
LabVIEWTM Basics I
Course Manual

Course Software Version 6.0
September 2000 Edition
Part Number 320628G-01

LabVIEW Basics I Course Manual

Copyright

Copyright © 1993, 2000 by National Instruments Corporation, 11500 North Mopac Expressway, Austin, Texas 78759-3504.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks

LabVIEW™, National Instruments™, ni.com™, and PXI™ are trademarks of National Instruments Corporation.
Product and company names mentioned herein are trademarks or trade names of their respective companies.

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Greece 30 1 42 96 427, Germany 089 741 31 30, Hong Kong 2645 3186,
India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

© National Instruments Corporation iii LabVIEW Basics I Course Manual

Contents

Student Guide
A. About This Manual ...SG-1
B. What You Need to Get Started ...SG-3
C. Installing the Course Software..SG-4
D. Course Goals and Non-Goals ...SG-5
E. Course Map...SG-6
F. Course Conventions..SG-7

Lesson 1
Introduction to LabVIEW

A. LabVIEW.. 1-2
B. Virtual Instruments ... 1-3
C. LabVIEW Environment.. 1-6
D. LabVIEW Help Options ... 1-18
Summary, Tips, and Tricks... 1-22

Lesson 2
Creating, Editing, and Debugging a VI

A. Creating a VI... 2-2
B. Editing Techniques ... 2-11
C. Debugging Techniques ... 2-20
Summary, Tips, and Tricks... 2-25
Additional Exercises... 2-29

Lesson 3
Creating a SubVI

A. SubVIs .. 3-2
B. Icon and Connector Pane .. 3-3
C. Using SubVIs.. 3-9
D. Creating a SubVI from Sections of a VI... 3-16
Summary, Tips, and Tricks... 3-17
Additional Exercise .. 3-18

Contents

LabVIEW Basics I Course Manual iv ni.com

Lesson 4
Loops and Charts

A. While Loops..4-2
B. Waveform Charts ..4-4
C. Shift Registers...4-17
D. For Loop ...4-26
Summary, Tips, and Tricks...4-29
Additional Exercises ...4-30

Lesson 5
Arrays, Graphs, and Clusters

A. Arrays..5-2
B. Creating Arrays with Loops..5-5
C. Array Functions ..5-7
D. Polymorphism...5-10
E. Graphs ...5-13
F. Clusters ...5-30
G. Cluster Functions ..5-36
Summary, Tips, and Tricks...5-45
Additional Exercises ...5-47

Lesson 6
Case and Sequence Structures

A. Case Structure ...6-2
B. Sequence Structure ...6-11
C. Formula Node ...6-16
D. Replacing Sequence Structures...6-20
Summary, Tips, and Tricks...6-22
Additional Exercises ...6-23

Lesson 7
Strings and File I/O

A. Strings ...7-2
B. String Functions ..7-4
C. File I/O..7-11
D. Formatting Spreadsheet Strings ..7-21
E. High-Level File VIs ..7-26
Summary, Tips, and Tricks...7-36
Additional Exercises ...7-37

Contents

© National Instruments Corporation v LabVIEW Basics I Course Manual

Lesson 8
Data Acquisition and Waveforms

A. Overview and Configuration ..8-2
B. Data Acquisition VI Organization ..8-19
C. Performing a Single Analog Input ..8-21
D. The DAQ Wizards ..8-27
E. Waveform Analog Input ...8-32
F. Writing Waveform Data to File ..8-36
G. Scanning Multiple Analog Input Channels...8-39
H. Analog Output...8-43
I. Digital Input and Output ...8-47
J. Buffered Data Acquisition (Optional) ..8-50
Summary, Tips, and Tricks...8-56
Additional Exercise...8-57

Lesson 9
Instrument Control

A. Instrument Control Overview ...9-2
B. GPIB Communication and Configuration ..9-3
C. Instrument Driver Overview...9-11
D. Using Instrument Driver VIs ..9-15
E. VISA Overview ..9-23
F. Using VISA Functions and VIs ..9-26
G. Serial Port Communication...9-31
H. Waveform Transfers (Optional)..9-41
Summary, Tips, and Tricks...9-49
Additional Exercises ...9-50

Lesson 10
VI Customization

A. Customizing VI Properties..10-2
B. Creating Pop-Up Panels..10-6
C. Key Navigation ...10-11
D. Editing VIs with Difficult VI Setup Options (Optional)10-17
E. Customizing Palettes (Optional) ...10-21
Summary, Tips, and Tricks...10-27

Appendix
A. Additional Information ...A-2
B. ASCII Character Code Equivalents Table ..A-4
C. VI Quick Reference ..A-7
D. Instructor’s Notes..A-13

© National Instruments Corporation SG-1 LabVIEW Basics I Course Manual

Student Guide

Thank you for purchasing the LabVIEW Basics I course kit. You can begin
developing an application soon after you complete the exercises in this
manual. This course manual and the accompanying software are used in the
three-day, hands-on LabVIEW Basics I course. You can apply the full
purchase of this course kit towards the corresponding course registration fee
if you register within 90 days of purchasing the kit. Visit the Customer
Education section of ni.com for online course schedules, syllabi, training
centers, and class registration.

A. About This Manual
This course manual teaches you how to use LabVIEW to develop test
and measurement, data acquisition, instrument control, datalogging,
measurement analysis, and report generation applications. This course
manual assumes that you are familiar with Windows, Macintosh, or UNIX
and that you have experience writing algorithms in the form of flowcharts
or block diagrams.

The course manual is divided into lessons, each covering a topic or a set of
topics. Each lesson consists of the following:

• An introduction that describes the purpose of the lesson and what you
will learn

• A description of the topics in the lesson

• A set of exercises to reinforce those topics

• A set of additional exercises to complete if time permits

• A summary that outlines important concepts and skills taught in the
lesson

Student Guide

LabVIEW Basics I Course Manual SG-2 ni.com

Several exercises in this manual use one of the following National
Instruments hardware products:

• A plug-in multifunction data acquisition (DAQ) device connected to a
DAQ Signal Accessory containing a temperature sensor, function
generator, and LEDs

• A GPIB interface connected to an NI Instrument Simulator

If you do not have this hardware, you still can complete most of the
exercises. Be sure to use the demo versions of the VIs when you are working
through exercises. Exercises that explicitly require hardware are indicated
with an icon, shown at left. You also can substitute other hardware for those
previously mentioned. For example, you can use a GPIB instrument in place
of the NI Instrument Simulator, or another National Instruments DAQ
device connected to a signal source, such as a function generator.

Each exercise shows a picture of a finished front panel and block diagram
after you run the VI, as shown in the following illustration. After each block
diagram picture is a description of each object in the block diagram.

1 Front Panel 2 Block Diagram 3 *Comments* (do not enter these)

1

3

2

Student Guide

© National Instruments Corporation SG-3 LabVIEW Basics I Course Manual

B. What You Need to Get Started
Before you use this course manual, make sure you have all of the following
items:

❑ (Windows) Windows 95 or later installed on your computer; (Macintosh)
Power Macintosh running MacOS 7.6.1 or later; (UNIX) Sun workstation
running Solaris 2.5 or later and XWindows system software, an HP 9000
workstation model 700 series HP-UX running 10.20 or later, or a PC
running Linux kernel 2.0.x or later for the Intel x86 architecture

❑ (Windows) Multifunction DAQ device configured as Board ID 1 using
Measurement & Automation Explorer; (Macintosh) Multifunction DAQ
device in Slot 1

❑ (Windows and UNIX) GPIB interface; (Macintosh) GPIB interface in Slot 2

❑ NI Instrument Simulator and power supply

❑ DAQ Signal Accessory, wires, and cable

❑ LabVIEW Full or Professional Development System 6.0 or later

❑ A serial cable

❑ A GPIB cable

❑ (Optional) A word processing application such as (Windows) Notepad,
WordPad, (Macintosh) TeachText, (UNIX) Text Editor, vi, or vuepad

❑ LabVIEW Basics I course disks, containing the following files.

Filename Description

Disk 1

LV Basics I Directory for saving VIs created during the course
and for doing certain course exercises

basics1.llb VI library containing subVIs used during the course

nidevsim.zip Zip file containing the LabVIEW instrument driver
for the NI Instrument Simulator

Disk 2

bas1soln.exe Self-extracting archive containing the solutions to all
the course exercises

Student Guide

LabVIEW Basics I Course Manual SG-4 ni.com

Note Class exercises that use the Thermometer VI use the (Demo) Thermometer VI in
the solutions. The (Demo) Thermometer VI is in the basics1.llb.

C. Installing the Course Software
Complete the following steps to install the LabVIEW Basics I course
software.

Windows
1. Copy the basics1.llb file from course disk 1 to the

labview\user.lib directory. After you start LabVIEW, the contents
of this directory are located on the Functions»User Libraries palette.

2. Extract the contents of nidevsim.zip to the labview\instr.lib
directory. After you start LabVIEW, the NI DevSim instrument driver is
located on the Functions»Instrument I/O»Instrument Drivers
palette.

3. Copy the LV Basics I directory to the c:\exercises directory.

4. (Optional) Double-click bas1soln.exe to install the solutions to all
exercises in the c:\solutions\LV BasI Soln directory.

Macintosh
1. Copy the basics1.llb file from course disk 1 to the user.lib folder

in the labview directory. After you start LabVIEW, the contents of this
directory are located on the Functions»User Libraries palette.

2. On a Windows computer, unzip the contents of the nidevsim.zip file.
Copy the resulting directory to the labview:instrlib directory.
After you start LabVIEW, the NI DevSim instrument driver is located
on the Functions»Instrument I/O»Instrument Drivers palette.

3. Copy the LV Basics I directory to the exercises folder.

4. (Optional) On a Windows computer, extract the contents of
bas1soln.exe and copy them to your hard drive to an appropriate
folder to install the solutions to all exercises.

UNIX
1. Log in as a superuser.

2. Make sure the course disks are not write protected.

3. Mount course disk 1 and copy the basics1.llb file to the
/labview/user.lib directory. After you start LabVIEW, the
contents of this directory are located on the Functions»User Libraries
palette.

Student Guide

© National Instruments Corporation SG-5 LabVIEW Basics I Course Manual

4. On a Windows computer, unzip the contents of the nidevsim.zip file.
Copy the resulting directory to the /labview/instrlib directory.
After you start LabVIEW, the NI DevSim instrument driver is located
on the Functions»Instrument I/O»Instrument Drivers palette.

5. Copy the LV Basics I directory to the /exercises directory.

6. (Optional) On a Windows computer, extract the contents of
bas1soln.exe and copy them to your hard drive to an appropriate
directory to install the solutions to all exercises.

7. After you copy the files, use the chown command to change the owner
of each file from root to the current user.

D. Course Goals and Non-Goals
This course prepares you to do the following:

• Use LabVIEW to create applications.

• Use various debugging techniques.

• Understand front panels, block diagrams, and icons and connector
panes.

• Use built-in VIs and functions.

• Create and save VIs so you can use them as subVIs.

• Create applications that use serial port and GPIB instruments.

• Create applications that use plug-in DAQ devices.

This course does not describe any of the following:

• Programming theory

• Every built-in VI, function, or object

• The operation of the GPIB bus

• The operation of the serial port

• Analog-to-digital (A/D) theory

• Developing an instrument driver

• Developing a complete application for any student in the class

Student Guide

LabVIEW Basics I Course Manual SG-6 ni.com

E. Course Map

Introduction to
LabVIEW

Creating, Editing,
and Debugging a VI

Creating a SubVI

Loops and Charts

Arrays, Graphs,
and Clusters

Case and Sequence
Structures

Strings and
File I/O

Data Acquisition
and Waveforms

Instrument
Control

VI Customization

Student Guide

© National Instruments Corporation SG-7 LabVIEW Basics I Course Manual

F. Course Conventions
The following conventions appear in this course manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to pull
down the File menu, select the Page Setup item, and select Options from
the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon indicates that an exercise requires a plug-in GPIB interface or
DAQ device.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

right-click (Macintosh) Press <Command>-click to perform the same action as a
right-click.

© National Instruments Corporation 1-1 LabVIEW Basics I Course Manual

Lesson 1
Introduction to LabVIEW

This lesson introduces the basics of LabVIEW.

You Will Learn:

A. What LabVIEW is

B. What a virtual instrument (VI) is

C. About the LabVIEW environment, including windows, menus,
and tools

D. About the LabVIEW help options

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-2 ni.com

A. LabVIEW
LabVIEW is a graphical programming language that uses icons instead of
lines of text to create applications. In contrast to text-based programming
languages, where instructions determine program execution, LabVIEW
uses dataflow programming, where the flow of data determines execution.

In LabVIEW, you build a user interface by using a set of tools and objects.
The user interface is known as the front panel. You then add code using
graphical representations of functions to control the front panel objects.
The block diagram contains this code. In some ways, the block diagram
resembles a flowchart.

LabVIEW is integrated fully for communication with hardware such as
GPIB, VXI, PXI, RS-232, RS-485, and plug-in DAQ devices. LabVIEW
also has built-in features for connecting your application to the Web using
the LabVIEW Web Server and software standards such as TCP/IP
networking and ActiveX.

Using LabVIEW, you can create test and measurement, data acquisition,
instrument control, datalogging, measurement analysis, and report
generation applications. You also can create stand-alone executables and
shared libraries, like DLLs, because LabVIEW is a true 32-bit compiler.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-3 LabVIEW Basics I Course Manual

B. Virtual Instruments
LabVIEW programs are called virtual instruments (VIs). VIs contain three
main components—the front panel, the block diagram, and the icon and
connector pane.

The front panel is the user interface of the VI. The following example shows
a front panel.

You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input devices. Indicators are graphs,
LEDs, and other displays. Controls simulate instrument input devices and
supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. The block
diagram contains this graphical source code. Front panel objects appear as
terminals, shown at left, on the block diagram. You cannot delete a terminal
from the block diagram. The terminal disappears only after you delete its
corresponding object on the front panel. Block diagram objects include
terminals, subVIs, functions, constants, structures, and wires, which transfer
data among other block diagram objects.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-4 ni.com

The following example shows a block diagram and its corresponding front
panel.

After you build a front panel and block diagram, build the icon and the
connector pane so you can use it in another VI. AVI within another VI is
called a subVI. A subVI corresponds to a subroutine in text-based
programming languages. Every VI displays an icon, shown at left, in the
upper right corner of the front panel and block diagram windows. An icon
is a graphical representation of a VI. It can contain text, images, or a
combination of both. If you use a VI as a subVI, the icon identifies the subVI
on the block diagram of the VI.

You also need to build a connector pane, shown at left, to use the VI as a
subVI. The connector pane is a set of terminals that corresponds to the
controls and indicators of that VI, similar to the parameter list of a function
call in text-based programming languages. The connector pane defines the
inputs and outputs you can wire to the VI so you can use it as a subVI. A
connector pane receives data at its input terminals and passes the data to the
block diagram code through the front panel controls and receives the results
at its output terminals from the front panel indicators.

The power of LabVIEW lies in the hierarchical nature of the VI. After
you create a VI, you can use it as a subVI on the block diagram of a
high-level VI. There is no limit on the number of layers in the hierarchy.
Using subVIs helps you manage changes and debug the block diagram
quickly.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-5 LabVIEW Basics I Course Manual

As you create VIs, you might find that you perform a certain operation
frequently. Consider using subVIs or loops to perform that operation
repetitively. Refer to Lesson 4, Loops and Charts, for more information
about using loops. For example, the following block diagram contains two
identical operations.

You can create a subVI that performs that operation and call the subVI
twice.You also can reuse the subVI in other VIs. The following example
uses the Temperature VI as a subVI on its block diagram.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-6 ni.com

C. LabVIEW Environment
When you launch LabVIEW, the following dialog box appears.

The LabVIEW dialog box includes the following components:

• Click the New VI button to create a new VI. Click the arrow next to the
button to create another type of LabVIEW object, such as a control.

• Click the Open VI button to open an existing VI. Click the arrow next
to the button to open recently opened files.

• Click the DAQ Solutions button to launch the DAQ Solution Wizard,
which helps you find solutions for common DAQ applications.

• Click the Search Examples button to open a help file that lists and links
to all available LabVIEW example VIs.

• Click the LabVIEW Tutorial button to open the interactive LabVIEW
Tutorial. Use this tutorial to learn basic LabVIEW concepts.

• Click the Exit button to close LabVIEW. (Macintosh) Click the Quit
button.

• Use the Quick Tip section to learn more about LabVIEW. Click the
Next button to view more tips.

• Place a checkmark in the Do not show this window when launching
checkbox to disable this dialog box.

Front Panel and Block Diagram Windows
When you click the New VI button, an untitled front panel window appears.
The window displays the front panel and is one of the two LabVIEW
windows you use to build a VI. The other window contains the block
diagram. The following illustration shows a front panel window and its
corresponding block diagram window.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-7 LabVIEW Basics I Course Manual

1 Toolbar
2 Owned Label
3 Digital Numeric Control
4 Free Label
5 Digital Numeric Control Terminal

6 Knob Terminal
7 Numeric Constant
8 Multiply Function
9 Icon

10 Knob Control
11 Graph Legend
12 XY Graph
13 Wire Data Path

14 XY Graph Terminal
15 Bundle Function
16 SubVI
17 For Loop Structure

6

7

8

4

5

2 2

9

2

1

11

12

13

14

17

3

16

15

10

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-8 ni.com

Front Panel Toolbar
Use the toolbar buttons to run and edit a VI. The following toolbar appears
on the front panel.

Click the Run button to run the VI. While the VI runs, the button changes
to the following if the VI is a high-level VI.

The Run button often appears broken, shown at left, when you create or edit
a VI. This button indicates that the VI is broken and cannot run. Click this
button to display the Error list window, which lists all errors.

Click the Run Continuously button to run the VI until you abort or pause
it. You also can click the button again to disable continuous running.

While the VI runs, the Abort Execution button appears. Click this button to
stop the VI immediately.

Note Avoid using the Abort Execution button to stop a VI, and either let the VI run to
completion or design a method to stop the VI programmatically. By doing so, the VI is
at a known state. For example, you can programmatically stop a VI using a switch on the
front panel.

Click the Pause button to pause a running VI. When you click the Pause
button, LabVIEW highlights on the block diagram the location where you
paused execution. Click the button again to continue running the VI.

Select the Text Settings pull-down menu to change the font settings for
the VI, including size, style, and color.

Select The Align Objects pull-down menu to align objects along axes,
including vertical, top edge, left, and so on.

Select the Distribute Objects pull-down menu to space objects evenly,
including gaps, compression, and so on.

Select the Reorder pull-down menu when you have objects that overlap
each other and you want to define which one is in front or back of another.
Select one of the objects with the Positioning tool and then select from
Move Forward, Move Backward, Move To Front, and Move To Back.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-9 LabVIEW Basics I Course Manual

Block Diagram Toolbar
When you run a VI, buttons appear on the block diagram toolbar that you
can use to debug the VI. The following toolbar appears on the block
diagram.

Click the Highlight Execution button to see the flow of data through the
block diagram. Click the button again to disable execution highlighting.

Click the Step Into button to single-step into a loop, subVI, and so on.
Single-stepping through a VI steps through the VI node to node. Each node
blinks to denote when it is ready to execute. By stepping into the node, you
are ready to single-step inside the node.

Click the Step Over button to step over a loop, subVI, and so on. By
stepping over the node, you execute the node without single-stepping
through the node.

Click the Step Out button to step out of a loop, subVI, and so on. By
stepping out of a node, you complete single-stepping through the node and
go to the next node.

The Warning button appears when there is a potential problem with the
block diagram, but it does not stop the VI from running. You can enable the
Warning button by selecting Tools»Options and selecting Debugging
from the top pull-down menu.

Shortcut Menus
The most often-used menu is the object shortcut menu. All LabVIEW
objects and empty space on the front panel and block diagram have
associated shortcut menus. Use the shortcut menu items to change the look
or behavior of front panel and block diagram objects. To access the shortcut
menu, right-click the object, front panel, or block diagram.

(Macintosh) Press the <Command> key and click the object, front panel,
or block diagram.

Menus
The menus at the top of a VI window contain items common to other
applications, such as Open, Save, Copy, and Paste, and other items specific
to LabVIEW. Some menu items also list shortcut key combinations.

(Macintosh) The menus appear at the top of the screen.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-10 ni.com

Note Some menu items are unavailable while a VI is running.

• Use the File menu primarily to open, close, save, and print VIs.

• Use the Edit menu to search for and modify components of a VI.

• Use the Operate menu to run, abort, and change other execution options
for the VI.

• Use the Tools menu to communicate with instruments and DAQ
devices, compare VIs, build applications, enable the Web Server, and
configure LabVIEW.

• Use the Browse menu to navigate through the VI and its hierarchy.

• Use the Window menu to display LabVIEW windows and palettes.

• Use the Help menu to view information about palettes, menus, tools,
VIs, and functions, to view step-by-step instructions for using
LabVIEW features, to access the LabVIEW manuals, and to view the
LabVIEW version number and information about computer memory.

Palettes
LabVIEW has graphical, floating palettes to help you create and run VIs.
The three palettes include the Tools, Controls, and Functions palettes. You
can place these palettes anywhere on the screen.

Tools Palette
You can create, modify, and debug VIs using the tools located on the
floating Tools palette. The Tools palette is available on the front panel and
the block diagram. A tool is a special operating mode of the mouse cursor.
When you select a tool, the cursor icon changes to the tool icon. Use the
tools to operate and modify front panel and block diagram objects.

Select Window»Show Tools Palette to display the Tools palette. You can
place the Tools palette anywhere on the screen. Press the <Shift> key and
right-click to display a temporary version of the Tools palette at the location
of the cursor.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-11 LabVIEW Basics I Course Manual

Use the Operating tool to change the values of a control or select the text
within a control. The Operating tool changes to the following icon when it
moves over a text control, such as a digital or string control.

Use the Positioning tool to select, move, or resize objects. The Positioning
tool changes to one of the following icons when it moves over a corner of a
resizable object.

Use the Labeling tool to edit text and create free labels. The Labeling tool
changes to the following icon when you create free labels.

Use the Wiring tool to wire objects together on the block diagram.

Use the Object Shortcut Menu tool to access an object shortcut menu with
the left mouse button.

Use the Scrolling tool to scroll through windows without using scrollbars.

Use the Breakpoint tool to set breakpoints on VIs, functions, nodes, wires,
and structures to pause execution at that location.

Use the Probe tool to create probes on wires on the block diagram. Use the
Probe tool to check intermediate values in a VI that produces questionable
or unexpected results.

Use the Color Copy tool to copy colors for pasting with the Coloring tool.

Use the Coloring tool to color an object. It also displays the current
foreground and background color settings.

Controls and Functions Palettes
The Controls and Functions contain subpalettes of objects you can use to
create a VI. When you click a subpalette icon, the entire palette changes
to the subpalette you selected. To use an object on the palettes, click the
object and place it on the front panel or block diagram.

Use the navigation buttons on the Controls and Functions palettes to
navigate and search for controls, VIs, and functions. You also can right-click
a VI icon on the palette and select Open VI from the shortcut menu to open
the VI.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-12 ni.com

Controls Palette
Use the Controls palette to place controls and indicators on the front
panel. The Controls palette is available only on the front panel. Select
Window»Show Controls Palette or right-click the front panel workspace
to display the Controls palette. You also can display the Controls palette
by right-clicking an open area on the front panel. Tack down the Controls
palette by clicking the pushpin on the top left corner of the palette.

Functions Palette
Use the Functions palette to build the block diagram. The Functions palette
is available only on the block diagram. Select Window»Show Functions
Palette or right-click the block diagram workspace to display the Functions
palette. You also can display the Functions palette by right-clicking an open
area on the block diagram. Tack down the Functions palette by clicking the
pushpin on the top left corner of the palette.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-13 LabVIEW Basics I Course Manual

This course uses the VIs located on the Functions»User Libraries»
Basics I Course palette, shown at left.

Loading VIs
You load a VI into memory by selecting File»Open. The Choose the VI to
open dialog box appears, so you can navigate to the VI you want to open.

The VIs you edit in this course are in c:\exercises\LV Basics I.

As the VI loads, the following status dialog box might appear.

The Loading field lists the subVIs of the VI as they are loaded into memory.
Number Loaded is the number of subVIs loaded into memory so far. You
can cancel the load at any time by clicking the Stop button.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-14 ni.com

If LabVIEW cannot immediately locate a subVI, it begins searching through
all directories specified by the VI Search Path, which you can edit by
selecting Tools»Options and selecting Paths from the top pull-down menu.
The Searching field lists directories or VIs as LabVIEW searches through
them. You can have LabVIEW ignore a subVI by clicking the Ignore SubVI
button, or you can click the Browse button to search for the missing subVI.

Saving VIs
Select Save, Save As, Save All, or Save with Options from the File menu
to save VIs as individual files or group several VIs together and save them
in a VI library. VI library files end with the extension .llb. National
Instruments recommends that you save VIs as individual files, organized in
directories, especially if multiple developers are working on the same
project.

LabVIEW uses native file dialogs for loading and saving. You can disable
this feature by selecting Tools»Options and selecting Miscellaneous from
the top pull-down menu.

Moving VIs Across Platforms
You can transfer VIs from one platform to another, such as from Macintosh
to Windows. LabVIEW automatically translates and recompiles the VIs on
the new platform.

Because VIs are files, you can use any file transfer method or utility to
move VIs between platforms. You can port VIs over networks using FTP,
Z or XModem protocols, or similar utilities. Such network transfers
eliminate the need for additional file translation software. If you port VIs
using magnetic media, such as floppy disks or a moveable external hard
drive, you need a generic file transfer utility program, such as the following:

• (Windows) MacDisk and TransferPro transfer Macintosh files to the
PC format and vice versa.

• (Macintosh) DOS Mounter, MacLink, and Apple File Exchange convert
PC files to the Macintosh format and vice versa.

• (Sun) PC File System (PCFS) converts PC files to the Sun format and
vice versa.

• (HP-UX) The doscp command mounts PC disks and copies their files.

Note Certain operating system-specific VIs are not portable between platforms, such as
DDE (Dynamic Data Exchange) VIs, ActiveX VIs, and AppleEvents.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-15 LabVIEW Basics I Course Manual

Exercise 1-1 Frequency Response VI
Objective: To open and run a VI.

1. Select Start»Programs»National Instruments»LabVIEW 6»
LabVIEW to launch LabVIEW. The LabVIEW dialog box appears.

2. Click the Search Examples button. The help file that appears lists and
links to all available LabVIEW example VIs.

3. Click Demonstrations, Instrument I/O, and then Frequency
Response. The Frequency Response VI front panel appears.

Note You also can open the VI by clicking the Open VI button and navigating to the
labview\examples\apps\freqresp.llb\Frequency Response.vi.

Front Panel
4. Click the Run button on the toolbar, shown at left, to run this VI.

This VI simulates sending a stimulus signal to a Unit Under Test (UUT)
and then reading back the response. The resulting frequency response
curve is displayed in the graph on the front panel, as shown in the
following illustration.

5. Use the Operating tool, shown at left, to change the Amplitude knob
value. Click the mark on the knob and drag it to the desired location, use
the increment or decrement arrows on the digital control, or place the
cursor in the digital display and enter a number.

If you enter a number in the digital display, the Enter button, shown at
left, appears on the toolbar. The number is not passed to the VI until you
click this button or press the <Enter> key.

(Macintosh and Sun) Press the <Return> key.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-16 ni.com

6. Click the Run button to run the VI again. Try adjusting the other
controls on the panel and running the VI to see what changes occur.

Block Diagram
7. Select Window»Show Diagram or press the <Ctrl-E> keys to display

the following block diagram for the Frequency Response VI.

(Macintosh) Press the <Command-E> keys. (Sun) Press the <Meta-E>
keys. (HP-UX and Linux) Press the <Alt-E> keys.

This block diagram contains several of the basic block diagram
elements, including subVIs, functions, and structures, which you will
learn about later in this course.

8. Use the Operating tool to double-click the following DMM icon.

This icon is a subVI called Demo Fluke 8840A VI. After you
double-click it, the following front panel of that subVI opens.

This panel is designed to look like a multimeter user interface. This is
why LabVIEW programs are called virtual instruments. By making
LabVIEW applications modular, you can modify only parts of the

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-17 LabVIEW Basics I Course Manual

application or reuse those parts in the same or other applications. For
example, this subVI simulates the action of a Fluke multimeter, but you
can modify this VI to control an instrument.

9. Select File»Close to close the front panel for the Demo Fluke 8840AVI.

10. Do not close the Frequency Response VI, because you will use it in
Exercise 1-2.

End of Exercise 1-1

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-18 ni.com

D. LabVIEW Help Options
Use the Context Help window and the LabVIEW Help to help you build and
edit VIs.

Context Help Window
To display the Context Help window, select Help»Show Context Help or
press the <Ctrl-H> keys.

(Macintosh) Press the <Command-H> keys. (Sun) Press the <Meta-H> keys.
(HP-UX and Linux) Press the <Alt-H> keys.

When you move the cursor over front panel and block diagram objects, the
Context Help window displays the icon for subVIs, functions, constants,
controls and indicators, with wires attached to each terminal. When you
move the cursor over dialog box options, the Context Help window
displays descriptions of those options. In the window, required connections
are bold, recommended connections are plain text, and optional connections
are dimmed or do not appear. The following is an example Context Help
window.

Click the Simple/Detailed Context Help button located on the lower left
corner of the Context Help window to change between simple and detailed
context help. The simple mode emphasizes the important connections.
Optional terminals are shown by wire stubs, informing you that other
connections exist. The detailed mode displays all terminals, as shown in the
following example.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-19 LabVIEW Basics I Course Manual

Click the Lock Context Help button to lock the current contents of the
Context Help window. When the contents are locked, moving the cursor
over another object does not change the contents of the window. To unlock
the window, click the button again. You also can access this option from the
Help menu.

Click the More Help button to display the corresponding topic in the
LabVIEW Help, which describes the object in detail.

LabVIEW Help
The LabVIEW Help contains detailed descriptions of most palettes, menus,
tools, VIs, and functions. The LabVIEW Help also includes step-by-step
instructions for using LabVIEW features and links to the LabVIEW
Tutorial, example VIs, PDF versions of all the LabVIEW manuals and
Application Notes, and technical support resources on the National
Instruments Web site.

You can access this information either by clicking the More Help button in
the Context Help window, selecting Help»Contents and Index, or
clicking the sentence Click here for more help in the Context Help
window.

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-20 ni.com

Exercise 1-2
Objective: To use LabVIEW help utilities for information about front panel and block diagram

objects and features.

Part A
1. Select Help»Contents and Index to open the LabVIEW Help.

2. Access the technical support resources on the National Instruments Web
site.

a. Locate the Technical Support Resources book at the bottom of the
Contents tab.

b. Click the book to expand it and click the Technical Support
Resources page. The Technical Support Resources topic appears.

c. Click the Technical Support link to open the Technical Support
section of ni.com in the LabVIEW Help window.

d. Click the Back button on the toolbar to return to the Technical
Support Resources topic.

3. Open the PDF version of the LabVIEW User Manual.

a. Click the Related Documentation page at the top of the Contents
tab. The Related Documentation topic appears.

b. Click the LabVIEW User Manual link to open the PDF version of
the manual in the LabVIEW Help window.

c. Click the Help Topics button on the toolbar to hide the Contents tab
of the LabVIEW Help window.

d. Click the Help Topics button again to display the Contents tab.

e. Click the Back button to return to the Related Documentation topic.

4. Browse through a few of the other sections of the LabVIEW Help.

Part B
5. The Frequency Response VI should still be open from Exercise 1-1.

If not, open it as described in Exercise 1-1.

6. Select Window»Show Diagram to display the block diagram.

7. Select Help»Show Context Help or press the <Ctrl-H> keys to display
the Context Help window.

(Macintosh) Press the <Command-H> keys. (Sun) Press the <Meta-H>
keys. (HP-UX and Linux) Press the <Alt-H> keys.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-21 LabVIEW Basics I Course Manual

8. Display information about objects in the Context Help window as you
move your cursor over them.

a. Move the Positioning tool, shown at left, over the Logarithm Base
10 function, located under the Bode Plot label. A description of the
function appears in the Context Help window.

Click the More Help button, shown at left, in the Context Help
window to open the corresponding topic in the LabVIEW Help.
Try displaying the help for other functions.

b. Move the Wiring tool, shown at left, over the terminals of the
Logarithm Base 10 function. The corresponding terminals blink in
the Context Help window as the tool moves over them.

c. Move the Wiring tool over a wire. The Context Help window
displays the data type of the wire.

9. In the front panel window, select File»Close to close the Frequency
Response VI. Do not save any changes.

End of Exercise 1-2

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-22 ni.com

Summary, Tips, and Tricks

• Virtual instruments (VIs) contain three main components—the front
panel, the block diagram, and the icon and connector pane.

• The front panel is the user interface of a VI and specifies the inputs and
displays the outputs of the VI.

• The block diagram contains the graphical source code composed of
nodes, terminals, and wires.

• Use the Tools palette to create, modify, and debug VIs. Press the <Shift>
key and right-click to display a temporary version of the Tools palette at
the location of the cursor.

• Use the Controls palette to place controls and indicators on the front
panel. Right-click an open area on the front panel to display the
Controls palette.

• Use the Functions palette to build the block diagram. Right-click an
open area on the block diagram to display the Functions palette.

• All LabVIEW objects and empty space on the front panel and block
diagram have associated shortcut menus, which you access by
right-clicking an object, the front panel, or the block diagram.

(Macintosh) Access shortcut menus by pressing the <Command> key
while you click an object, the front panel, or the block diagram.

• Use the Help menu to display the Context Help window and the
LabVIEW Help, which describes most palettes, menus, tools, VIs, and
functions, and includes step-by-step instructions for using LabVIEW
features.

Lesson 1 Introduction to LabVIEW

© National Instruments Corporation 1-23 LabVIEW Basics I Course Manual

Notes

Lesson 1 Introduction to LabVIEW

LabVIEW Basics I Course Manual 1-24 ni.com

Notes

© National Instruments Corporation 2-1 LabVIEW Basics I Course Manual

Lesson 2
Creating, Editing, and
Debugging a VI

This lesson introduces the basics of creating a VI.

You Will Learn:

A. How to create VIs

B. Editing techniques

C. Debugging techniques

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-2 ni.com

A. Creating a VI
VIs contain three main components—the front panel, the block diagram,
and the icon and connector pane. Refer to Lesson 3, Creating a SubVI, for
more information about the icon and connector pane.

Front Panel
You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input devices. Indicators are graphs,
LEDs, and other displays. Controls simulate instrument input devices and
supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

Use the Controls palette to place controls and indicators on the front
panel. The Controls palette is available only on the front panel. Select
Window»Show Controls Palette or right-click the front panel workspace
to display the Controls palette.

Numeric Controls and Indicators
The two most commonly used numeric objects are the digital control and
the digital indicator, as shown in the following illustration.

To enter or change values in a digital control, you can click the increment
arrow buttons with the Operating tool or double-click the number with either
the Labeling tool or the Operating tool, type a new number, and press the
<Enter> key.

(Macintosh and Sun) Press the <Return> key.

Boolean Controls and Indicators
Use Boolean controls and indicators to enter and display Boolean (TRUE or
FALSE) values. Boolean objects simulate switches, push buttons, and
LEDs. The most common Boolean objects are the vertical toggle switch and
the round LED, as shown in the following illustration.

1 Increment arrow buttons 2 Digital control 3 Digital indicator

21

3

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-3 LabVIEW Basics I Course Manual

Configuring Controls and Indicators
You can configure nearly all controls and indicators using their shortcut
menus. To access the shortcut menu for a control or indicator, right-click the
object. For example, to configure a label, right-click the label. To configure
a digital display, right-click the digital display.

Block Diagram
The block diagram is composed of nodes, terminals, and wires, as shown in
the following illustration.

Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming languages.
Node types include functions, subVIs, and structures. Functions are built-in
execution elements, comparable to an operator, function, or statement.
SubVIs are VIs used on the block diagram of another VI, comparable to
subroutines. Structures are process control elements, such as Sequence
structures, Case structures, For Loops, or While Loops. The Add and
Subtract nodes in the previous block diagram are function nodes.

1 Nodes 2 Indicator terminals 3 Wires 4 Control terminals

1

2

4

3

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-4 ni.com

Terminals
Front panel objects appear as terminals on the block diagram. The terminals
represent the data type of the control or indicator. For example, a DBL
terminal, shown at left, represents a double-precision, floating-point
numeric control or indicator.

Terminals are entry and exit ports that exchange information between the
front panel and block diagram. Terminals are analogous to parameters and
constants in text-based programming languages. Types of terminals include
control or indicator terminals and node terminals. Control and indicator
terminals belong to front panel controls and indicators. Data you enter into
the front panel controls enter the block diagram through the control
terminals. The data then enter the Add and Subtract functions. When the
Add and Subtract functions complete their internal calculations, they
produce new data values. The data flow to the indicator terminals, where
they exit the block diagram, reenter the front panel, and appear in front panel
indicators.

The terminals in the previous block diagram belong to four front panel
controls and indicators. The connector panes of the Add and Subtract
functions, shown at left, have three node terminals. To display the connector
pane, right-click the function node and select Visible Items»Terminals
from the shortcut menu.

Wires
You transfer data among block diagram objects through wires. They are
analogous to variables in text-based programming languages. Each wire has
a single data source, but you can wire it to many VIs and functions that read
the data. Wires are different colors, styles, and thicknesses, depending on
their data types. The following examples are the most common wire types.

Automatically Wiring Objects
LabVIEW automatically wires objects as you place them on the block
diagram. You also can automatically wire objects already on the block
diagram. LabVIEW connects the terminals that best match and leaves
terminals that do not match unconnected.

Wire Type Scalar 1D Array 2D Array Color

Numeric Orange (floating-point),
Blue (integer)

Boolean Green

String Pink

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-5 LabVIEW Basics I Course Manual

As you move a selected object close to other objects on the block diagram,
LabVIEW draws temporary wires to show you valid connections. When you
release the mouse button to place the object on the block diagram,
LabVIEW automatically connects the wires.

Toggle automatic wiring by pressing the spacebar while you move an object
using the Positioning tool. You can adjust the automatic wiring settings by
selecting Tools»Options and selecting Block Diagram from the top
pull-down menu.

Showing Terminals
To make sure you wire the correct terminals on functions, display the
connector pane by right-clicking the function node and selecting Visible
Items»Terminals from the shortcut menu.

To return to the icon, right-click the function node and select Visible
Items»Terminals from the shortcut menu to remove the checkmark.

Dataflow Programming
LabVIEW follows a dataflow model for running VIs. A block diagram node
executes when all its inputs are available. When a node completes execution,
it supplies data to its output terminals and passes the output data to the next
node in the dataflow path.

Visual Basic, C++, JAVA, and most other text-based programming
languages follow a control flow model of program execution. In control
flow, the sequential order of program elements determines the execution
order of a program.

For example, consider a block diagram that adds two numbers and then
subtracts 50.0 from the result of the addition. In this case, the block
diagram executes from left to right, not because the objects are placed in that
order, but because one of the inputs of the Subtract function is not valid until
the Add function has finished executing and passed the data to the Subtract
function. Remember that a node executes only when data are available at all
of its input terminals, and it supplies data to its output terminals only when
it finishes execution.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-6 ni.com

In the following example, consider which code segment would execute
first—the Add, Random Number, or Divide function. You cannot know
because inputs to the Add and Divide functions are available at the same
time, and the Random Number function has no inputs. In a situation where
one code segment must execute before another, and no data dependency
exists between the functions, use a Sequence structure to force the order
of execution. Refer to Lesson 6, Case and Sequence Structures, for more
information about Sequence structures.

Searching for Controls, VIs, and Functions
Use the following navigation buttons on the Controls and Functions
palettes to navigate and search for controls, VIs, and functions:

• Up—Takes you up one level in the palette hierarchy.

• Search—Changes the palette to search mode. In search mode, you can
perform text-based searches to locate controls, VIs, or functions in the
palettes.

• Options—Opens the Function Browser Options dialog box, from
which you can configure the appearance of the palettes.

For example, if you want to find the Random Number function, click the
Search button on the Functions palette toolbar and start typing Random
Number in the textbox at the top of the palette. LabVIEW lists all matching
items that either start with or contain the text you typed. You can click one
of the search results and drag it to the block diagram, as shown in the
following example.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-7 LabVIEW Basics I Course Manual

Double-click the search result to highlight its location on the palette. You
can then click the Up to Owning Palette button to view the hierarchy of
where the object resides.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-8 ni.com

Exercise 2-1 Convert C to F VI
Objective: To build a VI.

Complete the following steps to create a VI that takes a number representing
degrees Celsius and converts it to a number representing degrees Fahrenheit.

In wiring illustrations, the arrow at the end of this mouse icon shows where
to click and the number on the arrow indicates how many times to click.

Front Panel

1. Select File»New to open a new front panel.

(Windows, Sun, and HP-UX) If you closed all open VIs, click the New VI
button on the LabVIEW dialog box.

2. (Optional) Select Window»Tile Left and Right to display the front
panel and block diagram side by side.

3. Create a numeric digital control. You will use this control to enter the
value for degrees Centigrade.

a. Select the digital control on the Controls»Numeric palette. If the
Controls palette is not visible, right-click an open area on the front
panel to display it.

b. Move the control to the front panel and click to place the control.

c. Type deg C inside the label and click outside the label or click the
Enter button on the toolbar, shown at left. If you do not type the
name immediately, LabVIEW uses a default label. You can edit a
label at any time by using the Labeling tool, shown at left.

4. Create a numeric digital indicator. You will use this indicator to display
the value for degrees Fahrenheit.

a. Select the digital indicator on the Controls»Numeric palette.

b. Move the indicator to the front panel and click to place the indicator.

c. Type deg F inside the label and click outside the label or click the
Enter button.

LabVIEW creates corresponding control and indicator terminals on the
block diagram. The terminals represent the data type of the control or
indicator. For example, a DBL terminal, shown at left, represents a
double-precision, floating-point numeric control or indicator.

Note Control terminals have a thicker border than indicator terminals.

1

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-9 LabVIEW Basics I Course Manual

Block Diagram

5. Display the block diagram by clicking it or by selecting Window»Show
Diagram.

6. Select the Multiply and Add functions on the Functions»Numeric
palette and place them on the block diagram. If the Functions palette is
not visible, right-click an open area on the block diagram to display it.

7. Select the numeric constant on the Functions»Numeric palette and
place two of them on the block diagram. When you first place the
numeric constant, it is highlighted so you can type a value.

8. Type 1.8 in one constant and 32.0 in the other.

If you moved the constants before you typed a value, use the Labeling
tool to enter the values.

9. Use the Wiring tool, shown at left, to wire the icons as shown in the
previous block diagram.

• To wire from one terminal to another, use the Wiring tool to click the
first terminal, move the tool to the second terminal, and click the
second terminal, as shown in the following illustration. You can start
wiring at either terminal.

• You can bend a wire by clicking to tack the wire down and moving
the cursor in a perpendicular direction. Press the spacebar to toggle
the wire direction.

• To identify terminals on the nodes, right-click the Multiply and Add
functions and select Visible Items»Terminals from the shortcut
menu to display the connector pane. Return to the icons after
wiring by right-clicking the functions and selecting Visible
Items»Terminals from the shortcut menu to remove the checkmark.

1 1

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-10 ni.com

• When you move the Wiring tool over a terminal, the terminal area
blinks, indicating that clicking will connect the wire to that terminal
and a tip strip appears, listing the name of the terminal.

• To cancel a wire you started, press the <Esc> key, right-click, or
click the source terminal.

10. Display the front panel by clicking it or by selecting Window»Show
Panel.

11. Save the VI, because you will use this VI later in the course.

a. Select File»Save.

b. Navigate to c:\exercises\LV Basics I.

Note Save all the VIs you edit in this course in c:\exercises\LV Basics I.

c. Type Convert C to F.vi in the dialog box.

d. Click the Save button.

12. Enter a number in the digital control and run the VI.

a. Use the Operating tool, shown at left, or the Labeling tool to
double-click the digital control and type a new number.

b. Click the Run button, shown at left, to run the VI.

c. Try several different numbers and run the VI again.

13. Select File»Close to close the Convert C to F VI.

End of Exercise 2-1

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-11 LabVIEW Basics I Course Manual

B. Editing Techniques

Creating Objects
In addition to creating front panel objects from the Controls palette, you
also can create controls, indicators, and constants by right-clicking a node
terminal and selecting Create from the shortcut menu.

You cannot delete a control or indicator terminal from the block diagram.
The terminal disappears only after you delete its corresponding object on the
front panel.

Selecting Objects
Use the Positioning tool to click an object to select it on the front panel and
block diagram.

When the object is selected, a moving dashed outline surrounds it. To select
more than one object, press the <Shift> key while you click each additional
object you want to select.

You also can select multiple objects by clicking an open area and dragging
the cursor until all the objects are in the selection rectangle.

Moving Objects
You can move an object by clicking it with the Positioning tool and dragging
it to a desired location. You also can move selected objects by pressing the
arrow keys. Press the <Shift> key while you press the arrow keys to move
objects several pixels at a time.

You can restrict a selected object’s direction of movement horizontally or
vertically by pressing the <Shift> key while you move the object. The
direction you initially move determines whether the object is limited to
horizontal or vertical movement.

