142 LabVIEW: Advanced Programming Techniques

The biggest benefit is gained when the sequence-style state machine is imple-
mented with enumerated-type constants. When enumerated types are used, the code
becomes self-documenting (assuming descriptive state names are used). This allows
someone to see the function of each action at a glance.

3.3.2 EXAMPLE

When writing test automation software there is often a need for configuring a system
for the test. Generally, there are a number of setup procedures that need to be
performed in a defined order. The code diagram in Figure 3.4 shows a test that
performs the setup in the basic coding procedure. This version of the VI performs
all of the steps in order on the code diagram. The code becomes difficult to read
with all of the additional VIs cluttering the diagram. This type of application can
be efficiently coded through the use of the sequence-style state machine.

There are a number of distinct steps shown in the block diagram in Figure 3.4.
These steps can be used to create the states in the state machine. As a general rule,
a state can be defined with a one-sentence action: set up power supply, set system
time, write data to global/local variables, etc. In our example, the following states
can be identified: open instrument communications, configure spectrum analyzer,
configure signal generator, configure power supply, set display attributes and vari-
ables to default settings, and set RF switch settings.

Once the states have been identified, the enumerated control should be created.
The enumerated control is selected from the List & Ring group of the Control pallete.
Each of the above states should be put into the enumerated control. The label on
the case statement will go as wide as the case statement structure.

There are two main factors to consider when creating state names. The first is
readability. The name should be descriptive of the state to execute. This helps
someone to see at a glance what the states do by selecting the Case Statement
selector. The list of all of the states will be shown. The second factor to consider is
diagram clutter or size. If enumerated constants are used to go to the next state, or
are used for other purposes in the code, the size of the constant will show the entire
state name. This can be quite an obstacle when trying to make the code diagram
small and readable. In the end, compromises will need to be made based on the
specific needs of the application.

After the enumerated control has been created, the state machine structure should
be wired. A While loop should be selected from the Function palette and placed on
the diagram with the desired “footprint.” Next, a case structure should be placed
inside the While loop. For our example we will be using the index to control the
state machine. This will require typecasting the index to the enumerated type to
make the Case Selector show the enumerated values. The typecast function can be
found in the Data Manipulation section of the advanced portion of the Function
pallete. The index value is wired to the left portion of the typecast function. The
enumerated control is wired to the middle portion of the function. The output of the
typecast is then wired to the case structure. To ensure no issues with data represen-
tations, either the representation of the enumerated control or the index should be
changed. We prefer to change the index to make sure someone reading the code will

143

State Machines

Ino Joue

(0:ZHI) Aousnbayy jo spun

'€ PNDOH

1s89] buiels

SNie)S 18] Juaung

L) ‘
o) [Gadl) | [0 (geg't) beid doigrezs daig

apnjiidwe fouanbayy
| J.._._.._}m m

g + T

(92006) Aousnbai4 JEIg/ISIUSY 5 |
(ZHIN 1) 8nfeA LppimpuEg 0SPIA [Cora]
(ZHIN €) anjen ypimpueg
(0°0) ute9 soyydweaid 3

0]

(A 0) ebBeyjon

Buiuuny 1sa

Buiuuny 1s91

gsossaippe jpuueyo [fzen]] [61-g1d0] [g1-81d0] [¢-81d9]

[:g1d9]

S9SSaIppe [suueyd

144 LabVIEW: Advanced Programming Techniques

[0, Default ~}
[GPIB: 9 GPIB:5|GPIB: 18]GPIB:. 19|

HP3488 [=
HPEXXXA [
HP8591A [
HP8648A =

error in : error out
i I - |
ol
Il
=

FIGURE 3.5

see what is being done. As the index is a long integer, it will need to be converted
to an unsigned word to match the default representation of the enumerated control.
The Conversion functions are part of the numeric section of the function pallete.

Now that the enumerated control has been wired to the case structure, the
additional states can be added to match the number of states required. With the
structure in place, the code required to perform each state should be placed into the
appropriate case. Any data, such as instrument handles and the error cluster, can be
passed between states using shift registers. The final and possibly most important
step is to take care of the conditional terminal of the While loop. A Boolean constant
can be placed in each state. The Boolean constant can then be wired to the conditional
terminal. Because the While loop will exit only on a false input, the false constant
can be placed in the last state to allow the state machine to exit. If you forget to
wire the false Boolean to the conditional terminal, the default case of the case
statement will execute until the application is exited.

At this point, the state machine is complete. The diagram in Figure 3.5 shows
the resulting code. When compared to the previous diagram, some of the benefits
of state machines become obvious. Additionally, if modifications or additional steps
need to be added, the effort required is minimal. For example, to add an additional
state, the item will have to be added to the enumerated control and to the case
structure. That’s it! As a bonus, all of the inputs available to the other states are now
available to the new state.

3.4 TEST EXECUTIVE-STYLE STATE MACHINE

The test executive-style state machine adds flexibility to the sequence-style state
machine. This state machine makes a decision based on inputs either fed into the
machine from sections of code such as the user interface, or calculated in the state
being executed to decide which state to execute next. This state machine uses an
initialized shift register to provide an input to the case statement. Inside each case,

State Machines 145

T "First State”]

« Inifialize State ~|-=t
error in (no error)
v I .

FIGURE 3.6

the next state to execute is decided on. An example of this state machine is shown
in Figure 3.6.

3.4.1 THE LABVIEW TEMPLATE STANDARD STATE MACHINE

The template state machine provided by LabVIEW is a test executive styled machine.
In order to add one to an application, select “New ...” under the file menu. The state
machine template is listed in the Design Patterns set as shown in Figure 3.7. The
template state machine is shown in Figure 3.8. This stock state machine covers all

Create New Description
E=1 ~ A
Jowl, Blank v
(=[5 From Template
1C3) Tutorial {Getting Started)
|2 Simulated
{E3) Instrument 1f0 {GPIE)
= £ Framewarks
1“53 Top Level Application Using Events
%) SUbMT with Error Handling
15 Single Loop Application
%ia) Dialog Using Events
Jlg Dialog (Base Package) . =Ll
=3 Design Patterns Use this template to build & standard state machine design
User Intetface Event Handler pattern, Each state executes code and determines which
- . state to transition to. Contrast this design pattern with
the user inkerface event pattern, in which code executes
in response ko user ackions, Contrast this design pattern
!g Producer/Cansumer Design Pattern (Events) also with the queued message handler pattern, in which
1‘5 Producer{Consumer Design Pattern (Data) each message handling code can queue zera of more new
JL_E Master[Slawe Design Pattern messages.
[) User
gg Polymorphic V1
I+ Project
[Other Files
v
< >
Add ko project:
ol
< >
0K 1 l Cancel] I Help

FIGURE 3.7

146 LabVIEW: Advanced Programming Techniques
K["Initialize", Default ~ P
This template is for the Standard State Machine design pattern.
Each frame of this case structure executes code for its state and
This shift computes what state to transition to next.
register
stores the States are represented as values of an enumeration. These enumerations are instances
current of a type definition so that states can be quickly added. To edit the
state type definition, right click on an enumeration and select Open Type Def .
Beginning Stal L Next State
- Initialize ~ v 7 » Stop ~/ 2
@ e
FIGURE 3.8
o — z the I?a51c§ but typically Tequires some
Change ko Contral modifications before being used. Key
Change to Indicator features of the template state machine
Find .4
are the use of enumerated types for state
definitions, a delay, and defined initialize
J Auto-Update from Type Def.
Open Type Def, and stop states.
Disconnect fram Type Def, Right clicking on the enumerated
Show ¥ Herarehy. type is shown in Figure 3.9. This shows
Numeric Palgtte » we were in error; the template state
Create 4 . . "
Replacs ; machine isn’t based on type definitions,
Description and Tip. . not enumerated types. As stated above,
Data Operations » editing the type definition for the state
machine will cleanly propagate any
changes in the state list through the state
o e machine. The state machine’s feedback
Disabjelkor: register is also initialized.
Properties The state machine compares the cur-
rent state to “stop.” If the state machine
FIGURE 3.9

is in Stop, the While loop will be fed a
true and exit, otherwise it will keep

going. The next state is determined inside the case structure. It is also possible to
eliminate this comparison and feed a constant Boolean true or false from inside
the case statement. The template implementation is a bit easier to implement as

State Machines 147

opposed to adding and wiring a Boolean to each state. The only disadvantage is
there is an additional comparison every iteration. The state is compared to stop,
and the Boolean result is compared to true. In general, the performance is not going
to be impacted by this.

The 125-ms wait located in the upper right hand corner of the state machine is
there to provide some pacing. There are scenarios where delaying action between
states is needed, such as processing user interface input. In general, we tend to delete
this part of the template machine. If there is a need for particular states to have
delays, put the delays inside the relevant states.

The template state machine implements all the features of a test executive styled
machine that are needed.

3.4.2 WHEN 10 USE A TeST EXECUTIVE-STYLE STATE MACHINE

There are a number of advantages to this style of state machine. The most important
benefit is the ability to perform error handling. In each state, the next state to execute
is determined in the current state. If actions were completed successfully, the state
machine will determine what state to execute next. In the event that problems arise,
the state machine can decide to branch to its exception-handling state. The next
state to execute may be ambiguous; there is no reason for a state machine to execute
one state at a time in a given order. If we wanted that type of operation, a sequence
state machine or a sequence diagram could be used. A test executive state machine
allows for the code to determine the next state to execute given data generated in
the current state. For example, if a test running in the current state determined that
the Device Under Test (DUT) marginally makes spec, then the state machine may
determine that additional tests should be performed. If the DUT passes the specified
test with a considerable margin, the state machine may conclude that additional
testing is not necessary.

The user can make one of the cases perform dedicated exception handling. By
unbundling the status portion of the error cluster, the program can select between
going to the next state to execute or branching off to the Error State. The Error State
should be a state dedicated to handling errors. This state can determine if the error
is recoverable. If the error is recoverable, settings can be modified prior to sending
the state machine back to the appropriate state to retry execution. If the error is not
recoverable, the Error State, in conjunction with the Close State, can perform the
cleanup tasks involved with ending the execution. These tasks can include writing
data to files, closing instrument communications, restoring original settings, etc.
Chapter 6 discusses the implementation of an exception handler in the context of a
state machine.

3.4.3 RECOMMENDED STATES FOR A TEST EXECUTIVE-STYLE
STATE MACHINE

Test executive state machines should always have three states defined: Open, Close,
and Error. The Open state allows for the machine to provide a consistent startup and
initialization point. Initialization is usually necessary for local variables, instrument

148 LabVIEW: Advanced Programming Techniques

communications, and log files. The existence of the Open state allows the state
machine to have a defined location to perform these initialization tasks.

A Close state is required for the opposite reason of that of the Open state. Close
allows for an orderly shutdown of the state machine’s resources. VISA, ActiveX,
TCP, and file refnums should be closed off when the state machine stops using them
so that the resources of the machine are not leaked away.

When this type of state machine is developed using a While loop, only one state
should be able to wire a false value to the conditional terminal — in the case of the
template state machine, only one state in the comparison should end execution of
the state machine. The Close state’s job is to provide the orderly shutdown of the
structure, and should be the only state that can bring down the state machine’s
operation. This will guarantee that any activities that must be done to stop execution
in an orderly way are performed.

The Error state allows for a defined exception-handling mechanism private to
the state machine. This is one of the biggest advantages of the test executive style
over “brain dead” sequence-style machines. At any point, the machine can conclude
that an exception has occurred and branch execution to the exception handling state
to record or resolve problems that have been encountered. A trick of the trade with
this type of state machine is to have the shift register containing the next state use
two elements. This allows for the Error state to identify the previous state and
potentially return to that state if the exception can be resolved.

If the error condition is resolvable, the error state can set the error code to 0 and
the error indication to false. Sometimes it is advantageous to put the error information
into the error string so it can be fed out of the state machine. A good error handler state
may make it impossible to tell an error has occurred from outside the state machine.

The Error state should not be capable of terminating execution of the state
machine; this is the responsibility of the Close state. If your exception-handling code
determines that execution needs to be halted, the Error state should branch the state
machine to the Close state. If necessary, the error state can close off any resources
related to the error so they do not cause an additional error in the close state. This
will allow for the state machine to shut down any resources it can in an orderly
manner before stopping execution.

3.4.4 DETERMINING STATES FOR TEST EXECUTIVE-STYLE
STATE MACHINES

When working with a test executive machine, state names correlate to an action that
the state machine will perform. Each name should be representative of a simple
sentence that describes what the state will do. This is a guideline to maximize the
flexibility of the state machine. Using complex or compound sentences to describe
the activity to perform means that every time the state is executed, all actions must
be performed. For example, a good state description is, “This state sets the voltage
of the power supply.” A short, simple sentence encapsulates what this state is going
to do. The state is very reusable and can be called by other states to perform this
activity. A state that is described with the sentence, “This state sets the power supply
voltage and the signal generator’s output level, and sends an email to the operator

State Machines 149

stating that we have done this activity,” is not going to be productive. If another
state determines that it needs to change the power supply voltage, it might just issue
the command itself because it does not need the other tasks to be performed. Keeping
state purposes short allows for each state to be reused by other states, and will
minimize the amount of code that needs to be written.

3.4.5 EXAMPLE

This example of the state machine will perform the function of calculating a threshold
value measurement. The program will apply an input to a device and measure the
resulting output. The user wants to know what level of input is necessary to obtain
an output in a defined range. Although this is a basic function, it shows the flexibility
of the text executive-style state machine.

The first step should be performed before the mouse is even picked up. In order
to code efficiently, a plan should already be in place for what needs to be done. A
flowchart of the process should be created. This is especially true with coding state
machines. A flowchart will help identify what states need to be created, as well as
how the state machine will need to be wired to go to the appropriate states. A
flowchart of the example is shown in Figure 3.10.

Instrument
Setup
[~ A A
A4
Measure Increase Decrease
Output Input Input

Greater
Than
Max?

Close
State

FIGURE 3.10

150 LabVIEW: Advanced Programming Techniques

Once the test has been laid out, the skeleton of the state machine should be
created. Again, the While loop and case statement need to be placed on the code
diagram. An enumerated control will need to be created with the list of states to be
executed. Based on the tasks identified in the flowchart, the following states are
necessary: Instrument Setup, Measure Output, Compare to Threshold, Increase Input,
Decrease Input, Error, and Close. A better approach is to combine the Increase and
Decrease Input states into a Modify Input state that will change the input based on
the measurement relationship to the desired output. However, this method makes a
better example of state machine program flow and is used for demonstration purposes.

Once the enumerated control is created, an enumerated constant should be made.
Right-clicking on the control and selecting create constant can do this. The Instrument
Setup state should be selected from the enumerated list. This is the initial state to
execute. The user needs to create a shift register on the While loop. The input of the
shift register is the enumerated constant with the Instrument Setup state selected. The
shift register should then be wired from the While loop boundary to the Case Statement
selector. Inside each state an enumerated constant needs to be wired to the output of
the shift register. This tells the state machine which state to execute next. Once the
structure and inputs have been built, the code for each state can be implemented.

The Instrument Setup state is responsible for opening instrument communica-
tions, setting default values for front panel controls, and setting the initial state for
the instruments. One way to implement the different tasks would be to either break
these tasks into individual states or use a sequence-style state machine in the Initialize
state. We prefer the second method. This prevents the main state machine from
becoming too difficult to read. The user will know where to look to find what steps
are being done at the beginning of the test. In addition, the Initialize state becomes
easier to reuse by putting the components in one place.

After initializing the test, the program will measure the output of the device.
The value of the measurement will be passed to the remainder of the application
through a shift register. The program then goes to the next state to compare the
measurement to a threshold value. Actually, a range should be used to prevent the
program from trying to match a specific value with all of the significant digits. Not
using a range can cause problems, especially when comparing an integer value to
a real number. Due to the accuracy of the integer, an exact match cannot always be
reached, which could cause a program to provide unexpected results or run endlessly.

Based on the comparison to the threshold value, the state machine will either
branch to the Increase Input state, Decrease Input state, or the Close state (if a match
is found). Depending on the application, the Increase or Decrease state can modify
the input by a defined value, or by a value determined by how far away from the
threshold the measurement is. The Increase and Decrease states branch back to the
Measure Output state.

Although not mentioned previously, each state where errors can be encountered
should check the status of the error Boolean. If an error has occurred, the state
machine should branch to the Error state. What error handling is performed in this
state is dependent on the application being performed. As a minimum, the Error state
should branch to the Close state in order to close the instrument communications.

State Machines 151

" 1["Compare Measurement” ~p["

«|nstrument Setup~

error in (no error)
Ea.

error out
e B Z_'_]

FIGURE 3.11

Finally, there should be a way to stop execution. You should never assume a
program will complete properly. There should be a way for the program to “time
out.” In this example, the test will only execute up to 1000 iterations of the Measure
Input state. One way to implement this requirement is to do a comparison of the
While loop index. As the Initialize state is only executed once, the state is negligible.
That leaves three states executing per measurement (Measure, Compare, and the
Change). The Measure Output state can compare the loop index to 3000 to verify
the number of times the application has executed. If the index reaches 3000, the
program can either branch to the Close state directly or set an error in the error
cluster. By using the bundling tools, the program can set the error Boolean to “true,”
set a user-defined code, and place a string into the description. The program can
indicate that the test timed out or give some other descriptive error message to let
the user know that the value was never found. Another way to implement this “time
out” is to use shift registers. A shift register can be initialized to zero. Inside the
Measurement state, the program can increment the value from the shift register. This
value can be compared to the desired number of cycles to determine when the
program should terminate execution. Figure 3.11 shows the completed state machine.
The code is also included on the CD accompanying this book.

3.5 CLASSICAL-STYLE STATE MACHINE

The classical state machine is taught to computer programming students, and is the
most generic of state machine styles. Programmers should use this type of state
machine most frequently, and we do not see them often enough in LabVIEW code.
The first step to using the classical state machine is to define the relevant states,
events, and actions. Once the triad of elements is defined, their interactions can be
specified. This concludes the design of the state machine, and coding may begin to
implement the design. This section will conclude with a design of a state machine
for use with an SMTP mail VI collection. This design will be used to implement a
simple mail-sending utility for use with LabVIEW applications.

152 LabVIEW: Advanced Programming Techniques

Step One is to define the states of the machine. States need to be relevant and
in most scenarios should be defined with the word “waiting.” Using “waiting” helps
frame the states correctly. State machines are not proactive; they do not predict
events about to happen. The word “waiting” in the state name appropriately describes
the state’s purpose.

Once the states for the machine are defined, then the events that are to be handled
need to be defined. The events are typically driven by external elements to the state
machine. The states that are defined for the state machine should not be considered
when it comes time to determine what events are going to occur. It will be common
for a state to handle one, maybe two events. Anytime an event other than the one
or two it was designed to handle arrives it becomes an error condition.

3.5.1 WHEN 10 USE A CLASSICAL-STYLE STATE MACHINE

Classical state machines are a good design decision when events that occur are
coming from outside the application itself. User mouse-clicks, messages coming
from a communications port, and .NET event handling are three examples. As these
events may come into the application at any moment, it is necessary to have a
dedicated control structure to process them. LabVIEW 5.0 introduced menu cus-
tomization for LabVIEW applications. Classical style state machines used to be the
best solution for user events. LabVIEW 7 introduced the event handling structure.
The event structure would appear to easily outperform the classical state machine.
The event structure itself is lacking in terms of an error state, but it is easy enough
to add one. Add a hidden error cluster to the front panel, you can trigger an event
by setting the error cluster’s values. The event structure can have a frame dedicated
to handling a set value in the error cluster.

As an example, if a user menu selection would make other menu selections not
meaningful, the state machine, now an event structure, could be used to determine
what menu items need to be disabled, if your file menu had the option for application
logging and a selection to determine the level of logging. Typically, application
logging is defined in “steps”: one step might log everything the application does for
debugging purposes, one level might only track state changes, and one will only log
critical errors. When the user determines that he did not want the application to
generate a log file, then setting the level of logging detail is no longer meaningful.
The event structure handling the menu events would make the determination that
logging detail is not useful and disable the item in the menu.

3.5.2 ExXAMPLE

One of the requirements of this example is to read information from a serial port
searching for either user inputs or information returned from another application or
instrument. This example will receive commands from a user connected through a
serial port on either the same PC or another PC. Based on the command read in
from the serial port, the application will perform a specific task and return the
appropriate data or message. This program could be a simulation for a piece of
equipment connected through serial communications. The VI will return the expected

State Machines 153

inputs, allowing the user to test the code without the instrument being present. The
user can also perform range checking by adjusting what data is returned when the
program requests a measurement.

For this style of state machine the states are fairly obvious. There needs to be an
Initialize state that takes care of the instrument communication and any additional
setup required. The next state is the Input state. This state polls the serial port until
a recognized command is read in. There needs to be at least one state to perform the
application tasks for the matched input. When a command is matched, the state
machine branches to the state developed to handle the task. If more than one state is
necessary, the first state can branch to additional test states until the task is complete.
When the task is completed, the state machine returns to the Input state. Finally, there
needs to be an Error state and a Close state to perform those defined tasks.

The first step is to identify what commands need to be supported. If the purpose
of the test is to do simulation work, only the commands that are going to be used
need to be implemented. Additional commands can always be added when necessary.
For our example, the VI will support the following commands: Identity (ID?),
Measurement (Meas), Status (Status), Configure (Config), and Reset (RST). For our
example, only one state per command will be created.

Once the commands are identified, the state machine can be created. As in the
previous example, the input of the case statement is wired from an initialized shift
register. Inside each state, the next state to execute is wired to the output of the shift
register. This continues until a false Boolean is wired to the conditional terminal of
the While loop.

The most important state in this style of state machine is the Input state. In our
example, the list of commands is wired to a subVI. This subVI reads the serial port
until a match is found in the list. When a match is found, the index of the matched
command is wired out. This index is then wired to an Index Array function. The
other input to this function is an array of enumerated type constants. The list is a
matching list to the command list. The first state to execute for a given command
should be in the array corresponding to the given command. A quick programming
tip: when using this method, the index of the match should be increased by one.
Then in the match array of enumerated constants, the first input should be the Error
state. Because the match pattern function returns a —1 when no match is found, the
index would point to the zero index of the array. This can allow the program to
branch to the Error state if no match is found. Then, each command in order is just
one place above the original array. The code for this state is shown in Figure 3.12.

The VI will continue to cycle through reading the serial port for commands and
executing the selected states until the program is finished executing. There should
be a way to stop the VI from the front panel to allow the VI to close the serial
communications.

In this example, we are simulating an instrument for testing purposes. Using the
Random Number Generator function and setting the upper and lower limits can use
the measurement outputs to perform range checking. The state can be set up to
output invalid data to check the error-handling capabilities of the code as well. This
is a nice application for testing code without having the instrument available.

LabVIEW: Advanced Programming Techniques

154

doys

Kianp) Joug

InQ Jols

¢’ [WNOIH

(10113 oU) Ul JoI®

o}

INO 8ULBU 80IN0SAI YSIA

Wi
LT

pL

1Sy
-~ Snigjs byuod
- 2INSE3|\ R Snjels
-l * sealy i
=2 “I[off call[o T

[{~ Wnejaq ", 21els ndul,

alLBU 80In0SaI YS|A

- 110d [2118S OZ[[eNiu

State Machines 155

This next example will focus on developing a Simple Mail Transfer Protocol
(SMTP) VI. Communications with a mail server are best handled through a state
machine. The possibilities of errors and different responses from the server can make
development of robust code very difficult. A state machine will provide the needed
control mechanism so that responding to the various events that occur during a mail
transfer conversation can be handled completely.

Before we begin the VI development, we need to get an understanding of how
SMTP works. Typically, we learn that protocols containing the word “simple” are
anything but simple. SMTP is not very difficult to work with, but we need to know
the commands and responses that are going to present themselves. SMTP is defined
in Request For Comments (RFC) 811, which is an Internet standard. Basically, each
command we send will cause the server to generate a response. Responses from the
server consist of a three-digit number and text response. We are most concerned
with the first digit, which has a range from two to five.

The server responses that begin with the digit two are positive responses. Basi-
cally, we did something correctly, and the server is allowing us to continue. A
response with a leading three indicates that we performed an accepted action, but
the action is not completed.

Before we can design the state machine, we need to review the order in which
communications should occur and design the states, events, and actions around the
way things happen. When designing state machines of any kind, the simplest route
to take is to thoroughly understand what is supposed to happen and design a set of
states around the sequence of events. Exception handling is fairly easy to add once
the correct combinations are understood.

Figure 3.13 shows the sequence of events we are expecting to happen. First,
we are going to create a TCP connection to the server. The server should respond
with a “220,” indicating that we have successfully connected. Once we are con-
nected, we are going to send the Mail From command. This command identifies
which user is sending the mail. No password or authentication technique is used
by SMTP; all you need is a valid user ID. Servers will respond with a 250 code
indicating that the user is valid and allowed to send mail. Addressing the message
comes next, and this is done with “RCPT TO: <email address>.” Again, the server
should respond with a 250 response code. To fill out the body of the message, the
DATA command is issued which should elicit a 354 response from the server. The
354 command means that the server has accepted our command, but the command
will not be completed until we send the <CRLF>.<CRLF> sequence. We are now
free to send the body of the message, and the server will not send another response
until we send the carriage return line feed combination. Once the <CRLF>.<CRLF>
has been sent, the server will send another 250 response. At this point we are finished
and can issue the QUIT command. Servers respond to QUIT with a 220 response
and then disconnect the line. It is not absolutely necessary to send the QUIT
command; we could just close the connection and the server would handle that just
fine. (See Table 3.1.)

As we can see, our actions only happen when we receive a response from the
server. The likely events we will receive from the server are 220, 250, and 354
responses for “everything is OK.” Codes of 400 and 500 are error conditions and

156

Our Program

TCP Connection

LabVIEW: Advanced Programming Techniques

SMTP Server

\D 220 HELLO

MAIL From <your email>

\ 250 response

Recpt To: <email address>

v

<CRLF>.<CRLF>

FIGURE 3.13

Data /

\D 250 response #3
QuIT M

250 response #2

354 end with <CRLF>.<CRLF>

Email text: <Y/

220 and disconnect

State Machines 157

TABLE 3.1
Event Matrix
200 250 354 >400
State/Event Received Received Received Received TCP Error

Waiting For Waiting For Waiting For Waiting For Waiting For Waiting For

Hello Address/ Hello/ Do Hello/ Do Hello/ QUIT Hello/ QUIT
Send from Nothing Nothing
Waiting For Waiting For Waiting For Waiting For Waiting For Waiting for
Address Address/ Do Data/ Send Address/ Do Address/ Address/
Nothing Recpt Nothing QUIT QUIT
Waiting For Waiting For Waiting Send Waiting For Waiting for Waiting For
Data Data/ Do Body/ Send Data/ Do Data/ QUIT Data/ QUIT
Nothing Data Nothing
Waiting To Waiting To Waiting To Waiting To Waiting To Waiting To
Send Body Send Body/ Send Body/ Quit/ Send Send Body/ Send Body/
Do Nothing Do Nothing Body QUIT QUIT
Waiting To Waiting To Waiting To Waiting To Waiting To Waiting To
Quit Quit/ Do Quit/ QUIT Quit/ QUIT Quit/ QUIT Quit/ QUIT.
Nothing

we need to handle them differently. Several interactions with the server generate
both 250 and 220 response codes, and a state machine will make handling them
very easy. Our action taken from these events will be determined by our current
state. The control code just became much easier to write.

Our event listing will be 220, 250, 354, >400, and TCP Error. These values will
fit nicely into an enumerated type. Five events will make for a fairly simple state
machine matrix. We will need states to handle all of the boxes in the right column
of Figure 3.13. This will allow us to account for all the possible interactions between
our application and the mail server.

Surprisingly, we will need states for only half of the boxes in the right column
of Figure 3.13. When we receive a response code, the action we take will allow us
to skip over the next box in the diagram as a state. We just go to a state where we
are waiting for a response to the last action. The combination of Event Received
and Current state will allow us to determine uniquely the next action we need to
take. This lets us drive a simple case structure to handle the mail conversation,
which is far easier to write than one long chain of SubVIs in which we will have
to account for all the possible combinations. The table summarizes all of the states,
events, and actions.

We have an action called “Do Nothing.” This action literally means “take no
action” and is used in scenarios that are not possible, or where there is no relevant
action we need to perform. One of the state/event pairs, Waiting For Hello and 354
Received, has a Do Nothing response. This is not a possible response from the server.
A response code in the 300 range means that our command was accepted, but we
need to do something to complete the action. TCP connections do not require any

158 LabVIEW: Advanced Programming Techniques

secondary steps on our part, so this is not likely to happen. We will be using an
array for storing the state/event pairs, and something needs to be put into this element
of the array. Do Nothing prevents us from getting into trouble.

You can see from the table that there is a correct path through the state machine
and, hopefully, we will follow the correct path each time we use the SMTP driver.
This will not always be the case, and we have other responses to handle unexpected
or undesirable responses. For the first row of the state table, TCP errors are assumed
to mean that we cannot connect to the mail server, and we should promptly exit the
state machine and SMTP driver. There is very little we can do to establish a
connection that is not responding to our connection request. When we receive our
220 reply code from the connection request, we go to the Waiting for Address state
and send the information on who is sending the e-mail.

The waiting for Address state has an error condition that will cause us to exit.
If the Sending From information is invalid, we will not receive our 250 response
code; instead, we will receive a code with a number exceeding 500. This would
mean that the user name we supplied is not valid and we may not send mail. Again,
there is little we can do from the SMTP driver to correct this problem. We need to
exit and generate an error indicating that we could not send the mail.

Developing the state machine to handle the events and determine actions is
actually very simple. All we need is an internal type to remember the current state,
a case statement to perform the specific actions, and a loop to monitor TCP com-
munications. As LabVIEW is going to remember which number was last input to
the current state, we will need the ability to initialize the state machine every time
we start up. Not initializing the state machine on startup could cause the state
machine to think it is currently in the Wait to Quit state, which would not be suitable
for most e-mail applications.

Figure 3.14 shows the state/action pair matrix we will be using. The matrix is
a two-dimensional array of clusters. Each cluster contains two enumerated types
titled “next state” and “action.” When we receive an event, we reference the element
in this matrix that corresponds to the event and the current state. This element
contains the two needed pieces of information: what do we do and what is the next
state of operation.

To use the matrix we will need to internally track the state of the machine. This
will be done with an input on the front panel. The matrix and current state will not
be wired to connectors, but will basically be used as local variables to the state
machine. We do not want to allow users to randomly change the current state or the
matrix that is used to drive the machine. Hiding the state from external code prevents
programmers from cheating by altering the state variable. This is a defensive pro-
gramming tactic and eliminates the possibility that someone will change the state
at inappropriate times. Cheating is more likely to introduce defects into the code
than to correct problems with the state machine. If there is an issue with the state
machine, then the state machine should be corrected. Workarounds on state machines
are bad programming practices. The real intention of a state machine is to enforce
a strict set of rules of behavior on a code section.

Now that we have defined the matrix, we will write the rest of the VI supporting
the matrix. Input for Current State will be put on the front panel in addition to a

159

State Machines

YL°€ 3NOI4

o w 0Q o] ooy,

WD oL mc_ﬂ_ss_m 3jeIg XN

WD oL mé_ss_m 3jeIS XN

o w 0 o] ooy,

o __w o o] uoyo

WD oL m:_“_ss_w ajeIS XN

BuiyioN og __w 0(0L uoldY

o oL Bugrem|® ereis ixeN

o m 0Q oL uonoy,

o w 0Q oL uonoy

oljeH 404 Bunem| __w alElS XeN

pog puss oL Bunem|t ereis peN

1no) w 0Q 0L uondY,

ejeq Jo4 mc_a_ss_m olB1S IXeN

HnO o1 Buniem| g 1eis XeN

Apog pusg __w 0(01 uonoy

eieq 104 bunem|fs eveis N

ejeq puss __w 0(0L uonoy

fipog puss ol Buem __m o1eIS IXeN

Apog pusg __w 0(0] uonoy

a

BuiyioN o __w 0Q 01 UondY|

Apog puas o] Bunem __m 91eIS XN

Bleq puss __w 0(0L uonoy

Apog puag o] Bunem __m a1eIS XN

BuiyloN og __w 0Q oL uonoy

ejEq Jo4 mc_u_ss_m olelS IXeN

Buiyion o __w 0Q 01 uondy

Apog puas o] Bunem __m aJBIS IXoN

BuyioN o

ejeq 1o Buiep

BuiyioN o

ejeq 104 Buie

__w 0(0L uonoy

£ i wen

__w 0(01 uonoy

i
| oIS DO

o) __w 0Q o[uoioy

ojjeH 104 mc_ﬁ_ss_m 9jeIS IXeN

Oll2H 104 Buiem| 81eIS IXaN

BuyioN og __m 0Q 0L UoHIY/|

i

BuyioN og __w 0Q 0[uono

ojjeH 104 ?_ﬁ_ss_m 9jelS IXeN

wo.4 pusg| __w 0(0] uonoy
_OF

i
ssaippy Jod Buntem| elelS oN
_Of

Buiyo oq| fEL OL uoloy

(esred) 1esay

PaAIBosY 022 __w paIN20Q 1By} JUsAT

o|joH 104 ac_ﬂ_ss__m 9)elS JualINg

XU JUBAT/0}e)S

160 LabVIEW: Advanced Programming Techniques

[Help ! =1 3
EMTF ;I

STATE
HACHINE

SMTP State Machine. VI

This % takes the cument Event that occured, and
retumns the coresponding action that should be
taken bagzed on the curent state.

The rezet boolzan should only be tiggered when
operation first starks up.

The current state cannot be acceszed extemallyl .
EREE vl

FIGURE 3.15

Boolean titled “Reset.” The purpose of the reset Boolean is to inform the state
machine that it is starting and the current internal state should be changed back to
its default. The Boolean should not be used to reset the machine during normal
operation, only at startup. The only output of the state machine is the action to take.
There is no need for external agents to know what the new state of the machine will
be, the current state of the machine, or the previous state. We will not give access
to this information because it is not a good defensive programming practice. What
the state machine looks like to external sections of code is shown in Figure 3.15.

The “innards” of the state machine are simple and shown in Figure 3.16. There
is a case statement that is driven by the current value of the reset input. If this input
is “false,” we index the state/event matrix to get the action to perform and the new
state for the machine. The new state is written into the local Variable for Current
state, and the action is output to the external code. If the reset Boolean is “true,”
then we set the current state to Waiting for Hello and output an action, Do Nothing.
The structure of this VI could not be much simpler; it would be difficult to write
code to handle the SMTP conversation in a manner that would be as robust or easy
to read as this state machine.

Now that we have the driving force of our SMTP sending VI written, it is time
to begin writing the supporting code. The state machine itself is not responsible for
parsing messages on the TCP link, or performing any of the actions it dictates. The
code that is directly calling the state machine will be responsible for this; we have
a slave/master relationship for this code. A division of labor is present; the SMTP
VI performs all the interfaces to the server, and gets its commands from the state

State/Event Matrix | [20iMemm= Next State
Event that Occured o0 —{=3 Action To Do
Reset (False) F Current State

FIGURE 3.16

State Machines 161

machine. This makes readability easier because we know exactly where to look for
problems. If the SMTP VI did not behave correctly, we can validate that the state
machine gave correct instructions. Assuming the state machine gave correct instruc-
tions, the problem is with the SMTP VI.

State machines work well for dealing with protocols such as SMTP. SMTP sends
reply codes back, and the reply codes may be the same for different actions. The
220 reply code is used for both quitting and starting the mail conversation. If you
were not using a state machine to determine what to do when you receive a 220
from the server, “tons” of temporary variables and “spaghetti code” would be needed
instead. The matrix looks much easier to work with. Instead of following code and
tracking variables, you look at the matrix to determine what the code should be doing.

3.6 QUEUED-STYLE STATE MACHINE

As the name suggests, the queued-style state machine works with an input queue.
Prior to entering the state machine, a queue or input buffer is created. As the state
machine executes, the state that has executed is removed from the queue during
execution of the state machine. New states can be added to or removed from the
queue based on what happens during execution. The execution of the queued-style
state machine can complete by executing the close state when the queue is empty.
We recommend always using a Close state as the last element of the queue. This
will enable the program to take care of all communications, VISA sessions, and data
handling. There is a way to combine these methods through the use of the Default
state in the case statement.

