas remained ideal) would reach zero at 7"= 0K. Similarly, with » and V' constant
(Gay-Lussac’s Law), the pressure would decrease to zero with the temperature. This unique tem-
perature, at which P and V' would reach zero, is called absolute zero.

STANDARD CONDITIONS OR STANDARD TEMPERATURE AND PRESSURE (S.T.P.) are
defined to be

T=27315K=0°C P=1013x10° Pa=1 atm
171
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Under standard conditions, 1 kmol of ideal gas occupies a volume of 22.4 m®. Therefore, at S.T.P., 2 kg
of H, occupies the same volume as 32 kg of O, or 28 kg of N,, namely 22.4 m®.

DALTON’S LAW OF PARTIAL PRESSURES: Define the partial pressure of one component of
a gas mixture to be the pressure the component gas would exert if it alone occupied the entire
volume. Then, the total pressure of a mixture of ideal, nonreactive gases is the sum of the partial
pressures of the component gases.

GAS-LAW PROBLEMS involving a change of conditions from (P, V,,T)) to (P2, V2, Ta) are
usually easily solved by writing the gas law as
PV PV,

T, T

(at constant n)

Solved Problems

16.1 A mass of oxygen occupies 0.0200 m> at atmospheric pressure, 101 kPa, and 5.0 °C. Determine its
volume if its pressure is increased to 108 kPa while its temperature is changed to 30 °C.

From

SIS £14) P\ (T,
0% he vo=1(21) (22
Tl Tz W€ nhave 2 1 P2 Tl

But 7} =5+273 =278 K and 7, = 30 + 273 = 303 K, so

101 /303
Vy = (0.0200 m*) (%) (2%) =0.0204 m*

16.2 On a day when atmospheric pressure is 76 cmHg, the pressure gauge on a tank reads the pressure
inside to be 400 cmHg. The gas in the tank has a temperature of 9 °C. If the tank is heated to
31°C by the Sun, and if no gas exits from it, what will the pressure gauge read?

P 1 Vl P 2 V2 TZ Vl
- p,=r(22)(L
R R VP AN

But gauges on tanks usually read the difference in pressure between inside and outside; this is called the
gauge pressure. Therefore,

Py =76 cmHg + 400 cmHg = 476 cmHg
Also, V; = V,. We then have

273 + 31
P, = (476 cmHg) (ﬁ) (1.00) = 513 cmHg

The gauge will read 513 cmHg — 76 cmHg = 437 cmHg.

16.3 The gauge pressure in a car tire is 305 kPa when its temperature is 15 °C. After running at high
speed, the tire has heated up and its pressure is 360 kPa. What is then the temperature of the gas
in the tire? Assume atmospheric pressure to be 101 kPa.
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PV PV g (&) (ﬁ)

T, T, PiJ\V
with P, =305 kPa+ 101 kPa =406 kPa  and P, =360 kPa + 101 kPa = 461 kPa
461
Then Ty = (273 +15)( 35¢ ) (1.00) = 327 K

So the final temperature of the tire is 327 — 273 = 54°C.

16.4 Gas at room temperature and pressure is confined to a cylinder by a piston. The piston is now
pushed in so as to reduce the volume to one-eighth of its original value. After the gas temperature
has returned to room temperature, what is the gauge pressure of the gas in kPa? Local atmo-
spheric pressure is 740 mm of mercury.

PV, P, Vi (Th

= P,o=pr L) (22

T, T, VYAV
But 7| = 7>, P = 740 mmHg, V, = V/;/8. Substitution gives

P, = (740 mmHg)(8)(1) = 5920 mmHg

Gauge pressure is the difference between actual and atmospheric pressure. Therefore,

Gauge pressure = 5920 mmHg — 740 mmHg = 5180 mmHg
Since 760 mmHg = 101 kPa, the gauge reading in kPa is

101 kPa

5180 mmHg) (oo &
(5180 mm g)<760 mmHg

> = 690 kPa

16.5 An ideal gas has a volume of exactly 1 liter at 1.00 atm and —20 °C. To how many atmospheres
pressure must it be subjected to be compressed to 0.500 liter when the temperature is 40 °C?

PR _PVa o p o p (D) (2
T, T EATANE
1.00 L 273 K440 K
from which P, =(1.00 atm) (0 50000 L) (;i g + 28 K> =2.47 atm

16.6 A certain mass of hydrogen gas occupies 370 mL at 16 °C and 150 kPa. Find its volume at —21 °C

and 420 kPa.
PV, PV, _ P\ (T
177272 V, — 1) (22
T 1, Ses 2=" (Pz) (Tl)
150 kPa\ /273 K — 21 K
V2= (370 mL) (420 kPa) (273 K+ 16 K) =15 mtL

16.7 The density of nitrogen is 1.25 kg/m® at S.T.P. Determine the density of nitrogen at 42°C and
730 mm of mercury.

Since p =m/V, we have V| =m/p; and V, = m/p, for a given mass of gas under two sets of condi-
tions. Then
PV P, Py Py

= gives — =
T T, oiTy p T,
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Since S.T.P. are 760 mmHg and 273 K,

P\ (T, 3, (730 mmHg 273 K 3
— o (22) (L) = (125 kg/m = 1.04 kg/m’
P=n (Pl) (Tz) (125 kg/m )(760 mmHg /) \273 K + 42 K 04 ke/m

Notice that pressures in mmHg can be used here because the units cancel in the ratio P,/P;.

16.8 A 3.0-liter tank contains oxygen gas at 20 °C and a gauge pressure of 25 x 10° Pa. What mass of
oxygen is in the tank? The molecular mass of oxgyen gas is 32 kg/kmol. Assume atmospheric
pressure to be 1 x 10° Pa.

The absolute pressure of the gas is
P = (gauge pressure) 4 (atmospheric pressure) = (25 + 1) x 10° N/m* = 26 x 10> N/m?
From the gas law, with M = 32 kg/kmol,

m
PV = (5 RT
5 2 -3 3y _ m J
(26 x 10° N/m“)(3.0 x 107° m’) = (732 kg/kmol) <8314—km01-K) (293 K)

Solving gives m, the mass of gas in the tank, as 0.10 kg.

16.9 Determine the volume occupied by 4.0 g of oxygen (M = 32kg/kmol) at S.T.P.

Method 1
Use the gas law directly:
m
PV = (M)RT
-3
- 1 <ﬂ>RT _ (4.0 x 107 kg)(8314 J/kmol-K)(273 K) 8% 107 m’
P)\M (1.01 x 103 N/m?)(32 kg/kmol)

Method 2
Under S.T.P., 1 kmol occupies 22.4 m®. Therefore, 32 kg occupies 22.4 m’, and so 4 g occupies

40¢ 3 -3 3
224 m’) = 2. 107" m’
(32000 g)( m’) 8 x 107" m

16.10 A 2.0-mg droplet of liquid nitrogen is present in a 30 mL tube as it is sealed off at very low
temperature. What will be the nitrogen pressure in the tube when it is warmed to 20 °C? Express
your answer in atmospheres. (M for nitrogen is 28 kg/kmol.)

We use PV = (m/M)RT to find
p_MRT _(20x 10° kg)(8314 J/kmol-K)(293 K)
oMV (28 kg/kmol)(30 x 10~ m?)
1.0 atm
1.01 x 10° N/m?

= 5800 N/m?

= (5800 N/m?) =0.057 atm
( )

16.11 A tank of volume 590 liters contains oxygen at 20 °C and 5.0 atm pressure. Calculate the mass of
oxygen in the tank. M = 32 kg/kmol for oxygen.

We use PV = (m/M)RT to get

_PVM (5% 1.01 x 10° N/m?)(0.59 m*)(32 kg/kmol)

=39k
RT (8314 J /kmol - K)(293 K) 3.9 ke

m
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16.12

16.13

16.14

16.15

16.16

16.17

At 18°C and 765 mmHg, 1.29 liters of an ideal gas has a mass of 2.71 g. Compute the molecular
mass of the gas.

We use PV = (m/M)RT and the fact that 760 mmHg = 1.00 atm to obtain

Wy MRT _ (000271 kg)(83145J/kmc;1-K)(291 K) 500 ke/kmol
PV~ [(765/760)(1.01 x 10° N/m2)](0.001 29 m?)

Compute the volume of 8.0 g of helium (M = 4.0 kg/kmol) at 15°C and 480 mmHg.

We use PV = (m/M)RT to obtain

mRT  (0.0080 kg)(8314 J/kmol -K)(288 K) ; .
y = MRT _ —0.075 m® = 75 lit
MP (4.0 kg/kmol)[(480/760)(1.01 x 10° N/m?)] m Hers

Find the density of methane (M = 16 kg/kmol) at 20 °C and 5.0 atm.
We use PV = (m/M)RT and p =m/V to get

_ PM (5.0 x 1.01 x 10° N/m*)(16 kg/kmol)

o 3
P=RT ™ (8314 J/kmol -K)(293 K) =33 ke/m

A fish emits a 2.0 mm® bubble at a depth of 15 m in a lake. Find the volume of the bubble as it
reaches the surface. Assume its temperature does not change.

The absolute pressure in the bubble at depth / is
P = pgh + atmospheric pressure
where p = 1000 kg/m3 and atmospheric pressure is about 100 kPa. At 15 m,
Py = (1000 kg/m*)(9.8 m/s*)(15 m) + 100 kPa = 247 kPa

and at the surface, P, = 100 kPa. Following the usual procedure, we get

(PO (22) — (20 s (27) 10) — 49
V,="1 (Pz) (T1> = (2.0 mm”) 100 (1.0) = 4.9 mm

A 15 cm long test tube of uniform bore is lowered, open end down, into a fresh-water lake. How
far below the surface of the lake must the water level be in the tube if one-third of the tube is to be
filled with water?

Let /1 be the depth of the water in the tube below the lake’s surface. The air pressure P, in the tube at
depth & must equal atmospheric pressure P, plus the pressure of water at that depth:

P2:Pa+pgh

The gas law gives us the value of P, as

P, = (Pl)(%) (%) = (1.01 x 10° Pa) (%)(1.00) =1.50 x 10° Pa
Then, from the relation between P, and A,
P,—P, 0.50 x 10° Pa
T pg (1000 kg/m*)(9.81 m/s%)

where atmospheric pressure has been taken as 100 kPa.

h =51m

A tank contains 18 kg of N, gas (M = 28 kg/kmol) at a pressure of 4.50 atm. How much H, gas
(M = 2.0 kg/kmol) at 3.50 atm would the same tank contain?
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16.19

16.20

16.21

16.22
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We write the gas law twice, once for each gas:
PNV =ngyRT and PyV =ngRT
Division of one equation by the other eliminates V/, R, and T
ny _ Py 3.50 atm

in  Pn 450 atm 0-778
m 18 kg
But =—=—"__=0.643 kmol
Y N T8 kg/kmol 0 o
so ny = (nn)(0.778) = (0.643 kmol)(0.778) = 0.500 kmol

Then, from n = m/M, we have
my = (0.500 kmol)(2.0 kg/kmol) = 1.0 kg

In a gaseous mixture at 20 °C the partial pressures of the components are as follows: hydrogen,
200 mmHg; carbon dioxide, 150 mmHg; methane, 320 mmHg; ethylene, 105 mmHg. What are
(a) the total pressure of the mixture and (b) the mass fraction of hydrogen? (My = 2.0 kg/kmol,
Mco, = 44kg/kmol, M eihane = 16 kg/kmol, Mphyiene = 30 kg/kmol.)

(a) According to Dalton’s Law,
Total pressure = sum of partial pressures = 200 mmHg + 150 mmHg + 320 mmHg + 105 mmHg = 775 mmHg
(b) From the Gas Law, m = M(PV /RT). The mass of hydrogen gas present is

vV
= My Py —
my HLH ( RT)

The total mass of gas present, m,, is the sum of similar terms:
V
m; = (MHPH + MCOZ PC02 + Mmethanerelhane + MethylenePethylene) ﬁ
The required fraction is then
my My Py

m; MHPH + MCO: PCO: + Mmclluchmclhanc + McthylcncPcthy]cnc

(2.0 kg/kmol)(200 mmHg)

(2.0 ke/kmol) (200 mmHg) + (44 kg/kmol)(150 mmHg) + (16 kg/kmol)(320 mmHg) + (30 kg/kmol)(105 mmHg) 2

Supplementary Problems

A certain mass of an ideal gas occupies a volume of 4.00 m’ at 758 mmHg. Compute its volume at
635 mmHg if the temperature remains unchanged. Ans. 477 m®

A given mass of ideal gas occupies 38 mL at 20 °C. If its pressure is held constant, what volume does it
occupy at a temperature of 45°C? Ans. 41 mL

On a day when atmospheric pressure is 75.83 cmHg, a pressure gauge on a tank of gas reads a pressure of
258.5 cmHg. What is the absolute pressure (in atmospheres and kPa) of the gas in the tank?
Ans. 334.3 cmHg = 4.398 atm = 445.6 kPa

A tank of ideal gas is sealed off at 20°C and 1.00 atm pressure. What will be the pressure (in kPa and
mmHg) in the tank if the gas temperature is decreased to —35°C? Ans. 82 kPa = 6.2 x 10? mmHg
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16.23 Given 1000 mL of helium at 15°C and 763 mmHg, determine its volume at —6°C and
420 mmHg.  Ans. 1.68 x 10° mL

16.24 One kilomole of ideal gas occupies 22.4 m> at 0°C and 1 atm. (¢) What pressure is required to compress
1.00 kmol into a 5.00 m® container at 100 °C? (b) If 1.00 kmol was to be sealed in a 5.00 m> tank that could
withstand a gauge pressure of only 3.00 atm, what would be the maximum temperature of the gas if the tank
was not to burst? Ans. (a) 6.12 atm; (b) —30°C

16.25 Air is trapped in the sealed lower end of a capillary tube by a mercury column as shown in Fig. 16-1. The top
of the tube is open. The temperature is 14 °C, and atmospheric pressure is 740 mmHg. What length would
the trapped air column have if the temperature were 30°C and atmospheric pressure were
760 mmHg? Ans. 12.4 cm

8.0 cm
12 cm
Fig. 16-1

16.26 Air is trapped in the sealed lower part of the vertical capillary tube shown in Fig. 16-1 by an 8.0 cm long
mercury column. The top is open, and the system is at equilibrium. What will be the length of the trapped air
column if the tube is now tilted so it makes an angle of 65° to the vertical? Take
P, =76 cmHg. Ans.  0.13 m

16.27 On a day when the barometer reads 75.23 cm, a reaction vessel holds 250 mL of ideal gas at 20.0 °C. An oil
manometer (p = 810 kg/m?) reads the pressure in the vessel to be 41.0 cm of oil and below atmospheric
pressure. What volume will the gas occupy under S.T.P.? Ans. 233 mL

16.28 A 5000-cm® tank contains an ideal gas (M = 40 kg/kmol) at a gauge pressure of 530 kPa and a temperature
of 25 °C. Assuming atmospheric pressure to be 100 kPa, what mass of gas is in the tank? Ans.  0.051 kg

16.29 The pressure of air in a reasonably good vacuum might be 2.0 x 10~ mmHg. What mass of air exists in a
250 mL volume at this pressure and 25 °C? Take M = 28 kg/kmol for air. Ans. 7.5 x 1072 kg

16.30  What volume will 1.216 g of SO, gas (M = 64.1 kg/kmol) occupy at 18.0 °C and 755 mmHg if it acts like an
ideal gas? Ans. 457 mL

16.31 Compute the density of H,S gas (M = 34.1 kg/kmol) at 27°C and 2.00 atm, assuming it to be ideal.
Ans. 2.76 kg/m®

16.32 A 30-mL tube contains 0.25 g of water vapor (M = 18 kg/kmol) at a temperature of 340 °C. Assuming the
gas to be ideal, what is its pressure? Ans. 2.4 MPa
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One method for estimating the temperature at the center of the Sun is based on the Ideal Gas Law. If the
center is assumed to consist of gases whose average M is 0.70 kg/kmol, and if the density and pressure are
90 x 10° kg/m® and 1.4 x 10'" atm, respectively, calculate the temperature. Ans. 13 x 10" K

A 500-mL sealed flask contains nitrogen at a pressure of 76.00 cmHg. A tiny glass tube lies at the bottom of
the flask. Its volume is 0.50 mL and it contains hydrogen gas at a pressure of 4.5 atm. Suppose the glass tube
is now broken so that the hydrogen fills the flask. What is the new pressure in the flask?
Ans. 76.34 cmHg

As shown in Fig. 16-2, two flasks are connected by an initially closed stopcock. One flask contains krypton
gas at 500 mmHg, while the other contains helium at 950 mmHg. The stopcock is now opened so that the
gases mix. What is the final pressure in the system? Assume constant temperature. Ans. 789 mmHg

Krypton Helium

450 cm?
=\, 950 mmHg -

0

EAPE(FS SR —
500 mmHg . f——

Fig. 16-2

An air bubble of volume V), is released near the bottom of a lake at a depth of 11.0 m. What will be its new
volume at the surface? Assume its temperature to be 4.0 °C at the release point and 12 °C at the surface. The
water has a density of 1000 kg/m3, and atmospheric pressure is 75 cmHg. Ans. 2.1V,

A cylindrical diving bell (a vertical cylinder with open bottom end and closed top end) 12.0 m high is lowered
in a lake until water within the bell rises 8.0 m from the bottom end. Determine the distance from the top of
the bell to the surface of the lake. (Atmospheric pressure = 1.00 atm.) Ans. 206 m—4.0m=16.6 m



Chapter 17

Kinetic Theory

THE KINETIC THEORY considers matter to be composed of discrete particles or molecules in
continual motion. In a gas, the molecules are in random motion with a wide distribution of
speeds ranging from zero to very large values.

AVOGADRO’S NUMBER (N,) is the number of particles (molecules or atoms) in 1 kmol of
substance. For all substances,

N4 = 6.022 x 10°® particles/kmol

As examples, M = 2 kg/kmol for H, and M = 32 kg/kmol for O,. Therefore, 2 kg of H, and 32 kg of
O, each contain 6.02 x 10% molecules.

THE MASS OF A MOLECULE (or atom) can be found from the molecular (or atomic) mass
M of the substance and Avogadro’s number N4. Since M kg of substance contains N, particles,
the mass my of one particle is given by

my = —
Ny

THE AVERAGE TRANSLATIONAL KINETIC ENERGY of a gas molecule is 3kz7 /2, where T
is the absolute temperature of the gas and kg = R/N,4 = 1.381 x 102 J/K is Boltzmann’s constant.
In other words, for a molecule of mass my,

(average of Lmyv®) = 3k, T

Note that Boltzmann’s constant is also given as k (with no subscript) in the literature.

THE ROOT MEAN SQUARE SPEED of a gas molecule is the square root of the average of v’
for a molecule over a prolonged time. Equivalently, the average may be taken over all molecules
of the gas at a given instant. From the expression for the average kinetic energy, the rms speed
is

3kgT
my

vrms

THE ABSOLUTE TEMPERATURE of an ideal gas has a meaning that is found by solving

Tmovl =3kpT. It gives
2\ /1
T=(—]|= 3
<3k3> (2 movnm>

ms — 2
The absolute temperature of an ideal gas is a measure of its average translational kinetic energy (KE) per
molecule.

179
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THE PRESSURE of an ideal gas was given in Chapter 16 in the form PV = (m/M)RT. Noticing
that m = Nmy, where N is the number of molecules in the volume V, and replacing 7 by the
value determined above, we have

PV = L Nmgvpns
Further, since Nmygy/V = p, the density of the gas,

1.2
P= 3 PUrms

THE MEAN FREE PATH (m.f.p.) of a gas molecule is the average distance such a molecule
moves between collisions. For an ideal gas of spherical molecules with radius b,

1
T 4nV2RA(N)V)

where N/V is the number of molecules per unit volume.

m.f.p.

Solved Problems

17.1 Ordinary nitrogen gas consists of molecules of N,. Find the mass of one such molecule. The
molecular mass is 28 kg/kmol.

M 28 kg/kmol
Ny 6.02 x 10%° kmol

=47 %10 kg

17.2 Helium gas consists of separate He atoms rather than molecules. How many helium atoms, He,
are there in 2.0 g of helium? M = 4.0 kg/kmol for He.

Method 1
One kilomole of He is 4.0 kg, and it contains N, atoms. But 2.0 g is equivalent to
0.0020kg
— = =0. kmol
4.0 kg/kmol 0.00050 kmo

of helium. Therefore,
Number of atoms in 2.0 g = (0.000 50 kmol) N,
= (0.000 50 kmol)(6.02 x 10%® kmol™") = 3.0 x 10%

Method 2

The mass of a helium atom is

M 4.0 kg/kmol 97
My = — = =6.64x 107"k
0 N4 6.02 x 102 kmol ™ &
.0020 k
SO Number in 2.0 g = 0.0020 ke =3.0x10%

6.64 x 1027 kg

17.3 A droplet of mercury has a radius of 0.50 mm. How many mercury atoms are in the droplet? For
Hg, M = 202 kg/kmol and p = 13 600 kg/m®.

The volume of the droplet is
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4rr 4m —4 _\3 10 3
3 (50x107" m)" =524 x 100" m

The mass of the droplet is
m=pV = (13600 kg/m?)(5.24 x 107" m*) = 7.1 x 107° kg
The mass of a mercury atom is
M 202 kg/kmol
my=-—= 6 —
Ny 6.02 x 10%° kmol
The number of atoms in the droplet is then

-6
Number — 7 7.1 x 107" kg
my  3.36 x 107> kg

=3.36x 107> kg

=2.1x10"

17.4 How many molecules are there in 70 mL of benzene? For benzene, p = 0.88 g/cm3 and
M = 78 kg/kmol.

Mass of 70 cm® = m = p¥ = (880 kg/m*)(70 x 10~° m*) = 0.0616 kg

M 78 kg/kmol s
o= M _ —130x 105k
TN, 6.02 x 10% kmol ! g
m 0.0616 kg

: 3 23
Number in 70 cm™ = m—o = m =48 x 10

17.5 Find the rms speed of a nitrogen molecule (M = 28 kg/kmol) in air at 0°C.

We know that L mgvin, = 3k, T and so

3%y T
Urms = T
my
M 28 kg/kmol 2%
But my=— = =4.65x 107"k
TNy 6.02x 10% kmol ! £
3(1.38 x 10723 J/K)(273 K

Therefore Urms = \/ ( 165 107/26 L(g ) =0.49 km/s

17.6 A gas molecule at the surface of the Earth happens to have the rms speed for that gas at exactly
0°C. If it were to go straight up without colliding with other molecules, how high would it rise?

The molecule’s KE is initially
KE = %mov%ms = %kBT
The molecule will rise until its KE has been changed to PEg. Therefore, calling the height /2, we have
%kBT = mogh

(LN ((3ksTY (1) |(3)(1.38 x 1077 J/K)(273 K)
"= (m0)< 2 > - (m0> { 2(9.81 m/s?)
_ 57610 kg-m
my

Solving gives

where my is in kg. The height varies inversely with the mass of the molecule. For an N, molecule,
my = 4.65 x 10726 kg (Problem 17.5), and in this case 4 turns out to be 12.4 km.
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Air at room temperature has a density of about 1.29 kg/m3 . Assuming it to be entirely one gas,
find v, for its molecules.

Because P = 1 pupy,s, we have

/ 3(100 x 10° Pa
Urms = 129 k / )~480 m/s

where we assumed atmospheric pressure to be 100 kPa.

Find the translational kinetic energy of one gram mole of any ideal gas at 0°C.

For any ideal gas, kBT = movrms, which is the KE of each molecule. One gram mole contains
N4 x 1073 molecules. Hence the total KE per mole is

RT
KE o = (N4 x 107) GkBT) =3x 10*3T =34%kJ)
where T was taken as 273 K, and use was made of the fact that kzN, = R.

There is about one hydrogen atom per cm?® in outer space, where the temperature (in the shade) is

about 3.5 K. Find the rms speed of these atoms and the pressure they exert.

_ [3ksT _ [3ksT  [3RT
Vpms = e\ MN, 7~295 m/s or 0.30 km/s

where M for hydrogen is 1.0 kg/kmol and 7 = 3.5 K. We can now use P = pvfms/3 to find the pressure.
Since the mass m, of a hydrogen atoms is (1.0 kg/kmol)/N,, and because there are N = 10® atoms/m?, we

have
Nmo N 61 3
70 _ (2 =10%(—) k
p= 5= (3= () kem

1 10°
2 2 —17
and P= %p'l}rms = § (m) (295) =5x%x10 Pa

Find the following ratios for hydrogen (M = 2.0 kg/kmol) and nitrogen (M = 28 kg/kmol) gases
at the same temperature: (a) (KE)y/(KE)y and (b) (rms speed)y/(rms speed)y.

(a) The average translational KE of a molecule, 3k T, depends only on temperature. Therefore the ratio is
unity.

(vrms)]-[ _ 3kl!?T/WlOH _ NN

()

3kgT /mon \ mon

M /
Urms MN =37
Urmﬂ MH

Certain ideal gas molecules behave like spheres of radius 3.0 x 107" m. Find the mean free path
of these molecules under S.T.P.

But my = M /N4, so

Method 1

We know that at S.T.P. 1.00 kmol of substance occupies 22.4 m®. The number of molecules per unit
volume, N/V, can be found from the fact that in 22.4 m? there are N, =6.02x 10?® molecules. The mean
free path is given by
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1 1 ( 22.4m°
m.f.

= = =24x10"m
P 4TV20X(N/V)  4mv/2(3.0 x 10710 m)* \ 6.02 x 102"’)

Method 2
Because M = myN 4 = my(R/kp) and m = Nmy,

PV = (%)RT becomes PV = NkyT
N P 1.01 x 10° N/m?

N__ £ _ =2.68 x 10® m~?
V  kgT (138 x 1003 J/K)(273 K) X m

We then use the mean free path equation as in method 1.

and so

At what pressure will the mean free path be 50 cm for spherical molecules of radius
3.0 x 1071 m? Assume an ideal gas at 20 °C.

From the expression for the mean free path, we obtain
N 1
I 47\/20*(m.f.p.)
Combining this with the Ideal Gas Law in the form PV = NkgT (see Problem 17.11) gives
kgT (1.38 x 107 J/K)(293 K)

_ — = 5.1 mPa
4203 (m.f.p.)  4myv/2(3.0 x 10710 m)*(0.50 m)
Supplementary Problems
Find the mass of a neon atom. The atomic mass of neon is 20.2 kg/kmol. Ans. 336 x 1072 kg

A typical polymer molecule in polyethylene might have a molecular mass of 15 x 10°. (¢) What is the mass in
kilograms of such a molecule? (b)) How many such molecules would make up 2 g of polymer?
Ans. (a) 2.5 x 1072 kg; (b) 8 x 10"

A certain strain of tobacco mosaic virus has M = 4.0 x 107 kg/kmol. How many molecules of the virus are
present in 1.0 mL of a solution that contains 0.10 mg of virus per mL? Ans. 1.5 x 10"

An electronic vacuum tube was sealed off during manufacture at a pressure of 1.2 x 10~/ mmHg at 27 °C. Its
volume is 100 cm’. (¢) What is the pressure in the tube (in Pa)? (b)) How many gas molecules remain in the
tube?  Ans. (a) 1.6 x 107> Pa; (b) 3.8 x 10!