Deleting Objects
You can delete objects by using the Positioning tool to select the object(s)
and pressing the <Delete> key or selecting Edit»Clear.

Undo/Redo
If you make a mistake while editing a VI, you can undo or redo those steps
by selecting Undo or Redo from the Edit menu. You can set the number of
actions that you can undo or redo by selecting Tools»Options and selecting
Block Diagram from the top pull-down menu.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-12 ni.com

Duplicating Objects
You can duplicate most objects by pressing the <Ctrl> key while using the
Positioning tool to click and drag a selection.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key. (HP-UX and
Linux) Press the <Alt> key.

(HP-UX) You also can duplicate objects by clicking and dragging the object
with the middle mouse button.

After you drag the selection to a new location and release the mouse button,
a copy of the icon appears in the new location, and the original icon remains
in the old location. This process is called cloning.

You also can duplicate objects by selecting Edit»Copy and then
Edit»Paste.

Labeling Objects
Use labels to identify objects on the front panel and block diagram.
LabVIEW includes two kinds of labels—owned labels and free labels.
Owned labels belong to and move with a particular object and annotate that
object only. You can move an owned label independently, but when you
move the object that owns the label, the label moves with the object. Free
labels are not attached to any object, and you can create, move, rotate, or
delete them independently. Use them to annotate front panels and block
diagrams.

To create a free label, use the Labeling tool to click any open area and type
the text you want to appear in the label in the box that appears. After you
type the label, click anywhere outside the label or click the Enter button on
the toolbar. By default, pressing the <Enter> key adds a new line. Press the
<Shift-Enter> keys to end text entry. To end text entry with the <Enter> key,
select Tools»Options, select Front Panel from the top pull-down menu,
and place a checkmark in the End text entry with Return key checkbox.

(Macintosh) By default, pressing the <Return> key adds a new line.

Selecting and Deleting Wires
A wire segment is a single horizontal or vertical piece of wire. A bend in a
wire is where two segments join. The point at which three or four wire
segments join is a junction. A wire branch contains all the wire segments
from junction to junction, terminal to junction, or terminal to terminal if no
junctions are between the terminals. To select a wire segment, use the
Positioning tool to click the wire. Double-click to select a branch and
triple-click to select the entire wire.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-13 LabVIEW Basics I Course Manual

Wire Stretching
You can move one or more wired objects by using the Positioning tool to
drag the selected objects to a new location.

Broken Wires
A broken wire appears as a dashed black line, as shown in the following
example. Broken wires occur for a variety of reasons, such as when you try
to wire two objects with incompatible data types.

1 Segment
2 Junction

3 Bend
4 Branch

5 Selects a segment
6 Selects a branch

7 Selects an entire
wire

1 Dashed wire (broken) 2 Solid wire (good)

1 2 3

1

4
2

3 5 6 7

1 2 3

1

2

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-14 ni.com

Move the Wiring tool over a broken wire to view the tip strip that describes
why the wire is broken. Triple-click the wire with the Positioning tool and
press the <Delete> key to remove a broken wire. You can remove all broken
wires by selecting Edit»Remove Broken Wires.

Caution Use caution when removing all broken wires. Sometimes a wire appears broken
because you are not finished wiring the block diagram.

Changing Font, Style, and Size of Text
You can change the font, style, size, and alignment of any text displayed in
a label or the display of a control or indicator by selecting the Text Settings
pull-down menu on the toolbar.

Certain controls and indicators use text in more than one display. Examples
include graph axes and digital indicators or scale markers on numeric scales.
You can modify each text display independently by using the Labeling tool
to highlight the text, as shown in the following graph. Then select the Text
Settings pull-down menu on the toolbar.

Resizing Objects
You can change the size of most front panel objects. When you move the
Positioning tool over a resizable object, resizing handles, shown at left,
appear at the corners of a rectangular object, and resizing circles appear on
a circular object. When you resize an object, the font size remains the same.
Drag the resizing handles or circles until the dashed border outlines the size
you want and release the mouse button. Press the <Shift> key while you
drag the resizing handles or circles to keep the object proportional to its
original size.

You also can resize block diagram objects, such as structures and constants.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-15 LabVIEW Basics I Course Manual

Aligning and Distributing Objects
To align a group of objects along axes, select the objects you want to align
and select the Align Objects pull-down menu on the toolbar. To space
objects evenly, select the objects and select the Distribute Objects
pull-down menu on the toolbar.

Copying Objects between VIs or from Other Applications
You can copy and paste objects from one VI to another by selecting
Edit»Copy and then Edit»Paste. You also can copy pictures or text from
other applications and paste them on the front panel or block diagram. If
both VIs are open, you can copy selected objects between VIs by dragging
them from one VI and dropping them on another VI.

Coloring Objects
You can change the color of many objects but not all of them. For example,
block diagram terminals of front panel objects and wires use specific colors
for the type and representation of data they carry, so you cannot change
them.

Use the Coloring tool and right-click an object or workspace to add or
change the color of front panel objects or the front panel and block diagram
workspaces. You also can change the default colors for most objects by
selecting Tools»Options and selecting Colors from the top pull-down
menu.

You also can make front panel objects transparent to layer them. Right-click
an object with the Coloring tool and select the box with a T in it to make an
object transparent.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-16 ni.com

Exercise 2-2 Editing Exercise VI
Objective: To edit a VI.

Complete the following steps to modify the existing Editing Exercise VI to
look like the following front panel and to wire the objects on the block
diagram to make the VI operational.

Note Remember that you can select Edit»Undo if you make a mistake.

Front Panel
1. Select File»Open and navigate to c:\exercises\LV Basics I to

open the Editing Exercise VI.

(Windows, Sun, and HP-UX) If you closed all open VIs, click the Open VI
button on the LabVIEW dialog box.

2. Reposition the digital control.

a. Use the Positioning tool, shown at left, to click the digital control
and drag it to another location. The control label follows the position
of the control.

b. Click a blank space on the front panel to deselect the control.

c. Click the label and drag it to another location. The control does not
follow. You can position an owned label anywhere relative to the
control. The label follows its owner if you move the owner.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-17 LabVIEW Basics I Course Manual

3. Reposition the three slide switches as a group.

a. Use the Positioning tool to click an open area near the three switches
and drag a selection rectangle around the switches.

b. Click and drag one of the selected switches to a different location.
All the selected switches move together.

4. Align the three LED indicators horizontally and space them evenly.

a. Use the Positioning tool to click an open area near the three LEDs
and drag a selection rectangle around the LEDs.

b. Select the Align Objects pull-down menu on the toolbar and select
Vertical Centers, shown at left, to align the LEDs horizontally.

c. Select the Distribute Objects pull-down menu on the toolbar and
select Horizontal Centers, shown at left, to space the LEDs evenly.

5. Resize the single round LED.

a. Move the Positioning tool over the LED. Resizing circles appear on
the LED.

b. Click and drag the cursor to enlarge the LED. Press the <Shift> key
while you drag the cursor to keep the LED proportional to the
original size.

6. Change the color of the single round LED.

a. By default, the state of the LED is OFF and dark green (FALSE).
Use the Operating tool, shown at left, to click the LED and change
its state to ON and bright green (TRUE).

b. Use the Coloring tool, shown at left, to right-click the LED and
display the color picker.

c. Select a red color to change the ON state to red.

7. Display and edit the owned label of the digital indicator.

a. Use the Labeling tool, shown at left, to right-click the digital
indicator and select Visible Items»Label from the shortcut menu.
A small box appears, with a text cursor at the left margin, ready to
accept typed input.

b. Type Digital Indicator in the box.

c. Click anywhere outside the label or click the Enter button on the
toolbar, shown at left, to end text entry.

8. Delete the string control.

a. Use the Positioning tool to select the string control.

b. Press the <Delete> key or select Edit»Clear.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-18 ni.com

9. Duplicate the free label.

a. Press the <Ctrl> key and use the Positioning tool to click the label.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key.
(HP-UX and Linux) Press the <Alt> key.

b. Drag the copy to a new location.

10. Change the text characteristics and hide the box around the free label.

a. Use the Positioning tool to select the free label.

b. Select the Text Settings pull-down menu on the toolbar, shown at
left, and change the text characteristics.

c. Use the Coloring tool to right-click the label and select T from the
color picker.

11. Change the text characteristics and color of the y-axis text.

a. Use the Labeling tool to highlight 10.0 in the y-axis.

b. Select the Text Settings pull-down menu on the toolbar and change
the text characteristics and color.

12. Double-click 0.0 and type -10.0 to change the y-axis range.

Block Diagram
13. Select Window»Show Diagram to display the block diagram. Wire the

block diagram terminals as shown in the following block diagram.

The Multiply function multiplies a numeric constant, 5.00, by the value
in the digital control.

The Uniform White Noise VI generates a uniformly distributed,
pseudorandom pattern whose values are in the range [–a:a], where a is
the absolute value of amplitude, 10.00, and passes it to the waveform
graph.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-19 LabVIEW Basics I Course Manual

The Not function inverts the value of the Boolean switch A and passes
the value to the round LED.

14. Right-click the lower left terminal of the Multiply function and select
Create»Constant from the shortcut menu to create a numeric constant,
shown at left.

15. Type 5 in the textbox and click the Enter button on the toolbar.

16. Use the Wiring tool, shown at left, and the following techniques to wire
the block diagram:

• Select Help»Show Context Help to display the Context Help
window. Use the Context Help window to determine which
terminals are required. Required terminals are bold, recommended
connections are plain text, and optional connections are gray.

• To identify terminals on the nodes, right-click the icon and select
Visible Items»Terminal from the shortcut menu to display the
connector pane. When wiring is complete, right-click the connector
pane and select Visible Items»Terminal from the shortcut menu to
remove the checkmark.

• To add a branch to a wire, click the location on the wire where you
want to start the branch.

• To cancel a wire you started, press the <Esc> key, right-click, or
click the source terminal.

17. Select File»Save to save the VI.

18. Display the front panel by clicking it or by selecting Window»Show
Panel.

19. Use the Operating tool to change the value of the front panel controls.

20. Click the Run button on the toolbar to run the VI.

21. Select File»Close to close the VI.

End of Exercise 2-2

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-20 ni.com

C. Debugging Techniques
If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
often appears broken, shown at left, when you create or edit a VI. If it is still
broken when you finish wiring the block diagram, the VI is broken and will
not run.

Finding Errors
Click the broken Run button or select Windows»Show Error List to
display the Error list window, which lists all the errors. Double-click an
error description to display the relevant block diagram or front panel and
highlight the object that contains the error.

Execution Highlighting
View an animation of the execution of the block diagram by clicking the
Highlight Execution button, shown at left. Execution highlighting shows
the movement of data on the block diagram from one node to another using
bubbles that move along the wires. Use execution highlighting in
conjunction with single-stepping to see how data move from node to node
through a VI.

Note Execution highlighting greatly reduces the speed at which the VI runs.

Single-Stepping
Single-step through a VI to view each action of the VI on the block diagram
as the VI runs. The single-stepping buttons affect execution only in a VI or
subVI in single-step mode. Enter single-step mode by clicking the Step
Over or Step Into button. Move the cursor over the Step Over, Step Into,
or Step Out button to view a tip strip that describes the next step if you click
that button. You can single-step through subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an execution
glyph, shown at left, appears on the icons of the subVIs that are currently
running.

Probes
Use the Probe tool, shown at left, to check intermediate values on a wire as
a VI runs. When execution pauses at a node because of single-stepping or a
breakpoint, you also can probe the wire that just executed to see the value
that flowed through that wire.

You also can create a custom probe to specify which indicator you use to
view the probed data. For example, if you are viewing numeric data, you can
choose to see that data in a chart within the probe. To create a custom probe,
right-click a wire and select Custom Probe from the shortcut menu.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-21 LabVIEW Basics I Course Manual

Breakpoints
Use the Breakpoint tool, shown at left, to place a breakpoint on a VI, node,
or wire on the block diagram and pause execution at that location. When you
set a breakpoint on a wire, execution pauses after data pass through the wire.
Place a breakpoint on the block diagram workspace to pause execution after
all nodes on the block diagram execute. Breakpoints are red frames for
nodes and block diagrams and red dots for wires.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-22 ni.com

Exercise 2-3 Debug Exercise (Main) VI
Objective: To practice debugging techniques.

Complete the following steps to load a broken VI and correct the error and
to use single-stepping and execution highlighting to step through the VI.

1. Select File»Open and navigate to c:\exercises\LV Basics I to
open the Debug Exercise (Main) VI.

(Windows, Sun, and HP-UX) If you closed all open VIs, click the Open VI
button on the LabVIEW dialog box.

The following front panel appears.

The broken Run button, shown at left, appears on the toolbar, indicating
the VI is broken.

2. Select Window»Show Diagram to display the following block
diagram.

The Random Number (0-1) function produces a random number
between 0 and 1.

The Multiply function multiplies the random number by 10.0.

The numeric constant is the number to multiply by the random number.

The Debug Exercise (Sub) VI adds 100.0 and calculates the square root
of the value.

3. Find and fix each error.

a. Click the broken Run button. The Error list window that appears
lists all the errors.

b. Click each error description for more information about the error.

c. Click the Show Error button to display the relevant block diagram
or front panel and highlight the object that contains the error.

d. Use the information in the Details section to fix each error.

4. Select File»Save to save the VI.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-23 LabVIEW Basics I Course Manual

5. Display the front panel by clicking it or by selecting Window»Show
Panel.

6. Click the Run button to run the VI several times.

7. Select Window»Show Diagram to display the block diagram.

8. Animate the flow of data through the block diagram.

a. Click the Highlight Execution button, shown at left, to enable
execution highlighting.

b. Click the Step Into button, shown at left, to start single-stepping.
Execution highlighting shows the movement of data on the block
diagram from one node to another using bubbles that move along the
wires. Nodes blink to indicate that they are ready to execute.

c. Click the Step Over button, shown at left, after each node to step
through the entire block diagram. Each time you click the Step Over
button, the current node executes and pauses at the next node, which
is ready to execute.

Data appear on the front panel as you step through the VI. The VI
generates a random number and multiplies it by 10.0. The subVI
adds 100.0 and takes the square root of the result.

d. When the outline of the block diagram blinks, click the Step Out
button, shown at left, to stop single-stepping through the Debug
Exercise (Main) VI.

9. Single-step through the VI and its subVI.

a. Click the Step Into button to start single-stepping.

b. When the Debug Exercise (Sub) VI blinks, click the Step Into
button. The following block diagram appears.

c. Display the Debug Exercise (Main) VI block diagram by clicking it.
A green glyph, shown at left, appears on the subVI icon on the
Debug Exercise (Main) VI block diagram, indicating that it is in
single-step mode.

d. Display the Debug Exercise (Sub) VI block diagram by clicking it.

e. Click the Step Out button twice to finish single-stepping through the
subVI block diagram. The Debug Exercise (Main) VI block diagram
is active.

f. Click the Step Out button to stop single-stepping.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-24 ni.com

10. Use a probe to view data as it flows through a wire.

a. Use the Probe tool, shown at left, to click any object. The following
window appears.

The number in the titlebar of the Probe window matches the number
on the block diagram where you placed the probe.

b. Single-step through the VI again. The Probe window displays the
data as they flow through each wire segment.

11. Place breakpoints on the block diagram to pause execution at that
location.

a. Use the Breakpoint tool, shown at left, to click nodes or wires.
Clicking the block diagram workspace is analogous to a break on the
first line.

b. Click the Run button to run the VI. The VI pauses at the breakpoints
you set.

c. Click the Continue button, shown at left, to continue running the VI.

d. Use the Breakpoint tool to click the breakpoints you set and remove
them.

12. Click the Highlight Execution button to disable execution highlighting.

13. Select File»Close to close the VI and all open windows.

End of Exercise 2-3

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-25 LabVIEW Basics I Course Manual

Summary, Tips, and Tricks

Summary
• You build the front panel with controls and indicators, which are the

interactive input and output terminals of the VI, respectively.

• Control terminals have a thicker border than indicator terminals. To
change a control to an indicator or to change an indicator to a control,
right-click the object and select Change to Indicator or Change to
Control from the shortcut menu.

• The block diagram is composed of nodes, terminals, and wires.

• Use the Operating tool to configure front panel controls and indicators.
Use the Positioning tool to select, move, and resize objects. Use the
Wiring tool to wire objects on the block diagram.

• Use the Search button on the Controls and Functions palettes to search
for controls, VIs, and functions.

• The broken Run button appears on the toolbar to indicate the VI is
broken. Click the broken Run button to display the Error list window,
which lists all the errors.

• Use execution highlighting, single-stepping, probes, and breakpoints to
debug VIs by animating the flow of data through the block diagram.

Tips & Tricks
Most of the following tips and tricks instruct you to press the <Ctrl> key.

(Macintosh) Press the <Option> key instead of the <Ctrl> key. (Sun) Press the
<Meta> key. (HP-UX and Linux) Press the <Alt> key.

Operating
• Frequently used menu options have equivalent keyboard shortcuts. For

example, to save a VI, you can select File»Save or press the <Ctrl-S>
keys. Common keyboard shortcuts include the following:

<Ctrl-R> Runs a VI.

<Ctrl-E> Toggles between the front panel and block diagram.

<Ctrl-H> Displays or hides the Context Help window.

<Ctrl-B> Removes all broken wires.

<Ctrl-F> Finds VIs, globals, functions, text, or other objects
loaded in memory or in a specified list of VIs.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-26 ni.com

• To alternate among tools on the Tools palette, press the <Tab> key. To
toggle between the Positioning and Wiring tools on the block diagram
or the Positioning and Operating tools on the front panel, press the
spacebar.

• To increment or decrement digital controls faster, use the Operating or
Labeling tools to place the cursor in the control and press the <Shift>
key while pressing the up or down arrow keys.

• You can disable the debugging tools to reduce memory requirements
and to increase performance slightly. Select File»VI Properties, select
Execution from the top pull-down menu, and remove the checkmark
from the Allow Debugging checkbox.

Editing
• Use the following shortcuts to create constants, controls, and indicators:

– Right-click a function terminal and select Create»Constant,
Create»Control, or Create»Indicator from the shortcut menu.

– Drag controls and indicators from the front panel to the block
diagram to create a constant.

– Drag constants from the block diagram to the front panel to create a
control.

• To duplicate an object, press the <Ctrl> key while using the Positioning
tool to click and drag a selection.

• To restrict an object’s direction of movement horizontally or vertically,
use the Positioning tool to select the object and press the <Shift> key
while you move the object.

• To keep an object proportional to its original size as you resize it, press
the <Shift> key while you drag the resizing handles or circles.

• To resize an object as you place it on the front panel, press the <Ctrl>
key while you click to place the object and drag the resizing handles or
circles.

• To replace nodes, right-click the node and select Replace from the
shortcut menu.

• To display the block diagram of a subVI from the calling VI, press the
<Ctrl> key and use the Operating or Positioning tool to double-click the
subVI on the block diagram.

• To display the front panel of a subVI from the calling VI, use the
Operating or Positioning tool to double-click the subVI on the block
diagram. You also can select Browse»This VI’s SubVIs.

• After you type a label, press the <Shift-Enter> keys to end text entry.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-27 LabVIEW Basics I Course Manual

• To add items quickly to ring controls and Case structures, press the
<Shift-Enter> keys after each item. Pressing <Shift-Enter> accepts the
item and positions the cursor to add the next item.

• To copy the color of one object and transfer it to a second object without
using a color picker, use the Color Copy tool to click the object whose
color you want to copy. Use the Coloring tool to click the object to which
you want to apply the color. You also can copy the color of one object
by using the Coloring tool and pressing the <Ctrl> key.

• Select Edit»Undo if you make a mistake.

• To create more blank space on the block diagram, press the <Ctrl> key
while you use the Positioning tool to draw a rectangle on the block
diagram.

Wiring
• Select Help»Show Context Help to display the Context Help window.

Use the Context Help window to determine which terminals are
required. Required terminals are bold, recommended connections are
plain text, and optional connections are gray.

• Press the spacebar to toggle the wire direction.

• You can bend a wire by clicking to tack the wire down and moving the
cursor in a perpendicular direction. To tack down a wire and break it,
double-click.

• To show dots at wire junctions on the block diagram, select
Tools»Options and select Block Diagram from the top pull-down
menu.

• To move objects one pixel, press the arrow keys. To move objects several
pixels, press the <Shift> key while you press the arrow keys.

• To cancel a wire you started, press the <Esc> key, right-click, or click
the source terminal.

1 Tack down a wire by clicking 2 Tack and break the wire by double-clicking

1
2

1 2

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-28 ni.com

• Use the tip strips that appear as you move the Wiring tool over terminals.

• Display the connector pane by right-clicking the node and selecting
Visible Items»Terminals from the shortcut menu.

Debugging
• When single-stepping, use the following keyboard shortcuts:

<Ctrl-down arrow> Steps into a node.

<Ctrl-right arrow> Steps over a node.

<Ctrl-up arrow> Steps out of a node.

Lesson 2 Creating, Editing, and Debugging a VI

© National Instruments Corporation 2-29 LabVIEW Basics I Course Manual

Additional Exercises
2-4 Build a VI that compares two numbers and turns on an LED if the

first number is greater than or equal to the second number.

Save the VI and name it Compare.vi.

Tip Use the Greater Or Equal? function located on the Functions»Comparison palette.

2-5 Build a VI that generates a random number between 0.0 and 10.0
and divides the random number by a number specified on the front
panel. If the number input is 0, the VI should turn on a front panel
LED to indicate a divide by zero error.

Save the VI and name it Divide.vi.

Lesson 2 Creating, Editing, and Debugging a VI

LabVIEW Basics I Course Manual 2-30 ni.com

Notes

© National Instruments Corporation 3-1 LabVIEW Basics I Course Manual

Lesson 3
Creating a SubVI

This lesson introduces the icon and connector pane of a VI and describes
how you can use a VI as a subVI in other VIs.

You Will Learn:

A. What a subVI is

B. How to create an icon and connector pane

C. How to use a VI as a subVI

D. How to create subVIs from sections of another VI

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-2 ni.com

A. SubVIs
After you build a VI and create its icon and connector pane, you can use it in
another VI. A VI within another VI is called a subVI. A subVI corresponds
to a subroutine in text-based programming languages. A subVI node
corresponds to a subroutine call in text-based programming languages. The
node is not the subVI itself, just as a subroutine call statement in a program
is not the subroutine itself. Using subVIs helps you manage changes and
debug the block diagram quickly. Refer to the LabVIEW Basics II Course
Manual for more information about application development.

The following pseudo-code and block diagrams demonstrate the analogy
between subVIs and subroutines.

Function Code Calling Program Code

function average (in1,
in2, out)

{
out = (in1 + in2) / 2.0;

}

main
{
average (point1, point2,

pointavg)

}

SubVI Block Diagram Calling VI Block Diagram

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-3 LabVIEW Basics I Course Manual

B. Icon and Connector Pane
After you build a VI front panel and block diagram, build the icon and the
connector pane so you can use the VI as a subVI.

Creating an Icon
Every VI displays an icon, shown at left, in the upper right corner of
the front panel and block diagram windows. An icon is a graphical
representation of a VI. It can contain text, images, or a combination of both.
If you use a VI as a subVI, the icon identifies the subVI on the block diagram
of the VI.

The default icon contains a number that indicates how many new VIs you
have opened since launching LabVIEW. Create custom icons to replace the
default icon by right-clicking the icon in the upper right corner of the front
panel or block diagram and selecting Edit Icon from the shortcut menu or
by double-clicking the icon in the upper right corner of the front panel. You
also can edit icons by selecting File»VI Properties, selecting General from
the Category pull-down menu, and clicking the Edit Icon button.

Use the tools on the left side of the Icon Editor dialog box to create the icon
design in the editing area. The normal size image of the icon appears in the
appropriate box to the right of the editing area, as shown in the following
dialog box.

You also can drag a graphic from anywhere in your file system and drop it
in the upper right corner of the front panel or block diagram.

Depending on the type of monitor you use, you can design a separate icon
for monochrome, 16-color, and 256-color mode. LabVIEW uses the
monochrome icon for printing unless you have a color printer. The default
is 256-color mode. Select the Copy from options to change modes.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-4 ni.com

Use the tools on the left side of the Icon Editor dialog box to perform the
following tasks:

Use the Pencil tool to draw and erase pixel by pixel.

Use the Line tool to draw straight lines. To draw horizontal, vertical, and
diagonal lines, press the <Shift> key while you use this tool to drag the
cursor.

Use the Color Copy tool to copy the foreground color from an element in the
icon.

Use the Fill tool to fill an outlined area with the foreground color.

Use the Rectangle tool to draw a rectangular border in the foreground color.
Double-click this tool to frame the icon in the foreground color.

Use the Filled Rectangle tool to draw a rectangle with a foreground color
frame and filled with the background color. Double-click this tool to frame
the icon in the foreground color and fill it with the background color.

Use the Select tool to select an area of the icon to cut, copy, move, or make
other changes. Double-click this tool and press the <Delete> key to delete
the entire icon.

Use the Text tool to enter text into the icon. Double-click this tool to select
a different font. (Windows) Small Fonts works well in icons.

Use the Foreground/Background tool to display the current foreground and
background colors. Click each rectangle to display a color palette from
which you can select new colors.

Use the options on the right side of the editing area to perform the following
tasks:

• Show Terminals—Displays the terminal pattern of the connector pane

• OK—Saves the drawing as the icon and returns to the front panel

• Cancel—Returns to the front panel without saving any changes

The menu bar in the Icon Editor dialog box contains more editing options
such as Undo, Redo, Cut, Copy, Paste, and Clear.

Setting up the Connector Pane
To use a VI as a subVI, you need to build a connector pane, shown at left.
The connector pane is a set of terminals that corresponds to the controls and
indicators of that VI, similar to the parameter list of a function call in

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-5 LabVIEW Basics I Course Manual

text-based programming languages. The connector pane defines the inputs
and outputs you can wire to the VI so you can use it as a subVI.

Define connections by assigning a front panel control or indicator to each of
the connector pane terminals. To define a connector pane, right-click the
icon in the upper right corner of the front panel window and select Show
Connector from the shortcut menu. The connector pane replaces the icon.
Each rectangle on the connector pane represents a terminal. Use the
rectangles to assign inputs and outputs. The number of terminals LabVIEW
displays on the connector pane depends on the number of controls and
indicators on the front panel. The following front panel has four controls and
one indicator, so LabVIEW displays four input terminals and one output
terminal on the connector pane.

Selecting and Modifying Terminal Patterns
Select a different terminal pattern for a VI by right-clicking the connector
pane and selecting Patterns from the shortcut menu. Select a connector
pane pattern with extra terminals. You can leave the extra terminals
unconnected until you need them. This flexibility enables you to make
changes with minimal effect on the hierarchy of the VIs. You also can have
more front panel controls or indicators than terminals.

A solid border highlights the pattern currently associated with the icon.
The maximum number of terminals available for a subVI is 28.

Note Try not to assign more than 16 terminals to a VI. Too many terminals can reduce
the readability and usability of the VI.

To change the spatial arrangement of the connector pane patterns,
right-click the connector pane and select Flip Horizontal, Flip Vertical,
or Rotate 90 Degrees from the shortcut menu.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-6 ni.com

Assigning Terminals to Controls and Indicators
After you select a pattern to use for your connector pane, you must define
connections by assigning a front panel control or indicator to each of the
connector pane terminals. When you link controls and indicators to the
connector pane, place inputs on the left and outputs on the right to prevent
complicated, unclear wiring patterns in your VIs.

To assign a terminal to a front panel control or indicator, click a terminal of
the connector pane. Click the front panel control or indicator you want to
assign to the terminal. Click an open area of the front panel. The terminal
changes to the data type color of the control to indicate that you connected
the terminal.

You also can select the control or indicator first and then select the terminal.

Note Although you use the Wiring tool to assign terminals on the connector pane to
front panel controls and indicators, no wires are drawn between the connector pane and
these controls and indicators.

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-7 LabVIEW Basics I Course Manual

Exercise 3-1 Convert C to F VI
Objective: To create an icon and a connector pane so you can use a VI as a subVI.

Complete the following steps to create an icon and a connector pane for the
VI you built to change temperature from degrees C to degrees F.

Front Panel
1. Select File»Open and navigate to c:\exercises\LV Basics I to

open the Convert C to F VI.

(Windows, Sun, and HP-UX) If you closed all open VIs, click the Open VI
button on the LabVIEW dialog box.

The following front panel appears.

2. Right-click the icon in the upper right corner of the front panel and select
Edit Icon from the shortcut menu. The Icon Editor dialog box appears.

3. Double-click the Select tool, shown at left, on the left side of the Icon
Editor dialog box to select the default icon.

4. Press the <Delete> key to remove the default icon.

5. Double-click the Rectangle tool, shown at left, to redraw the border.

6. Create the following icon.

a. Use the Text tool, shown at left, to click the editing area.

b. Type C and F.

c. Double-click the Text tool and change the font to Small Fonts.

d. Use the Pencil tool, shown at left, to create the arrow.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-8 ni.com

Note To draw horizontal or vertical straight lines, press the <Shift> key while you use
the Pencil tool to drag the cursor.

e. Use the Select tool and the arrow keys to move the text and arrow
you created.

f. Select the B & W icon and select 256 Colors in the Copy from field
to create a black and white icon, which LabVIEW uses for printing
unless you have a color printer.

g. When the icon is complete, click the OK button to close the Icon
Editor dialog box. The icon appears in the icon in the upper right
corner of the front panel and block diagram.

7. Right-click the icon on the front panel and select Show Connector from
the shortcut menu to define the connector pane terminal pattern.

LabVIEW selects a connector pane pattern based on the number of
controls and indicators on the front panel. For example, this front panel
has two terminals, deg C and deg F, so LabVIEW selects a connector
pane pattern with two terminals, shown at left.

8. Assign the terminals to the digital control and digital indicator.

a. Select Help»Show Context Help to display the Context Help
window. View each connection in the Context Help window as you
make it.

b. Click the left terminal in the connector pane. The tool automatically
changes to the Wiring tool, and the terminal turns black.

c. Click the deg C control. The left terminal turns orange and a
marquee highlights the control.

d. Click an open area of the front panel. The marquee disappears and
the terminal changes to the data type color of the control to indicate
that you connected the terminal.

e. Click the right terminal in the connector pane and click the deg F
indicator. The right terminal turns orange.

f. Click an open area on the front panel. Both terminals are orange.

g. Move the cursor over the connector pane. The Context Help
window shows that both terminals are connected to floating-point
values.

9. Select File»Save to save the VI, because you will use this VI later in the
course.

10. Select File»Close to close the Convert C to F VI.

End of Exercise 3-1

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-9 LabVIEW Basics I Course Manual

C. Using SubVIs
After you build a VI and create its icon and connector pane, you can use it
as a subVI. To place a subVI on the block diagram, select Functions»Select
a VI. Navigate to and double-click the VI you want to use as a subVI and
place it on the block diagram.

You also can place an open VI on the block diagram of another open VI by
using the Positioning tool to click the icon in the upper right corner of the
front panel or block diagram of the VI you want to use as a subVI and drag
the icon to the block diagram of the other VI.

Opening and Editing SubVIs
To display the front panel of a subVI from the calling VI, use the Operating
or Positioning tool to double-click the subVI on the block diagram. You also
can select Browse»This VI’s SubVIs. To display the block diagram of a
subVI from the calling VI, press the <Ctrl> key and use the Operating or
Positioning tool to double-click the subVI on the block diagram.

(Macintosh) Press the <Option> key. (Sun) Press the <Meta> key. (HP-UX and
Linux) Press the <Alt> key.

Any changes you make to a subVI affect only the current instance of the
subVI until you save the subVI. When you save the subVI, the changes
affect all calls to the subVI, not just the current instance.

Setting Required, Recommended, and Optional Inputs and Outputs
In the Context Help window, which you can access by selecting
Help»Show Context Help, required connections are bold, recommended
connections are plain text, and optional connections are dimmed if you have
the Detailed view selected or do not appear if you have the Simple view
selected.

You can designate which inputs and outputs are required, recommended,
and optional to prevent users from forgetting to wire subVI connections.

Right-click a terminal in the connector pane and select This Connection Is
from the shortcut menu. A checkmark indicates the terminal setting. Select
Required, Recommended, or Optional.

When an input or output is required, you cannot run the VI as a subVI
without wiring it correctly. When an input or output is recommended, you
can run the VI, but LabVIEW reports a warning in the Window»Show
Error List window if you placed a checkmark in the Show Warnings
checkbox in the Error list window. LabVIEW uses the default value for
unwired optional inputs and outputs and does not report any warnings.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-10 ni.com

LabVIEW sets inputs and outputs of VIs you create to Recommended by
default. Set a terminal setting to required only if the VI must have the input
or output to run properly. Refer to the Read File function located on the
Functions»File I/O palette for examples of required, recommended, and
optional inputs and outputs.

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-11 LabVIEW Basics I Course Manual

Exercise 3-2 Thermometer VI
Objective: To build a VI and create its icon and connector pane so you can use it as a subVI.

Complete the following steps to create a VI that measures temperature using
the temperature sensor on the DAQ Signal Accessory. The sensor returns a
voltage proportional to temperature. For example, if the temperature is
23 °C, the sensor output voltage is 0.23 V. You also can display the
temperature in degrees Fahrenheit.

Measure the voltage using the plug-in DAQ device in your computer and
convert the voltage into a temperature reading. The sensor is hard-wired to
Channel 0 of the DAQ device.

Front Panel
1. Select File»New to open a new front panel.

(Windows, Sun, and HP-UX) If you closed all open VIs, click the New VI
button on the LabVIEW dialog box.

2. Create the thermometer indicator, as shown in the following front panel.

a. Select the thermometer on the Controls»Numeric palette and place
it on the front panel.

b. Type Temperature inside the label and click outside the label or
click the Enter button on the toolbar, shown at left.

c. Right-click the thermometer and select Visible Items»Digital
Display from the shortcut menu to display the digital display for the
thermometer.

3. Create the vertical switch control.

a. Select the vertical toggle switch on the Controls»Boolean palette.

b. Type Temp Scale inside the label and click outside the label or
click the Enter button.

c. Use the Labeling tool, shown at left, to place a free label, deg C,
next to the TRUE position of the switch, as shown in the previous
front panel.

d. Place a free label, deg F, next to the FALSE position of the switch.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-12 ni.com

4. Document the VI with a description that appears in the Context Help
window when you move the cursor over the VI icon.

a. Select File»VI Properties. The VI Properties dialog box appears.

b. Select Documentation from the Category pull-down menu.

c. Type the following description for the VI in the VI Description
field:

This VI measures temperature using the temperature
sensor on the DAQ Signal Accessory.

d. Click the OK button.

5. Document the thermometer indicator and switch control with
descriptions that appear in the Context Help window when you move
the cursor over an object and with tip strips that appear on the front panel
or block diagram when you move the cursor over an object.

a. Right-click the thermometer indicator and select Description and
Tip from the shortcut menu.

b. Type the following description for the thermometer in the
Description field:

Displays the temperature measurement.

c. Type temperature in the Tip field.

d. Click the OK button.

e. Right-click the vertical switch control and select Description and
Tip from the shortcut menu.

f. Type the following description for the vertical switch control in the
Description field:

Determines the scale (Fahrenheit or Celsius) to
use for the temperature measurement.

g. Type scale - C or F in the Tip field.

h. Click the OK button.

6. Select Help»Show Context Help to display the Context Help window.

7. Move the cursor over the front panel objects and the VI icon to display
the descriptions in the Context Help window.

Block Diagram
8. Select Window»Show Diagram to display the block diagram.

9. Build the following block diagram.

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-13 LabVIEW Basics I Course Manual

a. Place the Read Voltage VI located on the Functions»User
Libraries»Basics I Course palette. This VI reads the voltage at
Channel 0 or device 1.

Note If a DAQ device and/or DAQ Signal Accessory is not available, use the (Demo)
Read Voltage VI located on the Functions»User Libraries»Basics I Course palette
instead of the Read Voltage VI to simulate the Read Voltage VI operation.

b. Place the Multiply function located on the Functions»Numeric
palette. This function multiplies the voltage that the Read Voltage VI
returns by 100.0 to obtain the Celsius temperature.

c. Select Functions»Select a VI, navigate to c:\exercises\LV
Basics I, double-click the Convert C to F VI, which you built in
Exercise 3-1, and place the VI. This VI converts the Celsius readings
to Fahrenheit.

d. Place the Select function located on the Functions»Comparison
palette. This function returns either the Fahrenheit (FALSE) or
Celsius (TRUE) temperature value, depending on the value of Temp
Scale.

e. Right-click the device terminal of the Read Voltage VI, select
Create»Constant, type 1, and press the <Enter> key to create a
numeric constant.

f. Right-click the y terminal of the Multiply function, select
Create»Constant, type 100, and press the <Enter> key to create
another numeric constant.

g. Right-click the channel terminal of the Read Voltage VI, select
Create»Constant, type 0, and press the <Shift-Enter> keys to create
a string constant.

h. Use the Positioning tool, shown at left, to place the icons as shown
in the previous block diagram and use the Wiring tool, shown at left,
to wire them together.

Tip To identify terminals on the nodes, right-click the icon and select Visible
Items»Terminal from the shortcut menu to display the connector pane.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-14 ni.com

10. Display the front panel by clicking it or by selecting Window»Show
Panel.

11. Click the Continuous Run button, shown at left, to run the VI
continuously.

12. Put your finger on the temperature sensor and notice the temperature
increase.

13. Click the Continuous Run button again to stop the VI.

14. Create the following icon, so you can use the Temperature VI as a subVI.

a. Right-click the icon in the upper right corner of the front panel and
select Edit Icon from the shortcut menu. The Icon Editor dialog
box appears.

b. Double-click the Select tool, shown at left, on the left side of the
Icon Editor dialog box to select the default icon.

c. Press the <Delete> key to remove the default icon.

d. Double-click the Rectangle tool, shown at left, to redraw the border.

e. Use the Pencil tool, shown at left, to draw an icon that represents the
thermometer.

f. Use the Foreground and Fill tools to color the thermometer red.

Note To draw horizontal or vertical straight lines, press the <Shift> key while you use
the Pencil tool to drag the cursor.

g. Double-click the Text tool, shown at left, and change the font to
Small Fonts.

h. Select the B & W icon and select 256 Colors in the Copy from field
to create a black and white icon, which LabVIEW uses for printing
unless you have a color printer.

i. When the icon is complete, click the OK button. The icon appears
in the upper right corner of the front panel.

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-15 LabVIEW Basics I Course Manual

15. Right-click the icon and select Show Connector from the shortcut menu
and assign terminals to the switch and the thermometer.

a. Click the left terminal in the connector pane.

b. Click the Temp Scale control. The left terminal turns green.

c. Click the right terminal in the connector pane.

d. Click the Temperature indicator. The right terminal turns orange.

e. Click an open area on the front panel.

16. Save the VI, because you will use this VI later in the course.

a. Select File»Save.

b. Navigate to c:\exercises\LV Basics I.

c. Type Thermometer.vi in the dialog box.

d. Click the Save button.

17. Select File»Close to close the VI.

End of Exercise 3-2

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-16 ni.com

D. Creating a SubVI from Sections of a VI
You can simplify the block diagram of a VI by converting sections of the
block diagram into subVIs. Convert a section of a VI into a subVI by using
the Positioning tool to select the section of the block diagram you want to
reuse and selecting Edit»Create SubVI. An icon for the new subVI
replaces the selected section of the block diagram. LabVIEW creates
controls and indicators for the new subVI and wires the subVI to the existing
wires. The following example shows how to convert a selection into a
subVI.

Note You cannot convert a section with more than 28 inputs and outputs, because 28 is
the maximum number of terminals available on a connector pane.

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-17 LabVIEW Basics I Course Manual

Summary, Tips, and Tricks

• A VI within another VI is called a subVI. Using subVIs helps you
manage changes and debug the block diagram quickly.

• After you build a VI front panel and block diagram, build the icon and
the connector pane so you can use the VI as a subVI.

• The connector pane is a set of terminals that corresponds to the controls
and indicators of that VI. Define connections by assigning a front panel
control or indicator to each of the connector pane terminals.

• Create custom icons to replace the default icon by double-clicking the
icon in the upper right corner of the front panel.

• In the Icon Editor dialog box, double-click the Text tool to select a
different font.

• You can designate which inputs and outputs are required, recommended,
and optional to prevent users from forgetting to wire subVI connections
by right-clicking a terminal in the connector pane and selecting This
Connection Is from the shortcut menu.

• Document a VI by selecting File»VI Properties and selecting
Documentation from the Category pull-down menu. When you move
the cursor over a VI icon, the Context Help window displays this
description and indicates which terminals are required, recommended,
or optional.

• Add descriptions and tip strips to controls and indicators by
right-clicking them and selecting Description and Tip from the
shortcut menu. When you move the cursor over controls and indicators,
the Context Help window displays this description.

• Convert a section of a VI into a subVI by using the Positioning tool to
select the section of the block diagram you want to reuse and selecting
Edit»Create SubVI.

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-18 ni.com

Additional Exercise
3-3 Build a VI that calculates the slope between two X-Y pairs, as shown

in the following front panel and block diagram.

Document the VI thoroughly and create an icon and connector pane.
Select the slope calculation and select Edit»Create SubVI to make
a subVI.

Save the VI and name it Slope.vi.

Lesson 3 Creating a SubVI

© National Instruments Corporation 3-19 LabVIEW Basics I Course Manual

Notes

Lesson 3 Creating a SubVI

LabVIEW Basics I Course Manual 3-20 ni.com

Notes

© National Instruments Corporation 4-1 LabVIEW Basics I Course Manual

Lesson 4
Loops and Charts

Structures are graphical representations of the loops and case statements of
text-based programming languages. Use structures in the block diagram to
repeat blocks of code and to execute code conditionally or in a specific
order. LabVIEW includes five structures—the While Loop, For Loop,
Case structure, Sequence structure, and Formula Node.

This lesson introduces the While Loop, For Loop, and the waveform chart
and shift register.

You Will Learn:

A. How to use a While Loop

B. How to display data in a waveform chart

C. What a shift register is and how to use it

D. How to use a For Loop

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-2 ni.com

A. While Loops
Similar to a Do Loop or a Repeat-Until Loop in text-based programming
languages, a While Loop, shown at left, executes a subdiagram until a
condition is met. You place a While Loop on the block diagram by first
selecting it on the Functions»Structures palette.

Then use the cursor to click-and-drag a selection area around the code you
want to repeat. When you release the mouse button, a While Loop boundary
encloses the code you have selected as shown in the following block
diagram.

The completed While Loop is a resizable box. You can add additional block
diagram elements to the While Loop by dragging and dropping them inside
the boundary.

The While Loop executes the subdiagram until the conditional terminal, an
input terminal, receives a specific Boolean value. The default behavior and
appearance of the conditional terminal is Continue If True, shown at left.
When a conditional terminal is Continue If True, the While Loop executes
its subdiagram until the conditional terminal receives a FALSE value. The
iteration terminal (an output terminal), shown at left, contains the number of
completed iterations. The iteration count always starts at zero. During the
first iteration, the iteration terminal returns 0.

A While Loop is equivalent to the following pseudo-code:

Do

Execute Diagram Inside the Loop (which sets the
condition)

While the condition is TRUE

Iteration
Terminal

Conditional
Terminal

Lesson 4 Loops and Charts

© National Instruments Corporation 4-3 LabVIEW Basics I Course Manual

In the following block diagram, the While Loop executes until the value
output from the subVI is less than 10 or the Enable control is FALSE. The
And function outputs a TRUE only if both inputs are TRUE; otherwise, it
outputs a FALSE.

You can change the behavior and appearance of the conditional terminal by
right-clicking the terminal or the border of the While Loop and selecting
Stop If True, shown at left. When a conditional terminal is Stop If True,
the While Loop executes its subdiagram until the conditional terminal
receives a TRUE value, as shown in the following block diagram.

Now the While Loop stops when the subVI value is greater than or equal to
10.0 AND the Enable control is pushed (TRUE).

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-4 ni.com

B. Waveform Charts
The waveform chart is a special numeric indicator that displays one or more
plots. The waveform chart is located on the Controls»Graph palette.
Waveform charts can display single or multiple traces. The following front
panel shows an example of a multiple-plot waveform chart.

Charts use three different modes to scroll data, as shown in the following
front panel. Right-click the chart and select Advanced»Update Mode from
the shortcut menu. Select Strip Chart, Scope Chart, or Sweep Chart. The
default mode is Strip Chart.

A strip chart shows running data continuously scrolling from left to right
across the chart. A scope chart shows one item of data, such as a pulse or
wave, scrolling partway across the chart from left to the right. A sweep
display is similar to an EKG display. A sweep works similarly to a scope
except it shows the old data on the right and the new data on the left
separated by a vertical line. The scope chart and sweep chart have retracing
displays similar to an oscilloscope. Because there is less overhead in
retracing a plot, the scope chart and the sweep chart display plots
significantly faster than the strip chart.

Lesson 4 Loops and Charts

© National Instruments Corporation 4-5 LabVIEW Basics I Course Manual

Wiring a Single-Plot Chart
You can directly wire a scalar output to a waveform chart. The data type
displayed in the waveform chart terminal icon matches the input type,
as shown in the following block diagram.