There are two ways to implement the queue. The first method is using the
LabVIEW queue functions. The Queue palette can be found in the Synchronization
palette in the Advanced palette of the Function palette (are you lost yet?). [Func-
tions>>Advanced>>Synchronization>>Queue]. The VIs contained in this palette
allow you to create, destroy, add elements, remove elements, etc. For use with the
state machine, the program could create a queue and add the list of elements (states
to execute) prior to the state machine executing. Inside the While loop, the program
could remove one element (state) and wire the state to the case selector of the case
structure. If an error occurs, or there is a need to branch to another section of the
state machine, the appropriate elements can be added to the queue. The addition can
be either to the existing list, or the list could be flushed if it is desired to not continue
with the existing list of states.

The use of the LabVIEW Queue function requires the programmer to either use
text labels for the case structure, or to convert the string labels to corresponding
numeric or enumerated constants. One alternative is to use an array of enumerated
types instead of the Queue function (again, string arrays would work fine). The VI
can place all of the states into an array. Each time the While loop executes, a state
is removed from the array and executed. This method requires the programmer to
remove the array element that has been executed and pass the remaining array
through a shift register back to the beginning of the state machine, as shown in
Figure 3.11.

162 LabVIEW: Advanced Programming Techniques

3.6.1 WHeN 10 Use THE QUEUED-STYLE STATE MACHINE

This style of state machine is very useful when a user interface is used to query the
user for a list of states to execute consecutively. The user interface could ask the
user to select tests from a list of tests to execute. Based on the selected items, the
program can create the list of states (elements) to place in the queue. This queue
can then be used to drive the program execution with no further intervention from
the user. The execution flexibility of the application is greatly enhanced. If the user
decides to perform one task 50 times and a second task once followed by a third
task, the VI can take these inputs and create a list of states for the state machine to
execute. The user will not have to wait until the first task is complete before selecting
a second and third task to execute. The state machine will execute as long as there
are states in the buffer. The options available to the user are only limited by the
user interface.

3.6.2 ExampLe UsING LABVIEW QuEeue FuNcTIONS

This first example will use the built-in LabVIEW Queue function. In this example,
a user interface VI will prompt the user to select which tests need to be executed.
The selected tests will then be built into a list of tests to execute, which will be
added to the test queue. Once the test queue is built, the state machine will execute
the next test to be performed. After each execution, the test that has been executed
will be removed from the queue. This example is not for the faint of heart, but it
shows you how to make your code more flexible and efficient.

The first step is creating the user interface. The example user interface here is
a subVI that shows its front panel when called. The user is prompted to select which
tests to execute. There are checkboxes for the user to select for each test. There are
a number of other methods that work as well, such as using a multiple selection
listbox. The queue can be built in the user interface VI, or the data can be passed
to another VI that builds the queue. We prefer to build the queue in a separate VI
in order to keep the tasks separated for future reuse. In this example, an array of
clusters is built. The cluster has two components: a Boolean value indicating if the
test was selected and an enumerated type constant representing the specific test.
There is an array value for each of the options on the user interface.

The array is wired into the parsing VI that converts the clusters to queue entries.
The array is wired into a For loop in order to go through each array item. There are
two case statements inside the For loop. The first case statement is used to bypass
the inner case statement if the test was not selected (a false value). The second case
statement is a state machine used in the true case to build the queue. If a test is
selected, the VI goes to the state machine and executes the state referenced by the
enumerated type constant from the input. Inside the specific cases the appropriate
state name (in string format) is added to the output array. In some instances multiple
cases may be necessary to complete a given task. In these instances, the cases to
execute are all added to the output array. This is why the string value of the
enumerated type input is not simply added to the queue. Using the state machine
allows a selected input to have different queue inputs. You would be tied to the name

State Machines 163

&
Il False ~pf
!Statezs-l v r EEN _'I_'_est‘
error in 5 1
S e ol B
First Test
Input Array
é’_}"""""""""""""' :* Test
Selected?
[v

FIGURE 3.17

of the enumerated type if the Format into String function was used. When all of the
array items have been sorted, a close state string is added to the end of the array to
allow the main program to close the state machine.

The final stage of the VI is to build the queue with the inputs from the output
string array. The first step is using the Create Queue function to create a named
queue. The queue has a reference ID just like a VISA instrument. The ID is then
passed into a For loop with an output array of strings. Inside the For loop, each
string is put into the queue using the Insert Queue Element VI. When the VI
completes execution, the reference ID is passed back to the main program. The
queue-building VI is shown in Figure 3.17.

Now that the queue is built, the actual test needs to be created. The main VI
should consist of a state machine. The main structure of the state machine should
be a While loop with the case structure inside. Again, each case, except the Close
state, should wire a “true” Boolean to the conditional terminal of the While loop.
The only trick to this implementation is the control of the case statement. In the
beginning of the While loop, the Remove Queue Element VI should be used to get
the next state to execute. Once the state executes, the While loop will return to the
beginning to take the next state from the queue. This will continue until the Close
state is executed and the While loop is stopped. In the Close state, the programmer
should use the Destroy Queue VI to close out the operation.

There is one final trick to this implementation: the wiring of the string input to
the state machine. There are two ways to accomplish this task. The first is to create
the case structure with the string names for each state. One of the states will need
to be made the Default state in order for the VI to be executable. Because there are
no defined inputs for a string, one of the cases is required to be “default.” We would
suggest making the default case an Error state as there should not be any undefined
states in the state machine. If you do not want to use strings for the state machine,
the second option is to convert the strings into enumerated-type constants. The
method required to perform this action is described in Section 3.2.4. The enumerated
constant can then be used to control the state machine. The main diagram is shown
in Figure 3.18.

164 LabVIEW: Advanced Programming Techniques

l["Close” ~b

Input Array
[[E Ry

£iTorin'™ —F—_-_ error out
[T e el E b " - . R— e [

1

]

FIGURE 3.18

3.6.3 ExamprLe UsSING AN INPUT ARRAY

A second version of the queued-style state machine involves using an array of states
to execute instead of the LabVIEW Queue functions. We will use the same example
application to illustrate the interchangeability of the methods. The application can
use the same user interface. This time, instead of creating an array of strings based
on the user inputs, the array of the enumerated types used in the user interface will
be built. This array will then be passed to the main state machine. The programmer
should make sure to add the Close State constant to the end of the array to prevent
an endless loop. As a backup plan, the user should also make the Close state the
default state. This will force the Close state to execute if the array is empty. The VI
to build the state array is shown in Figure 3.19.

At the beginning of the While loop, the first state is taken off of the array of
states by using the Index Array function. This value is then directly wired to the
case structure input. The array is also passed to the end of the While loop. At the
end of the While loop, the state that was executed is removed. Using the Array
Subset function performs the removal. When the state array is wired to this function,
with the index value being set to 1, the first element is removed from the array. This
is continued until the Close state is executed, or until the array is empty. The diagram
of the main VI is shown in Figure 3.20.

3.7 DRAWBACKS TO USING STATE MACHINES

There are very few drawbacks to state machines, and we will go through those
instances here. The first issue we have found with state machines is the difficulty
following program flow. Due to the nature of state machines, the order of execution
can change due to many factors. The code becomes difficult to debug and trace
errors. This is especially true with time-critical applications where execution high-
lighting is not an option. Documentation is crucial for reading and debugging tests
using state machines.

For applications where there are only a couple of tasks that are done sequentially,
a state machine can be overkill. Creating an enumerated control for the case state-
ment, setting up Error and Close states, and creating the necessary shift registers

165

State Machines

0Z°¢ I"NOH
|
] fa =]
N0 Jouie JuaWaInsea| e | ul Joue
u R]
Rewry ndu

B

ASaLisii,

Aeuy indino

B [zpawales
181 -

61°€ IANDI4

4 1ms]

Aely indu)

Juejsuo) Aeuy

166 LabVIEW: Advanced Programming Techniques

can be more work than is necessary. This is the case only in very simple sequences
where there will not be major changes or additions. If there is a possibility of
expanding the functionality of the VI, a state machine should be used. The benefits
and issues of using a state machine should be considered during the architecting
stage of an application.

3.8 RECOMMENDATIONS AND SUGGESTIONS

As is the case with most programming tasks, there are a number of ways to solve
a problem. Although this is true, there are design patterns that can make life easier.
This section will outline some of the design tools and methodologies that we have
found to help implement state machines.

3.8.1 DOCUMENTATION

The programmer should always spend time documenting all code; however, this is
especially true when using state machines. Because the order of the execution
changes, thorough documentation can help when debugging. An additional reason
to document is for when you attempt to reuse the code. If it has been a while since
you wrote the VI, it may take some time to figure out how the code executes and
why some inputs and outputs are there. Some of the code written in LabVIEW
strives to abstract low-level interactions from the higher levels. Good documentation
can help ensure that the programmer does not have to go through the low-level code
to know what is required for the inputs and outputs. Chapter 4 also discusses some
documenting methods available in LabVIEW.

3.8.2 ENSure ProPer SETUP

As state machines can change the order of execution, special care should be taken
to ensure all equipment is in the proper state, all necessary inputs have been wired,
all necessary instruments are open, etc. You should try to make every state a stand-
alone piece of code. If you are taking measurements from a spectrum analyzer, and
the instrument needs to be on a certain screen, you must make sure to set the
instrument to that screen. There is no guarantee that previous states have set the
screen unless the order of execution is set. If there is a chance that a prior state will
not execute, the necessary precautions must be taken to avoid relying on the prior
state to perform the setup.

3.8.3 ErrOR, OPEN, AND CLOSE STATES

When creating a state machine, there are three states that should always be created.
There should be an Error state to handle any errors that occur in the program
execution. If you are not using enumerated types or text labels for the states, you
should make the Error state the first state. This way, when states are added or
removed, the location of the Error state will always remain the same. An additional
benefit to making the Error state the first state is when a Match Pattern function is

State Machines 167

used to select the state to execute. When no match is found a —1 is returned. If the
returned value is incremented, the state machine will go to the Zero state. The Error
state can be as simple as checking and modifying the error cluster and proceeding
to the Close state or to an Error state that can remove certain states and try to recover
remaining portions of the execution. The Close state should take care of closing
instruments, writing data, and completing execution of the state machine. This is
especially important when performing I/O operations. For example, if a serial port
is not closed, the program will return an error until the open ports are taken care
of. The Open State should handle instrument initialization and provide a single entry
point to the state machine.

3.8.4 StATUS OF SHIFT REGISTERS

Most state machines will have a number of shift registers in order to pass data from
one state to another, unless local or global variables are used. National Instruments
suggests that local and global variables be used with caution. Depending on the
purpose of the state machine, care needs to be taken with regard to the initial values
of the shift registers. The first time the state machine runs, any uninitialized shift
registers will be empty. The next time the state machine runs, the uninitialized shift
registers will contain the value from the previous execution. There are times that
this is desirable; however, this can lead to confusing errors that are difficult to track
down when the register is expected to be empty. This method of not initializing
the shift register is an alternative way to make a global variable. When the VI is
called, the last value written to the shift register is the initial value recalled when
it is loaded.

As a rule of thumb, global variables should generally be avoided. In state
machine programming, it is important to make sure the machine is properly initial-
ized at startup. Initializing shift registers is fairly easy to do, but more importantly,
shift register values cannot be changed from other sections of the application. The
biggest problem with global variables is their global scope. When working in team
development environments, global variables should be more or less forbidden. As
we mentioned earlier, a state machine’s internal data should be strictly off-limits to
other sections of the application. Allowing other sections of the application to have
access to a state machine information can reduce its ability to make intelligent
decisions. If the value of the shift register is not known at the time the state machine
is started, it should be quantifiable during the open state — that’s one of the reasons
it’s there.

3.8.5 TYPECASTING AN INDEX TO AN ENUMERATED TYPE

This was mentioned earlier, but this problem can make it difficult to track errors.
When the index is being typecast into an enumerated type, make sure the data types
match. When the case structure is referenced by integers, it can be much more
difficult to identify which state is which. It is far easier for programmers to identify
states with text descriptions than integer numbers. Use type definitions to simplify
the task of tracking the names of states. Type definitions allow for programmers to

168 LabVIEW: Advanced Programming Techniques

modify the state listing during programming and have the changes occur globally
on the state machine.

3.8.6 MAake Sure You HAVE A WAy Ourt

In order for the state machine to complete execution, there will need to be a “false”
Boolean wired to the conditional terminal of the While loop. The programmer needs
to make sure that there is a way for the state machine to exit. It is common to forget
to wire out the false in the Close state which leads to strange results. If there is a
way to get into an endless loop, it will usually happen. There should also be
safeguards in place to ensure any While loops inside the state machine will complete
execution. If there is a While loop waiting for a specific response, there should be
a way to set a timeout for the While loop. This will ensure that the state machine
can be completed in a graceful manner.

It is obvious that the state machine design should include a way to exit the
machine, but there should only be one way out, through the Close state. Having any
state able to exit the machine is a poor programming practice. Arbitrary exit points
will probably introduce defects into the code because proper shutdown activities
may not occur. Quality code takes time and effort to develop. Following strict rules
such as allowing only one state to exit the machine helps programmers write quality
code by enforcing discipline on code structure design.

3.9 PROBLEMS/EXAMPLES

This section gives a set of example applications that can be developed using state
machines. The state machines are used to make intelligent decisions based on inputs
from users, mathematical calculations, or other programming inputs.

3.9.1 THEe BLACKJACK EXAMPLE

To give a fun and practical example of state machines, we will build a VI that
simulates the game of Blackjack. Your mission, if you choose to accept it, is to
design a VI that will show the dealer’s and player’s hands (for added challenge, only
show the dealer’s up card). Allow the player to take a card, stand, or split the cards
(if they are a pair). Finally, show the result of the hand. Indicate if the dealer won,
the player won, there was a push, or there was a blackjack. Obviously, with an
example of this type, there are many possible solutions. We will work through the
solution we used to implement this example. The code is included on the CD included
with this book.

The first step to our solution was to plan out the application structure. After
creating a flowchart of the process, the following states were identified: Initialize,
Deal, User Choice, Hit, Split, Dealer Draw, and Result State. The Initialize state is
where the totals are set to zero and the cards are shuffled. Additionally, the state
sets the display visible attributes for the front panel split pair’s controls to “false.”
The flowchart is shown in Figure 3.21.

State Machines 169

Initialize
Deck and Hands

:

Initial Deal

T1 1
Hit
Hand
A
Hit
My
Decision >
Hit
Decision
On >
Split

A4
A I|

Dealer
Draw

Result

FIGURE 3.21

170 LabVIEW: Advanced Programming Techniques

Array In[Co

[["OTHERS", Defaul -

= Round # down . . : e e

i > Combine

E e arra|:,|| from 0

1 B to element
= ke Z plus all after

i element
Random # between
0 and the array size !

Check iffirst, last, or |
middle number ;

Array Oul

:

FIGURE 3.22

The shuffling was performed by the following method. A subVI takes an input
array of strings (representations of the cards) and picks a card from the array at
random to create a new array. The cards are randomly chosen until all of the cards
are in the new array. The VI is shown in Figure 3.22.

The next state to define is the Deal Cards state. This state takes the deck of cards
(the array passed through shift registers) and passes the deck to the Deal Card VI.
This VI takes the first card off the deck and returns three values. The first is the
string value of the card for front panel display. The second output is the card value.
The final output is the deck of cards after the card that has been used is removed
from the array. This state deals two cards to the dealer and to the player. The sum
of the player’s cards is displayed on the front panel. The dealer’s up card value is
sent to the front panel; however, the total is not displayed.

The User Choice state is where the player can make the decision to stand, hit,
or split. The first step in this state is to evaluate if the user has busted (total over
21) or has blackjack. If the total is blackjack, or the total is over 21 without an ace,
the program will go directly to the Result state. If the player has over 21 including
an ace, 10 is deducted from the player’s total to use the ace as a one. There is
additional code to deal with a split hand if it is active.

The Split state has a few functions in it. The first thing the state does is make
the split displays visible. The next function is to split the hand into two separate
hands. The player can then play the split hand until a bust or stand. At this point,
the hand reverts to the original hand.

The Hit state simply calls the Deal Card VI. The card dealt is added to the
current total. The state will conclude by returning to the User Choice state. The
Dealer Draw state is executed after the player stands on a total. The dealer will draw
cards until the total is 17 or greater. The state concludes by going to the Result state.
The Result state evaluates the player and dealer totals, assigning a string representing
a win, loss, or tie (push). This state exits the state machine. The user must restart
the VI to get a new shuffle and deal.

As can be seen by the code diagram of the VI shown in Figure 3.23, the design
requirements have been met. There are a number of ways to implement this design;
however, this is a “quick and dirty” example that meets the needs. The main lesson

State Machines 171

B "Initial Deal” _ ~}f
Deck
[b ¢ Panmnn
«Initalize *

' Dealer Up Card

.. . S 7]

i : 3

E oo |45 -1

= s SpltHand]

0]

FIGURE 3.23

that should be learned is that by using a state machine, a fairly intricate application
can be developed in a minimal amount of space. In addition, changes to the VI
should be fairly easy due to the use of enumerated types and shift registers. The
programmer has a lot of flexibility.

3.9.2 THE TeST SEQUENCER EXAMPLE

For this example, there is a list of tests that have been created to perform evaluation
on a unit under test. The user wants to be able to select any or all of the tests to run
on the product. In addition, the user may want to run the tests multiple times to
perform overnight or weekend testing. The goal of this example is to create a test
sequencer to meet these requirements.

The first step is to identify the structure of the application that we need to create.
For this problem, the queued state machine seems to be the best fit. This will allow
a list of tests to be generated and run from an initial user interface. With a basic
structure identified, we can create a flowchart to aid in the design of the state
machine. The test application will first call a User Interface subVI to obtain the user-
selected inputs. These inputs will then be converted into a list (array) of states to
execute. For this example each test gets its own state. After each state executes, a
decision will need to be made. After a test executes, the state machine will have to
identify if an error has occurred. If an error was generated in the state that completed
execution, the state machine should branch to an error state; otherwise, the state that
executed should be removed from the list. In order to exit the testing, an Exit state
will need to be placed at the end of the input list of states. In this Exit state, the
code will need to identify if the user selected continuous operation. By “continuous

172 LabVIEW: Advanced Programming Techniques

User
Input

y

Create
Queue

»
N »
A 4

Pull Next
Item From
Queue

Remove Perform
Item From Task
Queue
A

Close

FIGURE 3.24

operation” we mean repeating the tests until a user stops. This option requires the
ability to reset the list of states and a Stop button to allow the user to gracefully
stop the test execution. The flowchart is shown in Figure 3.24.

The first step is to design the user interface. The user interface for this example
will incorporate a multiple select listbox. This has a couple benefits. The first benefit
is the ability to easily modify the list of tests available. The list of available tests
can be passed to the listbox. The multiple select listbox allows the user to select as
many or as few tests as necessary. Finally, the array of selected items in string form

State Machines 173

is available through the Attribute node. The list of tests can then be used to drive
the state machine, or be converted to a list of enumerated constants corresponding
to the state machine. In addition to the multiple select listbox, there will need to be
a Boolean control on the user interface to allow the user to run the tests continuously,
and a Boolean control to complete execution of the subVI. By passing the array of
tests into the User Interface VI and passing the array of selected items out, this
subVI will be reusable.

The next step is to build the state machine. The first action we usually take is
to create the enumerated type definition control. This will allow us to add or remove
items in the enumerated control in one location. The next decision that needs to
be made is what to do in the event there is no match to an existing state. This
could be a result of a state being removed from the state machine, or a mismatch
between the string list of tests to execute and the Boolean names for the states.
There should be a default case created to account for these situations. The default
case could simply be a “pass-through” state, essentially a Do Nothing state. When
dealing with strings, it is important to acknowledge that these types of situations
can occur, and program accordingly. The code diagram of the Test Sequencer VI
is shown in Figure 3.25.

Once the enumerated control is created, the state machine can be built. After
performing an error check, the array of states is passed into a While loop through
a shift register. The conditional terminal of the While loop is indirectly wired to a
Boolean created on the front panel to stop the state machine. This will allow the
program to gracefully stop after the current test completes execution. What we mean
by “indirectly” is that the Boolean for the stop button is wired to an AND gate. The
other input of the AND gate is a Boolean constant that is wired out of each state in
the state machine. This allows the Close state or the Stop button to exit execution.
One important item to note on the code diagram is the sequence structure that is
around the Stop button. This was placed there to ensure the value of the button was
not read until the completion of the current state. If the sequence structure was not
used, the value of the Stop button would have been read before the completion of
the given state. If the user wanted to stop the state machine, and the user pressed
the button, the state machine would finish the current test and perform the next test.
Only after reentering the state machine would the “false” be wired to the conditional
terminal of the While loop.

Inside the While loop, the Index Array function is used to obtain the first state
to execute by wiring a zero to the index input. The output of this function is wired
to the case structure selector. This will now allow you to add the cases with the
Boolean labels.

The Next_State subVI is the most important piece of code in the state machine.
This subVI makes the decision of which state to execute next. The first step in the
code diagram is to check the current state in the queue. This is the state that has
just executed. This value is compared to the error state enumerated constant. If this
is a match, the state machine proceeds to the Close state to exit execution. This is
the method for this application to exit the state machine after an error if no error
handling has been performed. After verifying that the Error state was not the last
state to execute, the error cluster is checked for errors. Any errors found here would

iques

Advanced Programming Techn

LabVIEW

174

N0 Jolid

Bugnoexg doo =<1

uonoy ualng|-jBunnosx3 ejeig Jou3

N EENREEEN

pajosjeg sjsaL
|'unu 03 Juem noA jey; sise) ayj Jajug|

J~ oseq]l

{2 paddoys Ajenuew un
5189} pajajes Jeaday
(=]

uoioYy uaLny

(=]

2)ndex3 0} s}s8|

ST°¢ [NOH

State Machines 175

[([False ~}
+Error State ~

«+Error State ~ States Out
States In [[0Ha2.s S Wy
et 0 L B Tstatus] I%,—._E
error in (no error) error out
155D i W=

FIGURE 3.26

have been created during the test that last executed. If there is an error, the Error
state enumerated constant is wired to the output array. This will allow any error
handling to be performed instead of directly exiting the state machine. If no error
has occurred, the Array Subset function will remove the top state. Wiring a one to
the index of the function performs this action. If there are no more states to execute,
an empty array is passed to the shift register. The next iteration of the state machine
will force the error state (which was made the default state) to execute. The code
diagram for the Next-State VI is shown in Figure 3.26.

The first state in this state machine is the Error state. The Error state in this
example will perform a couple of functions. The Error state can have code used to
perform testing, or clean up functions in the case of an error. This will allow the
user to be able to recover from an error if the testing will still be valid. The second
function is resetting of the states if continuous sequencing is selected. The first step
is to make this case the default case. This will allow this case to execute if the input
array is empty or doesn’t match a state in the state machine. If an error occurred,
the error cluster will cause the remainder of the state array to be passed to the Next
State subVI. If no error occurred, the VI will wire the original array of states to a
Build Array function. The other input of this function is an enumerated constant for
any state in the state machine except the Error state.

You may be asking yourself why any state would be added to the new queue.
The reasoning behind this addition was to allow the sequencer to start back at the
beginning. The Error state is only entered when there is an error or when the queue
is empty. Because the next state VI uses the Array Subset function to obtain the
array of states to be wired to the shift register, the first state in the list is removed.
The reason the Error state constant cannot be used is the first check in the Next_State
subV[1. If the Error state is on the top of the array, the subVI will think that an error
has occurred and has been dealt with. The VI will then proceed to the Close state.

The remainder of the test sequencer is relatively straightforward. Each state
passes the test queue from the input of the state to the output. The error cluster is
used by the test VIs and is then wired to the output of the state. Finally, a “True”
Boolean constant is wired to the output of each state. This is to allow a “False”
Boolean to be wired out of the Close state. The other states have to be wired to
close all of the tunnels. Additional functions can be added to the sequencer such as
a front panel indicator to show what state is currently executing, an indicator to
show the loop number being executed, and even results for each test displayed in

176 LabVIEW: Advanced Programming Techniques

an array on the front panel. The sequencer can be modified to meet the needs of the
application. The test sequencer is a simple (relatively speaking) way to perform test
executive functionality without a lot of overhead.

3.9.3 THe PC CALcUuLATOR EXAMPLE

The goal is to create a VI to perform as the four-function calculator that comes on
most computer desktops. For this example, the higher-level functions will not be
added. Only the add, subtract, multiply, and divide functions will be implemented.
The idea is to use the classical-style state machine to provide the same functionality.

Again, the first step is to identify the form and function of the application. There
needs to be a user interface designed to allow the user to input the appropriate
information. For this example, an input section designed to look like the numeric
keypad section of a keyboard is designed. In addition to the input section, there
needs to be a string indicator to show the inputs and results of the operations. Finally,
a Boolean control can be created to allow a graceful stop for the state machine. The
state machine is controlled via the simulated numeric keypad.

Boolean controls will be used for the keys on our simulated keypad. The Boolean
controls can be arranged in the keypad formation and enclosed in a cluster. The
labels on the keys can be implemented by right-clicking on the control and selecting
“Show Boolean Text.” The text tool can then be used to change the Boolean text to
the key labels. The “True” and “False” values should be changed to the same value.
The text labels should be hidden to complete the display. The buttons should be
“False” as the default case. Finally, the “Mechanical Action” of the buttons will
need to be modified. This can be done by right clicking on the button and selecting
the mechanical action selection. There is a possibility of six different types of
mechanical actions. The default value for a Boolean control is “Switch when
Pressed.” The “Latch when Released” selection should be selected for each of the
buttons. This will allow the button to return to the “False” state after the selection
has been made. The front panel is shown in Figure 3.27.

After the cluster is created, the cluster order needs to be adjusted. Right-clicking
on the border of the cluster and selecting “Cluster Order” can modify the cluster
order. When this option is selected, a box is shown over each cluster item. The box
is made up of two parts: The left side is the current place in the cluster order; the
right side is the original order value. Initially, the values for each item are the same.
The mouse pointer appears like a finger. By clicking the finger on a control, the
value displayed on the top of the window frame is inserted into the left side of the
cluster order box. The controls can be changed in order, or changing the value shown
on the top window frame can change the value of each in any order. When you are
finished modifying the cluster, the “OK” button needs to be pressed. If a mistake
has been made or the changes need to be discarded, the “X” button will reset the
values of the cluster order.

For our example, the numbers from one to nine will be given the cluster order
of zero to eight, respectively. The zero is selected as the ninth input, and the period
is the tenth input. The Divide, Add, Multiply, Subtract, and Equal keys are given
the 11th to the 15th cluster inputs, respectively. Finally, the “Clear” key is given the

State Machines 177

File Edit View Project Operate Tools

Display

[

Cluster

Exit

i
g
5
z

(=3 N S BN Ia)
B EAY E- e

FIGURE 3.27

16th and final cluster position. The order of the buttons is not important as long as
the programmer knows the order of the buttons, as the order is related to the position
in the state machine.

The code diagram consists of a simple state machine. There is no code outside
of the state machine except for the constants wired to the shift registers. Inside the
While loop, the cluster of Boolean values from the control is wired to the Cluster
to Array function. This function creates an array of Boolean values in the same order
as the controls in the cluster. This is the reason the cluster order is important. The
Search 1-D Array function is wired to the output of the Cluster to Array function.
A “True” Boolean constant is wired to the element input of the search 1-D array
function. This will search the array of Boolean values for the first “True” Boolean.
This value indicates which key was pressed.

When the Search 1-D Array function is used, a no match results in a —1 being
returned. We can use this ability to our advantage. If we increment the output of the
Search 1-D Array function, the “no match” case becomes a zero. The output of the
Increment function is wired to the case statement selector. In the zero case, when no
match is found, the values in the shift registers can be passed through to the output
without any other action being taken. This will result in the state machine continually
monitoring the input cluster for a keypress, only performing an action when a button
is pressed. The code diagram of the state machine is shown in Figure 3.28.

For this state machine, there are four shift registers. The first is used for the
display on the front panel. The initial input is an empty string. The resulting value
of the display string is sent to the display after the case structure executes. Inside
the case structure, the inputs decide how to manipulate the string. There will be
more discussion of this function after the remainder of the shift registers are dis-
cussed. The second shift register is a floating-point number used to hold the tem-

178 LabVIEW: Advanced Programming Techniques

Display
iy ;.-.?! = 5L
0.0, . |
5 2
"z Cluster "
[E=ie E z
B
o s & @
FIGURE 3.28

porary data for the calculations. When one of the operators is pressed, the value in
the display is converted to a number and wired to this shift register. At the beginning
of execution, after computing the function, or after a clear, the intermediate value
shift register is set to 0. When the user presses one of the operators, the third shift
register is used to hold the value of the selected operator. After the equal sign is
pressed, the operator shift register is cleared. The final shift register is used to hold
a Boolean constant. The purpose of this constant is to decide whether to append
new inputs to the existing display, or to start a fresh display. For example, when the
user inputs a number and presses the plus key, the current number remains in the
display until a new button is pushed. When the new button is pushed, the display
starts fresh.

The easiest way to make the discussion clearer is to describe the actions per-
formed in the states. As stated earlier, the zero state does no action. This is the state
when nothing is pressed. States 1-11 are the inputs for the numbers and decimal
point. In these states there is a case statement driven by the value in the final shift
register (Boolean constant). If the value is “True,” the value of the input is sent to
the display discarding any previous values in the display. If the value is “False,” the
input key value is appended to the data already in the display. In each of these cases
a “False” is wired to the shift register because the only time the value needs to be
“True” is when the display needs to be cleared.

In states 12 through 15, the display string is converted to a floating-point number.
This number is wired to the temporary data shift register. The string value of the
display is also wired back to the display shift register. A “True” is wired to the
Boolean shift register to force the next input to clear the display. Finally, the value
of the operator selection is wired to the operator shift register in order to be used
when the Equal button is pressed. Speaking of the Equal button, this is the 16th
state. This state has a case structure inside. The case structure selector is wired to
the operator shift register. There are four cases, one for each of the operators. The
display string is converted to a floating-point number, and is wired into the case
structure. The previous input is taken from the shift register and is also wired to the
case structure. Inside each case, the appropriate function is performed on the inputs

State Machines 179

with the result being converted to a string and wired to the display output. The
temporary data shift register and the operator shift register are cleared. The final
step in this case is to wire a “True” to the Boolean shift register to clear the display
when a new input is selected. The final state is for the Clear button. This state clears
all of the shift registers to perform a fresh start.

There are only two other components to this example: the Quit button that is
wired to the conditional terminal of the While loop allowing the user to stop the
application without using the LabVIEW Stop button, and a delay. The delay is needed
to free-up processor time. The user would not be able to input values to the program
if there was no delay because the state machine would run continuously. A delay of
a quarter second is all that is necessary to ensure that the application does not starve
out other processes from using the processor.

BIBLIOGRAPHY

LabVIEW Graphical Programming. Gary W. Johnson, McGraw-Hill, New York, 1997.

G Programming Reference, National Instruments, Austin, TX, 1999.

LabVIEW with Style — A Guide to Better LabVIEW Applications for Experienced LabVIEW
Users. Gary W. Johnson and Meg F. Kay, Formatted for CDROM included with
LabVIEW Graphical Programming, second ed., Austin, TX, January 12, 1997.

4 Application Structure

This chapter provides insight into developing well-structured applications, and will
be particularly helpful for those applications that are relatively large. Several topics
will be discussed that are important to the success of a software project. First, the
various issues that must be considered before development can begin will be looked
at. Then, the role of structure, or framework, of applications and its importance will
be explained. The sections that follow will elaborate on software models, project
administration, and the significance of documentation.

The three-tiered approach will then be presented as a framework for well-
structured applications, stressing the importance of strict partitioning of levels. This
topic will include the main, test, and driver levels of an application. Some of the
features discussed in the book to this point have involved the LabVIEW Project. We
will now take a look at the project and some of its features. The chapter will conclude
with a summary example.

4.1 PLANNING

Complex architectures are not needed when the application being developed is
simple. It is relatively easy to throw together a program in LabVIEW for performing
specific functions on a small scale. But when the application becomes large in size,
several design considerations should be taken into account before coding can begin.
The following issues, among others, need to be considered: flexibility, extensibility,
maintainability, code reuse, and readability.

Flexibility and extensibility impact the ability of an application to adapt to future
needs. The ability to add functionality after the application has been released should
be designed into the code. It is almost inevitable that requirements will change after
the program is released. The architecture of large applications needs to be designed
with the ability to make additions. For example, the end user may demand additional
functionality to meet new requirements. If the application was not designed with
the capacity to evolve, incremental enhancements can prove to be very difficult. The
needs of the user evolve over time, and a well-designed application can easily adapt.

Maintainability of code is necessary for applications so that needed modifications
can be made easily. The concept of allowing for change in functionality holds true
for the ability to maintain and modify code easily. For example, if a power supply
that is being used in the current test setup will not be used in another test rack, you
may need to change to a different model. How easily your code can be modified to

181

182 LabVIEW: Advanced Programming Techniques

reflect this change in the test setup is material. The amount of work involved in the
alteration depends on how the code is structured.

Code reuse is required for cycle-time reduction on future projects. This attribute
is often overlooked because programmers focus on accomplishing the goal of the
current project. The time it takes to complete future projects can be reduced if even
small pieces of the code can be reused. When software is written in a way that it
cannot be reused, efforts are duplicated unnecessarily. Both time and money can be
saved when a project is developed with reuse as a design goal.

The ability of the software to provide abstraction is also significant because it
improves code readability. Not everyone interacting with the program needs the
same level of abstraction. Someone who will use the application, but knows nothing
about programming, does not need or wish to see the low-level data manipulation
of the program. Operators want an easy user interface that will allow them to use
the application for their specific purpose. On the other hand, the person in charge
of writing and maintaining the application needs to see all levels of the program.
Abstraction allows the programmer to conceal subsections of the application from
those who would not benefit from seeing it. Drivers abstract the I/O so it is easier
to understand the test level. The test level abstracts the logic so the main level is
easier to read.

The concepts presented in this chapter are a good starting point for beginning
a project. “Plans are nothing; planning is everything,” is a quote by Dwight D.
Eisenhower that is applicable to software design. Without adequate planning, large
applications are not likely to be successful. Planning provides a roadmap for devel-
opment and helps minimize the occurrence of unexpected events. You can plan with
contingencies depending on the results of the design stages.

Inadequate planning is more likely to result in problems. When designing an
application, detailed knowledge of the system — instruments, software requirements,
feature sets, etc. — plays a significant role in building a successful application.

4.2 PURPOSE OF STRUCTURE

The topics discussed on application structure may be applied to programming lan-
guages other than LabVIEW. Architecture and process are two elements that are
important in all languages. The structure of the program or framework that is used
is important for future additions, modifications, and maintenance. If the correct
process is taken in designing the software system, the application can change as the
needs of the user change. These things should be taken into account in the early
stages of the development process. Systematically approaching the development of
an application means deciding on a process.

The importance of heuristics as discussed by Rechtin and Maier should also be
considered. Several rules of thumb that guide the development process will be
pointed out as the three-tiered approach is described. These are suggestions and
ideas that have been learned through experience.

As is the case in any programming language, the programmer must take the
time to understand the nature of the task at hand and what the purpose of the project
is. By this, we mean the project requirements should be well defined. There should

Application Structure 183

Requirements <:>
<:> Phase Programmer
<l Design <l
<:> Phase Programmer
Test
<l Phase <l

DIAGRAM 4.1

be a clear goal or result for the project. Defining the requirements is one of the first
stages in the development of any application. Some people believe that a big portion
of the project is completed once the detailed requirements are defined and docu-
mented. An example is writing an application to monitor process control. The user
requirements might include the number of items to monitor as well as the frequency
of the sampling. You must decide what instruments will be used, the type of com-
munications (serial, GPIB, etc.), what specific measurements are needed, where the
data will be sent, and who the end users of this application are. These are considered
derived requirements. Together, these are some of the more general items that would
be included in the enumerated list of requirements.

The requirements are key deliverables for a software project. One of the most
common reasons software projects run over budget and beyond due dates involves
not having the requirements defined. There is a tendency to add new features into
the application late in the development cycle. If the requirements keep changing, it
will be difficult to adhere to limited schedules and budgets. You must lock in the
requirements to prevent ‘“feature creep.”