The pressure of helium gas in a tube is 0.200 mmHg. If the temperature of the gas is 20 °C, what is the
density of the gas? (Use My, = 4.0 kg/kmol.) Ans. 4.4 x 107 kg/m’

At what temperature will the molecules of an ideal gas have twice the rms speed they have at
20°C? Ans. 1170 K ~ 900 °C

An object must have a speed of at least 11.2 km/s to escape from the Earth’s gravitational field. At what
temperature will v, for H, molecules equal the escape speed? Repeat for N, molecules. (My, = 2.0 kg/
kmol and My, = 28 kg/kmol.) Ans. 1.0 x 10* K; 1.4 x 10° K
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In a certain region of outer space there are an average of only five molecules per cm®. The temperature there
is about 3 K. What is the average pressure of this very dilute gas? Ans. 2x 107! Pa

A cube of aluminum has a volume of 1.0 cm® and a mass of 2.7 g. (@) How many aluminum atoms are there
in the cube? (b) How large a volume is associated with each atom? (¢) If each atom were a cube, what would
be its edge length? M = 108 kg/kmol for aluminum. Ans. (a) 1.5x10%; (b) 6.6 x 1072 m>; (¢)
4.0x 10" m

The rms speed of nitrogen molecules in the air at S.T.P. is about 490 m/s. Find their mean free path and the
average time between collisions. The radius of a nitrogen molecule can be taken to be
20107 m. Ans. 52x 10 m, 1.1 x107'0s

What is the mean free path of a gas molecule (radius 2.5 x 107'° m) in an ideal gas at 500°C when the
pressure is 7.0 x 10" mmHg? Ans. 10 m



Chapter 18

Heat Quantities

THERMAL ENERGY is the random kinetic energy of the particles (usually electrons, ions,
atoms, and molecules) composing a system.

HEAT is thermal energy in transit from a system (or aggregate of electrons, ions, and atoms) at
one temperature to a system that is in contact with it, but is at a lower temperature. Its SI unit
is the joule. Other units used for heat are the calorie (1 cal =4.184 J) and the British thermal
unit (1 Btu = 1054 J). The “Calorie” used by nutritionists is called the “large calorie” and is actu-
ally a kilocalorie (1 Cal = 1 kcal = 10? cal).

THE SPECIFIC HEAT (or specific heat capacity, ¢) of a substance is the quantity of heat re-
quired to change the temperature of unit mass of the substance by one degree.

If a quantity of heat AQ is required to produce a temperature change A7 in a mass m of substance,
then the specific heat is

c= A0
- mAT
In the SI, ¢ has the unit J/kg- K, which is equivalent to J/kg-°C. Also widely used is the unit cal/g-°C,
where 1 cal/g-°C = 4184 J/kg-°C.

Each substance has a characteristic value of specific heat, which varies slightly with temperature. For
water, ¢ = 4180 J/kg-°C = 1.00 cal/g-°C.

or AQ =cm AT

THE HEAT GAINED (OR LOST) by a body (whose phase does not change) as it undergoes a
temperature change AT, is given by

AQ =mc AT

THE HEAT OF FUSION (L;) of a crystalline solid is the quantity of heat required to melt a
unit mass of the solid at constant temperature. It is also equal to the quantity of heat given off
by a unit mass of the molten solid as it crystallizes at this same temperature. The heat of fusion
of water at 0°C is about 335 kJ/kg or 80 cal/g.

THE HEAT OF VAPORIZATION (L,) of a liquid is the quantity of heat required to vaporize a
unit mass of the liquid at constant temperature. For water at 100°C, L, is about 2.26 MJ/kg or
540 cal/g.

THE HEAT OF SUBLIMATION of a solid substance is the quantity of heat required to convert
a unit mass of the substance from the solid to the gaseous state at constant temperature.

CALORIMETRY PROBLEMS involve the sharing of thermal energy among initially hot objects
and cold objects. Since energy must be conserved, one can write the following equation:
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Sum of heat changes for all objects = 0

Here the heat flowing out of the high temperature system (AQ,, < 0) numerically equals the heat
flowing into the low temperature system (AQ;, > 0) and so the sum is zero. This, of course, assumes
that no thermal energy is otherwise lost from the system.

ABSOLUTE HUMIDITY is the mass of water vapor present per unit volume of gas (usually the
atmosphere). Typical units are kg/m? and g/cm?.

RELATIVE HUMIDITY (R.H.) is the ratio obtained by dividing the mass of water vapor per
unit volume present in the air by the mass of water vapor per unit volume present in saturated
air at the same temperature. When it is expressed in percent, the ratio is multiplied by 100.

DEW POINT: Cooler air at saturation contains less water than warmer air does at saturation.
When air is cooled, it eventually reaches a temperature at which it is saturated. This temperature
is called the dew point. At temperatures lower than this, water condenses out of the air.

Solved Problems

18.1 (a¢) How much heat is required to raise the temperature of 250 mL of water from 20.0°C to
35.0°C? (b)) How much heat is lost by the water as it cools back down to 20.0 °C?

Since 250 mL of water has a mass of 250 g, and since ¢ = 1.00 cal/g-°C for water, we have

(a) AQ = me AT = (250 g)(1.00 cal/g-°C)(15.0°C) = 3.75 x 10° cal = 15.7 kJ

(b) AQ = me AT = (250 g)(1.00 cal/g-°C)(—15.0°C) = —3.75 x 10° cal = —15.7 kJ

18.2 How much heat does 25 g of aluminum give off as it cools from 100 °C to 20 °C? For aluminum,
¢ =880 J/kg-°C.

AQ = me AT = (0.025 kg)(880 J/kg-"C)(—80°C) = —1.8 kJ = —0.42 keal

18.3 A certain amount of heat is added to a mass of aluminum (¢ = 0.21 cal/g-°C), and its tempera-
ture is raised 57 °C. Suppose that the same amount of heat is added to the same mass of copper
(¢ =0.093 cal/g-°C). How much does the temperature of the copper rise?
Because AQ is the same for both, we have
MCA | ATA] = MCcy ATCu

) 21
or ATe, = (%) (AT, = (%) (57°C) = 1.3 x 10°C

18.4 Two identical metal plates (mass = m, specific heat = ¢) have different temperatures; one is at
20°C, and the other is at 90 °C. They are placed in good thermal contact. What is their final
temperature?
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18.6

18.7

Because the plates are identical, we would guess the final temperature to be midway between 20 °C and
90 °C, namely 55°C. This is correct, but let us show it mathematically. From the law of conservation of
energy, the heat lost by one plate must equal the heat gained by the other. Thus the total heat change of the
system is zero. In equation form,
(heat change of hot plate) + (heat change of cold plate) =0
mC(AT)hot + mc(AT)cold =0
Be careful about AT It is the final temperature (which we denote by T in this case) minus the initial
temperature. The above equation thus becomes
me(Ty —90°C) + me(Ty —20°C) =0

After canceling mc from each term, we solve and find Ty = 55°C, the expected answer.

A thermos bottle contains 250 g of coffee at 90 °C. To this is added 20 g of milk at 5°C. After
equilibrium is established, what is the temperature of the liquid? Assume no heat loss to the
thermos bottle.

Water, coffee, and milk all have the same value of ¢, 1.00 cal/g-°C. The law of energy conservation
allows us to write
(heat change of coffee) + (heat change of milk) =0
(em AT) opee + (cm AT) iy =0
If the final temperature of the liquid is 7, then
ATeopree = Ty —90°C ATy =Ty —5°C
Substituting and canceling ¢ give
(250 g)(T; —90°C) + (20 g)(T; — 5°C) =0
Solving gives T, = 84°C.

A thermos bottle contains 150 g of water at 4 °C. Into this is placed 90 g of metal at 100 °C. After
equilibrium is established, the temperature of the water and metal is 21 °C. What is the specific
heat of the metal? Assume no heat loss to the thermos bottle.

(heat change of metal) 4 (heat change of water) = 0
(CWI AT)melal + ((,‘Wl AT)water =0
e (90 £)(—=79°C) + (1.00 cal/g-°C)(150 g)(17°C) = 0
Solving gives ¢pea = 0.36 cal/g-°C. Notice that AT = 21 — 90 = —79°C.

A 200-g copper calorimeter can contains 150 g of oil at 20°C. To the oil is added 80 g of
aluminum at 300 °C. What will be the temperature of the system after equilibrium is established?
ccy = 0.093 cal/g-°C, cp; = 0.21 cal/g-°C, ¢y = 0.37 cal/g-°C.

(heat change of aluminum) + (heat change of can and oil) = 0

(cmAT)py + (em AT )y + (em AT); =0
With given values substituted, this becomes

cal R cal R
(0.21 g—OC) (80 g)(T;y —300°C) + (0.093g_0c) (200 g)(T; —20°C)
cal
+ (O.37g_—oc) (150 g)(T; —20°C) =0

Solving gives Ty as 72°C.
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18.8 Exactly 3.0 g of carbon was burned to CO, in a copper calorimeter. The mass of the calorimeter
is 1500 g, and there is 2000 g of water in the calorimeter. The initial temperature was 20 °C,
and the final temperature is 31°C. Calculate the heat given off per gram of carbon.
cca = 0.093 cal/g-°C. Neglect the small heat capacity of the carbon and carbon dioxide.

The law of energy conservation tells us that
(heat change of carbon) + (heat change of calorimeter) + (heat change of water) =0
(heat change of carbon) + (0.093 cal/g-°C)(1500 g)(11°C) + (1 cal/g-°C)(2000 g)(11°C) =0
(heat change of carbon) = —23 500 cal
Therefore, the heat given off by one gram of carbon as it burns is

23500 cal

30 2 = 7.8 kcal/g

18.9  Determine the temperature 7y that results when 150 g of ice at 0 °C is mixed with 300 g of water
at 50°C.
From energy conservation,

(heat change of ice) + (heat change of water) =0

(heat to melt ice) + (heat to warm ice water) + (heat change of water) =0

(mLf)ice + (Cm AT)ice water + (Cm AT)water =0

(150 g)(80 cal/g) + (1.00 cal/g-°C)(150 g)(T; — 0°C) + (1.00 cal/g-°C)(300 g)(T; — 50°C) =0

from which T, = 6.7°C.

18.10 How much heat is given up when 20 g of steam at 100 °C is condensed and cooled to 20 °C?

Heat change = (condensation heat change) + (heat change of water during cooling)
=mL,+ cm AT
= (20 g)(—540 cal/g) + (1.00 cal/g-°C)(20 g)(20°C — 100 °C)
= —12 400 cal = —12 kcal

18.11 A 20-g piece of aluminum (¢ = 0.21 cal/g-°C) at 90 °C is dropped into a cavity in a large block of
ice at 0 °C. How much ice does the aluminum melt?

(heat change of Al as it cools to 0°C) + (heat change of mass m of ice melted) = 0
(me AT) 5y + (Lym)ie, = 0
(20 £)(0.21 cal/g-°C)(0°C — 90°C) + (80 cal/g)m =0

from which m = 4.7 g is the quantity of ice melted.

18.12 In a calorimeter can (which behaves thermally as if it were equivalent to 40 g of water) are 200 g
of water and 50 g of ice, all at exactly 0 °C. Into this is poured 30 g of water at 90 °C. What will be
the final condition of the system?

Let us start by assuming (perhaps incorrectly) that the final temperature is 7, > 0 °C. Then
heat change of " heat to " heat to warm n heat to warm |
hot water melt ice 250 g of water calorimeter -

(30 2)(1.00 cal/g-°C)(T; — 90°C) + (50 g)(80 cal/g) + (250 g)(1 cal/g-°C)(T, — 0°C)

+(40 g)(1.00 cal/g-°C)(T; — 0°C) =0
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Solving gives T, = —4.1 °C, contrary to our assumption that the final temperature is above 0 °C. Apparently,
not all the ice melts. Therefore, T, = 0°C.
To find how much ice melts, we write

Heat lost by hot water = heat gained by melting ice
(30 g)(1.00 cal/g-°C)(90°C) = (80 cal/g)m

where m is the mass of ice that melts. Solving gives m = 34 g. The final system has 50 g — 34 g = 16 g of ice
not melted.

An electric heater that produces 900 W of power is used to vaporize water. How much water at
100°C can be changed to steam in 3.00 min by the heater? (For water at 100°C,
L, =226 x 10° J/kg.)
The heater produces 900 J of heat energy per second. So the heat produced in 3.00 min is
AQ = (900 J/s)(180 s) = 162 kJ
The heat required to vaporize a mass m of water is
AQ = mL, = m(2.26 x 10° J/kg)

Equating these two expressions for AQ and solving for m gives m = 0.0717 kg = 71.7 g as the mass of water
vaporized.

A 3.00-g bullet (¢ = 0.0305 cal/g-°C = 128 J/kg-°C) moving at 180 m/s enters a bag of sand and
stops. By what amount does the temperature of the bullet change if all its KE becomes thermal
energy that is added to the bullet?

The bullet loses KE in the amount
KE = 1mv® =1(3.00 x 107 kg) (180 m/s)” = 48.6 J

This results in the addition of AQ = 48.6 J of thermal energy to the bullet. Then, since AQ = mc AT, we can

find AT for the bullet:
AQ 48.6 J
AT =% — =127°C
me  (3.00 x 1073 kg)(128 J/kg-°C)

Notice that we had to use ¢ in J/kg-°C, and not in cal/g-°C.

Suppose a 60-kg person consumes 2500 Cal of food in one day. If the entire heat equivalent of
this food were retained by the person’s body, how large a temperature change would it cause?
(For the body, ¢ = 0.83 cal/g-°C.) Remember that 1 Cal = 1 kcal = 1000 cal.
The equivalent amount of heat added to the body in one day is
AQ = (2500 Cal)(1000 cal/Cal) = 2.5 x 10° cal
Then, by use of AQ = mc AT,
AQ 2.5 % 10° cal

AT =—== =50°C
me (60 x 10 g)(0.83 cal/g-°C)

A thermometer in a 10 m x 8.0 m x 4.0 m room reads 22 °C and a humidistat reads the R.H. to
be 35 percent. What mass of water vapor is in the room? Saturated air at 22°C contains
19.33 g H,O/m".
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3
mass of water/m

%R.H. = x 100

mass of water/m® of saturated air
_ mass/m’
70.019 33 kg/m?

from which mass/m> = 6.77 x 107> kg/m>. But the room in question has a volume of 10m x 8.0m
x 4.0 m = 320 m>. Therefore, the total mass of water in it is

(320 m*)(6.77 x 10 kg/m’) = 2.2 kg

35 x 100

On a certain day when the temperature is 28 °C, moisture forms on the outside of a glass of cold
drink if the glass is at a temperature of 16 °C or lower. What is the R.H. on that day? Saturated
air at 28 °C contains 26.93 g/m’ of water, while, at 16°C, it contains 13.50 g/m".

Dew forms at a temperature of 16 °C or lower, so the dew point is 16 °C. The air is saturated at that
temperature and therefore contains 13.50 g/m>. Then

mass present/m> ~13.50

RH. =

= = =0.50 = 50%
mass/m’ in saturated air  26.93 ¢

Outside air at 5°C and 20 percent relative humidity is introduced into a heating and air con-
ditioning plant where it is heated to 20 °C and its relative humidity is increased to a comfortable
50 percent. How many grams of water must be evaporated into a cubic meter of outside air
to accom3plish this? Saturated air at 5°C contains 6.8 g/m’ of water, and at 20°C it contains
17.3 g/m”.

Mass/m> of water vapor in air at 5°C = 0.20 x 6.8 g/m3 =1.36 g/m3
Comfortable mass/m® at 20°C = 0.50 x 17.3 g/m’ = 8.65 g/m’
1 m? of air at 5°C expands to (293/278) m® = 1.054 m® at 20°C
Mass of water vapor in 1.054 m® at 20°C = 1.054 m® x 8.65 g/m3 =912¢g
Mass of water to be added to each m® of air at 5°C = (9.12 — 1.36) g =7.8 g

Supplementary Problems

How many calories are required to heat each of the following from 15 °C to 65°C? (a) 3.0 g of aluminum, (b)
5.0 g of pyrex glass, (¢) 20 g of platinum. The specific heats, in cal/g - °C, for aluminum, pyrex, and platinum
are 0.21, 0.20, and 0.032, respectively. Ans.  (a) 32 cal; (b) 50 cal; (c) 32 cal

When 5.0 g of a certain type of coal is burned, it raises the temperature of 1000 mL of water from 10 °C to
47°C. Calculate the thermal energy produced per gram of coal. Neglect the small heat capacity of the
coal. Ans. 7.4 kcal/g

Furnace oil has a heat of combustion of 44 MJ/kg. Assuming that 70 percent of the heat is useful, how many
kilograms of oil are required to raise the temperature of 2000 kg of water from 20°C to
99°C? Ans. 22 kg

What will be the final temperature if 50 g of water at exactly 0°C is added to 250 g of water at
90°C? Ans. 75°C
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A 50-g piece of metal at 95 °C is dropped into 250 g of water at 17.0 °C and warms it to 19.4 °C. What is the
specific heat of the metal? Ans.  0.16 cal/g-°C

How long does it take a 2.50-W heater to boil away 400 g of liquid helium at its boiling point (4.2 K)? For
helium, L, = 5.0 cal/g. Ans. 56 min

A 55-g copper calorimeter (¢ = 0.093 cal/g-°C) contains 250 g of water at 18.0 °C. When 75 g of an alloy at
100°C is dropped into the calorimeter, the resulting temperature is 20.4 °C. What is the specific heat of the
alloy? Ans. 0.10 cal/g-°C

Determine the temperature that results when 1.0 kg of ice at exactly 0°C is mixed with 9.0 kg of water at
50°C. Ans 37°C

How much heat is required to change 10 g of ice at exactly 0 °C to steam at 100 °C? Ans. 7.2 kcal

Ten kilograms of steam at 100°C is condensed in 500 kg of water at 40.0°C. What is the resulting
temperature? Ans. 51.8°C

The heat of combustion of ethane gas is 373 kcal/mole. Assuming that 60.0 percent of the heat is useful, how
many liters of ethane, measured at standard temperature and pressure, must be burned to convert 50.0 kg of
water at 10.0°C to steam at 100.0°C? One mole of a gas occupies 22.4 liters at precisely 0°C and
latm.  Ans. 3.15x 107 liters

Calculate the heat of fusion of ice from the following data for ice at 0 °C added to water:

Mass of calorimeter 60 g
Mass of calorimeter plus water 460 g
Mass of calorimeter plus water and ice 618 g
Initial temperature of water 38.0°C
Final temperature of mixture 5.0°C
Specific heat of calorimeter 0.10 cal/g-°C

Ans. 80 cal/g

Determine the result when 100 g of steam at 100 °C is passed into 200 g of water and 20 g of ice at exactly
0°C in a calorimeter which behaves thermally as if it were equivalent to 30 g of water. Ans. 49 g of
steam condensed, final temperature 100 °C

Determine the result when 10 g of steam at 100 °C is passed into 400 g of water and 100 g of ice at exactly
0°C in a calorimeter which behaves thermally as if it were equivalent to 50 g of water. Ans. 80 gofice
melted, final temperature 0 °C

Suppose a person who eats 2500 Cal of food each day loses the heat equivalent of the food through
evaporation of water from the body. How much water must evaporate each day? At body temperature,
L, for water is about 600 cal/g. Ans. 4.17 kg

How long will it take a 500-W heater to raise the temperature of 400 g of water from 15.0°C to
98.0°C. Ans. 278 s

A 0.250-hp drill causes a dull 50.0-g steel bit to heat up rather than to deepen a hole in a block of hard wood.
Assuming that 75.0 percent of the friction-loss energy causes heating of the bit, by what amount will its
temperature change in 20.0 s? For steel, ¢ = 450 J/kg-°C. Ans. 124°C

On a certain day the temperature is 20 °C and the dew point is 5.0 °C. What is the relative humidity?
Saturated air at 20 °C and 5.0 °C contains 17.12 and 6.80 g/m3 of water, respectively. Ans.  40%
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How much water vapor exists in a 105-m® room on a day when the relative humidity in the room is 32
percent and the room temperature is 20°C? Saturated air at 20°C contains 17.12 g/m> of water.
Ans. 0.58 kg

Air at 30 °C and 90 percent relative humidity is drawn into an air conditioning unit and cooled to 20 °C. The
relative humidity is simultaneously reduced to 50 percent. How many grams of water are removed from a
cubic meter of air at 30 °C by the air conditioner? Saturated air contains 30.4 g/m3 and 17.1 g/m3 of water at
30°C and 20 °C, respectively. Ans. 19 g



Chapter 19

Transfer of Heat Energy

ENERGY CAN BE TRANSFERRED by conduction, convection, and radiation. Remember that
heat is the energy transferred from a system at a higher temperature to a system at a lower tem-
perature (with which it is in contact) via the collisions of their constituent particles.

CONDUCTION occurs when thermal energy moves through a material as a result of collisions
between the free electrons, ions, atoms, and molecules of the material. The hotter a substance,
the higher the average KE of its atoms. When a temperature difference exists between materials
in contact, the higher-energy atoms in the warmer substance transfer energy to the lower-energy
atoms in the cooler substance when atomic collisions occur between the two. Heat thus flows
from hot to cold.

Consider the slab of material shown in Fig. 19-1. Its thickness is L, and its cross-sectional area is 4.
The temperatures of its two faces are 7| and T,, so the temperature difference across the slab is
AT =T, — T,. The quantity AT/L is called the temperature gradient. 1t is the rate-of-change of tem-
perature with distance.

T, T,
pe
Fig. 19-1

The quantity of heat AQ transmitted from face 1 to face 2 in time At is given by

AQ AT
2¥ g2
At e L

where k1 depends on the material of the slab and is called the thermal conductivity of the material. In the
SI, k7 has the unit W/m-K, and AQ/At¢is in J/s (i.e., W). Other units sometimes used to express ky are
related to W/m - K as follows:

I cal/s-cm-°C = 418.4 W/m-K and 1 Btu-in./h-ftz-oF:0.144 W/m-K

THE THERMAL RESISTANCE (or R value) of a slab is defined by the heat-flow equation in
the form

PR — h _
p = wnere R_kT
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Its SI unit is m*-K /W. Its customary unit is ft*-h - °F/Btu, where 1 ft>-h-°F/Btu = 0.176 m*-K/W. (It is
unlikely that you will have occasion to confuse this symbol R with the symbol for the universal gas
constant.)

For several slabs of the same surface area in series, the combined R value is

where Ry,..., are the R values of the individual slabs.

CONVECTION of thermal energy occurs in a fluid when warm material flows so as to displace
cooler material. Typical examples are the flow of warm air from a register in a heating system
and the flow of warm water in the Gulf Stream.

RADIATION is the mode of transport of radiant electromagnetic energy through vacuum and the
empty space between atoms. Radiant energy is distinct from heat, though both correspond to en-
ergy in transit. Heat is heat; electromagnetic radiation is electromagnetic radiation — don’t confuse
the two.

A blackbody is a body that absorbs all the radiant energy falling on it. At thermal equilibrium, a
body emits as much energy as it absorbs. Hence, a good absorber of radiation is also a good emitter of
radiation.

Suppose a surface of area 4 has absolute temperature 7" and radiates only a fraction € as much
energy as would a blackbody surface. Then € is called the emissivity of the surface, and the energy per
second (i.e., the power) radiated by the surface is given by the Stefan—Boltzmann Law:

P=cAdoT*

where o = 5.67 x 107° W/m2~K4 is the Stefan—Boltzmann constant, and T is the absolute temperature.
The emissivity of a blackbody is unity.

All objects whose temperature is above absolute zero radiate energy. When an object at absolute
temperature 7 is in an environment where the temperature is 7,, the net energy radiated per second by
the object is

P =edo(T* - T))

Solved Problems

19.1 An iron plate 2 cm thick has a cross-sectional area of 5000 cm?. One face is at 150 °C, and the
other is at 140°C. How much heat passes through the plate each second? For iron,

10°C
0.02 m

a0 _ kTAE = (80 W/m-K)(0.50 mz)(

N . ) =20 kJ/s

19.2 A metal plate 4.00 mm thick has a temperature difference of 32.0 °C between its faces. It transmits
200 kcal/h through an area of 5.00 cm”. Calculate the thermal conductivity of this metal in
W/m-K.
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P\ L ~(2.00 x 10° cal)(4.184 J/cal) 4.00 x 107° m
"7 At AT, =T,) (1.00 h)(3600 s/h) (5.00 x 107* m?)(32.0 K)
= 58.5 W/m-K

19.3 Two metal plates are soldered together as shown in Fig. 19-2. It is known that A4 = 80 cm?,
Ly =L,=30mm, 7} =100°C, T, = 0°C. For the plate on the left, k7; = 48.1 W/m - K; for
the plate on the right k7, = 68.2 W/m-K. Find the heat flow rate through the plates and the
temperature 7' of the soldered junction.

We assume equilibrium conditions so that the heat flowing through plate 1 equals that through plate 2.
Then
T,—-T T-T,

kA
T1 L

= krzA

But L, = L,, so this becomes
le(IOOOC - T) = krz(T - OOC)

48.1

: _ o kT] _ o _ o
from which T = (100°C) (k” +kT2) = (100°C) (48.1 +68.2) =414°C

The heat flow rate is then

AQ T, —T
L

100 — 41.4)K
A A : :

w 2

19.4 A beverage cooler is in the shape of a cube, 42 cm on each inside edge. Its 3.0-cm thick walls are
made of plastic (k; = 0.050 W/m-K). When the outside temperature is 20 °C, how much ice will
melt inside the cooler each hour?

The cubical box has six sides, each with an area of about (0.42 m)2. Then, from AQ/At =krAAT/L,
we have, with the ice inside at 0°C
AQ

<ZT:(OMOW%nkX0@Hﬂ%®(

20°C
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In one hour, AQ = (60)2(8.43) = 30350 cal. To melt 1.0 g of ice requires 80 cal, so the mass of ice melted in
one hour is

30350 cal

=50 caljg ~ 3 ke

A copper tube (length, 3.0 m; inner diameter, 1.500 cm; outer diameter, 1.700 cm) passes through
a vat of rapidly circulating water maintained at 20 °C. Live steam at 100 °C passes through the
tube. (¢) What is the heat flow rate from the steam into the vat? (b) How much steam is condensed
each minute? For copper, k7 = 1.0 cal/s-cm-°C.

Because the thickness of the tube is much smaller than its radius, the inner surface area of the tube,
27r;L = 2(0.750 cm)(300 cm) = 1410 cm?
nearly equals its outer surface area,
2mr, L = 27(0.850 ¢cm)(300 cm) = 1600 cm?
As an approximation, we can consider the tube to be a plate of thickness 0.100 cm and area given by

A =1(1410 cm® + 1600 cm?) = 1500 cm”

AQ AT cal '\ (1500 cm?)(80°C)
(@) At kTAT N ( ' s~cm~“C) (0.100 cm)

(b) In one minute, the heat conducted from the tube is

= 1.2 x 10° cals/s

AQ = (1.2 x 10° cal/s)(60 s) = 72 x 10° cal
It takes 540 cal to condense 1.0 g of steam at 100 °C. Therefore

72 x 10° cal

_ 4 5 2
540 cal/g =133x 10" g=1.3 x 10" kg

Steam condensed per min =

In practice, various factors would greatly reduce this theoretical value.

() Calculate the R value for a wall consisting of the following layers: concrete block (R = 1.93),
1.0 inch of insulating board (R = 4.3), and 0.50 inch of drywall (R = 0.45), all in U.S. Customary
Units. (b) If the wall has an area of 15 m?, find the heat flow per hour through it when the
temperature just outside is 20 °C lower than inside.

(a) R=R +Ry+ - -+Ry=193+43+045=6.7

in U.S. Customary Units. Using the fact that 1 U.S. Customary Unit of R = 0.176 m2~K/W, we get
R=1.18 m*- K/W.

_AAT
R

2 o
(Ar) = I3mICOC) 300 — 0,915 MI = 2.2 x 10 keal

(®) AQ - L18 m>-K/W

A spherical body of 2.0 cm diameter is maintained at 600 °C. Assuming that it radiates as if it
were a blackbody, at what rate (in watts) is energy radiated from the sphere?

A = surface area = 4mr> = 47(0.01 m)* = 1.26 x 10> m?

P=AoT* = (1.26 x 107° m?)(5.67 x 10°° W/m?.K*)(873 K)* =41 W
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19.11

19.12

19.13

19.14

19.15

19.16

An unclothed person whose body has a surface area of 1.40 m? with an emissivity of 0.85 has a
skin temperature of 37 °C and stands in a 20 °C room. How much energy does the person lose per
minute?