Wiring a Multiple-Plot Chart
Waveform charts can accommodate more than one plot. You must
bundle the data together using the Bundle function located on the
Functions»Cluster palette. In the following block diagram, the Bundle
function bundles, or groups, the output of the three different VIs that acquire
temperature for plotting on the waveform chart. Notice the change in the
waveform chart terminal icon. To add more plots, resize the Bundle function
to increase the number of input terminals.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-6 ni.com

Exercise 4-1 Temperature Monitor
Objective: To use a While Loop and a waveform chart for acquiring data in real time.

Build a VI to measure temperature and display it on the waveform chart
using the Thermometer VI as a subVI, which you built in Exercise 3-2.

Front Panel

1. Open a new VI.

2. Select the vertical toggle switch on the Controls»Boolean palette and
place it on the front panel. You will use the switch to stop the acquisition.

3. Type Power inside the label and click outside the label or click the
Enter button on the toolbar, shown at left.

4. Select a waveform chart on the Controls»Graph palette and place it on
the front panel. The waveform chart will display the temperature in real
time.

5. Type Temperature History inside the label and click outside the
label or click the Enter button.

6. The waveform chart legend labels the plot Plot 0, so relabel the legend
by using the Labeling tool to triple-click Plot 0 in the chart legend,
type Temp, and click outside the label or click the Enter button.

7. The temperature sensor measures room temperature, so rescale the
waveform chart to display the temperature by using the Labeling tool to
double-click 10.0 in the waveform chart scale, type 90, and click
outside the label or click the Enter button. Change –10.0 to 70 in the
same way. Change the y-axis label to Temp (Deg F) and the x-axis
label to Time (sec).

Lesson 4 Loops and Charts

© National Instruments Corporation 4-7 LabVIEW Basics I Course Manual

Block Diagram

8. Select Window»Show Diagram to display the block diagram.

9. Enclose the two terminals inside a While Loop.

a. Select a While Loop on the Functions»Structures palette.

b. Click and drag a selection rectangle around the two terminals.

c. Use the Positioning tool to drag one corner to enlarge the loop.

10. Select Functions»Select a VI, navigate to c:\exercises\LV
Basics I, double-click the Thermometer VI, which you built in
Exercise 3-2, and place the VI on the block diagram. This VI returns one
temperature measurement from the temperature sensor.

11. Wire the block diagram objects as shown in the previous block diagram.

Note To measure temperature in Celsius, wire a Boolean constant located on the
Functions»Boolean palette to the Temp Scale input of the Thermometer VI. If you make
this change, you need to change the scales on charts and graphs in subsequent exercises
to be between 20 and 32 instead of 70 and 90, as shown in the examples in this manual.

12. Save the VI as Temperature Monitor.vi, because you will use this
VI later in the course.

13. Display the front panel by clicking it or by selecting Window»Show
Panel.

READ NOTE PRIOR TO WIRING

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-8 ni.com

14. Use the Operating tool to click the vertical toggle switch and turn it to
the ON position.

15. Run the VI.

The While Loop is an indefinite looping structure. The diagram within
its border executes as long as the specified condition is true. In this
example, as long as the switch is on (TRUE), the Thermometer VI takes
and returns a new measurement and displays it on the waveform chart.

16. Click the vertical toggle switch to stop the acquisition. This changes the
loop condition to FALSE and the loop ends.

17. Format and customize the X and Y scales of the waveform chart to suit
your display preferences and data.

a. Right-click the chart and select Y Scale»Formatting from the
shortcut menu. The following dialog box appears.

b. Click the grid style selector and select different styles for the axes
from the sub-menu that appears to experiment with different x- and
y-axis grid options. You also can experiment with scale styles,
scaling factors, mapping mode, and the format and precision of the
axis displays.

c. Select the values shown in the previous dialog box and click the OK
or Cancel buttons.

18. Right-click the waveform chart and select Data Operations»Clear
Chart from the shortcut menu to clear the display buffer and reset the
waveform chart. If the VI is running, select Clear Chart from the
shortcut menu.

Lesson 4 Loops and Charts

© National Instruments Corporation 4-9 LabVIEW Basics I Course Manual

Mechanical Action of Boolean Switches
You might notice that each time you run the VI, you first must turn on the
vertical toggle switch and then click the Run button. With LabVIEW, you
can modify the mechanical action of Boolean controls. The choices for the
mechanical action include: Switch When Pressed, Switch When Released,
Switch Until Released, Latch When Pressed, Latch When Released, and
Latch Until Released.

For example, consider the following vertical toggle switch. The default
value of the switch is off (FALSE).

Switch When Pressed—Changes the control value each time you click the
control with the Operating tool. The action is similar to that of a ceiling light
switch. How often the VI reads the control does not affect this action.

Switch When Released—Changes the control value only after you release
the mouse button during a click within the graphical boundary of the
control. How often the VI reads the control does not affect this action.

Switch Until Released—Changes the control value when you click the
control and retains the new value until you release the mouse button, at
which time the control reverts to its original value. The action is similar to
that of a door buzzer. How often the VI reads the control does not affect this
action.

Latch When Pressed—Changes the control value when you click the
control and retains the new value until the VI reads it once, at which time
the control reverts to its default value. This action happens whether or not
you continue to hold down the mouse button. This action is similar to that
of a circuit breaker and is useful for stopping While Loops or having the VI
do something only once each time you set the control.

Latch When Released—Changes the control value only after you release
the mouse button. When the VI reads the value once, the control reverts to
the old value. This action guarantees at least one new value.

Latch Until Released—Changes the control value when you click the
control and retains the value until the VI reads the value once or until you
release the mouse button, whichever occurs last.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-10 ni.com

19. Modify the vertical toggle switch so temperature is plotted on the graph
each time you run the VI.

a. Stop the VI if it is running.

b. Use the Operating tool to click the vertical toggle switch and turn it
to the ON position.

c. Right-click the switch and select Data Operations»Make Current
Value Default from the shortcut menu. This sets the ON position as
the default value.

d. Right-click the switch and select Mechanical Action»Latch When
Pressed from the shortcut menu.

20. Run the VI.

21. Use the Operating tool to click the vertical switch to stop the acquisition.
The switch changes to the OFF position and changes back to ON after
the While Loop condition terminal reads the value.

Adding Timing
When this VI runs, the While Loop executes as quickly as possible.
However, you might want to take data at certain intervals, such as once per
second or once per minute.

Control loop timing with the Wait Until Next ms Multiple function located
on the Functions»Time & Dialog palette. This function ensures that no
iteration is shorter than the specified number of milliseconds.

Lesson 4 Loops and Charts

© National Instruments Corporation 4-11 LabVIEW Basics I Course Manual

22. Modify the VI to take a temperature measurement once every
half-second, as shown in the previous block diagram.

Wait Until Next ms Multiple function located on the Functions»Time
& Dialog palette. Ensures that each iteration occurs every half-second
(500 ms).

Numeric Constant located on the Functions»Numeric palette. When
wired to the Wait Until Next ms Multiple function, the constant specifies
a wait of 500 ms (one half-second). Thus, the loop executes once every
half-second.

Adjust the x-axis scale of the chart by selecting X Scale»Formatting
from the chart shortcut menu. Change the dX value to 0.5 (5.0 10-1)
because you added a 500 ms wait between loop iterations.

23. Save the VI, because you will use this VI later in the course.

24. Run the VI. Try different values for the number of milliseconds.

25. Close the VI when you are finished.

End of Exercise 4-1

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-12 ni.com

Exercise 4-2 Random Signal (Optional)
Objective: To implement timing of a data display by using a numeric control and a waveform

chart.

Build a VI that generates random data and displays them on a waveform
chart in scope update mode. The VI should have a knob control on the front
panel to adjust the loop rate between 0 and 2 seconds. The panel also should
have a switch to stop the VI. You should not need to turn on the switch each
time you run the VI. Use the front panel shown to get started.

Hints:

1. Right-click the waveform chart plot legend and select Visible
Items»Plot Legend from the shortcut menu to hide the legend.

2. Right-click the word Time and select Visible Scale Label from the
shortcut menu to remove the x-axis scale label.

3. Use the Random Number (0-1) function located on the
Functions»Numeric palette to generate the data.

4. Multiply the knob terminal by 1,000 to convert the seconds to
milliseconds. Use this value as the input to the Wait Until Next ms
Multiple function located on the Functions»Time & Dialog palette.

5. Right-click the chart and select Advanced»Update Mode from the
shortcut menu to set the chart mode.

6. Save the VI as Random Signal.vi, because you will use this VI later
in the course.

End of Exercise 4-2

Lesson 4 Loops and Charts

© National Instruments Corporation 4-13 LabVIEW Basics I Course Manual

Exercise 4-3 Auto Match
Objective: To pass data out of a While Loop through a tunnel.

Build a VI that generates random numbers until the number generated
matches the specified number. The loop count terminal records the number
of iterations before a match occurs.

Front Panel
1. Open a new front panel.

2. Build the following front panel. Modify the controls and indicators as
shown and described in this exercise.

The Number to Match control specifies the number you want to match.
The Current Number indicator displays the current random number.
The # of iterations indicator displays the number of iterations before a
match.

Setting the Data Range
The Data Range option prevents you from setting a value that is not
compatible with a preset range or increment. You can ignore the error or
coerce it to within range. Complete the following steps to set the range
between 0 and 10,000 with an increment of 1 and a default value of 50.

3. Right-click the digital control and select Data Range from the shortcut
menu. The Data Range dialog box appears.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-14 ni.com

4. Remove the checkmark from the Use Defaults checkbox.

5. Select the options as shown in the following dialog box.

6. Click the OK button.

Modifying Digits of Precision
By default, numeric controls and indicators are displayed in decimal
notation with two decimal places, for example, 3.14. You can use
the Format & Precision option to change the precision or to display
the numeric controls and indicators in scientific, engineering, or
hour/minute/second notation. Complete the following steps to change
the precision to 0.

7. Right-click the digital indicator and select Format & Precision from
the shortcut menu. You must stop the VI to access the menu.

8. Type 0 in Digits of Precision and click the OK button.

Lesson 4 Loops and Charts

© National Instruments Corporation 4-15 LabVIEW Basics I Course Manual

Block Diagram
9. Build the following block diagram.

Random Number (0-1) function located on the Functions»Numeric
palette returns a random number between 0 and 1.

Multiply function located on the Functions»Numeric palette multiplies
the random number by 10,000. To create the numeric constant,
right-click the second input of the Multiply function and select
Create»Constant from the shortcut menu. In other words, the function
returns a random number between 0.0 and 10000.0.

Round To Nearest function located on the Functions»Numeric palette
rounds the random number between 0 and 10,000 to the nearest whole
number.

Not Equal? function located on the Functions»Comparison palette
compares the random number with the number specified on the front
panel and returns TRUE if the numbers are not equal; otherwise, it
returns FALSE.

Increment function located on the Functions»Numeric palette
increments the While Loop count by one.

The blue square that appears on the While Loop border is called a tunnel.
Through tunnels, data flow into or out of a looping structure. Data pass
out of a loop after the loop terminates. When a tunnel passes data into a
loop, the loop executes only after data arrive at the tunnel.

The loop executes as long as no match exists. That is, the Not Equal?
function returns TRUE as long as the two numbers do not match. Each
time the loop executes, the iteration terminal automatically increments
by one. The iteration count passes out of the loop upon completion. This
value increments by one outside the loop because the count starts at 0.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-16 ni.com

10. Save the VI as Auto Match.vi.

11. Display the front panel and enter a number in the Number to Match
control.

12. Run the VI several times. Change the number and run the VI again.

The Current Number indicator updates at every iteration of the loop
because it is inside the loop. The # of iterations indicator updates on
completion because it is outside the loop.

If you have trouble seeing how the VI updates the indicators, enable
execution highlighting. From the block diagram, click the Highlight
Execution button to enable execution highlighting. This mode slows the
VI so you can see each number as it is generated.

13. Type a number in the Number to Match control that is out of the data
range, which was originally set to between 0 and 10,000 with an
increment of 1.

14. Run the VI. The out of range value is coerced to the nearest value in the
specified data range.

15. Close the VI.

End of Exercise 4-3

Lesson 4 Loops and Charts

© National Instruments Corporation 4-17 LabVIEW Basics I Course Manual

C. Shift Registers
With While Loops and For Loops, you can use shift registers to transfer
values from one iteration to the next. Create a shift register by right-clicking
the left or right loop border and selecting Add Shift Register from the
shortcut menu.

The shift register contains a pair of terminals directly opposite each other on
the vertical sides of the loop border.

The right terminal stores the data on the completion of an iteration. Those
data are shifted at the end of the iteration and they appear in the left terminal
at the beginning of the next iteration, as shown in the following figure. A
shift register can hold any data type, such as numeric, Boolean, string, array,
and so on. The shift register automatically adapts to the data type of the first
object wired to the shift register.

You can configure the shift register to remember values from previous
iterations. This feature is useful when you average data points. To create
additional terminals to access values from previous iterations, right-click the
left terminal and select Add Element from the shortcut menu. For example,
if you add two more elements to the left terminal, you access values from
the last three iterations.

Before Loop Begins First Iteration

Subsequent Iterations Last Iteration

Inital
Value

Inital
Value

New
Value

New
Value

Previous
Value

New
Value

Previous
Value

New
Value

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-18 ni.com

Initializing Shift Registers
To initialize the shift register with a specific value from outside the loop,
wire the initial value to the left terminal of the shift register. If you leave the
initial value unwired, the initial value is the default value for the shift
register data type. For example, if the shift register data type is Boolean, the
initial value is FALSE. Similarly, if the shift register data type is numeric,
the initial value is 0.

Note LabVIEW does not discard values stored in the shift register until you close the VI
and remove it from memory. In other words, if you run a VI containing uninitialized shift
registers, the initial values for the subsequent run are the values left from the previous
run.

1 loop ago.
2 loops ago.
3 loops ago.

Latest value
is passed
to right terminal.

Previous values are available
at the left terminals.

Right-click on
the left terminal
to add new
elements.

2. Right-click on
the border for a
new shift register.

1.

Initial Value 0

Initial Value 7

Initial Value 5

Initial Value 5

Run 1Run 1

Run 2Run 2

Uninitialized Shift Registers Initialized Shift Registers

Lesson 4 Loops and Charts

© National Instruments Corporation 4-19 LabVIEW Basics I Course Manual

Exercise 4-4 Shift Register Example
Objective: To demonstrate the use of shift registers to access values from previous iterations.

Front Panel

1. Open the Shift Register Example.vi. The front panel has the
following four digital indicators.

The X(i) indicator displays the current value, which shifts to the left
terminal at the beginning of the next iteration. The X(i-1) indicator
displays the value one iteration ago, the X(i-2) indicator displays the
value two iterations ago, and so on.

2. Display the block diagram and make sure both the front panel and block
diagram are visible. If necessary, close or move the Tools and
Functions palettes. The 0 wired to the left terminals initializes the
elements of the shift register to 0.

Block Diagram

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-20 ni.com

3. Click the Highlight Execution button, shown at left, to enable execution
highlighting.

4. Run the VI and watch the bubbles. If the bubbles are moving too fast,
click the Pause and Step Over buttons, shown at left, to slow the
execution.

In each iteration of the While Loop, the VI funnels the previous values
through the left terminals of the shift register. Each iteration of the loop
adds 5 to the current data, X(i). This value shifts to the left terminal,
X(i-1), at the beginning of the next iteration. The values at the left
terminal funnel downward through the terminals. In this example, the VI
retains the last three values. To retain more values, add more elements
to the left terminal of the shift register.

5. Close the VI. Do not save any changes.

End of Exercise 4-4

Lesson 4 Loops and Charts

© National Instruments Corporation 4-21 LabVIEW Basics I Course Manual

Exercise 4-5 Temperature Running Average
Objective: To use shift registers to perform a running average.

Modify the Temperature Monitor VI to average the last three temperature
measurements and display the average on a waveform chart.

Front Panel
1. Open the Temperature Monitor VI, which you built in Exercise 4-1.

2. Select File»Save As and rename the VI Temperature Running
Average.vi.

Block Diagram
3. Display the block diagram.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-22 ni.com

4. Right-click the right or left border of the While Loop and select Add
Shift Register from the shortcut menu to create a shift register.

5. Right-click the left terminal of the shift register and select Add Element
from the shortcut menu to add an element to the shift register.

6. Modify the block diagram as shown in the previous block diagram.

7. Select Functions»Select a VI, navigate to c:\exercises\LV
Basics I, double-click the Thermometer VI, which you built in
Exercise 3-2, and place the VI on the block diagram. This VI returns one
temperature measurement from the temperature sensor and is used to
initialize the left shift registers before the loop starts.

The Compound Arithmetic function located on the
Functions»Numeric palette returns the sum of the current temperature
and the two previous temperature readings. Place the Positioning tool at
the corner of the function until the cursor changes to the resizing
handles, shown at left. Click the corner and drag to stretch the function
into a three-input Add function.

The Divide function located on the Functions»Numeric palette returns
the average of the last three temperature readings.

During each iteration of the While Loop, the Thermometer VI takes one
temperature measurement. The VI adds this value to the last two
measurements stored in the left terminals of the shift register. The VI
divides the result by three to find the average of the three measurements,
the current measurement plus the previous two. The VI displays the
average on the waveform chart. Notice that the VI initializes the shift
register with a temperature measurement.

8. Save the VI, because you will use this VI later in the course.

9. Run the VI.

Multiplot Charts
Charts can accommodate more than one plot. You must bundle the data
together in the case of multiple scalar inputs.

10. Modify the block diagram to display both the average and the current
temperature measurement on the same waveform chart.

a. Modify the block diagram as shown in the following block diagram.

Lesson 4 Loops and Charts

© National Instruments Corporation 4-23 LabVIEW Basics I Course Manual

Bundle function located on the Functions»Cluster palette. This
function bundles, or groups, the average and current temperature for
plotting on the waveform chart. The Bundle node appears as shown at
left when you place it on the block diagram. You can add additional
elements using the Positioning tool.

b. Save and run the VI. The VI displays two plots on the waveform
chart. The plots are overlaid. That is, they share the same vertical
scale.

Customizing Charts
You can customize waveform charts to match your data display
requirements or to display more information. Features available for
waveform charts include: a plot legend, a scale legend, a graph palette,
a digital display, a scroll bar, and a buffer. By default, a waveform chart
displays the graph legend showing when you place it on a front panel.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-24 ni.com

11. Customize the y-axis.

a. Use the Labeling tool to click 70.0 in the Y scale, type 75.0, and
press the <Enter> key.

b. Use the Labeling tool to click the second number from the bottom
on the Y axis. Change this number to 77.5 or 80.0. This number
determines the numerical spacing of the Y axis divisions.

For example, if the number above 75.0 is 77.5, indicating a Y axis
division of 2.5, changing the 77.5 to 80.0 reformats the Y axis to
multiples of 5.0 (75.0, 80.0, 85.0, and so on).

Note The waveform chart size has a direct effect on the display of axis scales. Increase
the waveform chart size if you encounter problems customizing the axis.

12. Right-click the waveform chart and select Visible Items»Scale Legend
from the shortcut menu to show the scale legend. You can place the scale
legend anywhere on the front panel. The scale legend contains the
following components.

13. Use the scale legend to customize each axis.

a. Type in the scale labels of the legend or directly type in the labels on
the chart to change the axis labels.

b. Click the Autoscale button for the Y axis to make the scale adjust
the minimum and maximum values to fit the data in the chart. To
lock the autoscaling, press the Lock Autoscale switch to the right to
hold down the Autoscale button.

c. Click the Scale Format button to change the format, precision,
mapping mode, scale visibility, and grid options for each axis.

d. Use the Operating tool to click the Scale Legend options to see how
they work.

14. By default, the waveform chart displays the plot legend. You can move
the plot legend anywhere on the front panel. Stretch the legend to
include two plots using the Positioning tool. To change Temp to
Running Avg, double-click the label with the Labeling tool and type in

X Axis

Y Axis

Scale Labels

Scale Format Buttons
Autoscale Buttons

Lock Autoscale Switches

Lesson 4 Loops and Charts

© National Instruments Corporation 4-25 LabVIEW Basics I Course Manual

the new text. Change Plot 1 to Current Temp in the same way. If the
text does not fit, resize the plot legend from the left corner of the plot
legend with the Positioning tool. The Positioning tool changes to a
frame corner when you can resize the plot legend.

Right-click the plot in the plot legend to set the plot line style and point
style. You also can color the plot background or traces by right-clicking
the plot legend and selecting Color from the shortcut menu.

15. Right-click the waveform chart and select Visible Items»Graph
Palette from the shortcut menu to show the graph palette. You can place
the graph palette anywhere on the front panel. The graph palette contains
the following options.

Use the Zoom button to zoom in on specified sections of the chart or on
the whole chart, as shown in the previous Zoom palette. The Pan button
allows click-and-drag scrolling (panning) in the chart. The Return to
Standard Mode button deactivates panning and zooming and returns
the cursor to its previous format.

16. Save and run the VI. While you run the VI, use the buttons in the scale
legend and graph palette to modify the waveform chart. Practice using
the formatting, autoscale, panning, and zooming features.

Note Often, modifying the axis text format requires more physical space than was
originally set aside for the axis. If you change the axis, the display might become larger
than the maximum size that the VI can correctly present.

17. Stop the VI.

18. Save and close the VI.

End of Exercise 4-5

Return to
Standard
Mode

Zoom Button Pan Button

Zoom Subpalette

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-26 ni.com

D. For Loop
A For Loop repeats part of the block diagram code a predetermined number
of times. You select a For Loop on the Functions»Structures palette and
enclose the code you want to repeat in the For Loop boundary. A For Loop
is a resizable box with two terminals: the count terminal (an input terminal)
and the iteration terminal (an output terminal). The count terminal specifies
the number of times to execute the loop. The iteration terminal contains the
number of times the loop has executed.

The For Loop differs from the While Loop in that the For Loop executes a
predetermined number of times. A While Loop stops repeating the code it
encloses only if the value at the conditional terminal is met. The For Loop
is equivalent to the following pseudo-code:

For i = 0 to N-1

Execute Diagram Inside The Loop

The following example shows a For Loop that generates 100 random
numbers and displays the points on a waveform chart.

Numeric Conversion
Until now, all the numeric controls and indicators have been
double-precision floating-point numbers. LabVIEW, however, can represent
numeric data types as integers (byte, word, or long), floating-point numbers
(single, double, or extended precision), or complex numbers (single, double,
or extended precision). If you wire together two terminals that are of
different data types, LabVIEW converts one of the terminals to the same
representation as the other terminal. As a reminder, LabVIEW places a dot,
called a coercion dot, on the terminal where the conversion takes place.

For example, consider the For Loop count terminal. The terminal
representation is long integer. If you wire a double-precision floating-point
number to the count terminal, LabVIEW converts the number to a long
integer. Notice the gray dot in the count terminal of the first For Loop.

Lesson 4 Loops and Charts

© National Instruments Corporation 4-27 LabVIEW Basics I Course Manual

To change the representation of a front panel numeric object, right-click the
front panel object or its block diagram terminal and select Representation
from the shortcut menu. A palette appears, from which you can select a
numeric representation.

When the VI converts floating-point numbers to integers, the VI rounds to
the nearest integer. x.5 is rounded to the nearest even integer. For example,
2.5 is rounded to 2 and 3.5 is rounded to 4.

Gray Dot

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-28 ni.com

Exercise 4-6 Random Average
Objective: To build a VI that displays two random plots on a waveform chart in sweep update

mode. The plots should be a random plot and a running average of the last four
points.

Use a For Loop (N = 200) instead of a While Loop. Try to make the sweep
chart look like the following chart.

Use the following hints to build the block diagram.

1. Use a shift register with three left terminals to average the last four data
points.

2. Use the Random Number (0-1) function located on the Functions»
Numeric palette to generate the data.

3. Use the Bundle function located on the Functions»Cluster palette to
group the random data with the averaged data before plotting.

4. Save the VI as Random Average.vi.

End of Exercise 4-6

Lesson 4 Loops and Charts

© National Instruments Corporation 4-29 LabVIEW Basics I Course Manual

Summary, Tips, and Tricks
• The While Loop and the For Loop are two structures that repeatedly

execute a subdiagram.

• The While Loop executes until the Boolean value wired to the
conditional terminal is TRUE. By default, the loop stops when the
condition value is FALSE.

• The For Loop executes a predetermined number of times, such as the
value wired to the count terminal.

• You create loops by either enclosing the subdiagram you want repeated
in the loop boundary or dragging the individual nodes inside the loop.

• The Wait Until Next ms Multiple function ensures that no iteration is
shorter than a specified number of milliseconds. This function can
control the loop timing.

• The waveform chart is a special numeric indicator that displays one or
more plots.

• The waveform chart has the following three update modes:

– The strip chart is the scrolling display.

– The scope chart plots data until they reach the right border, erases
the plot, and retraces the plot from left border.

– The sweep chart retraces the display with moving vertical line
between old and new data.

• Shift registers are used to record stored values from one iteration of a
loop to the next.

• For each iteration you want to recall, you must add a new element to the
left terminal of the shift register by right-clicking the shift register and
selecting Add Element from the shortcut menu.

• Right-click a waveform chart or its components to set attributes and
preferences of the chart and its plots.

• Coercion dots appear where LabVIEW is forced to convert a numeric
representation of one terminal to match the numeric representation of
another terminal.

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-30 ni.com

Additional Exercises
4-7 Using only a While Loop, build a combination For Loop/While

Loop that stops either when it reaches a user-specified number of
iterations, specified on a front panel control, or when a user pushes
a stop button.

Save the VI and name it Combo While-For Loop.vi.

4-8 Build a VI that continuously measures the temperature once per
second and displays the temperature on a scope chart. If the
temperature goes above or below the preset limits, the VI turns on a
front panel LED. The chart should plot the temperature as well as the
upper and lower temperature limits. You should be able to set the
limit from the following front panel.

Save the VI and name it Temperature Limit.vi.

4-9 Modify the VI you created in Exercise 4-8 to display the maximum
and minimum values of the temperature trace.

Tip You must use shift registers and two Max & Min functions located on the
Functions»Comparison palette.

Save the VI and name it Temp Limit (max-min).vi.

Challenge

Lesson 4 Loops and Charts

© National Instruments Corporation 4-31 LabVIEW Basics I Course Manual

Notes

Lesson 4 Loops and Charts

LabVIEW Basics I Course Manual 4-32 ni.com

Notes

© National Instruments Corporation 5-1 LabVIEW Basics I Course Manual

Lesson 5
Arrays, Graphs, and Clusters

Introduction
This lesson describes how to use LabVIEW arrays, display data in
waveform and XY graphs, and use clusters.

You Will Learn:

A. About arrays.

B. How to create arrays with loops.

C. How to use array functions.

D. What polymorphism is.

E. How to use graphs to display data.

F. About clusters.

G. How to use cluster functions.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-2 ni.com

A. Arrays
An array is a collection of data elements that are all the same type. An array
has one or more dimensions and up to 231 elements per dimension, memory
permitting. Arrays in LabVIEW can be of any type. However, you cannot
have an array of arrays, charts, or graphs. Access each array element by its
index. The index is in the range 0 to N-1, where N is the number of elements
in the array. The one-dimensional (1D) array shown below illustrates this
structure. Notice that the first element has index 0, the second element has
index 1, and so on.

Creating Array Controls and Indicators
Create an array control or indicator by combining an array shell with a data
object, which can be numeric, Boolean, string, or cluster.

Step 1
Select an empty array shell from the Controls»Array & Cluster palette.

Step 2
To create an array, drag a data object into the array shell.

10-element array 1.2 3.2 8.2 8.0 4.8 5.1 6.0 1.0 2.5 1.7

0 1 2 3 4 5 6 7 8 9index

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-3 LabVIEW Basics I Course Manual

Note Remember that you must assign a data object to the empty array shell before using
the array on the block diagram. If you do not assign a data object, the array terminal will
appear black with an empty bracket.

Two-Dimensional Arrays
A two-dimensional (2D) array requires two indexes—a row index and a
column index, both of which are zero based—to locate an element. The
example below is an N-row by M-column array, where N=5 and M=7.

To add n dimensions to the array control or indicator, right-click the array
index display and select Add Dimension from the shortcut menu. The
example above shows a 2D digital control array.

Creating Array Constants
You can create array constants in the block diagram by combining an
array shell with a data object as you would on the front panel. Array
constants are a combination of an Array Constant shell, available on the
Functions»Array palette, and a data constant. The following example
demonstrates how to create a Boolean array constant.

0 1 2 3 4 5 6
0

1

2

3

4

Five-row by seven-column array
of 35 elements

Row index

Column index

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-4 ni.com

Step 1
Select an empty Array Constant shell from the Functions»Array palette.

Step 2
To create an array, drag a data object into the array shell. Different data
objects include numeric, Boolean, string, or cluster constants from the
Functions palette.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-5 LabVIEW Basics I Course Manual

B. Creating Arrays with Loops
The For Loop and While Loop can index and accumulate arrays at their
boundaries automatically. This capability is called auto-indexing. The
illustration below shows a For Loop auto-indexing an array at its boundary.
Each iteration creates the next array element. After the loop completes, the
array passes to the indicator. Notice that the wire becomes thicker as it
changes to an array at the loop border and that the tunnel contains square
brackets.

If you need the last array value passed to the tunnel out of a loop without
creating an array, disable auto-indexing by right-clicking the tunnel (the
black square on the border) and selecting Disable Indexing from the
shortcut menu. In the illustration below, auto-indexing is disabled, and only
the last value returned from the Random Number (0-1) function passes out
of the loop. Notice that the wire remains the same size after it leaves the loop
and that the tunnel is solid.

Note Because For Loops are often used to process arrays, LabVIEW enables
auto-indexing by default when you wire an array into or out of For Loops. By default,
LabVIEW does not enable auto-indexing for While Loops. You must right-click the
While Loop tunnel and select Enable Indexing from the shortcut menu.

Auto-Indexing Enabled (Default—For Loops)

Wire becomes thicker

0 54321

1D Array

Auto-Indexing Disabled

Wire remains same size

Only one value (last iteration)
passed out of the loop

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-6 ni.com

Creating Two-Dimensional Arrays
You can use two For Loops, one inside the other, to create a 2D array. The
outer For Loop creates the row elements, and the inner For Loop creates the
column elements. The example below shows two For Loops auto-indexing
a 2D array containing random numbers.

Using Auto-Indexing to Set the For Loop Count
When you enable auto-indexing on an array entering a For Loop, LabVIEW
automatically sets the loop iteration count to the array size, thus eliminating
the need to wire a value to the count terminal, N. If you enable auto-indexing
for more than one array, or if you set the count, the count becomes the
smaller of the two choices. In the example below, the array size, and not N,
sets the For Loop count because the array size is the smaller of the two.

2D Array1D Array

Array Size = 10

For Loop
count is
set to 10,
not 100.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-7 LabVIEW Basics I Course Manual

C. Array Functions
LabVIEW has many functions to manipulate arrays, available on the
Functions»Array palette. Some common functions are discussed below.

Array Size returns the number of elements in the input array. If the input
array is N-dimensional, the output size is an array of N elements. Each
element records the number of elements in each dimension.

Initialize Array creates an array of dimension size elements containing the
element value. You can resize the function to correspond to the number of
dimensions of the output array. The example below depicts a 1D array of
three elements initialized with the value of 4.

Build Array concatenates multiple arrays or appends elements to an array.
The function appears as shown at left when placed on the block diagram.
You can resize this function to increase the number of inputs. In the VI
below, the Build Array function is configured to concatenate an array and
one element into a new array.

Build Array function
when placed on the

block diagram

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-8 ni.com

The inputs to the Build Array function automatically adjust to element or
array inputs depending on what datatype you wire to them. For example, the
top diagram in the following figure shows what happens when you wire two
arrays to the input terminals. You can right-click the Build Array function
and select the Concatenate Inputs option to perform the operation shown
in the second diagram.

The VI below uses the Array Subset function to return a portion of an array
starting at index and containing length elements.

Index Array accesses an element of an array. The VI below uses the Index
Array function to access the third element of an array. Notice that the third
element’s index is 2 because the index starts at zero; that is, the first element
has index 0.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-9 LabVIEW Basics I Course Manual

In the previous example, the Index Array function extracts a scalar element
from an array. You also can use this function to slice off a row or column
of a 2D array to create a subarray of the original. To do this, wire a 2D array
to the input of the Index Array function. Two index terminals are now
available. The top index terminal specifies the row, and the second terminal
specifies the column. You can wire inputs to both index terminals to index a
single element, or you can wire the row or the column terminal to extract a
row or column of data. The VI below indexes the second row from a 2D
array.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-10 ni.com

D. Polymorphism
The LabVIEW numeric functions are polymorphic. This means that the
inputs to these functions can be different data structures—scalars and
arrays. For example, you can add a scalar to an array or add two arrays
together. The example below shows some of the polymorphic combinations
of the Add function.

In the first combination, the result is a scalar. In the second combination, the
scalar is added to each element of the array. In the third combination, each
element of one array is added to the corresponding element of the other
array. In the fourth combination, the result is calculated like the third
combination, but because one array is smaller than the other, the resulting
array is the size of the smaller input array.

In the following example, each iteration of the For Loop generates one
random number stored in the array created at the border of the loop. After
the loop finishes execution, the Multiply function multiplies each element
in the array by the scaling factor. The front panel indicator then displays the
array.

ResultCombination

Scalar + Scalar

Scalar + Array

Array + Array

Array + Array

Array

Array

Array

Scalar

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-11 LabVIEW Basics I Course Manual

Exercise 5-1 Array Exercise VI
Objective: To create arrays and become familiar with array functions.

Build a VI that creates an array of random numbers, scales the resulting
array, and takes a subset of that final array.

Front Panel
1. Open a new VI and build the front panel shown below.

a. Create a digital indicator array. Place an array shell, available on the
Controls»Array & Cluster palette, on the front panel. Label the
array shell Random Array. Place a digital indicator, available on
the Controls»Numeric palette, inside the array shell using the
shortcut menu. This indicator displays the array contents.

b. Create two more digital array indicators to display data in Final
Array and Subset Array.

2. Place three digital controls to correspond to Scaling Factor, Start
Subset, and # of Elements. Enter values into these controls.

Choose a digital indicator from
the Numeric subpalette and
place it into the array shell.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-12 ni.com

The VI will generate an array of 10 random numbers, scale them by the
value in Scaling Factor, take a subset of that Final Array starting at
Start Subset for # of Elements, and display the subset in Subset Array.

Block Diagram

3. Build the block diagram shown above.

For Loop structure, available on the Functions»Structures
palette—Accumulates an array of 10 random numbers at the tunnel as
the wire leaves the loop. To set the loop to run 10 times, right-click the
N and select Create»Constant from the shortcut menu. Type 10 into the
numeric constant.

Random Number function, available on the Functions»Numeric
palette—Generates a random number between 0 and 1.

Multiply function, available on the Functions»Numeric palette—Uses
the polymorphic capability of the LabVIEW arithmetic functions to
multiply each value in the Random Array by the scalar Scaling Factor.

Array Subset, available on the Functions»Array palette—Removes a
portion of an array starting where you specify and for a length you
specify. The result displays on the front panel.

4. Save the VI as Array Exercise.vi.

5. Return to the front panel and run the VI a few times.

The For Loop runs for 10 iterations. Each iteration generates a random
number and stores it at the loop boundary. The Random Array is created
at the tunnel when the For Loop completes. Then each value in the
Random Array is multiplied by Scaling Factor to create Final Array.
Lastly, a portion of the Scaled Array is displayed after the Subset Array
function removes # of Elements starting at Start Subset.

6. Close the VI.

End of Exercise 5-1

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-13 LabVIEW Basics I Course Manual

E. Graphs
A graph indicator is a 2D display of one or more data arrays called plots.
LabVIEW features two types of graphs, XY graphs and waveform graphs.
Both types look identical on the front panel of your VI. An example of a
graph is shown below.

The waveform graph indicator is available on the Controls»Graph palette.
The waveform graph plots only single-valued functions with uniformly
spaced points, such as acquired time-varying waveforms. The waveform
graph is ideal for plotting arrays of data in which the points are evenly
distributed.

Single-Plot Waveform Graphs
For basic single-plot graphs, an array of Y values can pass directly to a
waveform graph. This method assumes the initial X value and the delta X
value are 0 and 1, respectively. The graph icon now appears as an array
indicator.

Scale Legend

Plot Legend
(Point and
Line Styles)

Graph Palette

1D array

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-14 ni.com

You can bundle data consisting of the initial X value, the delta X value, and
a data array to the waveform graph. With this feature, you have the
flexibility to change the timebase for the array. Notice that the graph icon
changes, as shown below.

Multiple-Plot Waveform Graphs
You can pass data to a multiple-plot waveform graph by creating an array of
the data types used in the single-plot examples above. The examples shown
below detail two methods for wiring multiple-plot waveform graphs. As in
previous examples, the graph icon assumes the data type to which it is wired.

The example above assumes the initial X value is 0 and the delta X value is
1 for both arrays. In the following multiple-plot graph example, the initial X
value and a delta X value for each array is specified. These X parameters do
not need to be the same for both sets of data.

The Build Array function, available on the Functions»Array palette,
creates a 2D array from the 1D array inputs or creates a cluster array from
the cluster inputs.

1D Array

1D array

2D array

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-15 LabVIEW Basics I Course Manual

XY Graphs
The XY Graph, available on the Controls»Graph palette, is a
general-purpose Cartesian graphing object ideal for plotting multivalued
functions such as circular shapes or waveforms with a varying timebase.

The Bundle function, available on the Functions»Cluster palette, combines
the X and Y arrays into a cluster wired to the XY graph. For the XY graph,
the components are, from top to bottom, an X array and a Y array. The XY
graph now appears as a cluster indicator.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-16 ni.com

Exercise 5-2 Graph Waveform Array VI
Objective: To create an array using the auto-indexing feature of a For Loop and plot the array

in a waveform graph.

Build a VI that generates and plots an array in a waveform graph and modify
the VI to graph multiple plots.

Front Panel
1. Open a new VI and build the front panel shown below. Be sure to modify

the controls and indicators as shown.

a. Place an array shell, available on the Controls»Array & Cluster
palette, on the front panel. Label the array shell Waveform Array.
Place a digital indicator, available on the Controls»Numeric
palette, inside the array shell using the shortcut menu. This indicator
displays the array contents.

b. Place a waveform graph, available on the Controls»Graph palette,
on the front panel.

Choose a digital indicator from
the Numeric subpalette and
place it into the array shell.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-17 LabVIEW Basics I Course Manual

Block Diagram

2. Build the block diagram shown above.

Process Monitor VI, available on the Functions»User
Libraries»Basics I Course palette—Outputs simulated experimental
data. In this exercise, the VI returns one point of simulated temperature
data during each For Loop iteration.

Numeric Constant, available on the Functions»Numeric palette—Sets
the number of For Loop iterations in this exercise. The VI generates 100
temperature values at the border of the For Loop. The tunnel output is a
100-element array. Right-click the count terminal and select
Create»Constant. Type 100 in the highlighted terminal.

3. Wire the waveform array directly to the waveform graph terminal. Each
iteration of the For Loop will generate a temperature value and store it
in an array at the loop border (tunnel).

4. Save the VI. Name it Graph Waveform Array.vi.

5. Return to the front panel and run the VI. The VI plots the auto-indexed
waveform array on the waveform graph.

6. You can view any element in the Waveform Array on the front panel by
entering the index of that element in the index display. If you enter a
number greater than the array size, the display dims.

To view more than one element at a time, resize the array indicator. Place
the Positioning tool on the lower-right corner of the array until the tool
appears as shown at left and drag. The indicator now displays several
elements in an ascending index order, beginning with the element
corresponding to the specified index, as shown below.

Count terminal

Positioning tool

Positioning tool
over the corner

of an array

Index 131211109

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-18 ni.com

In the previous block diagram, you used the default value of the initial X and
delta X value for the waveform. There are often cases where the initial X and
delta X value will be a specific value. In these instances, you can use the
Bundle function to specify an initial and delta X value for a waveform array.

7. Return to the block diagram. Delete the wire between the waveform
array and waveform graph. Finish wiring the block diagram as shown
above.

Bundle function, available on the Functions»Cluster
palette—Assembles the plot components into a single cluster in this
exercise. The components include the initial X value (10), the delta X
value (1.5), and the Y array (waveform data). Use the Positioning tool to
resize the function by dragging one of the corners.

You can draw the delta by first typing “DX” for the label of the constant.
Select the D using the Labeling tool and then select the Symbol font from
the Font Ring. The letter D then converts to the delta symbol.

After the loop finishes execution, the Bundle function bundles the initial
value of X (Xo), the delta value of X, and the array for plotting on the
graph.

8. Return to the front panel. Save and run the VI. The VI plots the
auto-indexed waveform array on the waveform graph. The initial
X value is 10 and the delta X value is 1.5.

9. Change the delta X value to 0.5 and the initial X value to 20.

Notice that the graph now displays the same 100 points of data with a
starting value of 20 and a delta X of 0.5 for each point (see the X axis).
In a timed test, this graph would correspond to 50 seconds worth of data
starting at 20 seconds. Experiment with several combinations for the
initial and delta X values.

10. Graphs contain scale legends and graph palettes just as charts do. View
the graph palette by right-clicking the waveform graph and selecting
Visible Items»Graph Palette from the shortcut menu. You can use the

∆X

Labeling tool

Font ring

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-19 LabVIEW Basics I Course Manual

zooming features on the palette to see the data on the graph in more
detail. View the scale legend by right-clicking the graph and selecting
Visible Items»Scale Legend from the shortcut menu.

11. With LabVIEW, you can specify a time and date format for numerics
and Graphs. Right-click the waveform graph and select X Scale»
Formatting from the shortcut menu. Change the formatting options as
shown below.

a. Modify the Scale Style to match the style shown above.

b. Change Format to the Time & Date format by clicking the menu
ring.

c. Modify the Time to show the time as HH:MM:SS.

d. Modify the Scaling Factors to have Xo begin at 7:30:00 a.m.
01/15/2000 and ∆X to increment every 10 minutes (0:10:00.00).

e. Click the OK button to apply your changes.

Note The Xo and ∆X parameters in the X Scale Formatting screen interact with the Xo
and ∆X from the Bundle function. Change the bundle’s Xo and ∆X to 0 and 1,
respectively, to match the example. For example:

Bundle Values Formatting Setup Resultant Graph Settings

Xo 20.0 7:30 10:50 (7:30 + 20 × 10 min.)

∆X 0.5 10:00.00 (10 min.) 5 min. (10 min. × 0.5)

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-20 ni.com

Change the starting and delta scale times in just one location—either the Bundle function
or X Scale»Formatting.

Note If the x-axis text is not clearly visible, shrink the inner display (black area) of the
graph with the Positioning tool to increase the border area around the graph.

Multiple-Plot Graphs
You can create multiple-plot waveform graphs by building a 2D array of the
data type normally passed to a single-plot graph.

12. Create the block diagram shown above.

Sine function, available on the Functions»Numeric»Trigonometric
palette—In this exercise, you use the function in a For Loop to build an
array of points that represents one cycle of a sine wave.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-21 LabVIEW Basics I Course Manual

Build Array function, available on the Functions»Array palette—In
this exercise, this function creates the proper data structure to plot
two arrays on a waveform graph. Enlarge the Build Array function to
include two inputs by dragging a corner with the Positioning tool.

Pi constant, available on the Functions»Numeric»Additional
Numeric Constants palette.

13. Switch to the front panel. Save and run the VI. Notice that the two
waveforms plot on the same waveform graph.

14. Return to the block diagram. Place a graph probe on the wire going to
the waveform array indicator.

a. Right-click the wire outside the For Loop running to the array
indicator.

b. From the shortcut menu, select Custom Probe»Graph and select a
waveform graph.

15. Switch to the front panel and run the VI. Notice that the probe shows
only the data array. The sine wave is not present because you did not
place the probe on the wire to which the sine wave is bundled. Close the
probe window.

16. Zoom in on a portion of the graph. Click and hold with the cursor on the
Zoom button on the Controls»Graph palette. The Zooming palette,
shown below, appears. From that palette, select Zoom by X Rectangle.
Click and drag a selection area on the graph. When you release the
mouse button, the graph display zooms in on the selected area. You also
can select Zoom by Y Rectangle or Zoom by Selected Area. Experiment
with these options. To undo a zoom, select “Undo Zoom” from the lower
left corner of the Zooming palette or click on the X axis single fit button
followed by the Y axis single fit button on the main Graph palette.

Zoom button

X axis single
fit button

Y axis single
fit button Zoom by X Rectangle

Zooming Subpalette

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-22 ni.com

17. Scroll through your data using the Pan feature. Click the Panning button
once, available on the Controls»Graph palette. Notice that the mouse
cursor changes to a hand. Now click and drag inside the graph display.
As long as you hold down the mouse button, you can drag the display.
Restore the display to its original position by clicking the X axis and
Y axis single fit buttons again. Finally, return the mouse to standard
mode by clicking the Return to standard mode button.

18. Save and close the Graph Waveform Array VI.

End of Exercise 5-2

Panning button

Return to
standard

mode button

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-23 LabVIEW Basics I Course Manual

Exercise 5-3 Temperature Analysis VI
Objective: To graph data and use the analysis VIs.