When the requirements are very loosely defined or not defined at all, the end
result has many possibilities. Failing to document the needs of the customer can
prove to be very costly. A lot of time and money will be wasted in making changes
to fit customer needs. It can be avoided if time is spent earlier in the process. If
requirements are not in writing, contract payments may not be made.

The end user of the program plays a key role in development. If the end user
of the program is the person writing the code, the requirements do not have to be
defined as well because that person will know what is needed. When the code is
being written for someone else, they must be consulted at several stages in the
process in addition to the early requirements phase. The saying, “You never really
understand a person until you consider things from his point of view,” holds true
here. (See Diagram 4.1 on user involvement.)

4.3 SOFTWARE MODELS

There are many software models that exist, but only the waterfall model and the
spiral model will be described in this section. These are two common software
models that are widely used in the development process of a software project. They

184 LabVIEW: Advanced Programming Techniques

Requirements

Phase
N
Design
Phase

Code
Phase

Test
Phase

DIAGRAM 4.2

are called “lifecycle models” because they can be applied from the beginning to the
end of the application’s existence. Both models have several variations, but only the
basic models will be presented.

4.3.1 THeE WATERFALL MODEL

The waterfall model has been widely used for some time. It is a classic model that
consists of distinct phases in the project. In its simplest form, the waterfall model
contains the following phases: requirements, design, coding, and testing. The water-
fall model is depicted in Diagram 4.2. The modified versions that are in use some-
times include more than one step in each phase.

Documentation plays an important role in the waterfall model. In its purest form,
the focus is kept on one phase at a time. Each previous phase is thoroughly docu-
mented and approved before proceeding to the next step.

In the requirement phase, the capability and functionality needs are defined in
detail. There are many requirements that have to be outlined, such as hardware
requirements, software requirements, backward and forward compatibility require-
ments, etc. There are also user requirements and requirements that are derived.

The design phase consists of deciding on the structure of the application in
detail. This is the stage where you decide how you will implement the requirements.
It includes developing the design or architecture of the application at a high level,
and performing the description of logic to accomplish the objective. This chapter
focuses mainly on the design phase of the project.

The coding phase includes the actual implementation and software development.
As the name suggests, the actual programming is done in this step. The plans made
in the design phase are stepping stones for programming. When working in a team
environment where several people are involved, good coordination is necessary. The
program can be separated into modules and integrated later.

The testing phase attempts to find and fix all the bugs in the code, and includes
integration. The point of this phase is to determine if the specifications and require-
ments were met as outlined in the earlier stages. The importance of testing is not
always emphasized as much as it should be. No matter how much time is spent on

Application Structure 185

testing, finding all of the faults is very difficult. Some faults are hard to find and
may eventually slip through the cracks. Generally, test plans will be developed to
verify and validate the code’s conformance to requirements.

The waterfall model heavily stresses the importance of the requirements phase
to eliminate or reduce problems early. The requirements must be explicitly outlined
in this model before work can begin on the next phase. Keep in mind that defining
detailed requirements will not always translate into a good application structure.
However, it does bring to attention the important phases that are involved in appli-
cation development. This model is aimed at getting the project completed in one
pass. Returning to a previous phase to make changes using this model can become
costly because one phase is to be completed before the next phase begins.

4.3.2 THE SPIRAL MODEL

The second model is the spiral model, which is essentially an iterative development
process. In this model, software is developed in cycles that include the phases
described previously. Each iteration either fixes something from the previous one,
or adds new features or functionality to the application. The importance that is
stressed in this model is that the significant issues are discovered and fixed early in
the development process. A goal for a deliverable can be defined for each iteration
of the project. The spiral model is depicted in Diagram 4.3.

Each release or version includes going through planning, evaluation of risks,
design and code, and software assessment. Planning consists of establishing the
goals, constraints, and alternatives that are available. The potential issues and alter-
natives are analyzed in the second stage. The design and coding stage involves
implementation of the design where the application is actually developed and tested.
Finally, the application is evaluated during software assessment.

The evaluation of risks related to the project is crucial in the spiral model. You
start with the most important risk and continue through one development cycle,
working to eliminate that risk. The next cycle begins with the next important issue.

Planning Evaluation of Risks

\
/

Software

Assessment Design and Code

DIAGRAM 4.3

186 LabVIEW: Advanced Programming Techniques

Iterations continue until all issues have been resolved, or the requirements for the
finished project have been fulfilled.

The spiral model is based on the concept of incremental development during
each iteration. The highest priority items, consisting of risks or features, are
addressed and implemented first. Then, the project is reevaluated, and the highest
priority item is defined and implemented in the next iteration. The first release of
an application can consist of the first loop, and following versions add new features
as more iterations are made.

The spiral model is best when the requirements are not fully defined and devel-
opment work must begin quickly. Iterative models create an early version of the
application for demonstration purposes and further refinement. If the risks cannot
be identified easily, this model may not work very well.

4.3.3 BLock DIAGRAMS

Using a particular model will not guarantee success, but nevertheless following a
model provides an orderly roadmap for the development process. Following one model
strictly may not be the best course. There should be sufficient flexibility to take the
specific circumstances into consideration. Sometimes it is enough to keep in mind
that there are different phases in the models and adapt them to the current project.

In either model, block diagrams are useful tools that can assist in the design of
the application. When using a top-down design approach, the block diagram, or
hierarchy, helps get the structure defined. It also assists in separating tasks for the
project and developing timelines for completion. In this way the developer can get
the big picture of how the application is laid out and how to progress in the coding
phase. The top-down design is more suitable for large applications where work can
begin on the user interface and main level first. Work can then continue down to
the driver level. In the bottom-up design, the drivers that will be needed for the
program are worked on first. At most, a small team should be responsible for the
architecture of the project. This facilitates management and prevents pulling the
project in various directions.

4.3.4 DescripTioN OF Locic

A large application must be designed before the coding phase can begin. The require-
ments determine what the application must do. The design or architecture determines
how the application will actually do it. The design phase of a project includes
developing the architecture as well as description of logic for the implementation.

The architecture consists of the framework that will be used for the application,
taking code reuse, readability, and flexibility into consideration. This can be done
by creating flow diagrams or designing the VI hierarchy for LabVIEW applications.
The software architecting is followed by definition of the logic that will be used to
perform the actual coding.

In the description of logic, the designer must describe the logic of each VI in
the hierarchy. The description of logic should capture the intention of the VIs and
provide documentation at the same time. This will prevent rework and reduce the

Application Structure 187

time it takes to develop the application. A description should include both the
purposes of the VI and how it will accomplish its objective. The purpose should
simply be one sentence describing what the VI will do. When several sentences are
needed to describe the action of the VI, the code can possibly be broken down into
subVlIs. This will increase readability and maintainability of the code. For example,
“This VI will configure the signal generator for test A,” illustrates the intent of the
VI. When describing how the objective will be accomplished, include what VIs will
be called and why they will be called.

The coding phase will utilize the description of logic for development of the
application. This is followed by the test phase where the code and the description
of logic are validated. A test plan must be used to verify the description of logic.
This is done by developing test cases designed to test different portions of the
description of logic.

4.4 PROJECT ADMINISTRATION

A single programmer project can have its process managed by the programmer.
Management of the development process may not be a big problem in this situation.
However, projects are often worked on by teams composed of several members.
When more than one person works on an assignment, the need for a team leader
arises. Someone has to drive the project and control the direction of its progress.
The whole development process needs management. Decisions must be made on
how and whether to continue to the next phase.

One team member must assume the role of project manager. Without someone
to focus on the overall goal of the project, the goals of the members can become
divergent. When a team works on all phases of the application, the team leader
becomes the lead designer and the one who ensures that the process is moving in
the right direction. When separate teams are working on each phase of the applica-
tion, a project manager is needed to work with all the teams involved. The project
manager has to make sure that the designers, programmers, and testers work together
and are synchronized. Clear roles have to be assigned to the individual members.

Projects have constraints and risks regarding cost, schedule, and performance.
The project manager has to practice techniques to control the risks and constraints.
Scheduling is a crucial aspect of the administration of a project. Some stages have
to be finished before work can begin on the next stage. Goals and milestones have
to be achieved in a timely manner. The project manager works with all who are
involved and is made aware of problems as they arise. Resources can be shifted
where necessary to assist in problem resolution and to meet schedules. Deadlines
are strategic issues that must be dealt with in the appropriate manner. In some cases
it might be preferable to be over budget and on time than to be late but within
budget constraints. In other cases it is better to be late with a high-quality and high-
reliability product.

The administrator should have a good understanding of the complete system. If
the project manager is involved in the early conception and requirements stages,
then this person will have a better grasp of the purpose of the application. Better

188 LabVIEW: Advanced Programming Techniques

decisions can be made on the priorities of the task at hand and how to resolve
conflicts. Information must be acquired, evaluated, interpreted, and communicated
to the group members as necessary.

Software projects are more difficult to manage than other types of projects for
several reasons. It is difficult to make estimates on the project size, schedules, scope,
and resources needed. Software projects can fail due to inaccurate estimates on any
of these aspects. Planning plays a key role in project management.

4.5 DOCUMENTATION

When a software application is being developed, the proper documentation is often
overlooked. Many times, the documentation process will begin only after all the
coding has been completed. This results in insufficient reports on the procedures
followed and the actual code written. When you return to write documentation after
completing the project, you tend to leave out design decisions that are important to
the development. Then, the record keeping becomes more of a chore and fails to
serve its intended purpose.

Good documentation will allow someone not involved in the development to
quickly identify and understand the components of the project. It also provides a
good design history for reference purposes on future software projects. Accounts
should be kept at all of the phases in the development cycle. The requirements
documents are significant because they will guide the rest of the phases. The design
phase documentation serves as a reference for the coding phase.

Documentation during the coding phase, or Description of Logic, is critical.
Major points help understand what the code is supposed to do. Comments that are
included with the code help identify the different segments and the purpose of each
segment. They aid in the maintenance, modification, and testing of the code. Updat-
ing the code becomes easier for someone who was not involved in the development
process. The original programmers may be reallocated, transferred, or may even
leave the company. Then, problems can arise for those who use the program and
have to make modifications.

4.5.1 LABVIEW DOCUMENTATION

LabVIEW has some built-in functions to help in the documentation of code. As with
other programming languages, comments can be included in the appropriate places
with the code. This allows anyone to look at the diagram and get a better under-
standing of the code. When modifications have to be made, the comments can help
identify the different areas in addition to their functionality.

LabVIEW allows the programmer to enter descriptions for front panel controls
and indicators. When Show Help has been activated from the Help menu, simply
place the cursor over the control or indicator to display its description. To enter the
description, pop up on the control and select Data Operations from the menu. Then
select Description and a window appears that will allow you to type in the relevant
information. These descriptions will assist anyone who is using the application to
identify the purpose of the front panel controls and indicators

Application Structure 189

Descriptions can also be added for each VI that is developed, using the Show
VI Info selection under the Windows menu. You can include relevant details of the
VI, inputs, and the outputs. When the Show Context Help is activated from the Help
menu, this VI information will appear in the Help window if you place the cursor
over the icon. Help files can also be created and linked to LabVIEW in an on-line
form. They have to be created in Windows format and compiled before they can be
used in LabVIEW.

4.5.2 PRINTING LABVIEW DOCUMENTATION

You can also select Print Documentation from the File menu and LabVIEW will
allow you to customize the way you want to print the documentation. The VI Info
that was entered will be included. There is a feature that gives you the ability to
print documentation to an HTML file. This file can then be published easily on the
Web. Options for saving files in RTF format or as plain text files are also available.
The user can select this from the Destination drop-down menu in the window after
Print Documentation has been selected. The pictures of the code diagram and front
panels can be saved as PNG, JPEG or GIF formats.

4.5.3 VI History

Another way to document LabVIEW applications is to use the Show History selec-
tion under the Windows menu. This will allow the programmer to write what changes
are made each time the VI is modified. The VI history provides a good reference
when trying to track down what changes were made, why they were made, and when
they were made. You can force LabVIEW to prompt the user to input comments
into the VI History when changes are made. This is a good practice to incorporate
in the development process. Select Preferences from the Edit menu, and then select
History from the drop-down box. You can then select the appropriate checkbox so
that LabVIEW will prompt for comments each time the VI is saved.

Some firms may desire to be ISO 9000 compliant, which requires more effort.
The items covered in this chapter are intended to help in the documentation process
for those not requiring ISO 9000. The basic documentation will include how to use
a VI, will describe the inputs and outputs, and will discuss the necessary configu-
rations for the user. ISO 9000 requires controlled master copies of all documents to
ensure that only the newest version is distributed at any time. In addition, a record
must be kept of the controlled documents and the location of their storage.

4.6 THE THREE-TIERED STRUCTURE

Once the requirements are defined and the major design decisions are made, the
programmer is ready to work on the structure of the application. An application
should be divided into three tiers. The first tier is referred to as the “Main Level.”
The Main Level consists of the user interface and the test executive. The second
level is the “Test Level” or the “Logical Level.” The Test Level is responsible for
performing any logical and decision-making activities. The lowest level is referred

190 LabVIEW: Advanced Programming Techniques

to as the “Driver Level.” The Driver Level performs all communications to instru-
ments, devices under test, and to other applications.

Before we look at each of these levels in more detail, we shall identify the
benefits of using the three-tier approach. First, this strict partitioning of levels
and functions maximizes code reuse. Specific functions or code can be immedi-
ately identified and reused because VIs in each level have a defined scope. Drivers
can be reused when the need to communicate with another application or instru-
ment arises. Test and measurement VIs can be reused when that test has to be
performed. The user interface can also be reused with minor modifications for a
different application.

The reuse of code is further simplified with the use of a state machine. State
machines work well when the three-tiered approach is applied. State machines and
the variations that exist are discussed in Chapter 3. Any state within the state machine
can be reused by simple copy-and-paste methods.

A second benefit of using the three-tiered approach is that the maintenance time
of the code is minimized. Maintenance and modifications are often necessary after
the completion of an application. The application design should therefore plan ahead
for changes and make them easy to apply. Because distinct layers exist, modifications
can be made quickly and efficiently. VIs that need modification can be identified
and located easily. The code that has to be changed can be pinpointed along with
the interdependencies with little effort. When this is done, the modifications can be
made where needed.

Another notable benefit of the strict partitioning and three-tier approach is the
abstraction that is gained. Each level provides an abstraction for the layer below it.
The Driver Level abstracts the vague commands used in instrument communication.
The Driver Level provides an abstraction for the Test Level. The Main Level then
provides an abstraction for the subroutines and measurements by supplying an easy-
to-understand user interface. The user interface is an abstraction that hides or dis-
guises all the lower levels involved.

The NI Test Executive serves as the Main Level for an application. It supplies
the User Interface function that allows you to select the sequence of tests that you
want to perform. The Test Executive can be customized to match the specific needs
of the situation. The Test Executive also has the structure already defined, reducing
the responsibility of the programmer.

Figure 4.1 is a diagram of a VI hierarchy that uses the three-tiered approach and
depicts the strict partitioning of different levels. A quick glance at the diagram reveals
the three distinct layers in the application. The Main Level, the Mid-Level, and the
Driver Level can be distinguished easily in this example. If Test 2, shown in the
hierarchy, has to be used in another program, it can easily be cut and pasted into a
new application. Maintenance of the code is easy because changes can be made to
a specific section. Also, note how each level abstracts the level directly below it.

Now look at Figure 4.2; it displays the VI hierarchy of an application that does
not utilize the three-tiered approach. Code reuse is diminished in this case because
the tests are no longer stand-alone VIs. Modifications and maintenance become
difficult because changes made in one location may affect other things. Changes
made in Driver 1 can affect the Main VI, Test 1 VI and the Driver 2 VI. The

Application Structure 191

FIGURE 4.1

¥’ VI Hierarchy

FIGURE 4.2

192 LabVIEW: Advanced Programming Techniques

dependencies are harder to track when a definite structure is not used for the program.
Locating a specific section of code will take longer because drivers and tests are
mixed. Also note that there is no abstraction below the user interface.

4.7 MAIN LEVEL

Let’s first look at the Main Level, which serves as the user interface and test
executive. The Main Level should consist of a single VI. Only Test Level VIs are
allowed to be called from this first tier. The Test Level will then call the needed
drivers for the specific operations. The Main Level should avoid calling drivers
because the abstraction benefits are diminished. Reuse is diminished when specific
sections cannot be differentiated for copying and pasting methods. Furthermore, the
code panel and hierarchy also become difficult to read and maintain. The use of
application tiers aids reusability and readability.

The Main Level VI provides user interface functions. It supplies the needed
structure for adding application-specific tests, and offers flexibility for changes.
National Instruments offers an application called TestStand to be used as a test
executive/sequencer. If you are using TestStand, you will already have the extent
of partitioning available to gain the benefits of the three-tiered approach. You will
be supplying the test and driver level VIs to incorporate into the framework of
the executive.

4.7.1 USER INTERFACE

The user interface is part of the main level. The user interface is significant because
it is the means by which interaction and control of the program occur. LabVIEW
provides various tools for designing an effective front panel. Its graphical nature
gives it an edge over other programs when it comes to the user interface. ActiveX
and .NET controls can now be used in addition to the basic controls. This section
will provide some tips and examples for developing effective interfaces.

As TestStand already has a user interface, you would no longer have the respon-
sibility of creating one. TestStand allows the operator to select the test sequence and
control execution of the sequence through the interface. The results of the test
sequence are shown in a display that also indicates pass or fail status.

4.7.1.1 User Interface Design

The user interface should be designed with the target operators in mind. The interface
should not be designed solely to fulfill the functional requirements, but it should
also be user friendly. Unless the programmer is the one using the application, it can
be the only interaction the operator has with the program. The Main Level user
interface should allow the operator to select settings that are variable. Keep in mind
that the user inputs may have to be validated. Unexpected inputs will cause the
program to behave in an unexpected manner. Variable inputs by the user may include
choosing measurements to perform, inputting cable loss parameters, selecting device
addresses, adding file storage tags, selecting processes to monitor, etc. These vari-

Application Structure 193

P! User interface.vi Front Panel

Fle Edit View Project Operate Took Window Help 5
[2]&] @[] [17pt Application Forit |~] [Ea ||][] [£5~] !
S
Tests to perform
Results
Testl [X Test 1: ~
Test2 [€ Measurement Averaging
Test3 [X
Test4 [J ﬂ OF
Cable Loss
ﬂAm b
b
< >
FIGURE 4.3

ables are then passed to the Test Level, ultimately dictating the program flow. Figure
4.3 is an example of a simplified user interface.

Consider using clusters to group-related controls and indicators. Not only does
it place the related controls together, but it also reduces the number of wires on the
code diagram. When you are trying to manage large amounts of data, the code
diagram can get confusing with all of the wires of data being passed to VIs. Clusters
can be unbundled as needed, with only one wire representing the group of controls
otherwise. Even if you are not using clusters, try to use a frame decoration to group
the controls for the user.

The user interface should utilize controls and displays that are appropriate for
the situation. If you are entering a cable loss, for example, you should use a digital
control with the appropriate precision rather than a knob. This is more practical
because the value can be read and changed easily. Using descriptive labels is a good
way to differentiate the various front panel controls. Try not to clutter the main user
interface with controls or displays that are not needed. The person using the program
can easily get confused or lost if too many controls, indicators and decorations are
used on the front panel of the user interface. The use of menus will help reduce the
clutter, and will give the interface a nice appearance. Use buttons if the function
will be used frequently; otherwise, use menus. Dialog controls are also good for
user interface functions.

Remember to give the user a way to cancel or abort execution. This is easy to
overlook, but is very important to an operator. Users need a way to stop in the middle
of execution without having to use the Abort Execution button on the toolbar.

Graphs and charts are useful for displaying data. Sometimes just a glance at a
graph can reveal a number of things, but graphs, charts, and other graphics should
be used only as needed. Graphing while acquiring data will not only slow the
execution of the program, but will take up more memory. Memory concerns will
grow as the number of VIs written for the application grows.

194 LabVIEW: Advanced Programming Techniques

4.7.1.2 Property Node Examples

You can use your imagination to develop a professional user interface. The user
interface can be simplified by using the Tab control to group similar functions.
Another way to simplify the user interface is to allow the user to see only the
available options. For example, let’s say that you are creating a VI to get user inputs
to set up your test system. One portion of the setup requires you to define how to
communicate with your unit under test (UUT). There are several options for com-
munications depending on the type of unit.

For our example we are communicating with a UUT through serial communi-
cations. There are several options for communicating serially. You could use the
computer serial port, a terminal server or even a GPIB to RS232 controller box. If
you are using a terminal server to communicate with your UUT you would want to
know the IP address and port you are connecting to. You would not want to see a
GPIB address or COM port number. By using property nodes, you can control what
the user sees based on the chosen input.

Figure 4.4 shows the user interface for the above example that utilizes property
nodes. There are 3 tabs for entering information. On the UUT Communications tab
there is a control to select the method of communication used. Based on this
selection the appropriate options are displayed. In this case, the Terminal Server
option was selected. To the right of the selector control are the inputs for IP address
and port number.

P Ul Attribute Node Example.vi

Fle Edt View Project Operate Took MWindow Help

L

Test Selection UUT Communications | Test Equipment Setup]

“Communication Method 1P Address _Port
f-)iTerm\mal Server {10.1.2.3 oot
baud rate (9600)

4lo600

data bits (8)
£

parity (0:none)

g‘ None

stop bits (10: 1 bit)
o

flow control (0:none)

j‘ None o

Start Testing Cancel

FIGURE 4.4

Application Structure 195

P Ul Attribute Node Example.vi
Fle Edit View Project Operate Took Window Help

L

Test Selection UUT Communications | Test Equipment Setup

‘Communication Method _COM Port Number
o} serial Port ot
baud rate (9600)

5800

data bits (8)
E

parity (0:none)

g Nong

stop bits (10: 1 bit)
Lo

flow control (0:none)

g‘ None o

Start Testing Cancel

<W> Server: locahast | ¢ %

FIGURE 4.5

Figure 4.5 shows what appears when the serial port option is selected. Figure
4.6 captures the code diagram of the example VI. Property nodes are used to make
the controls visible or to hide them. Property nodes can be created by popping up
on the control from the code diagram. Select Create from the menu, then select
Property Node. The available options for the selected control will be available. The
Visible property was used in the example. Some common properties that can be
manipulated include Visible, Disabled, Key Focus, Blinking, Position, Bounds, Cap-
tion, and Caption Visible.

Using Property nodes once again, Figure 4.7 is an example of a menu and
submenus structure that is simple to implement. The front panel shown has the main
menu that appears on the user interface panel. A Single Selection Listbox is used
from the List & Rings palette. Figure 4.8 shows the submenu that appears when the
first item, Select Tests, is selected from the listbox. A Multiple Selection Listbox
becomes visible and allows the operator to select the tests that have to be executed.
When all the needed settings have been completed, the user can hit the Start Testing
button to begin execution of the tests.

Figure 4.9 is an illustration of the code diagram for this example. The case
structure is driven by the main menu selection. The structure is placed inside a main
While loop that will repeat until the Start Testing button is pressed. The Visible
Property node is used to make the submenus appear when a selection is made on
the main menu. Note that you must first set the Visible Property node for all of the
submenus to “false” before the While loop starts.

196 LabVIEW: Advanced Programming Techniques

W["Serial Port", Default ~p[™"

Communication Method ress

[1]
' COM Port Number

B - Vsl
~ GPIB Address (Card:Address)

(1] w—]

Cancel Button Canceled?
m _ g g
OKButton Jv> (@
= . . |

FIGURE 4.6

.. Menu ULvi

File Edit View Project Operate Tools Window Help

#|2]|@n]

Select Tests
Speciications

Units to Test
Calibration Factors
Cable Loss
Instrument Settings
Data Variables
Input Files

Manual Tests

e | i |i|_

FIGURE 4.7

Application Structure

B Menu ULvi
File Edt View Project Operate Tools Window Help)
3] [@[n] —

Configuration Menu

Specfications
Units to Test
Calibration Factors
Cable Loss
Instrument Settings
Data Variables
Input Files
Manual Tests

Start Testing

<W= Server: localhost | ¢

FIGURE 4.8

Select Tests

[— 7|
BT pVisibe]

Configuration Menu

EO 't

P Visible|Cable Loss
+pVisible|Specifications
’ Units to Test
: Calibration

[P 1
+pVisible|Manual Tests

+M\isible|Data Variables

hie(Instrument Settings

EL__H £
»Visiblelnput Files

@

43> [

FIGURE 4.9

4.7.1.3 Customizing Menus

197

LabVIEW run-time menus can be customized to suit specific needs by using the
Menu Editor. The menu contents can be modified by selecting the Run-Time Menu
item from the Edit menu. The drop-down box allows the programmer to select either
the default, minimal, or custom menus to appear during VI execution. The default
selection displays the menus that are normally available while the program is not
executing. The minimal selection is a subset of the default that appears during run-
time. The custom selection requires the programmer to create a new menu structure

198 LabVIEW: Advanced Programming Techniques

P Custom Menus.vi

Test Information Operate Test Selection
»
menubar out b
i3
error in (no error) error out
status status
Lorr] OFF
o =
55
il p _|
source SOUTCe
—
g Il w
< »

FIGURE 4.10

and save it as a real-time menu (*.rtm) file. Once a real-time menu file is created,
it can be used for multiple VIs. A shortcut key combination can be specified for
each menu item that is created. The on-line help explains how to customize menus,
including how to add User Items.

Figure 4.10 is an example of how custom menus appear when a VI is executing.
Three main menus are displayed on the front panel: Test Information, Operate, and
Test Selection. The Operate menu is an application item that is normally available
if the menu is not customized. The Menu Editor allows you to utilize application
items in addition to user items.

Figure 4.11 illustrates how the custom menus may be used programmatically
once they have been created. The Current VI’s menu bar returns a refnum for the
current VI. This VI is available in the Menu subpalette of the Application Control
palette. This refnum is passed to the Get Menu Selection VI, which is available in
the same subpalette. The Get Menu Selection VI returns the menu item that was
selected, as well as the path of the selection in the menu structure. In this diagram,
the Get Menu Selection VI is used to monitor selections that are made through the
custom menus. The menu selection is then wired to a case structure that takes the
appropriate action depending on the selection that is made. The Begin Testing case

A 4| "Don't show", Defaul =
Current VI's Get Menu Selection menubar out
B = [FE]
errorin (no error) | [@ e El error out
Q__ el e NENUECIESINGE - —

m @

FIGURE 4.11

Application Structure 199

that is shown corresponds to a menu item in the Test Information menu from the
previous figure. When Begin Testing is selected the While loop terminates and the
VI completes execution. By utilizing other VIs in the Menu subpalette, a programmer
can dynamically insert, delete, or block menu items.

4.7.2 ExcepTioN-HANDLING AT THE MAIN LEVEL

Error handling is one element of the project that is often overlooked or not well
implemented. Planning for the possibility of something going wrong is difficult, but
necessary. A well-designed program will take into account that errors can and do
occur. Building exception handling into a program has several benefits. It is a way
to notify the operator something has gone wrong that needs attention. It is also very
useful for troubleshooting and debugging purposes, as well as for finding out where
and why the problem occurred.

There are different ways to control the error situations that can arise. One way
is to let the program attempt to correct the problem and continue execution. For
errors that cannot be corrected, the application may complete tests not dependent
on the failed subsection. Another possibility would be to halt execution of the
program and notify the user via a dialogue box, e-mail, or even a pager.

Error handling is an important task that should be managed in the Main Level.
This forces all errors to be dealt with in one central place, allowing them to be
managed better. The Main Level controls program flow and execution. The Main
Level should also determine the course of action when faults occur. When errors
are handled in several locations, or as they occur, program control may have to be
passed to lower levels and may be difficult to troubleshoot. Also, when errors are
handled in more than one location, the code for the handling may have to be repeated.

When a state machine is used, this significant task is made easy because one
state is assigned specifically for error handling. When errors are generated, the state
machine jumps to the Error state to determine the course of action. Based on the
severity of the fault that has occurred, the Error state in the Main Level will decide
what will be done. If the error is minor, other states that might be affected will be
parsed and the remaining will be executed. If it is a major fault, the program will
perform all closing duties and terminate execution in the normal manner while
notifying the user of the error. Chapter 6 discusses exception handling in more detail.

Handling execution based on pass or fail criteria should also be considered. If
you are using TestStand the user can specify the course of action when a test fails.
You can continue to the next test, stop execution of the whole sequence, or repeat
the same test again. Dependencies can be created for the individual tests. A depen-
dency, once created, will execute a test based on the result of another test. The result
can be defined as either pass or fail.

4.8 SECOND LEVEL — TEST LEVEL

The Test Level is called by the Main Level. The VIs in this level should be written
on a stand-alone basis to allow reuse. Each Test Level VI should perform one test
or action only. The code should be broken up so that each test that needs to be

200 LabVIEW: Advanced Programming Techniques

performed can be written as a separate VI. When multiple tests are combined in one
VI, they are not easily reused because either the extra tests that are not needed would
have to be removed, or the extra tests must be executed unnecessarily. These second
tier VIs are basically test and measurement subroutines, but can also include con-
figuration and dialog Vls.

Writing each test exclusively in its own VI facilitates reuse in cases where the
measurement subroutine has to be executed more than one time. An example of this
is making temperature measurements at multiple pressure levels. When a temperature
is measured, it will vary with the pressure conditions. A VI that performs a temper-
ature measurement can be written and called as many times as needed to test at the
different pressures. Note that the efficiency of the VI is maximized when the pressure
is set outside of the temperature measurement VI, and a call is made to it as many
times as needed.

The measurement subroutine VIs should perform the initialization of the instru-
ments and any configuration needed to make the measurement. This may include
setting RF levels, selecting the necessary instrument fields, or placing the device
under test in the appropriate state. These initialization steps must be taken within
the VI because the previous condition of the devices may not be known. This is
especially true when using a state machine because the program jumps from one
state to another; the order of execution is not necessarily predetermined.

When a state machine is being used, only one test or measurement VI should
be placed in each state. The benefit of this is that when a particular test needs to be
performed, the program executes only the associated state. Placing more than one
test in one state causes the additional tests to be executed even if they are not needed.
This results in an application that takes more time to run. It also results in loss of
flexibility of the state machine. An example of a single test in each state of the state
machine is shown in Figure 4.12. The state shown will be executed whenever the
particular test has to be performed; the purpose of this state is clearly defined. This
method reduces clutter and makes the code diagram self-explanatory.

Flowcharts can assist in the implementation of subroutines and Test Level VIs.
They help in defining the execution flow of the VI and the specific decisions that it
must make. Flowcharts are especially helpful in LabVIEW because it is a dataflow-
based programming language, similar to a flowchart. Once the flowchart is formed,

o "Test D" M
States Test
[Array of States|| ¥ | &
a
o @

FIGURE 4.12

Application Structure 201

Get limit
values

Read Current
from DMM

Inside

Limits? »| Wait 60sec

Yes

Notify

Wait 60sec

FIGURE 4.13

it is relatively easy to code it in LabVIEW. Figure 4.13 is an example of a simple
flowchart. It is checking to see if the current draw from a source is within the limits.
This is easily coded in LabVIEW because of the similarities between the two. If
you compare the flowchart with the actual implementation in Figure 4.14, the
similarities and ease of conversion become apparent. The VI reads the current every
60 seconds to check if the value is within the specified limits. When the value is
outside the limits, it will terminate execution and the front panel indicator will notify
the user. The flowchart and the LabVIEW VI perform the same function.

4.9 BOTTOM LEVEL — DRIVERS

The Driver Level is an abstraction that makes the Test Level easier to understand.
It conceals little-known or unclear GPIB, serial or VXI commands from the user.
This level performs any communications necessary to instruments and devices being
used. Drivers can be classified into measurement, configuration and status categories.

202 LabVIEW: Advanced Programming Techniques

60000
Upper Limit

Fead ¢ 5 QOutside Limits
armps >

»

Lower Limit

FIGURE 4.14

An efficient way to write drivers is to write each measurement command to one VI
each, group configuration commands logically into VIs, and write each status com-
mand to one VI. As an example of this driver architecture, examine the HP§920A
driver set by National Instruments.

Simply put, measurement drivers are used to perform a measurement. One VI
should be used to perform one measurement to maximize the reuse of the VI. By
writing measurement drivers in this manner, the driver can be called in the same
application for different cases, or in a different application where the same measure-
ment needs to be performed. If more than one measurement is grouped into a single
VI, either one of the measurements must be stripped out for reuse or other measure-
ments will have to be performed unnecessarily.

Configuration drivers set up the instrument to make a measurement or place it
in a known state at the start of an application. Configuration commands can be
grouped logically in VIs. When a measurement has to be performed, usually more
than one configuration command is needed to prepare the instrument. Sometimes
many parameters have to be configured for a single test. Writing one configuration
command to a VI would create difficulty in maintenance because of the number of
VIs that will result. Grouping the configuration commands according to the type of
measurement will minimize the number of VIs on the Driver Level. In addition,
memory space can also be used more efficiently by following this style.

Drivers can range from very simple to very complicated, depending on the
instruments being used. A driver for a power supply might need only a few param-
eters and commands, but an instrument like a communication analyzer might have
upwards of 100 different commands. In this case you must group configuration
commands to reduce the number of VI drivers that need to be written.

Status drivers simply check the state of an instrument by reading status registers.
These are usually written as needed, one to a VI. An example of a status driver is
a register that holds the current state of a particular measurement. One bit will be
set if the measurement is under progress, and cleared when it is finished. You must
ensure that the measurement is finished before reading the value so the status register
is checked. Remember that drivers can be created for other types of communication
needs as well.

If you need to use TCP, DDE, ActiveX, or PPC, you can use a similar logic
when developing the lower layer of the application. When Vs are created to perform
a specific action, configuration, or status inquiry, they can be reused easily.

Application Structure 203

V/ISA resource name

=

| error out
={F;

error in (no error):- 55
E ! Voltage
»

FIGURE 4.15

Figure 4.15 demonstrates a simple driver that can be used to read the voltage
from a voltmeter. It has been written so that it can be called whenever the voltage
needs to be read. The instrument handles are opened and closed inside the driver.

4.10 STYLETIPS

We have seen numerous applications in the past few years that do not incorporate
good practices that could increase the efficiency, readability, maintainability, and
reuse of the code that has been developed. Most of this chapter covers topics to
assist the reader in developing successful applications by revealing the programming
style that has been effective for the authors. This section was intended to provide
more tips on programming, this time by uncovering inefficient programming styles
and common pitfalls that can be avoided.

4.10.1 SEQUENCE STRUCTURES

The first inefficient programming style is a result of the overuse of stacked sequence
structures in the code diagram. Stacked sequence structures were described in Chap-
ter 1 in detail. The main purpose of the sequence structure is to control the execution
order of the code. Code that must execute first is placed in the first frame, and then
pieces of the code are placed in the appropriate frame in the order that execution is
desired. If your code is data-dependent, however, sequence structures are not needed.
The execution order is forced by dataflow; VIs will execute when the data they need
becomes available to them.

Overuse of sequence structures is the consequence of not utilizing the structures
as they were intended. We have seen VIs that contained sequence structures with 50
or more frames. When the architecture or design phase of the application is omitted,
an application with so many frames can be an outcome. It signals that perhaps the VI
is performing too many actions and that subVlIs are not being used sufficiently. When
too many actions are performed, the code that is developed is no longer modular. Lack
of modularity hampers the ability to reuse code. Consider using the three-tiered struc-
ture approach to your application if your sequence structures have too many frames.
The use of subVIs for tests and subroutines will reduce the need for many frames while
increasing the ability to reuse code. The frames in the sequence structure can be easily
modularized into VIs. At the same time, the code will become more readable and
maintainable. By developing the description of logic for the VIs during the design
phase, you can determine what each VI should do as part of the whole application.

Figure 4.16 displays a stacked sequence with only four frames, but notice how
the wires are already beginning to degrade readability of the code. The sequence

204 LabVIEW: Advanced Programming Techniques

ooooooooo 103' oo oo oo

FIGURE 4.16

locals are not easy to follow as the data is being passed from one frame to the next.
Code reuse is also becoming difficult in this example. Now imagine what the code
would look like if there were 20 or 30 frames in the sequence structure.