From P = 6A0'(T4 — T?), we have the energy loss
eAo(T* — THAr = (0.85)(1.40 m?)(0)(T* — T (60 s)

Using o = 5.67 x 1078 W/m?-K*, T =273 + 37 =310 K, and T, = 273 + 20 = 293 K gives an energy loss
of

7.6 kJ = 1.8 kcal

Supplementary Problems

What temperature gradient must exist in an aluminum rod for it to transmit 8.0 cal per second per cm? of
cross section down the rod? ky for aluminum is 210 W/K -m. Ans. 16°C/cm

A single-thickness glass window on a house actually has layers of stagnant air on its two surfaces. But if it
did not, how much heat would flow out of an 80 cm x 40 cm x 3.0 mm window each hour on a day when
the outside temperature was precisely 0°C and the inside temperature was 18°C? For glass, ks is
0.84 W/K-m.  Ans. 1.4 x 10® keal/h

How many grams of water at 100 °C can be evaporated per hour per cm? by the heat transmitted through a
steel plate 0.20 cm thick, if the temperature difference between the plate faces is 100 °C? For steel, kr is
42 W/K-m.  Ans. 0.33 kg/h-cm?

A certain double-pane window consists of two glass sheets, each 80 cm x 80 cm x 0.30 cm, separated by a
0.30-cm stagnant air space. The indoor surface temperature is 20 °C, while the outdoor surface temperature
is exactly 0°C. How much heat passes through the window each second? kr = 0.84 W/K-m for glass and
about 0.080 W/K -m for air. Ans. 69 cal/s

A small hole in a furnace acts like a blackbody. Its area is 1.00 cm?, and its temperature is the same as that of
the interior of the furnace, 1727°C. How many calories are radiated out of the hole each second?
Ans. 21.7 cal/s

An incandescent lamp filament has area 50 mm? and operates at a temperature of 2127 °C. Assume that all
the energy furnished to the bulb is radiated from it. If the filament’s emissivity is 0.83, how much power must
be furnished to the bulb when it is operating? Ans. T8 W

A sphere of 3.0 cm radius acts like a blackbody. It is in equilibrium with its surroundings and absorbs 30 kW
of power radiated to it from the surroundings. What is the temperature of the sphere? Ans. 2.6 x10° K

A 2.0 cm thick brass plate (k7 = 105 W/K -m) is sealed to a glass sheet (k7 = 0.80 W/K-m), and both have
the same area. The exposed face of the brass plate is at 80 °C, while the exposed face of the glass is at 20 °C.
How thick is the glass if the glass—brass interface is at 65°C? Ans.  0.46 mm



Chapter 20

First Law of Thermodynamics

HEAT (AQ) is the thermal energy that flows from one body or system to another, which is in
contact with it, because of their temperature difference. Heat always flows from hot to cold. For
two objects in contact to be in thermal equilibrium with each other (i.e., for no net heat transfer
from one to the other), their temperatures must be the same. If each of two objects is in thermal
equilibrium with a third body, then the two are in thermal equilibrium with each other. (This fact
is often referred to as the Zeroth Law of Thermodynamics.)

THE INTERNAL ENERGY (U) of a system is the total energy content of the system. It is the
sum of all forms of energy possessed by the atoms and molecules of the system.

THE WORK DONE BY A SYSTEM (AW) is positive if the system thereby loses energy to its
surroundings. When the surroundings do work on the system so as to give it energy, AW is a
negative quantity. In a small expansion AV, a fluid at constant pressure P does work given by

AW = PAV

THE FIRST LAW OF THERMODYNAMICS is a statement of the law of conservation of en-
ergy. It states that if an amount of heat AQ flows into a system, then this energy must appear
as increased internal energy AU for the system and/or work AW done by the system on its sur-
roundings. As an equation, the First Law is

AQ = AU + AW

AN ISOBARIC PROCESS is a process carried out at constant pressure.

AN ISOVOLUMIC PROCESS is a process carried out at constant volume. When a gas under-
goes such a process,

AW =PAV =0
and so the First Law of Thermodynamics becomes
AQ =AU

Any heat that flows into the system appears as increased internal energy of the system.

AN ISOTHERMAL PROCESS is a constant-temperature process. In the case of an ideal gas
where the constituent atoms or molecules do not interact when separated, AU =0 in an isother-
mal process. However, this is not true for many other systems. For example, AU # 0 as ice melts
to water at 0°C, even though the process is isothermal.

For an ideal gas, AU = 0 in an isothermal change and so the First Law becomes

AQ =AW (ideal gas)
198
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For an ideal gas changing isothermally from (P, V) to (P,, V,), where P1 V| = P, V>,
V. V.
AQ =AW =PV, In(=2) =2.30P,V, log( -2
Vi 4

Here, In and log are logarithms to the base e and base 10 respectively.

AN ADIABATIC PROCESS is one in which no heat is transferred to or from the system. For
such a process, AQ = 0. Hence, in an adiabatic process, the first law becomes

0=AU+AW

Any work done by the system is done at the expense of the internal energy. Any work done on the system
serves to increase the internal energy.
For an ideal gas changing from conditions (Py, V', T}) to (P,, V5, T5) in an adiabatic process,

PVIi=pPw] and TV '=11]"

where v = ¢,/c, is discussed below.

SPECIFIC HEATS OF GASES: When a gas is heated at constant volume, the heat supplied
goes to increase the internal energy of the gas molecules. But when a gas is heated at constant
pressure, the heat supplied not only increases the internal energy of the molecules but also does
mechanical work in expanding the gas against the opposing constant pressure. Hence the specific
heat of a gas at constant pressure c,, is greater than its specific heat at constant volume, c,. It
can be shown that for an ideal gas of molecular mass M,

R .
Vi (ideal gas)
where R is the universal gas constant. In the SI, R = 8314 J/kmol-K and M is in kg/kmol; then ¢, and ¢,
must be in J/kg-K = J/kg-°C. Some people use R = 1.98 cal/mol-°C and M in g/mol, in which case c,
and ¢, are in cal/g-°C.

SPECIFIC HEAT RATIO (y =c¢,/c,): As discussed above, this ratio is greater than unity for a
gas. The kinetic theory of gases indicates that for monatomic gases (such as He, Ne, Ar),
v = 1.67. For diatomic gases (such as O,, N»), v = 1.40 at ordinary temperatures.

WORK IS RELATED TO AREA in a P-V diagram. The work done by a fluid in an expansion
is equal to the area beneath the expansion curve on a P-V diagram.

In a cyclic process, the work output per cycle done by a fluid is equal to the area enclosed by the P-V
diagram representing the cycle.

THE EFFICIENCY OF A HEAT ENGINE is defined as

__ work output
~ heat input

The Carnot cycle is the most efficient cycle possible for a heat engine. An engine that operates in
accordance to this cycle between a hot reservoir (7)) and a cold reservoir (7,) has efficiency
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T,
effpax =1 — ?L
h

Kelvin temperatures must be used in this equation.

20.1

20.2

20.3

20.4

Solved Problems

In a certain process, 8.00 kcal of heat is furnished to the system while the system does 6.00 kJ of
work. By how much does the internal energy of the system change during the process?
We have
AQ = (8000 cal)(4.184 J/cal) =33.5k]  and AW =6.00 kJ
Therefore, from the First Law AQ = AU + AW,
AU =AQ — AW =33.5kJ] —6.00 k] =27.5kJ

The specific heat of water is 4184 J/kg- K. By how many joules does the internal energy of 50 g of
water change as it is heated from 21 °C to 37°C?

The heat added to heat the water is
AQ = cm AT = (4184 J/kg-K)(0.050 kg)(16°C) = 3.4 x 10° J

If we ignore the slight expansion of the water, no work was done on the surroundings and so AW = 0. Then,
the first law, AQ = AU + AW, tells us that

AU=AQ=34KkJ

How much does the internal energy of 5.0 g of ice at precisely 0 °C increase as it is changed to
water at 0 °C? Neglect the change in volume.
The heat needed to melt the ice is
AQ =mL; = (5.0 g)(80 cal/g) = 400 cal
No external work is done by the ice as it melts and so AW = 0. Therefore, the First Law, AQ = AU + AW,
tells us that
AU = AQ = (400 cal)(4.184 J/cal) = 1.7 kJ

A spring (k = 500 N/m) supports a 400-g mass which is immersed in 900 g of water. The specific
heat of the mass is 450 J/kg- K. The spring is now stretched 15 cm and, after thermal equilibrium
is reached, the mass is released so it vibrates up and down. By how much has the temperature of
the water changed when the vibration has stopped?

The energy stored in the spring is dissipated by the effects of friction and goes to heat the water and
mass. The energy stored in the stretched spring was
PE, = Lkx® = 1 (500 N/m)(0.15 m)* = 5.625 J
This energy appears as heat that flows into the water and the mass. Using AQ = cm AT, we have
5.625J = (4184 J/kg-K)(0.900 kg) AT + (450 J/kg-K)(0.40 kg) AT

5.62517

which gives AT = 3950 J/K

=0.0014 K
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Find AW and AU for a 6.0-cm cube of iron as it is heated from 20 °C to 300 °C at atmospheric
pressure. For iron, ¢ =0.11 cal/g-°C and the volume coefficient of thermal expansion is
3.6 x 107°°C~". The mass of the cube is 1700 g.

AQ = cm AT = (0.11 cal/g-°C)(1700 g)(280°C) = 52 kcal

The volume of the cube is ¥ = (6.0 cm)® = 216 ecm®. Using (AV)/V = BAT gives
AV =VBAT = (216 x 10°® m*)(3.6 x 107°°C")(280°C) = 2.18 x 10~ m’

Then, assuming atmospheric pressure to be 1.0 x 10° Pa, we have

AW =P AV = (1.0 x 10° N/m?)(2.18 x 10°* m*) =0.22 J

But the First Law tells us that
AU = AQ — AW = (52000 cal)(4.184 J/cal) —0.22
=218000J —0.22J~22x10°J

Notice how very small the work of expansion against the atmosphere is in comparison to AU and AQ. Often
AW can be neglected when dealing with liquids and solids.

A motor supplies 0.4 hp to stir 5 kg of water. Assuming that all the work goes into heating the
water by friction losses, how long will it take to increase the temperature of the water 6 °C?
The heat required to heat the water is
AQ = mc AT = (5000 g)(1 cal/g-°C)(6°C) = 30 kcal
This is actually supplied by friction work, so
Friction work done = AQ = (30 kcal)(4.184 J/cal) = 126 kJ
and this equals the work done by the motor. But
Work done by motor in time 7 = (power)(¢) = (0.4 hp x 746 W /hp)(¢)
Equating this to our previous value for the work done gives

1.26 x 10° J .
l—m—4203—7m1n

In each of the following situations, find the change in internal energy of the system. (a) A system
absorbs 500 cal of heat and at the same time does 400 J of work. (b) A system absorbs 300 cal
and at the same time 420 J of work is done on it. (¢) Twelve hundred calories is removed from a
gas held at constant volume. Give your answers in kilojoules.

(a) AU = AQ — AW = (500 cal)(4.184 J/cal) — 400 J = 1.69 kJ
(b) AU = AQ — AW = (300 cal)(4.184 J/cal) — (—420 J) = 1.68 kJ
() AU = AQ — AW = (—1200 cal)(4.184 J /cal) — 0 = —5.02 kJ

Notice that AQ is positive when heat is added to the system, and AW is positive when the system does
work. In the reverse cases, AQ and AW must be taken negative.

For each of the following adiabatic processes, find the change in internal energy. (a) A gas does
5 J of work while expanding adiabatically. (b) During an adiabatic compression, 80 J of work is
done on a gas.

During an adiabatic process, no heat is transferred to or from the system.
(a) AU=AQ—AW =0-5]=-51]
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(b) AU=AQ AW =0—(~80J) =+80 ]

The temperature of 5.00 kg of N, gas is raised from 10.0 °C to 130.0 °C. If this is done at constant
pressure, find the increase in internal energy AU and the external work AW done by the gas. For
N, gas, ¢, = 0.177 cal/g-°C and ¢, = 0.248 cal/g-°C.

If the gas had been heated at constant volume, then no work would have been done during the process.
In that case AW = 0, and the first law would tell us that (AQ), = AU. Because (AQ), = ¢,m AT, we would
have

AU = (AQ), = (0.177 cal/g-°C)(5000 g)(120 °C) = 106 kcal = 443 kJ
The temperature change is a manifestation of the internal energy change.

When the gas is heated by 120 °C at constant pressure, the same change in internal energy occurs. In
addition, however, work is done. The first law then becomes

(AQ), = AU + AW =443 kI + AW

But (AQ), = ¢,m AT = (0.248 cal /g-°C)(5000 g)(120 °C)
= 149 keal = 623 kJ
50 AW = (AQ), — AU = 623 kI — 443 kJ = 180 kJ

One kilogram of steam at 100 °C and 101 kPa occupies 1.68 m’. (@) What fraction of the observed
heat of vaporization of water is accounted for by the expansion of water into stream? (») Deter-
mine the increase in internal energy of 1.00 kg of water as it is vaporized at 100 °C.

(@) One kilogram of water expands from 1000 cm® to 1.68 m>, so AV = 1.68 — 0.001 ~ 1.68 m>. There-
fore, the expansion work done is

AW =P AV = (101 x 10° N/m?)(1.68 m®) = 169 kJ
The heat of vaporization of water is 540 cal/g, which is 2.26 MJ/kg. The required fraction is therefore

AW 169 kJ
= = =0.0748
mL,  (1.00 kg)(2260 kJ/kg)

(b) From the First Law, AU = AQ — AW, so

AU =226 x10°J—0.169 x 10° J = 2.07 MJ

For nitrogen gas, ¢, = 740 J/kg-K. Find its specific heat at constant pressure. (The molecular
mass of nitrogen gas is 28.0 kg/kmol.)

Method 1

R 7407J 8314 J/kmol-K
— i =1.04 kJ/kg-K
% CU+M kg~KjL 28.0 kg/kmol 04 ki/ke

Method 2
Since N, is a diatomic gas, and since c,/c, = 1.40 for such a gas,
¢, = 1.40c, = 1.40(740 J/kg-K) = 1.04 kJ /kg-K

How much work is done by an ideal gas in expanding isothermally from an initial volume of 3.00
liters at 20.0 atm to a final volume of 24.0 liters?
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For an isothermal expansion by an ideal gas,
V. V.
AW =PV, In (VT) =2.30P, V, log (7?)

= (2.30)(20.0 x 1.01 x 10° N/m?)(3.00 x 1073 m%log(%) =12.6 kJ

20.13 The P-V diagram in Fig. 20-1 applies to a gas undergoing a cyclic change in a piston—cylinder
arrangement. What is the work done by the gas in (a) portion 4B of the cycle? (b) Portion BC? (¢)
Portion CD? (d) Portion DA?

In expansion, the work done is equal to the area under the pertinent portion of the P—V curve. In
contraction, the work is numerically equal to the area but is negative.

P (Pa)
5 4 B
40X 10° f--mmmmmmmmoo oo >
N A v
s\ ___ <
2.0 % 10 b - '
0 | B \ \ F \
0 1.0 2.0 3.0 4.0 50 ¥V (ecmd)
Fig. 20-1
(a) Work = area ABFEA = [(4.0 — 1.5) x 107® m*](4.0 x 10° N/m*) = 1.0 J
(h) Work = area under BC =0

In portion BC, the volume does not change; therefore P AV = 0.

(¢) This is a contraction, AV is negative and so the work is negative:
W = —(area CDEFC) = —(2.5 x 107° m*)(2.0 x 10° N/m?) = —0.50 J

(d) W =0

20.14 For the thermodynamic cycle shown in Fig. 20-1, find (a) the net work output of the gas during
the cycle and (b) the net heat flow into the gas per cycle.

Method 1
(@) From Problem 20.13, the net work done is 1.0 J —0.50 J = 0.5 J.

Method 2
The net work done is equal to the area enclosed by the P-V diagram:

Work = area ABCDA = (2.0 x 10° N/m?)(2.5 x 107° m*) = 0.50 J



204

20.15

20.16

FIRST LAW OF THERMODYNAMICS [CHAP. 20

(b) Suppose the cycle starts at point A. The gas returns to this point at the end of the cycle, so there is no
difference in the gas at its start and end points. For one complete cycle, AU is therefore zero. We have
then, if the first law is applied to a complete cycle,

AQ=AU+AW =0+0.50J =0.50 J =0.12 cal

What is the net work output per cycle for the thermodynamic cycle in Fig. 20-2?

P (10° Pa)

0 0.5 1.0 15
¥V (m®)

Fig. 20-2

We know that the net work output per cycle is the area enclosed by the P—V diagram. We estimate that
in area ABCA there are 22 squares, each of area

(0.5 10° N/m*)(0.1 m*) = 5 kJ
Therefore,
Area enclosed by cycle ~ (22)(5kJ) =1 x 10? kJ

The net work output per cycle is 1 x 10? kJ.

Twenty cubic centimeters of monatomic gas at 12 °C and 100 kPa is suddenly (and adiabatically)
compressed to 0.50 cm®. What are its new pressure and temperature?

For an adiabatic change involving an ideal gas, P,V | = P,V ] where v = 1.67 for a monatomic gas.

Hence,

py= P (Y (100 x 105 N/m? 20 1’67—474 10’ N/m? = 47 MP
2_172_(.>< /m)ﬁ =4.74 x /m” = a

To find the final temperature, we could use P, V,/T, = P,V,/T,. Instead, let us use

nwvit=nry!

A\ ! 20 \0:67
or T, =T, <7‘) = (285 K) (m) = (285 K)(11.8) =3.4 x 10° K
2 .
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As a check,
PV P,
T,
(1 x 10° N/m?)(20 em®)  (4.74 x 107 N/m?)(0.50 cm®)
285 K N 3370 K
7000 = 7000 v

20.17 Compute the maximum possible efficiency of a heat engine operating between the temperature
limits of 100 °C and 400 °C.

The most efficient engine is the Carnot engine, for which

. T, 33K

20.18 A steam engine operating between a boiler temperature of 220 °C and a condenser temperature of
35.0°C delivers 8.00 hp. If its efficiency is 30.0 percent of that for a Carnot engine operating
between these temperature limits, how many calories are absorbed each second by the boiler?
How many calories are exhausted to the condenser each second?

K
Actual efficiency = (0.30)(Carnot efficiency) = (0.300) (1 - ig;’%) =0.113

But the relation

- tput k
Efficiency — - WOTK
input heat
gives
1.00 cal/s

(8.00 hp)(746 W /hp) <m

k )
output work/s _ = 12.7 kcal/s

efficiency 0.113

To find the energy rejected to the condenser, we use the law of conservation of energy:

Input heat/s =

Input energy = (output work) + (rejected energy)
Thus, Rejected energy/s = (input energy/s) — (output work/s)
= (input energy/s)[1 — (efficiency)]
= (12.7 kecal/s)(1 — 0.113) = 11.3 kcal/s

20.19 Three kilomoles (6.00 kg) of hydrogen gas at S.T.P. expands isobarically to precisely twice its
volume. (¢) What is the final temperature of the gas? () What is the expansion work done by the
gas? (¢) By how much does the internal energy of the gas change? (d ) How much heat enters the
gas during the expansion? For H,, ¢, = 10.0 kJ /kg-K.

(a) F‘I'OTT’If)ll/l/T‘]:1')21/2/7—'2\)\/“1"1I,l:P27

T, =T, (%) = (273 K)(2.00) = 546 K
1
(b) Because 1 kmol at S.T.P. occupies 22.4 m’, we have V=672 m>. Then
AW =P AV = P(V, — V) = (1.01 x 10° N/m?)(67.2 m*) = 6.8 MJ
(¢) To raise the temperature of this ideal gas by 273 K at constant volume requires
AQ = c¢,m AT = (10.0 kJ/kg-K)(6.00 kg)(273 K) = 16.4 MJ
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This is also the internal energy that must be added to the 6.00 kg of H, to change its temperature from
273 K to 546 K. Therefore, AU = 16.4 MJ.

(d) Because the system obeys the First Law during the process,
AQ =AU+ AW =164 MJ 4+ 6.8 MJ =23.2 MJ

A cylinder of ideal gas is closed by an 8.00 kg movable piston (area = 60.0 sz) as shown in Fig.
20-3. Atmospheric pressure is 100 kPa. When the gas is heated from 30.0 °C to 100.0°C, the
piston rises 20.0 cm. The piston is then fastened in place, and the gas is cooled back to 30.0 °C.
Calling AQ; the heat added to the gas in the heating process, and AQ, the heat lost during
cooling, find the difference between AQ; and AQ,.

Piston

7
\&

Fig. 20-3

During the heating process, the internal energy changed by AU;, and work AW, was done. The gas
pressure was

.00)(9.81) N
P:%—f— 1.00 x 10° N/m* = 1.13 x 10° N/m?
60.0 x 10~# m

Therefore, AQy =AU+ AW, =AU, + PAV
= AU, + (1.13 x 10° N/m?)(0.200 x 60.0 x 10~* m*) = AU, + 136 J

During the cooling process, AW = 0 and so (since AQ, is heat lost)
—AQZ = AU2

But the ideal gas returns to its original temperature, and so its internal energy is the same as at the start.
Therefore AU, = —AU,, or AQ, = AU,. It follows that AQ; exceeds AQ, by 136 J = 32.5 cal.

Supplementary Problems

A 2.0 kg metal block (¢ =0.137 cal/g-°C) is heated from 15°C to 90 °C. By how much does its internal
energy change? Ans. 86 kJ

By how much does the internal energy of 50 g of oil (¢ = 0.32 cal/g-°C) change as the oil is cooled from
100°C to 25°C. Ans.  —1.2 keal
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A 70-g metal block moving at 200 cm/s slides across a tabletop a distance of 83 cm before it comes to rest.
Assuming 75 percent of the thermal energy developed by friction goes into the block, how much does the
temperature of the block rise? For the metal, ¢ = 0.106 cal/g-°C. Ans. 3.4x1073°C

If a certain mass of water falls a distance of 854 m and all the energy is effective in heating the water, what
will be the temperature rise of the water? Ans.  2.00°C

How many joules of heat per hour are produced in a motor that is 75.0 percent efficient and requires
0.250 hp to run it? Ans. 168 kJ

A 100-g bullet (¢ = 0.030 cal/g-°C) is initially at 20 °C. It is fired straight upward with a speed of 420 m/s,
and on returning to the starting point strikes a cake of ice at exactly 0 °C. How much ice is melted? Neglect
air friction. Ans. 26 g

To determine the specific heat of an oil, an electrical heating coil is placed in a calorimeter with 380 g of the
oil at 10°C. The coil consumes energy (and gives off heat) at the rate of 84 W. After 3.0 min, the oil
temperature is 40 °C. If the water equivalent of the calorimeter and coil is 20 g, what is the specific heat
of the oil? Ans.  0.26 cal/g-°C

How much external work is done by an ideal gas in expanding from a volume of 3.0 liters to a volume of 30.0
liters against a constant pressure of 2.0 atm? Ans. 5.5k]

As 3.0 liters of ideal gas at 27 °C is heated, it expands at a constant pressure of 2.0 atm. How much work is
done by the gas as its temperature is changed from 27 °C to 227 °C? Ans. 0.40 kJ

An ideal gas expands adiabatically to three times its original volume. In doing so, the gas does 720 J of work.
(@) How much heat flows from the gas? (b)) What is the change in internal energy of the gas? (¢) Does its
temperature rise or fall? Ans. (a) none; (b) —720 J; (¢) it falls

An ideal gas expands at a constant pressure of 240 cmHg from 250 cm® to 780 cm?®. It it then allowed to cool
at constant volume to its original temperature. What is the net amount of heat that flows into the gas during
the entire process? Ans.  40.4 cal

As an ideal gas is compressed isothermally, the compressing agent does 36 J of work. How much heat flows
from the gas during the compression process? Ans. 8.6 cal

The specific heat of air at constant volume is 0.175 cal/g-°C. (¢) By how much does the internal energy of
5.0 g of air change as it is heated from 20°C to 400°C? (b) Suppose that 5.0 g of air is adiabatically
compressed so as to rise its temperature from 20 °C to 400 °C. How much work must be done on the air
to compress it? Ans. (a) 0.33 kcal; (b) 1.4 kJ or since work done on the system is negative, —1.4 kJ

Water is boiled at 100°C and 1.0 atm. Under these conditions, 1.0 g of water occupies 1.0 cm®, 1.0 g of
steam occupies 1670 cm’, and L, = 540 cal/g. Find (a) the external work done when 1.0 g of steam is formed
at 100 °C and (b) the increase in internal energy. Ans.  (a) 0.17 kJ; (b) 0.50 kcal

The temperature of 3.0 kg of krypton gas is raised from —20°C to 80°C. (a) If this is done at constant
volume, compute the heat added, the work done, and the change in internal energy. (b) Repeat if the
heating process is at constant pressure. For the monatomic gas Kr, ¢, =0.0357 cal/g-°C and
¢, = 0.0595 cal/g-°C. Ans.  (a) 11 kcal, 0, 45 kJ; (b) 18 keal, 30 kJ, 45 kJ

(a) Compute ¢, for the monatomic gas argon, given ¢, = 0.125 cal/g-°C and v = 1.67. (b) Compute ¢, for the
diatomic gas nitric oxide (NO), given ¢, = 0.166 cal/g-°C and v = 1.40. Ans.  (a) 0.0749 cal/g-°C; (b)
0.232 cal/g-°C
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Compute the work done in an isothermal compression of 30 liters of ideal gas at 1.0 atm to a volume of 3.0
liters. Ans. 7.0 kJ

Five mole of neon gas at 2.00 atm and 27.0 °C is adiabatically compressed to one-third its initial volume.
Find the final pressure, final temperature, and external work done on the gas. For neon, v =1.67,
¢, = 0.148 cal/g-°C, and M = 20.18 kg/kmol. Ans. 1.27 MPa, 626 K, 20.4 kJ

Determine the work done by the gas in portion AB of the thermodynamic cycle in Fig. 20-2. Repeat for
portion CA. Give answers to one significant figure. Ans. 0.4 MJ, —0.3 MJ

Find the net work output per cycle for the thermodynamic cycle in Fig. 20-4. Give your answer to two
significant figures. Ans. 2.1 k]

P (atm)
6

10 V (liters)

Fig. 20-4

Four grams of gas, confined to a cylinder, is carried through the cycle shown in Fig. 20-4. At A the
temperature of the gas is 400 °C. («) What is its temperature at B? (b) If, in the portion from 4 to B,
2.20 kcal flows into the gas, what is ¢, for the gas? Give your answers to two significant figures.
Ans. (a) 2.0 x 10° K; (b) 0.25 cal/g-°C

Figure 20-4 is the PV diagram for 25.0 g of an enclosed ideal gas. At A the gas temperature is 200 °C. The
value of ¢, for the gas is 0.150 cal/g-°C. (a) What is the temperature of the gas at B? (b) Find AU for the
portion of the cycle from A4 to B. (¢) Find AW for this same portion. (d) Find AQ for this same
portion. Ans. (a) 1.42 x 10° K; (b) 3.55 kcal = 14.9 kJ; (¢) 3.54 kJ; (d) 18.4 kJ



Chapter 21

Entropy and the Second Law

THE SECOND LAW OF THERMODYNAMICS can be stated in three equivalent ways:

(1) Heat flows spontancously from a hotter to a colder object, but not vice versa.
(2) No heat engine that cycles continuously can change all its heat-in to useful work-out.

(3) Ifasystem undergoes spontaneous change, it will change in such a way that its entropy will increase
or, at best, remain constant.

The Second Law tells us the manner in which a spontaneous change will occur, while the First Law
tells us whether or not the change is possible. The First Law deals with the conservation of energy; the
Second Law deals with the dispersal of energy.

ENTROPY (S) is a state variable for a system in equilibrium. By this is meant that S is always
the same for the system when it is in a given equilibrium state. Like P, V, and U, the entropy is
a characteristic of the system at equilibrium.

When heat AQ enters a system at an absolute temperature 7', the resulting change in entropy of the
system is

_A0

AS
T

provided the system changes in a reversible way. The SI unit for entropy is J/K.

A reversible change (or process) is one in which the values of P, V', T, and U are well-defined during
the change. If the process is reversed, then P, V', T, and U will take on their original values when the
system is returned to where it started. To be reversible, a process must usually be slow, and the system
must be close to equilibrium during the entire change.