Build a VI that measures temperature every 0.25 s for 10 s. During the
acquisition, the VI displays the measurements in real time on a waveform
chart. After the acquisition is complete, the VI plots the data on a graph and
calculates the minimum, maximum, and average temperatures. The VI
displays the best fit of the temperature graph.

You will use this VI later, so be sure to save it as the instructions below
describe.

Front Panel
1. Open a new VI and build the front panel shown below.

The Temperature chart displays the temperature as it is acquired. After
acquisition, the VI plots the data and its best fit in Temp Graph. The
Mean, Max, and Min digital indicators will display the average,
maximum, and minimum temperatures, respectively.

Block Diagram

2. Build the block diagram shown below. Refer to the following
instructions.

Stretch the legend using
the Positioning tool.

Change the label from
"Plot 0" to "Temp" and
"Plot 1" to "Fitted"
with the Labeling tool.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-24 ni.com

You can display more than one plot on a graph. This feature not only
saves space on the front panel, it is also an effective means of making
comparisons between plots. XY and waveform graphs automatically
adapt to multiple plots.

Thermometer VI, available on the Functions»User Libraries»Basics 1
Course palette—Returns one temperature measurement.

Wait Until Next ms Multiple function, available on the Functions»Time
& Dialog palette—Causes the For Loop to execute every 0.25 s
(250 ms) in this exercise.

Array Max & Min function, available on the Functions»Array
palette—Returns the maximum and minimum temperature measured
during the acquisition in this exercise.

Mean VI, available on the Functions»Mathematics»Probability and
Statistics palette—Returns the average of the temperature
measurements in this exercise.

Bundle function, available on the Functions»Cluster
palette—Assembles the plot components into a single cluster in this
exercise. The components include the initial X value (0), the delta X
value (0.25), and the Y array (temperature data). Use the Positioning
tool to resize the function by dragging one of the corners.

General Polynomial Fit VI, available on the
Functions»Mathematics»Curve Fitting palette—Returns an array
that is a polynomial fit to the temperature array in this exercise. This
exercise uses five as the polynomial order. The General Polynomial Fit
VI determines the best fit for the points in the temperature array.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-25 LabVIEW Basics I Course Manual

Build Array function, available on the Functions»Array
palette—Creates an array of clusters from the temperature cluster and
the best fit cluster in this exercise. You can increase the number of inputs
for the function using the same method you employed for the Bundle
function. The Build Array function assembles data for the multiplot
graph into an array.

3. Save the VI. Name it Temperature Analysis.vi.

4. Return to the front panel and run the VI.

5. The graph displays the temperature data plot and best fit curve of the
temperature waveform on the same graph. Try different values for the
polynomial order constant in the block diagram.

The For Loop executes 40 times. The Wait Until Next ms Multiple
function causes each iteration to take place every 250 ms. The VI stores
the temperature measurements in an array created at the loop boundary
(auto-indexing). After the For Loop completes, the array passes to
various nodes. The Array Max & Min function returns the maximum
and minimum temperature. The Mean VI returns the average of the
temperature measurements. The VI bundles the data array with an initial
X value of 0 and a delta X value of 0.25. The delta X value of 0.25 is
required so that the VI plots the temperature array points every
0.25 seconds on the waveform graph.

6. You can modify the appearance of your plots by modifying options such
as plot styles and fill styles. You can create histogram graphs, general
bar plots, or filled plots. The Common Plots and Bar Plots palettes, in
the plot legend shortcut menu, allow you to configure plot styles such as
a scatter plot, a bar plot, or a fill to zero plot. You can configure the point,
line, and fill styles in one step.

a. Right-click the Temp plot display in the legend of the Temp graph.
Select Common Plots and select the Scatter Plot, the top middle
choice in Common Plots.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-26 ni.com

b. Right-click the Fitted plot display in the Legend of the Temp Graph
and select the second choice from Bar Plots in the plot legend
shortcut menu.

7. Save and close the VI.

End of Exercise 5-3

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-27 LabVIEW Basics I Course Manual

Exercise 5-4 Graph Circle VI (Optional)
Objective: To plot data using an XY Graph.

Build a VI that plots a circle using independent X and Y arrays.

Front Panel

1. Open a new VI.

2. Place an XY Graph, available on the Controls»Graph palette, on the
front panel. Label the graph XY Circle Graph. Change Plot 0 to
Circle in the plot legend.

3. Right-click the plot in the plot legend and select the small square from
the Point Style palette.

Block Diagram

4. Build the block diagram shown above.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-28 ni.com

Sine & Cosine function, available on the Functions»Numeric»
Trigonometric palette—In this exercise, you use the function in a For
Loop to build an array of points that represents one cycle of a sine wave
and a cosine wave.

Bundle function, available on the Functions»Cluster
palette—Assembles the sine array and the cosine array to plot the sine
array against the cosine array in this exercise.

Two Times Pi constant, available on the Functions»Numeric»
Additional Numeric Constants palette.

Using a Bundle function, you can graph the one-cycle Sine array versus
the one-cycle Cosine array on an XY graph, which produces a circle.
The XY graph is useful for cases where the data plotted is a multivalued
function, like the circle, or where the data is a waveform with a
nonuniform timebase.

5. Save the VI as Graph Circle.vi.

6. Return to the front panel. Run the VI.

7. Close the VI when you are finished.

End of Exercise 5-4

Chart and Graph Use Summary
When you first use the charts and graphs in LabVIEW, it can be confusing
when you try to wire data to them. Do you use a Build Array function,
a Bundle function, or both? What order do the input terminals use?
Remember that the Context Help window in LabVIEW contains valuable
information, especially when you use charts and graphs. For example, if you
select Help»Show Context Help and put the cursor over a Waveform Graph
terminal in the block diagram, you will see the following information:

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-29 LabVIEW Basics I Course Manual

The Context Help window shows you what data types to wire to the
Waveform Graph, how to specify point spacing with the Bundle function,
and which example to use when you want to see the different ways
you can use a Waveform Graph. These examples are located in the
Help»Examples»Fundamentals»Graphs and Charts category. The
Context Help window shows similar information for XY Graphs and
Waveform Charts.

Note The waveform data type mentioned in the Context Help window is described in
Lesson 8, Data Acquisition and Waveforms.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-30 ni.com

F. Clusters
You used the Bundle function with charts and graphs to group information
for the plots. The Bundle function creates a data type in LabVIEW known
as a cluster. A cluster is a data structure that combines one or more data
components into a new data type. Unlike an array, where all the data
components are exactly the same, the components that form a cluster may
contain different data types such as Boolean, string, and numeric data types.
A cluster is analogous to a record in Pascal or a struct in C.

On the block diagram, a wire that carries the data stored in a cluster may be
thought of as a bundle of smaller wires, much like a telephone cable. Each
wire in the cable represents a different component of the cluster. Because a
cluster constitutes only one wire in the block diagram, clusters reduce wire
clutter and the number of connector terminals that subVIs need.

Unbundle the cluster in the diagram to access its components. You may
think of unbundling a cluster as unwrapping a telephone cable and accessing
the individual wires within the cable.

Creating Cluster Controls and Indicators on the Front Panel
Create cluster controls and indicators on a VI front panel by placing a
cluster shell on the front panel. To place an empty cluster shell on the front
panel, select Controls»Array & Cluster»Cluster. Then click the front
panel to place the cluster. You can adjust the size of the cluster shell by
holding down the mouse button and dragging the cursor when placing the
cluster shell on the front panel.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-31 LabVIEW Basics I Course Manual

You can place any objects inside the cluster that you normally place on the
front panel. You can deposit objects directly inside the cluster by dragging
an object into a cluster. Objects inside a cluster must be all controls or all
indicators; you cannot combine both controls and indicators inside the same
cluster. The cluster assumes the data direction (control or indicator) of the
first object you place inside the cluster. For example, if you drop an indicator
into a cluster containing controls, the indicator changes to a control.
A cluster of four controls is shown below:

Creating Cluster Constants on the Block Diagram
To create a cluster constant on the block diagram, you can use the same
technique you used on the front panel. On the block diagram, select
Functions»Cluster»Cluster Constant to create the cluster shell. Click the
block diagram to place the cluster shell, and place other constants of the
appropriate data type within the cluster shell.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-32 ni.com

If you have a cluster control or indicator on the front panel and want to
create a cluster constant containing the same components on the block
diagram, you can either drag that cluster from the front panel to the block
diagram or select Create»Constant from the shortcut menu.

Cluster Order
When LabVIEW manipulates clusters of data, the data types of the
individual components within the cluster and the order of the components in
the cluster are both important. Cluster components have a logical order
unrelated to their position within the shell. The first object placed in the
cluster shell is component 0, the second is component 1, and so on. If you
delete a component, the order adjusts automatically.

You can change the order of the objects within the cluster by right-clicking
the cluster border and selecting Reorder Controls in Cluster from the
shortcut menu. A new set of buttons replaces the toolbar, and the cluster
appearance changes as shown. The white box on each component shows its
current place in the cluster order. The black box shows a component’s new
place in the order.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-33 LabVIEW Basics I Course Manual

To set a cluster component to a particular index in the cluster order, first type
the desired order number into the Click to set to field. Then click the desired
component. You will notice that the component’s cluster order index
changes. You will also notice that the cluster order indices of the other
components adjust automatically. Save your changes by clicking the OK
button in the palette. You can revert to the original settings by clicking the
Revert to Original button. You use this technique to set the cluster order for
constants on both the front panel and block diagram.

The example shown below shows the importance of cluster order. The front
panel contains two simple clusters. In the first cluster, component 0 is a
numeric control and component 1 is a string control. In the second cluster,
component 0 is a numeric indicator and component 1 is a string indicator.
The cluster control correctly wires to the cluster indicator as shown.

Keep Changes
Revert to Original

Cluster Order
Cursor

Current Order

New Order

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-34 ni.com

However, if you change the cluster order of the indicator so the string
indicator is component 0 and the numeric is component 1, the wire
connecting the cluster control to the cluster indicator is broken. If you try to
run the VI, you get an error message stating that there is a type conflict
because the data types do not match.

Using Clusters to Pass Data to and from SubVIs
A VI connector pane can have a maximum of 28 terminals, as shown in the
figure below. When you use a connector pane that has a large number of
terminals, the terminals are very small and difficult to wire. It is best to use
connector panes with 14 or fewer terminals.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-35 LabVIEW Basics I Course Manual

You can use clusters to group related controls together. One cluster control
uses one terminal on the connector pane, but that cluster can contain several
controls. Similarly, one terminal assigned to a cluster indicator can pass
several outputs from the subVI. Because your subVI uses clusters
containing several items each, you can use fewer, and therefore larger,
terminals on the connector pane. This makes for cleaner wiring on the block
diagram, as shown below.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-36 ni.com

G. Cluster Functions
LabVIEW uses several functions to manipulate clusters. The Bundle and
Bundle by Name functions assemble and modify clusters, and the Unbundle
and Unbundle by Name functions disassemble clusters.

Assembling Clusters
The Bundle function, available on the Functions»Cluster palette,
assembles individual components into a single cluster or replaces
components within an existing cluster. The topmost component wired to the
Bundle function is component 0 in the cluster order, the second component
is component 1, and so on. To increase the number of inputs, resize the
function with the Positioning tool or right-click the icon and select Add
Input from the shortcut menu. If the cluster of n components terminal is
wired, the number of input terminals to the Bundle function must match the
number of items in the input cluster.

When you use the cluster of n components terminal, you do not need to
wire data to every input terminal of the function. Instead, you can wire data
only to the items you want to change. For example, consider the cluster
shown below, which contains three controls—a string labeled Command,
a numeric labeled Function, and a Boolean labeled Trigger.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-37 LabVIEW Basics I Course Manual

You can use the Bundle function to change the string value by wiring the
components as shown below. You must know the cluster order to do this
correctly.

The Bundle by Name function, available on the Functions»Cluster palette,
replaces components in an existing cluster. Bundle by Name works similarly
to the Bundle function, but instead of referencing cluster components by
their cluster order, it references them by their owned labels. You cannot
access components in the input cluster, connected to the cluster of N named
components input terminal, that do not have owned labels.

Select a component by clicking an input terminal using the Operating tool
and selecting a name from the list of components in the cluster. You also can
right-click the input terminal and select the component from the Select Item
menu. Notice that you must wire an input cluster to the cluster of N named
components input of this function, and at least one item in the input cluster
must have a name. The number of terminals on the Bundle by Name
function does not need to match the number of components in the input
cluster.

For example, consider again the cluster control containing the controls
labeled Command, Function, and Trigger. You can use the Bundle by
Name function to change the string value by wiring the components as
shown in the next figure. To select the name Command, click the left
terminal of the Bundle by Name function using the Operating tool and select
Command from the list of names.

Operating tool

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-38 ni.com

If you need to modify both Command and Function, you can resize the
Bundle by Name function as shown below.

Use the Bundle by Name function when working with data structures that
might change during the development process. If you add a new component
to the cluster or modify its order, you do not need to rewire the Bundle by
Name function on the diagram because the names still are valid.

Disassembling Clusters
The Unbundle function, available on the Functions»Cluster palette, splits
a cluster into each of its individual components. The components are
arranged from top to bottom according to the cluster order of the input
cluster. You can increase the number of outputs by resizing the function with
the Positioning tool or by using the shortcut menu. The number of output
terminals for this function must match the number of components on the
input cluster.

The Unbundle by Name function, available on the Functions»Cluster
palette, returns the cluster components that you reference by name. Select a
component by clicking the output terminal using the Operating tool and
selecting a name from the list of components in the cluster. You also can
right-click an output terminal and select the component from the Select
Item menu. Because the cluster components are referenced by name, you
can access only the cluster components that have owned labels. The number
of output terminals of the Unbundle by Name function does not depend on
the number of components in the input cluster.

Positioning tool

Operating tool

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-39 LabVIEW Basics I Course Manual

For example, if you use the Unbundle function with the cluster shown
below, it has four output terminals. These four terminals correspond to the
four controls inside the cluster. Notice that you need to know the cluster
order so that you can associate the correct Boolean (TF) terminal of the
unbundled cluster with the corresponding switch inside the cluster. In this
example, the components are ordered from top to bottom starting with
component 0. Notice that when you use the Unbundle by Name function,
you can have an arbitrary number of terminals and access specific
components by name in any order.

As shown below, you can also create the Bundle, Bundle by Name,
Unbundle, and Unbundle by Name functions by right-clicking a cluster
terminal in the block diagram and selecting Cluster Tools from the shortcut
menu. The Bundle and Unbundle functions will automatically contain the
correct number of terminals. The Bundle by Name and Unbundle by Name
functions will appear with the first component in the cluster.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-40 ni.com

Using Polymorphism with Clusters
As you learned in the Array Functions section, many LabVIEW functions
are polymorphic and can adapt to different input data types. Because the
arithmetic functions are polymorphic, you can use them to perform
computations on clusters of numbers. As shown in the following example,
you use the arithmetic functions with clusters in the same way you use them
with arrays of numerics. You also can use the string-to-number functions to
convert a cluster of numerics to a cluster of strings. Strings are covered in
Lesson 7, Strings and File I/O.

Cluster Arithmetic

Cluster Number-to-String Conversion

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-41 LabVIEW Basics I Course Manual

Exercise 5-5 Cluster Exercise
Objective: To create clusters on the front panel and use the cluster functions to assemble and

disassemble cluster components.

Front Panel
1. Open a new VI and build the front panel shown below.

a. Place a round LED, digital indicator, and Stop button on the front
panel.

b. Place a cluster shell on the front panel by right-clicking and selecting
Controls»Array & Cluster»Cluster. Enlarge the shell by dragging
one of the corners with the Positioning tool.

c. Place the four control objects inside the cluster.

d. Repeat the process for the Modified Cluster. The cluster becomes an
indicator when you place a digital indictor inside it. Keep in mind
that in this case, the toggle switch inside Modified Cluster is an
indicator and not a control. That is, the toggle switch becomes an
indicator because the cluster itself is an indicator.

Tip To create Modified Cluster, you can duplicate Cluster, relabel it, and change it to an
indicator. To duplicate Cluster, select it using the Positioning tool, select Edit»Copy,
click to a new area in the front panel, and select Edit»Paste.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-42 ni.com

e. Repeat the process for the Small Cluster. Place the two indicators
inside the shell.

f. Verify the cluster order of the Small Cluster and Cluster. The
Modified Cluster should have the same order as the Cluster.
Right-click the boundary of each cluster and select Reorder
Controls in Cluster from the shortcut menu. Complete the cluster
orders as shown below.

Block Diagram

2. Build the block diagram shown above.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-43 LabVIEW Basics I Course Manual

Unbundle function, available on the Functions»Cluster
palette—Disassembles the Cluster. Resize this function to show four
output terminals. The labels inside the function appear after you wire
to it.

Bundle function, available on the Functions»Cluster
palette—Assembles the components of the Small Cluster. The labels
inside the function appear after you wire to it.

Unbundle by Name function, available on the Functions»Cluster
palette—Disassembles two components from Cluster. Resize this
function to have two output terminals. The names will appear after you
wire the input terminal. If the labels are not correct, right-click the
existing label and select the correct one from the Select Item menu.

Increment function, available on the Functions»Numeric
palette—Adds one to the value of Numeric.

Not function, available on the Functions»Boolean palette—Outputs the
logical opposite of the value of Boolean 1.

Bundle by Name function, available on the Functions»Cluster
palette—Replaces the values of Numeric and Boolean 1 of the Cluster
and places it into Modified Cluster. Resize this function to have two
input terminals. The labels will appear after you wire the middle input
terminal. If the labels are not correct, right-click the existing labels and
select the correct one from the Select Item menu option.

While Loop conditional terminal. Right-click the conditional terminal
of the While Loop and select Stop If True from the shortcut menu. The
VI now stops when you press the Stop button.

3. Return to the front panel and save the VI as Cluster Exercise.vi.

4. Run the VI. Enter different values in Cluster and notice that the indicator
clusters echo the values. Notice that the components of Cluster are
unbundled from Cluster and displayed in their corresponding indicators
in Small Cluster and Modified Cluster.

5. Close the VI when you are finished.

End of Exercise 5-5

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-44 ni.com

Exercise 5-6 Cluster Scaling VI (Optional)
Objective: To build a VI that uses polymorphism with clusters.

This VI scales values stored in a cluster, where each component in the
cluster has a different scale factor. In this exercise, assume that the voltages
were measured from transducers that measure the pressure, flow rate, and
temperature. The VI then scales these values to get the “actual” values
present in the system.

Front Panel
1. Open the Cluster Scaling VI. The front panel is already built for you.

Finish building the block diagram.

Block Diagram

2. Build the block diagram shown above. Make sure you apply the correct
scale factors to each component in the raw data cluster.

3. Save and run the VI. Test several alternatives to ensure that the VI works
properly.

4. Close the VI when you are finished.

End of Exercise 5-6

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-45 LabVIEW Basics I Course Manual

Summary, Tips, and Tricks
• An array is a collection of data elements of the same type. The data

elements can be of any type, so you can create numeric, Boolean, string,
or cluster arrays.

• Remember that the index value is zero-based so the index representing
the first element of an array has a value of zero.

• If an array has no assigned data object, the array terminal will appear
black with an empty bracket.

• Creating an array on the front panel is a two-step process. First, place an
array shell, available on the Controls»Array & Cluster palette, on the
front panel. Then add the desired control or indicator to the shell.

• There are many functions to manipulate arrays, such as Build Array and
Index Array, on the Array palette.

• In this lesson, you used array functions to work with only 1D arrays;
however, the same functions work similarly with multidimensional
arrays.

• Both the For Loop and While Loop can process and accumulate arrays
at their borders. This is done by having auto-indexing enabled at the
loop tunnels.

• By default, LabVIEW enables auto-indexing in For Loops and disables
auto-indexing in While Loops.

• Polymorphism is the ability of a function to adjust to input data of
different data structures.

• Waveform graphs and XY graphs display data from arrays.

• Graphs have many unique features that you can use to customize your
plot display. Right-click the graph or its components to access its
different plotting options.

• You can display more than one plot on a graph by using the Build Array
function, available on the Functions»Array palette, and by using
Bundle for charts and XY Graphs. The graph automatically becomes a
multiplot graph when you wire the array of outputs to the terminal.

• A cluster is a data structure that groups data, even data of different types.
Objects in a cluster are either all controls or all indicators.

• If a VI has many front panel controls and indicators that you need to
associate with terminals, you may want to group them into one or more
clusters and use fewer terminals.

• Creating a cluster on the front panel or on the block diagram is a
two-step process. First, create a cluster shell. Then place the components
inside the cluster shell.

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-46 ni.com

• The Bundle and Bundle by Name functions are used to assemble
clusters. The Unbundle and Unbundle by Name functions are used to
disassemble clusters.

• You can use the polymorphic capabilities of LabVIEW functions with
arrays and clusters.

• Try to place items in a cluster that logically or conceptually belong
together.

• Use clusters to overcome the 24 terminal limitation on an icon and to
group similar inputs and outputs together on a subVI. You can use this
technique to group optional inputs on a subVI.

Lesson 5 Arrays, Graphs, and Clusters

© National Instruments Corporation 5-47 LabVIEW Basics I Course Manual

Additional Exercises
5-7 Build a VI that reverses the order of an array containing 100 random

numbers. For example, array[0] becomes array[99], array[1]
becomes array[98], and so on.

Hint: Use the Reverse 1D Array function, available on the
Functions»Array palette, to reverse the array order.

Name the VI Reverse Random Array.vi.

5-8 Build a VI that first accumulates an array of temperature values
using the Process Monitor VI, available on the Functions»User
Libraries»Basics I Course palette. The array size is determined by
a control on the front panel. Initialize an array, using the Initialize
Array function, of the same size where all the values are equal to 10.
Then add the two arrays, calculate the size of the final array, and
extract the middle value from the final array. Display the
Temperature Array, the Initialized Array, the Final Array, and the
Mid Value. Name the VI Find Mid Value.vi.

5-9 Build a VI that generates a 2D array of three rows by 10 columns
containing random numbers. After generating the array, index each
row and plot each row on its own graph. The front panel should
contain three graphs. Name the VI Extract 2D Array.vi.

5-10 Build a VI that simulates the roll of a die with possible values 1–6
and keeps track of the number of times that the die rolls each value.
The input is the number of times to roll the die, and the outputs
include the number of times the die falls on each possible value. Do
this using only one shift register. Name the VI Die Roller.vi.

5-11 Build a VI that generates a 1D array and then multiplies pairs of
elements together, starting with elements 0 and 1, and outputs the
resulting array. For example, the input array with values 1 23 10 5 7
11 results in the output array 23 50 77. Name the VI Array Pair
Multiplier.vi.

Hint: Use the Decimate 1D Array function, available on the
Functions»Array palette.

Challenge

Challenge

Lesson 5 Arrays, Graphs, and Clusters

LabVIEW Basics I Course Manual 5-48 ni.com

Notes

© National Instruments Corporation 6-1 LabVIEW Basics I Course Manual

Lesson 6
Case and Sequence Structures

Introduction
This lesson discusses the two other LabVIEW structures: the Case structure
and the Sequence structure. This lesson also introduces the Formula Node.

You Will Learn:

A. How to use the Case structure.

B. How to use the Sequence structure.

C. How to use the Formula Node.

D. How to replace Sequence structures.

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-2 ni.com

A. Case Structure
You place the Case structure on the block diagram by selecting it from the
Structures subpalette of the Functions palette. You can either enclose
nodes with the Case structure or drag nodes inside the structure.

The Case structure is analogous to case statements or if...then...else
statements in conventional, text-based programming languages. The Case
structure is configured like a deck of cards; only one case is visible at a time.
Each case contains a subdiagram. Only one case executes, depending on the
value wired to the selector terminal. The selector terminal can be numeric,
Boolean, or string. If the data type is Boolean, the structure has a True case
and a False case. If the data type is numeric or string, the structure can have
up to 231–1 cases.

Selector
terminal

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-3 LabVIEW Basics I Course Manual

Below is an example of a Boolean Case structure. In this example, the
numbers pass through tunnels to the Case structure and are either added or
subtracted, depending on the value wired to the selector terminal. If the
Boolean wired to the selector terminal is True, the VI will add the numbers;
otherwise, the VI will subtract the numbers.

Below is an example of a numeric Case structure. In this example, the
numbers pass through tunnels to the Case structure, and are either added or
subtracted, depending on the numeric value wired to the selector terminal.

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-4 ni.com

In this case, a numeric Text Ring Control (Control»Ring & Enum)
associates numerics to text items. If the Text Ring Control wired to the
selector terminal is 0 (add), the VI will add the numbers; otherwise, the
value is 1 (subtract) and the VI will subtract the numbers.

Note You must define the output tunnel for each case. When you create an output tunnel
in one case, tunnels appear at the same position in the other cases. Unwired tunnels look
like white squares. Be sure to wire to the output tunnel for each unwired case, clicking
on the tunnel itself each time. You also can wire constants or controls to unwired cases by
right-clicking the white square and selecting Create»Constant or Create»Control.

Below is an example of a string Case structure. In this example, the numbers
pass through tunnels to the Case structure and are either added or subtracted,
depending on the character string wired to the selector terminal. In this case,
if the String Control contains the characters “add” (quotes not included), the
VI will add the numbers; otherwise, if the String Control contains the
characters “subtract,” the VI will subtract the numbers.

When you place a Case structure on a block diagram, you type the selector
values directly into the Case structure selector label. You can also edit the
selector values using the labeling tool. You can specify a single value, lists,
or ranges of values that select the case. To indicate a list, separate the values
by commas, such as -1, 0, 5, 10. A range is specified as 10..20,
meaning all numbers from 10 to 20 inclusively. You can also use open-ended
ranges such as ..0 (all numbers less than or equal to 0), or 100.. (all
numbers greater than or equal to 100). Lists and ranges can be combined
such as ..5, 7..10, 12, 13, 14. When you type in a selector that

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-5 LabVIEW Basics I Course Manual

contains overlapping ranges, the Case structure redisplays the selector in a
more compact form. The previous example would redisplay as ..5,
7..10, 12..14.

Note If you type in a selector value that is not the same type as the object wired to the
selector terminal, the value displays in red and your VI cannot run. Also, because of the
possible round-off error inherent in floating-point arithmetic, using floating-point
numbers in a case selector is discouraged. If you wire a floating point type to the case,
the type is converted to an integer. If you try to type in a floating point value into the Case
selector, it will display in red.

The shortcut menu options for the Case structure are shown above. You can
add, duplicate, or remove cases. You can also rearrange the cases to sort
them or otherwise put them into a different order. The Make This The
Default Case option in the menu specifies a particular case to execute if the
selector value is not listed in the Case structure. The word “Default” is listed
in the selector value at the top of the case structure. You must specify a
default case for a Case structure if it does not contain selectors for every
possible selector value (numeric and string cases).

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-6 ni.com

Exercise 6-1 Square Root.vi
Objective: To use the Case structure.

You will build a VI that checks a number to see if it is positive. If it is, the
VI calculates the square root of the number; otherwise, the VI returns a
message.

Caution Do not run this VI continuously!

Front Panel

1. Open a new VI.

2. Build the front panel shown above.

The Number digital control supplies the number. The Square Root Value
indicator displays the square root of the number if Number is positive.

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-7 LabVIEW Basics I Course Manual

Block Diagram

3. Open the block diagram.

4. Select a Case structure (Structures palette) and enlarge it in the block
diagram by dragging the mouse.

By default, the Case structure selection terminal is Boolean. It will
automatically change to numeric if you wire a numeric control to the
terminal.

You can display only one case at a time. To change cases, click on the
arrows in the top border of the Case structure.

5. Select the other diagram objects and wire them as shown.

Greater or Equal to 0? function (Comparison palette). In this exercise,
this function checks whether the number input is negative. The function
returns a TRUE if the number input is greater than or equal to 0.

Square Root function (Numeric palette). In this exercise, this function
returns the square root of the input number.

Numeric Constant (Tunnel shortcut menu). Place the Wiring tool on the
white tunnel and select Create»Constant. Use the Labeling tool to type
in the value into the constant. Right-click the constant and select
Format & Precision. Modify the numeric to have 1 digit of Precision
and Floating Point Notation.

Note If both cases do not have data wired to the tunnel, the tunnel remains white. Ensure
that a value is wired to the output tunnel from each case.

(This is the True case of the
Case structure above.)

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-8 ni.com

One Button Dialog function (Time & Dialog palette). In this exercise,
this function displays a dialog box that contains the message
Error...Negative Number.

String Constant (String palette). Enter text inside the box with the
Operating tool. (You will study strings in detail in Lesson 7, Strings and
File I/O.)

In this exercise, the VI will execute either the True case or the False case.
If the number is greater than or equal to zero, the VI will execute the
True case. The True case returns the square root of the number. The
False case outputs a –99999.0 and displays a dialog box with the
message Error...Negative Number.

6. Save the VI. Name it Square Root.vi.

7. Return to the front panel and run the VI. Try a number greater than zero
and one less than zero.

8. Close the VI.

End of Exercise 6-1

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-9 LabVIEW Basics I Course Manual

Exercise 6-2 Temperature Control
Objective: To use the Case structure.

You will modify the Temperature Running Average VI to detect when a
temperature is out of range. If the temperature exceeds the set limit, a front
panel LED will turn on and a beep will sound.

You will use this VI later, so be sure to save it as the instructions below
describe.

1. Open the Temperature Running Average VI.

2. Modify the front panel as shown above.

The High Limit digital control specifies the upper temperature limit.
The Warning LED indicates if the temperature exceeds this limit.

You create the numeric digital display values by right-clicking on the
Temp History chart and selecting Visible Items»Digital Display.

3. Select Save As from the File menu and rename the VI Temperature
Control.vi.

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-10 ni.com

Block Diagram

4. Modify the block diagram as shown above.

Greater? function (Comparison palette). In this exercise, this function
returns a TRUE if the temperature measured exceeds the temperature
you specify in the High Limit control; otherwise, the function returns a
FALSE.

Beep VI (Graphics & Sound»Sound palette). In this exercise, this VI
sounds a beep if the selection terminal of the Case structure receives a
TRUE.

Note On the Macintosh, you must provide values for the Frequency, Duration, and
Intensity inputs to the Beep VI.

Notice that there are no icons in the False case of the Case structure. If
the temperature that the Thermometer VI returns is greater than the set
limit, the LED turns on, the VI executes the True case, and a beep
sounds. If the temperature is less than the set limit, the LED turns off,
the VI executes the False case, and there is no beep.

5. Save the VI. Return to the front panel and enter 80 in the High Limit
control. Run the VI.

Place your finger on the temperature sensor. When the temperature
exceeds 80°, the LED will turn on and a beep will sound.

6. Close the VI.

End of Exercise 6-2

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-11 LabVIEW Basics I Course Manual

B. Sequence Structure
You place the Sequence structure on the block diagram by selecting it from
the Structures subpalette of the Functions palette. You can either enclose
nodes with the Sequence structure or drag nodes inside the structure.

The Sequence structure, which looks like a frame of film, executes diagrams
sequentially. In conventional text-based languages, the program statements
execute in the order in which they appear. In data flow programming, a node
executes when data is available at all of the node inputs, but sometimes it
is necessary to execute one node before another. The Sequence structure is
LabVIEW’s way of controlling the order in which nodes execute. The
diagram to be executed first is placed inside the border of Frame 0 (0..x), the
diagram to be executed second is placed inside the border of Frame 1(0..x),
and so on. (0..x) represents the range of frames in the Sequence structure. As
with the Case structure, only one frame is visible at a time.

Sequence Locals
Sequence locals are variables that pass data between frames of a Sequence
structure. You create sequence locals on the border of a frame. The data
wired to a sequence local is then available in subsequent frames. The data,
however, is not available in frames preceding the frame in which you created
the sequence local.

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-12 ni.com

The example below shows a three-frame Sequence structure. A sequence
local in Frame 1 passes the value that the Thermometer VI returns. Notice
that this value is available in Frame 2 (as the arrow pointing into Frame 2
indicates) and that the value is not available in Frame 0 (as the dimmed
square indicates). Keep in mind that the VI displays only one sequence at a
time.

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-13 LabVIEW Basics I Course Manual

Exercise 6-3 Time to Match.vi
Objective: To use the Sequence structure.

You will build a VI that computes the time it takes to generate a random
number that matches a number you specify. This VI uses the Auto Match VI
you built in Exercise 4-3.

Front Panel

1. Open the Auto Match VI you created in Lesson 4.

2. Modify the front panel shown above. Be sure to modify the controls and
indicators as depicted.

3. Use the Save As command to save the VI as Time to Match.vi.

Free Label

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-14 ni.com

Block Diagram

4. Open the block diagram, choose a Sequence structure from the
Structures subpalette, and drag a selection area around everything.

5. Add a frame to the Sequence structure by right-clicking the border of the
frame and choosing Add Frame After.

6. Make sure the While Loop is in Frame 0. Return to the frame that
contains the While Loop, right-click the frame border, and choose Make
This Frame»0.

7. Build the diagram as shown on the previous page.

Tick Count (ms) function (Time & Dialog palette). This function reads
the current value of the operating system’s software timer and returns
the value in milliseconds.

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-15 LabVIEW Basics I Course Manual

First, the Tick Count (ms) function reads the operating system’s
software clock and returns its value in milliseconds. In Frame 0, the VI
executes the While Loop as long as the number specified does not match
the number that the Random Number (0–1) function returns. In Frame
1, the Tick Count (ms) function again reads the operating system’s
software timer. The VI then subtracts the new value from the initial time
read and returns the elapsed time in seconds to the front panel.

8. Save the VI and return to the front panel.

9. Enter a number inside the Number to Match control. Run the VI.
(Remember that you can use the shortcut keys to
run the VI.)

10. If Time to Match always reads 0.000, your VI may be running too
quickly. To slow the VI, either run with Execution Highlighting enabled
or increase the value on the diagram that is multiplied by the random
number to a very large value such as 100,000.

11. Close the VI when you are finished.

End of Exercise 6-3

<Ctrl | ◊ | M | -R>
Win Sun H-P Mac

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-16 ni.com

C. Formula Node
You place the Formula Node on the block diagram by selecting it from the
Structures subpalette of the Functions palette. You can enter equations into
the formula node by using the Labeling tool.

The Formula Node is a resizable box that you use to enter algebraic
formulas directly into the block diagram. This feature is extremely useful
when the function equation has many variables or is otherwise complicated.
For example, consider the equation y = x2 + x + 1. If you implement this
equation using regular LabVIEW arithmetic functions, the block diagram
looks like the one shown below.

You can implement the same equation using a Formula Node, as shown
below.

With the Formula Node, you can directly enter a multivariable equation, or
formulas, instead of creating block diagram subsections. You create the
input and output terminals of the Formula Node by right-clicking on the
border of the node and choosing Add Input (Add Output) from the
shortcut menu. You enter the formula or formulas inside the box. Each
formula statement must terminate with a semicolon (;).

Note semicolon

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-17 LabVIEW Basics I Course Manual

The Formula Node has many features and can perform many different
operations. Use the LabVIEW Help (Help»Contents and Index) for a
complete listing of functions, operations, and syntax for the Formula Node.

The following example shows how you can perform conditional branching
inside a Formula Node. Consider the following code fragment that
computes the square root of x if x is positive, and assigns the result to y.
If x is negative, the code assigns –99 to y.

if (x >= 0) then
y = sqrt(x)

else
y = -99

end if

You can implement the code fragment using a Formula Node, as shown
below.

Note The Formula Node can implement more than just equations. Refer to the
LabVIEW Help for more information.

Condition True Condition

Conditional Operator
False Condition

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-18 ni.com

Exercise 6-4 Formula Node Exercise.vi
Objective: To use the Formula Node.

You will build a VI that uses the Formula Node to evaluate a complex
mathematical expression and graphs the results.

Front Panel

1. Open a new VI.

2. Build the front panel shown above. The Graph indicator will display the
plot of the equation y = f(x)^3 + f(x), where f(x) = tanh(x) + cos(x).

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-19 LabVIEW Basics I Course Manual

Block Diagram

3. Build the block diagram shown above.

Formula Node (Structures palette). With this node, you can directly
enter formulas. Create the X input terminal by right-clicking the border
and choosing Add Input from the shortcut menu. You create the y
output by choosing Add Output from the shortcut menu. You must also
add an output the intermediate (“dummy”) variable a as an output.

When you create an input or output terminal, you must give it a variable
name that exactly matches the one in the formula. The names are case
sensitive—if you use a lower case “x” to name the terminal, you must
use a lower case “x” in the formula.

Note Notice that a semicolon (;) terminates each formula statement.

Numeric Constant (Numeric palette). In this exercise, this constant
specifies the number of For Loop iterations.

Divide function (Numeric palette). In this exercise, this function divides
the value of the iteration terminal by 15.0.

During each iteration, the VI divides the iteration terminal value by 15.0.
The quotient is wired to the Formula Node, which computes the function
value. The VI then stores the result in an array at the For Loop border
(auto-indexing). After the For Loop finishes executing, the VI plots the
array.

4. Save the VI. Name it Formula Node Exercise.vi.

5. Return to the front panel and run the VI.

6. Close the VI.

End of Exercise 6-4

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-20 ni.com

D. Replacing Sequence Structures
Updating an indicator from different frames of a Sequence structure is not
easily accomplished. For example, a VI used in a test system may have a
“status” indicator that displays the name of the current test or process in
progress. If each test is a subVI called from a different frame of a Sequence
structure, you cannot update the indicator from each frame by building the
diagram shown below:

You cannot use the “status” indicator as shown above because according to
the data flow paradigm, nothing leaves a node until the node finishes
running. Therefore, the sequence structure will not pass data outside its
borders until frames have completed. You can use Local variables to solve
this problem, but a better solution would be to replace the Sequence
structure with a loop and a Case structure.

Note Local variables are discussed in the LabVIEW Basics II course.

Shown below is a new structure that is equivalent to a Sequence structure
with three frames, where each case in the Case structure is equivalent to a
sequence frame. Each iteration of the While Loop executes the next
“frame.” A front panel string indicator is updated to display the status of the
VI for each frame. Notice that the status is updated in the “frame” prior to
the one that calls the corresponding subVI. This updates the indicator before
the named subVI is called. Putting the status string constant in the same
frame as the one calling the test would not work because data is passed out
of a Case structure after it finishes executing.

Broken wire—
broken Run arrow
gives the following
error message:
"Sequence Tunnel:
multiple assignment
to tunnel."

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-21 LabVIEW Basics I Course Manual

Another advantage to replacing a Sequence structure with a Case structure
in a loop is that the Case structure can pass data to end the While Loop
during any case. For example, if an error occurs while running the first test,
a False value can be passed to the loop condition to end the loop. In contrast,
a Sequence structure must run all of its frames to completion whether or not
an error occurs.

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-22 ni.com

Summary, Tips, and Tricks
• LabVIEW has two structures to control data flow—the Case structure

and the Sequence structure. LabVIEW depicts both structures like a
deck of cards; only one case or one frame is visible at a time.

• Use the Case structure to branch to different diagrams depending on the
input to the selection terminal of the Case structure. You place the
subdiagrams inside the border of each case of the Case structure. The
case selection can be Boolean (2 cases), string, or numeric (231–1 cases).
LabVIEW automatically determines the selection terminal type when
you wire a Boolean, string, or integer control to it.

• If you wire a value out of one case, you must wire something to that
tunnel in every case.

• Use the Sequence structure to execute the diagram in a specific order.
The diagram portion to be executed first is placed in the first frame of
the structure, the diagram to be executed second is placed in the second
frame, and so on.

• Use sequence locals to pass values between Sequence structure frames.
The data passed in a sequence local is available only in frames
subsequent to the frame in which you created the sequence local, and not
in frames that precede the frame.

• With the Formula Node, you can directly enter formulas in the block
diagram. This feature is extremely useful when a function equation has
many variables or is complicated. Remember that variable names are
case sensitive and that each formula statement must end with a
semicolon (;).

• Sequence structures can be replaced using a loop and a Case structure.
This is useful if you need to update an indicator from different frames or
if you need to end the program from any frame.

Lesson 6 Case and Sequence Structures

© National Instruments Corporation 6-23 LabVIEW Basics I Course Manual

Additional Exercises
6-5 Build a VI that uses the Formula Node to calculate the following

equations.

y1 = x3 + x2 + 5

y2 = m * x + b

Use only one Formula Node for both equations. Remember to put a
semicolon (;) after each equation in the node. Name the VI
Equations.vi.

6-6 Build a VI that functions like a calculator. The front panel should
have digital controls to input two numbers and a digital indicator to
display the result of the operation (Add, Subtract, Divide, or
Multiply) that the VI performs on the two numbers. Use a slide
control to specify the operation to be performed. Name the VI
Calculator.vi.

6-7 Modify the Square Root Exercise (Exercise 6-1) so that the VI
performs all calculations and condition checking using the Formula
Node. Name the VI Square Root 2.vi.

6-8 Build a subVI that has two inputs and one output. The inputs are
“Threshold” and “Input Array,” and the output is “Output Array.”
Output Array will contain values from Input Array that are greater
than Threshold. Save your subVI as Array Over Threshold.vi.
Test your subVI by creating another VI that generates an array of
random numbers between 0 and 1, and uses the Array Over
Threshold subVI to output an array with the values above 0.5. Save
the test VI as Using Array Over Threshold.vi.

Challenge

Lesson 6 Case and Sequence Structures

LabVIEW Basics I Course Manual 6-24 ni.com

Notes

© National Instruments Corporation 7-1 LabVIEW Basics I Course Manual

Lesson 7
Strings and File I/O

Introduction
This lesson introduces LabVIEW strings and file I/O operations.

You Will Learn:

A. How to create string controls and indicators.

B. How to use several string functions.

C. How to perform file input and output operations.

D. How to format text files for use in spreadsheets.

E. How to use the high-level File VIs.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-2 ni.com

A. Strings
A string is a sequence of displayable or nondisplayable characters. Often,
you use strings for more than simple text (for example, ASCII) messages.
For example, in instrument control, you pass numeric data as character
strings. You then convert these strings to numbers. In many cases, storing
numeric data to disk also requires strings, which means that you first must
convert numbers to strings before writing the numbers to a file on disk.

Creating String Controls and Indicators
You can access string controls and indicators on the Controls»String &
Path palette. Enter or change text inside a string control using the Operating
tool or the Labeling tool. Enlarge string controls and indicators by dragging
a corner with the Positioning tool. To minimize the space that a front panel
string control or indicator occupies, use the Show Scrollbar option from the
string shortcut menu. If this option is dimmed, you must increase the
vertical size of the window.

You also can configure string controls and indicators for different types of
display. For example, you can choose password display by enabling the
Password Display option from the string shortcut menu. With this option
selected, only asterisks appear in the string front panel display. On the block
diagram, the string data reflects what was typed.

String controls and indicators also can display and accept characters that are
usually nondisplayable, such as backspaces, carriage returns, tabs, and so
on. To display these characters, choose ‘\’ Codes Display from the string
shortcut menu.

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-3 LabVIEW Basics I Course Manual

In ‘\’ Codes Display mode, nondisplayable characters appear as a backslash
followed by the appropriate code. A partial list of codes appears in the table
below. (For the complete table, use the Contents and Index (Help menu)
and search on Special Escape Codes Table.) To enter a nondisplayable
character into a string control, type the backslash character \, followed by
the code for the character. As shown below, after you type text in the string
and click the Enter button, any nondisplayable characters appear in
backslash code format.

The characters contained in LabVIEW string controls and indicators are
represented internally in ASCII format. To view the actual ASCII codes
(in hex), choose Hex Display from the string’s shortcut menu.

Code LabVIEW Interpretation

\b Backspace (ASCII BS, equivalent to \08)

\s Space (ASCII SP, equivalent to \20)

\r Return (ASCII CR, equivalent to \0D)

\n Newline (ASCII LF, equivalent to \0A)

\t Tab (ASCII HT, equivalent to \09)

Enter button

After shifting the key focus, the display shows the spaces
the user enters and the New Line character at the end.

Backslash code for the New Line character is entered
into a string control, but you cannot see it.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-4 ni.com

B. String Functions
LabVIEW has many functions to manipulate strings. These functions are
available from the Functions»String palette. Some common functions are
discussed below.

String Length returns the number of characters in a string.

Concatenate Strings concatenates all input strings and arrays of strings into
a single output string.

The function appears as shown at left when you place it in the block
diagram. You can resize the function with the Positioning tool to increase
the number of inputs.

String Length

20 LengthThe_quick_brown_fox_string

An underscore (_) represents
a space character.

Concatenate
Strings function
when placed in
block diagram

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-5 LabVIEW Basics I Course Manual

String Subset returns the substring beginning at offset and containing
length number of characters. The first character offset is zero.

Match Pattern returns the matched substring. The function searches for the
regular expression in string beginning at the offset, and if it finds a match,
splits the string into three substrings. If no match is found, the match
substring is empty and the offset past match is –1.

Often, you must convert strings to numbers or numbers to strings. The
Format Into String function converts a number to a string and the Scan From
String function converts a string to a number. Both of these functions can
perform error handling.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-6 ni.com

Format Into String converts any format argument (for example, numeric)
to the specified formatted resulting string. You can expand the function to
have multiple values converted to a single string simultaneously.

The function can format the output string with the initial string and
argument(s) based on the format string.

In the example below, the function converts the floating-point number 1.28
to the 6-byte string “1.2800.”