If your VIs are data-dependent, you do not have to use sequence structures. For
example, execution order can be forced through VIs that utilize error I/O with error
clusters. The need for excessive sequence locals may indicate that execution order
can be forced simply through dataflow. When many locals are used, problems arise
in remembering which local is passing what data. It also degrades readability because
of the wiring that is needed to support them. You must; however, be aware of any
race conditions in your code.

4.10.2 NESTED STRUCTURES

Nested case structures, sequence structures, For loops, and While loops are some-
times necessary in the code diagram to accomplish a task. However, creating too
many levels of nested structures can lead to inefficient code that lacks modularity
and readability. The arguments presented previously on the use of stacked sequence
structures apply to the use of nested structures.

Try to avoid nesting your structures more than three levels deep. When too many
levels of nesting are used, the code becomes difficult to read. Data wires being
passed into and out of the structures are not easy to follow and understand. When
case structures are being used, you must look at each case to determine how the
data is being handled. This, along with the use of sequence locals or shift registers,
For loops, and sequence structures, adds to the readability problem.

Figure 4.17 shows the code diagram of a VI that utilized nested case structures
four levels deep. Although the case structures are nested only four levels, it is difficult
for anyone looking at the code to determine how the final result was actually
obtained. You have to look at all the possible true and false combinations to figure
out how the data is being manipulated. Imagine if this VI had more than four levels,
or if there were more than just the two true and false cases used in each nest. The
readability would be degraded further, while code reuse would be impossible.

Utilizing too many levels may also be a signal that your VI is performing too
many actions. When too many actions are being performed, the resulting code has
no modularity. This hinders the capability to reuse your code. The use of subVIs
can reduce the need for excessive nesting of structures, as well as improve code reuse.

Application Structure 205

E]False 't]
gl LTI
[False 't[
Numeric 3
L - a) 2
7500 2> ¢ M oo |
X3 X I
Io.lﬁ|' B;{‘ B > [[[Er‘esuli
T -
FIGURE 4.17

4.10.3 DRIVERS

Another bad programming style that we have seen is that drivers are sometimes
underused. When communication with an external device or program is being per-
formed, the I/O operation is executed in the Test Level, or even in the Main Level,
instead of utilizing a driver. The concept of drivers is not fully understood by some
LabVIEW programmers. A question that was posed at one user group meeting was,
“Why do I need drivers when I can simply look up the command syntax and perform
the I/0 operation where it is needed?”

There are definite advantages that can be gained by creating and using drivers.
The abstraction that drivers provide is a notable benefit for the application. The
actual communication and command syntax is hidden from those who do not need
or wish to see this code. This also improves the readability of the code when these
obscure operations are not mixed with the Main and Test Level VIs.

The use of drivers also facilitates reuse of code. When drivers are not used, the
actual code that performs the communication is difficult to reuse because it is part
of another VI. Cutting and pasting part of the code is not as easy as inserting a new
VI. However, when drivers are written to perform specific actions, they can be reused
easily in any application by inserting the driver VI. Drivers must be developed in a
way that will simplify its reuse. A thorough discussion on drivers and driver devel-
opment is presented in Chapter 5.

Figure 4.18 demonstrates some of the reasons why drivers should be used. The
VI shown is performing both instrument communications and other activities, using
the results obtained. Compare this diagram to the driver shown in Figure 4.15 earlier.
Notice that the instrument communications could have been placed in a separate VI,
exactly as was done in the driver in Figure 4.15. Abstraction, readability, and reuse
could have been improved through the use of a driver.

4.10.4 PoLLNG Loors

Polling loops are often used to monitor the occurrence of particular events. Other
parts of the code are dependent on the execution of this event. When the event takes

206 LabVIEW: Advanced Programming Techniques

VISA resource name
[WEY T

False ~ Numeric
»

g error ou
|

error in (no error) g
Bt E 4

FIGURE 4.18
500
Boolean Boolean
i [e i E=--[E]
FIGURE 4.19 FIGURE 4.20

place, the dependent code executes in the appropriate manner. Using polling loops
to monitor an event may not be the best way to accomplish this goal, however.

Tight polling loops can use all of the available CPU resources and degrade the
performance of a system noticeably. If you are working on a Windows platform,
you can use the System Monitor to view the kernel processor usage while you are
performing activities on the computer. We can try a simple exercise to demonstrate
this point. Open a new VI and copy the simple VI diagram shown in Figure 4.19.
Set the Boolean to “true,” run the VI, and monitor the processor usage; almost 100%
of the processor will be used for the simple polling loop shown. What happens if
we introduce a simple delay in the same polling loop? Use the Wait until Next ms
Multiple in the loop with a 500-millisecond delay as shown in Figure 4.20, and
monitor the processor usage again. The resources being used are significantly lower
when a delay is introduced. Polling loops will certainly reduce the efficiency of
your application.

If you are using polling loops, try to use delays where tight polling loops are
not necessary. When loops are used for the user interface, the operator will not
perceive a delay of 250ms. If you are using polling loops to synchronize different
parts of your code, consider using the Synchronization VIs that are available in the
Synchronization palette. These include Notification, Queue, Semaphore, Rendez-
vous, and Occurrences Vls.

4.10.5 ARrRAY HANDLING

The manner in which arrays are handled can affect the performance of an application
considerably. Special care should be taken when performing array operations with
For loops. A scalar multiplication of an array is a good example for demonstrating
the methods available to perform this action. Figure 4.21 illustrates one way to
perform the multiplication. The array is passed into the For loop, where the element

Application Structure 207

N
Array L x
150 : Ty >
0] 5 1.50
FIGURE 4.21 FIGURE 4.22

is multiplied by a constant of 1.5, and then passed out. The correct result is acquired;
however, the method chosen to perform the multiplication is very inefficient. The
same result could have been acquired without using the For loop. Figure 4.22 shows
that the array could simply have been multiplied by the constant without the For
loop. The first method is inefficient because it requires the array to be broken down
into its elements, then each element of the array must be multiplied by the constant
separately, and, finally, the array must be rebuilt with the results.

Whenever possible, you should try to avoid passing arrays into loops to perform
necessary operations. Passing large arrays will result in longer execution times for
applications, as well as the use of more memory during execution. Both the speed
and performance of your application will be affected. The Show Buffer Allocations
function can help you find places where arrays are being allocated. The function
can be found under the Profile folder under the Tools menu. This function is described
in more detail in Chapter 2.

4.11 THE LABVIEW PROJECT

Building, maintaining and compiling source code for an application can be a difficult
task at times. The location of source files must be tracked, a list of supplemental
files must be maintained, and build specifications need to be created for the appli-
cation. You must also be able to handle the complex task of multiple developers
working on the same project. All of these tasks can now be accomplished using the
LabVIEW Project. We will discuss some of the project features and terminology.
Some functions were also discussed in Chapter 2. The Shared Variable is discussed
in depth in Chapter 7.

4.11.1 Project OVERVIEW

A project is a grouping of LabVIEW VIs, controls and build specifications. Other
files relating to the application, such as documentation and support files, can be
stored in a project as well. All the information related to the project is stored in a
project file. The project file has a .Ivproj extension. The project file includes refer-
ences to the files contained in the project; build information, deployment information,
and configuration information. The project file is an XML file that can be viewed
by opening it with a text editing application. Figure 4.23 shows a project file that
has been opened in WordPad.

Fortunately you do not have to edit a project in a text file. In LabVIEW, you
can open up a project in the Project Explorer. The Project Explorer window is a

208 LabVIEW: Advanced Programming Techniques

™ scC praject - WordPad
Fle Edt View [nsert Format Hep
DEE & a B &

<PFroperty Names“server

L.propertiesEna
Type="Hc
>3363</Propercy>

g Computer/VI Server</Propertys

Type=“Bool">true</Property> ~
Ly

<Dr.:cr..v N
<Property N

<Item Name="led
<ltem hnmc—"kc“

"ybe— "YI" URL="surface_graph.vi"/>

"read me.tXE"/ >

<ltem Name="Depend Type="Depend, tes™/>
<Item Names"Build Sp ons" Type="Build">
<Item Name="My Apr on® Type="EXE">

<Eroperty Names="hbs Type="Bool">false</Propertys
Broperty Name="Rbs Type="Bool">false</Praperty>
perty Name="Abs Type="Bocl">false</Propertys
perty Name="Aot "»</Property>
Propesty Name=". 243(.3 FAB1-4A33-8EE3-C2FE0FS93500] </ Propesty>
<Property Names=",

iages</Property>
<Property Name="RApp 88B-15ED-4401-B593-20TDCCE11T5A} </ Proper
<Froperty Names"Rpp m ypes"Str >Application.exe</Property> -
< 3

Fue Help, press F1

FIGURE 4.23

separate window that is loaded when a project is opened. The Project Explorer
window is similar to the Windows Explorer. The window contains a graphical listing
of all the items stored in the project. Figure 4.24 shows the Project Explorer window
for the project file in the previous illustration. You can execute all project related
functions through the Project Explorer window. A discussion of some of these
functions will follow.

Project Explorer - SCC project.lvproj E@@

Fle Edt View Project Operate Tools Window Help
e x o x|l Em-¢5e

=8 Project: SCC project.vproj
= B My Computer
sl display test.vi
ol led display.vi
=d 3 SCClbrary.vib
- %a Status Variable
=
-] read me.txt
= L§ Shared variable brary.vib
* %y Shared Test Data
'# Dependencies
=5 ﬁ Build Specifications
-2 My Application

FIGURE 4.24

Application Structure 209

4.11.2 Project FiLE OPERATIONS

To start using a project you will need to create a new project. This can be done
by selecting New Project under the File or Project menu. There is also an option
to create an empty project in the New dialog box (comes up when you select New
from the File menu). If any VIs are currently open, you will see a dialog box
asking you if you want to add the currently open files to the new project. Once
you address this dialog a Project Explorer window will pop up. By default an
empty project will display the name of the new project with the My Computer
listed below. My Computer is the target of the project. By default the local
computer is the target. Additional targets can be added by right clicking on the
project name, which is called the project root, and selecting Targets and Devices
from the New category. Here you will have the option to add an existing target
or device, an existing target or device on a remote subnet, or a new target or
device. This is the only way you can distribute an application to an FPGA, Real
Time or PDA target.

Each target will start with two items; Dependencies and Build Specifications.
The Dependencies category includes items that are required by the VIs in a target.
The Build Specifications category includes build configurations for source distribu-
tions, executable files (EXE), installers, shared libraries (DLL), source distributions
and zip files. Only source distributions are available without the application builder
or LabVIEW Professional Development System installed.

Once your project is opened you are able to start adding files. To add a file to
your project you can right click on the target (My Computer) where the item will
be added. You will have a lot of options including adding a new or existing VI,
folder, Variable and library. You can add non-LabVIEW files such as documents or
spreadsheets to the project as well. As with all operations on the project, you can
access the operations through the shortcut menu as well as through the main menus.
In this instance you can add files through the File menu. There is also the ability to
use the New dialog box to add a file to the project. To insert the new item into the
project, you need to click on the Add to Project checkbox. The New dialog box is
shown in Figure 4.25.

To remove a file from a project you can right-click on the file and select remove.
Removing a file from the project does not remove the item from the file system.
The reference to the file is simply removed from the project file. The file itself was
never physically a part of the project. This is different than the LabVIEW LLB
where the VIs are actually part of the LLB file. Because of this method of using
links to a file for a project, there needs to be some care taken with the files in the
file system. If you move a VI that is part of a project to a new location through the
Windows Explorer, the project will not initially find the file. When the project is
opened it will try to find the file in the original location, and then start searching
elsewhere for the file. You do have the option to browse for the file as well. There
is a risk of the project finding a version of the file that you do not want used. Once
the project finds the file, the location is updated in the project file. You will have to
save the project; otherwise the location change will be lost. As the information is
stored in a file, you could manually update the information as well.

210 LabVIEW: Advanced Programming Techniques
Create New Description
22 VI ~ -
=) Blank vI ﬁ\
+ 2 From Template i
[=d polymorphic VI
= Dfrmect Creates a project ibrary.
"l Empty Project
= b‘ Project from Wizard Project lbraries are collections of related Vis
el Instrument Driver Project and other files. You can mark items in a
=2 Other Files project lbrary as public or private to specify
[k custom Control which ftems you can reference from outside
@ Global Variable the library. LabVIEW qualfies the names of
Vs in a project library with the library name
L& Runtime Menu to avoid name conflicts with VIs not in the
{2 XControl library. Unlike LLBs, which store files, project
¥4 Shared Variable libraries contain references to the locations of
files on disk.
w
< >
[Add to project
v | Projects
< > Untitled Project 2
ok][cancel |[Help |
FIGURE 4.25

To add a Shared Variable you use the same procedure as with other files. A
Shared Variable is similar to a global variable in that you obtain and pass data to
other parts of your program or other VIs locally or over the network without having
to connect the data by wires. How to setup a Shared Variable is described in Chapter
2. An in-depth look at the Shared Variable is offered in Chapter 7.

The Project Explorer supports drag and drop functionality. You can add a new
file to a project by selecting the VI icon from the corner of a front panel or block
diagram and dragging the icon to the Project Explorer. This is equivalent to the
methods for adding files already discussed. The process works in the other direction
as well. If you are editing a VI you can click on the VI or variable name and drag
it to the VI you are editing. The item you had selected will be inserted in your VI.
On Windows and Mac operating systems you can select an item or folder and drag
it to a target in the Project Explorer.

Finally, you will probably want to use a file that you have inserted into the
project. You can open the item by double-clicking on the item name in the Project
Explorer. If the item is not a LabVIEW item, the appropriate application will launch
in order to open the file.

4.11.3 Project LIBRARY

A LabVIEW project library is an object that contains links to several types of objects
including VIs, type definitions, variables and other files. A project library is access
through the Project Explorer or the project library window. A library maintains the
links to the objects it contains in a library file. A library file has a .lvlib extension.
A project library should not be confused with a LLB file. A LLB file is a collection

Application Structure 211

of VIs that are physically a part of the LLB. A project library owns files that are
stored in individual files on disk. The files do not move from their original location.

Managing a large application can be difficult. You have to keep track of the
hundreds of files that are in the application. The files needed may also include
external code, project documentation and support files. By using a project library
you have the ability to organize all of the files needed for an application in a single
hierarchy. This has the benefit of being able to set permissions on groups of files in
a single action. This also will make distributing the files easier. In order to distribute
a project library you can either distribute the actual library file along with the
corresponding files that the library owns. You can also create a zip file that contains
the entire library. The zip file function is part of the Application Builder application.

One problem that pretty much all LabVIEW developers have had at one time
or another is the issue of linking to a VI that has the same name as the original VI,
but is not the correct VI. It could be a VI that was already in memory that gets saved
in a calling VI, or when LabVIEW cannot find a VI and finds a VI with the same
name in the wrong location. The project library eliminates this issue. By using XML
namespaces, a project library can guarantee that a VI is correct. The VI is stored
using the filename and the project library filename. This filename information is
known as a qualified name.

To help illustrate the concept of the namespace, an example will be presented.
Let’s say you are creating a VI to communicate with two pieces of equipment through
serial communications. Let us also assume one piece of equipment is connected
through the serial port and one is connected through a terminal server. Previously
you may have created a library of VIs for communicating through the serial port
and a library of VIs for communicating through the terminal server. Now in your
test VI you want to insert a VI created for checking the equipment status for both
pieces of equipment. You never envisioned using both serial communications and
the terminal server, so the status VI you created for both libraries has the same name.
As the namespace for each of the VIs is different you could insert both VIs in your
test program. The names that LabVIEW would use for these VIs would be in the
following (URI) format: project library name:VI name.

To create a new library you would right-click on your target in the Project Explorer
and select Library from the New menu item. This will create an untitled project
library. You can either start adding files or save the library first. To save the library
you can right-click on the library and select Save. The Save function will save the
library in the location of your choosing with a .1vlib extension. If you have an existing
folder in a project, you can right-click on the folder and select Convert to Library.

The library settings can be configured through the Project Library Properties
dialog. This dialog can be launched by right-clicking on a library in the Project
Manager and selecting Properties. The dialog is shown in Figure 4.26. The dialog
has 3 sections. A General Settings section gives you access to the library protection
level, the default palette and default icon. You can also set a version number for
your library. The documentation section is where you can add a VI description as
well as link to a help file. The Item Settings section gives lets you set the access
scope for the entire library or for each individual file.

212 LabVIEW: Advanced Programming Techniques

B Example Library.Ivlib - Project Library Properties g]
Category 2
General Settings
Documentation Contents ~ | Path

=& Example Library.Ivib Book Files\2nd edition files\ e
= Structure Example Chapter 4 - second edition,
=l Test 1 - good. vivi original code\Driver 1.vi =
=) Test Lvi
=l Test 2.vi

= Test 2 good.vi
= Driver 1 good.vi
=), Driver 4.vi 7y Public
=L Driver 3.vi
=, Driver 2.vi
8 Driver 1.v3
= Bad Hierarchy.vi
= Good Herarchy.vi

23 Final Example

#2 Support VIs

] Figure 4.6.eps

Tl Figure 4.9.eps

= gpib_visa.vi

=i, Inialize. vi

=) Menu example.vi

g% Menu ULvi =

Access Scope

(@ Private

oK]I Cancel H Help |

FIGURE 4.26

The access scope lets you set the Project Library or files as either public or
private. A public VI is a standard VI that can be opened directly or called by other
VIs. A private VI can only be called by VIs that are located in the same project
library. If a folder in a project library is marked as private, all VIs contained in that
folder will also be private. By using private VIs you can make sure the VI can only
be run where they were intended. Figure 4.27 shows a Project Manager view of a
library that contains some private VIs. The Private VIs have a key next to their icon.

Setting the protection level in the Project Library Properties window can protect
a library or VL. You can set the protection level to Unlocked, Locked or Password-
protected. When a project library is locked, items cannot be added or removed. Items
that are set to private cannot be viewed. If the library is set to password-protected, the
library can only be edited when the password is entered. This also holds true for the
viewing of private files. They can only be viewed after the password has been entered.

To add files to a project library you can right-click on the library and select the
item you want to add from the menu. You can also drag and drop an item in the
project to the project library. A VI that is added to a library will need to be saved
in order to properly link to the library. If you add a VI to a library that calls subVIs,
you will need to add the subVIs to the project as well. The subVIs are not automat-
ically loaded when the calling VI is loaded. You should also be aware that a VI can
be linked to only one project library. If you want to link a VI to a new library you
will need to break the connection by selecting Disconnect VI from Library from the
File menu.

4.11.4 Project FiLE ORGANIZATION

The larger the application, the more difficult it can be to manage all the files in the
Project Explorer. You may want to take the time to organize the project so that

Application Structure 213

B! Project Explorer - Chapter Example Pr... DE

Fle Edit View Project Operate Tools Window Help
[hee b x||gw| @& 2l

= é% Project: Chapter Example Project.lvproj

= B My Computer

S e Lovaryvio
£+ structure Example
- [l Test 1 - good. vivi
-|m Test Lvi
- |l Test 2.vi

| Test 2 good.vi

- [wf™ Driver 1 good.vi
- [Driver 4.vi
- [w Driver 3.vi
- 8™ Driver 2.vi
- [Driver 1.vi
-l Bad Hierarchy.vi
- =) Good Hierarchy.vi
12 Final Example
-2 Support VIs
- T Figure 4.6.eps
- B Figure 4.9.eps
- [l gpi_visa.vi
- ml Initialze.vi
- [Menu example.vi
-l Menu ULvi
ﬂﬂgﬂ Mested Structures.vi
= Dependencies
- % Buid Specffications

FIGURE 4.27

related items are in common folders. This can make maintenance easier by being
able to work on items that are logically grouped together.

To add a new folder to a project or library you can right click on the project
item and select Folder from the New option. If you want to add a directory from
your files to the project you can right click on the item and select Add Folder.
LabVIEW will create a folder in the project that has the same name as the folder
on your computer. The files and subfolders that were contained in the original folder
will then be added to the project. As a reminder, the actual files on your computer
do not change location, the project maintains links to the files on your machine.

The link between the Project Explorer and your machine is not an active link.
If you change files in the folder or the folder location, the changes will not be
reflected in the Project Explorer. If you want the changes to be available in the
project as well, you will need to manually update the project.

National Instruments recommends that you create a separate directory for each
project. You should include your project and library files in the directory. If all of
your project files are stored in a common directory it will be easier to locate and
manage files on your computer.

4.11.5 BuILD SPECIFICATIONS

While storing and editing your application in a Project file has many benefits,
ultimately you will need to get the code you have written to an end user or to a test

214 LabVIEW: Advanced Programming Techniques

system. There are several ways to distribution your LabVIEW code. You could build
a source distribution, an executable, a shared library or a zip file. These options are
configured and executed through Build Specifications. A Build Specification can
only be created through the Project Explorer.

Once you have a project started you may decide you need to make a copy of
the code in another directory in order to make some experimental changes. You
might also want to give a copy of the code you have been working on to a coworker
to tryout or debug. Regardless of why you want to make a copy of your code, you
need to be able to pull all the needed files for a project together. This is where the
Source Distribution comes in. The Source Distribution is similar to the Development
or Application Distribution operations in earlier versions of LabVIEW. You can save
all VIs to a new location. You can choose to include vi.lib, user.lib and instr.lib files.
You can customize VI properties, apply passwords and remove diagrams.

The first step in creating a Source Distribution is to open a Project. Under project
you can right click on the Build Specifications and select Source Distribution. A
dialog box will open with three categories of inputs. The first is the Distribution
Settings. Here you will select your Packaging Option. You have the choice of
distributing the files to a single location, a single location with the same hierarchy
that is under My Computer in the Project Explorer and you have a custom option.
If you select custom, you will be able to select where all of the files are installed.
You can create multiple locations for files. One benefit of distribution of the files in
this method is the application will keep track of the file locations, so you will not
get a broken arrow after the files are moved.

The second option for Source Distribution is the Source File Settings. Here you
will have options for every item in the Project Hierarchy based on the type of item.
If you select a VI, you will have the option to include the file, which destination it
is going to and password options. You will also have the option to customize the
VIs settings, including removing the code diagram. Once you have configured your
file settings you can preview your distribution. The preview will show you where
the files will be distributed.

Once you are done you can select build to create the specification. Your new
build specification will appear in the Project Explorer window. You can right click
on the Source Distribution to Build (distribute), remove the distribution or edit the
settings.

Source Distributions are great for making copies of your code and sharing code
with other developers, but you might be creating an application for a customer. Even
if you are the end user, you may not want to purchase a full LabVIEW license for
each test machine you are using. These examples are both excellent reasons to build
an application. A LabVIEW application is an executable program with an .EXE
extension (.APP for Mac users). What if your end user is programming in another
language? This would require building a shared library (DLL) so that the end user
can reuse your functions. You can accomplish both of these tasks by using Build
Specifications.

The application or shared library requires only that the LabVIEW runtime engine
be installed on the target computer. The runtime engine includes the files necessary
to run your application. The runtime engine can be installed with your application

Application Structure 215

or can be downloaded from the National Instruments website. To be able to build
an application or shared library you need to have either the Professional Development
version of LabVIEW or an add-on package. The creation of an executable or shared
library is similar to the procedure for creating the Source Distribution. An explana-
tion on how to build an application using the Project Explorer is given in Chapter 2.

The final option is for the Build Specifications in the ZIP file. Here you can add
all or some of the Project files to a compressed Zip file at a specific location. You
can insert comments into the build specification. The addition of source files is
simply a side-by-side window that allows you to add or remove files in a Project to
the destination Zip file.

4.11.6 Source CODE MANAGEMENT

Working on large projects often requires using source code management software
(SCM). SCM applications allow you to maintain versions of your code as well as
be able to prevent other users from modifying your code while you are working on
it. The project works with several SCM applications for the management of your
project files. Chapter 2 discusses SCM management through the project in detail.

4.12 SUMMARY

Developing an application requires good planning and a design process that should
be followed. Following a formal process helps avoid costly mistakes and revisions
to the code at the end. One software model will not be suitable for everyone.
However, following the requirements, design, code, and test phases will aid in
developing applications. The structure of the application, which is decided on during
the design phase, is an essential piece of the process. It will determine many crucial
aspects of the program. The three-tiered approach, as described, embodies the desired
characteristics of most applications: the ability to make future modifications, the
ability to add features, ease of maintenance, the ability to reuse code, and layers of
abstraction. When the strict partitioning of levels is used in conjunction with the
state machine, all the characteristics are further enhanced.

A summary example will help in applying the topics and ideas presented in this
chapter. Suppose that Company A is involved in the sale and production of Widget
A. Let’s follow the steps that would be required to develop an application that would
be used in testing the widgets to determine if they meet specifications.

This first step involves defining the requirements for the test program. The goal
of this application must be defined before beginning to code. After discussing the
program with the appropriate people you enumerate the following requirements:

1. Parameters H, W, and D are to be tested using instruments H, W, and D,
respectively.

2. The operator will be a factory technician and will need the flexibility to
select individual tests as needed.

3. The program should alert the operator when one of the widgets is out of
specification limits.

216 LabVIEW: Advanced Programming Techniques

B! Summary Example.vi Front Panel

File Edit View Project Operate Tools Window Help
&
[>]=] @[] [17pt Appication Font |«][5z~][« |[2-][€5-] test
~
Tests &
Test HO mn‘ = Test H H out of limits| error out
TestW status code
TestD “"6
sourceé
v
v
< >

FIGURE 4.28

4. There should be provisions for the addition of tests; measuring Parameter
Z using Instrument Z is in the foreseeable future.

5. Company A is planning to produce Widget B next year, which will be
tested for H, W, and several other parameters.

The next step is to decide on the structure of the program. We will utilize the
three-tiered approach and take advantage of the benefits it provides. The user inter-
face of this application should be simple but flexible enough to provide the operator
the level of control needed. Figure 4.28 shows what the User Interface looks like
for this application.

The Main Level will use the state machine. It will also abstract the lower levels
for the operator. The following states will be needed for this application: Open (to
open all communication handles to instruments), Error, Initialize (to put all instru-
ments into a known configuration), Test H, Test W, Test D, and Close (to close all
communication channels). Figure 4.29 shows this state machine.

Each test is contained in its own VI, and each state consists of a single test. The
Test Level is composed of Test H, Test W, and Test D. Each test VI calls the necessary
drivers to perform the measurement. If the operator selects a single test to perform,
the other tests will not be executed unnecessarily. An array of states will be built
using the selections made by the operator. The first state that will be executed is the
Open, and the last state is the Close.

The application takes into account that the needs may evolve over time. If
additional tests have to be added, that can be done quickly. Suppose we were asked
to add Test M to the current program. All we have to do is follow a few steps to get
the needed functionality. First we have to modify the state machine to include the

Application Structure 217

1| "Initialize" M4l

[-Open-}{=+ Artay of States)] =

B |

FIGURE 4.29

extra state for this Test M. Then we have to modify how the array of states is built
to include the new state if the test has been selected by the operator. Next, we can
modify the user interface to include the new test in the list for selection. We would
also have to add a display for the measured value, and an LED that would indicate
when a widget fails Test M.

Reuse is also made simple by the strict partitioning of levels. When the company
begins to produce Widget B, Tests H and W can be reused. Tests H and W are stand-
alone test VIs and call the appropriate drivers for performing the tests. If we decide
to write another application to test Widget B, all we have to do is place the test VIs
in the new application. If the new application were to use the state machine also,
then we can copy and paste entire states.

The VI hierarchy for this example is shown in Figure 4.30. The strict partitioning
of levels is illustrated by the distinct layers in the hierarchy. At the top is the Main

Fle Edt Vew Tooks Window Help

FIGURE 4.30

218 LabVIEW: Advanced Programming Techniques

Level, which controls program execution. The second layer depicts the Test Level
VIs. The bottom layer consists of the drivers used to test the widgets. The middle
layer VI icons are in blue, and the Driver Level icons are in red. This was done
purposely to distinguish the layer that the VI belongs to.

BIBLIOGRAPHY

G Programming Reference, National Instruments, Austin, TX, 1999.
The Art of Systems Architecting. Eberhardt Rechtin and Mark W. Maier, CRC Press, Boca
Raton, FL 1997.

5 Drivers

This chapter discusses LabVIEW drivers. A driver is the bottom level in the three-
tiered approach to software development; however, it is possibly the most important.
If drivers are used and written properly, the user will benefit through readability,
code reuse, and application speed.

LabVIEW drivers are designed to allow a programmer to direct an instrument,
process, or control. The main purpose of a driver is to abstract the underlying low-
level code. This allows someone to instruct an instrument to perform a task without
having to know the actual instrument command or how the instrument communi-
cates. The end user writing a test VI does not have to know the syntax to talk to an
instrument, but only has to be able to wire the proper inputs to the instrument driver.

The following sections will discuss some of the common communication meth-
ods that LabVIEW supports for accessing instruments and controls. After the dis-
cussion of communication standards, we will go on to discuss classifications, inputs
and outputs, error detection, development suggestions, and, finally, code reuse.

The standard LabVIEW driver will be discussed first. This standard driver is the
basis for most current LabVIEW applications. In an effort to improve application
performance and flexibility, the Interchangeable Virtual Instrument (IVI) driver was
created. IVI drivers will be described in depth later in this chapter.

5.1 COMMUNICATION STANDARDS

There are many ways in which communications are performed every day. Commu-
nication is a method of sharing information. People can share information with each
other by talking, writing messages, sign language, etc.... Just as people have many
different ways to communicate with each other, software applications have many
ways to communicate with outside entities. Programs can talk to each other, to
instruments, or to other computers. The following communication standards are just
some of the methods LabVIEW uses to communicate with the outside world.

5.1.1 GPIB

The General Purpose Interface Bus (GPIB) is a standard method of communication
between computer/controller and test equipment. The GPIB consists of 16 signal
lines and 8 ground return lines. The 16 signal lines are made up of 8 data lines, 5
control lines, and 3 handshake lines. The GPIB interface was adopted as a standard
(IEEE 488). The maximum GPIB data transfer rate is about 1Mbyte/sec. A later

219

220 LabVIEW: Advanced Programming Techniques

version of the standard with added features was defined in 1987. This standard is
the ANSI/IEEE 488.2. This enhancement to the standard defines how the controller
should manage the bus. The new standard includes definitions of standard messages
for all compliant instruments, a method for reporting errors and other status infor-
mation, and the protocols used to discover and configure GPIB 488.2 instruments
connected to the bus.

HS488 is a standard that NI has created. This standard is an extension of the
IEEE 488 standard and increases the GPIB data transfer rate. By using HS488
controllers and compatible instruments, the data transfer rate can be increased up
to 8 Mbytes/sec. The biggest benefit of the higher data transfer rate is the use of
instruments that return large data sets. Instruments such as oscilloscopes and spec-
trum analyzers send large amounts of data to the control computer. The HS488
standard allows you to increase your test throughput.

There are two types of GPIB commands. There are device-dependent messages
and interface messages. Device-dependent messages contain programming instruc-
tions, data measurements, and device status. Interface messages execute the follow-
ing operations: initializing the bus, configuring remote or local settings on the device,
and addressing devices.

Many current instrument manufacturers have standardized remote commands.
This allows the user of an instrument to learn how to program an instrument in a
shorter period of time and makes instruments more interchangeable. In order to try
to make programming instruments easier, the SCPI (Standard Commands for Pro-
grammable Instrumentation) command set was developed. SCPI commands are
standardized for basic functions that almost all instruments support. There are a
number of instruments on the market that are not SCPI compliant. These instruments
have their own command sets, and formats. This can make writing automation
software difficult. One example is the T-BERD PCM analyzer. This instrument is
not SCPI compliant. If you wanted to reset the instrument, you would have to search
through the reference manual for the command. In this instance, to reset the instru-
ment, you would have to write “FIRST POWER UP” to the instrument. Not only
is the command not obvious, but it would require the developer to spend time hunting
down commands. Figure 5.1 illustrates the GPIB driver.

1l False p

[%.;: SAN:CFR %.6F|

O

Center Frequency

Units L [E=] | status
|'T'l 12 1 code fambey

address string
errorin I

| Error writing GPIB command|

M= [=2 | |error oul

FIGURE 5.1

Drivers 221

22)l
=

F Ea2]

NS

FIGURE 5.2

In the Instrument I/O section of the Functions palette there is a subpalette that
contains GPIB drivers. The GPIB palette contains the traditional GPIB 488 com-
mands. On the GPIB palette there is a subpalette, GPIB 488.2, which contains GPIB
488.2 commands. The VIs from these subpalettes can be used in conjunction with
a GPIB 488.2 instrument. If the instrument you are using is not GPIB 488.2 com-
pliant, you can only use the VIs in the traditional GPIB palette.

The primary VIs in the GPIB palette are GPIB Read and GPIB Write. These
two VlIs are the basis for any program using GPIB instruments. There are also VIs
used to wait for a service request from the instrument (Wait for GPIB RQS), obtain
the status of the GPIB bus (GPIB Status), and initialize a specific GPIB bus (GPIB
Initialization). Among the remaining GPIB VIs, there is a GPIB Miscellaneous VI.
This VI allows you to execute a low-level GPIB command. The GPIB palette is
shown in Figure 5.2.

The GPIB 488.2 palette contains additional functions. The GPIB functions are
broken into five categories: single device functions, multiple device functions, low-
level I/O functions, bus management functions, and general functions. The single
device functions are VIs that communicate with a specific instrument or device.
Some of the functions include Device Clear, Read Status, and Trigger. The multiple
device functions communicate with several devices at the same time. The VIs define
which devices to communicate with through an array of addresses that are input.
This category of VIs includes VIs to clear a list of devices, enable remote, trigger
a list of VIs, and VIs to perform serial or parallel polls of the devices.

Low-level I/0 VIs allow you to have more control over communications. The
VIs in this category include functions to read or write bytes from a device, send
GPIB command bytes, and configure a device in preparation to receive bytes. The
Bus Management functions are VIs used to either read the status of the bus or to
perform functions over the entire GPIB. The VIs in this category include VIs to find
all listeners on the GPIB, to reset the system, to determine the state of the SRQ line,
and to wait until an SRQ is asserted. Finally, the general functions are used to make
an address or to set the timeout period of the GPIB devices. The GPIB 488.2 palette
is shown in Figure 5.3.

5.1.2 SeriaAL COMMUNICATIONS

Serial port communications are in wide use today. One of the advantages of serial
communication versus other standards like GPIB is availability: every computer has

222 LabVIEW: Advanced Programming Techniques

4+ | 9, search

||| |
SEAny | (<R | || (g (Srmty| |Brmb | | <FER |<Lacs

ET | [CIEELy| |BEED| |<EE ey [«
BEE IEEE IBEE [EEEI| TET wT | \TEE B
A

FIGURE 5.3

a serial port. Another benefit to serial communications versus GPIB is the ability to
control instruments at a greater distance. The serial standard allows for a longer
cable length.

The most common serial standard is RS-232C. This protocol requires transmit,
receive, and ground connections. There are other lines available for handshaking
functions, but they are not necessary for all applications. Macintosh serial ports use
RS-422A protocols. This protocol uses an additional pair of data lines. Due to the
additional data lines, the standard is capable of transmitting longer distances and
faster speeds reliably. There are other serial protocols available, but these are the
most widely used at this time.

The serial port VIs are in the Instrument I/O section of the Functions palette.
This subpalette consists of VIs used to read data from the serial port, write data to
the serial port, initialize the serial port, return the number of bytes available at the
serial port, and to set a serial port break. The Serial Port Initialize VI allows you to
configure the serial port’s settings. In order to have successful communications
between a serial port and a device, the settings of the port should match the device
settings. The settings available are buffer size, port number, baud rate, number of
data bits, number of stop bits, data parity and a flow control cluster. This flow control
cluster bundles together a number of
parameters, including a number of hand-
shaking settings. The Serial VI palette is
shown in Figure 5.4.

A programmer using the serial stan-
dard must ensure that the serial write
serin | fabooy | [sbo, || 24 does not overflow the buffer. Another

Bt | |wiE) | 6 |] issue is making sure all of the data is
g e “"5'”@ read from the serial port. There are a
> % @ number of LabVIEW built-in functions
designed to configure the buffer size and
to query the number of bytes available
at the serial port. Figure 5.5 shows a VI

4+ | 4 search

2 \iew

L5 (] LA5A [

b [

FIGURE 5.4

Drivers 223

[_} EEI.I,_., —~¥ib Strmg
VISA Session [LL2¥ = ' VISA Session Oul
L e : e Sasss = ~llerror out

b [status] ¢

FIGURE 5.5

written to read information from the serial port. This VI performs the read until all
of the desired data has been read.