Another, fully equivalent, definition of entropy can be given from a detailed molecular analysis of
the system. If a system can achieve a particular state (i.e., particular values of P, V', T, and U) in ()
(omega) different ways (different arrangements of the molecules, for example), then the entropy of the
state is

S=kylnQ

where In is the logarithm to base e, and kp is Boltzmann’s constant, 1.38 x 10~ J/K.

ENTROPY IS A MEASURE OF DISORDER: A state that can occur in only one way (one ar-
rangement of its molecules, for example) is a state of high order. But a state that can occur in
many ways is a more disordered state. One way to associate a number with disorder, is to take
the disorder of a state as being proportional to €2, the number of ways the state can occur. Be-
cause S = kpln(Q, entropy is a measure of disorder.

Spontaneous processes in systems that contain many molecules always occur in a direction from a

state that can exist _, [ state that can exist
in only a few ways in many ways

Hence, when left to themselves, systems retain their original state of order or else increase their disorder.
209
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THE MOST PROBABLE STATE of a system is the state with the largest entropy. It is also the
state with the most disorder and the state that can occur in the largest number of ways.

21.1

21.2

Solved Problems

Twenty gram of ice at precisely 0 °C melts to water with no change in temperature. By how much
does the entropy of the 20-g mass change in this process?

By slowly adding heat to the ice, we can melt it in a reversible way. The heat needed is

AQ =mL; = (20 g)(80 cal/g) = 1600 cal
AQ 1600 cal
50 AS =7 =K

Notice that melting increases the entropy (and disorder).

= 5.86 cal/K =25 J/K

As shown in Fig. 21-1, an ideal gas is confined to a cylinder by a piston. The piston is pushed
down slowly so that the gas temperature remains at 20.0 °C. During the compression, 730 J of
work is done on the gas. Find the entropy change of the gas.
The First Law tells us that
AQ = AU + AW
Because the process was isothermal, the internal energy of the ideal gas did not change. Therefore, AU = 0
and
AQ =AW =-7301J
(Because the gas was compressed, the gas did negative work, hence the minus sign.) Now we can write
AQ  —T73017
AS =—== =
T 293 K
Notice that the entropy change is negative. The disorder of the gas decreased as it was pushed into a smaller

volume.
F
A

B Piston —¢

—2.49 J/K

- : Gas

((
&

Fig. 21-1 Fig. 21-2

21.3 As shown in Fig. 21-2, a container is separated into two equal-volume compartments. The two

compartments contain equal masses of the same gas, 0.740 g in each, and ¢, for the gas is 745
J/kg-K. At the start, the hot gas is at 67.0 °C, while the cold gas is at 20.0 °C. No heat can leave or
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enter the compartments except slowly through the partition 4B. Find the entropy change of each
compartment as the hot gas cools from 67.0 °C to 65.0°C.
The heat lost by the hot gas in the process is
AQ = me, AT = (0.000740 kg)(745 J /kg-K)(—2.0°C) = —1.10 J
For the hot gas (approximately the temperature as 66 °C),
AQ  —110J

AS,=—=r~—— = -32x107J/K
=, Y amre k- o210
For the cold gas, since it will gain 1.10 J,
A 1.10J
AS, = Q. =38x107° J/K

T. " (273+21)K

As you can see, the entropy changes were different for the two compartments; more was gained than was
lost. The total entropy of the universe increased as a result of this process.

The ideal gas in the cylinder in Fig. 21-1 is initially at conditions Py, V;, T;. It is slowly expanded
at constant temperature by allowing the piston to rise. Its final conditions are P,, V5, T}, where
V, = 3V,. Find the change in entropy of the gas during this expansion. The mass of gasis 1.5 g,
and M = 28 kg/kmol for it.

Recall from Chapter 20 that, for an isothermal expansion of an ideal gas (where AU = 0),

AW:AQ:P|V| hl(%)
1

A PV V. V.
Consequently, AS = TQ = % In (—2) = % R In (72)
1 1 1

where we have used the Ideal Gas Law. Substituting the data gives

1.5x 107° kg J

Two vats of water, one at 87 °C and the other at 14 °C, are separated by a metal plate. If heat
flows through the plate at 35 cal/s, what is the change in entropy of the system that occurs in a
second?

The higher-temperature vat loses entropy, while the cooler one gains entropy:
AQ (=35 cal)(4.184 J/cal)

_AQ  (35cal)(4.184 J/cal)
AS. = T K =0.51J/K

Therefore 0.51 J/K — 0.41 J/K =0.10 J/K.

A system consists of 3 coins that can come up either heads or tails. In how many different ways
can the system have (@) all heads up? (b) All tails up? (¢) One tail and two heads up? (d) Two tails
and one head up?

(a) There is only one way all the coins can be heads-up: Each coin must be heads-up.

(b) Here, too, there is only one way.

(¢) There are three ways, corresponding to the three choices for the coin showing the tail.

(d) By symmetry with (c), there are three ways.
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Find the entropy of the three-coin system described in Problem 21.6 if (@) all coins are heads-up,
(b) two coins are heads-up.

We use the Boltzmann relation S = kz1In €2, where 2 is the number of ways the state can occur, and
kp=138x 107> J/K.

(a) Since this state can occur in only one way,
S=kzlnl=(138x 102 J/K)(0) =0
(b) Since this state can occur in three ways,

S=(138x102 J/K)In3 =152 x 107> J/K

Supplementary Problems

Compute the entropy change of 5.00 g of water at 100 °C as it changes to steam at 100 °C under standard
pressure. Ans. 7.24 cal/K =30.3 J/K

By how much does the entropy of 300 g of a metal (¢ = 0.093 cal/g-°C) change as it is cooled from 90 °C to
70°C? You may approximate 7' = %(Tl + 7). Ans. —6.6 J/JK

An ideal gas was slowly expanded from 2.00 m® to 3.00 m® at a constant temperature of 30 °C. The entropy
change of the gas was +47 J/K during the process. (¢) How much heat was added to the gas during the
process? (b) How much work did the gas do during the process? Ans. (a) 3.4 kcal; (b) 14 kJ

Starting at standard conditions, 3.0 kg of an ideal gas (M = 28 kg/kmol) is isothermally compressed to one-
fifth of its original volume. Find the change in entropy of the gas. Ans. —1.4kJ/K

Four poker chips are red on one side and white on the other. In how many different ways can (a) only 3 reds
come up? (b) Only two reds come up? Ans. (a) 4; (b) 6

When 100 coins are tossed, there is one way in which all can come up heads. There are 100 ways in which
only one tail comes up. There are about 1 x 10 ways that 50 heads can come up. One hundred coins are
placed in a box with only one head up. They are shaken and then there are 50 heads up. What was the change
in entropy of the coins caused by the shaking? Ans. 9x 1072 J/K



Chapter 22

Wave Motion

A PROPAGATING WAVE is a self-sustaining disturbance of a medium that travels from one
point to another, carrying energy and momentum. Mechanical waves are aggregate phenomena
arising from the motion of constituent particles. The wave advances, but the particles of the med-
ium only oscillate in place. A wave has been generated on the string in Fig. 22-1 by the sinusoi-
dal vibration of the hand at its end. The wave furnishes a record of earlier vibrations of the
source. Energy is carried by the wave from the source to the right, along the string. This direc-
tion, the direction of energy transport, is called the direction (or line) of propagation of the wave.

Fig. 22-1

Each particle of the string (such as the one at point C) vibrates up and down, perpendicular to the
line of propagation. Any wave in which the vibration direction is perpendicular to the direction of
propagation is called a transverse wave. Typical transverse waves, besides those on a string, are electro-
magnetic waves — light and radio waves. By contrast, in sound waves the vibration direction is parallel to
the direction of propagation, as you will see in Chapter 23. Such a wave is called a longitudinal (or
compressional) wave.

WAVE TERMINOLOGY: The period (T) of a wave is the time it takes the wave to go through
one complete cycle. It is the time taken for a particle such as the one at 4 to move through one
complete vibration or cycle, down from point 4 and then back to A. The period is the number
of seconds per cycle. The frequency (f) of a wave is the number of cycles per second: Thus,
1
f==
If 7 is in seconds, then f is in hertz (Hz), where 1 Hz = 1 s~ '. The period and frequency of the wave are
the same as the period and frequency of the vibration.
The top points on the wave, such as 4 and C, are called wave crests. The bottom points, such as B
and D, are called troughs. As time goes on, the crests and troughs move to the right with speed v, the
speed of the wave.

The amplitude of a wave is the maximum disturbance undergone during a vibration cycle, distance y,
in Fig. 22-1.

213
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The wavelength (1) is the distance along the direction of propagation between corresponding points
on the wave, distance AC for example. In a time T, a crest moving with speed v will move a distance A to
the right. Therefore, s = vt gives

/IZUT:—,
S
and

v=fA

This relation holds for all waves, not just for waves on a string.

IN-PHASE VIBRATIONS exist at two points on a wave if those points undergo vibrations that
are in the same direction, in step. For example, the particles of the string at points 4 and C in
Fig. 22-1 vibrate in-phase, since they move up together and down together. Vibrations are in-
phase if the points are a whole number of wavelengths apart. The pieces of the string at 4 and
B vibrate opposite to each other; the vibrations there are said to be 180°, or half a cycle, out-of-
phase.

THE SPEED OF A TRANSVERSE WAVE on a stretched string or wire is

\/ tension in string
v =

mass per unit length of string

STANDING WAVES: At certain vibrational frequencies, a system can undergo resonance. That
is to say, it can efficiently absorb energy from a driving source in its environment which is oscil-
lating at that frequency (Fig. 22-2). These and similar vibration patterns are called standing waves,
as compared to the propagating waves considered above. These might better not be called waves
at all since they do not transport energy and momentum. The stationary points (such as B and

Vibrator

=

(a) Fundamental (L = %l)

e

(b) First overtone (L =2 31)

(d) Third overtone (L =41 1)

Fig. 22-2
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D) are called nodes; the points of greatest motion (such as A, C, and E) are called antinodes. The
distance between adjacent nodes (or antinodes) is 1. We term the portion of the string between
adjacent nodes a segment, and the length of a segment is also %/1.

CONDITIONS FOR RESONANCE: A string will resonate only if the vibration wavelength has
certain special values: the wavelength must be such that a whole number of wave segments (each
%)» long) exactly fit on the string. A proper fit occurs when nodes and antinodes exist at positions
demanded by the constraints on the string. In particular, the fixed ends of the string must be
nodes. Thus, as shown in Fig. 22-2, the relation between the wavelength A and the length L of
the resonating string is L = n(34), where n is any integer. Because . =vT =uv/f, the shorter the
wave segments at resonance, the higher will be the resonance frequency. If we call the fundamen-
tal resonance frequency fi, then Fig. 22-2 shows that the higher resonance frequencies are given

by fu = nfi.

LONGITUDINAL (COMPRESSIONAL) WAVES occur as lengthwise vibrations of air columns,
solid bars, and the like. At resonance, nodes exist at fixed points, such as the closed end of an
air column in a tube, or the location of a clamp on a bar. Diagrams such as Fig. 22-2 are used
to display the resonance of longitudinal waves as well as transverse waves. However, for longitu-
dinal waves, the diagrams are mainly schematic and are used simply to indicate the locations of
nodes and antinodes. In analyzing such diagrams, we use the fact that the distance between node
and adjacent antinode is } /.

Solved Problems

22.1 Suppose that Fig. 22-1 represents a 50-Hz wave on a string. Take distance y, to be 3.0 mm, and
distance AE to be 40 cm. Find the following for the wave: (a¢) amplitude, () wavelength, (c)
speed.

(a) By definition, the amplitude is distance y, and is 3.0 mm.
(b) The distance between adjacent crests is the wavelength, and so 4 =20 cm.
(c) v=2f = (020 m)(50 s') = 10 m/s

22.2 Measurements show that the wavelength of a sound wave in a certain material is 18.0 cm. The
frequency of the wave is 1900 Hz. What is the speed of the sound wave?

From A =T = v/f, which applies to all waves,

v=f = (0.180 m)(1900 s ') = 342 m/s

22.3 A horizontal cord 5.00 m long has a mass of 1.45 g. What must be the tension in the cord if the
wavelength of a 120 Hz wave on it is to be 60.0 cm? How large a mass must be hung from its end
(say, over a pulley) to give it this tension?

We know that
v=J2f = (0.600 m)(120 s™') = 72.0 m/s



216

224

22.5

WAVE MOTION [CHAP. 22

Further, since v = \/ (tension)/(mass per unit length),

1.45 x 107 kg

2 _
S0 )(72.0 m/s)> = 1.50 N

Tension = (mass per unit length)(v?) = <
The tension in the cord balances the weight of the mass hung at its end. Therefore,
_Fr 150N

FT:mg or m ?7m:0153 kg

A uniform flexible cable is 20 m long and has a mass of 5.0 kg. It hangs vertically under its own
weight and is vibrated from its upper end with a frequency of 7.0 Hz. (a) Find the speed of a
transverse wave on the cable at its midpoint. (b)) What are the frequency and wavelength at the
midpoint?

(@) Weshalluse v = \/ (tension)/(mass per unit length). The midpoint of the cable supports half its weight,
so the tension there is

Fr =1(50kg)(9.81 m/s’) =24.5 N

Further Mass per unit length = %Il;g =0.25 kg/m

[ 245N
so that v = m—99 m/s

(b) Because wave crests do not pile up along a string or cable, the number passing one point must be the
same as that for any other point. Therefore the frequency, 7.0 Hz, is the same at all points.
To find the wavelength at the midpoint, we must use the speed we found for that point, 9.9 m/s.
That gives us

99 m/s

v
7T 70mg Am

A

Suppose that Fig. 22-2 shows a metal string under a tension of 88.2 N. Its length is 50.0 cm and
its mass is 0.500 g. (¢) Compute v for transverse waves on the string. (b) Determine the frequen-
cies of its fundamental, first overtone, and second overtone.

(a) tension 88.2 N 297m)s
v= - = =
mass per unit length (5.00 x 10~* kg)/(0.500 m)
(h) We recall that the length of the segment is /2 and we use 4 = v/f. For the fundamental:
) . 297 m/s
A=1.00m and f = 100 m =297 Hz

For the first overtone:

. 297 m/s
)v = 0500 m dnd f = m = 594 Hz
For the second overtone:
. 297 m/s
)v = 0333 m dnd f = m = 891 Hz

22.6 A string 2.0 m long is driven by a 240-Hz vibrator at its end. The string resonates in four

segments. What is the speed of transverse waves on the string?
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Since each segment is /2 long, we have

A , L 20m

Then, using A = vT = v/f, we have
v=f72=(240s")(1.0 m) = 0.24 km/s

22.7 A banjo string 30 cm long resonates in its fundamental to a frequency of 256 Hz. What is the
tension in the string if 80 cm of the string have a mass of 0.75 g?

First we shall find v and then find the tension. We know that the string vibrates in one segment when
f =256 Hz. Therefore, from Fig. 22-2,

% =L or J=(030m)(2)=0.60m
and v=f1=(256s"")(0.60 m) = 154 m/s
The mass per unit length of the string is
0.75 x 10 kg 4

Then, from v = /(tension)/(mass per unit length),
Fr = (154 m/s)*(9.4 x 10™* kg/m) =22 N

22.8 A string vibrates in five segments to a frequency of 460 Hz. (¢) What is its fundamental fre-
quency? (b) What frequency will cause it to vibrate in three segments?
Detailed Method

If the string is n segments long, then from Fig. 22-2 we have n(§4) = L. But A = v/f,, so L = n(v/2f,).
Solving for f, gives

v
fi=n(5;)
We are told that f5 = 460 Hz, and so

460 Hz — 5(%) or % —92.0 Hz

Substituting this in the above relation gives
fu = (n)(92.0 Hz)

(@) f, =92.0Hz.
() f;=(3)(92 Hz) = 276 Hz

Alternative Method

We recall that for a string held at both ends, f,, = nf;. Knowing that f5 = 460 Hz, we find f; = 92.0 Hz
and f3 = 276 Hz.

22.9 A string fastened at both ends resonates at 420 Hz and 490 Hz with no resonance frequencies in
between. Find its fundamental resonance frequency.

In general, f, = nf;. We are told that f, = 420 Hz and f,,; = 490 Hz. Therefore,
420 Hz = nf; and 490 Hz = (n+ 1)f
We subtract the first equation from the second to obtain f; = 70.0 Hz.
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A violin string resonates in its fundamental at 196 Hz. Where along the string must you place
your finger so its fundamental becomes 440 Hz?

In the fundamental, L = %i. Since 4 =v/f, we have f; = v/2L. Originally, the string of length L,
resonated to a frequency of 196 Hz, and so

v
196 Hz = ——
Y

We want it to resonate to 440 Hz, so we have

440 Hz = ——
2L,

We eliminate v from these two simultaneous equations and find
L, 196 Hz

L, 440 Hz 0445

To obtain the desired resonance, the finger must shorten the string to 0.445 of its original length.

A 60 cm long bar, clamped at its middle, is vibrated lengthwise by an alternating force at its end.
(See Fig. 22-3.) Its fundamental resonance frequency is found to be 3.0 kHz. What is the speed of
longitudinal waves in the bar?

Because its ends are free, the bar must have antinodes there. The clamp point at its center must be a
node. Therefore, the fundamental resonance is as shown in Fig. 22-3. Because the distance from node to
antinode is always 12, we see that L = 2(}4). Since L = 0.60 m, we find 4 = 1.20 m.

Then, from the basic relation (p. 214) 4 = v/f, we have

v=Jf = (120 m)(3.0 kHz) = 3.6 km/s

Compressional waves (sound waves) are sent down an air-filled tube 90 cm long and closed at one
end. The tube resonates to several frequencies, the lowest of which is 95 Hz. Find the speed of
sound waves in air.

The tube and several of its resonance forms are shown in Fig. 22-4. Recall that the distance between a
node and an adjacent antinode is /4. In our case, the top resonance form applies, since the segments are
longest for it and its frequency is therefore lowest. For that form, L = 4/4, so

A =4L =4(0.90 m) = 3.6 m
Using 2 =T = v/f gives
v=7f = (3.6 m)(95s™") = 0.34 km/s

To what other frequencies will the tube described in Problem 22.12 resonate?

The first few resonances are shown in Fig. 22-4. We see that, at resonance,

L=n(2,)
where n =1,3,5,7,..., is an odd integer, and 4, is the resonance wavelength. But 4, = v/f,, and so
L:n%f” or f,,:nﬁ:nfl

where, from Problem 22.12, f; =95 Hz. The first few resonance frequencies are thus 95 Hz, 0.29 kHz,
0.48 kHz, ....
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Fig. 22-3 Fig. 22-4

22.14 A metal rod 40 cm long is dropped, end first, onto a wooden floor and rebounds into the air.
Compressional waves of many frequencies are thereby set up in the bar. If the speed of compres-
sional waves in the bar is 5500 m/s, to what lowest-frequency compressional wave will the bar
resonate as it rebounds?

Both ends of the bar will be free, and so antinodes will exist there. In the lowest resonance form (i.e., the
one with the longest segments), only one node will exist on the bar, at its center, as shown in Fig. 22-5. We
will then have

L= 2(%) or A=2L=2(0.40 m) =0.80 m

Then, from /i = vT = v/f,
5500 m/s

v

22.15 A rod 200 cm long is clamped 50 cm from one end, as shown in Fig. 22-6. It is set into longi-
tudinal vibration by an electrical driving mechanism at one end. As the frequency of the driver is
slowly increased from a very low value, the rod is first found to resonate at 3 kHz. What is the
speed of sound (compressional waves) in the rod?

0 50 100 150 200 cm

%z | |
[ ]
4 N 4 4 it 4 N 4

} N
' g
— ©segment
Half segment, se/lg/rrzlen
A4

Fig. 22-5 Fig. 22-6
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The clamped point remains stationary, and so a node exists there. Since the ends of the rod are free,
antinodes exist there. The lowest-frequency resonance occurs when the rod is vibrating in its longest possible
segments. In Fig. 22-6 we show the mode of vibration that corresponds to this condition. Since a segment is
the length from one node to the next, then the length from 4 to N in the figure is one-half segment.
Therefore, the rod is two segments long. This resonance form satisfies our restrictions about positions of
nodes and antinodes, as well as the condition that the bar vibrate in the longest segments possible. Since one
segment is 1/2 long,

L=2(1/2) or A =L =200 cm
Then, from A =T = v/f,

v=J2f = (2.00 m)(3 x 10° s') = 6 km/s

(a) Determine the shortest length of pipe closed at one end that will resonate in air to a sound
source of frequency 160 Hz. Take the speed of sound in air to be 340 m/s. (b) Repeat for a pipe
open at both ends.

(a) Figure 22-4(a) applies in this case. The shortest pipe will be 1/4 long. Therefore,
1, 1/w 340 m/s
L=-A=-| - )=————-=0.531
4" 4<f) 4(160 s 1) m

(b) In this case the pipe will have antinodes at both ends and a node at its center. Then,
1 1 /v 340 m/s
L=2|-A)=z|=)=7—+"—=-=1.06
<4 > 2(f> 2(160 5 1) "

A pipe 90 cm long is open at both ends. How long must a second pipe, closed at one end, be if it is
to have the same fundamental resonance frequency as the open pipe?
The two pipes and their fundamental resonances are shown in Fig. 22-7. As we see,
L,=202) L=z

from which L. =5 L, =45 cm.

1
2
A glass tube that is 70.0 cm long is open at both ends. Find the frequencies at which it will

resonate to sound waves that have a speed of 340 m/s.

A pipe that is open at both ends must have an antinode at each end. It will therefore resonate as in Fig.
22-8. We see that the resonance wavelengths 4, are given by

L :n(ﬂ—”) or I :Z—L
2 n

L,=2(:4)
4 N 4 N 4
! ! ! C——— 0
_ 1
L=a 4 N 4 N 4 N 4
4 N ( 0

Fig. 227 Fig. 22-8
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where n is an integer. But 4, = v/f,, so

fo=(2) ) = ) (%) — 2437 Hz

Supplementary Problems

The average person can hear sound waves ranging in frequency from about 20 Hz to 20 kHz. Determine the
wavelengths at these limits, taking the speed of sound to be 340 m/s. Ans. 17 m, 1.7 cm

Radio station WJR in Detroit broadcasts at 760 kHz. The speed of radio waves is 3.00 x 108 m/s. What is
the wavelength of WJR’s waves? Ans. 395 m

Radar waves with 3.4 cm wavelength are sent out from a transmitter. Their speed is 3.00 x 10° m/s. What is
their frequency?  Ans. 8.8 x 10° Hz = 8.8 GHz

When driven by a 120 Hz vibrator, a string has transverse waves of 31 cm wavelength traveling along it. («)
What is the speed of the waves on the string? (b) If the tension in the string is 1.20 N, what is the mass of
50 cm of the string? Ans. (a) 37 m/s; (b) 0.43 g

The wave shown in Fig. 22-9 is being sent out by a 60 cycle/s vibrator. Find the following for the wave: (a)
amplitude, (b) frequency, (¢) wavelength, (d ) speed, (e) period. Ans. (a) 3.0 mm; (b) 60 Hz; (¢) 2.00 cm;
(d) 1.2 m/s; (e) 0.017 s

y (mm)

P /\ 777777777 /\ 777777777 /\ 7777777777777777
0 7 A 7 A T AY T

I A /A A A

Fig. 22-9

A copper wire 2.4 mm in diameter is 3.0 m long and is used to suspend a 2.0 kg mass from a beam. If a
transverse disturbance is sent along the wire by striking it lightly with a pencil, how fast will the disturbance
travel? The density of copper is 8920 kg/m®. Ans. 22 m/s

A string 180 cm long resonates in three segments to transverse waves sent down it by a 270 Hz vibrator.
What is the speed of the waves on the string? Ans. 324 m/s

A string resonates in three segments to a frequency of 165 Hz. What frequency must be used if it is to
resonate in four segments? Ans. 220 Hz

A flexible cable, 30 m long and weighing 70 N, is stretched between two poles by a force of 2.0 kN. If the
cable is struck sideways at one end, how long will it take the transverse wave to travel to the other end and
return? Ans. 0.65s
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A wire under tension vibrates with a fundamental frequency of 256 Hz. What would be the fundamental
frequency if the wire were half as long, twice as thick, and under one-fourth the tension? Ans. 128 Hz

Steel and silver wires of the same diameter and same length are stretched with equal tension. Their densities
are 7.80 g/em® and 10.6 g/ecm?, respectively. What is the fundamental frequency of the silver wire if that of
the steel is 200 Hz? Ans. 172 Hz

A string has a mass of 3.0 gram and a length of 60 cm. What must be the tension so that when vibrating
transversely its first overtone has frequency 200 Hz? Ans. 72 N

(a) At what point should a stretched string be plucked to make its fundamental tone most prominent? At
what point should it be plucked and then at what point touched (b) to make its first overtone most
prominent and (c¢) to make its second overtone most prominent? Ans. (a) center; (b) plucked at 1/4
of its length from one end, then touched at center; (¢) plucked at 1/6 of its length from one end, then touched
at 1/3 of its length from that end

What must be the length of an iron rod that has the fundamental frequency 320 Hz when clamped at its
center? Assume longitudinal vibration at a speed of 5.00 km/s. Ans. 7.81m

A rod 120 cm long is clamped at the center and is stroked in such a way as to give its first overtone. Make a
drawing showing the location of the nodes and antinodes, and determine at what other points the rod might
be clamped and still emit the same tone. Ans.  20.0 cm from either end

A metal bar 6.0 m long, clamped at its center and vibrating longitudinally in such a manner that it gives its
first overtone, vibrates in unison with a tuning fork marked 1200 vibration/s. Compute the speed of sound in
the metal. Ans. 4.8 km/s

Determine the length of the shortest air column in a cylindrical jar that will strongly reinforce the sound of a
tuning fork having a vibration rate of 512 Hz. Use v =340 m/s for the speed of sound in air.
Ans 16.6 cm

A long, narrow pipe closed at one end does not resonate to a tuning fork having a frequency of 300 Hz until
the length of the air column reaches 28 cm. (¢) What is the speed of sound in air at the existing room
temperature? (b) What is the next length of column that will resonate to the fork? Ans. (a) 0.34 km/s;
(b) 84 cm

An organ pipe closed at one end is 61.0 cm long. What are the frequencies of the first three overtones if v for
sound is 342 m/s? Ans. 420 Hz, 700 Hz, 980 Hz



Chapter 23

Sound

SOUND WAVES are compression waves in a material medium such as air, water, or steel. When
the compressions and rarefactions of the waves strike the eardrum, they result in the sensation of
sound, provided the frequency of the waves is between about 20 Hz and 20000 Hz. Waves with
frequencies above 20 kHz are called wultrasonic waves. Those with frequencies below 20 Hz are
called infrasonic waves.

EQUATIONS FOR SOUND SPEED: In an ideal gas of molecular mass M and absolute tem-
perature 7T, the speed of sound v is given by

v= \/% (ideal gas)

where R is the gas constant, and  is the ratio of specific heats ¢,/c,. 7 is about 1.67 for monatomic gases
(He, Ne, Ar), and about 1.40 for diatomic gases (N,, O,, H,).
The speed of compression waves in other materials is given by

modulus
V=
\/ density

If the material is in the form of a bar, Young’s modulus Y is used. For liquids, one must use the bulk
modulus.

THE SPEED OF SOUND IN AIR at 0°C is 331 m/s. The speed increases with temperature by
about 0.61 m/s for each 1°C rise. More precisely, sound speeds v; and v, at absolute tempera-

tures 7} and T, are related by
u_ |4
U T,

The speed of sound is essentially independent of pressure, frequency, and wavelength.

THE INTENSITY (/) of any wave is the energy per unit area, per unit time; in practice, it is
the average power carried by the wave through a unit area erected perpendicular to the direction
of propagation of the wave. Suppose that in a time Ar an amount of energy AE is carried
through an area AA that is perpendicular to the propagation direction of the wave. Then

_ AE P,
T AA At AA

It may be shown that for a sound wave with amplitude «, and frequency f, traveling with speed v in a
material of density p,

[ =27 pvag

If £ is in Hz, p is in kg/m®, v is in m/s, and g, (the maximum displacement of the atoms or molecules of
the medium) is in m, then 7/ is in W/mz.
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LOUDNESS is a measure of the human perception of sound. Although a sound wave of high in-
tensity is perceived as louder than a wave of lower intensity, the relation is far from linear. The
sensation of sound is roughly proportional to the logarithm of the sound intensity. But the exact
relation between loudness and intensity is complicated and not the same for all individuals.