Scan From String converts a string containing valid numeric characters (0 to
9, +, –, e, E, and period) to a number. The function starts scanning the input
string at initial search location. The function can scan the input string into
various data types (for example, numerics or Booleans) based on the format
string. This function is expandable to have multiple outputs.

In the example below, the function converts the string “VOLTS
DC+1.28E+2” to the number 128.00. The function starts scanning at the
ninth character of the string (the +). (The first character offset is zero.)

128.00

error out cluster
error in cluster

8

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-7 LabVIEW Basics I Course Manual

Both Format Into String and Scan From String have an Edit Scan String
dialog box to create the format string. The format string specifies the format,
precision, data type, and width of the converted value. You can access the
Edit Scan String dialog box by right-clicking the node and choosing Edit
Format String or simply double-clicking the function. After you configure
the format string and select Create String, the dialog box creates the string
constant and wires it to the format string input for you. Refer to the
following example of using the Edit Scan String to create the format string
for a floating-point number, precision of 2 digits, width of 8 digits, and
padded with spaces.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-8 ni.com

Exercise 7-1 Build String.vi
Objective: To create a subVI utilizing the Format Into String, Concatenate Strings, and String

Length functions.

You will build a VI that converts a number to a string and concatenates the
string to other strings to form a single output string. The VI also determines
the output string length. The VI also matches a pattern in a string and
converts the remaining string to a number.

You will use this VI later, so be sure to save it as the instructions below
describe.

Front Panel

1. Open a new VI.

2. Build the front panel shown above. Be sure to modify the controls and
indicators as depicted.

The function will concatenate the input from the two string controls and
the digital control into a single output string and display the output in the
string indicator. The digital indicator will display the string length.

The VI also will search the String 2 control for a colon and convert the
string following the colon to a number. The offset value past the match
is displayed.

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-9 LabVIEW Basics I Course Manual

Block Diagram

1. Build the diagram shown above according to the following instructions.

Format Into String function (String subpalette). In this exercise, this
function converts the number you specify in the digital control,
Number, to a string.

To create the format string %.4f, right-click on the Format Into String
function and select Edit Format String. From the Edit Format String
dialog box, create the format string.

a. Place a checkmark in the Use specified precision checkbox and
type 4 to convert the number into a string with four digits after the
decimal point.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-10 ni.com

b. Select the OK button.

The function automatically creates a string constant and wires it to
the format string input.

Concatenate Strings function (String palette). In this exercise, this
function concatenates all input strings into a single output string.
To increase the number of inputs, resize the function using the
Positioning tool.

String Length function (String palette). In this exercise, this
function returns the number of characters in the concatenated string.

Match Pattern function (String palette). In this exercise, this
function searches the string input for a colon. Create the regular
expression string by right-clicking on that input terminal and
selecting Create»Constant.

Scan from String function (String palette). In this exercise, this
function converts the string after the colon to a number.

2. Return to the front panel and create the icon and connector as shown
below.

3. Save the VI as Build String.vi.

4. Type text inside the three string controls and a number inside the digital
control. Run the VI.

5. Save and close the VI.

End of Exercise 7-1

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-11 LabVIEW Basics I Course Manual

C. File I/O
File input and output (I/O) operations store information to and retrieve
information from files on disk. LabVIEW has many built-in functions and
VIs to handle file I/O. All File I/O functions are in the Functions»File I/O
palette. These functions and VIs are organized into three levels of hierarchy:

• High-Level File VIs

• Intermediate File Functions

• Advanced File Functions

In this lesson, we will cover the intermediate functions in detail for better
understanding of basic File I/O operations and then will continue the
discussion on high-level File VIs.

High-Level File VIs
The nine high-level File VIs are in the top row of the File I/O subpalette
(see above), which includes a subpalette for Binary File VIs. These VIs call
the intermediate File Functions as subVIs. They simplify the most common
types of file I/O encountered with LabVIEW by transparently handling
lower level functions. The VIs also create a simplified means of error
handling. If a file I/O error occurs during the execution of one of these VIs,
a dialog box shows the error.

Intermediate File Functions

High-Level File VIs

Advanced File Functions

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-12 ni.com

Intermediate File Functions
The intermediate File functions are in the second row of the File I/O
subpalette. They provide substantially more functionality than the
high-level VIs, such as programmatic file opening and closing and direct
managing of file read and write markers.

As you become more familiar with LabVIEW, you will find that the
intermediate File functions handle most of your file I/O needs.

Advanced File I/O Functions
The Advanced File Functions are in the Functions»File I/O palette. These
built-in functions handle details of LabVIEW file I/O operations and
provide flexibility in managing file I/O. Several of the Advanced File I/O
functions are discussed in more detail in the LabVIEW Basics II course.

File I/O with the Intermediate File Functions
The basic file I/O process at the intermediate level is to open or create a file,
read from or write to it, and then close it.

This section discusses the Open/Create/Replace File VI, the Read File
function, the Write File function, and the Close File function. It also
discusses the Simple Error Handler VI.

Note Use the LabVIEW Help, which you can access by selecting Help»Contents and
Index to demonstrate and learn more about the details of these functions.

Open/Create/Replace File opens or replaces an existing file or creates a new
file. If you leave file path unwired, the VI displays a file dialog box from
which you can choose the new or existing file. After you open or create a
file, you can read data from it or write data to it using the Read File and
Write File functions. You can read or write any data type using the Read File
and Write File functions.

Read File reads count bytes of data from the file that refnum specifies and
returns it in data. We will discuss refnums in the next section. Reading
begins at the location specified by the pos mode and pos offset.

Open/Create/Replace File

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-13 LabVIEW Basics I Course Manual

Write File writes to the file that refnum specifies. Writing begins at the
location specified by the pos offset and pos mode.

Close File closes the file associated with refnum. This function closes files
of all data types.

Checking Errors
An advantage of using the Intermediate File functions is that you can
develop your own error handling routines. Each Intermediate function has
an error in input and an error out output. Both of these are clusters
containing status, code, and source, as shown below.

Read File

Write File

Close File

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-14 ni.com

When the functions execute, they first check the error in cluster to see if an
error has occurred in any preceding VI or function. If the status is True
an error has occurred, and the VIs or functions do not continue execution.
They simply pass the error in information to their error out cluster for the
next node. If the status is False, an error has not occured, and the nodes
continue with the operation and set their error out cluster to reflect whether
an error occurred during their execution.

Simple Error Handler (Time & Dialog subpalette) checks for errors in the
file operations and displays a dialog box if an error occurs.

Saving Data in a New or Existing File
Saving data in a new or existing file is a three-step process: open or create
the file, write data to the file, and close the file. With the File VIs, you can
write any data type to the file you have opened or created. If other users or
applications need to access the file, you should write string data in ASCII
format to the file.

You can access files either programmatically or through a dialog box. To
access a file through an interactive file dialog box, you leave file path
unwired in the Open/Create/Replace File VI. You can save time by
programmatically wiring the filename and pathname to the VI. Pathnames
are organized as follows:

Windows A pathname consists of the drive name, followed by a colon,
followed by backslash-separated directory names, followed
by the filename. An example is C:\TESTDATA\TEST1.DAT
for a file named TEST1.DAT, in the directory TESTDATA.

UNIX A pathname consists of forward slash-separated directory
names, followed by the filename. An example is
/home/TESTDATA/TEST1.DAT for a file named
TEST1.DAT, in the directory TESTDATA in the /home
directory. Filenames and directory names are case sensitive.

Macintosh A pathname consists of the volume name (the name of the
disk), followed by a colon, followed by colon-separated
folder names, followed by the filename. An example would
be Hard Disk:TESTDATA:TEST1.DAT for a file named

Simple Error Handler

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-15 LabVIEW Basics I Course Manual

TEST1.DAT, inside a folder named TESTDATA, on a disk
called Hard Disk.

The following example shows the steps for writing string data to an existing
file while programmatically wiring the filename and pathname:

In the above example, the Open/Create/Replace File VI opens the file
TEST1.DAT. The VI also generates a refnum and an error cluster. The
refnum is a file identifier generated when you open or create a file; it
identifies the file in subsequent operations. The error cluster is a bundle of
data containing error messages generated by previous or upstream VIs.
These clusters are LabVIEW’s method of handling errors and are very
powerful and intuitive tools. Error clusters are discussed further in the
LabVIEW Basics II course. Notice that error and refnum are passed in
sequence from one File VI to the next. Because a VI or node cannot execute
until it receives all of its inputs, the passing of these two parameters forces
the File VIs to execute in order. The Open/Create/Replace File VI then
passes the refnum and error cluster to the Write File function, which writes
the data to disk. The Close File function closes the file after receiving the
error cluster and refnum from Write File. The Simple Error Handler VI
examines the error cluster and displays a dialog box if an error has
occurred. Note that if an error occurs in one node, subsequent nodes do not
execute and pass the error cluster to the Simple Error Handler VI.

Use of Path Constants to "hardwire"
the file and pathname is optional.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-16 ni.com

Reading Data from a File
When you read data from a file, you normally open an existing file, read the
file contents with the Read File function, and close the file. You also must
specify the amount of data to be read.

The following example shows the steps for reading the entire contents of a
string file using an interactive file dialog box to select the file:

The Open/Create/Replace File VI opens the file by displaying an interactive
file dialog box with the prompt “Enter Filename.” It passes the refnum, the
error cluster, and the file size to Read File. The Read File function then
reads file size bytes of data starting at the beginning of the file. The Close
File function closes the file. The Simple Error Handler then checks for
errors.

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-17 LabVIEW Basics I Course Manual

Exercise 7-2 File Writer.vi
Objective: To write data to a file.

You will build a VI that will concatenate a message string, a number, and
unit string to a file. You will use the subVI created in Exercise 7-1, Build
String.vi. In the next exercise, you will build a VI to read the file and
display its contents.

Front Panel

1. Open a new VI and build the front panel shown above.

The front panel contains two strings with normal display and a digital
control. The String to Write control will input the message written to the
file. The Number to Write and Unit to Write controls will input their
values and write them to the same file as the Statement to Write control.

Create a path indicator from the String and Path palette. This indicator
will display the path for the data file you create.

2. Switch to the block diagram.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-18 ni.com

Block Diagram

1. Build the diagram shown above. The functions are described below.

Build String VI (Select a VI palette). The subVI concatenates the three
input strings to one combined string.

Open/Create/Replace File VI (File I/O palette). This VI displays an
interactive file dialog box to open or create a file.

a. (right-click the VI prompt terminal and select
Create»Constant) is the prompt that the dialog box displays. Type
enter filename

b. (right-click the VI function terminal and select
Create»Constant) specifies to create a new file or replace an
existing file. Use the Operating tool to change the terminal value to
create or replace.

Write File function (File I/O palette). This function writes the
concatenated strings to the file.

Close File function (File I/O palette). This function closes the file.

Simple Error Handler VI (Time & Dialog palette). This VI checks the
error cluster and displays a dialog box if an error occurred.

2. Save the VI. Name it File Writer.vi.

3. Enter values in the front panel controls and run the VI. A dialog box
opens and displays the prompt “Enter filename.” Type demofile.txt
in the dialog box and click Save or OK.

4. You now will build a VI that opens the file and reads its contents.

End of Exercise 7-2

Operating tool

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-19 LabVIEW Basics I Course Manual

Exercise 7-3 File Reader.vi
Objective: To read data from a file.

You will build a VI that reads the file created in the previous exercise and
displays the information read in a string indicator if the user’s password
matches the specified password from the Build String VI.

Front Panel

1. Open a new VI and build the front panel shown above.

The front panel contains a path indicator that shows the location of the
text file and a string indicator that displays the information read from the
file.

2. Switch to the block diagram.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-20 ni.com

Block Diagram

1. Build the diagram shown above.

Open/Create/Replace File VI (File I/O palette). This VI displays an
interactive file dialog box that you use to open or create a file.

a. (right-click the VI prompt terminal and select
Create»Constant) is the prompt that the dialog box displays.

b. (right-click the VI function terminal and select
Create»Constant) opens an existing file.

Read File function (File I/O palette). This function reads file size bytes
of data from the file starting at the current file mark (beginning of the
file).

Close File function (File I/O palette). This function closes the file.

Simple Error Handler VI (Time & Dialog palette). This VI checks the
error cluster and displays a dialog box if an error occurred.

2. Save the VI. Name it File Reader.vi.

3. Run the VI. A dialog box appears. Find the file demofile.txt and
click Open or OK. The String Read from File indicator should display
the file contents.

End of Exercise 7-3

Modify the VI so that the number is parsed and displayed in a digital
indicator. After you have finished, save and close the VI.

Hint: Use the Match Pattern function to search for the first numeric
character.

Challenge

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-21 LabVIEW Basics I Course Manual

D. Formatting Spreadsheet Strings
In LabVIEW, you can easily format text files so that you can open them in
a spreadsheet. In many spreadsheets, the tab character separates columns
and the end of line character separates rows. Use the Format Into File
function as shown below to convert numbers to strings and insert tabs and
end of line characters appropriately.

The Format Into File function combines the functionality of the Format Into
String function and the Write File function where it formats the data as
specified and writes that data directly to a file. You can either wire a file
refnum or file path to the input file terminal, or you can leave this input
unwired and a dialog box will open and query you for the data file. Also
notice that there are error in and error out terminals you can wire to track
error conditions just like the other File I/O functions you have used.

The block diagram below creates the text file shown below it. The file is first
opened with the Open/Create/Replace File VI, then a For Loop executes five
times. The Format Into File function converts the iteration count and the
random number to strings and places the tab and end of line characters in the
correct positions to create two columns and one row in spreadsheet format.
After the loop completes five iterations, the file is closed and the error
condition is checked.

0 0.4258 ¶ Tab
1 0.3073 ¶ End of Line
2 0.9453 ¶
3 0.9640 ¶
4 0.9517 ¶

¶

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-22 ni.com

Note The End of Line constant (String palette) behaves differently depending on the
platform. You should use this constant to ensure portability of your VIs between
platforms.

Opening the file using a spreadsheet program yields the following
spreadsheet:

Windows The End of Line constant inserts a carriage return character
and a line feed character.

Sun/HP-UX The End of Line constant inserts a line feed character.

Macintosh The End of Line constant inserts a carriage return character.

End of Line
constant

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-23 LabVIEW Basics I Course Manual

Exercise 7-4 Temperature Logger.vi
Objective: To save data to a file in a form that a spreadsheet or a word processor can access

later.

You will modify the Temperature Control VI to save the time and current
temperature to a data file. You will use this VI later, so be sure to save it as
the instructions below describe.

Front Panel

1. Open the Temperature Control VI.

The front panel already is built. You will modify just the diagram.

2. Select Save As from the File menu and save this VI as Temperature
Logger.vi.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-24 ni.com

Block Diagram

1. Build the diagram shown above.

Open/Create/Replace File VI (File I/O palette). This VI displays an
interactive file dialog box that you use to create the new file or replace
an existing one.

The Enter File Name prompt is the prompt that the dialog box displays.
Right-click on the VI prompt terminal and select Create Constant.

The create or replace terminal creates a new file or replaces an existing
file. Right-click, select Create Constant, and use the Operating tool to
change the value.

Tab Constant (String palette).

End of Line constant (String palette).

Get Date/Time String function (Time & Dialog palette). This function
returns the time, in string format, when the temperature measurement
was taken. The True Boolean constant (Boolean palette) sets the
function to include seconds in the string.

Format Into File function (File I/O palette). This function converts the
temperature measurement (a number) to a string and builds and writes
to file the following formatted data string:

Time String (tab) Temperature String (end of line).

Resize the function to have four argument terminals.

Enter File Name
prompt

Create or replace
terminal

True Boolean

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-25 LabVIEW Basics I Course Manual

Unbundle by Name function (Cluster palette). This function removes
the status Boolean from the error cluster.

Not function (Boolean palette).

And function (Boolean palette).

The Not and And functions control the While Loop condition such that
the loop continues while the Power switch is True and there is no error.

Close File function (File I/O palette). This function closes the file.

Simple Error Handler VI (Time & Dialog palette). This VI checks the
error cluster and displays a dialog box if an error occurred.

2. Save the VI.

3. Run the VI. A dialog box appears, prompting you to enter a filename.
Type temp.txt and click OK or Save.

The VI creates a file called temp.txt. The VI then takes readings every
half-second and saves the time and temperature data to a file until you
press the Power switch or an error occurs. When the VI finishes, it closes
the file.

4. Close the VI. You now can use a word processor or spreadsheet to open
the file you created.

Windows

5. Start the WordPad or NotePad application or another word processor or
a spreadsheet. Find and open the file temp.txt.

UNIX

5. Run the Text Editor application. Load the file temp.txt.

Macintosh

5. Switch to the Finder and launch TeachText or another word processor or
a spreadsheet. Find and open the file temp.txt.

6. After you load the file into the word processor or spreadsheet, notice that
the time appears in the first column and the temperature data appears in
the second column. Quit your word processor or spreadsheet and return
to LabVIEW.

End of Exercise 7-4

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-26 ni.com

E. High-Level File VIs
The high-level File VIs simplify file I/O operations. These VIs transparently
handle file opening and closing, and the spreadsheet file I/O VIs convert
numeric array data from and to spreadsheet string format as they read from
and write to disk. The high-level File VIs call the intermediate File
functions. The VIs are located on the Functions»File I/O palette. They are
organized on the first row in two groups: ASCII VIs and the Binary File VIs
subpalette.

Note Use the Help»Contents and Index to demonstrate/learn more about these
functions.

Write Characters to File writes a character string to a new file or appends it
to an existing file. The VI opens or creates the file before writing the file and
closes it afterwards.

Read Characters From File reads a specified number of characters from a
file beginning at a specified character offset. The VI opens the file before
reading to a file and closes it afterwards.

Write to Spreadsheet File converts a 2D or 1D array of single-precision
numbers to a text string and writes the string to a new file or appends it to
an existing file. You can optionally transpose the data. The VI opens or
creates the file before writing to the file and closes it afterwards. The VI
creates a text file most spreadsheet programs can read.

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-27 LabVIEW Basics I Course Manual

Read From Spreadsheet File reads a specified number of lines or rows from
a numeric text file beginning at a specified character offset and converts the
data to a 2D single-precision array of numbers. The VI opens the file before
reading to the file and closes it afterwards. You can use this VI to read a
spreadsheet file saved in text format.

Read Lines From File reads a specified number of lines from an ASCII
format file beginning at a specified character offset. The VI opens the file
before reading the file and closes it afterwards.

Binary File VIs
Binary File VIs are high-level VIs that read from and write to file in binary
format. Data can be of integer type ([I16]) or floating point ([SGL]). Saving
data in binary format can be beneficial if access speed and compactness are
important.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-28 ni.com

Tables
A table is a front panel control used to pass or display data in tabular form.
The data type of a table is a 2D array of strings; tables can be of any size,
memory permitting. The table shown below has three rows and seven
columns. The optional row and column headers for the table also are shown.

Creating Table Controls and Indicators
You create the table control or indicator by selecting Table from the List &
Table subpalette of the Controls palette.

A table control appears on the front panel. You define cells within the table
by clicking inside a cell with either the Operating tool or the Labeling tool.
You can now type text within the selected cell.

The table indicator, or control, is a 2D array of strings. Therefore, you must
convert 2D numeric arrays to 2D string arrays before you can display them
inside a table indicator. The row and column headers are not automatically
displayed as in a spreadsheet. You must create 1D string arrays for the
column and row headers. The example below displays the 3x7 table of
random numbers shown above.

Row
headers

Column
headers

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-29 LabVIEW Basics I Course Manual

The example uses a property node to write values in the row and column
header. Property nodes are discussed in the LabVIEW Basics II course.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-30 ni.com

Exercise 7-5 Spreadsheet Example.vi
Objective: To save a 2D array in a text file so that a spreadsheet can access the file and to

display numeric data in a table control.

In the previous exercise, you formatted the string so that tabs separated the
columns and end of lines separated the rows. In this exercise, you will
examine a VI that saves numeric arrays to a file in a format you can access
with a spreadsheet.

Front Panel

1. Open the Spreadsheet Example VI. The VI is already built.

2. Run the VI.

The VI generates a 2D array (128 rows × 3 columns). The first column
contains data for a sine waveform, the second column contains data for
a noisy waveform, and the third column contains data for a cosine
waveform. The VI plots each column in a graph and displays the data in
a table indicator.

After the VI displays and plots the data, it displays a dialog box for the
filename. Type wave.txt and click OK or Save. Later, you will
examine the file that the VI created.

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-31 LabVIEW Basics I Course Manual

Block Diagram

1. Open the block diagram to examine it.

Sine Pattern (Analyze»Signal Processing»Signal Generation palette).
In this exercise, this VI returns a numeric array of 128 elements
containing a sine pattern. The constant 90, in the second subVI call
specifies the phase of the sine pattern or cosine pattern.

Uniform White Noise (Analyze»Signal Processing»Signal
Generation palette). In this exercise, this VI returns a numeric array of
128 elements containing a noise pattern.

Build Array function (Array palette). In this exercise, this function
builds a 2D array from the sine array, noise array, and cosine array.

Transpose 2D Array function (Array palette). This function rearranges
the elements of the 2D array so that element [i,j] becomes element [j,i],
as shown below:

Noise Array

Cosine Array

Sine Array

...
...

...

Output of Build Array

Noise Array

Cosine ArraySine Array

... ..
.

..

.

Sine Array Cosine Array

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-32 ni.com

Write To Spreadsheet File (File I/O palette). This VI formats the 2D
array that Build Array creates into a spreadsheet string, and writes the
string to a file. The string has the following format:

Number To Fractional String function (String»String/Number
Conversion palette). In this exercise, this function converts an array of
numeric values to an array of strings that the table indicator displays.
The format string specifies the string to be in the 2-precision fractional
format.

2. Close the VI.

Note This example had only three arrays stored in the file. To include more arrays,
you can increase the number of inputs to the Build Array function.

Optional—Open the file using a word processor or a spreadsheet and view
its contents.

Windows

3. Open any word processing or spreadsheet application such as Notepad
or WordPad.

4. Find and open the file wave.txt and observe that the sine waveform
data appears in the first column, the random waveform data appears in
the second column, and the cosine waveform data appears in the third
column.

5. Exit the word processor and return to LabVIEW.

UNIX

3. Run the Text Editor application.

4. Find and open the file wave.txt and observe that the sine waveform
data appears in the first column, the random waveform data appears in
the second column, and the cosine waveform data appears in the third
column.

5. Exit the Text Editor and return to LabVIEW.

Noise
Array

..

.
..
.

Sine
Array

..

.

Cosine
Array

Tab

End of Line

¶

¶

¶
¶

¶

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-33 LabVIEW Basics I Course Manual

Macintosh

3. Switch to the Finder and launch TeachText (or any word processor or
spreadsheet) by double-clicking on its icon.

4. Find and open the file wave.txt and observe that the sine waveform
data appears in the first column, the random waveform data appears in
the second column, and the cosine waveform data appears in the third
column.

5. Quit TeachText and return to LabVIEW.

End of Exercise 7-5

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-34 ni.com

Exercise 7-6 Temperature Application.vi
In this exercise, you will apply what you have learned so far in this
course—structures, shift registers, sequence locals, waveform charts,
arrays, graphs, file I/O, and so on.

Your objective is to create a VI that does the following:

1. Takes a temperature measurement once every second until you stop
the VI or an error occurs.

2. Displays both the current temperature and the average of the last three
measurements on a waveform chart.

3. If the temperature goes over a preset limit, turns on a front panel LED.

4. After each measurement, logs the date, time (including seconds),
temperature, average of the last three measurements, and a one-word
message describing whether the temperature is “Normal” or “OVER”
the preset limit. The VI should log data so that each item appears in one
column of a spreadsheet. See the example on the next page.

5. After you stop the acquisition, plots both the raw temperature data and
a best-fit curve in a graph, and displays the average, maximum, and
minimum temperatures.

Hint: Start with the Temperature Logger VI you built in Exercise 7-4.
To complete step 5, copy and paste the appropriate portions of the
Temperature Analysis VI you built in Exercise 5-3.

Save your VI as Temperature Application.vi.

Challenge

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-35 LabVIEW Basics I Course Manual

Use the front panel shown below to get started.

Log your data as shown below in the example spreadsheet. Remember that
in a spreadsheet, tabs separate columns and end of lines separate rows.

End of Exercise 7-6

Write the header to the
file before logging data.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-36 ni.com

Summary, Tips, and Tricks
• A string is a collection of ASCII characters. String controls and

indicators are in the String & Table subpalette of the Controls palette.

• LabVIEW contains many functions for manipulating strings. These
functions are in the String subpalette of the Functions palette.

• The string formatting function Format Into String converts numeric data
to string ASCII format.

• The string formatting function Scan From String converts ASCII data to
numeric format.

• Scan From String and Format Into String can automatically create the
format string for you. Right-click on the function and select Edit
Format String.

• LabVIEW features many functions and VIs for performing file input and
output (I/O) located on the Functions»File I/O palette.

• The File I/O functions are organized into three levels of
hierarchy—High-Level, Intermediate, and Advanced.

• When writing to a file, you open, create, or replace a file, write the data,
and close the file. Similarly, when you read from a file, you open an
existing file, read the data, and close the file.

• If you use the Open/Create/Replace VI and leave the file path input
unwired, an interactive file dialog box is displayed when the VI runs to
allow selection or creation of a file.

• A spreadsheet file is a special type of text file where a tab character
separates data columns and an end of line character separates data rows.

Lesson 7 Strings and File I/O

© National Instruments Corporation 7-37 LabVIEW Basics I Course Manual

Additional Exercises
7-7 Build a VI that generates a 2D array of 3 rows × 100 columns of

random numbers and writes the data transposed to a spreadsheet file.
The file should contain a header for each column, as shown below.
Use the high-level File VIs from the File I/O subpalette for this
exercise. Save the VI as More Spreadsheets.vi.

Hint: Use the Write Characters To File VI to write the header and
then the Write To Spreadsheet File VI to write the numerical data to
the same file.

7-8 Write a VI that converts tab-delimited spreadsheet strings to
comma-delimited spreadsheet strings. That is, a spreadsheet string
with columns separated by commas and rows separated by
ends-of-line. The VI should output both the tab-delimited and
comma-delimited spreadsheet strings to the front panel. Save the VI
as Spreadsheet Converter.vi.

Hint: Use the Search and Replace String function.

7-9 Modify the Temperature Logger VI from Exercise 7-4 so that the VI
does not create a new file each time you run the VI. The VI should
append the data to the end of the existing file, temp.dat, that the
Temperature Logger VI created earlier. Run the VI several times
and then use a word processor to confirm that the VI appended new
temperature readings. Save the VI as Temperature Logger
2.vi.

Hint: Delete the Format Into File function and replace it with the
Format Into String and Write File functions. Use the pos mode and
pos offset parameters of the Write File function to move the current
file mark.

Challenge

Header

.

.

.

Lesson 7 Strings and File I/O

LabVIEW Basics I Course Manual 7-38 ni.com

Notes

© National Instruments Corporation 8-1 LabVIEW Basics I Course Manual

Lesson 8
Data Acquisition and
Waveforms

Introduction
This lesson introduces the use of plug-in data acquisition (DAQ) boards and
associated LabVIEW software.

You Will Learn:

A. About plug-in DAQ boards.

B. About the organization of the DAQ VIs.

C. How to perform a single analog input.

D. About DAQ Wizards

E. About waveform analog input.

F. How to write waveforms to file.

G. How to scan multiple analog channels.

H. How to perform analog output.

I. How to drive the digital I/O lines.

J. About buffered data acquisition.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-2 ni.com

A. Overview and Configuration
The LabVIEW Data Acquisition library contains VIs to control National
Instruments plug-in DAQ boards. Often, one board can do a variety of
functions—analog-to-digital (A/D) conversion, digital-to-analog (D/A)
conversion, digital input/output (I/O), and counter/timer operations. Each
board supports different data acquisition and signal generation speeds. Also,
each DAQ board is designed for specific hardware platforms and operating
systems. For complete listings of the DAQ boards and their features, refer to
the National Instruments catalog.

Data Acquisition System Components

The fundamental task of a DAQ system is the measurement or generation of
real-world physical signals. Before a computer-based system can measure a
physical signal, a sensor or transducer must convert the physical signal into
an electrical signal such as voltage or current. Often, the plug-in DAQ board
is considered to be the entire DAQ system; however, the board is only one
of the system components. Unlike most stand-alone instruments, sometimes
you cannot directly connect signals to a plug-in DAQ board. A signal

Plug-In

DAQ
Board

Signal

Conditio
ning

Softw
are

Transducers

SCXI

1140

SCXI

1140

SCXI

1140

SCXI

1140

SCXI-1001

MAINFRAME

SCXI

Parallel Port Link

Data Acquisition
and Control Module

Conditio
ned

Signals

SCXI

1140

SCXI

1140

SCXI

1140

SCXI

1140

SCXI-1001

MAINFRAME

SCXI

Softw
areSCXI

1140

Option A

Option B

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-3 LabVIEW Basics I Course Manual

conditioning accessory must condition the signals before the plug-in DAQ
board converts them to digital information. Finally, software controls the
DAQ system—acquiring the raw data, analyzing the data, and presenting the
results.

The figure on the previous page shows two of the many options for a DAQ
system. In Option A, the plug-in DAQ board resides in the computer. This
computer can be a tower or desktop model or a laptop with PCMCIA slots.
In Option B, the DAQ board is external to the computer. With this approach,
you can build DAQ systems using computers without available plug-in slots,
such as some laptops. The computer and DAQ module communicate
through various buses, such as the parallel port, USB, or PCMCIA. These
types of systems are practical for remote data acquisition and control
applications.

Analog Input
When measuring analog signals with a DAQ board, you must consider the
following factors that affect the digitized signal quality: mode (single-ended
and differential inputs), resolution, range, sampling rate, accuracy, and
noise.

Single-ended inputs are all referenced to a common ground point. Use these
inputs when the input signals are high level (greater than 1 V), the leads
from the signal source to the analog input hardware are short (less than
15 ft.), and all input signals share a common ground reference. If the signals
do not meet these criteria, use differential inputs. With differential inputs,
each input can have its own reference. Differential inputs also reduce or
eliminate noise errors because the common-mode noise picked up by the
leads is canceled out.

Resolution is the number of bits that the analog-to-digital converter (ADC)
uses to represent the analog signal. The higher the resolution, the higher the
number of divisions into which the range is broken, and therefore, the
smaller the detectable voltage change. The next figure shows a sine wave
and its corresponding digital image that a 3-bit ADC obtains. For example,
a 3-bit converter divides the range into 23 or 8 divisions. A binary code
between 000 and 111 represents each division. Clearly, the digital signal is
not a good representation of the original signal because information has
been lost in the conversion. By increasing the resolution to 16 bits, however,
the ADC’s number of codes increases from 8 to 65,536 (216), and it can
therefore obtain an extremely accurate representation of the analog signal.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-4 ni.com

Range refers to the minimum and maximum voltage levels that the ADC can
quantize. DAQ boards offer selectable ranges, typically 0 to 10 V or –10 to
10 V, so you can match the signal range to that of the ADC to take best
advantage of the resolution available to accurately measure the signal.

Gain refers to any amplification or attenuation of a signal that may occur
before the signal is digitized. By applying gain to a signal, you can
effectively decrease the input range of an ADC and thus allow the ADC to
use as many of the available digital divisions as possible to represent the
signal. For example, using a 3-bit ADC and a range setting of 0 to 10 V, the
figure below shows the effects of applying gain to a signal that fluctuates
between 0 and 5 V. With no gain applied, or gain = 1, the ADC uses only
four of the eight divisions in the conversion. By amplifying the signal with
a gain of two before digitizing, the ADC now uses all eight digital divisions,
and the digital representation is much more accurate. Effectively, the board
now has an allowable input range of 0 to 5 V, because any signal above 5 V
when amplified by a factor of two makes the input to the ADC greater than
10 V.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-5 LabVIEW Basics I Course Manual

The range, resolution, and gain available on a DAQ board determine the
smallest detectable change in the input voltage. This change in voltage
represents 1 least significant bit (LSB) of the digital value and is often called
the code width. The smallest detectable change is calculated as:

voltage range/(gain * 2resolution in bits).

For example, a 12-bit DAQ board with a 0 to 10 V input range and a gain of
1 detects a 2.4 mV change, while the same board with a –10 to 10 V input
range would detect only a change of 4.8 mV.

Sampling rate determines how often an analog-to-digital (A/D) conversion
takes place. A fast sampling rate acquires more points in a given time and
therefore can often form a better representation of the original signal than a
slow sampling rate. All input signals must be sampled at a sufficiently fast
rate to faithfully reproduce the analog signal. Sampling too slowly may
result in a poor representation of your analog signal. The figure below shows
an adequately sampled signal, as well as the effects of undersampling. This
misrepresentation of a signal, called an alias, makes it appear as though the
signal has a different frequency than it truly does.

According to the Nyquist Sampling Theorem, you must sample at least
twice the rate of the maximum frequency component you want to detect to
properly digitize the signal. For example, audio signals converted to
electrical signals often have frequency components up to 20 kHz; therefore,
you need a board with a sampling rate greater than 40 kHz to properly
acquire the signal. On the other hand, temperature transducers usually do
not require a high sampling rate because temperature does not change
rapidly in most applications. Therefore, a board with a slower sampling rate
can acquire temperature signals properly.

range

gain 2resolution×

10

1 212×
---------------- 2.4 mV= =

20

1 212×
---------------- 4.8mV=

Adequately sampled

Aliased due to undersampling

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-6 ni.com

Averaging. Unwanted noise distorts the analog signal before it is converted
to a digital signal. The source of this noise may be external or internal to the
computer. You can limit external noise error by using proper signal
conditioning. You also can minimize the effects of this noise by
oversampling the signal and then averaging the oversampled points.
The level of noise is reduced by a factor of:

For example, if you average 100 points, the effect of the noise in the signal
is reduced by a factor of 10.

Data Acquisition Hardware Configuration
You must complete several steps before you can use the LabVIEW DAQ
VIs. The boards have been configured for the machines in the class. The
following sections present highlights of DAQ board setup for the Windows
and Macintosh platforms.

Windows
This section describes the setup for the PCI, PCMCIA, or ISA bus computer.
The LabVIEW Setup program copies the required files for LabVIEW DAQ
onto your computer. LabVIEW for Windows DAQ VIs access the National
Instruments standard NI-DAQ for Windows 32-bit dynamic link library
(DLL). The LabVIEW setup program installs the NI-DAQ DLL in the
WINDOWS\SYSTEM directory. NI-DAQ for Windows supports all National
Instruments DAQ boards and SCXI.

The nidaq32.dll file, the high-level interface to your board, is loaded into
the Windows\System directory. The nidaq32.dll file then interfaces
with the Windows Registry to obtain the configuration parameters defined
by Measurement & Automation Explorer. Because Measurement &
Automation Explorer is an integral part of DAQ, it is described in more
detail later in this section.

number of points averaged

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-7 LabVIEW Basics I Course Manual

The Windows Configuration Manager keeps track of all the hardware
installed in your system, including National Instruments DAQ boards. If
you have a Plug & Play (PnP) board, such as an E-Series MIO board, the
Windows Configuration Manager automatically detects and configures the
board. If you have a non-PnP board (known as a Legacy device) you must
configure the board manually using the Add New Hardware option on the
Control Panel.

You can check the Windows Configuration by accessing the Device
Manager, available by selecting Start»Settings»Control Panel»
System»Device Manager. You can see Data Acquisition Devices, which
lists all DAQ boards installed in your computer. Highlight a DAQ board and
select Properties or double-click on the board, and you see a dialog window
with tabbed pages. General displays overall information regarding the
board. Resources specifies the system resources to the board such as
interrupt levels, DMA, and base address for software configurable boards.
NI-DAQ Information specifies the bus type of your DAQ board. Driver
specifies the driver version and location for the DAQ board.

Measurement & Automation Explorer

Windows Configuration

DAQ Library VIs

LabVIEW for Windows

NI-DAQ for Windows

Windows Registry

DAQ Board

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-8 ni.com

LabVIEW for Windows installs a configuration utility, Measurement &
Automation Explorer, for establishing all board and channel configuration
parameters. After installing a DAQ board in your computer, you must run
this configuration utility. Measurement & Automation Explorer reads the
information the Device Manager records in the Windows registry and
assigns a logical device number to each DAQ board. Use the device number
to refer to the board in LabVIEW. Access Measurement & Automation
Explorer either by double-clicking its icon on the desktop or selecting
Tools»Measurement & Automation Explorer. The figure below shows
the primary Measurement & Automation Explorer window. Measurement &
Automation Explorer is also the means for SCXI configuration.

Notice that Measurement & Automation Explorer detected all the National
Instruments hardware including the GPIB board. Refer to Lesson 9,
Instrument Control, for more information about GPIB.

The board parameters that you can set using the configuration utility depend
on the board. Measurement & Automation Explorer saves the logical device
number and the configuration parameters in the Windows registry.

The plug and play capability of Windows automatically detects and
configures switchless DAQ boards, such as the PCI-MIO-16XE-50 or a
DAQCard. When you install a board in your computer, the board is
automatically detected.

1: AT-MIO-64E-3

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-9 LabVIEW Basics I Course Manual

Macintosh
The LabVIEW installation program installs the NI-DAQ for Macintosh
software drivers necessary to communicate with National Instruments DAQ
boards. You use the NI-DAQ Configuration utility to configure your DAQ
board and accessories.

When you install NI-DAQ for Macintosh, install version 4.9 if you have an
NB or a Lab Series board. Otherwise, install NI-DAQ version 6.0 or later for
the PCI and DAQCard boards.

NI-DAQ Configuration Utility

LabVIEW for Macintosh

DAQ Library VIs

DAQ Board

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-10 ni.com

Exercise 8-1 (Windows Only)
Objective: You will open Measurement & Automation Explorer and study the current DAQ setup.

You also will test the board interactively with the utility and add three virtual
channels.

You will open Measurement & Automation Explorer and examine the
configuration for the DAQ board in your machine. The test routines in
Measurement & Automation Explorer confirm operation of your board. You
will also configure three virtual channels to be used with the DAQ Signal
Accessory.

Part I: Examining the DAQ Board Settings
1. Start Measurement & Automation Explorer by double-clicking it on the

desktop or by selecting Tools»Measurement & Automation Explorer
in LabVIEW. The utility will briefly examine your system to determine
the National Instruments hardware installed, and then display the
information.

Note Depending on your system, Measurement & Automation Explorer may be
installed in a different location. On the Macintosh, the NI-DAQ configuration utility will
be in a separate folder on your hard drive.

2. Open the Devices and Interfaces section. The window below shows
what Measurement & Automation Explorer looks like for a
PCI-MIO-16XE-50 and a PCI-GPIB.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-11 LabVIEW Basics I Course Manual

The Measurement & Automation Explorer window shows the National
Instruments boards and software in your system. Note the Device
number indicated in the parentheses after the DAQ board. The
LabVIEW DAQ VIs use this Device number to determine which board
performs DAQ operations.

Note You may have a different board installed and some of the options shown may be
different. Click the Show/Hide button in the top right corner of the Measurement &
Automation Explorer window to hide the online help and show the DAQ board
information.

3. You can get more information about the board configuration by
examining its properties. With the DAQ board highlighted, click the
Properties button just below the menu. A configuration window for the
multiple input/output (MIO) board is shown below.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-12 ni.com

This window contains several tabs. The first tab, System, reports the
system resources assigned to the board through the Windows registry.
Use the remaining tabs to configure the various analog input, output, and
accessory parameters for the DAQ board. Switch to these additional tabs
to view the different DAQ parameters that may be configured for this
board.

4. Switch back to the System tab in the configuration window and click the
Test Resources button. This tests the system resources assigned to the
board according to the Windows Device Manager. Your device should
pass this test, because it has been preconfigured.

Part 2: Testing the DAQ Board Components
5. Click the OK button twice to get back to the Measurement &

Automation Explorer window. Click the Test Panel button. This allows
you to test the individual functions of the DAQ board, such as analog
input and output.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-13 LabVIEW Basics I Course Manual

6. The Test Panel dialog box allows you to test a specific board in several
different areas. The Analog Input tab tests the various analog input
channels on the DAQ board. Remember that Channel 0 is connected to
the temperature sensor on the DAQ Signal Accessory. Place your finger
on the sensor to see the voltage rise. You can also move the Noise switch
to On to see the signal change in this window.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-14 ni.com

7. Click the Analog Output tab, shown below.

In this window, you can set up either a single voltage or sine wave on
one of the DAQ board analog output channels. For this exercise, change
the Output Mode to Sine Generator and then press the Start Sine
Generator button. A sine wave will be generated continuously on
analog output channel 0.

8. On the external DAQ Signal Accessory box, wire Analog Out Ch0 to
Analog In Ch1.

9. Switch to the Analog Input tab and change the Channel to 1. You
should now see the sine wave from analog output channel 0 on the
graphical display.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-15 LabVIEW Basics I Course Manual

10. Click to the Counter I/O tab, which you can use to determine if the
DAQ board counter-timers are functioning properly.

To verify counter/timer operation, change the Counter Mode to Simple
Event Counting and then click the Start button. The Counter Value
should count up rapidly. Click Reset to stop the counter test.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-16 ni.com

11. Click the Digital I/O tab, shown below, which you can use to test the
digital lines on the DAQ board.

For this test, set lines 0 through 3 as output and then toggle their Logic
Level checkboxes. As you toggle the boxes, the LEDs on the DAQ
signal accessory should turn on or off. The LEDs use negative logic.
Click the Close button to close the Test Panel and return to the
Measurement & Automation Explorer configuration screen.

Part 3: Configuring Channels on the DAQ Board.
12. Right-click the Data Neighborhood icon and select Create New. Select

Virtual Channel and click the Finish button.

13. You will now configure a channel to take a reading from the temperature
sensor (Analog Input Channel 0) on the DAQ Signal Accessory.

14. Enter the following information into the panels that appear. Click the
Next button to get to each new setting:

Measurement Type: Analog Input

Channel Name: temp

Channel Description: This is the temperature sensor on
the DAQ Signal Accessory.

Type of Sensor: Voltage and place a checkmark in the
checkbox that says This will be a
temperature measurement.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-17 LabVIEW Basics I Course Manual

Units: Deg C

Range: Leave at default values

Scale: New Custom Scale

Scale Name: tempscale

Scale Description: V * 100 = deg C

Scale Type: Linear

m = 100.0, b = 0.0

DAQ Hardware used: Dev1 (your DAQ board)

Channel: 0

Analog Input Mode: Differential

15. Create a second channel by right-clicking on the Data Neighborhood
icon and selecting Create New. Select Virtual Channel and press the
Finish button. Input the following settings:

Measurement Type: Analog Input

Channel Name: chan1

Channel Description: This is Analog Input ch1 on the DAQ
Signal Accessory.

Type of Sensor: Voltage

Units: V

Range: –10.0 V to 10.0 V

Scale: No Scaling

DAQ Hardware used: Dev1 (your DAQ board)

Channel: 1

Analog Input Mode: Differential

16. Create the third and last channel by right-clicking on chan1 and
selecting Duplicate. The Copy Virtual Channel dialog box appears;
leave the values at default and click the OK button. You should get a
virtual channel named chan2 that has the same parameters as chan1.
Verify these settings and update the description by right-clicking chan2
and selecting Properties.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-18 ni.com

17. The Measurement & Automation Explorer window should resemble the
following figure when you are finished and all the categories are
expanded:

18. Close Measurement & Automation Explorer utility by selecting
File»Exit.

End of Exercise 8-1

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-19 LabVIEW Basics I Course Manual

B. Data Acquisition VI Organization
The LabVIEW DAQ VIs are organized into subpalettes corresponding to
the type of operation involved—analog input, analog output, counter
operations, or digital I/O. You access the subpalette shown below by
right-clicking in the block diagram and choosing Data Acquisition. Under
this subpalette, the DAQ VIs are organized into six subpalettes: Analog
Input, Analog Output, Digital I/O, Counter, Calibration and
Configuration, and Signal Conditioning.

Each subpalette contains VIs or subpalettes of VIs organized as Easy I/O
VIs, Intermediate VIs, Utility VIs, and Advanced VIs. The Analog Input
subpalette below shows this organization. The top tier of VIs contains Easy
I/O Analog Input (Easy AI) VIs, and the bottom tier contains Intermediate
Analog Input VIs. There are also two subpalettes in this menu: one for
access to the Analog Input Utility VIs and one for the Advanced Analog
Input VIs.

Although this course addresses the Intermediate VIs, most exercises use the
Easy I/O VIs. The Advanced VIs are beyond the scope of this course.

Easy I/O VIs

Intermediate VIs

Utility VIs Advanced VIs

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-20 ni.com

Easy I/O VIs
The Easy I/O VIs consist of high-level VIs that perform basic analog input,
analog output, digital I/O, and counter/timer operations. They are ideal for
simple DAQ, digital I/O, or counter/timer tasks or for getting started with
DAQ in LabVIEW.

The Easy I/O VIs include a simplified error handling method. When a DAQ
error occurs in your VI, a dialog box shows error information. With the box,
you have the option to halt execution of the VI or ignore the error.