There was a change in LabVIEW serial port communications starting in Lab-
VIEW 7. Whereas the older version of serial port VIs still work and can be found
in C:\Program Files\National Instruments\LabVIEW 8.0\vi.lib\Instr\serial.llb, the
main serial port VIs in the Serial palette were converted to VISA. In addition to the
VISA serial Vs, the legacy serial port VIs were also built on VISA communications.
This change requires that VISA be installed with LabVIEW even if your application
is only doing serial communications.

There are additional serial port standards, which would require a separate dis-
cussion. These standards are the Universal Serial Bus (USB) and Firewire (IEEE
1394). USB allows you to plug devices into a common port, and gives you the ability
to “hot swap” instruments. There are a number of hardware devices available that
are USB capable. In addition, National Instruments builds devices to take advantage
of this technology, including a GPIB-to-USB Controller. This external box connects
to the PC through the USB port and allows the user to connect up to 14 GPIB
instruments without having to have a GPIB port on the PC. This is especially useful
when using a laptop computer without I/O slots; the controller can plug into the
USB port. You can also find boxes available for adding serial ports to your computer
through a USB converter. The new serial ports look just like a standard serial port
to your computer. USB supports transfer speeds of 1.5 to 12Mbps.

Firewire is actually the Macintosh implementation of the IEEE 1394 standard.
Firewire is a name brand like Coke or Kleenex. Firewire allows hot-swapping of
devices and can daisy-chain up to 16 devices. The main benefit to Firewire is speed.
The 1394a Firewire standard boasts speeds of 100, 200, and 400 Mbits/Sec. Revi-
sions to the IEEE 1394 standard (1394b) allow for speeds of 800Mbps, 1.6 Gbps
and 3.2 Gbps. Currently, there are only 800Mbps devices commercially available.
The 1394b standard also increases the allowable cable length from 4.5m to 100m.

5.1.3 VXI

VME Extensions for Instrumentation (VXI) is a standard designed to support instru-
ment implementation on a card. VME is a popular bus architecture capable of data
rates of 40MB/s. VXI combines the speed of the VMEbus with the easy-to-use
command set of a GPIB instrument. The goal of VXI instrumentation is to produce

224 LabVIEW: Advanced Programming Techniques

a small, cost-reduced hardware system with standardized configuration and program-
ming. The VXI Plug&Play standards promote multi-vendor interchangeability by
standardizing the instrument commands for all VXI instruments. By implementing
instruments on cards, the size necessary to implement a test station can be greatly
reduced. The ability to implement a number of instruments in a small frame allow
the test developer to create a test site in places that were not practical before, freeing
up resources for other applications. The VXI standard also gives the user the flexi-
bility of custom solutions. Cards can be made and utilized to implement solutions
that are not available off the shelf. The VXI VIs are contained in a subpalette of the
Instrument I/O palette.

NI advises against using VXI for new applications. The availability of VXI code
is only to maintain compatibility with existing applications. The push is to use VISA
functions for instrument communications going forward.

5.1.4 LXI

Due to users’ desire to be able to setup existing and new devices without having to
use special cables or controllers as well as to be able to reduce cost (specialized
VXI modules increase the cost due to lower volume), a new standard is being
developed. The LXI standard uses LAN (Ethernet) as the system backbone. This
has several benefits including the reduction in cost (no card cages or interface cards),
speed, and availability (every computer has a LAN port and many newer instruments
already have LAN support as well). This standard is still in the definition phase, but
has the support of the major instrument manufacturing companies. I think we will
be hearing more from LXI in the future.

5.1.5 VISA DErINITION

Virtual Instrument Software Architecture (VISA) is a standard Application Program-
ming Interface (API) for instrument I/O communication. VISA is a means for talking
to GPIB, VXI, or serial instruments. VISA is not LabVIEW specific, but is a standard
available to many languages. When a LabVIEW instrument driver uses VISA Write,
the appropriate driver for the type of communication being used is called. This
allows the same API to control a number of instruments of different types. A VI
written to perform a write to an instrument will not need to be changed if the user
switches from a GPIB to a serial device. Only the resource name must be modified
where Instrument Open is used.

Another benefit of using VISA is platform independence. Different platforms
have different definitions for items, like the size of an integer variable. The pro-
grammer will not have to worry about this type of issue; VISA will perform the
necessary conversions. Figure 5.6 is a side-by-side comparison of GPIB and a
VISA driver.

As is seen in Figure 5.6, the main work in a VISA application is in the initial-
ization. GPIB communications require the address string to be passed everywhere
a driver is called. If there were a change in the instrument, like using a serial
instrument instead of a GPIB instrument, a large application would require consid-

Drivers 225

GPIB DRIVER EXAMPLE VI

J«[False P
%.;:SAN:CFR %.6F
Center Frequency @:
&
Units FME i & |- status
o (12 code
| Error writing GPIB command source
address string
abc :
errorin - e ol .. -2}_, f—{ =221 error out
Fan A 55 i
VISA DRIVER EXAMPLE VI
e False v}
%.;:SAN:CFR %.GE]
[Enl
[5%%] .':
Center Frequency [514 o |
i I
Units o ; =
VISA IN [==3
= status i i""’:"b‘iﬂ-\ VISA Out
error in [t Wi -»==error out
FIGURE 5.6

erable changes. All the drivers would have to be changed. An application using VISA
would require changing only the input to the VISA Open V1. The resulting instrument
reference would still be valid for the VISA drivers, requiring no change. VISA drivers
offer flexibility.

The VISA driver VIs are located in the Instrument I/O section of the Functions
palette. The VISA subpalette contains a wide range of program functions. In the
main palette are the standard VISA driver VIs. These VIs allow you to open a
communication session, read and write data, assert a trigger, and close communica-
tions. In addition to the standard VISA VIs, there are a number of advanced VISA
functions. These are contained in the VISA Advanced subpalette and three subpal-
ettes on the Advanced palette.

The first subpalette on the VISA Advanced palette is the Bus/Interface subpalette.
It contains VIs used to deal with interface-specific needs. There are VIs to set the
serial buffer size, flush the serial buffer, and send a serial break. The VISA GPIB

226 LabVIEW: Advanced Programming Techniques

[x] |l VISA Advanced

(L] LA + » LA l-l'n'.'.’-'.ﬂ LA

abo-, | |abow, | T -:;_ Ehtl
—p

wEd |r =] 2 [F

LEA LA LAEA

CLk || 5T || TRE W @

K = | 3 =T | = =T

e e o
=i &~
WG| g | Event

] I.ul'n'S.-’]
g
e [E0]| |4 REEI

FIGURE 5.7

Control REN (Remote Enable) VI allows you to control the REN interface line based
on the specified mode. The VISA VXI CMD or Query VI allows you to send a
command or query, or receive a response to a previously sent query based on the
mode input.

The next subpalette is the Event Handling palette. The VIs in this palette act on
specified events. Examples of events are triggers, VXI signals, or service requests.
Finally, the Register Access subpalette allows you to read, write, and move specified-
length words of data from a specified address. The Low-Level Register Access
subpalette allows you to peek and poke specified bit length values from specified
register addresses. The VISA palette is shown in Figure 5.7.

5.1.6 DDE

Dynamic Data Exchange (DDE) is a method of communication between Windows
applications. This communication standard is no longer supported in the current
versions of LabVIEW. The following text discusses support in earlier versions of
LabVIEW.

In DDE communications, there is a server and a client application. The DDE
client is the program that is requesting data or sending a command to the DDE
server. Assuming both applications are open, the client first establishes communi-
cation with the server. Connections are called “conversations.” The client can then
request the server to send or modify any named data. The client can also send
commands or data to the server. A client can either request data or request to be
advised of data changes for monitoring purposes. Like the other forms of commu-
nication, when all tasks have been completed, the client must close communication
with the server.

LabVIEW can act as the server or the client. One example of LabVIEW acting
as a client would be a VI that obtains data from an Excel spreadsheet or writes the
data to the spreadsheet. If LabVIEW is acting as a server, another Windows program
could open and run a VI, taking the data obtained to perform a task.

Drivers 227

The DDE VIs are in the Communications palette. There are VIs for opening and
closing conversations, and performing advise functions, requests, and executions. In
addition to the DDE function drivers, there is a subpalette contained in the DDE
palette. This subpalette contains the DDE server functions. These functions are used
to register and unregister DDE service and items. There are also VIs used to set and
check items.

5.1.7 OLE

OLE, like DDE, is no longer supported in the current versions of LabVIEW. The
following text discusses support in earlier versions of LabVIEW.

Object Linking and Embedding (OLE), or automation, is the ability to place
objects from other software programs into another application. This ability allows
both the expansion of the program’s abilities and the ability to manipulate data in
another application. An example of this would be taking a movie clip (AVI file) and
embedding it in a Word file. Even though Word has no idea what a movie clip is,
it can display it in the word processing environment. OLE is a method by which
objects can be transferred between applications.

OLE works with objects using a standard known as the Component Object Model
(COM). The COM standard defines common ways to access application objects to
determine if an object is in use, is error reporting, or if there is object exchange
between applications, and a way to identify objects to associate them with specific
applications. OLE is a superset of the ActiveX standard and uses the same VlIs.
There is an in-depth discussion of ActiveX with examples in Chapter 8.

5.1.8 TCP/IP

There are three main protocols for communication across networks: Transmission
Control Protocol (TCP), Internet Protocol (IP), and User Datagram Protocol (UDP).
TCP is built on top of IP. TCP breaks the data into packets for the IP layer to send.
TCP also performs data checking to ensure the data arrives at its destination in a
singular, complete form. TCP/IP data consists of 20 bytes of IP information, followed
by 20 bytes of TCP information, followed by the data being sent. The TCP/IP
protocol can be used on all platforms of LabVIEW and BridgeVIEW.

Every computer on an IP network has a unique Internet address. This address
is a 32-bit integer, usually represented in the IP dotted-decimal notation. The address
is separated into 8-bit integers separated by decimal points. The Domain Name
Service (DNS) system is a database of IP addresses associated with unique names.
For instance, a user looking up the National Instruments Web site (www.ni.com)
will be routed to the appropriate IP address that corresponds to the name. This
process is known as “hostname resolution.”

There are a number of standards using TCP/IP that can be implemented using
LabVIEW. Telnet, SMTP, and POP3 are a few applications built using the TCP/IP
protocol. Telnet can be used for providing two-way communications between a local
and remote host. POP3 and SMTP are used to implement mail applications.

228 LabVIEW: Advanced Programming Techniques

4+ | <, search

=7 el [| e

TeF] (B T

] r
e | By
—Bm ETE_F| IEE} - s i @

FIGURE 5.8

With TCP/IP, the configuration of your computer depends on the system you
are working on. With Windows, UNIX, and Macintosh Version 7.5 and later, TCP/IP
is built in. For earlier versions of Macintosh Operating systems, the MacTCP driver
needs to be installed.

The TCP palette is located in the Communication section of the Function palette.
The VIs in the TCP palette allow you to open and close connections. Once the
connection is opened, you can read and write data through the VIs in the TCP palette.
There are also VIs to create a listener reference and wait on listener. The IP to string
function allows you to convert an IP address to a string. There is an input to this
function to specify if the address is using dot notation. A function to convert a string
to an IP address is also available. The VIs in this palette are shown in Figure 5.8.

5.1.9 DATASOCKET

DataSocket is a programming technology that facilitates data exchange between
applications and computers. Data can easily be transferred between applications over
an Internet connection. DataSocket is built using TCP/IP and ActiveX/COM tech-
nologies. The DataSocket server can reside on the local machine or on another
machine on the network. You can read data using DataSocket http, ftp, and local
files. DataSocket can also read in live data through a dstp (DataSocket transfer
protocol) connection. You also have the ability to control your LabVIEW application
through a Web interface by using CGI functions with DataSocket. The Shared
Variable in LabVIEW 8 is replacing the DataSocket functionality. Support of DataS-
ocket will remain, but new applications should start transitioning to the new variable.
The Shared Variable is discussed in detail in other chapters.

The DataSocket VIs are in a subpalette of the Communication section of the
Function palette. The DataSocket VIs work in the same way VISA or other standard
LabVIEW VIs operate. There are VIs for opening and closing connections. The
Open function will open communication based on the URL input and the access
mode input. The URL input must be one of the above-mentioned protocols. The
output of the Open function is a DataSocket reference. This reference is used in the
same manner as a typical connection refnum. The remaining VIs use this reference
to perform actions on the desired information. You can then read or write a string,
Boolean, integer, or a double value. If you want to read or write arrays of these data
types, the necessary VIs are available in the DataSocket Write and the DataSocket

Drivers 229

Select

FIGURE 5.9

Read subpalettes. The Advanced subpalette gives you the ability to read or write
variants. In addition to the variant functions, there are also low-level functions for
performing DataSocket communication. These functions include VIs to connect and
update data. Finally, there is a VI to control the DataSocket server programmatically.
You should also be able to access the DataSocket server from your Start menu under
the National Instruments DataSocket name. The DataSocket function palette is
shown in Figure 5.9.

If you want to perform live data updates, you first need to determine if the
DataSocket server is running on the local machine. The typical format for a local
write data to a DataSocket server is dstp://localhost/test. This assumes that “test” is
the label for the data you are writing to the server. If you are using a local server,
the DataSocket server will need to be launched through the function in the DataS-
ocket Advanced subpalette. Then, you will need to open a DataSocket connection
with Write Attribute selected. You can then write the data you want to share to the
DataSocket server. If you are running the DataSocket server on another computer,
the machine address will need to be in the DSTP address.

To read the data from the server, you will again need to determine if the server
is local or on a remote machine. Once you have the server name resolved, and have
a connection open to the server with the read attribute, you can use the Read
DataSocket VIs to read the data in. You will need to use the Update data VI if you
want to read new data after it has been written to the server.

To read and write static data, the process is the same. The only difference is the
URL used to connect to the DataSocket. Examples of a VI used to generate live
data to the DataSocket server, and a VI to read the data from the DataSocket server,
are shown in Figure 5.10. This example includes additional attributes. This allows
items like time and date stamps to accompany the data that is being transferred. The
DataSocket server is launched on the same PC as the Data Write VI. There are
additional examples in the LabVIEW on-line reference.

5.1.10 TrabiTioNAL DAQ

Data acquisition (DAQ), in simple terms, is the action of obtaining data from an
instrument or device. In most cases, DAQ is performed using plug-in boards to
collect data. These plug-in boards are made by a number of manufacturers, including

230 LabVIEW: Advanced Programming Techniques

DataSocket Write VI

{dstp:/flocalhost/datal

[Measurement! |Message| |Pass/Fail|
{ {
|% G |y &R error out
.................... (TS S— T — € r ..;.{.: |

[i0H @

[10.00}
|[Data Generated in loop

Stop Data Generator [iE8 - 12* [T

DataSocket Read VI

[Measuremenli [Message! [Pass/Faill [100

.,- J@j{[ﬁr o
| =

- Output
TR P 1 .. vn.'i. 3 s
b [status] =)
Individual Output
M Stop Data Reader v-[E

FIGURE 5.10

National Instruments. These DAQ boards perform a variety of tasks, including analog
measurements, digital measurements, and timing I/0. One convenience is the ability
to obtain boards for PC, Macintosh, and Sun workstations.

One of the benefits of using National Instruments boards is the availability of
NI-DAQ drivers for the boards. Although other manufacturers’ boards are compatible
with LabVIEW, the DAQ library will most likely not be compatible with the board.
Most board manufacturers do provide their own drivers for their equipment; some
even have drivers written in LabVIEW. Even if the code is not written in LabVIEW,
DLLs can be implemented by using the Call Library function. Code Interface Nodes
(CINs) can be used to implement drivers written in C source code.

The Data Acquisition subpalette is a part of the Functions palette. The Data
Acquisition palette is made up of six subpalettes: the Analog Input VIs, Analog
Output VIs, Digital I/O VIs, Counter VIs, Calibration and Configuration VIs, and
Signal Conditioning VIs. The Data Acquisition subpalette is shown in Figure 5.11.
Each of the subpalettes is comprised of a number of VIs of varying complexity and

Drivers 231

FIGURE 5.11

functionality. There are four levels of DAQ VIs. They are Easy VIs, Intermediate
VIs, Utility VIs, and Advanced VIs. As a rule, the Utility VIs are stored in their own
subpalette. The Advanced DAQ VIs are also stored in their own subpalette. The
main difference between the Easy VIs and the Intermediate VIs is the ability of the
Easy VIs to run as stand-alone functions. These VIs call the higher-level VIs to
perform the task. The Easy VIs allow you to pass in the device number and channel
numbers. The VIs will also perform error-handling functions to alert you if an error
has been encountered.

Let’s look at the Analog Input subpalette. The palette consists of the four types
of VIs described above. The Easy VIs include functions to acquire one or multiple
waveforms from an analog input. There are also functions for acquiring samples at
the designated channels. The Intermediate VIs allow you to configure the hardware
and associated settings, start an acquisition, read the buffered data, make single scan
acquisitions, and clear the analog input task. The Analog Input palette contains two
subpalettes. The first subpalette contains the Utility VIs. These VIs include functions
to initiate a single scan, a waveform scan, or a continuous scan. The second palette
contains the Advanced functions. The Advanced functions palette contains VIs to
perform configurations, read the buffer, set parameters, and control analog input
tasks. We could devote a number of chapters on DAQ functions, but the DAQ
functions are described in great detail in the NI Data Acquisition Basics manual.
We will not attempt to cover material that is concisely covered already.

5.1.11 NI-DAQmx

Whereas the traditional DAQ (Legacy) VIs have been used successfully to automate
data acquisition applications for more than a decade, support of new capabilities
and functional improvements resulted in the creation of DAQmx. DAQmx is a
superset of the DAQ Legacy VIs. You can still do all the functions that you used to
be able to do, but now you have additional features such as multithreaded execution,
additional driver functionality and configuration applications like DAQ assistant and
express VIs. DAQmx is available for Windows and Linux operating systems. NI-
DAQmx Base was created to provide a subset of DAQmx functionality for MAC
OSX, RTX and Pocket PC operating systems.

The first benefit of DAQmx is the support for newer devices. New devices for
data acquisition are continually created with added functionality over older model
devices. In order to support the new functionality new drivers will need to be created.

232 LabVIEW: Advanced Programming Techniques

The new drivers will be created for DAQmzx only. Although the support for traditional
NI-DAQ will continue, no new drivers will be created. In order to continue to develop
applications it is advised to use DAQmx in order to make sure the code will continue
to be supported.

In most cases DAQmx improves application speed. This is due to a couple of
new features. First, the legacy drivers ran only in a single thread. DAQmx now
supports multithreaded execution speeding applications that can do two or more
acquisition tasks in parallel. The second improvement in speed is by application
design. Now with more control over operations such as reserving resources and
configuration so that the user application can be designed to perform these operations
only when needed to reduce expensive overhead.

Finally, DAQmx tools can make application development easier. The ability to
use the express VI for configuring an acquisition task can shorten the amount of
time needed to get a test running. This can be valuable when the test program will
change often, and having to recode a VI each time a new test is needed could be
tedious. The DAQ Assistant is an application that can make coding easier by walking
you though each step of building an acquisition task step by step. An example will
now be shown for a simple read of information from an analog voltage input from
a DAQ card.

The first step for the example is to set up the hardware. The hardware setup is
done in the measurement automation explorer (MAX). Under the Devices and
Interfaces folder all available hardware should be shown. Any installed DAQ cards
should show up here. If you are developing the application at your desk before
installing it on your acquisition system, your device will not be here. You can add
a device with the drivers for your hardware, or you can create a simulated device
in order to be able to develop and test your application. You can do this by right
clicking on the folder and selecting Create New. Here you can select the appropriate
drivers. Once you have the device selected you can configure settings such as initial
settings and connector type. For this example we have created a simulated DAQ
card (PCI-6220) at DEV1. The MAX window is shown in Figure 5.12.

Now on the code diagram the DAQ Assistant will be selected from the input
palette under the Express Palette. The initial DAQ Assistant interface that automat-
ically launches is shown in Figure 5.13. For this example we are going to select
Voltage under the Analog Input heading. After selecting the type of acquisition the
input screen gives you the options to set up what hardware channels to use. The
available information is based on what has been already set up in MAX. Here I am
able to select specific analog input lines on DEV1 (the simulated 6620 card).

Now that you have completed the initial setup the DAQ assistant opens a window
for configuring the channel parameters. This interface is shown in Figure 5.14. Here
you can add, remove and test the channels to make sure you have all the settings
needed. There is another tab on the bottom of the window. This tab will show the
connection diagram. Here you can select each channel and see what wires are
connected based on the defined DEV1 connector in MAX. This window is shown
in Figure 5.15. Once configuration is complete the resulting DAQ block will be on
the code diagram. The block is the standard Express VI block with the blue border.
Now you can wire controls to any inputs you want to be able to change. The output

Drivers 233

¥ DAQ Assistant0 - Measurement & Automation Explorer
File Edt View Tools Help

Configuration
EE Y] My System

P-Test + Add Channels X Remove Channels <¥Show Help

=@ Data Neighborhood e
#-* FieldPoint Ttems (untitled Show Detais Vokage Input.Setup
=@ NI-DAQmX Tasks Settings | %, Calbration
{3 DAQ Assistant0 wolloge) -
& DA Assistantl Voltagel S\gna\rlnpu-k Range Scaled Units
Devices and Interfaces Voltage2 Max 10 ok =
=@ NI-DAQmX Devices Voltage3 Min | ol | L 2
& PCI-6220: "Dev1” Voltages = —

¥ PCL-6032E: "Dev2”
¥ Y Ports (Serial & Paralel)

o P System (Unkdentfied Terminal Configuration

Scales e
: Software L Differential |
+ @ 11 Drivers Cifck the Add Channels Custom Scalng
» £9 Remote Systems lszf_""f,mﬁdf e = | <NoScae> v f/@
T ~
Task Timing | L Task Triggering
Acquisition Mode
O
‘I’ i ::p: E(:CVDT?::;;) Clock settings -
= P! Samples To Read | 100
Z'N samples =
2 Continuous Rate (Hz)| 1k
Advanced Clock Settings -
LOCK Iype Actve Edge Source
| Ri
v

< 5| [3 NHDAGMx Task [22 Connection Diagram

FIGURE 5.12

Create New...

NI-DAQ

FNATIDNAL .
DAQ Assistant ! MENTS

Select the measurement type for the task. ¥ Analog Input

Tock s i HBle e aalirs Rt Hpes Frthin s Sing e sk @ Vottage
you must first create tha task vith one measurement type. >
After you create the task, click the Add Channels button to Temperature
add 2 new measurement type to the task. :
&% Strain
&) current
4§} Resistance
% Frequency
) Position

¥ acceleration
9 Custom Voltage with Excitation
¥ Sound Pressure

Analog Output

Counter Input

Counter Qutput

Digial /O

TEDS

g vVVVww

| | i | cance

FIGURE 5.13

iques

Advanced Programming Techn

LabVIEW

234

SL'S [NOH

vL'S NOH

jeaues %0

v

dpzH moys
@n

-
‘@ m|a] m|a [0‘0 Q @|e a w‘a [} w|

|9 s‘e Q U‘@ =] W‘B [} o‘e Q a|@ (3 a‘
o
g

‘-es‘wvw‘wcs‘analsas‘
@
3

mw|eﬁa|vun‘u@@|csu‘mwu
I

[

ag-xaL

FE/89-XEL

~HO/abeyon

89/89-XEL

+HO/abeyon

<Juod

TI00d

151 SU0RPAUU0D

SINIWNYLSNI
TYNOILVN.

“TIALH 01 3nes (R

~

£abeyon
zabeyon
Tabeyon

}Sel ul spuueyD

weibelq uogasuuo) ' yse| ssaldxg mw)

bd

|2auE] pi[0]

weiBeiq uogasuuog %_ Y5 | sseldg i)

Buisny [~ pwaur |

32.n0s 20D abp3 aanow adA1 »oon

sBUmas oD paoueapy

BT (zH) 2324 SnONURUOD ()
; ; dui 0
00T |peays oy saidwes el

sBumas oD

(pawuil pmH) 3jdwes 1
(puewaqg uo) dwes 1
3poly uoasinkoy

Bupabbu] ysel |E|m Buiy ysep

JURISISSY DVA 4

digH Mous

uoneigied de_ sBumas

— - ~ e
s <dmsoN> | /01 ppe o] uopng
Bujeds woysn SELLeLD PRV 47 340
|~ |enualaya |
uoneInByuoD [euiLLR L
e yabeyon
|o1- U
= T ks | cabeyon
= = ..DH | Xel zabeyon
SN paeas abuey ndur jeufis Tabeyon
0abeyon

dnyas andug 26eyon |, !u@mﬁiaﬁ

SPUUBLD BAOWY SRUUBLD PpY 1531
X + «

opun
(=]

ESISSY OVA &

Drivers 235

waveform can be connected to the DAQ Assistant block output. Running the VI
produces a graph of the input channels.

Some people do not like to use the express VIs because the code is hidden from
the user. You have two options. You can wire the application using the DAQmx
subVlIs the same way you would use the Legacy DAQ VIs or you can configure the
application with the DAQ assistant above and choose to generate DAQmx code by
right clicking on the icon. Figure 5.16 shows a simple single channel analog input
acquisition. Notice the DAQmx VIs are polymorphic. A polymorphic VI is a VI that
can perform different functions based on an input value. In this case there is a VI
for creating a channel. In this instance analog input is selected, so the VI will create
an analog input voltage channel. If the programmer changed the text below to read
analog output voltage (AO Voltage) an analog output voltage channel would be
created. This setting can be changed by right clicking on the text selector at the
bottom of the VI as is shown in Figure 5.17. This is another way to make program-
ming easier. The same code can be used for different applications by changing the
functionality of the polymorphic VIs without having to insert a new VL.

5.1.12 Fue l/0

File input and output is a type of driver that people do not often think of. The ability
to read data from a file and write data to a file in many ways is similar to reading
data from and writing data to a GPIB instrument. You require a means to identify
the file you want to communicate with. Instead of a GPIB address you have a file
path. You also need to be able to transfer data from one place to another. Instead of
passing data between the computer and the GPIB instrument, you are passing data
between the LabVIEW program and a file. The File I/O functions are very similar
to instrument or communication drivers.

The File I/O VIs can be found in the File I/O section of the Function palette.
This subpalette contains a number of file functions as well as subpalettes containing
VIs pertaining to binary files, file constants, configuration files, and advanced file
functions. The standard file I/O functions include VIs for opening/creating a file,
reading data from a file, writing data to a file, and closing a file. In addition to these
functions, there are VIs for writing and reading data from a spreadsheet file, writing
or reading characters from a file, and reading lines from a file. The File I/O palette
is shown in Figure 5.18.

There are two remaining functions that are included with the standard file I/O
functions. The first VI allows you to build a file path. This VI creates a new file
path by appending the file name or relative path from the string input to the base
path. The default value of the base path is an empty path. The result is the combined
file path. If there is a problem in one or both of the inputs, the VI will return “not-
a-path.” The second function takes a file path and breaks it apart. The last section
of the path is wired out as a string filename. The remainder of the path is wired out
as a path. The VI will output an empty string and “not-a-path” if there is an invalid
input. The binary file VIs allow you to read and write 1- or 2-D arrays of data to
a byte stream file. The byte stream file can be in a signed word format or a single
precision format. The configuration file palette contains VIs used to read and modify

LabVIEW: Advanced Programming Techniques

236

dwegn ueydl
“ wyp Bojeuy
] P
[< sBuiuzem + doys/anunuod] H 000}
IndinQ Juswainsespy

e louuey [edlshyd
faa]] NJeA WNWIXe
waa]] anfeA WnWiUI

so|dweg

9IL'S ANDIHH

Drivers 237

P DAOmx example.vi Elock Diagram

Fe Edi View Project Operate Took Window Hop

Minmum Yahie

Masirnum Value:
Fhysical Channe/[T8 T e B e R L

Ll Anaiog Wim '1
Analog Output » Temperature b 1Chan Nsamp |
Digital Input Current
Digital Output Resktance
Counterinput » Stran 3
Counter Qutput » Frequency 3
T Poston r
Acceleration 3
Sound Fressure b
More v 5
@ TEDS v 5

FIGURE 5.17

Advanced File Functions E]
4t | 4 search | & view

D [P s [D]
o o e

BN s

.-, D% R0 O E=

N » R
Ll B Hle
'8)se

FIGURE 5.18 FIGURE 5.19

information in the configuration files. The File Constants palette contains VIs that
allow you to access the current directories, paths, or VI library directories. In
addition to these functions, there are constants that can be used to create inputs to
the file I/O Vls.

The Configuration Files Palette contains VIs used to read from and write to INI
formatted files. These VIs can be very useful when requesting configuration infor-
mation from a user to set up the code execution. Using these VIs you can save the
settings that the user had entered to be loaded the next time the application is run
so that the user does not have to reenter all the information. There could even be
options to save configurations in the event there may be multiple setups needed.

The Advanced palette contains VIs that perform a number of file-related tasks.
The Advanced palette is shown in Figure 5.19. The File Dialog function displays
the file dialog box for the user to select a file. The output is the path of the file

238 LabVIEW: Advanced Programming Techniques

selected. The Open File VI allows you to specify a datalog type. There is a function
used to find the offset of the end of file (EOF). The seek function allows you to
begin a file in a position other than the beginning of the file. There are VIs used to
set access rights for a specified file, as well as to find out information on the file,
directory, or volume.

There is a set of five VIs in the Advanced palette that performs actions on
directories. There is a VI that allows you to move a file or directory. There are also
VIs that allow you to copy a file or directory, as well as delete a file or directory.
The New Directory function allows you to create a directory at the specified path.
The List Directory function lists all of the file names and directory names that are
found in the directory path.

The final set of functions in the Advanced palette are VIs used to convert between
strings and paths. The functions can perform the functions on a single string or an
array of strings. There is also a VI that converts a refnum to a path. These VIs are
useful when converting string paths created by the user in a user interface to a file
path to perform file functions.

We will now give a quick example of how to read and write data when dealing
with datalog files. The first step is to create the data type used for storing the data.
For this example we will be recording three distinct values per datalog value. The
first is the index of the data. This is simply the value of the For loop index used to
create the data. The second item in the data cluster is the data. The data for this
example is simply random numbers generated between 0 and 10. The final data type
used for the cluster is a date and time stamp. This value is written as a string. To
summarize, our data type consists of an integer, a real number, and a string.

The first step is to create the code to perform the data generation. The For loop
executes 100 iterations. Inside the For loop, the loop index, the test data, and the
time and date string are bundled into a cluster. This cluster is wired to the output of
the For loop, where auto indexing is enabled. When all the data has been collected,
the New File VI is used. The File Path contains the name and location of the file
you are writing the data to and will be needed when you want to retrieve the data.
The file path is the only required input. There are a number of other inputs to the
VI that can be wired, or left as default. To write and read datalog files, you will need
to wire a copy of the data format to the datalog type. Wiring the actual data to the
input, or wiring a constant with the same data type, can do this. The other inputs are
permissions, group, deny mode, and overwrite. The overwrite input for our example
will be given a “true” value. This allows the program to overwrite an existing file
with the same name as specified in the file path input. If the input were “false,” the
program would error out when trying to create a new file that already exists.

Once the file is created, the next step is to write the data out. The Write File VI
is used to send the collected data to the datalog file. The inputs of the Write File VI
include convert eol (end of line), header, refnum, positive mode, positive offset,
error in, and the data. The only required inputs are the refnum and data inputs. The
data from the For loop is wired to the data input. The final step of this subVI is to
close the file using the Close File VI.

The next step is to create a VI to read the data back from the file. In this VI,
the Open File function is used to create a connection to the file. The File Path input

Drivers 239

Create Logfile VI

file path
Ei. »lm error out

errorin
[Ea & Mo

Read Logfile VI

&rror in. e P
[S — [1] . Bx . error out.

e BEa & |

FIGURE 5.20

is used to point the VI to the datalog file. In addition to the file path, the data type
is wired to the Datalog Type input. This data type needs to match the data type of
the cluster we wrote to the file. This allows you to read the information back in the
appropriate format. In addition to the datalog type and file path, you can set the
open mode and deny mode for the file. This allows you to determine the file
permissions. Once the file is opened, you need to use the Read File function. This
VIis used to acquire the data from the file, and write the data to an indicator. Again,
the final step is to close the file. The code diagram for the Datalog Write VI and the
Datalog Read VI is shown in Figure 5.20.

5.1.13 Cobe INTERFACE NODE AND CALL LiBRARY FUNCTION

LabVIEW has the ability to execute code written in C as well as to execute functions
saved in a DLL. There are two methods for calling outside code. The programmer can
call code written in a text-based language like C using a Code Interface Node (CIN).
The programmer also has the ability to call a function in a DLL or shared library
through the use of the Call Library function. A short description of each will follow.

240 LabVIEW: Advanced Programming Techniques

The CIN is similar in some respects to a subVI. The CIN is an object on the
block diagram of a VI. The programmer can enter inputs required to execute a
function, and wire the outputs of the CIN to the remainder of the program. The main
difference is a subVI is code written in the G language to perform a function, whereas
the CIN executes text-based code to perform the function. The CIN is linked to
compiled source code. When the execution of a block diagram comes to the CIN,
LabVIEW calls the executable code, returning the final outputs to the VI.

There are a number of reasons for using the Code Interface Node. One benefit
is the ability to use existing code in your LabVIEW program. If a function is already
written in C, you have the ability to integrate the code into your LabVIEW program
to reduce development time. Another benefit to using a CIN is to expand the
functionality of LabVIEW. Certain system functions that do not have corresponding
LabVIEW functions can be implemented using code written in C. This can help a
programmer to perform low-level programming with LabVIEW’s graphic-based
interface. A final consideration for using CINs is speed. Whereas LabVIEW is fast
enough for most programming tasks, certain time-critical operations such as data
acquisition and manipulation can be done more efficiently in a programming lan-
guage like C. The use of the CIN allows the programmer to use the right tool for
the right job.

The ability to use prewritten code is a key to reducing development time.
Functions to perform many Windows functions have already been written. These
functions are typically written in C, and are stored in Dynamic Link Libraries
(DLLs). LabVIEW can call these Windows functions in two ways. The first way is
through the use of a Code Interface Node. An easier method for calling DLL
functions is through the use of the Call Library function. The main difference
between calling C code in a CIN and using the Call Library function to call a DLL
is the integration of the source code. When using a DLL, the code remains in its
library; it is not copied into the executable files of the application. The other obvious
difference is the fact that DLLs are Windows-specific, whereas the Code Interface
Node can be used across platforms.

For more information on the Code Interface Node, the Code Interface Reference
Manual can be found on National Instruments’ Web site. The PDF file covers how
to integrate a CIN on any platform. For information on using DLLs, there is an
application note on the NI Web page. Application Note 087, “Writing Win32
Dynamic Link Libraries (DLLs) and calling them from LabVIEW,” discusses the
methods for using DLLs.

5.2 DRIVER CLASSIFICATIONS

There are three main functions a driver performs. The three types correspond to the
three main purposes of a driver: configure an instrument, take a measurement, or
check the status. These three main types of drivers will be discussed below. When
creating driver VIs, National Instruments recommends a standard format the drivers
should follow. Driver libraries should contain the following functions: Initialize,
Configure, Action/Status, Data, Utility, and Close.

Drivers 241

5.2.1 CONFIGURATION DRIVERS

The first type of driver is a Configure VI. These VIs should open or close commu-
nications with the instrument, initialize the instrument, or configure the instrument
for the desired use. The Initialize driver first performs the initial communications.
This should include opening a VISA session if VISA is being used. The Initialize
driver can also perform instrument setup and initial configurations. This can allow
the instrument to begin in a known or standard state. The Configuration Instrument
drivers send the necessary commands to the instrument to place the instrument into
the state required to make the desired measurements. There may be a number of
configuration VIs for a particular instrument, logically grouped by function or related
purpose. The Close driver closes the instrument communication, the VISA handle,
and any other required items to complete the testing process. It is important to close
the instrument communications, especially when doing serial and TCP communica-
tions. When a serial port is open, no other applications can use the port. If the port
is not closed, the port is inaccessible until LabVIEW is closed. With TCP, when you
connect to another machine, the port on that machine will stay open unless you close
the session or the session time out.