INTENSITY (OR LOUDNESS) LEVEL (f) is defined by an arbitrary scale that corresponds
roughly to the sensation of loudness. The zero on this scale is taken at the sound-wave intensity
Io = 1.00 x 10~'2 W/m?, which corresponds roughly to the weakest audible sound. The intensity
level, in decibels, is then defined by
1
=10log| —
v o <10)

The decibel (dB) is a dimensionless unit. The normal ear can distinguish between intensities that differ by
an amount down to about 1 dB.

BEATS: The alternations of maximum and minimum intensity produced by the superposition of
two waves of slightly different frequencies are called beats. The number of beats per second is
equal to the difference between the frequencies of the two waves that are combined.

DOPPLER EFFECT: Suppose that a moving sound source emits a sound of frequency f;. Let v
be the speed of sound, and let the source approach the listener or observer at speed vy, measured
relative to the medium conducting the sound. Suppose further that the observer is moving toward
the source at speed v, also measured relative to the medium. Then the observer will hear a sound
of frequency f, given by

v+,
v — Uy

Jo =15

If either the source or observer is moving away from the other, the sign on its speed in the equation must
be changed.

When the source and observer are approaching each other, more wave crests strike the ear each
second than when both are at rest. This causes the ear to perceive a higher frequency than that emitted
by the source. When the two are receding, the opposite effect occurs; the frequency appears to be
lowered.

Because v + v, is the speed of a wave crest relative to the observer, and because v — v; is the speed of
a wave crest relative to the source, an alternative form is

crest speed relative to observer
crest speed relative to source

Jo=1Js

INTERFERENCE EFFECTS: Two sound waves of the same frequency and amplitude may give
rise to easily observed interference effects at a point through which they both pass. If the crests
of one wave fall on the crests of the other, the two waves are said to be in-phase. In that case,
they reinforce each other and give rise to a high intensity at that point.

However, if the crests of one wave fall on the troughs of the other, the two waves will exactly cancel
each other. No sound will then be heard at the point. We say that the two waves are then 180° (or a half
wavelength) out-of-phase.

Intermediate effects are observed if the two waves are neither in-phase nor 180° out-of-phase, but
have a fixed phase relationship somewhere in between.
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Solved Problems

An explosion occurs at a distance of 6.00 km from a person. How long after the explosion does
the person hear it? Assume the temperature is 14.0 °C.

Because the speed of sound increases by 0.61 m/s for each 1.0 °C, we have
v=2331 m/s+ (0.61)(14) m/s = 340 m/s
Using s = vt, we find that the time taken is
s 6000 m

Tv 340m/s

17.6 s

To find how far away a lightning flash is, a rough rule is the following: “Divide the time in
seconds between the flash and the sound, by three. The result equals the distance in km to the
flash.” Justify this.

1

The speed of sound is v ~ 333 m/s = 3 km/s, so the distance to the flash is
t

NESR

3

where ¢, the travel time of the sound, is in seconds and s is in kilometers. The light from the flash travels so
fast, 3 x 10% m/s, that it reaches the observer almost instantaneously. Hence 7 is essentially equal to the time
between seeing the flash and hearing the thunder. Thus the rule.

Compute the speed of sound in neon gas at 27.0 °C. For neon, M = 20.18 kg/kmol.

Neon, being monatomic, has  ~ 1.67. Therefore,

_ ART  [(1.67)(8314 1 /kmol [K)(300 K)
YTV M ¢ 20.18 kg/kmol =454 m/s

Find the speed of sound in a diatomic ideal gas that has a density of 3.50 kg/m® and a pressure of
215 kPa.
We know that v = \/yRT /M. From the gas law PV = (m/M)RT, so
RT v

M m
However, p = m/V, and so the expression for the speed becomes

3
7y ((ETTETER 103 Pa) _ 53 /s
p 3.50 kg/m

We used the fact that v ~ 1.40 for a diatomic ideal gas.

A metal rod 60 cm long is clamped at its center. It resonates in its fundamental to longitudinal
waves of 3.00 kHz. What is Young’s modulus for the material of the rod? The density of the
metal is 8700 kg/m?.

This same rod was discussed in Problem 22.11. We found there that the speed of longitudinal waves in it
is 3.6 km/s. We know that v = /Y /p, and so

Y = pv* = (8700 kg/m?®)(3600 m/s)* = 1.1 x 10" N/m?
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23.6 What is the speed of compression waves (sound waves) in water? The bulk modulus for water is
2.2 x 10° N/m>.

Ik 1 2.2 x 10° N/m?
. bu mgduus: x 10 /gn 15 ks
density 1000 kg/m

23.7 A tuning fork oscillates at 284 Hz in air. Compute the wavelength of the tone emitted at 25°C.

At 25°C, v =331 m/s+ (0.61)(25) m/s = 346 m/s
Using A = vT = v/f gives
p= MO m
f 284571

23.8 An organ pipe whose length is held constant resonates at a frequency of 224.0 Hz when the air
temperature is 15°C. What will be its resonant frequency when the air temperature is 24 °C?

The resonant wavelength must have the same value at each temperature because it depends only on the
length of the pipe. (Its nodes and antinodes must fit properly within the pipe.) But 1 = v/f, and so v/f must
be the same at the two temperatures. We thus have

(] (%} . (%)
—_— = = (224 Hz)( —
wams O S (24HY (vl)
At temperatures near room temperature, v = (331 + 0.617) m/s, where ¢ is the celsius temperature. Then we

have

B 331+ (0.61)(24)]
f> = (224.0 Hz) {W} =0.228 kHz

23.9  An uncomfortably loud sound might have an intensity of 0.54 W/m?>. Find the maximum dis-
placement of the molecules of air in a sound wave if its frequency is 800 Hz. Take the density of
air to be 1.29 kg/m® and the speed of sound to be 340 m/s.

From I = 27r2f zpva%,

1 |1 1 0.54 W/m? 6
- = =99x10°m=99
=7\ 200 (8005 Tn) \/(2)(1.29 kg/m?®)(340 m/s) . " rm
23.10 A sound has an intensity of 3.00 x 10~° W/m?. What is the sound level in dB?

1
=101Io
’ g<1.00 x 1012 W/m2>

3.00 x 1078
- IOIOg(;> — 101og (3.00 x 10*) = 10(4 + log 3.00)

1.00 x 10712
= 10(4 +0.477) = 44.8 dB

23.11 A noise-level meter reads the sound level in a room to be 85.0 dB. What is the sound intensity in
the room?
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23.13

23.14

23.15

I
1.00 x 10~12 W/m?

I 85.0
lo === =850
g(l.OO x 10712 W/m2> 10

I
1.00 x 10712 W/m?
I=(1.00x 1072 W/m?)(3.16 x 10%) = 3.16 x 107* W/m’

8= 1010g< > =85.0dB

= antilog 8.50 = 3.16 x 10°

Two sound waves have intensities of 10 and 500 W/cm?. What is the difference in their intensity
levels?

Call the 10 uW/cm? sound 4, and the other B. Then
Iy
B4 = 10log )= 10(log 1, — log I))
0

1
Bp = 1010g(1—3> = 10(log I3 — log I))
0

Subtracting gives

B — B4 =10(loglyz —logl,) = IOIOgC—B)

A

= 1010g<%) = 10log 50 = (10)(1.70)

=17 dB

Find the ratio of the intensities of two sounds if one is 8.0 dB louder than the other.

We saw in Problem 23.12 that
1
B — B = 1010g(,—3)
4
In the present case this becomes

1 1
8.0 =10log (—B) or 2 antilog 0.80 = 6.3

A tiny sound source emits sound uniformly in all directions. The intensity level at a distance of
2.0 m is 100 dB. How much sound power is the source emitting?

The energy emitted by a point source can be considered to flow out through a spherical surface which
has the source at its center. Hence, if we find the rate of flow through such a surface, it will equal the flow
from the source. Take a concentric sphere of radius 2.0 m. We know that the sound level on its surface is
100 dB. You can show that this corresponds to I = 0.010 W/m>. Thus, the energy flowing each second
through each m? of surface is 0.010 W. The total energy flow through the spherical surface is then I(47rr2),
where 7 = 0.010 W/m* and r = 2.0 m:

Power from source = (0.010 W/m?)(47)(2 m)* = 0.50 W

Notice how little power issues as sound from even such an intense source.

One typist typing furiously in a room gives rise to an average sound level of 60.0 dB. What will be
the decibel level when three equally noisy typists are working?
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If each typist emits the same amount of sound energy, then the final sound intensity /, should be three
times the initial intensity 7;. We have

I
By = log (1—/) =logl; —logl
A .
and B; =logl; —logl,
Subtraction yields
By — B; = log Iy —log],

I
from which Br = B; + log (Tf) = 60.0 dB + log3 = 60.5 dB

1

The sound level, being a logarithmic measure, rises very slowly with the number of typists.

An automobile moving at 30.0 m/s is approaching a factory whistle that has a frequency of
500 Hz. (a) If the speed of sound in air is 340 m/s, what is the apparent frequency of the whistle
as heard by the driver? (b) Repeat for the case of the car leaving the factory at the same speed.

: LU+, 340 m/s +30.0 m/s
= = H =544 H
((1) fo fs v — (500 Z) 340 m/s ~0 5 VA
RN 340 m/s + (—30.0 m/s)
(h) fo =1 p——— (500 Hz) 340 m/s — 0 =456 Hz

A car moving at 20 m/s with its horn blowing (f = 1200 Hz) is chasing another car going at
15 m/s. What is the apparent frequency of the horn as heard by the driver being chased? Take the
speed of sound to be 340 m/s.

v (1200 HZ)M

—1.22kH
v— v, 340 — 20 z

Jo=1s

When two tuning forks are sounded simultaneously, they produce one beat every 0.30 s. (a) By
how much do their frequencies differ? (b) A tiny piece of chewing gum is placed on a prong of one
fork. Now there is one beat every 0.40 s. Was this tuning fork the lower- or the higher-frequency
fork?

The number of beats per second equals the frequency difference.

. 1

(a) Frequency difference = 0305~ 3.3 Hz
. 1

(b) Frequency difference = 0405~ 2.5 Hz

Adding gum to the prong increases its mass and thereby decreases its vibrational frequency. This
lowering of frequency caused it to come closer to the frequency of the other fork. Hence the fork in
question had the higher frequency.

A tuning fork of frequency 400 Hz is moved away from an observer and toward a flat wall with a
speed of 2.0 m/s. What is the apparent frequency (a) of the unreflected sound waves coming
directly to the observer, and () of the sound waves coming to the observer after reflection? (c)
How many beats per second are heard? Assume the speed of sound in air to be 340 m/s.

(a) The fork is receding from the observer, so
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f(,:fsv+v0:(400HZ) 340 m/s+ 0

—397.7 Hz =398 H
v— v, 340 mjs — (—20ms) o007 He =398 Hz

(b) The wave crests reaching the wall are closer together than normally because the fork is moving toward
the wall. Therefore, the reflected wave appears to come from an approaching source:
v+,

, 340 m/s + 0
_ 1Y% g0 1
Jo =ty = O H) s — 2.0 ms

=402.4 Hz = 402 Hz

(¢)  Beats per second = difference between frequencies = (402.4 — 397.7) Hz = 4.7 beats per second

23.20 In Fig. 23-1, S; and S, are identical sound sources. They send out their wave crests simulta-
neously (the sources are in phase). For what values of L; — L, will constructive interference
obtain and a loud sound be heard at point P?

L
S2C'7777777777772 7777777777 ::;”P
5,
Fig. 23-1

If L, = L,, the waves from the two sources will take equal times to reach P. Crests from one will arrive
there at the same times as crests from the other. The waves will therefore be in phase at P and an interference
maximum will result.

If L, = L, + 4, then the wave from S| will be one wavelength behind the one from S, when they reach
P. But because the wave repeats each wavelength, a crest from S; will still reach P at the same time a crest
from S, does. Once again the waves are in phase at P and an interference maximum will exist there.

In general, a loud sound will be heard at P when L, — L, = +n 4, where n is an integer.

23.21 The two sound sources in Fig. 23-1 vibrate in-phase. A loud sound is heard at P when L; = L,.
As L; is slowly increased, the weakest sound is heard when L; — L, has the values 20.0 cm,
60.0 cm, and 100 cm. What is the frequency of the sound source if the speed of sound is
340 m/s?

The weakest sound will be heard at P when a crest from S| and a trough from S, reach there at the same
time. This will happen if L; — L, is %/1, or A+ %/l, or 24+ %}v, and so on. Hence the increase in L; between
weakest sounds is A, and from the data we see that A = 0.400 m. Then, from 1 =v/f,

v 340 m/s

S == 0a00m ~ PO Hz

Supplementary Problems

23.22 Three seconds after a gun is fired, the person who fired the gun hears an echo. How far away was the surface
that reflected the sound of the shot? Use 340 m/s for the speed of sound. Ans. 510 m
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What is the speed of sound in air when the air temperature is 31 °C? Ans. 0.35 km/s

A shell fired at a target 800 m distant was heard to strike it 5.0 s after leaving the gun. Compute the average
horizontal velocity of the shell. The air temperature is 20 °C. Ans. 0.30 km/s

In an experiment to determine the speed of sound, two observers, A and B, were stationed 5.00 km apart.
Each was equipped with gun and stopwatch. Observer A heard the report of B’s gun 15.5 s after seeing
its flash. Later, A fired his gun and B heard the report 14.5 s after seeing the flash. Determine the speed
of sound and the component of the speed of the wind along the line joining A to B.
Ans. 334 m/s, 11.1 m/s

A disk has 40 holes around its circumference and is rotating at 1200 rpm. Determine the frequency and
wavelength of the tone produced by the disk when a jet of air is blown against it. The temperature is
15°C. Ans. 0.80 kHz, 0.43 m

Determine the speed of sound in carbon dioxide (M = 44 kg/kmol, v = 1.30) at a pressure of 0.50 atm and a
temperature of 400 °C. Ans. 0.41 km/s

Compute the molecular mass M of a gas for which v = 1.40 and in which the speed of sound is 1260 m/s at
precisely 0°C. Ans.  2.00 kg/kmol (hydrogen)

At S.T.P., the speed of sound in air is 331 m/s. Determine the speed of sound in hydrogen at S.T.P. if the
specific gravity of hydrogen relative to air is 0.069 0 and if v = 1.40 for both gases. Ans. 1.26 km/s

Helium is a monatomic gas that has a density of 0.179 kg/m® at a pressure of 76.0 cm of mercury and a
temperature of precisely 0 °C. Find the speed of compression waves (sound) in helium at this temperature
and pressure. Ans. 970 m/s

A bar of dimensions 1.00 cm® x 200 cm and mass 2.00 kg is clamped at its center. When vibrating longi-
tudinally it emits its fundamental tone in unison with a tuning fork making 1000 vibration/s. How much will
the bar be elongated if, when clamped at one end, a stretching force of 980 N is applied at the other
end? Ans. 0.123 m

Find the speed of compression waves in a metal rod if the material of the rod has a Young’s modulus of
1.20 x 10'° N/m? and a density of 8920 kg/m®.  Ans. 1.16 km/s

An increase in pressure of 100 kPa causes a certain volume of water to decrease by 5 x 10~ percent of its
original volume. (¢) What is the bulk modulus of water? () What is the speed of sound (compression waves)
in water?  Ans. (a) 2 x 10° N/m?; (b) 1 km/s

A sound has an intensity of 5.0 x 107’ W/m2. What is its intensity level? Ans. 57 dB

A person riding a power mower may be subjected to a sound of intensity 2.00 x 1072 W/mz. What is the
intensity level to which the person is subjected? Ans. 103 dB

A rock band might easily produce a sound level of 107 dB in a room. To two significant figures, what is the
sound intensity at 107 dB?  Ans. 0.0500 W/m?

A whisper has an intensity level of about 15 dB. What is the corresponding intensity of the
sound?  Ans. 3.2x 107" W/m?

What sound intensity is 3.0 dB louder than a sound of intensity of 10 zW/cm?? Ans. 20 W /em?

Calculate the intensity of a sound wave in air at precisely 0 °C and 1.00 atm if its amplitude is 0.0020 mm
and its wavelength is 66.2 cm. The density of air at S.T.P. is 1.293 kg/m®. Ans. 8.4 mW/m’
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What is the amplitude of vibration in a 8000 Hz sound beam if its intensity level is 62 dB? Assume that the
air is at 15°C and its density is 1.29 kg/m?>. Ans. 1.7x107° m

One sound has an intensity level of 75.0 dB while a second has an intensity level of 72.0 dB. What is the
intensity level when the two sounds are combined? Ans. 76.8 dB

A certain organ pipe is tuned to emit a frequency of 196.00 Hz. When it and the G string of a violin are
sounded together, ten beats are heard in a time of exactly 8 s. The beats become slower as the violin string is
slowly tightened. What was the original frequency of the violin string? Ans. 194.75 Hz

A locomotive moving at 30.0 m/s approaches and passes a person standing beside the track. Its whistle is
emitting a note of frequency 2.00 kHz. What frequency will the person hear (@) as the train approaches and
(b) as it recedes? The speed of sound is 340 m/s. Ans.  (a) 2.19 kHz; (b) 1.84 kHz

Two cars are heading straight at each other with the same speed. The horn of one (/' = 3.0 kHz) is blowing,
and is heard to have a frequency of 3.4 kHz by the people in the other car. Find the speed at which each car
is moving if the speed of sound is 340 m/s. Ans. 21 m/s

To determine the speed of a harmonic oscillator, a beam of sound is sent along the line of the oscillator’s
motion. The sound, which is emitted at a frequency of 8000.0 Hz, is reflected straight back by the oscillator
to a detector system. The detector observes that the reflected beam varies in frequency between the limits of
8003.1 Hz and 7996.9 Hz. What is the maximum speed of the oscillator? Take the speed of sound to be
340 m/s. Ans.  0.132 m/s

In Fig. 23-1 are shown two identical sound sources sending waves to point P. They send out wave crests
simultaneously (they are in-phase), and the wavelength of the wave is 60 cm. If L, = 200 cm, give the values
of L; for which (a¢) maximum sound is heard at P and (b) minimum sound is heard at P. Ans. (a)
(200 + 601) cm, where n =0,1,2,...; (b) (230 = 60n) cm, where n =0,1,2,... .

The two sources shown in Fig. 23-2 emit identical beams of sound (4 = 80 cm) toward one another. Each
sends out a crest at the same time as the other (the sources are in-phase). Point P is a position of maximum
intensity, that is, loud sound. As one moves from P toward Q, the sound decreases in intensity. (¢) How far
from P will a sound minimum first be heard? (b) How far from P will a loud sound be heard once
again? Ans. (a) 20 cm; (b) 40 cm




Chapter 24

Coulomb’s Law and Electric Fields

COULOMB’S LAW: Suppose that two point charges, g and ¢’, are a distance r apart in va-
cuum. If ¢ and ¢’ have the same sign, the two charges repel each other; if they have opposite
signs, they attract each other. The force experienced by ecither charge due to the other is called a
Coulomb or electric force and it is given by Coulomb’s Law,

i
Frp = k% (in vacuum)
r

As always in the SI, distances are measured in meters, and forces in newtons. The SI unit for charge ¢ is
the coulomb (C). The constant k in Coulomb’s Law has the value

k = 8.988 x 10° N-m?/C?

which we shall usually approximate as 9.0 x 10° N~m2/C2. Often, k is replaced by 1/4mey, where
€ = 8.85 x 10712 CZ/N-m2 is called the permittivity of free space. Then Coulomb’s Law becomes,
1 qq' .
E=7T— (in vacuum)
dmey 1

When the surrounding medium is not a vacuum, forces caused by induced charges in the material
reduce the force between point charges. If the material has a dielectric constant K, then ¢, in Coulomb’s
Law must be replaced by Ke, = €, where € is called the permittivity of the material. Then

For vacuum, K = 1; for air, K = 1.0006.
Coulomb’s Law also applies to uniform spherical shells or spheres of charge. In that case, r, the
distance between the centers of the spheres, must be larger than the sum of the radii of the spheres.

CHARGE IS QUANTIZED: The magnitude of the smallest charge ever measured is denoted by
e (called the quantum of charge), where e = 1.60218 x 107! C. All free charges, ones that can be
isolated and measured, are integer multiples of e. The electron has a charge of —e, while the pro-
ton’s charge is +e. Although there is good reason to believe that quarks carry charges of magni-
tude e/3 and 2e¢/3, they only exist in bound systems that have a net charge equal to an integer
multiple of e.

CONSERVATION OF CHARGE: The algebraic sum of the charges in the universe is constant.
When a particle with charge +e is created, a particle with charge —e is simultaneously created in
the immediate vicinity. When a particle with charge +e disappears, a particle with charge —e also
disappears in the immediate vicinity. Hence the net charge of the universe remains constant.

THE TEST-CHARGE CONCEPT: A fest-charge is a very small charge that can be used in
making measurements on an electric system. It is assumed that such a charge, which is tiny both
in magnitude and physical size, has a negligible effect on its environment.

232
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AN ELECTRIC FIELD is said to exist at any point in space when a test charge, placed at that
point, experiences an electrical force. The direction of the electric field at a point is the same as
the direction of the force experienced by a positive test charge placed at the point.

Electric field lines can be used to sketch electric fields. The line through a point has the same
direction at that point as the electric field. Where the field lines are closest together, the electric field
is largest. Field lines come out of positive charges (because a positive charge repels a positive test charge)
and come into negative charges (because they attract the positive test charge).

THE STRENGTH OF THE ELECTRIC FIELD (E) at a point is equal to the force experienced
by a unit positive test charge placed at that point. Because the electric field strength is a force
per unit charge, it is a vector quantity. The units of E are N/C or (see Chapter 25) V/m.
If a charge ¢ is placed at a point where the electric field due to other charges is E, the charge will
experience a force Fj given by
P, = gF

If ¢ is negative, F; will be opposite in direction to E.

ELECTRIC FIELD DUE TO A POINT CHARGE: To find E (the signed magnitude of E) due
to a point charge ¢, we make use of Coulomb’s Law. If a point charge ¢’ is placed at a distance
r from the charge ¢, it will experience a force

g (14
Fr=— 1" — I
E™ 4ne 12 1 47e 2

But if a point charge ¢’ is placed at a position where the electric field is E, then the force on ¢’ is

FE = q/E

Comparing these two expressions for Fg, we see that
_la
 4mer?

This is the electric field at a distance r from a point charge ¢g. The same relation applies at points outside
a finite spherical charge ¢. For ¢ positive, E is positive and E is directed radially outward from ¢; for ¢
negative, E is negative and E is directed radially inward.

SUPERPOSITION PRINCIPLE: The force experienced by a charge due to other charges is the
vector sum of the Coulomb forces acting on it due to these other charges. Similarly, the electric
intensity E at a point due to several charges is the vector sum of the intensities due to the indivi-
dual charges.

Solved Problems

24.1 Two coins lie 1.5 m apart on a table. They carry identical charges. Approximately how large is the
charge on each if a coin experiences a force of 2 N?

The diameter of a coin is small compared to the 1.5 m separation. We may therefore approximate the
coins as point charges. Coulomb’s Law, Fg = (k/K)q1q2/r2, gives (with K approximated as 1.00)
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5 Fgr’ (2N)(1.5m)’
N =4 =TT T 90100 Nom2/C

=5x107""C?

from which ¢ =2 x 107> C.

24.2 Repeat Problem 24.1 if the coins are separated by a distance of 1.5 m in a large vat of water. The
dielectric constant of water is about 80.

From Coulomb’s Law,

where K, the dielectric constant, is now 80. Then
Fper’K 2 N)(1.5 m)?
g JErK [N mis)
k 9 x 10° N-m?/C

24.3 A helium nucleus has charge +2¢, and a neon nucleus +10e, where e is the quantum of charge,
1.60 x 107" C. Find the repulsive force exerted on one by the other when they are 3.0
nanometers (1 nm = 107° m) apart. Assume the system to be in vacuum.

Nuclei have radii of order 107> m. We can assume them to be point charges in this case. Then
(2)(10)(1.6 x 107 C)?

50X 107 ) =51x10""" N=0.51 nN
U X 7 m

Fp= qu = (9.0 x 10° N-m?/C?)

24.4 In the Bohr model of the hydrogen atom, an electron (¢ = —e) circles a proton (¢’ = ¢) in an
orbit of radius 5.3 x 10™'" m. The attraction of the proton for the electron furnishes the centri-
petal force needed to hold the electron in orbit. Find (a) the force of electrical attraction between
the particles and (b) the electron’s speed. The electron mass is 9.1 x 107! kg.

(L6x1077C)°

ot 2 82 x 1078 N=82nN
(5.3 x 10711 m)?

I
(a) Fp =k = (9.0 x 10° N-m?/C?)
;

(b) The force found in (a) is the centripetal force, mo? /r. Therefore,

o

82 x 107 N:m’—f}

2 x 1078 N)( 2 8 10~ 1
/(8.2 x 10~ (8.2 x 10~ N(5331>< 0~ 'm) —22%10° m/s
9.1 x 10" kg

24.5 Three point charges are placed on the x-axis as shown in Fig. 24-1. Find the net force on the
—5 pC charge due to the two other charges.

from which

Because unlike charges attract, the forces on the —5uC charge are as shown. The magnitudes of F g3 and
Fpg are given by Coulomb’s Law:

(3.0 x 107 C)(5.0 x 107°°C)
(0.20 m)?

Fiy = (9.0 x 10° N-m?*/C?) =34N

(8.0 x 107°C)(5.0 x 107°C)
(0.30m)?

Fpg = (9.0 x 10° N-m?/C?) =40N
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24.6

24.7

3.0uC =5.0uC 8.0uC
+ )_»
O 20 cm 4 30 cm
-
F; Fy
Fig. 24-1 Fig. 24-2

Notice two things about the computation: (1) Proper units (coulombs and meters) must be used. (2) Because
we want only the magnitudes of the forces, we do not carry along the signs of the charges. (That is, we use
their absolute values.) The direction of each force is given by the diagram, which we drew from inspection of
the situation.
From the diagram, the resultant force on the center charge is
Fr=Fp—Fp3=40N—-34N=06N

and it is in the +x-direction.

Find the ratio of the Coulomb electric force Fr to the gravitational force F; between two
electrons in vacuum.

From Coulomb’s Law and Newton’s Law of gravitation,
2 2
Fp=k®%  and  Fy=6"%
r r
Fe kq? /P B ke
Fo  Gm?/rt ™ Gm?
(9.0 x 10° N-m?/C?)(1.6 x 10 C)*
(6.67 x 10711 N-m?/kg?)(9.1 x 103! kg)?

Therefore

=42 x10%

As you can see, the electric force is much stronger than the gravitational force.

As shown in Fig. 24-2, two identical balls, each of mass 0.10 g, carry identical charges and are
suspended by two threads of equal length. At equilibrium they position themselves as shown.
Find the charge on either ball.

Consider the ball on the left. It is in equilibrium under three forces: (1) the tension F7 in the thread; (2)
the force of gravity,

mg = (1.0 x 107" kg)(9.81 m/s*) =9.8 x 107* N

and (3) the Coulomb repulsion Fp.
Writing 3 F, = 0 and ) F, = 0 for the ball on the left, we obtain

Frcos 60°— Fp =0 and Fr sin 60° —mg =0

From the second equation,
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po_ Mg _98x107'N
T7sin60° 0.866
Substituting in the first equation gives
F = Fp cos 60° = (1.13 x 107 N)(0.50) = 5.7 x 107* N
But this is the Coulomb force, qu'/rz. Therefore,
' = — Fer* (57 % 107*N)(0.40m)’
k 9.0 x 10°N-m2/C?

=1.13x107° N

from which ¢ = 0.10 uC.