Intermediate VIs
Compared to the Easy I/O VIs, the Intermediate VIs have more hardware
functionality, flexibility, and efficiency for developing your application. The
Intermediate VIs feature capabilities that the Easy I/O VIs lack, such as
external timing and counter I/O. As you become acquainted with LabVIEW,
you will discover that the Intermediate VIs are better suited for most of your
applications.

The Intermediate VIs feature more flexible error handling than the Easy I/O
VIs. With each VI, you can pass error status information to other VIs and
handle errors programmatically.

Advanced VIs
The Advanced VIs are the lowest-level interfaces to the NI-DAQ driver. Few
applications require the Advanced VIs; the Easy I/O and Intermediate VIs
will suffice for most DAQ applications.

Utility VIs
The Utility VIs consist of convenient groupings of the Intermediate VIs.
They are for situations where you need more functionality control than the
Easy I/O VIs provide, but want to limit the number of VIs you call.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-21 LabVIEW Basics I Course Manual

C. Performing a Single Analog Input
The Analog Input subpalette from the Data Acquisition subpalette
contains VIs that perform analog-to-digital (A/D) conversions.

To acquire a single point from your signal connected to your DAQ board,
use AI Sample Channel.

AI Sample Channel measures the signal attached to the specified channel
and returns the measured voltage. Device is the device number of the DAQ
board. Channel specifies the analog input channel name. High limit and
low limit specify the range of the input signal. The default inputs are +10 V
and –10 V, respectively. If an error occurs during the operation of AI Sample
Channel, a dialog box displays the error code, and you have the option to
abort the operation or continue execution.

To acquire a single point from several analog input channels on your DAQ
board, use AI Sample Channels.

AI Sample Channels measures the signals attached to multiple channels and
returns those measured values in an array. Device is the device number of
the DAQ board. Channels specifies from which analog input channels to
read. High limit and low limit specify the range of the input signal. The
default inputs are +10 V and –10 V, respectively. Samples is the output array
of the voltages read. The order of the values in the samples array matches
the order requested in the DAQ Channel Name control. For example, if
channels is “1, 2, 4”, samples[0] would be from CH 1, samples[1] from
CH 2, and samples[2] from CH 4. If an error occurs during the operation of
AI Sample Channels, a dialog box displays the error code, and you have the
option to abort the operation or continue execution.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-22 ni.com

DAQ Channel Name Control
The DAQ Channel Name control is a LabVIEW data type used by the DAQ
VIs for communicating to the National Instruments DAQ boards. You select
the DAQ Channel Name control from the I/O subpalette of the Controls
palette as shown below.

You enter the channel names into the control in two different ways. You can
use the Operating tool to click on the DAQ Channel Name control and
choose the channel name as defined in the MAX utility as shown below.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-23 LabVIEW Basics I Course Manual

Another method is to right-click on the DAQ Channel Name control and
select the Allow Undefined Names option, as shown below. Now you can
enter the channel number into the control.

You will now create a VI that acquires data from an analog input channel on
the DAQ board and displays that value in a meter.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-24 ni.com

Exercise 8-2 Voltmeter.vi
Objective: To acquire an analog signal using a DAQ board.

You will build a VI that measures the voltage that the temperature sensor
on the DAQ Signal Accessory outputs. The temperature sensor outputs a
voltage proportional to the temperature. The sensor is hard-wired to
Channel 0 of the DAQ board.

You will use this VI later, so be sure to save it as the instructions below
describe.

Front Panel

1. Open a new VI.

2. Build the front panel shown above. Be sure to modify the controls and
indicators as depicted.

The DAQ Channel Name control specifies the channel on the DAQ
board.

The meter (Numeric palette) displays the voltage.

3. Configure the meter scale for 0.0 to 0.4. To do this, double-click on 10.0
with the Labeling tool and type 0.4. (You may need to enlarge the
meter to get the scale shown in the figure above.)

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-25 LabVIEW Basics I Course Manual

Block Diagram

1. Build the diagram shown above.

AI Sample Channel VI (Data Acquisition»Analog Input subpalette).
In this exercise, this VI reads an analog input channel and
returns the voltage. Right-click on the device terminal and select
Create»Constant. Right-click on the channel terminal and select
Create»Control.

Wait Until Next ms Multiple function (Time & Dialog subpalette). In
this exercise, this function causes the loop to execute every 100 ms.

Note If you do not have a DAQ board or a DAQ Signal Accessory, use the following VI
in place of the AI Sample Channel VI:

(Demo) AI Sample Channel VI (User Libraries»Basics I Course subpalette). This VI
simulates a reading from an analog input channel.

2. Save the VI as Voltmeter.vi.

3. Return to the front panel and run the VI.

The meter should display the voltage that the temperature sensor
outputs. Place your finger on the temperature sensor and notice that the
voltage increases.

If an error occurs, the Easy I/O VIs automatically display a dialog box
showing the error code and a description of the error.

4. Click on the DAQ Channel Name control with the Operating tool and
select temp. Run the VI and the temperature is now displayed in the
meter. Change the meter scale to see the correct values.

5. Close the VI. You will use this VI in a later exercise.

End of Exercise 8-2

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-26 ni.com

Exercise 8-3 Measurement Averaging.vi (Optional)
Objective: To reduce noise in analog measurements by oversampling and averaging.

1. Open and run the Measurement Averaging VI. The VI measures the
voltage output from the temperature sensor once per second and plots it
on the waveform chart.

Note If you do not have a DAQ board or a DAQ Signal Accessory, replace the AI
Sample Channel VI with the following VI:

(Demo) AI Sample Channel VI (User Libraries»Basics I Course subpalette). This VI
simulates a reading from analog input Channel 0.

2. Introduce noise into the temperature measurement by flipping the switch
labeled Temp Sensor Noise on the DAQ Signal Accessory to the ON
position. The measurements should begin to fluctuate with noise spikes.

3. Stop the VI and open the block diagram. Modify the True case inside the
block diagram to take 30 measurements, average the data, and plot the
average of the 30 measurements.

4. Run the VI. Notice the drop in noise spikes when the Averaging switch
is turned on.

5. Save and close the VI.

End of Exercise 8-3

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-27 LabVIEW Basics I Course Manual

D. The DAQ Wizards
LabVIEW contains several wizards to help you develop your applications
faster. The DAQ Solution Wizard allows you to choose among current data
acquisition examples or to design a custom DAQ application. It works with
analog input and output, digital I/O, and counter/timers. The DAQ Solution
Wizard is an interactive utility that uses a series of windows that ask you
about your application. An example VI is created that you can save to a new
location.

The DAQ Solution Wizard also uses the DAQ Channel Wizard to define
which signals are connected to which channels on your DAQ board. When
you press the Go to DAQ Channel Wizard button, the MAX utility opens.
You can then modify or add new virtual channels and scales for your data
acquisition application. You can then reference the channel name for the
input signal throughout the application, and all of the conversion processes
are performed transparently.

Now you will use the DAQ wizards to create a VI that acquires data from
multiple channels, displays that information in a chart, and writes that
information to a data file.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-28 ni.com

Exercise 8-4 Simple Data Logger.vi
Objective: To use the DAQ Wizards to create a multichannel data logging VI.

You will use the DAQ Solution Wizard to create a VI that acquires several
channels of data, shows that data in a strip chart, and logs that data to file.
You will use the virtual channels you previously defined in the MAX utility.

For this exercise, connect the sine wave output to Analog In CH1 and the
square wave output to Analog In CH2 on the DAQ Signal Accessory.

1. Open a new VI.

2. Launch the DAQ Solution Wizard by selecting DAQ Solution Wizard
from the Tools»Data Acquisition menu in LabVIEW. The following
window will open:

You can see the channels you defined by clicking on the View Current
Wizard Configuration button. You will be using these channels for this
exercise—temp, chan1, and chan2. These correspond to the temperature
sensor and analog input channels 1 and 2 on the DAQ Signal Accessory.
You can look at these channel definitions in more detail by launching
the DAQ Channel Wizard by clicking on the Go to DAQ Channel
Wizard button.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-29 LabVIEW Basics I Course Manual

3. From the opening DAQ Solution Wizard window, make sure the selected
option is Use channel names specified in DAQ Channel Wizard and
select the Next button. Here you have the option to either make a custom
application or view the VIs in the Common Solutions Gallery.

4. Select Solutions Gallery and press the Next button to get the following
window:

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-30 ni.com

5. Select Data Logging from the Gallery Categories section and Simple
Data Logger from Common Solutions. When you press the Next
button, you will be asked which channels of data to log. Select all the
analog input channels shown by holding down <Shift> and clicking on
each choice as shown:

6. Click on the Open Solution button to get the following panel.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-31 LabVIEW Basics I Course Manual

Front Panel

7. Notice that the channels are already defined. Open and examine the
diagram. It uses the AI Sample Channels VI to acquire the data and the
Write Characters to File VI to log the data to disk. Both of these are
high-level I/O VIs, and a dialog box will open if an error occurs.

8. Return to the panel, set the Time Between Points to be 1 sec, and run
the VI. You will get a prompt for a filename. Create the file called
logger.txt in the LabVIEW directory.

9. Stop the VI, close the Simple Data Logger VI, and quit the Solution
Wizard.

End of Exercise 8-4

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-32 ni.com

E. Waveform Analog Input
In many applications, acquiring one point at a time may not be fast enough.
In addition, it is difficult to attain a constant sample interval between each
point because the interval depends on a number of factors: loop execution
speed, call software overhead, and so on. With certain VIs, you can acquire
multiple points at rates greater than the AI Sample Channel VI can achieve.
Furthermore, the VIs can accept user-specified sampling rates. An example
would be AI Acquire Waveform.

AI Acquire Waveform acquires the specified number of samples at the
specified sample rate from a single input channel and returns the acquired
data. Device is the DAQ board device number. Channel specifies the analog
input channel number. Number of samples is the number of samples to
acquire. Sample rate is number of samples to acquire per second. High
limit and low limit specify the range of the input signal. The default inputs
are +10 V and –10 V, respectively. Waveform contains the sampled data
and timing information.

Waveform Data
The DAQ VIs return waveform data. The waveform datatype is a LabVIEW
datatype that combines the data read from the DAQ board with time
information. You can place a waveform on the panel by selecting it from the
I/O subpalette of the Controls palette as shown below:

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-33 LabVIEW Basics I Course Manual

You wire the waveform output terminal of a DAQ VI directly to the
waveform datatype and you receive the starting time the data was acquired,
the delta time for each data point, and an array of the data values. You can
also wire the waveform datatype directly to a waveform graph, and it will
properly scale the X axis with the time data, as shown in the following
figure.

Now you will build a VI that acquires a waveform from the DAQ board.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-34 ni.com

Exercise 8-5 Acquire Waveform.vi
Objective: To acquire and display an analog waveform.

You will build a VI that uses the DAQ VIs to acquire a signal and plot it on
a graph.

For this exercise, on the DAQ Signal Accessory connect Analog Input CH1
to the sine wave output of the function generator.

Front Panel

1. Open a new VI and build the front panel shown above.

The # of Samples control specifies the number of points to sample. The
Samples/Sec control specifies the sampling rate. The DAQ Channel
Name control and Waveform indicator are both in the I/O subpalette.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-35 LabVIEW Basics I Course Manual

Block Diagram

2. Build the block diagram shown above.

AI Acquire Waveform VI (Data Acquisition»Analog Input
subpalette). In this exercise, this VI acquires 1,000 points at a sampling
rate of 10,000 samples/s from Channel 1.

Note If you do not have a DAQ board or a DAQ Signal Accessory, use the following VI
in place of the AI Acquire Waveform VI:

(Demo) Acquire Waveform VI (User Libraries»Basics I Course subpalette). This VI
simulates acquiring data from analog input Channel 1 at a specified sampling rate and
returning the specified number of samples.

3. Save the VI as Acquire Waveform.vi.

4. Return to the front panel, enter values for the controls, and run the VI.
The graph plots the analog waveform. Try different values for the
sampling rate and the number of samples.

5. Leave this VI open when you are finished, as you will use it in the next
exercise.

End of Exercise 8-5

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-36 ni.com

F. Writing Waveform Data to File
There are several ways you can write waveform data to a file. The easiest
way is to use the built-in Waveform File I/O VIs located in the Waveform
subpalette of the Function palette as shown below.

The Write Waveforms to File and Read Waveforms from File VIs write data
in a special LabVIEW binary data file called a datalog file. Datalog files are
discussed in more detail in the LabVIEW Basics II course.

You use the Export Waveforms to Spreadsheet File VI to write the waveform
data to a spreadsheet format.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-37 LabVIEW Basics I Course Manual

The Export Waveforms to Spreadsheet File VI does an operation similar to
the high-level Write to Spreadsheet File VI. It opens a data file specified by
the file path input or opens a dialog box if the path is empty. You wire the
waveform directly to the input, and this VI converts the data to spreadsheet
format using a Tab delimiter as the default. You can select to append to an
existing file or write to a new file. You can also add a header to the file or
write multiple time columns to the file. The file is closed after the data is
written to the file. The error in and error out clusters track the error
conditions.

You will now use this function to write data acquired with the DAQ board
to a spreadsheet file.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-38 ni.com

Exercise 8-6 Acquire Waveform to File.vi
Objective: To write data acquired from an analog input channel to a file.

You modify the previous VI that acquires data from an analog input channel
on the DAQ board to write the data to a file in spreadsheet format.

1. Open the Acquire Waveform VI that you built in the previous exercise if
it is not already open.

2. Rename the VI Acquire Waveform to File.vi by selecting
File»Save As.

3. You will not modify the panel. Switch to the block diagram.

Block Diagram

4. Build the block diagram shown above.

Export Waveforms to Spreadsheet File VI (Waveform»Waveform File
I/O subpalette). Opens a file, formats and writes waveform data to file
with a header, and closes the file.

Simple Error Handler VI (Time & Dialog subpalette). This VI checks
the error cluster and displays a dialog box if an error occurred.

5. Save the VI.

6. Return to the front panel and run the VI. After the VI acquires and
displays the waveform, a dialog box prompts you to enter the filename.
Type acquire.txt and click on OK.

7. Open a spreadsheet or word processing application and open the
acquire.txt file. Notice the header information contained in the first
row. It describes the starting time and time increment values. The
waveform data is contained in the rest of the file, with the time and date
values in the first column and the voltages in the second column.

8. Close all open windows when you are finished.

End of Exercise 8-6

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-39 LabVIEW Basics I Course Manual

G. Scanning Multiple Analog Input Channels
With the Analog Input Easy I/O AI Acquire Waveforms VI, you can acquire
waveforms from several channels in a single run.

AI Acquire Waveforms acquires the specified number of samples at the
specified scan rate from multiple channels and returns the acquired data.
Device is the device number of the DAQ board. Channels is a DAQ Channel
Name control specifying the analog input channels to measure. A comma
separates the channels in the string—for example, 1, 2, 4. Number of
samples/ch is the number of samples per channel to acquire. Scan rate is
number of samples to acquire per second for each channel. High limit and
low limit specify the input signal range. The default inputs are +10 V and
–10 V, respectively. Waveforms is a 1D array where each element is a
waveform datatype with the array elements in the same order as the channel
names.

The next two examples show the AI Acquire Waveforms VI for a
four-channel scan. The scan sequence is 1, 2, 4, and 6. For each channel,
100 samples are acquired at 2,000 Hz. AI Acquire Waveforms returns a 1D
array of waveforms. The data for the first channel is stored in element 0, the
second channel in element 1, and so on. The Index Array function extracts
the data for each channel (a waveform) in the first example.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-40 ni.com

Scanned Waveforms and Graphs
You can directly wire the output of the AI Acquire Waveforms VI to a
waveform graph for plotting. The example below shows the four-channel
scan plotted on one graph.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-41 LabVIEW Basics I Course Manual

Exercise 8-7 Scan Example.vi
Objective: To use the Easy I/O VIs to perform a scanned data acquisition.

You will examine and run a VI that acquires two different waveforms and
plots each waveform on a graph.

For this exercise, connect the sine wave output to Analog In CH1 and the
square wave output to Analog In CH2 on the DAQ Signal Accessory.

Front Panel

1. Open the Scan Example VI.

2. Study the block diagram.

Note If you do not have a DAQ board or a DAQ Signal Accessory, replace the AI
Acquire Waveforms VI with the following VI:

(Demo) Acquire Waveforms VI (User Libraries»Basics I Course subpalette). In this
exercise, this VI simulates reading a sine wave on Channel 1 and a square wave on
Channel 2.

3. Run the VI. The graphs should display the waveforms.

4. Close the VI. Do not save any changes.

End of Exercise 8-7

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-42 ni.com

Exercise 8-8 Scan Two Waveforms.vi (Optional)
Objective: To acquire data from multiple channels on the DAQ board and display them on one

graph.
For this exercise, connect the sine wave output to Analog In CH1 and the
square wave output to Analog In CH2 on the DAQ Signal Accessory.

Create a VI that scans data from Channel 1 and Channel 2 and plots both
waveforms on a single waveform graph. Acquire 500 points from each
channel at 10,000 Hz. The VI also should write the scanned data to a
spreadsheet file so that when the file is opened using a spreadsheet, each
channel is displayed in a column.

Note If you do not have a DAQ board or a DAQ Signal Accessory, replace the AI
Acquire Waveforms VI with the following VI:

(Demo) Acquire Waveforms VI (User Libraries»Basics I Course subpalette). In this
exercise, this VI simulates reading a sine wave on Channel 1 and a square wave on
Channel 2.

Save the VI as Scan Two Waveforms.vi. Use the front panel shown to
get started.

End of Exercise 8-8

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-43 LabVIEW Basics I Course Manual

H. Analog Output
The Analog Output library contains VIs that perform digital-to-analog
(D/A) conversions or multiple conversions.

AO Update Channel writes a specified voltage value to an analog output
channel. Device is the device number of the DAQ board. Channel is a string
that specifies the analog output channel name. Value is the voltage to be
output.

If an error occurs during the operation of AO Update Channel, a dialog box
displays the error code, and you have the option to abort the operation or
continue execution.

Waveform Generation
In many applications, generating one point at a time may not be fast enough.
In addition, it is difficult to attain a constant sample interval between each
point because the interval depends on a number of factors: loop execution
speed, call software overhead, and so on. With the AO Generate Waveform
VI, you can generate multiple points at rates greater than the AO Update
Channel VI can achieve. Furthermore, the VI can accept user-specified
update rates.

AO Generate Waveform generates a voltage waveform on an analog output
channel at the specified update rate. Device is the device number of the DAQ
board. Channel specifies the analog output channel name. Update rate is
the number of voltage updates to generate per second. Waveform contains
data to be written to the analog output channel in volts.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-44 ni.com

Exercise 8-9 Voltage Output Example.vi
Objective: To output an analog voltage using a DAQ board.

You will examine a VI that outputs voltage from 0 to 9.5 V in 0.5 V steps.
You will measure the voltage output using the Voltmeter VI that you created
in Exercise 9-2.

For this exercise, connect Analog Out CH0 to Analog In CH1 on the DAQ
Signal Accessory.

Front Panel

1. Open the Voltage Output Example VI. The VI already is built.

The DAQ Channel Name control specifies the analog output channel.
The Voltage Out indicator displays the current voltage output.

2. Open the block diagram.

Block Diagram

3. Examine the block diagram.

AO Update Channel VI (Data Acquisition»Analog Output
subpalette). In this exercise, this VI outputs the specified voltage using
analog output channel 0. You will use two of these VIs in this diagram.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-45 LabVIEW Basics I Course Manual

Note If you do not have a DAQ board or a DAQ Signal Accessory, replace the two AO
Update Channel VIs with the following VI:

(Demo) Update Channel VI (User Libraries»Basics I Course subpalette). In this
exercise, this VI simulates generating a voltage on an analog output channel.

Multiply function (Numeric subpalette). In this exercise, this function
multiplies “i” by 0.5 to specify the new voltage value.

Wait Until Next ms Multiple function (Time & Dialog subpalette). In
this exercise, this function causes the For Loop to execute every 500 ms.

Local Variable (right-click on the Voltage Out terminal and select
Create»Local Variable). In this exercise, this variable writes a 0.0 to
the Voltage Out indicator after the For Loop completes. You can use
local variables to write to an indicator from different places in a block
diagram. The LabVIEW Basics II course covers local variables.

The For Loop executes every 500 ms. The AO Update Channel VI
outputs the voltage in 0.5 V steps from 0 to 9.5 V. After the For Loop
finishes execution, the VI outputs 0 V to “reset” the analog output
channel. A local variable writes a 0.0 to the Voltage Out indicator after
the For Loop completes.

4. Close the block diagram and open the Voltmeter VI.

5. Configure the meter scale for 0.0 to 10.0.

6. Enter chan1 inside the Channel control on the Voltmeter VI front panel.
Set the limit controls as shown below. Turn on the Power switch and run
the Voltmeter VI.

7. Make sure you have connected Analog Out CH0 to Analog In CH1 on
the DAQ Signal Accessory.

8. To acquire and display the voltage output, follow these steps:

a. Run the Voltage Output Example VI.

b. Observe the front panel of the Voltmeter VI. The meter should
acquire and display the voltage output.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-46 ni.com

9. Close both VIs.

End of Exercise 8-9

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-47 LabVIEW Basics I Course Manual

I. Digital Input and Output
The data acquisition Data Acquisition»Digital I/O library contains VIs to
read from or write to an entire digital port or to a specified line of that port.

Write to Digital Line sets a particular line on a user-configured port to either
logic high or low. Device is the device number of the DAQ board. Digital
Channel specifies the port where the line is located. Line specifies the
digital line to write to. Line State writes either a true or a false to the given
line.

Read from Digital Line reads the logical state of a digital line on a
user-configured port. Device is the device number of the DAQ board.
Digital Channel specifies the port where the line is located. Line specifies
the digital line you will read. Line State returns the logical state of the given
line.

Write to Digital Port outputs a decimal pattern to a specified digital port.
Device is the device number of the DAQ board. Digital Channel specifies
the digital port on the DAQ board to be used. Pattern specifies the new state
of the lines to be written to the port. Port Width is the total width in bits of
the port.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-48 ni.com

Read from Digital Port reads a user-configured port. Device is the device
number of the DAQ board. Digital Channel specifies the digital port to
read. The reading is displayed in a decimal number in pattern. Port Width
specifies the total number of bits in the port.

If an error occurs during the operation of digital I/O VI, a dialog box
displays the error code, and you have the option to abort the operation or
continue execution.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-49 LabVIEW Basics I Course Manual

Exercise 8-10 Digital Example.vi
Objective: To control the digital I/O lines on the DAQ board.

You will examine a VI that turns on the LEDs of Port 0 on the DAQ Signal
Accessory based on the digital value set on the front panel. Each LED is
wired to a digital line on the DAQ board. The lines are numbered 0, 1, 2,
and 3, starting with the LED on the right.

Note The LEDs use negative logic. That is, writing a one to the LED digital line turns
off the LED. Writing a zero to the LED digital line turns on the LED.

Front Panel and Block Diagram

1. Open the Digital Example VI. The VI already is built.

2. Open and study the block diagram.

3. Run the VI. Enter different numbers between 0 and 15 inside the Pattern
Input control. The LEDs should display the binary equivalent of the
number that you input.

4. Close the VI. Do not save any changes.

End of Exercise 8-10

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-50 ni.com

J. Buffered Data Acquisition (Optional)
A common application for data acquisition is performing buffered or
continuous acquisition. This section describes the VIs required to perform
continuous acquisition operations and explains application concepts.

Intermediate VIs
Compared to the Easy I/O VIs, the Intermediate VIs have more hardware
functionality, flexibility, and efficiency for developing your application. The
Intermediate VIs feature capabilities that the Easy I/O VIs lack, such as
controlling interchannel sampling rates, using external timing and triggering
signals, acquiring unscaled data, performing digital handshaking,
performing continuous I/O operations, controlling onboard counters,
and supporting flexible error handling. The second tier of the Data
Acquisition»Analog Input subpalette consists of the Intermediate Analog
Input VIs. As you become acquainted with LabVIEW, you will discover that
you can build most DAQ applications with the Intermediate DAQ VIs.

Note Use the LabVIEW online reference (Help»Contents and Index menu) to
demonstrate and learn more about the details of these functions. The LabVIEW DAQ
Basics course describes these VIs in much more detail.

The following figure shows how to use the Intermediate Analog Input VIs
in your block diagram. All necessary inputs are not wired to the VIs in these
figures. The figures are presented to demonstrate the order of execution of
the VIs and the use of the taskID to control data flow. The figure shows a
simplified block diagram for applications that acquire waveforms of data
using a buffer in computer memory and hardware timing from onboard
counters. The block diagram calls AI Config, AI Start, AI Read, AI Clear,
and Simple Error Handler.

AI Config configures the channels, allocates a buffer in computer memory,
and generates a taskID. AI Start programs the counters on the DAQ board
and starts the data acquisition. AI Read reads data from the buffer in
computer memory. AI Clear frees computer and DAQ board resources. The

Intermediate VIs

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-51 LabVIEW Basics I Course Manual

error cluster propagates through the VIs and Simple Error Handler displays
a dialog box if an error occurs.

Note In the figure above, the buffer size parameter for AI Config is set to 2,000. The
number of scans to acquire parameter of AI Start is left unwired and has a default input
of –1. The –1 value informs AI Start to acquire the number of scans for which memory
has been allocated (buffer size) in AI Config. Similarly, the number of scans to read
parameter of AI Read is also unwired and has a default input of –1. Again, the –1 value
tells AI Read to read the number of scans that AI Start specifies.

Continuous Data Acquisition
Continuous, or real-time, data acquisition returns data from an acquisition
in progress without interrupting the acquisition. This approach usually
involves a circular buffer scheme, as shown in the next figure. You specify
the size of a large circular buffer when you configure the acquisition. After
starting the data acquisition, the DAQ board collects data and stores the data
in this buffer. LabVIEW transfers data out of the buffer one block at a time
for graphing and storing to disk. When the buffer is full, the board starts
writing data at the beginning of the buffer (overwriting the previously stored
data). This process continues until the system acquires the specified number
of samples, LabVIEW clears the operation, or an error occurs. Continuous
data acquisition is useful for applications such as streaming data to disk and
displaying data in real time.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-52 ni.com

You configure LabVIEW for continuous data acquisition by instructing AI
Start to acquire data indefinitely. This acquisition is asynchronous, meaning
that other LabVIEW operations can execute during the acquisition. The
following figure illustrates a typical continuous DAQ block diagram. To
initiate the acquisition, set number of scans to acquire in AI Start to 0. AI
Read is called in a looping structure to retrieve data from the buffer. You can
then send the data to disk, to a graph, and so on. AI Clear halts the
acquisition, deallocates the buffers, and frees any board resources.

Incoming
Board
Data

End of Data

Buffer Size Data transferred
from Buffer

Current Read MarkCurrent Read Mark End of Data End of Data

a.

c.

b.

d.

End of DataCurrent Read Mark

> > >

> > > > > >

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-53 LabVIEW Basics I Course Manual

Exercise 8-11 Continuous Acquire with MIO.vi (Optional)
Objective: To perform continuous data acquisition.

To build a VI that performs a continuous acquisition operation and plots the
most recently acquired data on a chart.

Front Panel

1. Open a new VI.

2. Build the front panel shown above by following the instructions below.

a. You can create most of the front panel controls shown above from
the block diagram by right-clicking on the appropriate terminals of
the DAQ VIs and selecting Create»Control.

b. In this exercise, you will acquire data from multiple channels of the
DAQ Signal Accessory and display the data on the graph. Set the
Scan Rate to 1,000 scans/s and # of Scans in Buffer to 3,000.

Set the channel string control input to 0,1,2 or 0:2.

c. Before running this exercise, make the following connections on the
DAQ Signal Accessory.

• Connect the sine wave output to analog input CH1.

• Connect the square wave output to analog input CH2.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-54 ni.com

Block Diagram

3. Build the block diagram as shown above.

AI Config VI (Data Acquisition»Analog Input subpalette). In this
exercise, this VI configures the analog input operation for a specified set
of channels, configures the hardware, and allocates a buffer in computer
memory.

AI Start VI (Data Acquisition»Analog Input subpalette). In this
exercise, this VI starts the continuous buffered analog input operation
and sets the rate at which to acquire data.

AI Read VI (Data Acquisition»Analog Input subpalette). In this
exercise, this VI reads data from the buffer allocated by AI Config. It
controls the number of points to read from the buffer, returns scaled
voltage data, and sets the buffer location from which to read data.

AI Clear VI (Data Acquisition»Analog Input subpalette). In this
exercise, this VI clears the analog input operation and deallocates the
buffer from computer memory.

Simple Error Handler VI (Time and Dialog subpalette). In the event of
an error, this VI displays a dialog box with information regarding the
error and its location.

Unbundle by Name function (Cluster subpalette). This function
separates the status Boolean from the error cluster.

4. Save the VI. Name it Continuous Acquire with MIO.vi.

5. Go to the front panel. Run the VI and monitor the data plotted on the
graph as you change the frequency knob on the DAQ Signal Accessory.
The numeric constant of 0 you wired to the number of scans to acquire
input of AI Start enables a continuous or circular data acquisition. Data
fills a buffer of fixed size in memory and then, on reaching the end of the
buffer, overwrites values from the beginning of the buffer.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-55 LabVIEW Basics I Course Manual

6. Set the Read/Search Position control to “Relative to read mark.” Run
the VI and monitor the Scan Backlog indicator as you decrease the scan
rate or the number of scans to read at a time. Scan backlog is defined as
the number of scans acquired into the acquisition buffer but not read.
Scan backlog is a measure of how well you are keeping up with a
continuous acquisition. If scan backlog steadily increases, you are not
reading data fast enough from the buffer and will eventually lose data.
If this happens, AI Read returns an error.

7. Close the VI.

End of Exercise 8-11

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-56 ni.com

Summary, Tips, and Tricks
• You can access the DAQ VIs by choosing the Data Acquisition

subpalette from the Functions palette. The Data Acquisition subpalette
is divided into six subpalettes containing VIs that perform analog input,
analog output, digital I/O, counter, configuration and calibration, and
signal conditioning operations.

• Each subpalette of the Data Acquisition library can be divided into four
groupings of levels: Easy I/O VIs, Intermediate VIs, Advanced VIs, and
Utility VIs.

• This lesson discussed the LabVIEW Easy I/O and Intermediate DAQ
VIs. The Easy I/O VIs consist of high-level VIs that perform the basic
analog input, analog output, digital I/O, and counter/timer I/O
operations. They are ideal for simple analog I/O or digital tasks or for
getting started with DAQ in LabVIEW.

• The Easy I/O VIs include a simplified error handling method. When a
DAQ error occurs in your VI, error information appears in a dialog box.
With the box, you also have the option to halt VI execution or ignore the
error.

• Compared to the Easy I/O VIs, the Intermediate VIs feature more
hardware functionality, flexibility, and efficiency for developing your
application. The Intermediate VIs feature capabilities that the Easy I/O
VIs lack.

• You can use waveform acquisition or generation to acquire or generate
data faster and at a more constant sampling rate than the single point
conversions.

• You can continuously acquire data using the intermediate Analog Input
VIs—AI Config, AI Start, AI Read, and AI Clear.

• The DAQ VIs return data as a waveform. The waveform datatype
combines the measured data with the time information. You wire a
waveform directly to a waveform graph, and the X and Y scales
automatically adjust to the data.

Lesson 8 Data Acquisition and Waveforms

© National Instruments Corporation 8-57 LabVIEW Basics I Course Manual

Additional Exercise
8-12 Build a VI that continuously measures temperature twice per second

and displays the temperature on a waveform chart. If the temperature
goes over a preset limit, the VI should turn on a front panel LED and
LED 0 on the DAQ Signal Accessory. The LEDs on the box are
labeled. The chart should plot both the temperature and limit. Name
the VI Temp Monitor with LED.vi.

8-13 Use the DAQ Solution Wizard to open a VI that reads and displays
the data logged in Exercise 8-4 and is called Simple Data
Reader.vi.

Lesson 8 Data Acquisition and Waveforms

LabVIEW Basics I Course Manual 8-58 ni.com

Notes

© National Instruments Corporation 9-1 LabVIEW Basics I Course Manual

Lesson 9
Instrument Control

Introduction
This lesson introduces how you can communicate with GPIB and serial port
instruments using LabVIEW. Instrument drivers are discussed and used,
along with the lower-level functions for performing instrument I/O.

You Will Learn:

A. An overview of instrument control.

B. About GPIB communication and configuration.

C. About instrument drivers.

D. How to use instrument driver VIs.

E. An overview of the Virtual Instrument Software Architecture (VISA).

F. How to use the VISA functions.

G. About serial port communication using LabVIEW.

H. About waveform transfers.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-2 ni.com

A. Instrument Control Overview
You are not limited to the type of instrument that you control if you choose
industry-standard control technologies. You can even mix and match
instruments from many different categories including serial, GPIB, VXI,
PXI, computer-based instruments, Ethernet, SCSI, CAMAC, and parallel
port devices.

The things to be aware of with PC control of instrumentation are:

• What type of connector (pinouts) are on the instrument.

• What kind of cables are needed (null-modem, number of pins,
male/female).

• What electrical properties are involved (signal levels, grounding, cable
length restrictions).

• What communication protocols are used (ASCII commands, binary
commands, data format).

• What kind of software drivers are available (see the next section).

The previous lesson showed you how to use LabVIEW to communicate with
and acquire data from data acquisition (DAQ) boards. This lesson discusses
how you can use LabVIEW to control and acquire data from an external
instrument. As described above, there are many different ways to connect an
instrument to the computer. This lesson focuses on the two most common
instrument communication methods—GPIB and serial port communication.

Lesson 9 Instrument Control

© National Instruments Corporation 9-3 LabVIEW Basics I Course Manual

B. GPIB Communication and Configuration

Hardware Overview
Hewlett Packard developed the General Purpose Interface Bus (GPIB) in
the late 1960s and early 1970s. The IEEE standardized the GPIB in 1975,
and the GPIB became known as the IEEE 488 standard. The terms GPIB,
HP-IB, and IEEE 488 are synonymous. The GPIB’s original purpose was
to provide simultaneous computer control of test and measurement
instruments; however, the GPIB is quite versatile and now is widely used
for diverse applications including computer-to-computer communication
and control of scanners and film recorders.

The GPIB is a digital, 24-conductor parallel bus. It consists of eight data
lines, five bus management lines (ATN, EOI, IFC, REN, and SRQ), three
handshake lines, and eight ground lines. The GPIB uses an eight-bit parallel,
byte-serial, asynchronous data transfer scheme. This means that whole bytes
are sequentially handshaked across the bus at a speed that the slowest
participant in the transfer determines. Because the unit of data on the GPIB
is a byte (eight bits), the messages transferred are frequently encoded as
ASCII character strings.

Every device, including the computer interface board, must have a unique
GPIB address between 0 and 30. Address 0 is normally assigned to the
GPIB interface board. The instruments on the GPIB can use addresses 1
through 30. The GPIB has one Controller (your computer) that controls the
bus. To transfer instrument commands and data on the bus, the Controller
addresses one Talker and one or more Listeners. The data strings are then
handshaked across the bus from the Talker to the Listener(s). The LabVIEW
GPIB VIs automatically handle the addressing and most other bus
management functions.

There are three ways to signal the end of a data transfer. In the preferred
method, the GPIB includes a hardware line (EOI) that can be asserted with
the last data byte. Alternately, you may place a specific end-of-string (EOS)
character at the end of the data string itself. Some instruments use this
method instead of, or in addition to, the EOI line assertion. Finally, the
listener can count the bytes handshaked and stop reading when the listener
reaches a byte count limit. The byte count method is often used as a default
termination method because the transfer stops on the logical OR of EOI,
EOS (if used) in conjunction with the byte count. Thus, you typically set the
byte count to equal or exceed the expected number of bytes to be read.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-4 ni.com

Additional electrical specifications allow data to be transferred across the
GPIB at the maximum rate of 1 Mbyte/s because the GPIB is a transmission
line system. These specifications are:

• A maximum separation of 4 m between any two devices and an average
separation of 2 m over the entire bus.

• A maximum cable length of 20 m.

• A maximum of 15 devices connected to each bus with at least two-thirds
of the devices powered on.

If you exceed any of these limits, you can use additional hardware to extend
the bus cable lengths or expand the number of devices allowed.

Note For more information about GPIB, visit the National Instruments GPIB support
Web site at ni.com/support/gpibsupp.htm.

Software Architecture
The software architecture for GPIB instrument control using LabVIEW is
similar to the architecture for DAQ. Regardless of what operating system
you use, your GPIB interface card will ship with a set of drivers for that
board. These drivers are also available on your LabVIEW installation CD.
Always install the newest version of these drivers unless you are instructed
otherwise in the release notes for either the GPIB interface board or
LabVIEW. The figure below shows the software architecture on the
Windows platforms.

43687.2356

43687.2356

GPIB Instruments

COMPUTER

GPIB Interface

GPIB Cable

Lesson 9 Instrument Control

© National Instruments Corporation 9-5 LabVIEW Basics I Course Manual

You use the Measurement & Automation Explorer (MAX) to configure and
test the GPIB interface. MAX interacts with the various diagnostic and
configuration tools installed with the driver and also with the Windows
Registry and Device Manager. The driver-level software is in the form of a
dynamically linked library (DLL) and contains all the functions that directly
communicate with the GPIB board. The LabVIEW Instrument I/O VIs and
functions directly call the driver software.

Note The configuration utilities and hierarchy described above and in the next section
are specific to the Windows platforms. If you are using a different operating system, refer
to the manuals that came with your GPIB interface board for the appropriate information
for configuring and testing that board.

Configuration Software
Measurement & Automation Explorer (MAX) is the configuration utility
for your National Instruments software and hardware. It can also execute
system diagnostics, add new channels, interfaces, and virtual channels, and
view devices and instruments connected to your system. You open MAX by
double-clicking on its icon on the desktop or by selecting
Tools»Measurement & Automation Explorer.

The four possible selections in MAX are:

• Data Neighborhood—Use this selection to create virtual channels,
aliases, and tags to your channels or measurements configured in
Devices and Interfaces as you did in the DAQ lesson of this course.

• Devices and Interfaces—Use this selection to configure resources and
other physical properties of your devices and interfaces. Using this

Configuration and
Diagnostic Tools

Measurement
& Automation

LabVIEW

Windows Registry
and Device Manager

LabVIEW Instrument
I/O VIs and Functions

Driver Software
(*.DLL)

GPIB Interface Board

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-6 ni.com

selection, you can view attributes of one or multiple devices, such as
serial numbers.

• Scales—Use this selection to set up simple operations to perform on
your data, such as scaling the temperature reading from the DAQ Signal
Accessory from volts to degrees C.

• Software—Use this section to determine which drivers and application
software are installed and their version numbers.

You configure the objects listed in the MAX by right-clicking on the item
and making a selection from the shortcut menu. The graphic above shows
the GPIB interface board in the MAX utility and the results of pressing the
Scan for Instruments button at the top of the window. You will now use the
MAX utility to observe the GPIB board settings and communicate with the
NI Instrument Simulator.

Lesson 9 Instrument Control

© National Instruments Corporation 9-7 LabVIEW Basics I Course Manual

Exercise 9-1 (Windows Only)
Objective: To use the Measurement & Automation Explorer to examine the settings for the GPIB

interface, detect instruments, and communicate with an instrument.

1. Turn off the NI Instrument Simulator and configure it to communicate
through the GPIB by setting the left bank of switches on the side of the
box as shown below:

2. Power on the NI Instrument Simulator and verify that both the Power
and Ready LEDs are lit.

3. Start the Measurement & Automation Explorer by either
double-clicking on its icon on the desktop or by selecting it from the
Tools menu in LabVIEW.

4. Double-click on the section called Devices and Interfaces to see what
boards are installed. If a GPIB board is listed, the NI-488.2 software was
correctly loaded on your machine.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-8 ni.com

5. Select the GPIB board by clicking on it. Click on the Properties button
below the menu to examine the settings for the GPIB interface as shown
below.

Examine but do not change these settings.

6. Close the GPIB Properties page by selecting the OK button.

7. Return to the MAX window and verify that the GPIB board is still
selected in the Devices and Interfaces section. Press the Scan for
Instruments button below the menu.

8. Open the GPIB board section by double-clicking on it. You should see
one instrument labeled Instrument0.

9. Click on Instrument0 and you will see information about it in the
MAX window to the right of the Configuration section.

Note You may need to close the online help by pressing the Show/Hide button in the top
right corner of the MAX window to see the Instrument0 information.

Lesson 9 Instrument Control

© National Instruments Corporation 9-9 LabVIEW Basics I Course Manual

10. Notice that the NI Instrument Simulator has a GPIB Primary Address
(PAD) of 2.

11. Click on the Communicate with Instrument button under the menu. An
interactive window opens where you can query, write to, and read from
that instrument.

12. With the Send String set to *IDN?, press the Query button. The
instrument should return its make and model number. You can use this
window to debug instrument problems or to verify that specific
commands work as described in the instrument manual.

13. Type MEAS:DC? into the Send String and press the Query button. The
NI Instrument Simulator returns a simulated voltage measurement.

14. Press the Query button again and a different value is returned.

15. Press the Exit button to quit the interactive communication window
when you are finished.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-10 ni.com

16. You will set a VISA alias for the NI Instrument Simulator. Therefore,
instead of having to remember the primary address, you can just specify
the name if the alias. While Instrument0 is selected in the MAX
window, press the VISA Properties button. Type devsim into the VISA
Alias as shown below and press the OK button.

Note Be sure to remember the alias you assign to the NI Instrument Simulator. You will
be using this alias throughout this lesson.

17. Close the MAX utility by selecting Exit from the File menu.

Because you can see the GPIB board, see the instrument, and communicate
with the instrument, you can be assured that the GPIB interface and software
driver are properly installed and configured. Next, you will learn how to
communicate with the GPIB instrument using LabVIEW.

End of Exercise 9-1

Lesson 9 Instrument Control

© National Instruments Corporation 9-11 LabVIEW Basics I Course Manual

C. Instrument Driver Overview
Now that you understand how to configure and test the presence of the
GPIB board and any connected instruments, you will use LabVIEW to
communicate with GPIB instruments. There are two main ways to
accomplish this task:

• As you saw in the software architecture, the LabVIEW Instrument I/O
VIs and functions communicate with the driver-level software for GPIB.
Therefore, you can write LabVIEW programs that use these functions
directly. However, the instruments each have a specific command set or
protocol for sending and receiving data. Learning and using the
commands/protocol can be difficult.

• An instrument driver is a set of modular software functions that use the
instrument commands or protocol to perform common operations with
the instrument. The instrument driver also calls the appropriate
LabVIEW functions for the instrument. Therefore, using an instrument
driver in LabVIEW is an easy and efficient method for communicating
with the instrument. Instrument drivers are covered in more detail now.

What is an Instrument Driver?
As test developers over the years have discovered, instrument drivers are a
key factor in test development. An instrument driver is a collection of
functions that implement the commands necessary to perform the
instrument’s operations. In short, someone read the instrument user manual
and implemented some of the functionality in a program for the end user.
Instrument drivers are not necessary to use your instrument. They are
merely time savers to help you develop your project so you do not need to
study the manual before writing a program.

Instrument drivers create the instrument commands and communicate with
the instrument over the serial, GPIB, or VXI bus. In addition, instrument
drivers receive, parse, and scale the response strings from instruments into
scaled data that can be used in your test programs. With all of this work
already done for you in the driver, instrument drivers can significantly
reduce development time.

Instrument drivers can help make test programs more maintainable in the
long term because instrument drivers contain all of the I/O for an instrument
within one library, separate from your other code. You are protected against
hardware changes and upgrades because it is much easier to upgrade your
test code when all of the code specific to that particular instrument is
self-contained within the instrument driver.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-12 ni.com

You can find the LabVIEW instrument drivers on your LabVIEW
installation CD or download them from the National Instruments Web site
at ni.com or you can contact National Instruments and request a copy of
the LabVIEW Instrument Driver CD.

If you install the LabVIEW instrument drivers from the CD yourself or
download them from the Web site, you first decompress the instrument
driver file to get a directory of instrument driver files. Place this directory
into the LabVIEW\instr.lib directory on your computer. The next time
you launch LabVIEW, you can access the instrument driver VIs from the
Instrument Drivers subpalette of the Functions»Instrument I/O palette,
as shown below.

Getting Started Example
All instrument drivers contain an example you can use to test that the
instrument driver VIs are communicating with the instrument. You must
make sure to specify the correct GPIB address for the instrument as
determined by the MAX utility.

In the next exercise, you will open and use the instrument driver example for
the NI Instrument Simulator.

Lesson 9 Instrument Control

© National Instruments Corporation 9-13 LabVIEW Basics I Course Manual

Exercise 9-2 NI DEVSIM Getting Started.vi
Objective: To examine the installed LabVIEW instrument drivers and open and use the example

VI from the NI DevSim instrument driver.

Note If you are working on your own and have a different instrument, you can install a
LabVIEW driver for it from the NI Web site or the CD. Instrument drivers are available
free of charge. If you have LabVIEW and a Web browser installed on your machine,
choose Instrumentation»Instrument Driver Network from the LabVIEW Tools
menu. LabVIEW automatically takes you to the Instrument Driver Network on ni.com.