5.2.2 MEASUREMENT DRIVERS

Measurement drivers are used to take measurements or read specific data from the
instrument. The user should be aware that a data driver does not always require
reading data from an instrument. The data driver could also be used to provide data
to an instrument, like sending a waveform to a signal generator. It is important to
note that only one measurement should be taken per driver. This is done to promote
reusability as well as to ensure the application speed is not compromised by taking
unneeded measurements.

5.2.3 StAaTUS DRIVERS

The action/status drivers are used to start or stop a specified process, check errors,
and general instrument-related information. One example would be a VI written to
start and stop a Bit Error Rate (BER) test or a waveform capture from a spectrum
analyzer. Another example is checking a status register to find out if a test that has
been initiated is completed so the result can be read from the instrument. The VI
would not change any of the instrument configurations, only the initiation or termi-
nation tasks are performed. As checking the status of an instrument can require the
instrument to be reset, a set of utility drivers should also be designed. The utility
drivers are used to perform tasks such as reset, self-test, etc.

5.3 INPUTS/OUTPUTS

An important aspect of a driver is the interface with the calling VIs. There are a
number of standard inputs and outputs for drivers. The Error In and Error Out clusters
are the most important I/Os in a driver. These clusters have three components. For

242 LabVIEW: Advanced Programming Techniques

the Error In cluster, the first control is a status Boolean control; a “true” indicates
there is an error. The second is a numeric control to display an error code. The final
control is a source string. This string can indicate where an error occurred. There
are two primary reasons for using the Error In and Out clusters. The first reason is
obviously error handling. If an error has already occurred in a program, the Error
In cluster will pass this information to the driver, preventing the execution of the
intended task. The error cluster can also pass error information out of the driver if
an error occurred while the driver was executing. A discussion of error handling is
described in the following section.

The second reason for using the Error In and Out clusters is flow control. The
wiring of the Error Out of one VI to the Error In of another forces the order of
execution because of data dependency. For example, an instrument needs to be
configured prior to taking a measurement. Wiring the Error Out of the configuration
driver to the Error In of the Measurement driver forces the order of execution.

The other required inputs are the instrument communication handles. Depending
on the communication VIs being used, a number of different inputs could be used.
We suggest using VISA standards in your drivers. This will allow the same driver
format regardless of what type of communication is used to address your instrument
or device. The standard method for wiring the connector pane has the VISA session
in and out in the top left and right positions, respectively. The Error In and Out are
in the bottom left and right positions, respectively. This consistency of location
makes connections easier to wire and find.

For readability and ease of use, the programmer should use as few inputs and
outputs to a driver VI as possible. The use of clusters should be avoided unless the
information is packaged in a form that other subVIs would use like the error cluster.
If the cluster is not passed on, the main program will need to bundle and unbundle
the items. This can obscure the intention of the code and complicate the code
diagram. Additionally, the complex data type will have an effect on performance.

5.4 ERROR HANDLING

Error handling is one of the most important considerations when a programming
task is begun. For this reason there is an entire chapter in this book dedicated to
error handling. This section will just highlight some of the driver-specific error-
handling issues.

The main error handling that should be performed in the driver is the detection
of errors that are passed in. If an error is passed into a driver, the driver should not
execute any tasks. The driver should consist of a case statement controlled by the
status field of the error cluster. The driver code would then execute only if no error
passed in. When an error is passed into a driver, the instrument communication VIs
will not execute if an error cluster is passed to them. Error processing should only
occur in the upper levels of the program, as prescribed by the three-tiered design
architecture. The benefit of not processing errors in the driver is the ability of the
driver to be reused. If error processing is performed in the driver, the results of the
processing may not be applicable to a new program using this driver. Doing error

Drivers 243

»iic | String
i) VISA Out
==L} lerror out

write buffer ()5
VISA Session

error in2

FIGURE 5.21

processing in the driver would cut down on code reuse. An example of the use of
this “bypass” is shown in Figure 5.21.

The next issue with error processing in drivers is the implementation of timeouts.
A driver should have a way out. If a driver is written to read the status of a register
through the use of a While loop to read the data from the device, there should be a
way to exit after a specified time if the desired response does not occur. This can
result in setting an error if the program will not function without the desired value.

In writing applications that read data from a device, you should add code to
ensure that any errors that occur during the data acquisition are handled in an
appropriate manner. For example, assume you are reading data from a serial instru-
ment. In this example you are reading the information from the serial port until the
desired data is read. To perform this task, the read operation is in a While loop that
is executing until the desired input is read. When the desired input is received, a
“false” Boolean is wired to the conditional terminal of the While loop. If an error
would occur, the desired input would never be received, resulting in the While loop
continuing to execute until you stop the application. You should check the Boolean
value of the error cluster in each iteration of the While loop to check for an error.
The result of this error check can be combined with the result of the data check to
determine whether to execute another iteration of the While loop. The Boolean from
the error cluster and the data check can be combined through the Boolean logic
functions to control the conditional terminal of the While loop. An example showing
all three of the above-mentioned techniques is shown in Figure 5.22.

14| False 'Ej

write buffer (™) 25 —{w-] String
VISA Session[222H {iza]) VISA Out
EITOT iN[EEif g S i ST M — - s P
b [Sfatsy

m |Com§|ete 1> %> G

FIGURE 5.22

244 LabVIEW: Advanced Programming Techniques

One type of error detection that should be mentioned is the ability to set error
traps in the driver code for debugging purposes. During the development stages of
a driver, “traps” can be put in place to trap and isolate errors. This can lead to faster
error detection for the purpose of debugging the driver being developed. These traps
can be either disabled or removed when the driver development has been completed.
Some instances of error traps can be simply collecting the data being read in from
a serial port, and saving the data to be reviewed by the developer. As some errors
will only occur when running at full speed, recording the data for later analysis
could be of great benefit. The recording of this same data would be considered
unnecessary in the final driver version, hence the need for an error trap. Once the
driver has been fully debugged, the trap can be eliminated. Data logging, discussed
in the error-handling chapter, is a similar tool that allows you to save and view data
after the VI has been executed.

When measurements are being made in a loop, or setup is being performed in
a state machine, care needs to be taken with error handling. There should always
be a shift register passing the error cluster to each iteration. When this is forgotten,
errors become difficult to track because the error cluster gets cleared with the next
iteration of the While or For loop.

5.5 NI SPY

It is difficult at times to debug drivers. Commands are sent to the instrument by the
program, but are the parameters correct, how long do the calls take, is there a problem
with the instrument, etc.? The developer performing the application debugging needs
a way to monitor and verify that the program is doing what was intended. One tool
provided by National Instruments can aid in code verification. The NI Spy utility is
an application that monitors, records, and displays API calls made by National
Instruments applications. The NI Spy can be used to locate and analyze any erroneous
API calls that your application makes, and to verify that the instrument communi-
cation is correct.

5.5.1 NI Spy INTRODUCTION

The NI Spy program is similar to a GPIB analyzer. The NI Spy displays function
call names, parameters, and GPIB status as the developer’s program executes calls.
The NI Spy allows access to information like the contents of data buffers, process
and thread IDs, and time stamps for the start and finish times of the function calls.
The spy program can also create a log of the information, although this can produce
a significant performance loss.

5.5.2 CoNFIGURING NI Spy

The first step is to open the NI Spy program. If you go to the Start menu of your
computer and then to the Programs folder, there should be a folder labeled National
Instruments and there should be an icon for the NI Spy. When this icon is selected,
the window shown in Figure 5.23 comes up. In the title bar, the name “NI Spy”

Drivers 245

‘ Hi 5py - [capture on] |'._|[I:||[RI

Fle Edt View Spy Help
|] il 0] & @

MNunber

Statis iberr bentl Trni

NDMM_SetAttributelnk32 [
nNDMM_Read ((w0000004E,
NDMM_Read (Io0000004E,
NDMM_Read (Dn0CO0004E, -1,
nCHM_cose {OxC000004E])

Dm A e

Far Help, press F1 Captured: 9, Deplayed: &

FIGURE 5.23

should appear followed by the program’s status. In parentheses, the title bar will
indicate whether capture is on or off. By default, Capture is off when you open the
NI Spy application. Figure 5.23 shows the NI Spy window with Capture on.

Before starting the NI Spy program, the first step should be to configure the
options for the application. By selecting the Spy menu, the following options are
available to you: Start Capture, Options and Calculate Duration.

To modify the NI Spy capture options, select Options from the Spy menu. The
NI Spy options can be modified only when Capture is off. NI Spy, by default, displays
1000 calls in the Capture window, displays Small Buffers and does not enable file
logging. The Call History Depth option identifies how many API calls the NI Spy
will display. If more than the selected number of API calls are made, the Capture
window will show the most recent calls, discarding the calls at the beginning. If the
NI Spy program is unable to display all of the API calls due to low system memory,
a message box will appear giving the user the option to stop the capture or free up
system resources before continuing.

The Buffer Limit per Parameter selection allows you to choose between Small
or Large Buffer mode. The Small Buffer mode displays up to 64 bytes of data,
whereas the Large Buffer mode displays up to 64K bytes of data. For either of these
modes, if there is more data than the allowed buffer, the middle data will be removed.
For example, in the Full Buffer mode, the first 32K bytes and the last 32K bytes of
data will be displayed. A row of dashes between the two halves of the buffer is
inserted to indicate that part of the data has been omitted.

The File Logging selection in the NI Spy options allows the program to record
all calls to a log file. File logging is useful when debugging an application that
causes the system to crash. If file logging in the Fail-Safe Logging mode, you can
view the API calls that were captured prior to the system crash by opening the saved
log file. In order to use this function, a file name must be provided to store the
logged API calls. There are two modes of file logging available. The first is Fail-
Safe Logging. Fail-Safe Logging is a method of guaranteeing that the log file will
not be corrupted if the system crashes. The logging is accomplished by opening the
log file, writing the data, and closing the log file after each API call. It should be

246 LabVIEW: Advanced Programming Techniques

obvious that this method of logging the data is slow. If performance and time are
an issue, Fast Logging is available. This method of logging opens the file at the
start. The data from each call is written to the log file when the call is captured. The
file is not closed until the capture is stopped or logging is disabled. The Fast Logging
method of file logging is much faster than Fail-Safe Logging, but if your system
crashes, data will be lost.

If you have more than one National Instruments driver installed on your com-
puter, you can specify which APIs you want to spy on at any time. The View
Selections tab shows the API choices that are available to monitor. You also have a
choice of what columns to display. Types of National Instruments drivers are GPIB-
488.2, VISA, and IVI-type drivers. By default, all installed APIs are enabled. There
will be a check next to the API types selected for capture. You can omit any driver
on the list by clicking on the name; the check will be removed.

Finally, there is an Error tab for specifying what to do if an error occurs. You
have the option of ignoring errors, stopping if any error occurs or stopping only on
specific error parameters. The ability to pinpoint the specific breakpoint is a big plus
when trying to isolate an elusive fault.

5.5.3 RunNING NI Spy

There are three ways to start capturing API calls. The first is to select Start Capture
from the Spy menu. The second method is to click on the arrow button on the toolbar.
Finally, the user can press F8 to turn Capture on. Once you turn Capture on, you
can run your application. When you want to view the captured information you can
return to NI Spy to view the captured calls. To turn Capture off, click on the red
“X” button on the toolbar.

You can view the API calls in the main NI Spy window as NI Spy captures
them. The captured API calls are displayed in the order in which they are received.
There is one line of information displayed for each captured call. The information
includes the number of the call, a C-style function prototype, and the start time for
the call.

By using the Properties dialog box you can see detailed call information for
every captured API call. To see the properties of a specific call, double-click on
the call in the Capture window, right-click on the call and select properties, or
select Properties from the View menu. The Properties dialog box includes one to
five pages of detailed information on the captured call. All API captured calls have
a General tab, most captured calls have Input and Output tabs, some captured calls
have a buffer page, and some IVI captures can have an Interchange Warning tab.
The General section displays the process and threads IDs, the Windows handles,
and the start and stop time statistics. The Input page displays the API call’s input
parameter types and values. The Output section displays the parameters that were
returned after the call completion. The buffer page is present only for calls that
involve the transfer of a buffer of data; this page displays the contents of the data
buffer. Finally, the Interchange Warning section displays warnings about the spe-
cific call with respect to instrument interchangeability. This option is available for
IVI drivers.

Drivers 247

To search through the list of captured calls to find a specific string in the API
function names, parameter values, or any other string, select Find from the Edit menu.
Enter the text that you want to search for in the Find What box. Click the Find Next
button to find the next captured call containing the specified string. The Match Errors
Only selection can be used to limit the search to captured calls that have an error. If
no search string is specified, the search locates the next captured call that failed. The
Match Case selection specifies whether the search is case sensitive.

5.6 DRIVER GUIDELINES

Aside from the general driver information, there are a number of implementations
that can add robustness and reusability to a driver. This section will give an overview
of some of the functionality that should be added to a driver to accomplish the
desired results.

One guideline that should be followed is the method of making only one mea-
surement per driver. Since the programmer will want different measurements at
different times, the programmer should keep one measurement to a driver. This
allows the code to be reused easily. The user of the driver will not have to take a
number of measurements in order to receive one desired value. Making multiple
measurements when only one measurement is desired limits performance.

When developing a driver, the programmer should try to combine configuration
settings into logical groups. If configuring an RF generator requires setting four
different parameters every time, the configuration of those parameters should be in
a common driver. This would allow the user to set the generator with the appropriate
settings through the access of one driver.

When you are linking the controls and indicators to the connector panel of the
icon, you should choose a connector configuration that will provide extra connectors.
When all of the inputs and outputs have been wired, extra connectors allow for
expansion without disconnecting all existing connections. When a driver is already
called in a program, and if the programmer adds a new input or output, the user
will not have to rewire all of the existing connections. When there are extra con-
nectors, the existing connections do not change, allowing the current wiring to
remain unchanged.

5.7 REUSE AND DEVELOPMENT REDUCTION

The biggest benefit of developing quality drivers is the ability to reuse the drivers.
Even when the programmer does not expect to use a specific driver again in the
future, things change quickly. There is no better feeling in software development
than, when developing an application, you realize that the underlying code has
already been written. If a driver has been properly written, applications that are
completely different could still use the same driver. The ability to reuse code is the
biggest factor in cycle-time reduction. By not having to rewrite drivers, which
includes time to learn the equipment, coding, and debugging, the user can dramat-
ically reduce the time required to develop an application. Making drivers generic

248 LabVIEW: Advanced Programming Techniques

enough to reuse can require more time and effort up front, but the benefits that can
be realized are substantial.

There are many drivers for numerous instruments and manufacturers that have
already been written. The first place you can look for an instrument driver is on the
installation CD that came with your LabVIEW application. The second disk is a
disk of instrument drivers. In addition to these drivers, many of the drivers are
available on the National Instruments Web page. Not only is this resource a com-
prehensive list of drivers, but also they are the most recent versions. The National
Instruments ftp site is ftp.ni.com. Your login is “anonymous” and your password is
your Internet address.

Many drivers available on the National Instruments Web page have been sub-
mitted to NI and accepted for distribution. There are standards to which NI requires
all drivers submitted to adhere. Many of the standards have already been discussed,
and these standards can be found in the application note, AN106. As the drivers
have already been designed to the required standards, they should be easily inserted
into your application with no modification. This allows the programmer to concen-
trate on developing the application without concern about the underlying commu-
nications. This can lead to significant development time reduction.

For unusual or difficult-to-find instrument drivers, there are some other resources
available. The LabVIEW Info Group is a place you can try. The Info Group is a
large knowledge base that you can utilize. For subscription requests you can send
an e-mail to info-labview-on@labview.nhmfl.gov. To post a message to the Info
Group, send an e-mail to info-labview @labview.nhmfl.gov. There are also some
other user groups such as LAVA (LabVIEW Advanced Virtual Architects). There
are discussion groups as well as code examples available at the LAVA Website. The
LAVA address is lavausergroup.org.

5.8 DRIVER EXAMPLE

To tie together some of the driver techniques and guidelines, we will present an
example set of drivers. This set of drivers will communicate with Microsoft Word
using ActiveX. This example will create only a couple of relevant drivers for illus-
tration purposes. If you want more information on ActiveX, Chapters 7 and 8 will
give a detailed description and numerous examples.

The fist step is to define the task we want to accomplish. We will want to open
Word, create a new file, set the margins, set the page size, set the page orientation,
write text to the file, save the file, and close Word. The first step is to identify the
driver types needed. You will need configuration drivers and measurement drivers.
As configuration drivers perform instrument communication and configuration, the
VIs needed to open Word, close Word, and configure the settings will be contained
in these drivers. The action of reading or writing data to an instrument or application
requires measurement VIs. The write text to file will fall into this classification.

A driver to open an automation reference to Word will need to be created. This
action will be combined with the creation of a new file. This allows the user to open
Word with a new document in the initial step. The next driver to be created will
configure the page setup parameters. Most times when you are modifying a one-

Drivers 249

Add Add Out

error in =4 o

A= Document i
]

= PageSetup 5l -lc

BottomMargin [E&¥— &&= BotlomMargin
TopMargin [Eeiy—Emms———p TopMargin

RightMargin [y Eme P RightMargin

LeftMargin [E& E_j’ LeftMargin

VerticalAlignment =23} 'VertlcaIAllglnment
b PaperSize

PaperSize 3324 » PageHeight
PageHeight |Gt sm' P PageWidth
PageWidth [t _—r» Orientation

Orientation (=23

FIGURE 5.24

page setup parameter, you will want to modify additional page setup parameters.
This is a good place to combine the configuration settings into one subVI to facilitate
ease of programming. Not only will the programmer be able to see all of the input
parameters that can be changed in one location, but the driver can also ensure order
of execution. Some of the page setup parameters need to be modified after other
parameters have been set. For example, you need to modify the page style prior to
setting the orientation. The orientation setting will be reset after modifying the page
style. If you are placing individual VIs to set these parameters, you could forget or
be unaware of certain data dependencies, causing parameters to not be set in the
desired manor. The code diagram for the Page Setup Configuration VI is shown in
Figure 5.24. In addition to the data dependencies there are issues with data conver-
sions. For example, when writing a value to a margin input, you would attempt to
write data in inches. However, to get a margin value of one inch, a 72 needs to be
wired to the input of the property node. Inside the driver, there is a function to
convert an inch input to the required automation input. This allows you to abstract
this information from the person using the driver.

The Write Text VI takes a string input and inserts it into the file at the specified
index. If making multiple write statements, you could wire the end value from the
previous write to the start value of the current Write VI. This allows you to do
incremental data storage in the file. You would only want to have this VI write the
text to the file. Any additional functions added to this VI would limit your ability
to reuse the VI. For example, if you wanted to perform a spell check on the document,
you would have to perform this spell check each time text is written to the file. You
may want to check the spelling only after all of the text has been written to the file.
If the spell check function is in its own VI, you can invoke this function when you
need it. There is also the possibility you do not want to perform a spell check at all.
Measurement VIs should be in their own VIs unless you are sure you will always
want to do the multiple tasks together. An example using these VIs is shown in
Figure 5.25. In the example, Word is opened; a new file is created (testfile); some
of the page setup parameters are modified; two strings are written to the file,
separated by a time delay; and the file is closed. More information on controlling
Microsoft Word using ActiveX is included in Chapter 8.

250 LabVIEW: Advanced Programming Techniques

Word._Application
||'__:)__ [

[ciMestile doc] | % S T o] o o
error in : ? - 1 3] .‘" g =51

This is a test message. Welcome to LabVIEW| ioooooooc
Hello World.

| This is the second message written to the file.

FIGURE 5.25

5.9 INSTRUMENT 1I/O ASSISTANT

The instrument IO Assistant is a tool that can be used to set up communications
with an instrument or device. This tool is available in the Instrument IO palette.
When the tool is selected it places an Express VI on the code diagram. The config-
uration window will come up automatically (depending on your LabVIEW settings)
. Here you can select what connected device you want to communicate with and
configure any needed settings.

Now that you have configured your instrument you can add steps to the code.
If you click on add step you will have the choice of Query and Parse, Write, and
Read and Parse. In this example we are communicating with a switch. The code
will have the choice of opening or closing the switch and which channel to operate
on. For this example, Write has been selected. When you select Write, you can
configure several settings. Here two variables are added, a string to input open or
close and a number for channel. This input is shown in Figure 5.26.

Eli} Instrument 1/0O Assistant g
o > 2
Add Step Undo Run Show Help
Idle E= 7
e — % Run this step ‘
»® Select Instru... Enter & command (click Pun 1o send command) + s parsmete | X clar sl persmeters |
‘ tation
M o® Action - |ASCllonly v
M ® TestCha.. ¥
s= A ~Selected P Settings
8¢ Read and Pa Parameter narme Testvalue (and default valus)
Test Channel 2 =
Data type =
(@) ASCH
[E=5]] Feal ¥ OBinery

[Scientific notation
P S —

FIGURE 5.26

Drivers 251

You can continue to add read and write actions until you have completed the
needed actions. You can run the code directly from this interface or you can close
the window, which will update the express VI on the code diagram. You can connect
the inputs and outputs as needed and run the code from here.

5.10 IVI DRIVERS

IVI drivers were developed to allow hardware-independent test programs. In 1997,
a number of manufacturing companies approached National Instruments to develop
generic drivers that would be interchangeable. The IVI Foundation was a direct result
of this effort. The organization, made up of representatives from National Instruments
and a number of the instrument manufacturing companies including Hewlett Packard,
Tektronix, Rohde & Schwarz, and Anritsu, has developed a set of standards and
requirements for “generic” drivers. The IVI Foundation is an evolving group that is
open to end users and interested parties. Anyone who is interested in joining can
find more information on the IVI Foundation Web site (www.ivifoundation.org).

The goal of the IVI Foundation was to build upon the standards set by the VXI
Plug&Play Systems Alliance. The VXI Plug&Play standards promote multi-vendor
interoperability by standardizing the instrument commands for all VXI instruments.
IVI instruments go one step further by trying to standardize an instrument type
regardless of format. A power supply would have the same API regardless of the
standard (GPIB, Serial, VXI, other) or the manufacturer.

IVI drivers are not language specific. By using DLLs to convert the commands
from a uniform API to the required instrument code, there is a wide range of
programming languages that can be used. LabVIEW and LabWindows/CVTI are both
capable of using IVI drivers; however, the DLLSs can be written using only LabWin-
dows. Due to the use of DLLs, IVI drivers are not platform independent. If you do
not want to write your own drivers, or are not using LabWindows/CV]I, a library of
IVI drivers is available from National Instruments.

5.10.1 Cuasses ofF IVI DRrivers

The initial rollout of the IVI standards encompassed five classes of IVI drivers. The
current IVI standard includes eight classes of IVI drivers. The eight classes are the
DC Power Supply, Oscilloscope, Digital Multi-Meter (DMM), Arbitrary Wave-
form/Function Generator, Power Meter, RF Signal Generator, Spectrum Analyzer
and Switch. New classes may be defined as the technology advances.

Let’s look at the DMM class as an example. The IVI driver for the DMM class
(IviDmm) is designed to operate a typical DMM, as well as support advanced
functions found in the more complex instruments. The IVI class description divides
the DMM into two sections: fundamental capabilities and extensions. The funda-
mental capabilities cover functions like reading a measurement or setting a range.
An extended capability would be like setting auto-range, making multiple measure-
ments, or other advanced features not available on all DMMs. For the DMM, there
are fourteen groups defined (13 extension groups). Groups refer to the defined
classification of commands. Examples of extension groups are IviDmmMultiPoint

252 LabVIEW: Advanced Programming Techniques

and IviDmmDevicelnfo. The IviDmmMultiPoint extension group supports the base
DMM functions and also the ability to accept multiple triggers and acquire multiple
samples per trigger. The IviDmmDevicelnfo extension group supports the base
DMM functions and also the ability to return additional information concerning the
instrument’s state, such as accuracy and aperture time. Documentation on all the
IVI classes and their groups is available on the IVI Foundation website.

5.10.2 INTERCHANGEABILITY

This section will discuss how IVI drivers allow for instrument interchangeability.
One problem that has been seen in production testing for a long time is the lack of
instrument interchangeability. This problem can arise for a number of reasons. An
instrument that needs to be taken out for calibration or maintenance is one example.
Other possible scenarios are when an instrument needs to be replaced and is no
longer available; if the test system developer wants to use an instrument from another
manufacturer; if the test software is going to be used by a group in another area
with their own set of instruments. These issues are problems because the test software
would have to be altered to replace an instrument with one from another manufac-
turer, or a newer model with new functions and commands. These problems force
test system developers to stay with the same system instead of improving or cost
reducing. The ability to change instruments would allow greater flexibility.

The first benefit of IVI drivers is the ability to interchange instruments. A power
supply from a different manufacturer can replace the existing power supply without
changing the test software. This will allow the development of a generic test station;
users would be able to change instruments based on availability and cost.

5.10.3 SIMULATION

This section will discuss how an IVI driver can be used in simulation mode to allow
debugging and input checking without the instrument being connected to the com-
puter. When a programmer is developing software, the ability to incrementally debug
the code is a technique that helps reduce development time. This would be an
implementation of the spiral software development model. There is a full discussion
of software development models (spiral and waterfall) in Chapter 4. By using IVI
drivers in simulation mode, the test code can be debugged without the instrument
being connected to the computer. The driver will return an instrument handle to
allow a program using VISA to run without the instrument physically present. The
user can also use the driver in simulation mode to choose the measurement that will
be returned to the test program. This will allow the designer to test the program’s
response to common and unusual measurements returned by the instrument. The
measurement returned can be set to random number generation within a range.
When using instrument-specific drivers, another feature is realized. The devel-
oper can perform range and status checking while developing the software. The
driver will verify that the inputs sent to the instrument are within the specifications
of the instrument. These are options that can be turned on or off. Turning on the
range-checking feature helps the developer debug the test software. Turning off

Drivers 253

range-checking allows for faster execution time when the program is run in the final
environment.

5.10.4 STATE MANAGEMENT

An IVI driver can speed up application execution when state caching is used. One
problem encountered when programming a test application, particularly when uti-
lizing state machine architecture, is the lack of knowledge of the instrument’s current
state. The user will not know what state the instrument is in at a given time, requiring
the programmer to set all necessary configurations, even if the instrument is already
configured properly. This can add substantial time to a test application.

The solution is to use state caching. This can be performed when using LabVIEW
or LabWindows/CVI. When using state caching, the last setting for each function
on an instrument is stored. When the driver goes to change the setting of a function,
the driver checks to see what the last known state of that function was. If the setting
is the same, the driver will not execute the command. The driver also tracks changes
in settings when different screens are displayed.

5.10.5 VI DRIVER INSTALLATION

When the IVI driver CD is inserted into the drive, the IVI Driver Library Installation
interface starts. In the interface you have the options of viewing the release notes,
installing the IVI driver library, installing instrument drivers, and browsing the CD.
To install the IVI software you will need to click the IVI Driver Library Installation
selection. This will begin the standard installation interface. After making the typical
selections, a selection screen will appear. The installer will prompt you to select the
instrument drivers to install. This is the initial place to obtain and install the IVI
instrument drivers. There are a number of items on this installer screen. On the left
of the screen is a selection for the IVI class. On the right side is a listbox containing
the specific drivers. In order to install the drivers you need to use in your develop-
ment, you must first select the desired IVI class. This will list the available IVI
drivers in the specific driver input. In the specific driver input is the list of available
drivers with a checkbox selection on the left of the individual drivers. To select the
needed driver, you need to select the appropriate checkbox.

In addition to the IVI class input and the specific drivers input, there are three
additional options on the IVI driver installation screen. There is a button to select
all instrument drivers, a button to deselect all instrument drivers, and a control to
replace the existing drivers. This control can be set to either replace the instrument
drivers currently installed with the IVI drivers, or to leave the existing instrument
drivers. This is an important selection if you have made modifications to the current
standard drivers; it will prevent the IVI installation from overwriting your changes.

The IVI installation will set up three categories of software. The installation
categories are instrument drivers, utilities, and driver software. The instrument driver
installation includes the IVI class drivers, the IVI class simulation drivers, and the
IVI-specific drivers. The utility installation includes NI Spy, the Virtual Bench
software, and the Measurement and Automation Explorer. The driver software

254 LabVIEW: Advanced Programming Techniques

includes the IVI engine, NI VISA, NI DAQ, and the CVI run-time engine. When
the installation is complete, the computer will need to be restarted.

5.10.6 VI CONFIGURATION

The first step, after installing the IVI software, is to run the IVI Configuration Utility.
The IVI Configuration Utility can be started by double-clicking the Measurement
& Automation Explorer (MAX) icon on the Windows desktop, or by selecting the
utility from the National Instruments folder in the Programs folder in the Start menu.
The IVI settings are available under the IVI Drivers folder on the left window. Figure
5.27 shows the IVI configuration parameters in a MAX window.

There are three categories of IVI configuration items in the IVI folder. The main
sections are Logical Names, Driver Sessions and Advanced. The logical name is
what is used by LabVIEW to select the appropriate IVI driver similar to calling
COM 1 to connect to the first serial port on a computer. To add a new logical name
you can simply right click on the logical names folder and select add. Here you can
set the logical name and what driver session it is linked to.

The Driver Sessions folder contains the loaded IVI drivers. If you have the
equipment connected, and the software was installed properly the name should show
up in the list. Don’t worry if it is not there; you can download the drivers for the
instrument you are looking for from NI's website. When you install the IVI drivers
the instrument name will show up here.

When you click on the IVI driver name a configuration window will show up
in the right MAX window. There are five tabs to configure: General, Hardware,

& niScope - Measurement & Automation Explorer
File Edt View Tools Help

[H save v Configuration <2Show Help
System
Data Neighborhood -
+ Devices and Interfaces @ niScope
+(3 Scales
+ (@ Software
=@ ™ Drivers
=l Logical Names Software Madule
=0 DMM1
B niScope niScope ﬂ GoTo
= g Driver Sessions
& DMM1
& nis401
& nis404 niScope
& nis411
& nis412
& nis421
B nis422 niScops_32.dll
&) nis431

& nis441
g‘ niFgen Published APls Supported Instrument Models
D

-

Prefix

Module Path

: WiDriver 1.0 NIPx5122 ~

= Advanced WiScope 3.0 NIPCI-5122
=@ Instrument Driver NIPxH5124
iy NP 532
g :IISDC’\;EQ NIPCI-5922
NIPx-5114
% niswitch NIEXEE112

+ @ Simulation Driver ! MIPCIE112 F e

+ lg Simulation Driver |

+ (& Hardware Assets 3 ﬂ

t 4 pemere sustems = i General | @ Hardware & Software [Vinual Names | 38 Initial Setiings

FIGURE 5.27

Drivers 255

Software, Virtual Names and Initial Settings. Here you have the ability to select
whether to simulate with a specific driver, choose the software module to use (shows
what DLL contains the source code and the supported instrument models), virtual
names for hardware options such as CHANNEL1, hardware links to actual installed
equipment if available and initial instrument settings.

The Advanced folder gives you access to the driver software modules and
hardware. In the Hardware Assets sub-menu you can define equipment in your
test system and link to the resource descriptor. Here you will have a name that
can be used in your code that is not tied to a specific instrument. You can define
a DMM that is connected to a GPIB address. If you replace the DMM with one
from another manufacturer, you would not have to change your code. You would
still reference the DMM name. Be aware that the names used in the IVI configu-
rations are case sensitive.

5.10.7 How 10 UsE IVI DRIVERS

IVI class drivers are used in the same manner as standard instrument drivers. The
IVI class drivers can be found in the Instrument I/O subpalette of the Functions
palette. Each type of IVI class driver has its own subpalette. Each subpalette contains
an Initialize and Close VI. There are also groups of VIs to perform instrument
configuration, instrument functions, and utility functions that are necessary for the
specific class driver. The developer can use these class drivers like typical VISA
drivers. The programmer would put an Initialize VI on the diagram first. The main
input to the Initialize VI is the logical name. The logical name is what tells the
LabVIEW program what instrument and drivers to reference. As you will recall, in
the setup of the IVI configuration items, the logical name references a particular
virtual instrument. These logical names can be altered as needed using the Config-
uration utility. It is recommended that you set the name initially after installation
and do not change it often. Applications that have been developed use this name,
and may not work once the logical name has been altered. The virtual instrument
refers to a specific driver in the Instrument Drivers folder, and a device. The specific
driver then specifies the DLL containing the code module used to communicate with
the device. The VIs associated with the instrument driver are placed in the Instrument
Drivers palette during the installation.

The Initialize VI also has inputs to do an ID query and reset the instrument. The
outputs of the VI are the Instrument Handle and the Error Out. The Instrument
Handle can be passed throughout the VI and subVIs, just like a standard VISA
instrument handle. Once the instrument is initialized, the functions required to
perform the necessary programming task can be accomplished in two ways: the user
can utilize the function VIs from the class driver subpalettes or make use of the
LabVIEW Property node. When doing IVI driver configurations, the LabVIEW
Property node is used in the same manner as ActiveX controls. As with all applica-
tions using communications, the final step is calling the Close IVI Class Driver VI.
The following diagram shows an IVI example written with standard VIs and with
the Property node. The VIs perform exactly the same function. Figure 5.28 illustrates
the IVI example with and without the Property node.

256 LabVIEW: Advanced Programming Techniques

DMM Measurement Example

i Numeric Array
[DC Volts ~] [Immediate | [m=z8—IN] v
- [

[DWM] = = H ' error out
error in (no error)| . it e A B B -@ Ji=

DMM Measurement Example Using Property Node

Array
13

Numeric
[EEEL

O ee—— L1111 || I o
error in (no error) ITF- - [IVIDMM_VAL DC VOLTS j—-ﬂ Fundion |
IVIDMM VAL 3 5 DIGITS -

[IVIDMM VAL IMMEDIATE ~]¢_Trigger Source

(] (]
m error oul
g b=l B el

J

FIGURE 5.28

5.10.8 Sorft PANELS

The Soft Panels (IVI Virtual Bench) VIs were designed to simulate the front panel
of an instrument. The main use for the soft panels is manual instrument control. The
user can use the Front Panel VI to manually control the instrument. The similarity
of the soft panel VI to the actual instrument interface allows the user to be familiar
with some of the function immediately. The key is when the specific type of instru-
ment changes. If a Hewlett Packard oscilloscope is replaced with a Tektronix oscil-
loscope, the user should still be able to control the instrument with no noticeable
change. As the interface is the same, there are no new knobs or menus to learn. The
IVI configuration files do all the work. An example of the niScope soft panel is
shown in Figure 5.29.

5.10.9 IVI Driver EXAMPLE

The information above can become confusing. Every name seems to include either
virtual, instrument, or driver. In addition, each type of file references one or more
of the other IVI file types. In order to alleviate some of the confusion, an example
will be provided to help clarify things. It should be noted that there are a few
examples that come with the IVI library. The examples are contained in the following
path: labview\examples\instr\iviClass.lIb.

For this example we will be simulating an oscilloscope using the IVI drivers.
The first step is to create a logical name. In the IVI Configuration we need to go to
the Logical Name folder and select Create New. You can enter a name and descrip-
tion. For this example we will call the instrument “niScope.” You will be able to
select a driver to associate with the name. We will use an existing driver. The
selections available in the pull down menu depend on the drivers you have loaded.
The driver we selected was the standard niScope driver.

Drivers 257

Hi-Scope SFP - SimDev PCI-5102 with 4% Noise

Fie Edd Wity Window Helg
Channel 1 : Time (msec) MATIONAL
S 4 T INSTRUMENTS™
st
Channel
il Seleat
- -2 12V (R
1 Volls/Cw
TV 12V |w
Coupling
2 S’ AL W
u g
3 B
b L
5 ®
2
s K Herizontal
r g
F & Time/Div
& = 0.50 ms w
4 S
Rel Position
[s0]sa)sa)
o 3 Acq. Type
normal &
% 5 1 1
annel 0 : Time (msec)
1 TRIGY
e Tvoe| Edpe | cwpe[FlE 303 kS/s
LTI Pel 8 Lovel
-;—E B Source. Chand w -
e F Mode [Noem v 1 ok

If you go to the Logical Name folder, you will see the summary page. Here you
can modify the driver associated with the name. This is where you would make the
modification if an instrument were exchanged for another in your equipment rack.
If the program were written properly, with only class drivers being used in the code,
no modifications would be necessary to the application. If we were going to use a
real oscilloscope, the device could be changed here.