24.8 The charges shown in Fig. 24-3 are stationary. Find the force on the 4.0 uC charge due to the
other two.

+4.0uC

20 cm 20 cm

+2.0ﬂcQ60° 60°Q+ 3.0uC

Fig. 24-3

From Coulomb’s Law we have

(2.0 x 107°C)(4.0 x 107°C)

!
449 9 22
Fp=k—=(9.0x 10° N-m~/C — 18N
=y = a (0.20m)?
i _6 _6
Fry = k2L = (9.0 x 10°N-m?/C?) (3.0x 10 C)(4.02>< 10°C) 5.
4 (0.20m)

The resultant force on the 4 uC charge has components

Fry = Fry c0s 60° — Fps cos 60° = (1.8 — 2.7)(0.50) N = —0.45N
Fp, = Fpy sin 60° + Fpy sin 60° = (1.8 +2.7)(0.866) N = 3.9N

5o Fi=/F} +F}, = /(0457 + (39N =39N

The resultant makes an angle of tan™' (0.45/3.9) = 7° with the positive y-axis, that is, 6 = 97°.
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24.9

Two charges are placed on the x-axis: +3.0 4C at x = 0 and —5.0 uC at x = 40 cm. Where must a
third charge ¢ be placed if the force it experiences is to be zero?

The situation is shown in Fig. 24-4. We know that ¢ must be placed somewhere on the x-axis. (Why?)
Suppose that ¢ is positive. When it is placed in interval BC, the two forces on it are in the same direction and
cannot cancel. When it is placed to the right of C, the attractive force from the —5 pC charge is always larger
than the repulsion of the +3.0 C charge. Therefore, the force on g cannot be zero in this region. Only in the
region to the left of B can cancellation occur. (Can you show that this is also true if ¢ is negative?)

For ¢ placed as shown, when the net force on it is zero, we have F; = F5 and so, for distances in meters,

L 430 10°C) L4950 107°°C)
> (0.40m + d)*

After canceling ¢, k, and 10~° C from each side, we cross-multiply to obtain
5d° =3.0(040+d)?* or d*—12d—024=0
Using the quadratic formula, we find

b VB —dac 1.2+ V14471096

d
2a 2

=0.60£0.775m

Two values, 1.4 m and —0.18 m, are therefore found for d. The first is the correct one; the second gives the
point in BC where the two forces have the same magnitude but do not cancel.

Fy Fy +3.0uC -5.0uC

q
% d 40 cm

Fig. 24-4

24.10 Compute (a) the electric field E in air at a distance of 30 cm from a point charge

g, = 5.0 x 107 C, (b) the force on a charge ¢, = 4.0 x 107'°C placed 30 cm from ¢;, and (¢)
the force on a charge ¢; = —4.0 x 107'° C placed 30 cm from ¢, (in the absence of ¢,).

(a) E:k%: (9.0 109N-m2/C2)5Z)§01i)n;C:0.50 kN/C
directed away from g;.

(b) Fp = Eq> = (500 N/C)(4.0 x 107°C) = 2.0 x 107" N = 0.20 uN
directed away from g¢;.

(c) F = Eqy = (500 N/C)(—4.0 x 107'°C) = —0.20 uN

This force is directed toward ¢;.
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24.11 For the situation shown in Fig. 24-5, find (a) the electric field £ at point P, (b) the force on a
—4.0 x 107% C charge placed at P, and (c¢) where in the region the electric field would be zero (in
the absence of the —4.0 x 10~® C charge).

9 5.0 cm P 5.0 cm 9>
<t
+20x 1078 C -50x107%C
Fig. 24-5

(a) A positive test charge placed at P will be repelled to the right by the positive charge ¢, and attracted to
the right by the negative charge ¢,. Because E, and E, have the same direction, we can add their
magnitudes to obtain the magnitude of the resultant field:

q @l k
E—E +E —k ;|+k—|j|:—2(\q1\+|qzl)
r Fy

where r; =r, =0.05 m, and |q,| and |g¢,| are the absolute values of ¢; and ¢,. Hence,

~9.0x 10" N-m*/C’

0050 m) (25 x 107 C) = 9.0 x 10° N/C
. m

directed toward the right.
(b) A charge ¢ placed at P will experience a force Egq. Therefore,

Fp = Eq= (9.0 x 10° N/C)(—4.0 x 107°C) = —0.036 N

The negative sign tells us the force is directed toward the left. This is correct because the electric field
represents the force on a positive charge. The force on a negative charge is opposite in direction to the
field.

(¢) Reasoning as in Problem 24.9, we conclude that the field will be zero somewhere to the right of the
—5.0 x 1078 C charge. Represent the distance to that point from the —5.0 x 1078 C charge by d. At that
point,

El—E2:0

because the field due to the positive charge is to the right, while the field due to the negative charge is to
the left. Thus

20 107° 50x 107"
k(@_‘iﬂ):(9.0x1091\1.m2/c2) 0x107C  >0x107C)_,
(d+0.10 m) d

" 3
Simplifying, we obtain
3d* —0.2d — 0.01 =0

which gives d = 0.10 m and —0.03 m. Only the plus sign has meaning here, and therefore d = 0.10 m.
The point in question is 10 cm to the right of the negative charge.

24.12 Three charges are placed on three corners of a square, as shown in Fig. 24-6. Each side of the
square is 30.0 cm. Compute E at the fourth corner. What would be the force on a 6.00 C charge
placed at the vacant corner?
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FA

Fig. 24-6

The contributions of the three charges to the field at the vacant corner are as indicated. Notice in
particular their directions. Their magnitudes are given by E = kq/r2 to be

E;,=4.00x10° N/C  Eg=4.00x10°N/C  Es=5.00x10° N/C
Because the Eg vector makes an angle of 45.0° to the horizontal, we have

E, = Eg cos 45.0° — E; = —1.17 x 10° N/C

E, = Es — Eg cos 45.0° = 2.17 x 10° N/C
Using E = /E? + E and tan0 = E, /E,, we find E = 2.47 x 10° N at 118".

The force on a charge placed at the vacant corner would be simply F = Eg. Since ¢ = 6.00 x 107¢ C,
we have Fp = 1.48 N at an angle of 118°.

Two charged metal plates in vacuum are 15 cm apart as shown in Fig. 24-7. The electric field
between the plates is uniform and has a strength of E = 3000 N/C. An electron (¢ = —e,
m, = 9.1 x 107! kg) is released from rest at point P just outside the negative plate. () How
long will it take to reach the other plate? (b) How fast will it be going just before it hits?

E=3000N/C
+ > —_
+ > =
+ > —
———————————————————— -9
A P
+ > —
4e > —
k 15 cm H

Fig. 24-7
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The electric field lines show the force on a positive charge. (A positive charge would be repelled to the
right by the positive plate and attracted to the right by the negative plate.) An electron, being negative, will
experience a force in the opposite direction, toward the left, of magnitude

Fr = |qlE = (1.6 x 107" C)(3000 N/C) =4.8 x 107" N
Because of this force, the electron experiences an acceleration toward the left given by

_Fp 48x107'°N
T m 9.1 x 1073 kg

In the motion problem for the electron released at the negative plate and traveling to the positive plate,

v;=0 x=015m a=53x10"m/s

=53%x10" m/s’

(@) From x = v;t +1ar* we have

=y 2o (2015 m) S=24x10"s
a 5.3 x 10" m/s

(b) v=v;+at =0+ (53 x 10" m/s?)(2.4 x 107* s) = 1.30 x 10" m/s

As you will see in Chapter 41, relativistic effects begin to become important at speeds above this.
Therefore, this approach must be modified for very fast particles.

Suppose in Fig. 24-7 an eclectron is shot straight upward from point P with a speed of
5.0 x 10° m/s. How far above A will it strike the positive plate?

This is a projectile problem. (Since the gravitational force is so small compared to the electrical force, we
ignore gravity.) The only force acting on the electron after its release is the horizontal electric force. We
found in Problem 24.13(a) that under the action of this force the electron has a time-of-flight of 2.4 x 1078 s.
The vertical displacement in this time is

(5.0 x 10° m/s)(2.4 x 107 s) = 0.12 m

The electron strikes the positive plate 12 cm above point A.

In Fig. 24-7 a proton (¢ = 4+e, m = 1.67 x 107" kg) is shot with speed 2.00 x 10° m/s toward P
from A. What will be its speed just before hitting the plate at P?

Fr  qE (1.60 x 107" C)(3000 N/C) oo
_TE_9% _ =2. 1
T m 1.67 x 10777 kg 88 > 107 m/s

For the problem involving horizontal motion,
v, =200x10°m/s x=015m a=288x 10" m/s®
We use v_% = ’U? + 2ax to find

v = \/uf + 2ax = \/(2.00 % 105 m/s)* + (2)(2.88 x 10'" m/s%)(0.15 m) = 356 km/s

Two identical tiny metal balls have charges ¢; and ¢,. The repulsive force one exerts on the other
when they are 20 cm apart is 1.35 x 107* N. After the balls are touched together and then
separated once again to 20 cm, the repulsive force is found to be 1.406 x 10~* N. Find ¢, and ¢,.

Because the force is one of repulsion, ¢, and ¢, are of the same sign. After the balls are touched, they
share charge equally, so each has a charge %(ql + ¢»). Writing Coulomb’s Law for the two situations
described, we have
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. 135 N=k——
0-000135 0.040 m?

5 (a1 +Q2)}2

and 0.000140 6 N =k
0.040 m?

After substitution for k, these equations reduce to
G194, =6.00x 1071°C>  and ¢ +¢,=500x10°C

Solving these equations simultaneously gives ¢g; = 20 nC and ¢, = 30 nC (or vice versa). Alternatively, both
charges could have been negative.

Supplementary Problems

How many electrons are contained in 1.0 C of charge? What is the mass of the electrons in 1.0 C of
charge? Ans. 6.2 x 10" electrons, 5.7 x 107" kg

If two equal charges, each of 1 C, were separated in air by a distance of 1 km, what would be the force
between them? Ans. 9 kN repulsion

Determine the force between two free electrons spaced 1.0 angstrom (10710 m) apart. Ans. 23 nN
repulsion

What is the force of repulsion between two argon nuclei that are separated by 1.0 nm (1079 m)? The charge
on an argon nucleus is +18e. Ans. 75 nN

Two equally charged balls are 3 cm apart in air and repel each other with a force of 40 uN. Compute the
charge on each ball. Ans. 2 nC

Three point charges are placed at the following points on the x-axis: +2.0uC at x =0, —3.0uC at
x =40 cm, —5.0uC at x =120 cm. Find the force (¢) on the —3.0uC charge, (b) on the —5.0uC
charge. Ans. (a) —0.55 N; (b) 0.15 N

Four equal point charges of 3.0 uC are placed at the four corners of a square that is 40 cm on a side. Find
the force on any one of the charges. Ans. 0.97 N outward along the diagonal

Four equal-magnitude point charges (3.0 uC) are placed at the corners of a square that is 40 cm on a side.
Two, diagonally opposite each other, are positive, and the other two are negative. Find the force on either
negative charge. Ans. 0.46 N inward along the diagonal

Charges of +2.0, +3.0, and —8.0 uC are placed at the vertices of an equilateral triangle of side 10 cm.
Calculate the magnitude of the force acting on the —8.0 uC charge due to the other two charges.
Ans. 31N

One charge of (5.0 4C) is placed at exactly x = 0, and a second charge (+7.0 uC) at x = 100 cm. Where
can a third be placed so as to experience zero net force due to the other two? Ans. at x =46 cm

Two identical tiny metal balls carry charges of +3 nC and —12 nC. They are 3 m apart. (¢) Compute the
force of attraction. (b) The balls are now touched together and then separated to 3 cm. Describe the forces
on them now. Ans. (a) 4 x 107* N attraction; (b) 2 x 10™* N repulsion

A charge of +6.0 uC experiences a force of 2.0 mN in the +x-direction at a certain point in space. (a) What
was the electric field there before the charge was placed there? (b) Describe the force a — 2.0 4C charge would
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experience if it were used in place of the +6.0 uC charge. Ans. (a) 0.33 kN/C in +x-direction; (b)
0.67 mN in —x-direction

A point charge of —3.0 x 107 C is placed at the origin of coordinates. Find the electric field at the point
x = 5.0 m on the x-axis. Ans. 11 kN/C in —x-direction

Four equal-magnitude (4.0 uC) charges are placed at the four corners of a square that is 20 cm on each side.
Find the electric field at the center of the square («a) if the charges are all positive, (b) if the charges alternate
in sign around the perimeter of the square, (¢) if the charges have the following sequence around the square:
plus, plus, minus, minus. Ans. (a) zero; (b) zero; (¢) 5.1 MN/C toward the negative side

A 0.200-g ball hangs from a thread in a vertical electric field of 3.00 kN/C directed upward. What is the
charge on the ball if the tension in the thread is («) zero and (b) 4.00 mN? Ans.  (a) +653 nC; (b)
—680 nC

Determine the acceleration of a proton (¢ = +e, m = 1.67 x 10?7 kg) in an electric field of strength
0.50 kN/C. How many times is this acceleration greater than that due to gravity? Ans. 4.8 x 10'°
m/s’, 4.9 x 10°

A tiny, 0.60-g ball carries a charge of magnitude 8.0 uC. It is suspended by a thread in a downward 300 N/C
electric field. What is the tension in the thread if the charge on the ball is (a) positive, (b)
negative? Ans.  (a) 8.3 mN; (b) 3.5 mN

The tiny ball at the end of the thread shown in Fig. 24-8 has a mass of 0.60 g and is in a horizontal electric
field of strength 700 N/C. It is in equilibrium in the position shown. What are the magnitude and sign of the
charge on the ball? Ans. =3.1uC

E=700N/C

Fig. 24-8

An electron (¢ = —e, m, =9.1 x 103! kg) is projected out along the +x-axis with an initial speed of
3.0 x 10% m/s. It goes 45 cm and stops due to a uniform electric field in the region. Find the magnitude
and direction of the field. Ans. 57 N/C in +x-direction

A particle of mass m and charge —e is projected with horizontal speed v into an electric field (E) directed
downward. Find (a) the horizontal and vertical components of its acceleration, a, and ay; (b) its horizontal
and vertical displacements, x and y, after time #; (¢) the equation of its trajectory. Ans. (a) a, =0,
a, = Ee/m; (b) x = vt, y = La,i* =1 (Ee/m)?; (¢) y = L (Ee/mv’)x* (a parabola)



Chapter 25

Potential; Capacitance

THE POTENTIAL DIFFERENCE between point 4 and point B is the work done against electri-
cal forces in carrying a unit positive test-charge from A4 to B. We represent the potential differ-
ence between 4 and B by Vz—V, or by V. Its units are those of work per charge (joules/
coulomb) and are called volts (V):

1V=11J/C

Because work is a scalar quantity, so too is potential difference. Like work, potential difference may
be positive or negative.
The work W done in transporting a charge ¢ from one point A4 to a second point B is

W=q(Vg—V4)=qV

where the appropriate sign (+ or —) must be given to the charge. If both (V3 — V) and ¢ are positive
(or negative), the work done is positive. If (V3 — V) and ¢ have opposite signs, the work done is
negative.

ABSOLUTE POTENTIAL: The absolute potential at a point is the work done against electric
forces in carrying a unit positive test-charge from infinity to that point. Hence the absolute poten-
tial at a point B is the difference in potential from 4 = oo to B.

Consider a point charge ¢ in vacuum and a point P at a distance r from the point charge. The
absolute potential at P due to the charge g is

y =k
p

where k = 8.99 x 10° N.m?/C? is the Coulomb constant. The absolute potential at infinity (at r = c0) is
Zero.

Because of the superposition principle and the scalar nature of potential difference, the absolute
potential at a point due to a number of point charges is

V:k}j%

where the r; are the distances of the charges ¢; from the point in question. Negative ¢’s contribute
negative terms to the potential, while positive ¢’s contribute positive terms.

The absolute potential due to a uniformly charged sphere, at points outside the sphere or on its
surface is V' = kq/r, where ¢ is the charge on the sphere. This potential is the same as that due to a point
charge ¢ placed at the position of the sphere’s center.

ELECTRICAL POTENTIAL ENERGY (PEg): To carry a charge ¢ from infinity to a point
where the absolute potential is ¥, work in the amount ¢V must be done on the charge. This
work appears as electrical potential energy (PEg) stored in the charge.

Similarly, when a charge ¢ is carried through a potential difference V', work in the amount ¢} must
be done on the charge. This work results in a change gV in the PEj of the charge. For a potential rise, V'
will be positive and the PE will increase if ¢ is positive. But for a potential drop, V' will be negative and
the PEg of the charge will decrease if ¢ is positive.
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V' RELATED TO E: Suppose that in a certain region the electric field is uniform and is in the
x-direction. Call its magnitude E,. Because E, is the force on a unit positive test-charge, the
work done in moving the test-charge through a distance x is (from W = F,Xx)

V=ExXx

The field between two large, parallel, oppositely charged metal plates is uniform. We can therefore use
this equation to relate the electric field £ between the plates to the plate separation d and their potential
difference V': For parallel plates,

V =FEd

ELECTRON VOLT ENERGY UNIT: The work done in carrying a charge +e (coulombs)
through a potential rise of exactly 1 volt is defined to be 1 electron volt (eV). Therefore,

1eV=(1.602x10""C)(1V)=1.602x10""7
Equivalently,

work (in joules)

Work or energy (in eV) = B

A CAPACITOR is a device that stores charge. Often, although certainly not always, it consists of
two conductors separated by an insulator or dielectric. The capacitance (C) of a capacitor is de-
fined as

magnitude of charge on either conductor

Capacitance = . ——
b magnitude of potential difference between conductors

For ¢ in coulombs and V in volts, C is in farads (F).

PARALLEL-PLATE CAPACITOR: The capacitance of a parallel-plate capacitor whose opposing
plate faces, each of area A, are separated by a small distance d is given by
A
C=Ke—
€0d

where K = ¢/¢, is the dimensionless dielectric constant (see Chapter 24) of the nonconducting material
(the dielectric) between the plates, and
€ =8.85x 1072 C?*/N-m* = 8.85 x 102 F/m

For vacuum, K = 1, so that a dielectric-filled parallel-plate capacitor has a capacitance K times larger
than the same capacitor with vacuum between its plates. This result holds for a capacitor of arbitrary
shape.

CAPACITORS IN PARALLEL AND SERIES: As shown in Fig. 25-1, capacitances add for
capacitors in parallel, whereas reciprocal capacitances add for capacitors in series.

ENERGY STORED IN A CAPACITOR: The energy (PEg) stored in a capacitor of capacitance
C that has a charge ¢ and a potential difference V' is

! 1,
PE, =—qV =-CV? =
E=29Y =3

N =

q
C
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9=4q1 74" 45 9=91=9:=9;
V=v,=V,=V, V=V, +V,+ 7V,
Ceq:Cl+C2+C3 LZL_FL_FL
Ceq Cl CZ C3
(a) Capacitors in parallel (b) Capacitors in series

Fig. 25-1

Solved Problems

25.1 In Fig. 25-2, the potential difference between the metal plates is 40 V. («¢) Which plate is at the
higher potential? (b)) How much work must be done to carry a +3.0 C charge from B to 4? From
A to B? (¢) How do we know that the electric field is in the direction indicated? (d) If the plate
separation is 5.0 mm, what is the magnitude of E?

Fig. 25-2

(a) A positive test charge between the plates is repelled by 4 and attracted by B. Left to itself, the positive
test charge will move from A to B, and so A4 is at the higher potential.

(b) The magnitude of the work done in carrying a charge ¢ through a potential difference V" is ¢¥. Thus the
magnitude of the work done in the present situation is

W = (3.0 C)(40 V) = 0.12 kJ

Because a positive charge between the plates is repelled by A, positive work (+120 J) must be done to
drag the 3.0 C charge from B to 4. To restrain the charge as it moves from A to B, negative work
(=120 J) is done.
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(¢) A positive test-charge between the plates experiences a force directed from A4 to B and this is, by
definition, the direction of the field.

(d) For parallel plates, V' = Ed. Therefore,

V. 40V
d ~0.0050 m

Notice that the SI units for electric field, V/m and N/C, are identical.

E= =8.0 kV/m

How much work is required to carry an electron from the positive terminal of a 12-V battery to
the negative terminal?

Going from the positive to the negative terminal, one passes through a potential drop. In this case it is
V =—12 V. Then

W=qV=(-16x10""C)(-12V)=19x 1078 J

As a check, we notice that an electron, if left to itself, will move from negative to positive because it is a
negative charge. Hence positive work must be done to carry it in the reverse direction as required here.

How much electrical potential energy does a proton lose as it falls through a potential drop of
5kV?

The proton carries a positive charge. It will therefore move from regions of high potential to regions of
low potential if left free to do so. Its change in potential energy as it moves through a potential difference V'
is Vq. In our case, V= —5 kV. Therefore,

Change in PE; = Vg = (=5 x 10° V)(1.6 x 107" C) = -8 x 1070 J

An electron starts from rest and falls through a potential rise of 80 V. What is its final speed?

Positive charges tend to fall through potential drops; negative charges, such as electrons, tend to fall
through potential rises.

Change in PE; = Vg = (80 V)(=1.6 x 107" C) = —1.28 x 1077 J
This lost PEg appears as KE of the electron:
PEj lost = KE gained

1.28 x 1077 J = L} — Imv} = Smuf — 0

-17
vf:\/(1.28><10 DO _ 534 100 mys

9.1 x 103! kg

(a) What is the absolute potential at each of the following distances from a charge of 2.0 uC:
r =10 cm and r = 50 cm? (b) How much work is required to carry a 0.05 uC charge from the
point at r = 50 cm to that at r = 10 cm?

20x10°C

_4_ 9 N2 /(2 5
(a) Vlofkr (9.0 x 10° N-m*/C") 010m 1.8 x10° V
10
V50:5—0V10:36 kV
(b) Work = g(Vyg — Vo) = (5 x 107 C)(1.44 x 10° V) = 7.2 mJ

Suppose, in Problem 25.5(a), that a proton is released at r = 10 cm. How fast will it be moving as
it passes a point at r = 50 cm?
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As the proton moves from one point to the other, there is a potential drop of
Potential drop = 1.80 x 10° V —0.36 x 10° V = 1.44 x 10° V
The proton acquires KE as it falls through this potential drop:
KE gained = PEj, lost
o ———"
1(1.67 x 107 kg)vf — 0 = (1.6 x 107" C)(1.44 x 10° V)

from which v, = 5.3 x 10® m/s.

In Fig. 25-2, let £ = 2.0 kV/m and d = 5.0 mm. A proton is shot from plate B toward plate A4
with a speed of 100 km/s. What will be its speed just before it strikes plate 4?

The proton, being positive, is repelled by 4 and will therefore be slowed down. We need the potential
difference between the plates, which is

V =Ed= (2.0 kV/m)(0.0050 m) =10 V
Now, from the conservation of energy, for the proton,

KE lost = PEg gained
%mv%; — %mvi =qV
Substituting m =1.67x 1072 kg, v=1.00x10°m/s, ¢=1.60x10"""C, and V=10V gives
vy = 90 km/s. As we see, the proton is indeed slowed.

A tin nucleus has a charge +50e. (a) Find the absolute potential }” at a radius of 1.0 x 1072 m
from the nucleus. (b) If a proton is released from this point, how fast will it be moving when it is
1.0 m from the nucleus?

(50)(1.6 x 107" C)

=12k

(a) V:k%: (9.0 x 10° N-m?/C?)

(b) The proton is repelled by the nucleus and flies out to infinity. The absolute potential at a point is the
potential difference between the point in question and infinity. Hence there is a potential drop of 72 kV
as the proton flies to infinity.

Usually we would simply assume that 1.0 m is far enough from the nucleus to consider it to be at
infinity. But, as a check, let us compute V" at r = 1.0 m:

(50)(1.6 x 107°C)
1.0 m

Vi = k% = (9.0 x 10° N-m?/C?) —72x10°8V

which is essentially zero in comparison with 72 kV.
As the proton falls through 72 kV,
KE gained = PEj lost
%mv} - %mvl2 =qV
1(1.67 x 107 kg)vf — 0 = (1.6 x 107" C)(72000 V)

from which vy = 3.7 x 10° m/s.

The following point charges are placed on the x-axis: +2.0uC at x =20 cm, —3.0uC at
x =30 cm, —4.0 uC at x = 40 cm. Find the absolute potential on the axis at x = 0.
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Potential is a scalar, and so

4 oni 2,00 [20x10°C -3.0x10°C —4.0x10°C
V=kY Z=(9.0x10°N-m*/C
2., = 00x m/ )( 020m | 030m ' 040m

= (9.0 x 10° N-m?/C?)(10 x 107 C/m — 10 x 107°C/m — 10 x 10°°C/m) = —90 kV

25.10 Two point charges, +¢ and —¢, are separated by a distance d. Where, besides at infinity, is the
absolute potential zero?

At the point (or points) in question,

0=kL x4 or r=r
r ry

This condition holds everywhere on a plane which is the perpendicular bisector of the line joining the two
charges. Therefore the absolute potential is zero everywhere on that plane.

25.11 Four point charges are placed at the four corners of a square that is 30 cm on each side. Find the
potential at the center of the square if (a) the four charges are each +2.0 4C and (b) two of the
four charges are +2.0 uC and two are —2.0 uC.

S YN SN2y D0 X107 C) ;
(a) V_kzr[_k = (9.0x 10 Nm/c)(0.30m)(cos450)_3'4><10 v
_ _ —6
(») V= (9.0 x 10° Nom? /) (20 20-20-20) x 107°C_ g

(0.30 m)(cos 45°)

25.12 In Fig. 25-3, the charge at 4 is +200 pC, while the charge at B is —100 pC. (a) Find the absolute
potentials at points C and D. (b) How much work must be done to transfer a charge of +500 uC
from point C to point D?

200x107'°C 1.00x107'°C
0.80 m 0.20 m

&) Ve=kS L~ (9.0x10°N-m?/C2 — 225V=-23V
r

2.00 x 107'°C 100 % 1071°¢C
0.20 m 0.80 m

Vp = (9.0 x 10° N~m2/C2)< > =4788 V=479V

(b) There is a potential rise from Cto Dof V=V, — V=788V —(-2.25V)=10.13 V. So

W = Vg = (1013 V)(5.00 x 10* C) = 5.1 mJ

+200 pC D c - 100 pC

A B

% 20 cm % 60 cm >l< 20 cm A

Fig. 25-3




CHAP. 25] POTENTIAL; CAPACITANCE 249

25.13

25.14

25.15

Find the electrical potential energy of three point charges placed as follows on the x-axis: +2.0 uC
at x =0, +3.0 uC at x =20 cm, and +6.0 uC at x = 50 cm. Take the PEg to be zero when the
charges are far separated.

Let us compute how much work must be done to bring the charges from infinity to their places on the
axis. We bring in the 2.0 4C charge first; this requires no work because there are no other charges in the
vicinity.

Next we bring in the 3.0 uC charge, which is repelled by the +2.0 uC charge. The potential difference
between infinity and the position to which we bring it is due to the +2.0 uC charge and is

20uC 2x10°°C
020m 0.20 m

Vieor =k (9.0 x 109N~m2/C2)< > =9.0x10*V

Therefore the work required to bring in the 3 4C charge is
Wsuc = qVi—02 = (3.0 x 107°C)(9.0 x 10* V) = 0.270 J

Finally we bring the 6.0 uC charge in to x = 0.50 m. The potential there due to the two charges already
present is

20x107° 0x107°
onjzk< 0x10°C 3.0x10°C

_ 4
050m  030m >_12'6X10V

Therefore the work required to bring in the 6.0 uC charge is
Weue = qVi—os = (6.0 x 107°C)(12.6 x 10 V) = 0.756 J
Adding the amounts of work required to assemble the charges gives the energy stored in the system:
PE; =0.270J+0.756 J =1.07J

Can you show that the order in which the charges are brought in from infinity does not affect this result?

Two protons are held at rest, 5.0 x 107'> m apart. When released, they fly apart. How fast will
each be moving when they are far from each other?