1. Open a new VI and go to the Block Diagram.

2. Select Instrument I/O»Instrument Drivers from the Functions
palette and record what instrument drivers are installed:

3. Select the NI Device Simulator subpalette and observe the categories
of instrument driver VIs.

4. Select the NI DEVSIM Getting Started VI from the Application
Examples subpalette and place it in the open diagram.

5. Double-click on the NI DEVSIM Getting Started VI to open and
examine its front panel.

Front Panel

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-14 ni.com

6. Run the VI. The simulator supplies a random DC voltage and generates
the requested waveform on the graph. (The simulator may take several
seconds to acquire the waveform.) You can simulate different
waveforms by moving the Waveform slider and running the VI again.

Block Diagram

7. Examine the block diagram. The device is first initialized with the
Initialize VI, then commands are sent to configure and request
information from the instrument in the Application Example VI, and
finally the communication is ended with the Close VI. All programs
using instrument drivers implement this structure of initialization,
communication, and shutdown.

8. Close the VI. Do not save any changes.

End of Exercise 9-2

Lesson 9 Instrument Control

© National Instruments Corporation 9-15 LabVIEW Basics I Course Manual

D. Using Instrument Driver VIs
LabVIEW provides more than 650 LabVIEW instrument drivers from more
than 50 vendors. You can use these instrument drivers to build complete
systems quickly and can reuse the drivers in a variety of systems and
configurations.

In the last exercise, you used the NI DEVSIM Getting Started VI from the
NI Instrument Simulator instrument driver. When you examined the block
diagram for that VI, you noticed that the programming was broken down
into general functions for the simulator. LabVIEW instrument drivers
simplify instrument programming to high-level commands, so you do not
need to learn the low-level instrument-specific syntax needed to control
your instruments.

These instrument drivers are called LabVIEW instrument drivers because
the source code is graphical programming made from standard LabVIEW
functions and VIs. LabVIEW instrument drivers are organized into
categories of instrument functions.

Components of an Instrument Driver
All instrument drivers in the library have the same VI Tree structure.
Therefore, once you learn to use one instrument driver, all others have the
same basic hierarchy. In fact, this hierarchy, sequence of VIs, and error
checking are the same as those used in many other areas of I/O in
LabVIEW—file I/O, data acquisition (DAQ), TCP/IP communications, etc.

Getting Started

Initialize Application Example Close

Configuration Action/Status Data Utility

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-16 ni.com

The structure of an instrument driver is shown above. The high-level
functions are built from the lower-level functions. For the most control over
the instrument, you would use the lower-level functions. However, the
high-level functions such as the Getting Started VI you used in the last
lesson are easy to use and have soft front panels that resemble the
instrument. Instrument drivers have “component functions” that fall into
the following six categories:

• Initialize Function—Initializes the communication channel to the
instrument. The initialize VI can optionally perform an identification
query and reset operation. In addition, it can perform any necessary
actions to place the instrument in its default power-on state or other
specified state.

• Configuration Functions—A collection of VIs to configure the
instrument to do desired operations. An example is a function to set up
the trigger rate.

• Action/Status Functions—This category contains two types of
functions. Action VIs cause the instrument to initiate or terminate test
and measurement operations. Status VIs obtain the current status of the
instrument or the status of pending operations. An example of an action
function is Acquire Single Shot. An example of a status function is
Query Transfer Pending.

• Data Functions—These VIs transfer data to or from the instrument,
such as reading a measured waveform from the instrument or
downloading a waveform to the instrument.

• Utility Functions—These VIs perform a wide variety of useful
functions such as reset, self-test, error query, and revision query.

• Close Function—All instrument drivers have a close VI that terminates
the communication channel to the instrument and deallocates the
resources set aside for that instrument.

All National Instruments instrument drivers are required to implement the
following functions: initialize, close, reset, self-test, revision query, error
query, and error message.

Application Examples
Application functions are also provided and are examples that demonstrate
how to use the component VIs to perform common tasks. Typically, this
means configuring, triggering, and returning measurements from an
instrument. An application VI does not initialize or close the instrument
driver. The application VI is not intended to be a soft front panel for the
instrument, but rather demonstrates of some instrument driver capabilities.
These VIs guide you in developing your own program.

Lesson 9 Instrument Control

© National Instruments Corporation 9-17 LabVIEW Basics I Course Manual

Inputs and Outputs Common to Instrument Driver VIs
You will now start using instrument driver VIs to build applications. Just as
all instrument drivers share a common set of functions, they also share
common inputs and outputs. This section covers these common parameters
and how you will use them when you create your own VIs.

Before you can communicate with an instrument, you need to open a
communication link to the instrument with the Initialize instrument driver
VI. When you initialize an instrument, you need to know the Resource
Name or Instrument Descriptor. See the connector pane for the NI DEVSIM
Initialize VI below.

Resource Name/Instrument Descriptor
A resource is an instrument or interface, and the instrument descriptor
is the exact name and location of a resource having a format:
Interface Type[board index]::Address::INSTR. (For example,
GPIB::2::INSTR is the instrument descriptor for a GPIB instrument at
address 2.)

You create the VISA Resource Name control by selecting it from the I/O
subpalette of the Controls palette as shown in the next figure. This control
works similarly to the DAQ Channel Name control, but it is specifically
used for instrument control.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-18 ni.com

Note VISA stands for Virtual Instrument Software Architecture and is the underlying
layer of software whenever you do instrument communication. VISA will be covered in
more detail in the next section.

You can use the MAX utility to determine what resources and instrument
addresses are available as in the first exercise. In addition, you gave the
NI Instrument Simulator a VISA Alias of devsim in that first exercise. The
VISA Alias should make it easier to communicate with your instruments
because you no longer need to memorize what interface and address
each instrument uses. You specify the VISA Alias for the Resource
Name/Instrument Descriptor in the instrument driver VIs. The example
below shows two different ways to specify the resource name for the
NI Instrument Simulator.

VISA Sessions
When a connection to an instrument is made with the Initialize VI, a VISA
session number is returned. That VISA session is a connection or link to a
resource, your instrument. You do not need to display this value; however,
each time you communicate with that device again, you need to wire the
VISA session input on the instrument driver VIs. After you finish
communicating with the instrument, you call the Close instrument driver VI,
and all references or resources for the instrument are closed.

Lesson 9 Instrument Control

© National Instruments Corporation 9-19 LabVIEW Basics I Course Manual

Error In/Error Out Clusters
Error handling with instrument driver VIs is similar to error handling with
other I/O VIs in LabVIEW. Each instrument driver VI contains Error In and
Error Out terminals for passing error clusters from one VI to another. Each
instrument driver VI is written so that when an error occurs previously
(passed to the Error In terminal), the VI does not run. The error information
is passed to the next VI (Error Out terminal). You can use the Simple Error
Handler VI (Time & Dialog subpalette) to report that error information just
as you did for File I/O.

Now that you have learned all the instrument driver-specific inputs and
outputs, you are ready to use those VIs to communicate with an instrument.
The diagram above initializes the devsim with its VISA Alias, uses a
configuration VI to select a waveform, uses two data VIs to read the
waveform and the waveform scaling information, and closes the instrument,
and then the error status is checked. You will see this same sequence of
events in every application that uses an instrument driver. Notice how the
Instrument Descriptor, VISA Sessions, and Error I/O terminals are wired.
Remember that you can right-click on the instrument driver VI terminals
and choose Create»Constant, Create»Control, or Create»Indicator as
needed.

You will start using the instrument driver VIs to build LabVIEW
applications.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-20 ni.com

Exercise 9-3 Voltage Monitor.vi
Objective: To build a VI that uses the DevSim instrument driver VIs to acquire and plot voltages.

You will build a VI that acquires a DC voltage measurement from the
NI Instrument Simulator once every second and plots it in a waveform chart
until the user presses a stop button. As each value is acquired, it is compared
with the previous minimum and maximum values. The minimum and
maximum voltage values are calculated and displayed continuously on the
panel.

Front Panel

1. Open a new VI and build the panel shown above.

Lesson 9 Instrument Control

© National Instruments Corporation 9-21 LabVIEW Basics I Course Manual

Block Diagram

1. Open and build the diagram shown above using the following
components:

While Loop (Structures subpalette). Structures the VI to continue to
take DC voltage measurements until the user presses the Stop button.
Right-click on the Conditional terminal and select Stop If True. Create
two shift registers by right-clicking on the right or left edge of the loop
and selecting Add Shift Register from the shortcut menu.

NI DEVSIM Initialize VI (Instrument I/O»nstrument Drivers»NI
Device Simulator subpalette). Opens the communication between
LabVIEW and the NI Instrument Simulator. Right-click on the ID
Query input terminal and select Create»Constant from the shortcut
menu. Change it to a False value with the Operating tool. Wire the
Boolean constant also to the Reset input terminal.

NI DEVSIM Multimeter Configuration VI (Instrument I/O»
Instrument Drivers»NI Device Simulator subpalette). Configures the
range of voltage measurements that the NI Instrument Simulator
generates. The default is 0.0 to 10.0 V DC.

NI DEVSIM Measure DC Voltage VI (Instrument I/O»Instrument
Drivers»NI Device Simulator subpalette). Returns a simulated voltage
measurement from the NI Instrument Simulator.

NI DEVSIM Close VI (Instrument I/O»Instrument Drivers»NI
Device Simulator subpalette). Ends the communication between
LabVIEW and the NI Instrument Simulator.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-22 ni.com

Wait Until Next ms Multiple function (Time & Dialog subpalette). This
function causes the While Loop to execute every second. Create the
constant by right-clicking on the input terminal and selecting
Create»Constant.

Max & Min function (Comparison subpalette). You will use two of
these functions to check the current voltage against the minimum and
maximum values stored in the shift registers.

Simple Error Handler VI (Time & Dialog subpalette). This VI pops
open a dialog box if an error occurs and displays the error information.

Unbundle by Name function (Cluster subpalette). This function
removes the status Boolean from the error cluster.

Or function (Boolean subpalette). The Or function controls when the
While Loop ends. If there is an error or the Stop button is pushed, the
While Loop stops.

Note You do not need to wire every terminal for each VI node. Wire only the necessary
inputs for each VI—Instrument Descriptor, VISA Sessions, and Error I/O.

2. Save this VI as Voltage Monitor.vi.

3. Make sure the NI Instrument Simulator is powered on.

4. Run the VI. Notice that it communicates with the GPIB instrument (the
LEDs alternate between Listen and Talk) each second to get a simulated
voltage reading. This voltage is displayed on the chart, and the min and
max values are updated accordingly.

5. Stop and close this VI when you are finished.

End of Exercise 9-3

Lesson 9 Instrument Control

© National Instruments Corporation 9-23 LabVIEW Basics I Course Manual

E. VISA Overview
Virtual Instrument Software Architecture (VISA) is the underlying layer of
function calls used in the LabVIEW instrument driver VIs to communicate
with the driver software. This section describes what VISA is and how you
use VISA functions in LabVIEW instrument drivers.

VISA History and Definitions
For many years, industry has moved toward purchasing instrumentation
from a variety of vendors. This allows engineers to select the best possible
equipment for their applications without being locked into a specific vendor.
This trend required the definition of hardware standards to ensure the
compatibility between different modules. This was one of the factors
leading to the development of the VXI specification. But even with these
improved hardware standards, a system was time consuming and expensive
to put together. Successful integration of a multivendor system requires all
hardware and software products to work together, eliminating system-level
compatibility issues for end-users.

National Instruments initially addressed the software problems with
instrument drivers, which helped reduce both integration time and software
development costs. In 1993, National Instruments joined with GenRad,
Racal Instruments, Tektronix, and Wavetek to form the VXIplug&play
Systems Alliance. The goals of the alliance are to ensure multivendor
interoperability for VXI systems and to reduce the development time for an
operational system.

A key part of these goals was to develop a new standard for instrument
drivers, soft front panels, and I/O interface software. The term
VXIplug&play has come to indicate the conformity of hardware and
software to these standards.

In directing their efforts toward software standardization, VXIplug&play
members identified a set of guiding principles:

• Maximize ease of use and performance.

• Maintain long-term compatibility with the installed base.

• Maintain multivendor open architectures.

• Maximize multiplatform capability.

• Maximize expandability and modularity in frameworks.

• Maximize software reuse.

• Standardize the use of system software elements.

• Treat instrument drivers as part of the instrument.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-24 ni.com

• Accommodate established standards, both de facto and formal.

• Maximize cooperative support of end users.

VISA is the VXIplug&play I/O software language that is the basis for the
software standardization efforts of the VXIplug&play Systems Alliance.
VISA by itself does not provide instrumentation programming capability.
It is a high-level API that calls into lower-level drivers. VISA can control
VXI, GPIB, serial, or computer-based instruments and makes the
appropriate driver calls depending on the type of instrument used. When
debugging VISA problems, you should remember this hierarchy. An
apparent VISA problem could really be the result of an installation problem
with one of the drivers VISA calls.

Specifically for LabVIEW, VISA is a single library of functions you use to
communicate with GPIB, serial, VXI, and computer-based instruments. You
no longer need to use separate I/O palettes to program an instrument. For
example, some instruments ship with a choice for the type of interface. If the
LabVIEW instrument driver was written with functions from the GPIB
palette, those instrument driver VIs would not work for the instrument with
the serial port interface. VISA solves this problem by providing a single set
of functions that work for any type of interface. Therefore, VISA is used as
the I/O language in all LabVIEW instrument drivers.

VISA Programming Terminology
Before being introduced to VISA programming, you should become
familiar with some of the VISA terminology. The most important objects in
the VISA language are known as resources. The functions you can use with
an object are known as operations. In addition to the operations that you can
use an object, the object has variables, known as attributes, associated with
it that contain information related to the object. You have already used this
VISA terminology when you used the instrument driver VIs; the following
terms give a review and little more information:

• Resource—This is any instrument in your system (includes serial and
parallel ports).

VISA

Serial GPIB VXI PXI

OS Calls NI-488.2 NI-VXI

Lesson 9 Instrument Control

© National Instruments Corporation 9-25 LabVIEW Basics I Course Manual

• Session—You must open a VISA session to a resource to communicate
with it, similar to a communication channel. When you open a session
to a resource, you are returned a VISA Session Number, which is a
unique handle to that instrument. You must use the Session Number in
all subsequent VISA functions. In LabVIEW, this is a refnum.

• Instrument Descriptor—This is the exact name of a resource. The
descriptor specifies the interface type (GPIB, VXI, ASRL), the address
of the device (logical address or primary address), and the VISA Session
type (INSTR or Event).

You can think of the instrument descriptor as a telephone number and the
resource as the person with whom you want to speak. The session is like the
telephone line. Each call uses its own line, and crossing these lines would
result in an error. The table below shows the proper syntax for the
instrument descriptor.

The GPIB keyword establishes communication with a GPIB device. The
VXI keyword is for VXI instruments via either embedded or MXIbus
controllers. The GPIB-VXI keyword is for a GPIB-VXI controller. The
ASRL keyword establishes communication with an asynchronous serial
device. The INSTR keyword specifies a VISA resource of the type INSTR
and it is used for complete VISA capability.

When you previously communicated with the GPIB instruments, you used
the MAX utility to assign a VISA alias for the instrument descriptor. The
VISA alias is a name assigned to the instrument descriptor that you can use
to communicate with an instrument without having to type in the instrument
descriptor.

Note The MAX utility is not available on the Macintosh and UNIX platforms. On
Macintosh, you edit a file called visaconf.ini to assign a VISA alias, and on UNIX,
you assign VISA aliases through the visaconf utility.

Interface Grammar

SERIAL ASRL[board][::INSTR]

GPIB GPIB[board]::primary address[::secondary
address][::INSTR]

VXI VXI[board]::VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board][::GPIB-VXI primary
address]::VXI logical address [::INSTR]

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-26 ni.com

F. Using VISA Functions and VIs
Now that you understand the history and overview of VISA, you will learn
how to use the lower-level VIs to communicate with a GPIB instrument. The
VISA functions you will use most often are the VISA Write and VISA
Read. Most GPIB instruments require you to send information in the form
of a command or query before you can read information back from the
instrument. Therefore, the VISA Write function is usually followed by a
VISA Read function.

The VISA Write function writes the write buffer string to the device
specified by the VISA resource name. dup VISA resource name returns
the same handle to that session. On UNIX platforms, data is written
synchronously; on all other platforms, it is written asynchronously. return
count contains the number of bytes actually transferred across the GPIB.
The error in and error out clusters contain the error information.

The VISA Read function reads data from the device specified by the VISA
resource name. byte count indicates the number of bytes to be read into the
returned read buffer string. dup VISA resource name returns the same
handle to that session. On UNIX platforms, data is read synchronously; on
all other platforms, it is read asynchronously. return count contains the
number of bytes actually transferred across the GPIB. The error in and
error out clusters contain the error information.

Lesson 9 Instrument Control

© National Instruments Corporation 9-27 LabVIEW Basics I Course Manual

The example above shows how you can do an identification query of a
device using the VISA functions. Notice that the full instrument descriptor
is entered into the VISA resource name constant. You could have also used
the VISA alias. Now you will build a VI that uses the VISA functions to read
a waveform from the NI Instrument Simulator.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-28 ni.com

Exercise 9-4 Read VISA Waveform.vi
Objective: To build a VI that uses the VISA functions to communicate with a GPIB device.

You will build a VI that acquires a waveform from the NI Instrument
Simulator. You will use the VISA functions for the GPIB communication.

Front Panel

1. Open a new VI and build the panel shown above.

You create the VISA Resource Name control from the I/O subpalette.
The Waveform Type text ring (Ring & Enum subpalette) has the
following settings:

0 = Sine

1 = Square

2 = Noisy Sine

3 = Random

4 = Chirp

You enter these values into the text ring control one at a time with the
Labeling tool. Type the first entry into the text ring. Right-click on the
ring control, select Add Item After from the shortcut menu, and type
the second entry into the ring control.

Lesson 9 Instrument Control

© National Instruments Corporation 9-29 LabVIEW Basics I Course Manual

Block Diagram

1. Open and build the diagram shown above using the following
components:

Array constant (Array subpalette). This constant is used to build the
command string for the NI Instrument Simulator. Each of the five
waveform types is represented by an element in this array.

String constant (String subpalette). You will need three of these string
constants. The first one goes inside the array constant; resize the array
constant to show five elements and use the Labeling tool to enter the five
string elements as shown above. The second and third string constants
are used to build the command string for the NI Instrument Simulator.

Index Array function (Array subpalette). This function extracts the
string array element that matches the choice made with the Waveform
Type ring control.

Concatenate Strings function (String subpalette). This function
combines the string fragments into the complete command string for the
NI Instrument Simulator.

VISA Write function (Instrument I/O»VISA subpalette). This function
writes the command string to the NI Instrument Simulator.

Note If you do not have a GPIB card or an NI Instrument Simulator, use (Demo) VISA
Write VI (User Libraries»Basics I Course subpalette) to simulate writing a command
to the instrument.

VISA Read function (Instrument I/O»VISA subpalette). This function
reads the response back from the NI Instrument Simulator. You create
the byte count constant by right-clicking on that input terminal and
selecting Create»Constant.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-30 ni.com

Note If you do not have a GPIB card or an NI Instrument Simulator, use (Demo) VISA
Read VI (User Libraries»Basics I Course subpalette) to simulate reading a string from
the instrument.

Simple Error Handler VI (Time & Dialog subpalette). This VI pops
open a dialog box if an error occurs and displays the error information.

Extract Numbers VI (User Libraries»Basics I Course subpalette). This
VI converts the comma delimited string returned from the NI Instrument
Simulator into an array of numbers which can then be plotted in the
waveform graph.

2. Save this VI as Read VISA Waveform.vi.

3. Return to the front panel, type either devsim or GPIB::2::INSTR into
the Instrument control, and run the VI. You should receive a waveform
from the NI Instrument Simulator that matches the waveform type
requested.

Note If an error is returned from the VISA functions, the most common reason is that
the command string is not formatted correctly. Check the spelling, punctuation, spaces,
and capitalization carefully. Sometimes an instrument will lock up or get into a confused
state if the wrong command string is sent. Reinitialize the instrument by turning the
Power switch off and on again.

4. Run the VI a few times requesting different waveforms each time to see
how the waveform is read from the NI Instrument Simulator. Notice that
it takes a second or so for the instrument to process the information and
send the waveform to your computer.

5. Close this VI when you are finished.

End of Exercise 9-4

Lesson 9 Instrument Control

© National Instruments Corporation 9-31 LabVIEW Basics I Course Manual

G. Serial Port Communication

Introduction and Definitions
Serial communication is a popular means of transmitting data between a
computer and a peripheral device such as a programmable instrument or
even another computer. Serial communication uses a transmitter to send
data, one bit at a time, over a single communication line to a receiver.
You can use this method when data transfer rates are low or you must
transfer data over long distances. Serial communication is popular because
most computers have one or more serial ports, so no extra hardware is
needed other than a cable to connect your instrument to the computer
(or two computers together).

Serial communication requires that you specify four parameters: the baud
rate of the transmission, the number of data bits encoding a character,
the sense of the optional parity bit, and the number of stop bits. Each
transmitted character is packaged in a character frame that consists of a
single start bit followed by the data bits, the optional parity bit, and the stop
bit or bits. A typical character frame encoding the letter “m” is shown here.

Baud rate is a measure of how fast data is moving between instruments that
use serial communication. RS-232 uses only two voltage states, called
MARK and SPACE. In such a two-state coding scheme, the baud rate is
identical to the maximum number of bits of information, including “control”
bits, that are transmitted per second.

RS-232 Instrument

76.6F

RS-232 Cable

Serial Port

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-32 ni.com

MARK is a negative voltage and SPACE is positive; the previous figure
shows how the idealized signal looks on an oscilloscope. The truth table for
RS-232 is:

Signal > +3 V = 0

Signal < –3 V = 1

The output signal level usually swings between +12 V and –12 V. The “dead
area” between +3 V and –3 V is designed to absorb line noise.

A start bit signals the beginning of each character frame. It is a transition
from negative (MARK) to positive (SPACE) voltage; its duration in seconds
is the reciprocal of the baud rate. If the instrument is transmitting at 9600
baud, the duration of the start bit and each subsequent bit will be about
0.104 ms. The entire character frame of eleven bits would be transmitted in
about 1.146 ms.

Data bits are transmitted “upside down and backwards.” That is, inverted
logic is used and the order of transmission is from least significant bit (LSB)
to most significant bit (MSB). To interpret the data bits in a character frame,
you must read from right to left, and read 1 for negative voltage and 0 for
positive voltage. For the figure above, this yields 1101101 (binary) or 6D
(hex). An ASCII conversion table shows that this is the letter “m”.

An optional parity bit follows the data bits in the character frame. The parity
bit, if present, also follows inverted logic (1 for negative voltage and 0 for
positive voltage.) This bit is included as a simple means of error checking.
You specify ahead of time whether the parity of the transmission is to be
even or odd. If the parity is chosen to be odd, the transmitter will then set the
parity bit in such a way as to make an odd number of 1’s among the data bits
and the parity bit. The transmission in the figure above uses odd parity.
There are five 1’s among the data bits, already an odd number, so the parity
bit is set to 0.

The last part of a character frame consists of 1, 1.5, or 2 stop bits. These bits
are always represented by a negative voltage. If no further characters are
transmitted, the line stays in the negative (MARK) condition. The
transmission of the next character frame, if any, is heralded by a start bit of
positive (SPACE) voltage.

Lesson 9 Instrument Control

© National Instruments Corporation 9-33 LabVIEW Basics I Course Manual

How Fast Can I Transmit?
Knowing the structure of a character frame and the meaning of baud rate
as it applies to serial communication, you can calculate the maximum
transmission rate, in characters per second, for a given communication
setting. This rate is just the baud rate divided by the bits per frame. In the
case above, there are a total of eleven bits per character frame. If the
transmission rate is set at 9600 baud, you get 9600/11 = 872 characters per
second. Note that this is the maximum character transmission rate. It may
happen that the hardware on one end or the other of the serial link may not
be able to reach these rates, for whatever reason.

Hardware Overview
There are many different kinds (recommended standards) of serial port
communication. The most common are described below.

RS-232
The RS-232 is a standard developed by the Electronic Industries
Association (EIA) and other interested parties, specifying the serial
interface between Data Terminal Equipment (DTE) and Data
Communications Equipment (DCE). The RS-232 standard includes
electrical signal characteristics (voltage levels), interface mechanical
characteristics (connectors), functional description of interchange circuits
(the function of each electrical signal), and some recipes for common kinds
of terminal-to-modem connections. The most frequently encountered
revision of this standard is called RS-232C. Parts of this standard have been
“adopted” (with various degrees of fidelity) for use in serial
communications between computers and printers, modems, and other
equipment. The serial ports on standard IBM compatible personal
computers follow RS-232.

RS-449, RS-422, RS-423
The RS-449, RS-422, and RS-423 are additional EIA serial communication
standards related to RS-232. RS-449 was issued in 1975 and was supposed
to supersede RS-232, but few manufacturers have embraced the new
standard. RS-449 contains two subspecifications called RS-422 and
RS-423. While RS-232 modulates a signal with respect to a common ground
(called single-ended transmission), RS-422 modulates two signals against
each other (called differential transmission). The RS-232C receiver senses
whether the received signal is sufficiently negative with respect to ground to
be a logical “1,” whereas the RS-422 receiver simply senses which line is
more negative than the other. This makes RS-422 more immune to noise and
interference and more versatile over longer distances. The Macintosh serial
ports follow RS-422, which can be converted to RS-423 by proper wiring of
an external cable. RS-423 can then communicate with most RS-232 devices
over distances of 15 m or so.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-34 ni.com

RS-232 Cabling
Devices that use serial cables for their communication are split into two
categories. These are DCE (Data Communications Equipment) and DTE
(Data Terminal Equipment.) DCE are devices such as your modem, TA
adapter, plotter, etc., while DTE is your computer or terminal. RS-232 serial
ports come in two “sizes,” the D-Type 25-pin connector and the D-Type
9-pin connector. Both of these connectors are male on the back of the PC;
thus, you will require a female connector on your device. Below is a table of
pin connections for the 9-pin and 25-pin D-Type connectors.

This connector is occasionally found on smaller RS-232 lab equipment. It is
compact, yet has enough pins for the “core” set of serial pins (with one pin
extra). Important: The DB-9 pin numbers for transmit and receive (3 and 2)
are opposite of those on the DB-25 connector (2 and 3). Be careful of this
difference when you are determining if a device is DTE or DCE.

Table 9-1. DB-9 Connector and Pinouts

Function Signal PIN DTE DCE

Data TxD

RxD

3

2

Output

Input

Input

Output

Handshake RTS

CTS

DSR

DCD

DTR

7

8

6

1

4

Output

Input

Input

Input

Output

Input

Output

Output

Output

Input

Common Com 5 — —

Other RI 9 Input Output

Lesson 9 Instrument Control

© National Instruments Corporation 9-35 LabVIEW Basics I Course Manual

This is the “standard” RS-232 connector, with enough pins to cover all the
signals specified in the standard. The table shows only the “core” set of pins
that are used for most RS-232 interfaces.

Software Overview
The LabVIEW Instrument I/O»Serial subpalette contains functions and
VIs used for serial port communication and is shown below:

Table 9-2. DB-25 Connector and Pinouts

Function Signal PIN DTE DCE

Data TxD

RxD

2

3

Output

Input

Input

Output

Handshake RTS

CTS

DSR

DCD

DTR

4

5

6

8

20

Output

Input

Input

Input

Output

Input

Output

Output

Output

Input

Common Com 7 — —

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-36 ni.com

You should notice that some of the functions in this subpalette are the VISA
functions you used previously for GPIB communication. The VISA Write
and VISA Read functions will work with any type of instrument
communication and are the same whether you are doing GPIB or serial
communication. However, because serial communication requires you to
configure extra parameters, you must start the serial port communication
with the VISA Configure Serial Port VI.

The VISA Configure Serial Port VI initializes the port identified by VISA
resource name to the specified settings. timeout sets the timeout value for
the serial communication. baud rate, data bits, parity, and flow control
specify those specific serial port parameters. The error in and error out
clusters maintain the error conditions for this VI.

The example above shows how to send the identification query command
*IDN? to the instrument connected to the COM2 serial port. The VISA
Configure Serial Port VI opens communication with COM2 and sets it to
9600 baud, 8 data bits, odd parity, one stop bit, and XON/XOFF software
handshaking. Then the VISA Write function sends the command. The VISA
Read function reads back up to 200 bytes into the read buffer, and the error
condition is checked by the Simple Error Handler VI.

Note The VIs and functions contained in the Instrument I/O»Serial subpalette are also
used for parallel port communication. You just specify the VISA resource name as being
one of the LPT ports. For example, you can use the MAX utility to determine that LPT1
has a VISA resource name of ASRL10::INSTR.

Lesson 9 Instrument Control

© National Instruments Corporation 9-37 LabVIEW Basics I Course Manual

Exercise 9-5 Serial Write & Read.vi
Objective: To build a VI that communicates with an RS-232 device.

You will build a VI that communicates with the NI Instrument Simulator.
To talk to any external device through the serial port, you must know exactly
how that device connects to your serial port, what serial port settings are
supported, and exactly how the string commands and responses are
formatted.

The NI Instrument Simulator
1. Turn off the NI Instrument Simulator and configure it to communicate

through the serial port by setting the switches on the side of the box as
shown below:

This configures the instrument as a serial device with the following
settings:

Handshaking is a means of data flow control. Software handshaking
involves embedding control characters in transmitted data. For example,
XON/XOFF flow control works by enclosing a transmitted message
between the two control characters XON and XOFF. Hardware
handshaking uses voltages on physical wires to control data flow. The
RTS and CTS lines of the RS-232 interface are frequently used for this
purpose. Most lab equipment uses hardware handshaking.

2. Make sure the NI Instrument Simulator is connected to a serial port on
your computer with a serial cable. Note the port number.

baud rate = 9600

data bits = 8

parity = no parity

stop bits = 1

flow control parameters = hardware handshaking

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-38 ni.com

3. Turn on the NI Instrument Simulator and observe that the Power, Ready,
and Listen LEDs are lit. This is an indication that the device is in serial
communication mode.

Front Panel

1. Open a new VI and build the panel shown above.

Block Diagram

1. Open and build the diagram shown above using the following
components:

VISA Configure Serial Port VI (Instrument I/O»Serial subpalette).
This subVI initializes the serial port to the same settings the NI
Instrument Simulator uses. Right-click on each of the input terminals
and select Create»Constant to provide the serial port parameters shown
above.

Lesson 9 Instrument Control

© National Instruments Corporation 9-39 LabVIEW Basics I Course Manual

Line Feed constant (String subpalette). The NI Instrument Simulator
requires a line feed as the end of string character.

Concatenate Strings function (String subpalette). This function
combines the string to write to the serial port with the line feed
termination character.

VISA Write function (Instrument I/O»Serial subpalette). This writes
the command string to the NI Instrument Simulator.

Note If you do not have a serial port or an NI Instrument Simulator, use (Demo) VISA
Write VI (User Libraries»Basics I Course subpalette) to simulate writing a command
to the instrument.

VISA Read function (Instrument I/O»Serial subpalette). This function
reads the response back from the NI Instrument Simulator. You create
the byte count constant by right-clicking on that input terminal and
selecting Create»Constant. You will use two of these functions—one
for the seven-byte header and the second for the data string.

Note If you do not have a serial port or an NI Instrument Simulator, use (Demo) VISA
Read VI (User Libraries»Basics I Course subpalette) to simulate reading a string from
the instrument.

Scan From String function (String subpalette). The NI Instrument
Simulator first sends seven characters back that indicate the size of the
data packet to follow. This function converts the first seven characters
into a number that is then used for the byte count of the second VISA
Read function.

Simple Error Handler VI (Time & Dialog subpalette). This VI pops
open a dialog box if an error occurs and displays the error information.

2. Save this VI as Read VISA Waveform.vi.

3. Return to the front panel and type ASRL1::INSTR into the VISA
resource name control. Type *IDN? into the String to Write control.

4. Run the VI. The NI Instrument Simulator should return its identification
information.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-40 ni.com

5. Try sending other commands to the NI Instrument Simulator. Below are
some commands to try.

Note It can take several seconds for the simulator to generate the waveform data.

6. Close the VI when you are finished.

End of Exercise 9-5

MEAS: DC? Returns a voltage reading

SOUR:FUNC SIN; SENS:DATA? Output sine waveform

SOUR:FUNC SQU; SENS:DATA? Output square waveform

SOUR:FUNC RAND; SENS:DATA? Output random noise waveform

SOUR:FUNC PCH; SENS:DATA? Output chirp waveform

Lesson 9 Instrument Control

© National Instruments Corporation 9-41 LabVIEW Basics I Course Manual

H. Waveform Transfers (Optional)
Many instruments return a waveform as either an ASCII string or a binary
string. Assuming the same waveform, a binary string transfer would be
faster and require less memory than an ASCII string transfer. Binary
encoding requires fewer bytes than ASCII encoding.

ASCII Waveforms
As an example, consider a waveform composed of 1,024 points, each point
having a value between 0 and 255. Using ASCII encoding, you would need
a maximum of 4 bytes to represent each point (a maximum of 3 bytes for the
value of the point and 1 byte for the separator, such as a comma). You would
need a maximum of 4,096 (4 * 1,024) bytes plus any header and trailer bytes
to represent the waveform as an ASCII string. Below is an example of an
ASCII waveform string.

You can use the Extract Numbers VI (User Libraries»Basics I Course
subpalette) to convert an ASCII waveform into a numeric array, as shown
below.

Binary Waveforms Encoded as 1-Byte Integers
The same waveform using binary encoding requires only 1,024 bytes
(1 * 1,024) plus any header and trailer bytes to be represented as a binary
string. Using binary encoding, you need only 1 byte to represent the point,
assuming each point is an unsigned 8-bit integer. Below is an example of a
binary waveform string:

Header
(6 bytes)

Data Point
(up to 4 bytes each)

Trailer
(2 bytes)

CURVE {12,28,63,...1024 points in total...,}CR L

Numeric
Array

ASCII Waveform
String

Extract Numbers.vi
Waveform

Header
(7 bytes)

Data Point
(1 byte each)

Trailer
(3 bytes)

CURVE % {MSB}{LSB} {ÅÅ¤å...1024 bytes in total...} {Chk} CR

Count
(4 bytes)

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-42 ni.com

Converting the binary string to a numeric array is a little more complex. You
must convert the string to an integer array. You can do this by using the
String To Byte Array function (String»String/Array/Path Conversion
subpalette). You must remove all header and trailer information from the
string before you can convert it to an array. Otherwise, this information also
is converted.

Binary Waveforms Encoded as 2-Byte Integers
If each point in the binary waveform string is encoded as a 2-byte integer, it
is easier and much faster to use the Type Cast function (Advanced»Data
Manipulation subpalette). (See the LabVIEW Basics II Course Manual for
further information on type casting.)

For example, consider a GPIB oscilloscope that transfers waveform data in
binary notation. The waveform is composed of 1,024 data points. Each data
point is a 2-byte signed integer. Therefore, the entire waveform is composed
of 2,048 bytes. Assume the waveform has a 4-byte header “DATA” and a
2-byte trailer—a carriage return character followed by a line feed character.
For example,

Numeric Array

Binary Waveform
String (without
header or trailer)

String Waveform

4-byte header 2-byte trailer (carriage return) (line feed)

2 bytes representing the first data point

Memory

DATA«HB1»«LB1» «HB2»«LB2»...«HB1024»«LB1024»«CR»«LF»

from instrument

«LF»«CR»«LB1024»«HB1024»...«LB2»«HB2»«LB1»«HB1»ATAD
GPIB 0

2
4
6

A
A

LB1
LB2

D
T

HB1
HB2

2050
2052

LB1024

LF

HB1024

CR

Lesson 9 Instrument Control

© National Instruments Corporation 9-43 LabVIEW Basics I Course Manual

The following block diagram shows how you can use the Type Cast function
to cast the binary waveform string into an array of 16-bit integers.

You may need to use the Swap Bytes function (Advanced»Data
Manipulation subpalette) to swap the high-order 8 bits and the low-order
8 bits for every element. Remember, the GPIB is an 8-bit bus. It can transfer
only one byte at a time. If the instrument first sends the low byte and then
the high byte, you do not need to use the Swap Bytes function.

In the previous example, you needed to use the Swap Bytes function because
the instrument sent the high-order byte first. Because the high-order byte is
received first, it is placed in a lower memory location than the low-order
byte sent after the high-order byte.

Now you will examine a VI that reads data from the NI Instrument
Simulator in either ASCII or binary format and converts that waveform
string to an array of numbers to be plotted in a graph.

Not needed if the instrument
first sends the low byte and
then the high byte

Memory

0
2
4
6

A
A

LB1
LB2

D
T

HB1
HB2

2050
2052

LB1024

LF

HB1024

CR

Memory

0
2
4
6

D
T

HB1
HB2

A
A

LB1
LB2

2050
2052

HB1024

CR

LB1024

LF

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-44 ni.com

Exercise 9-6 Waveform Example.vi (Optional)
Objective: To graph a waveform that an instrument such as a digital oscilloscope returns as an

ASCII string or a binary string.

For the ASCII waveform string, assume the waveform consists of
128 points. Up to four ASCII characters, separated by commas, represent
each point. A header precedes the data points, as shown below:

CURVE {12,28,63,...128 points in total...,}CR LF

For the binary waveform string, assume that the waveform consists of
128 points. Each point is represented as a 1-byte unsigned integer. A header
precedes the data points, as shown below:

CURVE % {Bin Count MSB}{Bin Count LSB}{åå¤Å...128 bytes in
total...} {Checksum} CR LF

You will examine a VI that converts the waveform to an array of numbers.
The VI then will graph the array. In this exercise, the VI reads the waveform
string from the NI Instrument Simulator or from a previously stored array.

The NI Instrument Simulator
1. Turn off the NI Instrument Simulator and configure it to communicate

through the GPIB by setting the switches on the side of the box as shown
below:

This configures the instrument as a GPIB device with an address of 2.

2. Turn on the NI Instrument Simulator. Notice that just the Power and
Ready LEDs are lit. This means the NI Instrument Simulator is in GPIB
communication mode.

Lesson 9 Instrument Control

© National Instruments Corporation 9-45 LabVIEW Basics I Course Manual

Front Panel

1. Open the Waveform Example VI.

2. The VI already is built for you. The string indicator displays the
waveform string. The indicator # of bytes in string displays the
waveform string length. Data Format specifies either an ASCII
waveform or a binary waveform. Data Source specifies whether the data
is simulated or read from the NI Instrument Simulator via the GPIB.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-46 ni.com

Block Diagram

1. Examine the block diagram.

String Length function (String subpalette). In this exercise, this VI
returns the number of characters in the waveform string.

String Subset function (String subpalette). In this exercise, this function
returns a substring 128 elements long starting from the fifth byte of the
binary waveform string. This excludes the header and trailer bytes from
the binary waveform string.

String to Byte Array function (String»String/Array/Path Conversion
subpalette). In this exercise, this function converts the binary string into
an array of unsigned integers.

Extract Numbers VI (User Libraries»Basics Course subpalette). In
this exercise, this VI extracts numbers from the ASCII waveform string
and puts them in an array. Assume that non-numeric characters, such as
commas, separate numbers in the string.

The VISA Write and VISA Read VIs query the NI Instrument Simulator
for a square wave in either ASCII or one-byte binary format. The Simple
Error Handler VI reports any errors.

Lesson 9 Instrument Control

© National Instruments Corporation 9-47 LabVIEW Basics I Course Manual

2. Return the front panel and run the VI.

3. With the Data Format switch set to ASCII, the ASCII waveform string
is displayed, the values are converted to a numeric array, and the string
length and numeric array are then displayed.

4. Select the Binary option from the Data Format control. Run the VI
again. The binary waveform string and string length are displayed, and
the string is converted to a numeric array and displayed in the graph.

5. Notice that the binary waveform is similar to the ASCII waveform;
however, the number of bytes in the string is significantly lower. It is
more efficient to transfer waveforms as binary strings rather than ASCII
strings, because binary encoding requires fewer bytes to transfer the
same information.

6. Close the VI. Do not save any changes.

End of Exercise 9-6

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-48 ni.com

Exercise 9-7 (Optional)
Objective: To build a VI that reads a 2-byte binary waveform string from a GPIB instrument and

plots the data in a graph.
For this exercise, assume that you are acquiring a waveform from a GPIB
digitizing oscilloscope. The oscilloscope sends the waveform data in binary
notation. The waveform is composed of 128 data points. Each data point
is a 2-byte signed integer (type I16). Therefore, the entire waveform is
composed of 256 bytes. The waveform has a 5-byte header and a 1-byte
trailer, a line feed character. For example,

Create a VI that acquires a binary waveform string from the NI Instrument
Simulator, casts the data to an array of 16-bit numbers, and plots the array
on a graph.

You can configure the NI Instrument Simulator to output waveform data
encoded as 2-byte integers by first sending it the command “FORM:DATA
INT, 16:” and then querying the Simulator for the waveform by sending it
the command “SENS:DATA?”. The waveform is composed of 128 data
points. Each data point is a 2-byte signed integer. Therefore, the entire
waveform is composed of 256 bytes, excluding the header and trailer bytes.
The waveform contains a 5-byte header and a 1-byte trailer, as shown in the
example above.

After you have finished, name the VI Binary Waveform.vi.

End of Exercise 9-7

5-byte header 1-byte terminating character (line feed)

2 bytes representing the first data point

#3256<MSB 0><LSB 0><MSB 1><LSB 1>...<MSB 127><LSB 127><LF>

Lesson 9 Instrument Control

© National Instruments Corporation 9-49 LabVIEW Basics I Course Manual

Summary, Tips, and Tricks

• LabVIEW can communicate with an instrument that connects to your
computer as long as you know what kind of interface it is and what
cabling is required.

• Use the Measurement & Automation Explorer (MAX) to configure and
test GPIB interface cards, connected instruments, serial ports, and
parallel ports.

• The LabVIEW Instrument Driver library eliminates the need to have
an intimate knowledge of a specific instrument or I/O interface. A
LabVIEW instrument driver is a set of VIs that control a programmable
instrument, where each VI corresponds to an operation such as
configuring, reading from, writing to, or triggering the instrument.

• There are more than 600 instrument drivers in the library. (See the
National Instruments catalog for a list.) If you have an instrument that is
not on the list, you can find a similar instrument on the list and easily
modify its driver. LabVIEW instrument drivers simplify instrument
control and reduce test program development time by eliminating the
need to learn the low-level programming protocol for each instrument.

• Instrument Driver VIs share a common hierarchy and contain a getting
started example for you to test the instrument communication.

• The VISA functions are used for the I/O interface for controlling VXI,
GPIB, RS-232, and other types of instruments.

• Serial communication is a popular means of transmitting data between
a computer and a peripheral device such as a programmable instrument
or even another computer. The LabVIEW Serial library contains
functions used for serial port operations.

• Instruments can transfer data in many different formats. ASCII data can
be easily read, while binary data is more compact and can be in any
format. LabVIEW contains many VIs and functions to convert
waveform data to a usable form.

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-50 ni.com

Additional Exercises
9-8 Use the NI DEVSIM Getting Started VI as you did in Exercise 9-2

to test and examine the NI Instrument Simulator instrument driver as
it communicates in serial mode.

9-9 Open the Voltage Monitor VI you built in Exercise 9-3. Modify the
diagram so that the data is written to a spreadsheet file named
voltage.txt in the following format:

Save the VI as Voltage Data to File.vi.

Lesson 9 Instrument Control

© National Instruments Corporation 9-51 LabVIEW Basics I Course Manual

Notes

Lesson 9 Instrument Control

LabVIEW Basics I Course Manual 9-52 ni.com

Notes

© National Instruments Corporation 10-1 LabVIEW Basics I Course Manual

Lesson 10
VI Customization

Introduction
This lesson introduces several VI Properties and features for customizing
your VIs. You also can customize the LabVIEW environment by making
your own custom subpalettes in the Controls and Functions palettes.

You Will Learn:

A. How to customize the VI panel window.

B. How to create pop-up panels.

C. How to use Key Navigation.

D. How to edit VIs with difficult VI Properties.

E. About customizing palettes.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-2 ni.com

A. Customizing VI Properties
Once you have built an application with LabVIEW, you might want to
customize a VI so that an end user can more easily operate that VI. For
example, you can remove the LabVIEW menus and toolbar so that the user
does not need to worry about options that are unfamiliar or unnecessary for
the operation of the application. You can customize almost every aspect of
the front panel through the VI Properties setting. Access these options by
right-clicking the icon pane in the upper-right corner of the front panel or
block diagram and selecting VI Properties, or by selecting File»VI
Properties. The following window appears:

The VI Properties window contains several categories including General,
Memory Usage, Documentation, Development History, Security,
Window Appearance, Window Size, Execution, and Print Options. You
can examine each category of properties to see what you can customize
about your VI. This section covers only the options for customizing the
panel window.

Lesson 10 VI Customization

© National Instruments Corporation 10-3 LabVIEW Basics I Course Manual

Window Appearance
When you open the VI Properties and select Window Appearance from
the Category menu ring, the following options appear:

These options affect the front panel while the VI is running. By default, the
front panel title is the same as the VI name. To change the string that appears
in the title bar, you can uncheck the option for Same as VI Name and type
a new name for the Window Title.