In the Driver Sessions folder you can see the driver properties. The General tab
allows the programmer to select options such as Range Checking and Query Instru-
ment Status. In the software tab, the programmer has the choice of using the class
driver or the specific driver for the output data simulation. We will be using the class
driver for this example. The programmer also has the opportunity either to modify
or change the simulation virtual instrument and its settings. If you click on the initial
settings tab you can configure the starting state of the instrument. You can go through
the list of properties and change default values to match your instrument defaults.
We will leave the current settings. The Virtual Names tab allows the programmer to
associate a virtual channel name with the specific channel string.

Now that the IVI configurations are set up, the application can be written. As
has been mentioned before, only IVI class drivers should be used in the application
to reduce the amount of modifications if a new instrument is used. This example is
based on the niScope example that comes with the IVI library (Acq Wfm Edge
Triggered). The first coding step is to put the Initialize VI for the IVI oscilloscope
class on the code diagram (niScope Initialize.vi). For the logical name input, a string
constant or control with the text “niScope” should be wired to the first terminal. An
alternate method is to create a resource name control Here you can select the
appropriate name from a pull down list. The inputs for ID query and reset device
are both defaulted as “true.” And, as always, the Error In cluster should be wired to
the final terminal of the input connector.

258 LabVIEW: Advanced Programming Techniques

resource name :
IEECT, ' niGoope__ oo =
[T SRR [-'3 [Normal -}—— _Acquisition Type
Vfrrégllgﬁggﬁ i : &= Waveform Graph
probe attenuation G

Channel Enabled

Vertical Coupling

Channel Enabled [24
Vertical Coupling
Bandwidth [0
Input Impedance | "+

Horizontal Time Per Record
Horizontal Minimum Number of Points [Z=8——Min Number of Points

Horizontal Record Reference Position ¥

i
3
3
3
3
3
3
3
3
3
3

Trigger Type [EZ—— Trigger Type
Trigger Holdoff [oe0s !
Trigger Delay Time [coik i
Edge Triggering: Trigger Slope [EZ8——) _ Trigger Slope

Trigger Level |Looik
Edge Triggering: Trigger Coupling [[328—— Trigger Coupling
Triggering: Trigger Source [Gi# b Trigger Source

FIGURE 5.30

Once the instrument is initialized, the inputs for the vertical and horizontal
parameters need to be configured. In addition to the scope parameters, the trig-
gering inputs need to be set. For this example, we will be using the Property node
to configure the necessary parameters instead of the class drivers. The first code
diagram is shown in the following figure. The first trial of this VI used one Property
node to set all of the vertical, horizontal, and triggering parameters. Selecting the
item from either the ActiveX subpalette or the Application Control subpalette of
the Function palette created the Property node. By using the positioning tool, you
are able to increase the number of inputs by pulling the bottom corner down. The
same task could also be accomplished by right-clicking on an input and selecting
Add Element. A control was created for each input that was necessary with the
appropriate default values being set. Figure 5.30 displays the Scope Example
Code Diagram.

After setting the chart and triggering parameters, set the class VI to determine
the actual number of data points to acquire. The output of this VI is then wired to
the NIScope Read WDT VI. The data from the Read Waveform VI is then bundled
together and wired to the waveform graph on the front panel. Finally, the Instrument
Close VI is added to the code diagram.

Now it is time to debug our driver. The best method for debugging an application
like this is to use the NI Spy utility to monitor the instrument communications. The
NI Spy was discussed earlier in this chapter. There are a couple of IVI-specific items
that need to be mentioned. When you go to the Spy menu of the NI Spy utility you
will notice the installed IVI drivers available in the monitor list. For this example
we will want to turn off the NI-VISA and the NI-488.2 monitoring options. They
are being turned off to aid in interchangeability checking. If those items are turned
off, any items with conflicts will be listed in blue. This will aid in spotting conflicts
without having to go through all of the items captured. Once Capture has been turned
on, we are ready to test our application.

Drivers 259

Active Channel
s
§= _ niscope &I
b Acqumnon Type
L d Active Channel
Vertical Range i v
Vertical Offset: [0i» b
probe attenuation (1:1.0) [ooi» b Probe Attenuatior
Channel Enabled [F73 b Channel Enabled
Vertical Coupling [3@———) Vertical Coupling
Bandwidth [2:0¥ pMax Input Frequen
Input Impedance [ii» 3
i G

Horizontal Time Per Record [oiis Tim g

Horizontal Minimum Number of Points ’Mtn Number of Pomts
Horizontal Record Reference Position [100s———
Trigger Type [E——
Trigger Holdoff [[2:7
Trigger Delay Time [Ti%
Edge Triggering: Trigger Slope

Trigger Level [i0y
Edge Triggering: Trigger Coupling

Triggering: Trigger Source [

Trlgg er Type

Tr|gger Slope

Tngger Couplmg

Tri igger Source

*
fr
3
*
f+
*
3
4

FIGURE 5.31

When we press the Start button, the program starts executing. As you should
now be aware, there is an error in the application. A message box comes up stating
that an error occurred at the tenth argument of the Property node. The listed possible
reasons are that a Null is required for the channel name when setting an attribute
that is not channel-based. The message box also lists the bad attribute. Clicking
Continue will close the message box and complete the execution. As the horizontal
parameters and the triggering parameters are not channel-based, they cannot be on
the same property node as the vertical parameters. Figure 5.31 shows the modified
code diagram that corrects this programming error.

Before we move on with the testing, let’s take a look at the API captures from
the NI Spy utility. The NI Spy display is shown in Figure 5.32. The tenth entry in

* M 5py - [capture on]

Fe Edt Vew Spy Hep

@2 el #le] 2x] el
Nurnbr Discrption Statie berr ot
nicspe it “nescope”, VI FALSE, W TRUE, nscope) VI_SUCCESS

nfscope_SEANTEAIAVINGZ ((00000OD4C, ™, IVISCOPE_ATTR_ACOUISITION_TYFE, 0) VI SUCCESS

nScope_ SEATITEALEVRESEA (TKD00000AC, "CHANNELT", NISCOPE_ATTR_VERTICAL... VI SUCCESS

NiScope. SeATITERLEVREEA (XO00000AC, "CHANNEL1", NISCIPE_ATTR_VERTICAL.. V1 SUCCESS

niScope_SetAttrbuteViReat4 (0x0000004C, "CHANNELL", MISCOPE_ATTR_PROBE_AT... V1_SUCCESS

niScope_SetAtirbateViBoskan (DxB000004C, "CHANNELL", IMISCOPE_ATTR_CHANNEL... VI_SUCCESS

nNScope_SetAtrbuteVInt32 (Cocd000004C, "CHANNELL", IVISCOPE_ATTR_VERTICAL ... VI_SUCCESS 14:40:51.! 509
niScope_SetAttrbuteViRealss (0x0000004C, "CHANNELL", NISCOPE_ATTR_MAX_IU... VI_SUCCESS 14:40:51.519
nm_srmmmm{oxmmc WNEH \‘JSCOPE_NTRJN I 14:40:51.519
Scope_SeAtrbuteVRaass {0x00 e IMISCOPE_ATTR_HORZ_ FL_MAME_NOT_AMLLOWED 519
niSeope_GetEr :
niScope_cks [mcumuuc]

S T S e

o=

Far Help, press F1 Captured: 13, 12

FIGURE 5.32

260 LabVIEW: Advanced Programming Techniques

the list is the attempt to write the horizontal time per record parameter to the scope.
Because an error occurred in this step, the line is in a red font. Double-clicking on
the line opens up the Properties box. In the Properties box you can see what the
inputs and outputs of the communications were. If you click on the Output tab, you
will see the instrument returned the following error statement: (IVI_ERROR_
CHANNEL_NAME_NOT_ALLOWED). This is followed by a description in the
text box below the error statement. Now that we have modified our VI, we can
attempt to run the application again. This time the application runs without error.

BIBLIOGRAPHY

LabVIEW Graphical Programming — Practical Applications in Instrumentation and Control.
Gary W. Johnson, McGraw-Hill, New York, 1997.

G Programming Reference, National Instruments, Austin, TX, 1999.

Data Acquisition Basics Manual, National Instruments, Austin, TX, 1999.

Code Interface Reference Manual, National Instruments, Austin, TX, 1999.

IVI-1: Charter Document, IVI Foundation, San Diego, CA, November 1999.

IVI-4.2: IviDmm Class Specification, IVI Foundation, San Diego, CA, January 2004.

Developing COM/ActiveX Components with Visual Basic 6, Dan Appleman, SAMS, 1998.

Using TCP/IP. John Ray, QUE Corporation, Indianapolis, 1999.

Application Note No. AN006, Developing a LabVIEW Instrument Driver, National Instru-
ments, Austin, TX.

Application Note No. ANO087, Writing Win32 Dynamic Link Libraries (DLLs) and Calling
Them from LabVIEW, National Instruments, Austin, TX.

Application Note No. AN111, LabVIEW Instrument Driver Standards, National Instruments,
Austin, TX.

Application Note No. AN120, Using IVI Drivers to Simulate Your Instrumentation Hardware
in LabVIEW and LabWindows/CVI, National Instruments, Austin, TX.

Application Note No. AN121, Using IVI Drivers to Build Hardware-Independent Test Systems
with LabVIEW and LabWindows/CVI, National Instruments, Austin, TX.

Application Note No. AN122, Improving Test Performance through Instrument Driver State
Management, National Instruments, Austin, TX.

6 Exception Handling

Code is often written without considering the potential that an error might occur.
When events occur that an application is not expecting, problems arise. Then, during
the debugging phase, an attempt is made to go back to the code and implement some
error traps and correction. However, this is usually not sufficient. Exception handling
must be taken into account during the early stages of application development. The
implementation of an error handler leads to more robust code.

This chapter discusses errors and the topic of exception handling in LabVIEW.
First, exception handling will be defined along with its role in applications. This
explanation will also clarify the importance of exception handling. Next, the different
types of errors that can occur will be discussed. This will be followed by a description
of the available LabVIEW tools for exception handling, as well as some of the
debugging tools. Finally, several different ways to deal with errors in applications
will be demonstrated.

6.1 EXCEPTION HANDLING DEFINED

Exceptions are unintended or undesired events that occur during program execution.
An exception can be any event that normally should not take place. This does not
mean that the occurrence of the exception is unexpected, but simply should not
happen under normal circumstances. An error results when something you did not
want to happen, does. Therefore, it makes sense to make alternate paths of execution
when exceptions take place. When exceptions or errors occur, they must be dealt
with in an appropriate manner.

Suppose that you have written a program in which you divide two variables,
Integer x by Integer y. The resulting quotient is then used for some other purpose.
On some occasion, y may be set to zero. Some programs do not trap errors such as
dividing by zero and allow the CPU to throw an exception. When the CPU throws
an exception for a program, the program will be terminated by the operating system
— in most cases this is an undesirable result. In LabVIEW, the result of this division
is undefined. LabVIEW returns the result Inf, or infinity, on a floating point division
by zero. If you were to use the integer quotient and remainder, a division by zero
results in a quotient of zero. In both cases, the application does not throw an exception
and close. However, this is an example of an unexpected and unintended outcome.
Infinity can be converted successfully into a word integer in LabVIEW. If the value
is converted for other uses, several other errors can result. This is an example of a
simple error that has to be managed using exception handling.

261

262 LabVIEW: Advanced Programming Techniques

Exception handling is needed to manage the problems or errors that occur. It is
a mechanism that allows a program to detect and possibly recover from errors during
execution. Exception handling leads to more robust code by planning ahead for
potential problems. Depending on the purpose of an application, the ability of an
application to respond to unexpected events can be critical. Typical programs that
are used by one person, at their desk may not need a lot in terms of robust perfor-
mance. An application that is automating an assembly line that is producing hundreds
of thousands of production units for revenue would benefit significantly from robust
and stable code. The implementation of an error handler increases the reliability of
the code. It is difficult to prepare for all the possible errors that might occur, but
preparing for the most probable errors can be done without much effort.

You can write your code to try to catch as many errors as possible, but that
requires more code to implement. After a certain point you will have more code
involved in catching errors than you do for performing the task that you originally
set out to do. The exception handling code itself may sometimes contain errors. You
also create a problem of what to do when the error is caught.

Error detection and error correction are two different activities, but are both part
of exception handling. Error detection consists of writing code for the purpose of
finding errors. Error correction is the process of managing and dealing with the
occurrence of specific errors. First you have to catch the error when it occurs; then
you have to determine what action to take.

Performing error detection is useful for debugging code during the testing or
integration phase. Placing error checks in the code will help find where the faults
lie during the testing phase. The same detection mechanisms can play a dual role.
The detection mechanism can transfer control to the error handler once the handler
has been developed. This will be beneficial if you are using an iterative development
model, where specific features can be added in each cycle.

Exception handling is performed a little differently in each programming lan-
guage. Java uses classes of exceptions for which the handler code can be written.
For example, an exception is represented by an instance of the class “Throwable”
or one of its subclasses. This object is used to carry information from the point at
which an exception occurs to the handler that catches it. Programmers can also
define their own exception classes for their applications.

C++ uses defined keywords for exception handling: Try, Catch, and Throw. The
Try and Catch keywords identify blocks of code. Try statements force the application
to remember their current location in the call stack and perform a test to detect an
error. When an exception occurs, execution will branch directly to the catch block.
After the catch block has executed, the call stack will be “rolled back™ to the point
where the program entered the Try block.

LabVIEW provides some tools for error detection. But just like other program-
ming languages, implementation of exception handling code is left to the program-
mer. The following sections will guide you in creating error handling code for your
application. Chapter 10 covers topics relating to Object-Oriented Programming,
including definitions for object, class, and subclass, but exception handling in Java
and C++ are beyond the scope of this book.

Exception Handling 263

6.2 TYPES OF ERRORS

Errors that occur in LabVIEW programs can be categorized into either I/O-related
or logic-related. I/O errors are those that result when a program is trying to perform
operations with external instruments, files, or other applications. A logical error
is the result of a bug in the code of the program. The previous example of dividing
an integer value by zero is a logical error. These types of errors can be very tricky
to find and correct. Both I/O- and logic-related errors are discussed in the follow-
ing sections.

6.2.1 1/0O ERRORS

Input/Output encompasses a wide range of activities and VIs within LabVIEW.
Whether you are using communication VIs (TCP, UDP, .NET, USB, Bluetooth, etc.),
data acquisition, instrument I/O, or file I/O, there is a probability that you will
encounter related errors at some point.

I/O errors can be the consequence of several things. The first circumstance that
can cause this type of error is improper initialization or configuration of a device or
communication channel. For example, when performing serial communication, the
baud rate must match between the external device and the controller. If this initial-
ization is performed incorrectly an error will result. For some devices a command
must be sent to put them into remote mode, which will allow communication with
the controller. When reading or writing to a file, the file must be opened first.
Similarly, when writing to a database, a connection has to be established before
records can be inserted. Initialization can also include putting an instrument or device
into a known state. Sometimes this can be done by simply sending a reset command,
after which the device will enter a default state.

A second cause of I/O errors is simply sending the wrong commands or data to
the instrument or application. When invalid data is sent, a write error will result.
Some devices simply ignore the data whereas others return an acknowledgment.
This can play a role in what type of correction and handling you perform. When
data is being communicated to an external device, you have to ensure both the correct
data and the correct format are being sent. You must adjust the information you are
sending to suit what the device is expecting to receive. Typographical errors can
also be classified in this section.

Another I/O-related error takes place when there is a problem with the instrument
or application being used. When dealing with applications or files, this can occur
for several different reasons. The file may not be in the specified path or directory.
Alternatively, you may not have the needed file permissions to read or write to the
file. Instrument I/O errors of this nature usually occur if the instrument is not
powered-on or not functioning properly. A similar problem happens when the instru-
ment locks up or freezes. Power cycling may return it to a known state and make
it operational again. These types of errors can also be a result of incorrectly config-
uring the external device. Instruments can return unusual results when they are not
configured appropriately.

264 LabVIEW: Advanced Programming Techniques

Missing hardware or software options can be a source of I/O errors. You may
also need to check if you have the correct interface drivers installed. Interface
incompatibility and component incompatibility should be investigated.

The last and most common issue is a network or communication bus is inter-
rupted. Internet Protocol (IP) based communication will periodically find a message
has not gone through. IP itself does not guarantee message delivery. IP also does
not guarantee delivery in order of transmission — its possible for IP packets to arrive
in an order other than what they were transmitted in. Applications using any Ethernet
communications needs to have the ability to sort packets when they arrive out of
order, or simply do not arrive.

6.2.2 LocicAL ERRORS

Logical errors happen when there are faults in the code itself. The code diagram in
Figure 6.1 illustrates an innocent mistake that can occur. In the While loop, the
programmer intends the loop to stop executing when the temperature reaches 75.0
degrees or higher. However, the loop, as it stands currently, will stop when the
temperature is lower than 75.0. This is an example of an easy mistake that can cause
an error in applications. These types of problems can be difficult to find and are also
very time consuming. Debugging tools are invaluable when looking for the source
of faults.

Errors can sometimes occur when the inputs specified by the user are not validated.
If the user does not provide reasonable inputs expected by the program, an error can
occur. The application must validate the data to ensure it is within the acceptable
range. For example, the user may have to specify which unit number, between one
and ten, to perform a sequence of tests on. The program has to verify that only the
acceptable range is entered before beginning execution. Unit zero may not exist for
test purposes, therefore the code must check for the appropriate inputs. Be aware of
numeric precision errors and conversion errors that can also be difficult to track down.

LabVIEW allows the programmer to set acceptable ranges for Numeric, Boolean,
and List & Ring controls. This can be done by popping up on the control and
selecting Data Range from the menu. The programmer also has the option of coercing
the input value so that it is within the valid range on front panel controls only. The
two options when setting a data range are to ignore or to coerce the value when a
range is specified. This option is available in the drop-down box. The coercion option

Temperature

FIGURE 6.1

Exception Handling 265

reduces the need to write code for performing the same task, but is a practice we
generally do not recommend. If a value is entered out of range from the user interface
it is preferable to notify the user the value is not valid and attempt to get the user
to correct the input.

6.3 BUILT-IN ERROR HANDLING

LabVIEW notifies the user of some run-time errors for instrument and file I/O
operations through dialog boxes. LabVIEW does not deal with the errors and, in
general, leaves exception handling to the programmer. However, LabVIEW does
provide some tools to aid the programmer in exception handling. The first tool that
will be discussed is the error cluster. The error cluster is used in transporting
information from the detection mechanism to the handler. After the error cluster, a
brief description of VISA error handling will be presented. Next, the error-handling
VIs will be considered. There are three error-handling VIs in particular: the Simple
Error Handler VI, the General Error Handler VI, and the Find First Error VI. Section
6.4 will then discuss the implementation of exception handling code.

6.3.1 ErrROR CLUSTER

The error cluster is a detection mechanism provided for programmers. The cluster
consists of a status, code and source. Each of these provides information about the
occurrence of an error. The status is a Boolean that returns “true” if an error condition
is present. The code is a signed 32-bit signed integer that distinguishes the error.
The source is simply a string that gives information on where the error originated.
The error cluster as a whole provides basic details about the error that can be used
for exception handling purposes. In LabVIEW 7 and 8§, the coerce function of a
control does not work when the VI is used as a subVIL.

Figure 6.2 shows the Error In and Error Out clusters as they appear on the front
panel. The Error In and Error Out clusters can be accessed through the Array &
Cluster subpalette in the Controls palette. The error clusters are based on National
Instruments’ concept of error I/O. VIs that utilize this concept have both an Error
In control and Error Out indicators, which are usually located on the bottom of the
front panel. The cluster information is passed successively through VIs in an appli-
cation, consistent with data flow programming.

error in {no error) error out

status code status code

Vi o— PI —
sOUrCe soUrce

FIGURE 6.2

266 LabVIEW: Advanced Programming Techniques

The error clusters can serve a dual purpose in your application. By using error
/O, the order of execution of VIs can be forced. This eliminates the need for sequence
structures to control the order of execution. Simply pass error clusters through VIs
for detection and order.

When the cluster is passed in to a VI, the VI should check if an error condition
is present. By default, a new, blank VI doesn’t have an error cluster input or code
to check the status. If there is no existing error, execution will continue. The cluster
picks up information on whether an error has occurred during the VI's execution
and passes this information to the next VI, which performs the same check. In the
simplest case, when an error does occur in any VI, the VIs that follow and use the
cluster should not execute. When the program completes, the error is displayed on
the front panel.

The error I/0O concept and the error clusters are easy to use and incorporate in
applications. Many of the LabVIEW VIs that are available in the Functions palette
are based on this concept: the Data Communications palette and contained subpallet,
most of the Instrument I/O VIs (VISA, GPIB, GPIB 488.2), and some Data Acqui-
sition and File I/O VIs use error I/0O. The variable introduced in LabVIEW 8 also
uses the error cluster. By using these VIs and wiring in the error clusters, much of
the error detection work is already done for the programmer. These built-in VIs
provide the detection needed in the lower-level operations. When wiring these VIs
on the code diagram, you will notice that the Error In terminal is on the lower left
side of the VI, whereas the Error Out terminal is on the lower right side. This is a
convention followed by all VIs developed by National Instruments, and is also
recommended when creating drivers.

Figure 6.3 is an example of how the error clusters can be used. The VI uses
GPIB Write and GPIB Read from the Instrument I/O palette. It is a simple instrument
driver that can be used to write data to and read data from an instrument. To perform
error detection, the programmer only has to use the Error In and Error Out clusters
and wire them accordingly in the code diagram. The error detection work is left to
the Instrument I/O VIs. When this driver is needed as part of a larger application,
the error I/O concept is used. Figure 6.4 uses two drivers with the Error In and Error
Out wired. The second VI in the diagram will not execute if an error occurs during
the execution of the first VI. Execution order is forced, causing the second driver to
wait for the error cluster data from the first one. This approach can be applied
successfully to larger applications.

address string

abck
@ |data read
data write Fab |
o [o [
abck é
% 5= error out
Saak yEoT

error in (no error)

FIGURE 6.3

Exception Handling 267

data write data read
" driver drieer -
error in (no error) ﬁ“ﬁ;r %r error out
= i i [
FIGURE 6.4
addre rin
i‘j yare data read
data write
LA @ @ .:~I>
bl Y =l | error out

error in (no error)

status '
6000 code e

Error Cluster Unbundle Driv'er Vi
found error with acknowledgment.

FIGURE 6.5

The error clusters can also be used to perform error checks other than those
done by the available LabVIEW VIs. Suppose you are communicating to a device
or application that returns acknowledgments when sending commands and data. An
“OK” value is returned when the data is accepted and valid, and an “NOK” is
returned if the data is invalid or the command is unknown. The LabVIEW VIs do
not perform any check on instrument- or application-specific acknowledgments, only
on general communication errors. Returning to the VI in the previous example, we
can implement our own error check. Figure 6.5 shows how this is done.

The Bundle by Name was used from the Cluster palette to accomplish this. If
the acknowledgment returned does not match “OK,” then the error cluster informa-
tion is altered. The Boolean is made true, the code assigned is 6000, and the source
description is also wired in. LabVIEW reserves error codes 5000 to 9999 for user
defined errors. If the acknowledgment returned matches the expected value, we wire
the error cluster through the “true” case directly to Error Out without any alterations.
The error detection for the correct acknowledgment will now be performed every
time this driver is called.

Figure 6.6, Extra Source Info.vi, shows an example of how to get more infor-
mation out of the error cluster for debugging and error-handling purposes. This VI
adds extra information to the source string of the error cluster. First, the error cluster
is unbundled using Unbundle by Name. The extra pieces of information that will
be added include the time the error was generated and the call chain. Call Chain,
available on the Application Control palette, returns the VI’s call chain all the way
to the top level in string format. The call chain information is useful for user-defined
errors to indicate where the error was generated. These two pieces of data will then
be bundled together with the original source information generated by the error
cluster. You can put any other type of information you would like returned with the

268 LabVIEW: Advanced Programming Techniques

Extra Source Information| (error in (no error)

Get Date/Time String (551 g o
He | Unbundle By Name
[== . b | Bundle B)ir Name error out
Call Chain
FIGURE 6.6

error cluster in a similar manner. It can be used to give the programmer more facts
on the error that may be helpful for debugging. The errors can then be logged in a
text file or database for reference. Error logging is demonstrated in Section 6.4.6
through a basic example.

6.3.2 ErrROR CODES

A list of possible LabVIEW-generated errors is accessible through the Online
Reference in the Help menu. The errors are listed by the error code ranges and the
types of possible errors. Error codes can be either positive or negative values,
depending on the type of error that is generated. When a zero error code is returned,
it indicates that no error has occurred. Warnings are indicated with a code that is
nonzero, whereas the status returned is “false.” Table 6.1 contains a list of the error
code ranges.

A handy tool for looking up error codes is also available through the Help menu
in LabVIEW Version 5.0 and later. When Explain Error is selected, a new window
appears with the error cluster on the left side and a text box on the right side. The
error code can be input either in hexadecimal or decimal format. An explanation of
the error will be provided for the error code in the text box. This tool provides a
quick way to get additional information on an error for debugging purposes.

6.3.3 VISA ErRrOR HANDLING

VISA is a standard for developing instrument drivers and is not LabVIEW-specific.
It is an Application Programming Interface (API) that is used to communicate with
different types of instruments. VISA translates calls to the lower-level drivers,
allowing you to program nonsimilar interfaces with one API. See Chapter 5 on
instrument drivers for more information on VISA.

VISA is based on the error I/O concept, thus VISA VIs have both Error In and
an Error Out clusters. When an error occurs, the VIs will not execute. There is a set
of VISA-specific error codes that can be found in LabVIEW Help. The VISA Status
Description VI can be used in error-handling situations. This VI is available in the
VISA subpalette of the Instrument I/O palette.

When you are using instrument drivers that utilize VISA, there are some addi-
tional errors you may encounter. The first may be the result of VISA not being
correctly installed on your computer. If you choose the typical install, NI-VISA is
selected for installation by default. If you have performed the custom install, you
must make sure the selection has been checked. You will not be able to use any

Exception Handling 269

TABLE 6.1
Error Codes
Error Type Code Range
Networking —2147467263 through —1967390460
Instrument driver 1074003967 through —1074003950
VISA —1073807360 to —1073741825
Report generation —4105 to 41000
Formula parsing —23096 to —23081
Mathematics —23096 to —23000
Signal processing —20999 and 20337 to —20301; —20115 to —20001
Point by point —20207 to 20201
Regular expression —4644 to —4600
‘Waveform 1820; —1811 to —1800
Apple Event —-1719 to -1700
Instrument driver —1300 to —1210; 1073479937 to 107347994
Timed loop —823 to —800
Windows registry access —620 to —600

Signal processing, GPIB, instrument driver, 0
formula parsing, VISA
GPIB 1 to 20; 30 to 32; 4041
General 1t052;67t091;97 to 100; 116-118; 1000 to 1045; 1051
to 1086; 1088 to 1157; 1174 to 1188; 1190 to 1194,
1196 to 1198; 1307 to 1320; 1362

Networking 53 to 66; 108 to 121;1087; 1191

Serial 61 to 65

Windows connectivity 92 t0 96; 1172; 1173; 1189; 1195; 1199; 14050 to 14053
Instrument driver 102, 103

MATLAB and Xmath 1046 to 1050; 1053

Run-time menu 1158 to 1169

Waveform 1800 to 1809

SMTP 16211 to 16554

Signal processing 20001 to 20353

VISA VIs unless your system has this option installed. Another error can be related
to the lower-level serial, GPIB, or VXI drivers that VISA calls to perform the
instrument communication. For example, if you have a GPIB card installed on your
computer for controlling instruments, make sure the software for the card has also
been installed correctly to allow the use of VISA VIs. You can use NI-Spy to monitor
calls to the installed National Instrument drivers on your system. NI-Spy is briefly
explained in Section 5.5.

When using VISA in your application, remember to close all VISA sessions or
references you may have opened during I/O operations. Leaving open sessions can
degrade the performance of your system. You can use Open VISA Session Monitor.vi
to find out the sessions that you have open, and to close the ones that are not being
used. This VI is available in the following directory: \LabVIEW\Vi.lib\Util-
ity\visa.llb. This VI can be helpful while you are debugging an application.

270 LabVIEW: Advanced Programming Techniques

address string data read

data write

error in (no error) {3 & <8 error out

|continue or stop message |

FIGURE 6.7

6.3.4 SimpLE ERROR HANDLER

The Simple Error Handler can be found in the Time & Dialog palette in the Functions
menu. This VI is used for error reporting. It is used with LabVIEW VIs that utilize
error I/O and the error cluster. The purpose of the Simple Error Handler is to notify
the operator that an error has occurred, but it can be customized for added function-
ality. It takes the error cluster as input and determines if an error was generated. If
an error has been generated, the VI displays a dialog box with the error code, a brief
description of the error, and the location of the error. The Simple Error Handler
utilizes a look-up table to display the description of the error based on the error code.

As mentioned, one of the uses of the Simple Error Handler is for error notification
purposes. The programmer can select the type of dialog box to display by wiring
the corresponding integer or enumerated constant. A value of 1 displays the dialog
box with only the OK button for acknowledgment. A value of 2 displays a button
dialog box with Continue and Stop buttons. This allows the operator to stop execution
of the program. A value of 0 gives no notification to the operator, even when an
error has been generated. This might be used when exception handling is to be
performed elsewhere by using the error?, code out, or source out, outputs from the
Simple Error Handler.

You must keep in mind that this VI will halt execution until the operator responds
to the dialog box. If your intention is to start the program and walk away, the program
will not continue if an error is generated. Dialog boxes should be used only when
the program is being monitored. Consider using e-mail for notification using the
SMTP package. Chapter 8 also shows you how to incorporate the e-mail feature
using .NET, or there are SNMP utilities as part of the Data Communications pallete.

Figure 6.7 shows how the Simple Error Handler can be used. This is the same
VI shown in Figure 6.3. Notice that the Simple Error Handler has been merely added
as the last VI in the flow. The value of 2, which corresponds to the two-button dialog
box (Continue and Stop), is being passed to the VL. If an error is detected in either
GPIB Read or GPIB Write, the dialog box will appear displaying the error code,
description, and the source of the error.

6.3.5 GENERAL ERROR HANDLER

The General Error Handler essentially performs the same task as the Simple Error
Handler. The Simple Error Handler offers fewer choices when used in an application.
The Simple Error Handler is a wrapper for the General Error Handler. The General

Exception Handling 271

Error Handler can be used in the same situations as the Simple Error Handler, but
as the General Error Handler has a few more options, it can be used for other
purposes where more control is desired.

The General Error Handler allows the addition of programmer-defined error
codes and corresponding error descriptions. When these arrays are passed in, they
are added to the look-up table used for displaying error codes and descriptions.
When an error occurs, the possible LabVIEW-defined errors are searched first,
followed by the programmer-defined errors. The dialog box will then show the error
code description and specify where it occurred.

The General Error Handler also offers limited exception handling options. The
programmer can set the error status or cancel an error using this VI. An error can
be canceled by specifying the error code, source, and the exception action. Set the
exception action to Cancel Error on Match. The look-up tables are searched when
an error occurs. When a match is found, the error status is set to “false.” In addition,
the source descriptor is also cleared and the error code is set to zero in the output
cluster. Similarly, when the status of the Error In is “false,” it can be set to “true”
by passing the exception action for the error code and source.

6.3.6 FIND FIRST ERROR

The Find First Error VI is a part of the Error Utility Package located in \Lab-
VIEW\vi.lib\Utility directory as part of the error.llb package. The purpose of this
VI is to create an Error Out cluster. It takes the following inputs: Error Code Array,
Multiline Error Source, and Error In Cluster. When the Error In status is “false” or
is not wired in, the VI tests to see if the elements of the error code array are nonzero.
The VI bundles the first nonzero element, the source, and a status value of “true”
to create the Error Out cluster for passing back out. As the source is a multiline
string, the index from the array of error codes is used to pick the appropriate error
source for bundling. If an Error In cluster is passed in, then a check is first performed
on the cluster’s status. When the status is “true,” the Error In cluster will be passed
back out and the array check will not be performed.

Find First Error is practical for use with LabVIEW VIs that do not utilize error
I/O but pass only the error code value out. Some VIs that output only the error code
are the original serial I/O VIs and some Analysis VIs. The Find First Error VI can
be used to convert the error code from these VIs to a cluster. The error cluster can
then be used in conjunction with other VIs that utilize error I/O.

Figure 6.8 is an example of how the Find First Error can be used. Both the
Bytes at Serial Port.vi and the Serial Port Read.vi pass an error code out. An array
is built with the two error codes that are passed out. A multiline string for the source
is also created in the example. The source will give information on the origin of
the error. The Find First Error.vi assembles the error cluster and passes it to Error
Out. If an error has occurred, the first error that occurred will be sent to the Error
Out cluster. If no error was generated, the Error Out cluster will contain a “false”
status Boolean, no error code, and an empty source string. The error cluster can
then be passed to the General Error Handler or the Simple Error Handler to display
a dialog box if needed.

272 LabVIEW: Advanced Programming Techniques

string read

port number| STy

2| @": error out
A s |E = =

[Bytes At Serial Port in Find First Error Example V| _
Serial Port Read in Find First Error Example V|

FIGURE 6.8

6.3.7 CLEAR ERROR

This VI is located in the dialog palette and as the name implies, it clears the error
cluster of all values. Essentially, it takes an error cluster in and outputs a new error
cluster with no information. This VI is useful when an exception has been success-
fully handled.

If the application is expected to log errors seen or if the error cluster is being
used to carry information in the error string, then this VI should not be used — it
will clear the error string and code.

6.4 PERFORMING EXCEPTION HANDLING

Exception handling encompasses both the detection of errors and the treatment of
the errors once they have been found. The previous sections presented several types
of errors that can occur, as well as the built-in LabVIEW functions that are available
for exception handling. This section will illustrate different approaches that are
effective for managing errors. The effectiveness of an error handler can be improved
by building it into your application during the early stages of development. It will
support the readability and maintainability of your code, as well as code reuse. When
error handling is not considered while you are architecting the application, the
handling code will consist of patches for each exception.

You may have some questions about the implementation of exception handling
code in order to make the handler both efficient and effective. When should error
detection, reporting, and handling be performed? What should the application do
when an exception is detected? Where and how should it be implemented? The
following subsections will address the where, how, and what on exception handling
approaches for your application.

6.4.1 WHEN?

The question of when to implement is a little bit trickier and depends on the specific
situation or application being developed. This may vary depending on the objective
of the application, the amount of time available, the programmers’ intent, and several
other factors. Some areas of an application that need handling may be easier to
identify than others. You may be able to identify areas where errors cannot be
tolerated, or where errors are prone to occur, through past experience. These are
definite targets for error detection, reporting, and handling.

Exception Handling 273

To answer this question as completely as possible, you must also look at specific
instances in an application to determine what alternative scenarios are foreseeable
as well as their possible consequences. To illustrate this point, consider an example
in which you must open and read or write to a file using an I/O operation. To answer
if exception handling code is needed, and maybe even what is needed, think about
the following scenarios and consequences. What will need to happen if the file that
is being written to cannot be opened? What happens if the read or write operation
fails because the drive is full? What happens if the file cannot be closed? Answering
these questions will help put the need for handling into perspective for the applica-
tion. It will also help you look at the application and determine where the exception
handling activities are needed by asking similar questions. Error handling will
definitely need to be implemented if the file I/O operation is crucial to the application,
and if other parts of the program are dependent on this activity’s being successful.

6.4.2 ExcepTioN-HANDLING AT MAIN LEVEL

To answer the “where” question, exception handling should be managed at the
Main Level or Test Executive level. The Main Level controls and dictates program
flow. By performing exception handling at the Main Level, the program execution
and control can be maintained by the Top Level. This is important because the
exception handler code may alter the normal flow of the program if an error is
detected. You may want the code to perform several different actions when an error
has occurred. When exception handling is performed at lower levels, program
control must also be passed to the lower levels. This is a good reason why the
implementation of an exception handler should be considered when architecting
the application. Application structure and processes for application development
are discussed in Chapter 4. Reading Chapter 4 will help you get a better perspective
on how to approach the development of an application and other topics that must
be considered before you begin.