Their original PE; will be changed to KE. We proceed as in Problem 25.13. The potential at
5.0 x 107> m from the first charge due to that charge alone is

1. 107"
V = (9.0 x 10° N-m%/C?) (%) =288 V
m

The work needed to bring in the second proton is then
W =qV = (1.60 x 107" C)(288 V) = 4.61 x 1077 J
and this is the PEg of the original system. From the conservation of energy,
Original PE; = final KE
4.61 x 1077 J = Imjof + myv3

Since the particles are identical, v; = v, = v. Solving, we find that v = 1.7 x 10° m/s when the particles are
far apart.

In Fig. 25-4 we show two large metal plates connected to a 120-V battery. Assume the plates to be
in vacuum and to be much larger than shown. Find («¢) E between the plates, (b) the force
experienced by an electron between the plates, (¢) the PEj lost by an electron as it moves from
plate B to plate A, and (d) the speed of the electron released from plate B just before striking plate
A.

(a) Eisdirected from the positive plate 4 to the negative plate B. It is uniform between large parallel plates
and is given by
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Vo120V
E=— =500 = 0000 V/m =60 kV/m
directed from left to right.
(b) Fp=qE=(—1.6x10"" C)(6000 V/m) = =9.6 x 107" N

The minus sign tells us that F is directed oppositely to E. Since plate A is positive, the electron is
attracted by it. The force on the electron is toward the left.

(c) Change in PE; = Vg = (120 V)(=1.6 x 1077 C) = =1.92x 1077 J = -1.9x 1077 J
Notice that ¥ is a potential rise from B to A.

(d) PE[ lost = KE gained
1.92 x 1077 J = Lmvf — Lmo}

1.92x 1077 3 =1(9.1 x 107" kg)vj — 0

from which v, = 6.5 x 10° m/s.

2.0 cm

25.16 As shown in Fig. 25-5, a charged particle remains stationary between the two horizontal charged

plates. The plate separation is 2.0 cm, and m = 4.0 x 107" kg and ¢ =2.4 x 107'* C for the
particle. Find the potential difference between the plates.
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Since the particle is in equilibrium, the weight of the particle is equal to the upward electrical force.
That is,

mg = qFE
mg (4.0 x 107" kg)(9.81 m/s?) 6
E="8_ =1.63x10°V
or 7 24x10 5 C X107 V/m

But for a parallel-plate system,

V = Ed = (1.63 x 10° V/m)(0.020 m) = 33 kV

An alpha particle (¢ =2e, m=6.7 x 10777 kg) falls from rest through a potential drop of
3.0 x 10° V (3.0 MV). (¢) What is its KE in electron volts? (b)) What is its speed?

qV  (2¢)(3.0 x 10°)

(a) Energy in eV ==~ = =6.0 x 10° eV = 6.0 MeV

e

(b) PE;; lost = KE gained
gV =} — b
(2)(1.6 x 1072.C)(3.0 x 10° V) = 1(6.7 x 10 kg)v} — 0

from which v, = 1.7 x 107 m/s.

What is the speed of a 400 eV (a) electron, (b) proton, and (c¢) alpha particle?
In each case we know that the particle’s kinetic energy is

1.60 x 10712 J

Lon? —
SNV (400 eV) ( 100 eV

) =640 x 10717 J

Substituting m, = 9.1 x 1073 kg for the electron, m, = 1.67 x 10°% kg for the proton, and m, =
4(1.67 x 10727 kg) for the alpha particle gives their speeds as () 1.186 x 107 m/s, (b) 2.77 x 10° m/s, and
(¢) 1.38 x 10° m/s.

A capacitor has a capacitance of 8.0 uF with air between its plates. Determine its capacitance
when a dielectric with dielectric constant 6.0 is placed between its plates.

C with dielectric = K(C with air) = (6.0)(8.0 uF) = 48 uF

What is the charge on a 300 pF capacitor when it is charged to a voltage of 1.0 kV?

qg=CV = (300 x 1072 F)(1000 V) = 3.0 x 10~ C = 0.30 uC

A metal sphere mounted on an insulating rod carries a charge of 6.0 nC when its potential is
200 V higher than its surroundings. What is the capacitance of the capacitor formed by the sphere
and its surroundings?

g 60x107°C

C=y="00v

=30 pF
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25.22 A 1.2 uF capacitor is charged to 3.0 kV. Compute the energy stored in the capacitor.

Energy = LgV =1CV? =1(1.2 x 107° F)(3000 V)* = 5.4 J

25.23 The series combination of two capacitors shown in Fig. 25-6 is connected across 1000 V. Com-
pute (@) the equivalent capacitance C,q of the combination, (b) the magnitudes of the charges on
the capacitors, (¢) the potential differences across the capacitors, and (d ) the energy stored in the
capacitors.

o1 1
(@) Co G TG, T30pF T60pF 20 pF
from which C = 2.0 pF.

(b) In a series combination, each capacitor carries the same charge, which is the charge on the combina-
tion. Thus, using the result of (a), we have

41 = = q=CeqV = (20 x 1072F)(1000 V) = 2.0 nC

@ 20x107°C
pood 2V A0 & v — 067 KV
(©) 17 C, T 30x10 2F

¢ 20x107°C
=~ _333V=033kV
TG, 60x10°2F

d Energy in C; =3¢, V; =1(2.0 x 1072 C)(667 V) = 6.7 x 1077 J = 0.67 uJ
2 2
Energy in C; =1¢,7, =1(20x 1077 C)(333 V) =33 x 1077 J=0.33 pJ
Energy in combination = (6.7 +3.3) x 1077 J=10x 107" J=1.0 uJ

The last result is also directly given by ¢V or 1 C, V7.

Ak

2.0 pF
4 £ >~ C,
—+ —
g c, |
- -
pa "I "I I" . 6.0 pF
+I +1h_
3.0 pF 6.0 p
V'=1000 V 4ot 120 v e —
Fig. 25-6 Fig. 25-7

25.24 The parallel capacitor combination shown in Fig. 25-7 is connected across a 120 V source.
Determine the equivalent capacitance C,y, the charge on each capacitor, and the charge on the
combination.

For a parallel combination,

Ceq = Cy + C, = 2.0 pF + 6.0 pF = 8.0 pF
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25.25

25.26

Each capacitor has a 120 V potential difference impressed on it. Therefore,
g1 =C V= (2.0x 102 F)(120 V) = 0.24 nC
¢ = GV, = (6.0 x 1072 F)(120 V) = 0.72 nC

The charge on the combination is ¢; + ¢, = 960 pC. Or, we could write
q=CeqV = (8.0 x 1072 F)(120 V) = 0.96 nC

A certain parallel-plate capacitor consists of two plates, each with area 200 cm?, separated by a
0.40-cm air gap. (¢) Compute its capacitance. (b) If the capacitor is connected across a 500 V
source, find the charge on it, the energy stored in it, and the value of E between the plates. (¢) If a
liquid with K = 2.60 is poured between the plates so as to fill the air gap, how much additional
charge will flow onto the capacitor from the 500 V source?

(a) For a parallel-plate capacitor with air gap,

A 1 200 x 10~* m? BT
C=Ke==(1)(885x 1072 F/m)=————— =44 x 10" F =44 pF
fog = (D85 x /™) 0% 10 m % P
(b) q=CV = (44 x10"""F)(500 V) =2.2 x 107 C = 22 nC

Energy = igV =122 x 107°C)(500 V) = 5.5 x 1070 J = 5.5 uJ

v 500V
d 40x1073 m

(¢) The capacitor will now have a capacitance K = 2.60 times larger than before. Therefore,

E= =13 x10° V/m

g=CV =(2.60x44x10""F)(500 V) =5.7x 10°* C =57 nC
The capacitor already had a charge of 22 nC and so 57 nC — 22 nC or 35 nC must have been added to it.

Two capacitors, 3.0 uF and 4.0 pF, are individually charged across a 6.0-V battery. After being
disconnected from the battery, they are connected together with a negative plate of one attached
to the positive plate of the other. What is the final charge on each capacitor?

The situation is shown in Fig. 25-8. Before being connected, their charges are
¢ =CV =(30x10°F)(6.0 V) = 18 uC
qs = CV = (4.0 x 10°°F)(6.0 V) = 24 uC
These charges partly cancel when the capacitors are connected together. Their final charges are given by

3+ qs=qs—q3 = 6.0 uC

g3=18uC :.||.i
TR N |
°:I

A <t v > B
q,=24uC
—apt+ _ F
Sl -IF
94
(a) Before (b) After

Fig. 25-8



254

25.27

25.28

25.29

25.30

25.31

25.32

25.33

25.34

25.35

25.36

25.37

25.38

POTENTIAL; CAPACITANCE [CHAP. 25

Also, the potentials across them are now the same, so that V' = ¢/C gives
@ 4
30x10°F 40x10°F

Substitution in the previous equation gives
0.75¢4 + g4 =6.0uC  or g, =34 uC

or g5=0.75q,

Then ¢35 = 0.75¢; = 2.6 uC.

Supplementary Problems

Two metal plates are attached to the two terminals of a 1.50-V battery. How much work is required to carry
a +5.0-uC charge (a) from the negative to the positive plate, (b) from the positive to the negative
plate? Ans. (a) 7.5u), (b) =7.5u]

The plates described in Problem 25.27 are in vacuum. An electron (¢ = —e, m, = 9.1 X 1073 kg) is released
at the negative plate and falls freely to the positive plate. How fast is it going just before it strikes the
plate? Ans. 7.3 x 10° m/s

A proton (¢ = e, m, = 1.67 x 10727 kg) is accelerated from rest through a potential difference of 1.0 MV.
What is its final speed? Ans. 1.4 x 10" m/s

An electron gun shoots electrons (¢ = —e, m, = 9.1 x 103! kg) at a metal plate that is 4.0 mm away in
vacuum. The plate is 5.0 V lower in potential than the gun. How fast must the electrons be moving as they
leave the gun if they are to reach the plate? Ans. 1.3 x 10° m/s

The potential difference between two large parallel metal plates is 120 V. The plate separation is 3.0 mm.
Find the electric field between the plates. Ans. 40 kV/m toward negative plate

Anelectron (¢ = —e, m, = 9.1 x 107! kg) is shot with speed 5.0 x 10® m/s parallel to a uniform electric field
of strength 3.0 kV/m. How far will the electron go before it stops? Ans. 2.4 cm

A potential difference of 24 kV maintains a downward-directed electric field between two horizontal parallel
plates separated by 1.8 cm. Find the charge on an oil droplet of mass 2.2 x 107! kg that remains stationary
in the field between the plates. Ans. 1.6 x107'® C = 10e

Determine the absolute potential in air at a distance of 3.0 cm from a point charge of
500 pC. Ans. 15 kV

Compute the magnitude of the electric field and the absolute potential at a distance of 1.0 nm from a helium
nucleus of charge +2e¢. What is the potential energy (relative to infinity) of a proton at this
position?  Ans. 2.9 x 10° N/C, 2.9V, 4.6 x 107" J

A charge of 0.20 uC is 30 cm from a point charge of 3.0 4C in vacuum. What work is required to bring the
0.20-uC charge 18 cm closer to the 3.0-uC charge? Ans. 0.0271]

A point charge of +2.04C is placed at the origin of coordinates. A second, of —3.0 uC, is placed on
the x-axis at x =100 cm. At what point (or points) on the x-axis will the absolute potential be
zero? Ans. x=40cm and x = —0.20 m

In Problem 25.37, what is the difference in potential between the following two points on the x-axis: point A
at x = 0.1 m and point B at x = 0.9 m? Which point is at the higher potential? Ans. 4 x 10° V, point 4
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An electron is moving in the +x-direction with a speed of 5.0 x 10° m/s. There is an electric field of 3.0 kV/m
in the +x-direction. What will be the electron’s speed after it has moved 1.00 cm? Ans. 3.8 x 10 m/s

An electron has a speed of 6.0 x 10° m/s as it passes point A on its way to point B. Its speed at B is
12 x 10° m/s. What is the potential difference between 4 and B, and which is at the higher poten-
tial? Ans. 3.1V, B

A capacitor with air between its plates has capacitance 3.0 uF. What is its capacitance when wax of dielectric
constant 2.8 is placed between the plates? Ans. 8.4 uF

Determine the charge on each plate of a 0.050-uF capacitor when the potential difference between the plates
is 200 V. Ans. 10 uC

A capacitor is charged with 9.6 nC and has a 120 V potential difference between its terminals. Compute its
capacitance and the energy stored in it. Ans. 80 pF, 0.58 uJ

Compute the energy stored in a 60-pF capacitor (¢) when it is charged to a potential difference of 2.0 kV and
(b) when the charge on each plate is 30 nC. Ans. (@) 12 mJ; (b) 7.5 ud

Three capacitors, each of capacitance 120 pF, are each charged to 0.50 kV and then connected in series.
Determine (@) the potential difference between the end plates, (b) the charge on each capacitor, and (c¢) the
energy stored in the system. Ans.  (a) 1.5kV; (b) 60 nC; (¢) 45 uJ

Three capacitors (2.00 uF, 5.00 uF, and 7.00 uF) are connected in series. What is their equivalent
capacitance? Ans. 1.19 uF

Three capacitors (2.00 uF, 5.00 uF, and 7.00 uF) are connected in parallel. What is their equivalent
capacitance? Ans. 14.00 uF

The capacitor combination in Problem 25.46 is connected in series with the combination in Problem 25.47.
What is the capacitance of this new combination? Ans. 1.09 uF

Two capacitors (0.30 and 0.50 uF) are connected in parallel. (¢) What is their equivalent capacitance? A
charge of 200 C is now placed on the parallel combination. (b) What is the potential difference across it? (c)
What are the charges on the capacitors? Ans.  (a) 0.80 uF; (b) 0.25 kV; (¢) 75 uC, 0.13 mC

A 2.0-uF capacitor is charged to 50 V and then connected in parallel (positive plate to positive plate) with a
4.0-uF capacitor charged to 100 V. (a) What are the final charges on the capacitors? () What is the potential
difference across each? Ans.  (a) 0.17 mC, 0.33 mC, (b) 83 V

Repeat Problem 25.50 if the positive plate of one capacitor is connected to the negative plate of the
other. Ans.  (a) 0.10 mC, 0.20 mC; (b) 50 V

(a) Calculate the capacitance of a capacitor consisting of two parallel plates separated by a layer of paraffin
wax 0.50 cm thick, the area of each plate being 80 cm?. The dielectric constant for the wax is 2.0. (b) If the
capacitor is connected to a 100-V source, calculate the charge on the capacitor and the energy stored in the
capacitor. Ans. (a) 28 pF; (b) 2.8 nC, 0.14 uJ



Chapter 26

Current, Resistance, and Ohm’s Law

A CURRENT (I) of electricity exists in a region when a net electric charge is transported from
one point to another in that region. Suppose the charge is moving through a wire. If a charge ¢
is transported through a given cross section of the wire in a time ¢, then the current through the
wire is
=1

t
Here, ¢ is in coulombs, ¢ is in seconds, and [ is in amperes (1 A = 1 C/s). By custom the direction of the
current is taken to be in the direction of flow of positive charge. Thus, a flow of electrons to the right
corresponds to a current to the left.

A BATTERY is a source of electrical energy. If no internal energy losses occur in the battery,
then the potential difference (see Chapter 25) between its terminals is called the electromotive force
(emf) of the battery. Unless otherwise stated, it will be assumed that the terminal potential differ-
ence of a battery is equal to its emf. The unit for emf is the same as the unit for potential differ-
ence, the volt.

THE RESISTANCE (R) of a wire or other object is a measure of the potential difference (V)
that must be impressed across the object to cause a current of one ampere to flow through it:

V
R:—
1

The unit of resistance is the ohm, for which the symbol €2 (Greek omega) is used. 1 2 =1 V/A.

OHM’S LAW originally contained two parts. Its first part was simply the defining equation for
resistance, V' = IR. We often refer to this equation as being Ohm’s Law. However, Ohm also sta-
ted that R is a constant independent of V' and I. This latter part of the Law is only approxi-
mately correct.

The relation V' = IR can be applied to any resistor, where V' is the potential difference (p.d.) between
the two ends of the resistor, I is the current through the resistor, and R is the resistance of the resistor
under those conditions.

MEASUREMENT OF RESISTANCE BY AMMETER AND VOLTMETER: A series circuit
consisting of the resistance to be measured, an ammeter, and a battery is used. The current is
measured by the (low-resistance) ammeter. The potential difference is measured by connecting the
terminals of a (high-resistance) voltmeter across the resistance, i.e., in parallel with it. The resis-
tance is computed by dividing the voltmeter reading by the ammeter reading according to Ohm’s
Law, R=V/I. (If the exact value of the resistance is required, the resistances of the voltmeter
and ammeter must be considered parts of the circuit.)

THE TERMINAL POTENTIAL DIFFERENCE (or voltage) of a battery or generator when it de-
livers a current [ is related to its electromotive force e and its internal resistance r as follows:

256
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(1) When delivering current (on discharge):

Terminal voltage = (emf) — (voltage drop in internal resistance)
V=&-—1Ir

(2) When receiving current (on charge):

Terminal voltage = emf + (voltage drop in internal resistance)
V=&+1Ir

(3) When no current exists:

Terminal voltage = emf of battery or generator

RESISTIVITY: The resistance R of a wire of length L and cross-sectional area A4 is
L
R=p—
P4

where p is a constant called the resistivity. The resistivity is a characteristic of the material from which
the wire is made. For L in m, 4 in m?, and R in €, the units of p are 2-m.

RESISTANCE VARIES WITH TEMPERATURE: If a wire has a resistance R, at a tempera-
ture T, then its resistance R at a temperature 7 is

R = RO + OéRo(T — To)

where « is the temperature coefficient of resistance of the material of the wire. Usually « varies with
temperature and so this relation is applicable only over a small temperature range. The units of « are
K orec™.

A similar relation applies to the variation of resistivity with temperature. If p, and p are the
resistivities at T, and 7', respectively, then

p = po+ap(T — Tp)

POTENTIAL CHANGES: The potential difference across a resistor R through which a current
I flows is, by Ohm’s Law, /R. The end of the resistor at which the current enters is the high-
potential end of the resistor. Current always flows “downhill,” from high to low potential,
through a resistor.

The positive terminal of a battery is always the high-potential terminal if internal resistance of the
battery is negligible or small. This is true irrespective of the direction of the current through the battery.

Solved Problems

26.1 A steady current of 0.50 A flows through a wire. How much charge passes through the wire in
one minute?

Because I = g/t, we have g = It = (0.50 A)(60 s) = 30 C. (Recall that 1 A =1 C/s.)
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How many electrons flow through a light bulb each second if the current through the light bulb is
0.75 A?

From I = ¢g/1, the charge flowing through the bulb in 1.0 s is
g=1Ir=(0.75 A)(1.0s) =0.75 C

But the magnitude of the charge on each electron is e = 1.6 x 107" C. Therefore,

charge 0.75 C 18
Number — _ —47x1
umber charge/electron 1.6 x 1071 C 710

A light bulb has a resistance of 240 Q2 when lit. How much current will flow through it when it is
connected across 120 V, its normal operating voltage?
vV 120V

An electric heater uses 5.0 A when connected across 110 V. Determine its resistance.

V110 V
R=T7=%50a 2%

What is the potential drop across an electric hot plate that draws 5.0 A when its hot resistance is
24

V=IR=(50A)24 Q) =0.12 kV
The current in Fig. 26-1 is 0.125 A in the direction shown. For each of the following pairs of

points, what is their potential difference, and which point is at the higher potential? (a) 4, B; (b)
B, C;(c) C,D;(d) D, E; (e) C, E; () E, C.

10.0 Q 9.00 V
A B C
S
3.00 Q 5.00 Q
120V
S TaaLn A\
1=0.125 A D

6.00 Q

Fig. 26-1

Recall the following facts: (1) The current is the same (0.125 A) at all points in this circuit because the
charge has no other place to flow. (2) Current always flows from high to low potential through a resistor. (3)
The positive terminal of a pure emf (the long side of its symbol) is always the high-potential terminal.
Therefore, taking potential drops as negative, we have the following:

(@ Vyp=-IR=—(0.125 A)(10.1 Q) = —1.25 V; A4 is higher.
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26.8
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26.10

) Vpe=—-&=-9.00 V; B is higher.

(¢) Vep=—(0.125 A)(5.00 ©2) — (0.125 A)(6.00 ©2) = —1.38 V; C is higher.

(d) Vpg=+6&=+12.0V; E is higher.

() Verp=—(0.125 A)(5.00 2) — (0.125 A)(6.00 Q) + 12.0 V = +10.6 V; E is higher.
(f) Vec=—(0.125 A)(3.00 £2) — (0.125 A)(10.0 2) —9.00 V = —10.6 V; E is higher.

Notice that the answers to (¢) and ( /) agree with each other.

A current of 3.0 A flows through the wire shown in Fig. 26-2. What will a voltmeter read when
connected from (a) A to B, (b) 4 to C, (¢) a to D?

6.0 Q 8.0V 3.0Q 7.0V
L e L
Fig. 26-2

(a) Point 4 is at the higher potential because current always flows “downhill” through a resistor. There is a
potential drop of /R = (3.0 A)(6.0 Q) = 18 V from A to B. The voltmeter will read —18 V.

(b) In going from B to C one goes from the positive to the negative side of the battery; hence there is a
potential drop of 8.0 V from B to C. The drop adds to the drop of 18 V from A4 to B, found in (a), to
give a 26 V drop from A to C. The voltmeter will read —26 V from 4 to C.

(¢) From C to D, there is first a drop of IR = (3.0 A)(3.0 Q) = 9.0 V through the resistor. Then, because
one goes from the negative to the positive terminal of the 7.0 V battery, thereis a 7.0 V rise through the
battery. The voltmeter connected from 4 to D will read

—-8V-80V-90V+70V=-28V

Repeat Problem 26.7 if the 3.0 A current is flowing from right to left instead of from left to right.
Which point is at the higher potential in each case?

Proceeding as before, we have
(@) Vg =+(3.0)(6.0) = +18 V; B is higher.
() Ve =4(3.0)(6.0) —8.0=+10 V; C is higher.
() Vup=4(3.0)(6.0) — 8.0 + (3.0)(3.0) + 7.0 = +26 V; D is higher.

A dry cell has an emf of 1.52 V. Its terminal potential drops to zero when a current of 25 A passes
through it. What is its internal resistance?

As is shown in Fig. 26-3, the battery acts like a pure emf e in series with a resistor . We are told that,
under the conditions shown, the potential difference from A to B is zero. Therefore,

0=+4+6&—-1Ir or 0=152V-(25A)

from which the internal resistance is r = 0.061 Q.

A direct-current generator has an emf of 120 V; that is, its terminal voltage is 120 V when no
current is flowing from it. At an output of 20 A the terminal potential is 115 V. (¢) What is the
internal resistance r of the generator? (b) What will be the terminal voltage at an output of 40 A?

The situation is much like that shown in Fig. 26-3. Now, however, & = 120 V and [/ is no longer 25 A.
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25A

Fig. 26-3 Fig. 26-4

(@) In this case, / = 20 A and the p.d. from A4 to Bis 115 V. Therefore,
115V =+4120 V- (20 A)r

from which r = 0.25 Q.
(b) Now I =40 A. So

Terminal p.d. = & — Ir = 120 V — (40 A)(0.25 Q) = 110 V

As shown in Fig. 26-4 the ammeter—voltmeter method is used to measure an unknown resistance
R. The ammeter reads 0.3 A, and the voltmeter reads 1.50 V. Compute the value of R if the
ammeter and voltmeter are ideal.

R=—=—"7-=50Q

V_150V
I 03A

A metal rod is 2 m long and 8 mm in diameter. Compute its resistance if the resistivity of the
metal is 1.76 x 10°° Q-m.

M 7100

L -8
R=p—=(1.76 x107°Q m)———
P4 ( )7T(4>< 1073 m)

Number 10 wire has a diameter of 2.59 mm. How many meters of number 10 aluminum wire are
needed to give a resistance of 1.0 Q? p for aluminum is 2.8 x 107°Q-m.

From R = pL/A, we have

-3 2
L RA_(0QmMES9x 107 mY4 g
P 28 x 1078 Q-m

(This problem introduces a unit sometimes used in the United States.) Number 24 copper wire has
diameter 0.020 1 in. Compute (@) the cross-sectional area of the wire in circular mils and (b) the
resistance of 100 ft of the wire. The resistivity of copper is 10.4 - circular mils/ft.

The area of a circle in circular mils is defined as the square of the diameter of the circle expressed in mils,
where 1 mil = 0.001 in.
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(a) Area in circular mils = (20.1 mil)* = 404 circular mils
L (10.4 © - circular mil/ft) 100 ft
Q R= Pa~ 404 circular mils =2570

The resistance of a coil of copper wire is 3.35 © at 0°C. What is its resistance at 50 °C? For
copper, a = 4.3 x 1073 °C™ 1.

R =Ry + aRy(T — Ty) =335 Q+ (4.3 x 1072 °C7")(3.35 2)(50°C) = 4.1 Q

A resistor is to have a constant resistance of 30.0 €2, independent of temperature. For this, an
aluminum resistor with resistance Rj; at 0°C is used in series with a carbon resistor with resis-
tance Ry, at 0°C. Evaluate Ry and Ry, given that a; = 3.9 x 107°°C~! for aluminum and
ay = —0.50 x 107} °C~! for carbon.

The combined resistance at temperature 7" will be
R = [Ro1 + a1 Ry (T = Tp)] + [Rop + xR (T — T
= (Ro1 + Rpz) + (a1 Ro; + aa Ry )(T — Tp)
We thus have the two conditions
Ry + Ry, = 30.0 Q and a1 Ry + xRy =0
Substituting the given values of a; and a», then solving for Ry, and Ry, we find
Ry =340 Ry, =27 Q

In the Bohr model, the electron of a hydrogen atom moves in a circular orbit of radius
53 x 107" m with a speed of 2.2 x 10° m/s. Determine its frequency / and the current I in
the orbit.

v 2.2 % 10° m/s s
=—=———+_=66x10
S = T B3 10T m) X 107 rev/s
Each time the electron goes around the orbit, it carries a charge e around the loop. The charge passing a
point on the loop each second is

IT=ef = (1.6 x 1077 C)(6.6 x 10" s7') = 1.1 mA

A wire that has a resistance of 5.0 Q is passed through an extruder so as to make it into a new
wire three times as long as the original. What is the new resistance?

We shall use R = pL/A to find the resistance of the new wire. To find p, we use the original data for the
wire:
5.0 Q:pLo/AO or p = (Ao/Lo)(SO Q)
We were told that L = 3L,,. To find 4 in terms of 4,, we note that the volume of the wire cannot change.
Hence,
VO = L()AO and VO =LA

L A
from which LA =LyA, or A= (—0) (4o) ==L

_ L (A40/Lo)(5.0 2)(3Ly)
Therefore, R= i N

=9(5.0 Q) =45 Q



262

26.19

26.20

26.21

26.22

26.23

26.24

26.25

26.26

26.27

26.28

26.29

26.30

26.31

CURRENT, RESISTANCE, AND OHM’S LAW [CHAP. 26

It is desired to make a wire that has a resistance of 8.0 Q from 5.0 cm® of metal that has a
resistivity of 9.0 x 1078 ©-m. What should the length and cross-sectional area of the wire be?

We use R = pL/A with R=8.0 Q and p =9.0 x 1078 Q-m. We know further that the volume of the
wire (which is LA) is 5.0 x 107® m>. Therefore we have two equations to solve for L and A:

L
8.00=(9.0x10"% Q-m) (Z) and  LA=50x10"°m’

From them, we get L =21 m and 4 = 2.4 x 107" m?.