To customize the panel window appearance, you can either select one of the
predefined styles for the panel window from the radio buttons or create a
custom appearance. A graphical representation of each setting is displayed
on the right side of the option choices:

• Top-Level Application Window—This style window shows the title
bar and menu, hides the scroll bars and toolbar, allows the user to close
the window but does not allow the user to resize the window, uses the
runtime shortcut menus, and shows the front panel when called.

• Dialog—This style window is modal (stays on top of all other
windows), has no menu, scroll bars, or toolbar, has a highlighted
<Return> Boolean, allows the user to close the window but does not
allow the user to resize the window, uses the runtime shortcut menus,
and shows the front panel when called.

• Default—This style window is the same as the window style used in the
development environment of LabVIEW. All options such as scrollbars,
menus, toolbars, etc. are shown.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-4 ni.com

• Custom—This style allows you to select custom window appearance
options based on what you select in the Customize window as shown in
the following figure:

The settings shown above are for the Default style window. To set an option,
click in the checkbox next to that option, and a checkmark appears in the
checkbox beside the selected option. To clear an option, click on the
checkmark next to the option, and the checkmark disappears. You can use
these options to control the user’s ability to interact with the program by
restricting access to LabVIEW and operating system features and forcing
the user to respond to the options the front panel presents. For example, you
can hide the Abort and Continuous Run buttons so that the user cannot
select either one.

Lesson 10 VI Customization

© National Instruments Corporation 10-5 LabVIEW Basics I Course Manual

Window Size
You also can control the sizing of the front panel and front panel objects.
The Window Size category of the VI Properties dialog box contains the
following options:

• Minimum Panel Size—Use this setting to define the minimum size of
the front panel while the VI is running. For example, if you allow the
user to resize the window in the Window Appearance category, the
user cannot resize the front panel smaller than the width and height
defined here.

• Size the Front Panel to the Width and Height of the Entire
Screen—Use this setting when you want the front panel to completely
fill the screen, so the user will not be distracted by other windows in
the background.

• Maintain Proportions of Window for Different Monitor
Resolutions—Use this setting when the development machine has a
different resolution than the run-time machine. For example, you might
develop a VI on a computer set to a monitor resolution of 1024 × 768,
but the VI will be run on a machine set to a resolution of 800 × 600.

• Scale All Objects on Panel as the Window Resizes—Use this setting
when the end user is allowed to resize the front panel while a VI is
running. All the front panel objects automatically resize with respect to
and in proportion to the size of the front panel window. Text is the only
thing that does not resize; the font sizes are fixed.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-6 ni.com

B. Creating Pop-Up Panels
Pop-up panels are a useful technique for creating LabVIEW applications
with a nice user interface. For example, it is not practical or convenient for
one front panel to display every piece of information or data involved with
an entire LabVIEW application. A better way to display data is to have a
series of front panels belonging to various subVIs that open and display
information when a user requests it.

There are two ways to create pop-up panels in LabVIEW. The first method
is to use the VI Properties»Window Appearance options. Both the
Top-Level Application Window and the Dialog styles contain the correct
settings to make a front panel open when called and close afterwards.
However, these options also contain other settings you might not want. The
best thing to do is to set up your VI for each style, run the VI, and see if this
is the window appearance you want. You can use the Custom option to
make pop-up panels by making the following selections from the
Customize window settings:

When you make changes to a VI in the VI Properties settings, these options
affect the VI every time it is used. For example, if you configure a subVI to
open its front panel when called and close afterwards if originally closed in
the VI Properties»Window Appearance settings, the subVI will contain
those options every time it is called from any other VI.

Lesson 10 VI Customization

© National Instruments Corporation 10-7 LabVIEW Basics I Course Manual

SubVI Node Setup
You can use the SubVI Node Setup to make a pop-up panel on a particular
call to a subVI without affecting the other programs that call that subVI.
Right-click the subVI and select SubVI Node Setup to get the following
dialog box:

The options in this dialog box include:

• Open Front Panel when loaded—If selected, the VI front panel pops
open when the VI is loaded into memory as a subVI, or, when the main
VI that calls it is loaded into memory.

• Show Front Panel when called—If selected, the VI front panel pops
open when the VI is executed as a subVI.

• Close afterwards if originally closed—If “Show Front Panel when
called” is also selected, the VI front panel pops open when the VI is
executed as a subVI, and the front panel is closed again after the subVI
execution completes. The panel only closes again if it was previously
closed.

• Suspend when called—If selected, the calling VI execution is
suspended when the subVI is called. This option has the same effect
as setting a breakpoint on the subVI.

Now create a VI that uses a pop-up subVI.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-8 ni.com

Exercise 10-1 Use Pop-Up Graph VI and Pop-Up Graph VI
Objective: To use the VI Properties to make a pop-up subVI.

Build a VI that acquires temperature once every 0.5 s for 10 s. After the
acquisition is complete, the VI pops open a subVI panel that shows the
acquired data in a graph. The front panel remains open until you click on a
button.

Front Panel

1. Open a new VI and build the front panel shown above. The thermometer
displays the current temperature and the number of data values shown.

Block Diagram

1. Build the block diagram shown above.

Lesson 10 VI Customization

© National Instruments Corporation 10-9 LabVIEW Basics I Course Manual

For Loop, available on the Functions»Structures palette—Structures
the VI to repeat 20 measurements. Right-click the N terminal, select
Create»Constant, and enter a value of 20.

Thermometer VI, available in the Select a VI»LV Basics I
directory—Acquires the current temperature value.

Wait Until Next ms Multiple function, available on the Functions»Time
& Dialog palette—Causes the For Loop to execute every 500 ms. Create
the constant by right-clicking the input terminal and selecting
Create»Constant.

Multiply function, available on the Functions»Numeric
palette—Multiplies each element of the index array by 0.5 to scale
the x values to represent the time interval at which the VI takes the
measurements. Create the constant by right-clicking the input terminal
and selecting Create»Constant.

Pop-Up Graph VI, available in the Select a VI»LV Basics I
directory—Plots the temperature data into an XY Graph. Configure this
subVI to pop open when it is called and close afterwards.

2. Save the VI. Name it Use Pop-Up Graph.vi.

3. Configure the subVI to open when called. Double-click the Pop-Up
Graph subVI to open its front panel.

Front Panel

1. Configure the VI so that it automatically displays its front panel.
Right-click the icon pane and select VI Properties from the shortcut
menu, or select File»VI Properties.

2. Click the Categories menu ring and select Window Appearance from
the list.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-10 ni.com

3. Select the Custom style and click the Customize button. Configure the
window appearance as shown below:

4. Save the VI under the same name.

5. Close the Pop-Up Graph front panel. If it is not closed, it will not close
after the subVI finishes running.

6. Run the main VI, Use Pop-Up Graph.

After the VI acquires 10 s of temperature data, the front panel of Pop-Up
Graph pops open and plots the temperature data. Click the DONE button
to return to the calling VI.

7. Change the window appearance settings for the Pop-Up Graph subVI
again. This time, choose the Dialog option. Close and save as Pop-Up
Graph.vi.

8. Run the top-level VI again and see if you notice a difference in the
Pop-Up Graph subVI window appearance.

9. Close all open windows when you are finished.

End of Exercise 10-1

Lesson 10 VI Customization

© National Instruments Corporation 10-11 LabVIEW Basics I Course Manual

C. Key Navigation
While a VI is running, you can press <Tab> to change the key focus from
one control to the next. The key focus is the same as if you had used the
mouse to click a control. While a control has the key focus, you can use the
keyboard to assign the control’s value. If the control is a text or digital
control, the value entered in the control is highlighted when the control has
key focus. Whatever keystrokes you type are directly entered into the
control. If the control is a Boolean, its state is toggled when it is the key
focus and you press the space bar or <Enter>.

All front panel controls also have a Key Navigation option. Use this option
to associate a keystroke with a front panel control. When you perform the
keystroke while the VI is running, LabVIEW acts as if you clicked the
appropriate control. Thus, the associated control becomes the key focus. To
associate a front panel control with a keystroke, select the Key Navigation
option from the control’s Advanced shortcut menu as shown:

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-12 ni.com

The Key Navigation dialog box appears as shown in the following figure.
Select the keystroke you want to assign from the Key Assignment ring
menu.

The Key Navigation dialog box also allows you to define the action of the
<Tab> key while the VI is running. The Key Navigation option is grayed
out for indicators because you cannot enter data into an indicator.

Note The front panel control names that appear in the Current Assignments list
correspond to the owned labels of those controls.

Now build a VI that uses pop-up subVIs and key navigation.

Lesson 10 VI Customization

© National Instruments Corporation 10-13 LabVIEW Basics I Course Manual

Exercise 10-2 Temperature System VI
Objective: To use the properties of a VI and a subVI and the Key Navigation option for front

panel controls.

Build a temperature monitoring system you can use to view three different
subtests on request.

Assume that you require a VI with a user-driven interface. To ensure that the
program executes correctly, hide the Stop button on the toolbar and run the
VI when it opens.

Front Panel

1. Open the Temperature System VI from the Exercises\LV Basics I
directory.

The front panel contains four text buttons. The mechanical action of
each button is set to “Latch.” Assign the Key Navigation options for
each button to the indicated keyboard key, as shown in the following
dialog box.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-14 ni.com

Block Diagram

1. Build the diagram shown above according to the following directions.

Be sure to leave all the FALSE cases empty.

Display Temp VI, available on the Functions»User Libraries»Basics I
Course palette—In this exercise, this VI simulates a temperature
measurement every half-second (500 ms) and plots it on a strip chart.
Open the subVI front panel by double-clicking its icon and examine the
block diagram. Close the front panel before you proceed.

Display and Log Temp VI, available on the Functions»User
Libraries»Basics I Course palette—In this exercise, this VI simulates
a temperature measurement every half-second (500 ms), plots it on a
strip chart, and logs it to a file. Open the subVI front panel by
double-clicking its icon and examine the block diagram. Close the front
panel before you proceed.

Display Logged Temp VI, available on the Functions»User
Libraries»Basics I Course palette—In this exercise, you use this VI to
select a file interactively. The VI then opens the file, reads the logged
data, and displays it on a graph. Open the subVI front panel by
double-clicking its icon and examine the block diagram. Close the front
panel before you proceed.

Wait Until Next ms Multiple function, available on the Functions»Time
& Dialog palette—In this exercise, this function causes the For Loop to
execute every 500 ms (0.5 seconds).

Lesson 10 VI Customization

© National Instruments Corporation 10-15 LabVIEW Basics I Course Manual

2. Configure the Display Temp subVI to pop open its front panel when
called by right-clicking the Display Temp VI icon and selecting SubVI
Node Setup from the shortcut menu. Set the following options in the
SubVI Node Setup dialog box.

3. Repeat Step 2 for the Display and Log Temp subVI and Display Logged
Temp subVI.

4. Save the VI.

5. Return to the front panel and run the VI. Test run all options. Try the key
assignments to display the temperature, display and log the temperature,
and so on.

Note The three subVIs called from the block diagram all have their “RETURN” buttons
assigned to <Return>. Try pressing <Return> to return to the main front panel.

6. Stop the VI.

7. When you are sure everything is in proper working order, configure the
Temperature System VI so that it automatically runs when you open the
VI. Select File»VI Properties. Configure the Execution properties so
that the Run When Opened box is checked as shown below.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-16 ni.com

8. Configure the VI so that none of the buttons is visible in the toolbar
during the VI execution. To hide the options, select Window
Appearance from the VI Properties dialog box and uncheck the Show
Toolbar option in the Customize Window Appearance window.
Disable the menubar as shown below.

9. Save all subVIs and save and close the Temperature System VI.

10. Open the Temperature System VI again. The VI automatically executes
when you load it.

11. Test run the VI again. When you have finished, close the VI.

End of Exercise 10-2

Lesson 10 VI Customization

© National Instruments Corporation 10-17 LabVIEW Basics I Course Manual

D. Editing VIs with Difficult VI Setup Options (Optional)
Sometimes you can select a combination of VI Properties so that it is
difficult to get back into a VI to edit it later. For example, suppose you
selected the Run When Opened option and then disabled all menus and
toolbar options. Or suppose you have the VI close and exit LabVIEW when
it finishes running. You cannot stop the VI without it closing and exiting
LabVIEW. This VI would be very difficult to edit. The function for exiting
LabVIEW is called Quit LabVIEW and is available on the
Functions»Application Control palette.

The Quit LabVIEW function aborts all executing VIs and ends the current
session of LabVIEW. Quit LabVIEW has one input, and if that input is
wired, the end of your LabVIEW session occurs only if that input is TRUE.
If the input is not wired, the end of the session occurs when this node
executes.

The first step in preventing you from making it difficult to edit your own
VIs is for you to save the VI to a new location before you modify the VI
Properties. The easiest way to save a VI to a new location is by selecting
File»Save with Options. The Save with options dialog box appears.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-18 ni.com

If you select the Development Distribution option, the VI is saved to a new
location along with its entire hierarchy. You also can select that the
LabVIEW vi.lib files be included in the save. Once you have saved your
VI to a new location, you can modify the other copy of your VI by changing
the VI Properties. If you remove too many of the options or pick a style that
does not do what you expect, you can always return to this backup VI.

Note If you select the Remove diagrams option, you remove the source code to your
VI. This means you can no longer edit it. Select this option only if you are certain you
will never need to edit the VI again, and make sure that you have saved a backup copy of
the VI, with the diagrams, to a safe place.

If you already saved your development VI with an inconvenient set of VI
Properties, there are other ways to edit the VI. The next exercise addresses
such a situation.

Lesson 10 VI Customization

© National Instruments Corporation 10-19 LabVIEW Basics I Course Manual

Exercise 10-3 Edit Me VI (Optional)
Objective: To edit a VI that has several of its VI Properties changed.

Modify a VI that has been configured to run when opened and then quit
LabVIEW when it ends.

Front Panel

1. Close any open VIs and open the Edit Me VI, available in the
Exercises\LV Basics I directory.

2. The VI is already running when it opens. Notice that the toolbar and
menu bar are disabled along with the shortcut keystrokes that
accompany the menu options, such as the command to abort the VI.
Try several methods of quitting the VI.

3. Press the Start button. After 10 seconds, the VI ends and then quits
LabVIEW.

4. Relaunch LabVIEW and open a New VI. There are a few options you
can try to edit a VI that behaves similarly to the Edit Me VI.

a. If you know that the VI you want to edit has subVIs and not just
LabVIEW functions, you can open one of the subVIs. The VI
Properties will most likely not be set on the subVI. You can then
make a simple modification to the diagram of that subVI that breaks
the Run arrow. Such a modification could involve placing an Add
function on the diagram. Leaving the inputs unwired makes the
subVI have a broken Run arrow. Now you can open the VI you want
to edit. Because its subVI is nonexecutable, the VI that calls it is also
nonexecutable. It will then open in Edit mode and have a broken
Run arrow. Be sure to fix the subVI after you have edited the
calling VI.

b. If the VI you want to edit either does not have subVIs or you do not
know what it contains, you can follow the rest of the steps in this
exercise.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-20 ni.com

5. Open the block diagram of a new VI.

6. Use the Select a VI option to place the Edit Me VI on the diagram of the
new VI. The front panel for the Edit Me VI opens.

7. Notice that although you can get to the block diagram of the Edit Me VI,
you cannot edit it.

8. Go to the Operate menu and select Change to Edit Mode. A dialog box
informs you that the VI is locked.

9. Click the Unlock button. You now can edit the VI. You also can unlock
a VI by accessing the VI Properties and selecting the Security category.

10. Remove the Quit LabVIEW function from the block diagram.

11. Save and close the Edit Me VI. Close the new VI and do not save
changes.

12. Open the Edit Me VI again and test that it has the correct options that
allow you to edit it when it is finished running.

13. Close the Edit Me VI.

End of Exercise 10-3

Lesson 10 VI Customization

© National Instruments Corporation 10-21 LabVIEW Basics I Course Manual

E. Customizing Palettes (Optional)
By editing your Controls and Functions floating palettes, you can
customize the workspace to fit the way you want to work. You can create
your own set of palettes by adding new subpalettes, hiding options, or
moving items from one menu to another.

Adding VIs to user.lib and instr.lib
You can easily modify the Functions palette to add your own library of VIs
and enhance the default view. To add your VIs to the default Functions
palette, simply save your directories, VIs, or libraries inside the user.lib
directory in the LabVIEW directory. When you restart LabVIEW, the User
Libraries subpalette of the Functions palette will contain subpalettes for
each directory, .llb, or .mnu file in user.lib and entries for each file in
user.lib. The Instrument I/O»Instrument Drivers subpalette of the
Functions palette corresponds to instr.lib. You may want to place
instrument drivers in this directory to make them easily accessible from the
palettes.

Note The lvbasics.llb file (User Libraries»Basics I Course) in user.lib
illustrates this feature.

Using the Palettes Editor
With LabVIEW, you can create and select different views. LabVIEW ships
with four predefined views: the basic, the default, the DAQ, and the
T & M (Test & Measurement) view. You can select views from the
Controls/Functions Browser window by clicking on the Options button
shown at left.Options button

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-22 ni.com

You can select any predefined palette set shown below:

In addition to having different palette sets to choose from, you also can
select icon-based palettes or text-based palettes. Click the Format ring to
get the options shown below:

For more control over the layout and contents of the Controls and
Functions palettes, you can use the Palettes Editor to modify the existing
palettes. Access the Palettes Editor by pressing the Edit Palettes button.
When you select this option, you enter the editor, and the Edit Control and
Function Palettes dialog box appears.

Lesson 10 VI Customization

© National Instruments Corporation 10-23 LabVIEW Basics I Course Manual

In the editor, you can delete, customize, or insert objects by right-clicking a
palette or object within a subpalette, as shown in the following figure. You
also can rearrange the contents of palettes by dragging objects to new
locations. To add a new object in a new row or column of a subpalette,
right-click the space at the right edge or bottom of the subpalette. You can
add a palette, move it to a new location, edit the subpalette icon, or rename
the palette using the Palettes Editor. The editor allows you to mix VIs,
functions, and subpalettes within a palette. A palette also can contain VIs
from different locations.

All view and subpalette, or submenu, information can be stored in VI
libraries or .mnu files. Most menu information is stored in the menus
directory in the LabVIEW directory. For more information on how views
and menus work, refer to Help»Contents and Index under Customizing
the Controls and Functions Palettes.

You also can switch to another view by selecting the desired view from the
Palette Set ring. To edit the top-level Controls or Functions palettes or any
other predefined menus, or views, you first must create a new view by
selecting new setup from the Palette Set ring in the Edit Palettes dialog
box. This protects the built-in palettes and ensures that you can experiment
with the palettes without corrupting the default view.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-24 ni.com

To create a palette from scratch or hook in a palette that is not in user.lib,
vi.lib, or instr.lib, you can use the Insert»Submenu option from the
shortcut menu in the Palettes Editor. When you select this option, the Insert
Submenu dialog box appears.

Create a new menu file (.mnu)—Use this option to insert a new, empty
palette. You are then prompted for a name for the palette and a file to contain
it. Add a .mnu extension to the file to indicate than it is a menu, or palette.

Link to an existing menu file (.mnu)—Use this option to create a palette
with entries for all files in the directory. Selecting this option also
recursively creates subpalettes for each subdirectory, VI library, or .mnu
file within the directory. Palettes created by this method automatically
update as you add or remove files from the directories.

Link to a library (.llb)—Use this option to link entries from VI libraries to
the Controls and Functions palettes.

Link to a directory—Use this option to link entries from directories to the
Controls and Functions palettes.

Lesson 10 VI Customization

© National Instruments Corporation 10-25 LabVIEW Basics I Course Manual

Exercise 10-4 (Optional)
Objective: To create a new view and become familiar with customizing and editing the Controls

and Functions palettes.

Create a new view and customize the Functions palette to include the VIs
from the Exercises\LV Basics I directory.

1. Open a new front panel by selecting File»New. (Windows, Sun, and
HP-UX—If you have closed all VIs, select New VI from the initial
LabVIEW dialog box.)

2. Tack down either the Controls or Functions palette and click the
Options button.

3. Click the Edit Palettes button to enable the Palettes Editor.

4. Select new setup from the Palette Set ring in the Edit Palettes dialog
box.

5. Type LabVIEW Course in the Submenu Name dialog box and
click OK.

6. Right-click the Functions palette and select Insert»Submenu.

7. Select the Link to a directory option from the Insert Submenu dialog
box and click OK. A file dialog box displays the contents of the
LabVIEW Course view directory.

8. Select a directory to associate with the submenu (subpalette). Select the
Exercises\LV Basics I directory. A subpalette is created with the
contents of LV Basics I directory. A default icon is associated with
the subpalette.

9. Click the newly created LV Basics I subpalette. Observe the icons of the
VIs in the LV Basics I directory visible in the Basclass VIs
subpalette.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-26 ni.com

10. Delete blank icons and rearrange icons by right-clicking the icons and
selecting the respective operation. The final palette should resemble the
following figure:

11. Close the LV Basics I subpalette.

12. Select Save Changes from the Edit Palettes dialog box.

13. Switch to the block diagram and display the Functions palette by
selecting Window»Show Functions Palette if it is not already
showing. Note the LV Basics I subpalette.

14. Switch between the four predefined views (basic, default, DAQ, and
T & M) and the LabVIEW Course view by choosing them from the
Options»Palette Set Ring control.

15. Switch back to the default view and click the OK button.

End of Exercise 10-4

Lesson 10 VI Customization

© National Instruments Corporation 10-27 LabVIEW Basics I Course Manual

Summary, Tips, and Tricks
• With VI Properties, you can modify VI execution, window, and

documentation characteristics. These modifications include hiding
toolbar buttons, running the VI when loaded, opening front panels when
called, and so on.

• Any execution characteristic of a VI modified using the SubVI Node
Setup dialog box affects only that subVI. Other calls to the same VI are
not affected.

• Any execution characteristic of a VI modified using the VI Properties
dialog box affects every instance of that VI, whether it functions as a
main VI or as a subVI.

• To create a pop-up panel, select the Show Front Panel when Called
and Close Afterwards if Originally Closed options from the VI
Properties»Window Appearance»Customize options or the Sub VI
Node Setup option of a subVI’s shortcut menu.

• The Key Navigation option for front panel controls associates the
control with a keystroke. You can access the Key Navigation menu
through a control’s shortcut Advanced menu.

• To save a VI and its hierarchy to a new location, select File»Save with
Options.

• You can have a VI programmatically exit LabVIEW by using the Quit
LabVIEW function.

• To edit a VI that has its options disabled through the VI Properties, you
can:

– Break or disable one of the VI’s subVIs. The VI automatically opens
in edit mode, because it is nonexecutable with a broken subVI.

– If the VI has no subVIs, place it into the block diagram of a new VI.

• You can edit the Controls and Functions palettes to display any options
you want.

Lesson 10 VI Customization

LabVIEW Basics I Course Manual 10-28 ni.com

Notes

© National Instruments Corporation A-1 LabVIEW Basics I Course Manual

Appendix

This appendix contains the following sections of useful information for
LabVIEW users:

A. Additional Information

B. ASCII Character Code Equivalents Table

C. VI Quick Reference

D. Instructor’s Notes

LabVIEW Basics I Course Manual A-2 ni.com

Appendix

A. Additional Information
This section describes how you can receive more information regarding
LabVIEW, instrument drivers, and other topics related to this course.

National Instruments Technical Support Options
The best way to get technical support and other information about
LabVIEW, test and measurement, instrumentation, and other National
Instruments products and services is the NI Web site at ni.com

The support page for the National Instruments Web site contains links to
application notes, the support knowledgebase, hundreds of examples, and
troubleshooting wizards for all topics discussed in this course and more.

Another excellent place to obtain support while developing various
applications with National Instruments products is the NI Developer Zone
at ni.com/zone

The NI Developer Zone also includes direct links to the instrument driver
network and to Alliance Program member Web pages.

The Alliance Program
The National Instruments Alliance Program joins system integrators,
consultants, and hardware vendors to provide comprehensive service and
expertise to customers. The program ensures qualified, specialized
assistance for application and system development. Information about and
links to many of the Alliance Program members are available from the
National Instruments Web site.

User Support Newsgroups
The National Instruments User Support Newsgroups are a collection of
Usenet newsgroups covering National Instruments products as well as
general fields of science and engineering. You can read, search, and post to
the newsgroups to share solutions and find additional support from other
users. You can access the User Support Newsgroups from the National
Instruments support Web page.

Other National Instruments Training Courses
National Instruments offers several training courses for LabVIEW users.
The courses are listed in the National Instruments catalog and online at
ni.com/custed. These courses will continue the training you received
here and expand it to other areas. You can purchase just the course materials
or sign up for an instructor-led hands-on course by contacting National
Instruments.

Appendix

© National Instruments Corporation A-3 LabVIEW Basics I Course Manual

LabVIEW Publications

LabVIEW Technical Resource (LTR) Newsletter
Subscribe to LabVIEW Technical Resource to discover power tips and
techniques for developing LabVIEW applications. This quarterly
publication offers detailed technical information for novice users as well as
advanced users. In addition, every issue contains a disk of LabVIEW VIs
and utilities that implement methods covered in that issue. To order
LabVIEW Technical Resource, call LTR publishing at (214) 706-0587 or
visit www.ltrpub.com

LabVIEW Books
Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all the
LabVIEW books and links to places to purchase these books. Publisher
information is also included so you can directly contact the publisher for
more information on the contents and ordering information for LabVIEW
and related computer-based measurement and automation books.

The info-labview Listserve
Info-labview is an e-mail group of users from around the world who
discuss LabVIEW issues. The people on this list can answer questions about
building LabVIEW systems for particular applications, where to get
instrument drivers or help with a device, and problems that appear.

Send subscription messages to the info-labview list processor at:

listmanager@pica.army.mil

Send other administrative messages to the info-labview list
maintainer at:

info-labview-REQUEST@pica.army.mil

Post a message to subscribers at:

info-labview@pica.army.mil

You may also want to search the ftp archives at:

ftp://ftp.pica.army.mil/pub/labview/

The archives contain a large set of donated VIs for doing a wide variety of
tasks.

LabVIEW Basics I Course Manual A-4 ni.com

Appendix

B. ASCII Character Code Equivalents Table
The following table contains the hexadecimal, octal, and decimal code
equivalents for ASCII character codes.

Hex Octal Decimal ASCII Hex Octal Decimal ASCII

00 000 0 NUL 20 040 32 SP

01 001 1 SOH 21 041 33 !

02 002 2 STX 22 042 34 "

03 003 3 ETX 23 043 35 #

04 004 4 EOT 24 044 36 $

05 005 5 ENQ 25 045 37 %

06 006 6 ACK 26 046 38 &

07 007 7 BEL 27 047 39 '

08 010 8 BS 28 050 40 (

09 011 9 HT 29 051 41)

0A 012 10 LF 2A 052 42 *

0B 013 11 VT 2B 053 43 +

0C 014 12 FF 2C 054 44 ,

0D 015 13 CR 2D 055 45 -

0E 016 14 SO 2E 056 46 .

0F 017 15 SI 2F 057 47 /

10 020 16 DLE 30 060 48 0

11 021 17 DC1 31 061 49 1

12 022 18 DC2 32 062 50 2

13 023 19 DC3 33 063 51 3

14 024 20 DC4 34 064 52 4

15 025 21 NAK 35 065 53 5

16 026 22 SYN 36 066 54 6

17 027 23 ETB 37 067 55 7

18 030 24 CAN 38 070 56 8

19 031 25 EM 39 071 57 9

Appendix

© National Instruments Corporation A-5 LabVIEW Basics I Course Manual

1A 032 26 SUB 3A 072 58 :

1B 033 27 ESC 3B 073 59 ;

1C 034 28 FS 3C 074 60 <

1D 035 29 GS 3D 075 61 =

1E 036 30 RS 3E 076 62 >

1F 037 31 US 3F 077 63 ?

40 100 64 @ 60 140 96 `

41 101 65 A 61 141 97 a

42 102 66 B 62 142 98 b

43 103 67 C 63 143 99 c

44 104 68 D 64 144 100 d

45 105 69 E 65 145 101 e

46 106 70 F 66 146 102 f

47 107 71 G 67 147 103 g

48 110 72 H 68 150 104 h

49 111 73 I 69 151 105 i

4A 112 74 J 6A 152 106 j

4B 113 75 K 6B 153 107 k

4C 114 76 L 6C 154 108 l

4D 115 77 M 6D 155 109 m

4E 116 78 N 6E 156 110 n

4F 117 79 O 6F 157 111 o

50 120 80 P 70 160 112 p

51 121 81 Q 71 161 113 q

52 122 82 R 72 162 114 r

53 123 83 S 73 163 115 s

54 124 84 T 74 164 116 t

55 125 85 U 75 165 117 u

56 126 86 V 76 166 118 v

Hex Octal Decimal ASCII Hex Octal Decimal ASCII

LabVIEW Basics I Course Manual A-6 ni.com

Appendix

57 127 87 W 77 167 119 w

58 130 88 X 78 170 120 x

59 131 89 Y 79 171 121 y

5A 132 90 Z 7A 172 122 z

5B 133 91 [7B 173 123 {

5C 134 92 \ 7C 174 124 |

5D 135 93] 7D 175 125 }

5E 136 94 ^ 7E 176 126 ~

5F 137 95 _ 7F 177 127 DEL

Hex Octal Decimal ASCII Hex Octal Decimal ASCII

Appendix

© National Instruments Corporation A-7 LabVIEW Basics I Course Manual

C. VI Quick Reference
This section contains a list of the VIs and functions used in the course.

Arrays
Array Max & Min function (Array subpalette). Returns the
maximum and minimum values and their indices in a 1D array.

Array Size function (Array subpalette). Returns the number of
elements in an array.

Array Subset function (Array subpalette). Returns a portion of an
array.

Build Array function (Array subpalette). Concatenates two arrays
or adds extra elements to an array.

Index Array function (Array subpalette). Returns an element of an
array.

Initialize Array function (Array subpalette). Returns an array in
which every element is initialized to a specific value.

Transpose 2D Array function (Array subpalette). Returns the
maximum and minimum values and their indices in a 1D array.

Boolean
Not function (Boolean subpalette). Inverts the current Boolean
value.

Clusters
Bundle function (Cluster subpalette). Creates data necessary for
graphs and multiplot strip charts.

Bundle by Name function (Cluster palette). This function replaces
elements in a cluster by their owned labels.

Unbundle function (Cluster palette). This function disassembles
cluster elements according to the size and order of the elements.

Unbundle by Name function (Cluster palette). This function
disassembles cluster elements by their owned labels.

LabVIEW Basics I Course Manual A-8 ni.com

Appendix

Comparison
Greater? function (Comparison subpalette). Returns a True if the
top input value is greater than the bottom input value.

Greater or Equal to 0? function (Comparison subpalette). Returns
a True if the input value is greater than or equal to zero.

Max & Min function (Comparison subpalette). Outputs the
minimum and the maximum values of two unknown inputs.

Not Equal? function (Comparison subpalette). Compares two
values and outputs a Boolean value indicating True if the two
values are not equal.

Select function (Comparison subpalette). Acts as a Boolean gate.
If the input value is True, the output is the value wired to the top
terminal,; if the input value is False, the output is the value wired to
the bottom terminal.

Data Acquisition
AI Acquire Waveform VI (Data Acquisition»Analog Input
subpalette). Acquires the specified number of samples at the
specified sample rate from one input channel and returns the
acquired data.

AI Acquire Waveforms VI (Data Acquisition»Analog Input
subpalette). Acquires the specified number of samples at the
specified sampling rate from multiple input channels and returns
the acquired data.

AI Sample Channel VI (Data Acquisition»Analog Input
subpalette). Reads an analog input channel and returns the voltage.

AO Generate Waveform VI (Data Acquisition»Analog Output
subpalette). Generates the specified number of samples at the
specified update rate to one output channel.

AO Update Channel VI (Data Acquisition»Analog Output
subpalette). Outputs the specified voltage using an analog output
channel.

(Demo) Read Voltage VI (User Libraries»Basics I Course
subpalette). Simulates taking a reading from analog input
channel 0.

Appendix

© National Instruments Corporation A-9 LabVIEW Basics I Course Manual

Read Voltage VI (User Libraries»Basics I Course subpalette).
Reads the analog input voltage at Channel 0.

Write To Digital Port VI (Data Acquisition»Digital I/O
subpalette). Outputs the specified digital pattern to the specified
digital port.

Dialog
Beep VI (Graphics & Sound»Sound subpalette). Sounds a beep.

One Button Dialog function (Time & Dialog subpalette). Displays
a dialog box.

Simple Error Handler VI (Time & Dialog subpalette). Pops open a
dialog box if an error occurs and reports all of the error
information.

File I/O
Close File function (File subpalette). Closes a file.

Format Into File function (File I/O subpalette). Formats the input
parameters into a string and writes that string to a file.

Open/Create/Replace File VI (File subpalette). Displays an
interactive file dialog box that you use to create a new file or open
an existing one.

Read File function (File subpalette). Reads bytes of data from the
file starting at the current file mark (beginning of the file).

Read From Spreadsheet File VI (File subpalette). Reads data from
a spreadsheet file into an array.

Write File function (File subpalette). Writes data to a file.

Write To Spreadsheet File VI (File subpalette). Writes array data to
a spreadsheet format file that you specify.

Instrument Control
NI DEVSIM Close VI (Instrument I/O»Instrument Drivers»NI
Device Simulator subpalette). Ends the communication between
LabVIEW and the NI Instrument Simulator.

LabVIEW Basics I Course Manual A-10 ni.com

Appendix

NI DEVSIM Initialize VI (Instrument I/O»Instrument
Drivers»NI Device Simulator subpalette). Opens the
communication between LabVIEW and the NI Instrument
Simulator.

NI DEVSIM Measure DC Voltage VI (Instrument
I/O»Instrument Drivers»NI Device Simulator subpalette).
Returns a simulated voltage measurement from the NI Instrument
Simulator.

NI DEVSIM Multimeter Configuration VI (Instrument
I/O»Instrument Drivers»NI Device Simulator subpalette).
Configures the range of voltage measurements that the NI
Instrument Simulator generates. The default is 0.0 to 10.0 V DC.

VISA Configure Serial Port VI (Instrument I/O»Serial
subpalette). Initializes the serial port to the specified settings.

VISA Read function (Instrument I/O»VISA subpalette). Reads
data from the device.

VISA Write function (Instrument I/O»VISA subpalette). Writes
data to the device.

Mathematics
General Polynomial Fit VI (Mathematics»Curve Fitting
subpalette). Returns an array that is a polynomial fit to the input
array.

Mean VI (Mathematics»Probability and Statistics subpalette).
Returns the average of the array values.

Numeric
Add function (Numeric subpalette). Adds two numeric values,
arrays, or clusters.

Compound Arithmetic function (Numeric subpalette). Resizable
function that does arithmetic on several input values at once.

Divide function (Numeric subpalette). Divides the top input by the
bottom input. This function works with values, arrays, or clusters.

Increment function (Numeric subpalette). Adds one to the input
value.

Appendix

© National Instruments Corporation A-11 LabVIEW Basics I Course Manual

Multiply function (Numeric subpalette). Multiplies two numeric
values, arrays, or clusters.

Random Number (0-1) function (Numeric subpalette). Returns a
random number between zero and one.

Round To Nearest function (Numeric subpalette). Rounds the
input function to the nearest whole number.

Sine function (Numeric»Trigonometric subpalette). Returns the
sine of the input value (in radians).

Sine & Cosine function (Numeric»Trigonometric subpalette).
Returns the sine and cosine of the input value (in radians).

Square Root function (Numeric subpalette). Returns the square
root of the input value.

Signal Processing
Sine Pattern VI (Analyze»Signal Processing»Signal Generation
subpalette). Creates an array of values representing a sinusoid
waveform.

Uniform White Noise VI (Analyze»Signal Processing»Signal
Generation subpalette). Creates an array of uniformly distributed
random values of the specified amplitude.

String
Concatenate Strings function (String subpalette). Concatenates
strings into a single output string.

Extract Numbers VI (User Libraries»Basics Course subpalette).
Extracts numbers from a string and puts them in an array. Numbers
in the string are assumed to be in ASCII and separated by a
non-numeric character such as a comma.

Format Into String function (String subpalette). Converts a number
to a string.

Match Pattern function (String subpalette). Returns the matched
string and portions of the string before and after the match.

Number To Fractional String function (String»String/Number
Conversion subpalette). Converts a number (scalar, array, or
cluster) to a string in fractional format.

LabVIEW Basics I Course Manual A-12 ni.com

Appendix

Scan From String function (String subpalette). Converts a string to
a number.

String Length function (String subpalette). Returns the number of
characters in a string.

String Subset function (String subpalette). Returns a portion of a
string.

Timing
Get Date/Time String function (Time & Dialog subpalette).
Returns the current date and time in string format.

Tick Count (ms) function (Time & Dialog subpalette). Returns the
current value of the operating system’s software timer in
milliseconds since the computer was powered on.

Wait Until Next ms Multiple function (Time & Dialog subpalette).
Controls loop timing.

Appendix

© National Instruments Corporation A-13 LabVIEW Basics I Course Manual

D. Instructor’s Notes

1. Each station consists of the following:

2. Copy the files from the disks accompanying this manual as described in
the Self-Paced Use section in the Student Guide and the ReadMe.txt
file on the disks.

3. Test the station by starting LabVIEW and running the LV Station
Test VI from Start»Programs»Station Tests»LV Station Test (see the
customer education resources coordinator for the VI).

4. Launch the Measurement & Automation Explorer to verify that both the
DAQ and GPIB cards are working properly.

5. Verify that the NI DEVSIM instrument driver is installed and that the
NI Instrument Simulator works in both the GPIB and serial modes.

GPIB Board

DAQ MIO Board
Board ID = 1

DAQ Signal
Accessory

Other Items:
a. Cable to connect the DAQ MIO Board to the DAQ Signal Accessory
b. GPIB cable to connect the instrument simulator to the GPIB Board
c. Power supply for the instrument simulator
d. Wires (two per station)
e. Serial cable to connect the instrument simulator to the computer

NI Software—LabVIEW 6i PDS

LabVIEW
Basics I
Course
Manual

NI Instrument
Simulator (addr 2)

NI Instrument Simulator

POW
ER

READY

TALK
LI

STEN

SRQ
ATN

LabVIEW Basics I Course Manual A-14 ni.com

Appendix

Notes

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This information
helps us provide quality products to meet your needs.

Title: LabVIEW Basics I Course Manual

Edition Date: September 2000

Part Number: 320628G-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Date manual was purchased (month/year): __

Thank you for your help.

Name ___

Title __

Company __

Address ___

__

E-mail Address ___

Phone (___)____________________________________ Fax (___) ___________________________________

Mail to: Customer Education Fax to: Customer Education
National Instruments Corporation National Instruments Corporation
11500 North Mopac Expressway 512 683 6837
Austin, Texas 78759-3504

Course Evaluation
Course ___

Location ___

Instructor ___ Date ____________________________________

Student Information (optional)
Name __

Company ___ Phone ___________________________________

Instructor
Please evaluate the instructor by checking the appropriate circle. Unsatisfactory Poor Satisfactory Good Excellent

Instructor’s ability to communicate course concepts ❍ ❍ ❍ ❍ ❍

Instructor’s knowledge of the subject matter ❍ ❍ ❍ ❍ ❍

Instructor’s presentation skills ❍ ❍ ❍ ❍ ❍

Instructor’s sensitivity to class needs ❍ ❍ ❍ ❍ ❍

Instructor’s preparation for the class ❍ ❍ ❍ ❍ ❍

Course
Training facility quality ❍ ❍ ❍ ❍ ❍

Training equipment quality ❍ ❍ ❍ ❍ ❍

Was the hardware set up correctly? ❍ Yes ❍ No

The course length was ❍ Too long ❍ Just right ❍ Too short

The detail of topics covered in the course was ❍ Too much ❍ Just right ❍ Not enough

The course material was clear and easy to follow. ❍ Yes ❍ No ❍ Sometimes

Did the course cover material as advertised? ❍ Yes ❍ No

I had the skills or knowledge I needed to attend this course. ❍ Yes ❍ No If no, how could you have been better

prepared for the course? ___

What were the strong points of the course? __

What topics would you add to the course? ___

What part(s) of the course need to be condensed or removed? __

What needs to be added to the course to make it better? __

Are there others at your company who have training needs? Please list. ____________________________________

Do you have other training needs that we could assist you with? ___

How did you hear about this course? ❍ National Instruments web site ❍ National Instruments Sales Representative

❍ Mailing ❍ Co-worker ❍ Other ___

Customer Education Student Profile
Name __ Title _____________________________________

Company ___ Mail Stop _________________________________

Mailing Address ___

City __________________ State/Province ____________ Country ______________ Zip ______________

Telephone __ Fax ______________________________________

E-Mail ___

Date ___ Event Location _____________________________

Industry and Application Information
Which industry does your company primarily serve? (check only one)

If you are currently a customer of National Instruments, please check the products you use:

Please check the operating system(s) you use:

Please check the bus architecture(s) you use:

What other products are of interest to you:

Tell Us About Your Applications
Number and type (AC, DC, thermocouple, and so on) of signals __

My systems are developed by ❏ In-house staff ❏ System(s) integrator ❏ consultant

System description ___

❏ Automotive ❏ Industrial systems -
factory floor/integrator

❏ Pharmaceutical ❏ Test, measurement,
and instrumentation

❏ Computer ❏ Medical ❏ Aero/avionics ❏ Telecommunications

❏ Consumer products ❏ Military/space ❏ Semiconductor ❏ University/education

❏ Electronics ❏ Paper/pulp ❏ ATE/automated test

❏ Graphics ❏ Petrochemical/plastics ❏ Other ______________

❏ LabVIEW™ ❏ HiQ™ ❏ DAQ ❏ Fieldbus™

❏ LabWindows/CVI™ ❏ ComponentWorks™ ❏ SCXI™ ❏ IMAQ™ Vision

❏ BridgeVIEW™ ❏ VirtualBench™ ❏ GPIB ❏ Serial

❏ Lookout™ ❏ Measure™ ❏ VXI ❏ Motion control

❏ Windows 95 ❏ Windows 3.1 ❏ Mac OS ❏ HP-UX

❏ Windows NT ❏ Sun ❏ Concurrent PowerMax

❏ PC/XT/AT ❏ PCI ❏ Macintosh ❏ DEC

❏ PCMCIA ❏ VME

❏ LabVIEW ❏ HiQ ❏ DAQ ❏ Fieldbus

❏ LabWindows/CVI ❏ ComponentWorks ❏ SCXI ❏ IMAQ Vision

❏ BridgeVIEW ❏ VirtualBench ❏ GPIB ❏ Serial

❏ Lookout ❏ Measure ❏ VXI ❏ Motion control

Which statements best describe your role in the purchase of instrumentation or data acquisition products?

Which statement best describes your function in the company? (check only one)

Please Check Below for Free Product Information
Software Tools

Catalogues and Newsletters

Industry-specific Literature

Product Literature (check up to three)

Additional Literature

Product and company names mentioned herein are trademarks or trade names of their respective companies.
© Copyright 1997, 1999 National Instruments Corporation. All rights reserved. 340812C-01

❏ I set company standards. ❏ I use a PC regularly in my instrumentation system.

❏ I influence product purchases. ❏ I develop virtual instrumentation applications.

❏ I evaluate and recommend software.

❏ Education ❏ Calibration ❏ Government/legal ❏ Production test

❏ Manufacturing/
automation

❏ Engineering
management

❏ Research/R&D/grad
student

❏ Systems integrator/
hardware

❏ Reseller/sales ❏ Purchasing/contracts ❏ Software developer ❏ Software consultant

❏ Service/repair ❏ Student/co-op ❏ Design ❏ Compliance testing

❏ Instrupedia™/Windows (CD) – includes catalogue, software demos, application notes, and more

❏ Software Showcase/Windows and Macintosh (CD) – Demos of entire software line

❏ DAQ Designer™/Windows (3.5 in.) – DAQ system integration tool

❏ Measurement and Automation Catalogue ❏ Automation View™ newsletter

❏ VXI Product Solutions Guide ❏ Third-Party Solution CD

❏ Academic Catalogue ❏ NI News e-mail newsletter

❏ Instrumentation Newsletter™

❏ Aerospace ❏ Semiconductor ❏ Analytical chemistry ❏ Industrial automation

❏ Telecommunications ❏ Vibration/acoustics ❏ Education ❏ Laboratory automation

❏ Automotive ❏ Physiology ❏ Test and measurement

❏ LabWindows/CVI ❏ Analysis ❏ GPIB ❏ PXI™

❏ ComponentWorks ❏ HIQ ❏ GPIB chip kit ❏ IMAQ

❏ TestStand™ ❏ Measure ❏ HS488™ ❏ Customer education

❏ LabVIEW Add-On
Toolkit pack

❏ LabVIEW
productivity study

❏ Virtual instrumentation
software

❏ Computer-based
instruments

❏ BridgeVIEW ❏ DAQ ❏ VXI ❏ SCXI signal
conditioning❏ Lookout ❏ Low-cost DAQ ❏ VME

❏ NI Global Services ❏ LabVIEW Technical Resource Subscription Card

❏ Customer Education Course Schedule

11500 North Mopac Expressway Austin, TX 78759-3504
Tel: 512-794-0100, (800) 433-3488 • Fax: 512-683-9300

info@ni.com • ni.com