Supplementary Problems

How many electrons per second pass through a section of wire carrying a current of 0.70 A?
Ans. 4.4 x 10" electrons/s

An electron gun in a TV set shoots out a beam of electrons. The beam current is 1.0 x 107> A. How many
electrons strike the TV screen each second? How much charge strikes the screen in a minute?
Ans. 6.3 x 10" electrons/s, —6.0 x 10~* C/min

What is the current through an 8.0-(2 toaster when it is operating on 120 V? Ans. 15 A
What potential difference is required to pass 3.0 A through 28 ? Ans. 84V

Determine the potential difference between the ends of a wire of resistance 5.0  if 720 C passes through it
per minute. Ans. 60 V

A copper bus bar carrying 1200 A has a potential drop of 1.2 mV along 24 cm of its length. What is the
resistance per meter of the bar? Ans. 4.2 pQ/m

An ammeter is connected in series with an unknown resistance, and a voltmeter is connected across the
terminals of the resistance. If the ammeter reads 1.2 A and the voltmeter reads 18 V, compute the value of
the resistance. Assume ideal meters. Ans. 15Q

An electric utility company runs two 100 m copper wires from the street mains up to a customer’s premises.
If the wire resistance is 0.10 Q per 1000 m, calculate the line voltage drop for an estimated load current of
120 A. Ans. 24V

When the insulation resistance between a motor winding and the motor frame is tested, the value obtained is
1.0 megohm (106 Q). How much current passes through the insulation of the motor if the test voltage is
1000 V? Ans. 1.0 mA

Compute the internal resistance of an electric generator which has an emf of 120 V and a terminal voltage of
110 V when supplying 20 A. Ans. 0.50 Q

A dry cell delivering 2 A has a terminal voltage of 1.41 V. What is the internal resistance of the cell if its
open-circuit voltage is 1.59 V? Ans. 0.09 Q

A cell has an emf of 1.54 V. When it is in series with a 1.0-{2 resistance, the reading of a voltmeter connected
across the cell terminals is 1.40 V. Determine the cell’s internal resistance. Ans. 0.10 Q
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26.32

26.33

26.34

26.35

26.36

26.37

26.38

26.39

26.40

26.41

The internal resistance of a 6.4-V storage battery is 4.8 m{2. What is the theoretical maximum current on
short circuit? (In practice the leads and connections have some resistance, and this theoretical value would
not be attained.) Ans. 1.3 kA

A Dbattery has an emf of 13.2 V and an internal resistance of 24.0 m). If the load current is 20.0 A, find the
terminal voltage. Ans. 12.7V

A storage battery has an emf of 25.0 V and an internal resistance of 0.200 Q2. Compute its terminal voltage
(a) when it is delivering 8.00 A and (b) when it is being charged with 8.00 A. Ans. (a)23.4 V;(b)26.6 V

A battery charger supplies a current of 10 A to charge a storage battery which has an open-circuit voltage of
5.6 V. If the voltmeter connected across the charger reads 6.8 V, what is the internal resistance of the battery
at this time? Ans. 0.12 Q

Find the potential difference between points 4 and B in Fig. 26-5 if R is 0.70 2. Which point is at the higher
potential? Ans. —5.1 V, point 4

6.0V 2.0 Q 9.0V R
30A 4 '-| ke VvV . |_. VvV B
Fig. 26-5

Repeat Problem 26.36 if the current flows in the opposite direction and R = 0.70 €. Ans. 11.1 V, point
B

In Fig. 26-5, how large must R be if the potential drop from 4 to Bis 12 V? Ans. 3.0 Q

For the circuit of Fig. 26-6, find the potential difference from (a) 4 to B; (b) B to C, and (c¢) C to 4. Notice
that the current is given as 2.0 A. Ans. (a) —48 V; (b) +28 V; (¢) +20 V

Compute the resistance of 180 m of silver wire having a cross-section of 0.30 mm?. The resistivity of silver is
1L6x10°Q-m.  Ans. 9.6 Q

The resistivity of aluminum is 2.8 x 1078 Q-m. How long a piece of aluminum wire 1.0 mm in diameter is
needed to give a resistance of 4.0 ? Ans. 0.11 km

8.0 Q

4.0Q
Ao A
6.0V
9.0Q 12V
C '-||-°

— =

20A

Fig. 26-6
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26.42 Number 6 copper wire has a diameter of 0.162 in. (a) Calculate its area in circular mils. (b) If
p =104 Q-circular mils/ft, find the resistance of 1.0 x 10’ ft of the wire. (Refer to Problem
26.14.) Ans.  (a) 26.0 x 10° circular mils; (b) 0.40

26.43 A coil of wire has a resistance of 25.00 Q at 20°C and a resistance of 25.17 Q at 35°C. What is its
temperature coefficient of resistance? Ans. 4.5x 1074°C!



Chapter 27

Electrical Power

THE ELECTRICAL WORK (in joules) required to transfer a charge ¢ (in coulombs) through a
potential difference V' (in volts) is given by

W =gqV

When ¢ and V" are given their proper signs (i.c., voltage rises positive, and drops negative), the work will
have its proper sign. Thus, to carry a positive charge through a potential rise, a positive amount of work
must be done on the charge.

THE ELECTRICAL POWER (in watts) delivered by an energy source as it carries a charge ¢
(in coulombs) through a potential rise V' (in volts) in a time ¢ (in seconds) is

. k
Power finished = -
ime
Vi
p=-1
t
Because ¢/t = I, this can be rewritten as
P=VI

where 7 is in amperes.

THE POWER LOSS IN A RESISTOR is found by replacing V in VI by IR, or by replacing /
in VI by V/R, to obtain

V2
P=VI=I"R="
R

THE THERMAL ENERGY GENERATED IN A RESISTOR per second is equal to the power
loss in the resistor:

P=VI=1IR

CONVENIENT CONVERSIONS:

IW =1J/s=0.239 cal/s = 0.738 ft-1b/s
1kW = 1.341 hp = 56.9 Btu/min
1hp = 746 W = 33000 ft-1b/min = 42.4 Btu/min
1kW-h=3.6 x 10°J = 3.6 MJ
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27.1

27.2

27.3

27.4

27.5

27.6

27.7

ELECTRICAL POWER [CHAP. 27

Solved Problems

Compute the work and the average power required to transfer 96 kC of charge in one hour
(1.0 h) through a potential rise of 50 V.

W =gV = (96000 C)(50 V) = 4.8 x 10° J = 4.8 MJ

W 48x10°]

P= = 3600 s =13kW

How much current does a 60 W light bulb draw when connected to its proper voltage, 120 V?

From P = V1,
60 W

P
17V7—120V70.50A

An electric motor takes 5.0 A from a 110 V line. Determine the power input and the energy, in J
and kW -h, supplied to the motor in 2.0 h.

Power = P = VT = (110 V)(5.0 A) = 0.55 kW
Energy = Pt = (550 W)(7200 s) = 4.0 MJ
= (0.55 kW)(2.0 h) = 1.1 kW-h

An electric iron of resistance 20 2 takes a current of 5.0 A. Calculate the thermal energy, in
joules, developed in 30 s.

Energy = I°Rt = (5 A)*(20 ©)(30 s) = 15kJ

An electric heater of resistance 8.0 2 draws 15 A from the service mains. At what rate is thermal
energy developed, in W? What is the cost of operating the heater for a period of 4.0 h at
10 ¢/kW -h?

W =I"R= (15 A)*(8.0 Q) = 1800 W = 1.8 kW
Cost = (1.8 kW) (4.0 h)(10 ¢/kW-h) = 72 ¢

A coil develops 800 cal/s when 20 V is supplied across its ends. Compute its resistance.

P = (800 cal/s)(4.184 J/cal) = 3347 J/s
Then, because P = V> /R,

(20 V)?

== 0120
3347 1/s

A line having a total resistance of 0.20 € delivers 10.00 kW at 250 V to a small factory. What is
the efficiency of the transmission?
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We use P = VI to find I = P/V. Then

P\’ 10000 W\ >
1 1 = 2 = —_— = —_— =
Power lost in line = I°R = (V) R ( 750 ) (0.20 ©2) = 0.32 kW
power delivered by line 10.00 kW

Efficiency = =0.970 = 97.0%

power supplied to line  (10.00 + 0.32) kW

27.8 A hoist motor supplied by 240 V requires 12.0 A to lift an 800-kg load at a rate of 9.00 m/min.
Determine the power input to the motor and the power output, both in horsepower, and the
overall efficiency of the system.

Power input = IV = (12.0 A)(240 V) = 2880 W = (2.88 kW)(1.34 hp/kW) = 3.86 hp

9.00 1.00 h 1.00 mi
Power output = Fv = (800 x 9.81 N)( minm) (746 J/FS)) ( %0 (r)n;n) = 1.58 hp

1.58 hp output

= 0.408 = 40.
3.86 hp input 0408 0.8%

Efficiency =

27.9 The lights on a car are inadvertently left on. They dissipate 95.0 W. About how long will it take
for the fully charged 12.0 V car battery to run down if the battery is rated at 150 ampere-hours
(A-h)?

As an approximation, assume the battery maintains 12.0 V until it goes dead. Its 150 A -h rating means
it can supply the energy equivalent of a 150 A current that flows for 1.00 h (3600 s). Therefore, the total
energy the battery can supply is

Total output energy = (power)(time) = (V1) = (12.0 V x 150 A)(3600 s) = 6.48 x 10° J
The energy consumed by the lights in a time ¢ is
Energy dissipated = (95 W)(¢)

Equating these two energies and solving for ¢, we find ¢ = 6.82 x 10* s = 18.9 h.

27.10 What is the cost of electrically heating 50 liters of water from 40 °C to 100 °C at 8.0 ¢/kW -h?

Heat gained by water = (mass) x (specific heat) x (temperature rise)
= (50 kg) x (1000 cal/kg-°C) x (60°C) = 3.0 x 10° cal

4.184J 1kW-h 8.0 ¢
_ 6 . _
Cost = (3.0 x 10 Cdl)( 1 cal ) (3.6 x 10° J) (1 kW -h) =28¢

Supplementary Problems

27.11 A heater is labeled 1600 W/120 V. How much current does the heater draw from a 120-V source?
Ans. 133 A

27.12 A bulb is stamped 40 W/120 V. What is its resistance when lighted by a 120-V source? Ans.  0.36 kQ

27.13 A spark of artificial 10.0-MV lightning had an energy output of 0.125 MW :s. How many coulombs of
charge flowed? Ans. 0.0125C



268

27.14

27.15

27.16

27.17

27.18

27.19

27.20

27.21

27.22

27.23

27.24

27.25

27.26

27.27

27.28

ELECTRICAL POWER [CHAP. 27

A current of 1.5 A exists in a conductor whose terminals are connected across a potential difference
of 100 V. Compute the total charge transferred in one minute, the work done in transferring this charge,
and the power expended in heating the conductor if all the electrical energy is converted into
heat. Ans. 90 C, 9.0 kJ, 0.15 kW

An electric motor takes 15.0 A at 110 V. Determine («) the power input and (b) the cost of operating the
motor for 8.00 h at 10.0 ¢/kW-h. Ans. (a) 1.65 kW; (b) $1.32

A current of 10 A exists in a line of 0.15 €2 resistance. Compute the rate of production of thermal energy in
watts. Ans. 15W

An electric broiler develops 400 cal/s when the current through it is 8.0 A. Determine the resistance of the
broiler. Ans. 26 Q

A 25.0-W, 120-V bulb has a cold resistance of 45.0 2. When the voltage is switched on, what is the
instantaneous current? What is the current under normal operation? Ans. 2.67 A, 0.208 A

At a rated current of 400 A, a defective switch becomes overheated due to faulty surface contact. A milli-
voltmeter connected across the switch shows a 100-mV drop. What is the power loss due to the contact
resistance? Ans. 40.0 W

How much power does a 60 W/120 V incandescent light bulb dissipate on a voltage of 115 V? Neglect the
bulb’s decrease in resistance with lowered voltage. Ans. 55 W

A house wire is to carry a current of 30 A while dissipating no more than 1.40 W of heat per meter of its
length. What is the minimum diameter of the wire if its resistivity is 1.68 x 107* Q-m? Ans. 3.7 mm

A 10.0-92 electric heater operates on a 110-V line. Compute the rate at which it develops thermal energy in W
and in cal/s. Ans.  1.21 kW = 290 cal/s

An electric motor, which has 95 percent efficiency, uses 20 A at 110 V. What is the horsepower output of the
motor? How many watts are lost in thermal energy? How many calories of thermal energy are developed per
second? If the motor operates for 3.0 h, what energy, in MJ and in kW -h, is dissipated? Ans. 2.8 hp,
0.11 kW, 26 cal/s, 24 MJ = 6.6 kW-h

An electric crane uses 8.0 A at 150 V to raise a 450-kg load at the rate of 7.0 m/min. Determine the efficiency
of the system. Ans. 43%

What should be the resistance of a heating coil which will be used to raise the temperature of 500 g of water
from 28 °C to the boiling point in 2.0 minutes, assuming that 25 percent of the heat is lost? The heater
operates on a 110-V line. Ans. 7.2 Q

Compute the cost per hour at 8.0 ¢/kW -h of electrically heating a room, if it requires 1.0 kg/h of anthracite
coal having a heat of combustion of 8000 kcal/kg. Ans. T4 ¢/h

Power is transmitted at 80 kV between two stations. If the voltage can be increased to 160 kV without a
change in cable size, how much additional power can be transmitted for the same current? What effect does
the power increase have on the line heating loss? Ans. additional power = original power, no effect

A storage battery, of emf 6.4 V and internal resistance 0.080 €, is being charged by a current of 15 A.
Calculate (a) the power loss in internal heating of the battery, (b) the rate at which energy is stored in the
battery, and (c) its terminal voltage. Ans. (a) 18 W; (b) 96 W; (¢) 7.6 V
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27.29 A tank containing 200 kg of water was used as a constant-temperature bath. How long would it take to heat
the bath from 20 °C to 25°C with a 250-W immersion heater? Neglect the heat capacity of the tank frame
and any heat losses to the air. Ans. 4.6 h



Chapter 28

Equivalent Resistance; Simple Circuits

RESISTORS IN SERIES: When current can follow only one path as it flows through two or
more resistors connected in line, the resistors are in series. In other words, when one and only
one terminal of a resistor is connected directly to one and only one terminal of another resistor,
the two are in series and the same current passes through both. A node is a point where three or
more current-carrying wires or branches meet. There are no nodes between circuit elements (such
as capacitors, resistors, and batteries) that are connected in series. A typical case is shown in Fig.
28-1(a). For several resistors in series, their equivalent resistance R.q is given by

Ryy=R +Ry+Ry+--- (series combination)

where Ry, R,, Rs, ..., are the resistances of the several resistors. Observe that resistances in series com-
bine like capacitances in parallel (see Chapter 25). It is assumed that all connection wire is effectively
resistanceless.

In a series combination, the current through each resistance is the same as that through all the
others. The potential drop (p.d.) across the combination is equal to the sum of the individual potential
drops. The equivalent resistance in series is always greater than the largest of the individual resistances.

R,
1y
=
R, R, R R,
I I I L I
e \\\ o e A\ AN\roe AN\ o R —— .
a b c d a b
R,
I
—=
(a) Resistors in series (b) Resistors in parallel

Fig. 28-1

RESISTORS IN PARALLEL: Several resistors are connected in parallel between two nodes if
one end of each resistor is connected to one node and the other end of each is connected to the
other node. A typical case is shown in Fig. 28-1(b), where points a and b are nodes. Their
equivalent resistance Req is given by

1 1 1 1

= — ... (parallel combination)
Rq R Ry R

The equivalent resistance in parallel is always less than the smallest of the individual resistances. Connect-
ing additional resistances in parallel decreases R., for the combination. Observe that resistances in
parallel combine like capacitances in series (see Chapter 25).

The potential drop V" across each resistor in a parallel combination is the same as the potential drop
across each of the others. The current through the nth resistor is I, = V/R, and the total current
entering the combination is equal to the sum of the individual branch currents.

270
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Solved Problems

28.1 Derive the formula for the equivalent resistance R.q of resistors Ry, R,, and Rj; (a) in series and
(b) in parallel, as shown in Fig. 28-1(a) and (b).
(a) For the series network,
Vie =Vay + Ve + Vg = IRy + IRy + IRy
since the current 7 is the same in all three resistors. Dividing by I gives

v,
;":R1+R2+R3 of  Rq=R +Ry+Rs

since V,,/1 is by definition the equivalent resistance R, of the network.

(b) The p.d. is the same for all three resistors, whence

Vah I, = Vab _ Vab
H =
R, TOR;

I] ==
R,

Since the line current 7 is the sum of the branch currents,

Vv, v, vV,
I =1 I I — ab ab ab
|+ 1+ 1 R, + R, TR
Dividing by ¥V, gives
I_1+1+1 or 1_1+1+1
Vo R Ry R Ryq R Ry R

since V,,,/I is by definition the equivalent resistance R, of the network.

28.2 As shown in Fig. 28-2(a), a battery (internal resistance 1 §2) is connected in series with two
resistors. Compute (a) the current in the circuit, (b) the p.d. across each resistor, and (¢) the
terminal p.d. of the battery.

&=18V 18V 1Q 18V
il e e
r=1Q

12Q 5Q b 12Q ¢ 5Q ¢

18Q
(a) (b) (©

Fig. 28-2

The circuit is redrawn in Fig. 28-2(b) so as to show the battery resistance. We have

Ryq=50+12Q+1Q=180

Hence the circuit is equivalent to the one shown in Fig. 28-2(¢). Applying V' = IR to it, we have:

Vo18V
(a) I=F=1gq=10A
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28.5

28.6
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(b) Since I = 1.0 A, we can find the p.d. from point b to point ¢ as
Ve = IRy = (1.OA)(12Q2) =12V
and that from ¢ to d as
Vi =1IR,=(1LOA)(5Q2)=5V
Notice that [ is the same at all points in a series circuit.
(¢) The terminal p.d. of the battery is the p.d. from a to e. Therefore,
Terminal p.d.=V,, +V,,,=124+5=17V
Or, we could start at e and keep track of the voltage changes as we go through the battery from e to a.
Taking voltage drops as negative, we have

Terminal pd. = -Ir+&=—(1.0A)(1 Q)+ 18 V=17V

A 120-V house circuit has the following light bulbs turned on: 40.0 W, 60.0 W, and 75.0 W. Find
the equivalent resistance of these lights.

House circuits are so constructed that each device is connected in parallel with the others. From
P = VI = V*/R, we have for the first bulb

V2 (120 V)?
TP, 40W
Similarly, R, =240 Q and R; = 192 ). Because they are in parallel,

1 1 1 1
Ry 3600 2400 1920

eq
As a check, we note that the total power drawn from the line is 40.0 W + 60.0 W + 75.0 W=175.0 W.
Then, using P = VZ/R, we have

R, =360 O

or R, =823 Q

V2 (120 V)*
R. = = =82.30Q
¢ total power  175.0 W

What resistance must be placed in parallel with 12 €2 to obtain a combined resistance of 4 Q?

From L:L+L
Req Rl R2
we have L=L+L
40 12Q R,
NY) R,=60Q

Several 40-€) resistors are to be connected so that 15 A flows from a 120-V source. How can this
be done?

The equivalent resistance must be such that 15 A flows from 120 V. Thus,
V120V
“4 T 15A

The resistors must be in parallel, since the combined resistance is to be smaller than any of them. If the
required number of 40-Q) resistors is n, then we have

1 1
M*(m) or  m=5

=80

For each circuit shown in Fig. 28-3, determine the current / through the battery.
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5.0Q 2.0Q 7.0 Q
. LA e A

30y =L+ 20V —t—_ -
040 — 7.0Q 3.0Q 03Q — 6.0 Q 1.0Q
8.0Q 10.0 Q
— - Al
(a) (®)
15.0Q 19.0Q
1
- AN\ p- A
17V —l—+
020 T 9.0Q 8.0Q 50Q
20Q

Fig. 28-3

(a) The 3.0-Q2 and 7.0-2 resistors are in parallel; their joint resistance R; is found from
11 110
R 3007700 210
Then the equivalent resistance of the entire circuit is

or R =210

Ryq=210+500Q+04Q=750Q

and the battery current is

3 30V
=-——=40A
R 4.0

I= 750

€q

(b) The 7.0-€2, 1.0-Q2, and 10.0-2 resistors are in series; their joint resistance is 18.0 €2. Then 18.0 €2 is in
parallel with 6.0 ; their combined resistance R; is given by

1 1 1

R S R =450
R 1809 600 !

Hence, the equivalent resistance of the entire circuit is

Rq=450+200+800+030Q2=1480

and the battery current is

& 20V

=R ~1180

=14A
Req

(¢) The 5.0-Q and 19.0-92 resistors are in series; their joint resistance is 24.0 §2. Then 24.0 € is in parallel
with 8.0 ; their joint resistance R; is given by

1 1 1

S S R =600
R 200 son O R=60
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Now R; = 6.0 Q is in series with 15.0 €2; their joint resistance is 6.0 Q2 + 15.0 Q = 21.0 Q. Thus 21.0
is in parallel with 9.0 ; their combined resistance is found from

1 1 1

—— 4 Ry=63Q
R, 2100 900 2 =63

Hence the equivalent resistance of the entire circuit is

Ry =63Q2+200+020=85Q

and the battery current is

28.7 For the circuit shown in Fig. 28-4, find the current in each resistor and the current drawn from the

battery.
Notice that the p.d. from «a to b is 40 V. Therefore, the p.d. across each resistor is 40 V. Then,
40V 40V 40V
127—2.09720A 157—5'0Q78.0A 187—8.0975'0A

Because [ splits into three currents.
I=hL+L+13=20A+80A+50A=33A

24V
2.0Q + - b
- il
=
a L ﬁ ,,,,, LTE?
50Q | = |
1 al Is b ! !
e e ‘ !
el a a |
8.0Q @ ) v © !
I | |
| |
: i :
03Q L <ol
+ —_
e40V e o-/\/v\/-o
Fig. 28-4 Fig. 28-5

28.8 In Fig. 28-5, the battery has an internal resistance of 0.7 2. Find (a) the current drawn from the
battery, (b) the current in each 15-0 resistor, and (c¢) the terminal voltage of the battery.

(a) For parallel group resistance R; we have

L1113
R 15Q 150 150 159

or R =500Q

Then R =5002+030+07Q=600Q

& 24V
and =2 2V _40A
an Ry 609 0
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(b) Method 1

The three-resistor combination is equivalent to R; = 5.0 Q. A current of 4.0 A flows through it.
Hence, the p.d. across the combination is

IR, = (40 A)(50 Q) =20 V

This is also the p.d. across each 15-Q resistor. Therefore, the current through each 15-Q) resistor is

Vo o20V
sERTo 0 P A
Method 2
In this special case, we know that one-third of the current will go through each 15-) resistor. Hence
40 A

Iis = — = 1.3A
(¢) We start at ¢ and go to b outside the battery:
V from a to b = —(4.0 A)(0.3 Q) — (4.0 A)(5.0 Q) = -21.2V
The terminal p.d. of the battery is 21.2 V. Or, we could write for this case of a discharging battery,
Terminal p.d. =& —Ir=24V — (4.0 A)(0.7 Q) =212V

28.9 Find the equivalent resistance between points a and b for the combination shown in Fig. 28-6(a).

e

3.0Q 200

6.0 Q 273 Q

9.0 Q 9.0 Q
A AN~ A A

12.09\%\ $7-°9 12.0;%\ $7.09
A\om AM\o—ae

b
5.0Q 5.0Q

(@) (b)

Fig. 28-6

The 3.0-Q and 2.0-€2 resistors are in series and are equivalent to a 5.0-(2 resistor. The equivalent 5.0  is
in parallel with the 6.0 ), and their equivalent, R, is
1 1

_— = = -1 =
R, 50 Q+6.0 Q 0.20 +0.167 = 0.367 2 or R =273Q

The circuit thus far reduced is shown in Fig. 28-6(b).
The 7.0 ©2 and 2.73 Q are equivalent to 9.73 Q2. Now the 5.0 Q, 12.0 €2, and 9.73 Q are in parallel, and

their equivalent, R, is
11 N 1 N 1
R, 500 1209 9.73Q

This 2.6 Q is in series with the 9.0-Q) resistor. Therefore, the equivalent resistance of the combination is
9.00+26Q=11.6 Q.

=038 Q" or R =260
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28.10 A current of 5.0 A flows into the circuit in Fig. 28-6 at point @ and out at point b. (¢) What is the
potential difference from « to »? (b) How much current flows through the 12.0-9) resistor?

In Problem 28.9, we found that the equivalent resistance for this combination is 11.6 €2, and we are told
the current through it is 5.0 A.

(a) Voltage drop from a to b = IR.q = (5.0 A)(11.6 Q) =58 V

(b) The voltage drop from a to cis (5.0 A)(9.0 Q) = 45 V. Hence, from part (a), the voltage drop from ¢ to
b is
58V—-45V=13V
and the current in the 12.0-) resistor is

Vo o13V
== —11A
2TRT 120

28.11 As shown in Fig. 28-7, the current / divides into /; and /,. Find I, and I, in terms of 7, R, and

R,.
The potential drops across R; and R, are the same because the resistors are in parallel, so
LRy =hLR,
But I =1, + I, and so I, = I — I;. Substituting in the first equation gives
IR, =(I—1)R,=IR, — IR I R
= — = — or . R
115 1)1 2 — 11y "R 1R
Using this result together with the first equation gives
R R
L=2tn=-"1"1
R' R +R
@7.0 A
a
n
10 w % Q
R, P 0

Fig. 28-7 Fig. 28-8

28.12 Find the potential difference between points P and Q in Fig. 28-8. Which point is at the higher
potential?

From the result of Problem 28.11, the currents through P and Q are

2Q+180Q

I, =
PT1004+5Q0+20+180Q
10Q+50

IQ:IOQ+SQ+ZQ+18Q(

(70A) =40 A

70 A)=3.0A
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Now we start at point P and go through point a to point Q, to find
Voltage change from P to Q = +(4.0 A)(10 Q) — (3.0 A)(2 Q) =+34 V

(Notice that we go through a potential rise from P to a because we are going against the current. From « to
O there is a drop.) Therefore, the voltage difference between P and Q is 34 V, with Q being at the higher
potential.

28.13 For the circuit of Fig. 28-9(a), find (a) I; I, and I5; (b) the current in the 12-) resistor.

27V 27V
I, 1
a e 111t b LI b
+ — + —
12Q 1.0Q 1.0Q

@ .J\N\r. ﬁll @ 2.0 Q 22Q Ilﬁ
T Sy Y R Y Y - Y P VT -

40Q
@ .J\/\/\/_. ﬁ13 @ Izﬁ
. 8.0Q 50€Q I 8.0Q 40Q
g ! " g ’J\/\/\/" ’J\/\/\/" h
20Q
(@) vy (@]

Fig. 28-9

(a) The circuit reduces at once to that shown in Fig. 28-9(b). There we have 24 Q in parallel with 12 Q, so
the equivalent resistance below points ¢ and b is

11 n 13
Ry, 24Q 120 24Q
Adding to this the 1.0-2 internal resistance of the battery gives a total equivalent resistance of 9.0 2. To
find the current from the battery, we write
3 27V

L=7-=>—2=30A
""" Ry 900

or R, =8.00Q

This same current flows through the equivalent resistance below a and b, and so
p.d. from a to b = p.d. from cto d =1, R,;, = (3.0 A)(8.0 Q) =24V
Applying V' = IR to branch cd gives

Ve 24V
L=g,"aa 104
Ve 24V
Similarly, I = R—g” =g =20A
gh

As a check, we note that I, + 5 = 3.0 A = I;, as should be.
(b) Because I, = 1.0 A, the p.d. across the 2.0-Q resistor in Fig. 28-9(b) is (1.0 A)(2.0 Q) = 2.0 V. But this
is also the p.d. across the 12-Q resistor in Fig. 28-9(a). Applying V' = IR to the 12 Q gives
Vi, 20V
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28.14 A galvanometer has a resistance of 400 €2 and deflects full scale for a current of 0.20 mA through
it. How large a shunt resistor is required to change it to a 3.0 A ammeter?

In Fig. 28-10 we label the galvanometer G and the shunt resistance R,. At full scale deflection, the
currents are as shown.

2% 1074A ﬁ 400 Q

g We—=> ")
2.9998 A

3A

Fig. 28-10

The voltage drop from a to b across G is the same as that across R,. Therefore,
(2.9998 A)R, = (2.0 x 1074 A)(400 Q)
from which R, = 0.027 Q.

28.15 A voltmeter is to deflect full scale for a potential difference of 5.000 V across it and is to be made
by connecting