Performing exception handling at the Main Level also eliminates the need for
duplicating code in several subVIs. This permits the error handler code to be located
in one place. The separation of error handler code from the rest of the code reduces
confusion and increases readability and maintainability. Logical flow of the program
will be lost in the clutter when error handling is performed with the rest of the code.
This is explained further in Section 6.4.5 on exception handling with state machines.

The suggested style is similar to other programming languages where Error
Information is sent to a separate piece of code for handling purposes. As mentioned
earlier, both Java and C++ have a separate section that performs the error handling
after the evaluation of an error is completed. There is no such mechanism inherent
in LabVIEW, but this approach resembles it.

6.4.3 PROGRAMMER-DEFINED ERRORS

Defining errors was briefly discussed in Section 6.3.1 along with the error cluster.
The ability to define errors is significant because LabVIEW leaves application-
specific error handling to the programmer. As mentioned earlier, error codes 5000-

274 LabVIEW: Advanced Programming Techniques

9999 are dedicated for use by the programmer. The programmer must perform error
checking in circumstances where faults cannot be tolerated, as was shown in Figure
6.5. An error code must then be assigned to the error check as well as a source string
to indicate the origination.

When implementing a programmer-defined error in a subVI or driver, you must
make sure that an error was not passed in. Simply unbundle the error cluster and
check the value of the status Boolean. If an error was passed in, but you fail to check
the status, you may overwrite the error cluster with the new Error Information that
you implemented. This will make it nearly impossible to find the root of the problem
during the debugging phase. You must also make use of shift registers when using
error clusters within loop structures to pass data from one iteration to the next. If
shift registers are not used, error data will be lost on each iteration.

Records must be kept of the error codes that have been assigned by the user. A
look-up table can be created that contains all of the error codes and sources assigned.
This can then be used with the General Error Handler or with other exception
handling procedures. It may be a good practice to maintain a database or spreadsheet
of user-defined error codes. A database facilitates the management as the number
of codes grows in size.

When you are assigning error codes, you can group similar errors into specified
ranges. This is helpful when deciding the course of action when errors occur. For
instance, you can set aside error codes 6000-6999 for incorrect acknowledgments
from instrument I/O operations. When an error in this range occurs, you can identify
it and decide how to deal with it easily. LabVIEW-generated errors are grouped in
a similar manner to facilitate their identification and management.

User-defined warnings can also be assigned codes to indicate that an undesired
event has occurred. You can use these to signal that the data taken may not be entirely
valid due to the occurrence of some event during application execution. The user
can investigate the source of the warning further to determine the validity of the
data. Multiple errors can be reported and handled by unbundling the error cluster
and appending the new information.

6.4.4 MANAGING ERRORS

Once you have a list of the errors that you want to deal with that can be detected,
you have to decide what to do with them if they occur. When an error occurs it
should be passed to the exception handling code. The exception handling code can
deal with the errors in different ways. Expanding on the idea of grouping similar
errors, the code can check to see what range the error has fallen in to determine the
course of action. Figure 6.9, Error Range Example.vi, is an example of grouping
ranges of error codes for handling purposes. When a set of exceptions is considered
to be logically related, it is often best to organize them into a family of exceptions.

The easiest way to deal with an error is to simply display a dialog box to notify
the user that an error has occurred. This dialog box can be as simple as the one
displayed by the General Error Handler. You can create your own VI to display a
dialog box to include more information, including what the user can do to trouble-
shoot the error. This usually results in halting execution of the program.

Exception Handling 275

error in (no

Perform action here or display
dialog box for notification.

FIGURE 6.9

You can get more involved by attempting to correct or recover from an error in
the exception handling code. In this case, the more general range checking technique
will not suffice because the exact error code will be used to determine how to correct
it. It also requires detailed knowledge of the error and exactly how it can be corrected.
Suppose, for example, that you get a specific error telling you that the device under
test did not respond to the commands sent to it. You also know that this happens
when the device is not powered-on or has not been initialized properly. You can then
attempt to correct this error by power cycling the device and initializing it. Then
you can retry the communications and continue with the program if successful.

Figure 6.10 illustrates a technique for dealing with specific error codes as an
alternative to the general range-checking method. This method needed to be used in
LabVIEW 4.1 or older because the default state was not defined in these versions.
If the error code did not exist in the array of error codes, the search 1-D array function
would return -1. There is no ‘-1’ case in the case statement and you would have had
a problem pre LabVIEW 5. Current versions of LabVIEW have a default case
permitting you to wire the code directly to the selector terminal of the case structure.
For case statements using integers, such as this error array, set the default case to 0.
This case will then execute for error codes for which no case has been defined.

The method displayed is similar to a look-up table described earlier. An array
that contains all of the error codes is used with the Search 1D Array VI. The error

"4 0, Default = p[™

1D array

error in (no error)

FIGURE 6.10

276 LabVIEW: Advanced Programming Techniques

code is passed to it and the index of the error code is searched for. The index drives
the case statement, which takes the right course of action for the error code. If there
is no match for the error code, the Search 1D Array returns a value of —1. By adding
1 to the result, Case O is selected from the structure. This case will serve as the
default case when no match is found. In the example shown, a dialog box is displayed
indicating that the error code was not defined.

Another alternative is the use of strings to drive case structures. You can imple-
ment the previous example by unbundling the cluster to retrieve the source infor-
mation. This string can then be used to determine the course of action by wiring it
to the case selector terminal.

6.4.5 STATE MACHINE EXCEPTION HANDLING

The use of a state machine offers several advantages for exception handling code.
One advantage is that the exception handling code can be located in one place. This
is done through the use of an Error state. The Error state is responsible for all
exception handling in the application. This eliminates the need for exception han-
dling code in several places. Maintaining the code becomes easier when the code
resides in one location. Using a state machine also facilitates exception handling
management at the Main or Test Executive Level. The Error state is part of the Main
Level, so control is maintained at the upper level.

Another advantage is that duplication of error handling code is reduced when
the code is placed in one location. Similar errors may be generated in different parts
of your code. If you do not perform exception handling in one place, you may have
to write code in several places for the same type of error.

Conditional execution of code can be implemented without creating a complex
error handler through the use of a state machine. Exception handling code determines
program execution based on the severity of the error that was generated. You may
want your code to skip execution of the parts of the code that are affected by the error,
and continue execution of the rest of the program. For example, suppose you have a
series of ten different tests you want to perform on a device under analysis. If an error
occurs in Test 1 and that same error will affect Tests 5, 6, and 7, you may still want
to execute Tests 2, 3, and 4. In this case, using a queued state machine will simplify
the procedure for performing this task. The Error state can parse out the states that
correspond to Tests 5, 6, and 7 from the list of states to execute. In cases where the
error can be corrected, the program needs to remember where execution was halted
so it can return to the same location and continue. The use of state machines facilitates
implementation of this feature into exception handling code. Proper logic for diag-
nosing state information must be kept to make this possible. In addition, proper logging
and saving routines should be incorporated to ensure that data is not lost.

The conditional execution can also be applied to tests that fail. You can design
the application to execute a test depending on the outcome of another test. If Test
1 fails, you may want to skip Tests 2 and 3 but continue with the remaining tests.
Again, you can parse the tests that should not be executed. Chapter 3 discusses the
various state machines in depth. The example in Section 6.4.9 will help demonstrate
the implementation of exception handling in a state machine context.

Exception Handling 277

Get Date/Time String
L 7T R
i
i 2;]
error in (no error] | status To Decimal L
[E=———— [code = == - file path (dialog if empty

4

FIGURE 6.11

6.4.6 LOGGING ERRORS

Error logging is useful for keeping records of faults that have occurred during the
execution of a program. The error log should report the code, the origin, a brief
description, and when the error occurred. Upon the occurrence of an error, the log
file is opened, written to, and closed. If further exception handling code exists, the
error can be dealt with in the appropriate manner.

Error logging is beneficial in cases where the exception handling code has
already been implemented and when there is no exception handler in the application.
When exception handling has been implemented, error logging gives the programmer
insight into the types of errors that are being generated and whether the code is
handling them properly. The log can be used as a feedback mechanism to determine
areas of the exception handling code that are unsatisfactory. These areas can then
be enhanced to build a more robust application.

In instances when the exception handling code has not yet been developed, the
error log can be used in a similar manner. The log can serve as a basis for developing
the error handling code. The errors that occur more frequently can be addressed
first. This method attempts to strike a balance in the amount of effort spent in
developing an exception handler. The concept here is to gain the maximum benefit
by attacking the most common errors.

Figure 6.11 is an example of a VI that logs errors. First, the status in the error
cluster is checked to determine whether an error has occurred. If an error has been
generated, the date, time, error code, and source are written out to a file that serves
as the error log. The Write Characters to File VI is used to perform the logging.
This VI can be used in multiple places where logging is desired, or in a central
location along with other exception handling code. As the error information has been
converted into a tab-delimited set of strings, it can be imported into Excel for use
as a small database.

6.4.7 EXTERNAL ERROR HANDLER

An exception handler that is external to the application can be written to manage
the errors that are generated during program execution. The application must then
make a call to the external error handler. This can be beneficial when using the NI
Test Executive. The error handler VI will be loaded when it is referenced in the

278 LabVIEW: Advanced Programming Techniques

type specifier VI Refnum (for type only)

l_D-I
=& : : |_Open _fl Reference o . Tor out
% C:\Labview\beeper.vi B — am VI 1 oo 5t

- o] Run VI -
error in (no error
=t ”{”) IIIIIIIII A » Wait Until Done
=== +Auto Dispose Ref

FIGURE 6.12

application. The error handler VI can be written to perform all the relevant tasks,
similar to carrying out exception handling within an application.

If the error handler is written to accommodate general exceptions, it can be
called in as many applications as needed. Figure 6.12, Load External Handler.vi,
shows how a VI can be loaded and run from an application. First, a reference to the
VI must be opened using Open VI Reference. This VI can be accessed through the
Application Control palette. You must specify the path or directory in which the
error handler resides. Set the VI Server Class to “Virtual Instrument” by popping
up on the VI Refnum. The Invoke node is used to run the external VI. The Invoke
node is also available in the Application Control palette. When the VI reference is
passed to the Invoke node, the VI Server Class will automatically change to Virtual
Instrument. Then, by popping up on “Methods,” you can select the Run VI method
from the menu. Data can be passed to the error handler VI using the Invoke node
and selecting the Set Control Value method. The functions available on the Appli-
cation Control palette are described in Chapter 2.

EXAMPLE:

An example of how an external exception handler is implemented is shown in Figure
6.13. This code diagram demonstrates the steps involved in using an external handler:
opening a VI reference, passing the input values, running the external VI, and closing
the reference. Opening a VI reference and running an external VI has already been
described. In this example, the error cluster is passed to the external exception handler
which determines the course of action.

First, a VI reference is opened to External Handler.vi as shown in the VI path. Then,
the error cluster information is passed to External Handler.vi using the Set Control
Value method on the Invoke Node. This method requires the programmer to specify
the Control Name, the Type Descriptor, and the Flattened Data. The error cluster is
passed to this method by flattening it using Flatten to String from the Data Manipulation
subpalette in the Advanced palette. The flattened data string and the type descriptor
are then wired directly from Flatten to String to the Set Control Value method. The
Control Name is a string that must match identically the control name on the front
panel of the VI to which the data is being passed. The name specified on the code
diagram is Error In (No Error), as it appears on the front panel of the External
Handler.vi. The VI is run using the Run VI method, and, finally the reference is closed.

Figure 6.14 illustrates the code diagram of External Handler.vi. This VI is similar
to an exception handler shown previously. It takes the error cluster information and

279

Exception Handling

f:o Jo1e

v1°9 3NOI

paulap Jou 1013

92In0s

[« 1iNejod 0]

1oy 9s0dsiq oJny«

auoq [un yem -

IAUNY

N

3p00

In'BoT Joui s 4| Bojelp) yyed ajy

€1'9 3_YNDI4

ele(pauaje|4 ;%g H

10)duoseq adAy «

[(sous8 ou) ur ous

SUEN [0JU0D) s|-~{(10LID OU) Ul JOLIB||

) -

_heidl1es eA

g IA

Py E | IAJ8|puBH [BUIBIXT\DUIPUBH UOICBOXI\MBIAGRT\:D %,
1}]

soualeey |A uado _

(Ajuo adAy Joy) wnugey A _mc_oma,w adAy

280 LabVIEW: Advanced Programming Techniques

decides the course of action based on the error code. The Error Information is logged
using Error Log.vi, and the case structure is driven by the error code. Case 0 is used
as the default for error codes the handler is not prepared for.

In this example, the error cluster data was passed to the external VI. Similarly,
data can be retrieved from the controls or indicators from the VI if it is desired. The
Get All Control Values method can be used to perform this action. This method will
retrieve all control or all indicator values from the external VI. The data is returned
in an array of clusters, one element for each front panel control or indicator. The
cluster contains the name of the control or indicator, the type descriptor, and the
flattened data, similar to the way the values were passed to the External Handler VI
in the example.

6.4.8 Proprer ExiT PROCEDURE

In situations where fatal or unrecoverable errors occur, the best course of action may
be to terminate execution of the program. This is also true when it is not reasonable
to continue execution of the program when specific errors are generated. However,
abnormal termination of the program can cause problems. When you do decide that
the program should stop due to an error, you must also ensure that the program exits
in a suitable manner.

All instrument I/O handles, files, and communication channels must be closed
before the application terminates. Performing this task before exiting the program
minimizes related problems. Consider, for example, a file that is left open when a
program terminates. This may cause problems when other users or applications are
attempting to write to the file because write privileges will be denied.

Upon the occurrence of an error, control is passed to the error handler. Therefore,
it is the responsibility of the error handler to guarantee that all handles, files, and
communication channels are closed if the error cannot be recovered from. The easiest
way to implement this is to have the error handler first identify the error. If the error
that was generated requires termination of the program, code within the handler can
perform this task. Figure 6.15, Close Handles.vi, is an example of a VI that is used
solely to close open communication channels. A VISA session, file refnum, TCP
connection ID, and an Automation Refnum are passed to this VI, which then proceeds
to close the references.

A program should be written to have only one exit point, where all necessary
tasks are executed. The best way to implement this is to utilize a state machine. By
using a state machine, only one exit point is needed and will serve as the Close
state. Correspondingly, there is only one place where all exception handling is

VISA session [refnum connection (D] Automation Refnum
=3
I
error | = sy lerror out
B]Y e O ||

FIGURE 6.15

Exception Handling 281

performed: the Error state. When an error is identified as fatal, the Error state will
force the state machine to the Close state. The Close state will be responsible for
terminating the program in the appropriate manner. All handles, files, and commu-
nication channels will be closed in this state. As only one Close state is needed, it
will also be the last state executed during normal execution of the program when
no error exists. This style makes the code easier to read and maintain.

6.4.9 ExceprioN HANDLING EXAMPLE

Several methods of performing exception handling were provided in this section. A
closing example that utilizes some of the topics that were discussed is presented in
Figure 6.16. The example utilizes the state machine structure with an Error state for
error handling.

The purpose of Next State.vi is simply to determine which state will be executed
next. The Next State VI is also responsible for checking if an error has occurred after
the completion of each state. When an error has occurred, the next state that will be
executed is the Error state. The Error state first logs the error using the Error Log
VI. The error code is checked to determine if it falls in a certain range that corresponds
to instrument driver errors. If the error code is within that range, it is considered as
unrecoverable or fatal in this example. When a fatal error is detected, the Close state
is wired out to the Next State VI to execute the proper exit procedure.

If the error code does not fall in the range specified, the code is again compared
to an array of user-defined error codes. This drives the case structure, which will take
the action that is appropriate depending on the error that was generated. When no
match results from this comparison, Case 0 is executed as illustrated in Figure 6.17.

When a match results for Case 1, the Remove States VI will remove the states
that cannot be executed due to the error that was generated. Then, the program will
continue with the states that can be executed according to the elements in the states
array. This is shown in Figure 6.18.

Figure 6.19 shows the Close state of the state machine. This state is executed
during normal termination of the program, and also when a determination is made
that a fatal error has occurred. As shown in Figure 6.16, the Error state will force the
Close state to execute when an unrecoverable error has been found. The only task of
the Close Handles VI is to close any references and communication channels that
have been opened. This will minimize problems when the application is run again.

This example demonstrates the ideas presented in this section. First, exception
handling was performed at the Main Level so that program control did not have to
be passed to lower levels. Second, the error handler code was separated from the
rest of the code to increase readability. Not only does this reduce confusion, it also
reduces the need for duplicating code in several places. Next, the use of a state
machine allowed the placement of exception handling code in one location to
increase maintainability and conditional parsing of tests. Error logging was per-
formed to keep a record of exceptions that occurred. Finally, a proper exit procedure
for the application was implemented. Following good practices in the creation of an
exception handler will lead to sound and reliable code.

LabVIEW: Advanced Programming Techniques

282

1no Jode

[=Kz=18 RN

44 ,01E1S Joug, ol

(40118 0U) Uy JOMID

 OJBIS UsdQ++

91’9 WNDH

283

Exception Handling

TR
Jno Jols

s
[E=l¥|

= -0} a 9]} 8S0[D)

= 55

3p0d
p (tous ou) ur Jous

H . | - Oumﬂw ud OAv

@ B A -

: SrTk L+
[« sbesseu 0] fewe g}
- JneRdg 0

a 95[e4

P EEIER

WELETT

£1'9 [-NOI4

= g SiglE
N0 Jowe 158N

LabVIEW: Advanced Programming Techniques

284

sa0Es A b

\ feuy seE1s 9pod (owsa ou) ur Jols
_ .- i 1721
R A 4 &1 Toeis uedow

H h ’
1] |5 |4 -a
feue q| 0021 yyed 9y
- J
« 9S[eq

- ,SElS Jou3,

81’9 WNDH

285

Exception Handling

Jno Jols

QI UO1}23UU0D g

- e == |

elly/ SAIEIS E ({odse ou) ul Jowss
Uoissas YSIA @

2 9JelS UadO+

[+ 91815 850[],,

61'9 3ANDI4

286 LabVIEW: Advanced Programming Techniques

6.5 DEBUGGING CODE

The techniques described in the previous sections for exception handling can be
utilized for debugging LabVIEW code. Error detection is very valuable during the
testing phase of code. Detection assists in finding where and why errors occurred.
Bugs are faults in the code that have to be eliminated. The earlier bugs are found,
the easier they are to fix. This section covers some LabVIEW tools that facilitate
the process of debugging VIs. First, broken VIs and the error list will be discussed.
A description on how to utilize execution highlighting along with the step buttons
will follow. Then, the probe tool, the use of breakpoints, and suspending execution
will be described. Data logging and NI Spy will then be presented. Finally, tips on
utilizing these tools to debug programs will be provided.

6.5.1 ERrrOR ListT

A broken Run button indicates that a VI cannot be executed. A VI cannot be run
when one or more errors exist in the code. Errors can be the result of various events
such as bad wires or unwired terminals in the code diagram. You may also see a
broken Run button when you are editing the code diagram. However, when you are
finished coding, the Run button should no longer be broken. If the Run button is
broken, you can find out more information on the errors that are preventing the VI
from executing by pressing the Run button. Figure 6.20 shows the Error List window
that appears.

&) Error, list

Items with errors

Untitled 2

w
5 errars and warnings Shiows Warnings]
["@ Front Panel Ervars ~
Array ‘Array’ control has undefined type
& EBlock Diagram Erraors
Case Structure: unwired selector
et unwired from inside the 5

Dietails

You musk wire & valid data type I;'rnrn inside the loop ta the shiFt reqgister on the right edge A
of the loop, or delete the shift register,

Close] [Shiow Error l [Help

FIGURE 6.20

Exception Handling 287

At the top of the Error List window is a list box that lists all of the VIs that
contain errors and warnings. A box that lists all of the errors in each VI can be found
just under this. Both front panel and block diagram errors will be listed. The list
describes the nature of the errors. When an item in the list is selected, a text box
below the list gives more information on the error and how it can be fixed. The
Show Error button will find and highlight the cause of the error that is selected.
There is also a checkbox, Display Warnings, which will list the warnings for the
VI. The warnings do not prevent the VI from executing, but are recommendations
for programming. You can set it to display warnings by default by selecting the
corresponding checkbox in your Preference settings in the Edit menu.

Using the Error List, you can effectively resolve all of the errors that prevent
the VI from running. Once all of the errors have been dealt with, the Run button
will no longer be broken. The Error List provides an easy way to identify the errors
in your code and determine the course of action to eliminate them.

6.5.2 ExecutioN HIGHLIGHTING

The Error List described above helps you to resolve the errors that are preventing
a VI from running. But it does not assist in identifying bugs that are causing the
program to produce unintended results. Execution Highlighting is a tool that can be
used to track down bugs in a program. Execution Highlighting allows you to visually
see the data flow from one object to the next as the VI runs. The data, represented
by bubbles moving along the wires, can be seen moving through nodes in slow
motion. The G Reference Manual calls this “animation.” This is a very effective tool
that National Instruments has incorporated into LabVIEW for debugging VIs. As
LabVIEW is a visual programming language, it makes sense to incorporate visual
debugging tools to aid programmers.

If you do not see data bubbles, perhaps your Preference settings have not enabled
this option. By default, this option is activated. Select Preferences from the Edit
pull-down menu, and choose Debugging from the drop-down menu. Make sure the
box is checked to show data bubbles during Execution Highlighting.

Pressing the button with the light bulb symbol, located on the code diagram
toolbar, will turn on Execution Highlighting. When the VI is run, the animation
begins. Execution Highlighting can be turned on or off while the VI is running.
Highlighting becomes more valuable when it is used in single-stepping mode. The
speed of execution of the program is greatly reduced so you can see the animation
and use other debugging tools while it is running.

6.5.3 SINGLE-STEPPING

Single-Stepping mode can be enabled by pressing the Pause button. This mode
allows you to utilize the step buttons to execute one node at a time from the code
diagram. Additionally, when Execution Highlighting is activated, you can see the
dataflow and animation of the code while executing one node at a time. The Pause
button can be pressed or released at any time while the VI is running, or even before
it starts running. You can also press one of the step buttons located next to the

288 LabVIEW: Advanced Programming Techniques

B Error Log, vi Block Diagram

Ele Edit Mew Project Operate Tools Window Help
[#l][@]1][@][5] [wal 2 [o?] -
falFalse =Pl *

FIGURE 6.21

Execution Highlight button to enter Single-Stepping mode. The Pause button will
become active automatically when these are used.

When the VI is in Single-Stepping mode, the three step buttons on the code
diagram toolbar are used to control execution of the program. Depending on the
code diagram, the step buttons will perform different actions. Use the Simple Help
to determine what each button will do at a specific node on the code diagram. Simple
Help can be accessed through the Help menu. When the cursor is placed over the
step buttons, a description of their function will pop up. Figure 6.21 shows the Error
Log VI in single-stepping mode with Execution Highlighting activated. The three
step buttons can also be seen in this diagram.

The first step button on the toolbar is used for stepping into a particular structure
or subVI. The structure or subVI will also be in Single-Stepping mode. You must
then use the step buttons to complete the structure or subVI. The second button is
used for stepping over objects, structures, and subVlIs. If this button is pressed, the
structure or subVI will execute and allow you to begin stepping again after its
completion. The third button is used to complete execution of the complete code
diagram. Once pressed, the remaining code will execute and not allow you to step
through single objects unless Pause is pressed again.

6.5.4 Prose TooL

The Probe Tool can be accessed through the Tools palette or through the menu by
popping up on a wire. The Probe Tool is used to examine data values from the
wires on the code diagram. When a wire is probed, the data will be displayed in
a new window that appears with the name of the value as the title. The probes and
wires are numbered to help keep track of them when more than one is being used.
You can probe any data type or format to view the value that is being passed along
the wire. For example, if a cluster wire is being probed, a window with the cluster
name appears displaying the cluster values. The values will be displayed once the

Exception Handling 289

B! Close Handles.vi Block Diagram

File Edit View Project Operate Tools Window Help B
o> l@l (_‘u@ |I..DIIE’|D1’? | 14pt Application Font - i
-~

[

= ;
...................... A =]

error out
status code
& 0
SOUrcE
e— v
| < >
FIGURE 6.22

data has passed the point on the wire where the probe was placed when the VI
was running.

The Probe Tool is very valuable when debugging VIs because it allows you to
examine the actual data values that are being passed along the wires. If you are
getting unexpected results or errors, you can audit values to ensure that they are
correct. This tool helps you find the root of the problem. Figure 6.22 illustrates a
probe on the error cluster between the VISA Close VI and the File Close VI. The
wire is marked with a number, as is the window displaying the cluster values.

By default, auto probing is active in Execution Highlighting mode. This causes
LabVIEW to display data values at nodes while Execution Highlighting is on.
However, the complete data cannot always be viewed in this manner and is only
useful for simple verification purposes. The Probe Tool will still be needed for data
types such as clusters and arrays. Auto probing can be enabled or disabled from the
same Preferences window as the data bubbles discussed earlier.

The conditional probe is one of the best debugging tools that have been added
to LabVIEW. A conditional probe for a Numeric double precision value is shown
in Figure 6.23. The data tab contains the typical information a probe has always
contained — the value on the wire. The condition tab, however, is the new feature
that adds a tremendous amount of value to the use of the probe in debugging.

Programmers that have used Visual Studio for C++ programming have had one
very useful tool, called ASSERT. This function is a macro in C++ and part of the
debugging object in Visual Basic, and this function is essentially a sanity check. The
ASSERT function uses a Boolean expression as an argument. If the argument

290 LabVIEW: Advanced Programming Techniques
B! [1]Numeric E|§|@ P[] Numeric EHE'@
Data Candition Data Candition
Pause if any of the Following: Pause if any of the Following:
[] Equal to 40 [] Equal to 40
[] @reater than 40 Greater than 4 -1
[] Less than 40 Less than 41
FIGURE 6.23 FIGURE 6.24

provided evaluates to true, then nothing happens. If the argument evaluates to false,
the macro stops the program and provides a popup box telling where the assertion
failure occurred so a developer can examine what issues could lead to the sanity
check failure. This type of tool has become available to LabVIEW with the addition
of the conditional probe.

The conditions available on conditional probes vary with the type of probe; not
all wire types have conditional probes. For example, wires related to the commu-
nications pallet or the matrix control do not have conditional probes. Figure 6.24
shows the conditionals of a numeric conditional probe set to perform range check-
ing. Each condition can be enabled with a different value. Figure 6.24 shows the
probe configured to verify the range is between —1.0 and 1.0. If the greater or less
than condition resolves to true, the program will pause and the developer has the
ability to poke around the code diagram. This would allow a developer to set the
conditional breakpoint to verify exception handling code catches issues and pro-
cesses them as expected.

Conditional probes also function as a conditional breakpoint which makes it
arguably the most flexible debugging tool in the LabVIEW toolbox.

6.5.5 BRreakpoINT ToOL

The Breakpoint Tool is another debugging device accessible through the Tools
palette. As the name suggests, the Breakpoint Tool allows you to set a breakpoint
on the code diagram. Breakpoints can be set on objects, VIs, structures, or wires. A
red frame around an object or structure indicates a breakpoint has been set, whereas
a red dot represents a breakpoint on a wire. Breakpoints cause execution of the code
to pause at the location where it has been set. If it is a wire, the data will pass the
breakpoint before execution is paused. A breakpoint can be cleared using the same
tool that is used to set it.

Breakpoints are valuable because they let the user pause the program at specific
locations in the code. The program will execute in its normal manner and speed
until it reaches the breakpoint, at which point it will pause. The code that is suspect
can then be debugged using Single-Stepping mode, Execution Highlighting, and the
Probe Tool.

Once a breakpoint has been set, the program will pause at the break location
every time it is executed. You must remember to clear the breakpoint if you do not
want the program to pause during the next iteration or execution. If you save the VI

Exception Handling 291

while a breakpoint has been set, the breakpoint will be saved with the VI. The next
time you open the VI and run it, execution will pause at the break location. You can
use the Find function to locate any breakpoints that have been set.

Breakpoints are non-conditional, meaning whenever a breakpoint is encountered,
the program is stopping. If conditional breakpoints are desired, the conditional probe
is preferable to a breakpoint.

6.5.6 SUSPENDING EXECUTION

You can force a subVI to suspend execution, for debugging purposes, when it is
called. This can be done using one of the following three methods. The first method
is to select Suspend when Called from the Operate menu. The second method is to
pop up on the subVI from the code diagram of the caller and select SubVI Node
Setup. Then, check the box Suspend when Called. Alternatively, you can pop up on
the icon while the subVI is open and select VI Setup. Then check the box Suspend
When Called.

When you cause a subVI to suspend execution, its front panel will be displayed
when it is called. The subVI also enters a special execution mode when it is
suspended. The Run button begins execution of the subVI. When a subVI is sus-
pended, it can be executed repeatedly by using the Run button. To the right of the
Run button is the Return to Caller button. Once suspended, you can use Execution
Highlighting, Single-Stepping, and the Probe Tool to debug the subVI. When you
use Single-Stepping while a subVI is suspended, you can skip to the beginning and
execute the VI as many times as needed.

6.5.7 DAT1A LOGGING

Data Logging is another LabVIEW built-in tool that can be used for debugging
purposes. Front panel data can be logged automatically by enabling Log at Com-
pletion from the Operate menu. When the VI is run the first time, a dialog box will
appear, prompting the user to enter a filename for storage. Alternatively, a log file
can be selected before running the VI, by selecting Log from the Data Logging
submenu in the Operate menu. When the filename is selected prior to running the
VI, the dialog box will not appear. The front panel data is entered into that log file
after the VI executes.

The Data Logging feature is a method for saving data from tests, similar to a
database. LabVIEW enters a date and time stamp, along with the data for the
indicators and controls from the front panel. The data can then be viewed by selecting
Retrieve from the Data Logging submenu. Figure 6.25 illustrates how the data
appears when data is logged and retrieved using this feature. This is a simple front
panel with two controls and two indicators. The multiplication and addition results
of the two integer controls are displayed in the indicators. This is how the data will
be displayed when it is retrieved from the log file. The time and date stamp appears
at the top, along with controls for scrolling through the records and deleting records.

Data Logging is useful for saving data values from tests and for debugging VlIs.
It serves as a mechanism for quickly saving data from specific VIs that are being

292 LabVIEW: Advanced Programming Techniques

k. Data Logging, vi Front Panel

File: View Project Operate Tools Window Help data
DKlnﬁll B[W [0.10] 2/14/1999 4:17:50 PM.090 log
A
Integer 1 Integerl*Integer2
sEo | oo |
Inkeger 2| Integer1+1nteger2|
| B
iV
| IE %
FIGURE 6.25

debugged. The saved data log can then be reviewed for suspect values. The data log
is also useful for monitoring intermittent problems with VIs. The front panel data
can be saved, retrieved, and purged as needed.

6.5.8 NI Spy/GPIB Spy

These two utilities are very similar and are both used as debugging tools on Windows
operating systems. NI Spy monitors the calls that are made by applications to NI-
488.2, NI-VISA, IVI, and NI-VXI drivers. Similarly, GPIB Spy tracks any calls
that are made to GPIB drivers. They are useful for determining the source of
communication errors, whether they are related to general communication problems
or are application specific. They help you verify that communications with an
instrument are correct. However, when either of these applications are running, they
will degrade the speed of your application. Use them only when you are debugging
your program to free up system resources, especially if execution time is a consid-
eration for the application.

NI Spy displays the index number assigned to the call, a description of the
operation and parameters, and the time that it occurred. The tool displays the calls
as they are made during the execution of your application. Errors are immediately
highlighted to indicate failures. NI Spy also allows you to log the activity for review
at a later time.

GPIB Spy monitors calls to the Windows GPIB driver by Win32, and displays
them while your application is executing. All errors or failures are highlighted for
quick identification. You can view each call as it is made and see the results, including
any timeouts. This utility can be used to verify that your application is sending the

Exception Handling 293

right calls to the Windows GPIB driver. GPIB Spy lists an index number of the call,
the names of the GPIB calls, output of the status word ibsta after the call, output of
the error word iberr, output of the count variable ibentl, and the time of each call.
All of these contain useful information on the performance of the application. You
can view detailed information by using the Properties button on the toolbar.

Familiarization with GPIB, NI-488.2, and the ANSI/IEEE 488.2 communication
protocol may be necessary to fully utilize and understand the debugging features
on both GPIB Spy and NI Spy. A discussion of IEEE 488.2 is beyond the scope of
this book.

6.5.9 UTtiuizatioN oF DeBuGGING ToolLs

The Error List, Execution Highlighting, Single-Stepping mode, Probe Tool, Break-
point Tool, and suspending execution were described in the previous sections. These
built-in LabVIEW features are very effective for debugging code when they are used
in conjunction with on-line Help. Each one is a weapon the programmer can use
for tracking down and resolving problems. These tools are summarized in Table 6.2
which lists the tool, its application or use, and how to access or enable it.

The software process model being followed determines when the debugging or
testing phase for the code begins. In an iterative model, debugging is involved in
each cycle of the process. In the Waterfall model, debugging is done only during
one phase of the development cycle. In either case, the first action is to eliminate
the errors that prevent the VI from running. As already described, the Error List will
assist in removing these errors to allow the VI to run. This part of debugging should

TABLE 6.2
Debugging Tools

Tool Application Accessing
Error List Used to list, locate, and resolve errors Press broken Run button.

that prevent a VI from running.

Execution Highlighting
Single-Stepping Mode
Probe Tool

Breakpoint Tool

Suspending Execution

Data Logging

GPIB Spy/NI Spy

Used to animate, visualize data flow
along wires on code diagram.

Allows execution of one node at a
time.

Displays data values passed along
wires.

Halts execution of program at
specific location.

Suspends subVI for repeated
execution during debugging.

Enables front panel data logging to
file.
Monitor calls to Windows drivers.

Press highlight button with bulb.

Use Pause button.

Available from Tools palette.

Available from Tools palette.

Use Operate menu, SubVI node
setup by popping-up on icon or VI
setup while VI is open.

Use Operate menu and Data Logging
submenu.

Run application.

294 LabVIEW: Advanced Programming Techniques

be performed as the application is being developed, regardless of the model being
used. Getting rid of errors that prevent VI execution should be considered part of
the coding phase in LabVIEW. This is analogous to syntax errors in traditional
languages that are pointed out to the programmer during coding. The Error List
makes this easy for even the novice programmer. It guides the programmer in
resolving errors quickly.

If it is possible, try to test one VI at a time. Test the individual drivers and subVIs
separately before attempting to run the main or executive. You may be overwhelmed
when you try to debug a large program with many subVIs. Not only is it easier to
concentrate on smaller parts of the program, but you reduce the errors that may be
caused through the interaction of the subVIs with each other. A modular design
approach with VIs that are specific and self-contained simplifies testing. This inter-
action through data flow may make it appear that more errors exist. You may also
be able to create a simulator for I/O or other portions of the code that have not yet
been prepared. Again, this will help in isolating problems related to the specific code
at hand without having to deal with I/O errors.

Once the VI can be executed, the next step is to run it with Execution High-
lighting enabled. The animation helps you see the data flow on the code diagram.
Execution Highlighting will help you find bugs caused by incorrectly wired objects.
While the VI is running, make sure that the code executes in the order that was
intended, which can be identified with highlighting.

You may also want to probe certain wires with Execution Highlighting and make
sure that the values are correct by using the Probe Tool. For instance, probing the
error cluster between two objects or VIs will help narrow down where the error is
generated. You will see the value of the Probe Tool for debugging once you begin
to use it. The Probe Tool and Execution Highlighting can be used in Single-Stepping
mode. Single-stepping mode lets you look at a section of code in even more detail
to find the problems that exist.

If problems persist, a few suggestions are offered here for you to consider. These
might seem basic, but they are the ones that are easy to overlook. First, make sure
that the input values provided by the user controls are valid. The Probe Tool can be
used to perform this check from the code diagram. When these input values are out
of the acceptable range, the code will not execute as intended.

If you are performing communications with an external device, file, or appli-
cation, check the commands or data sent. The device may not respond to unex-
pected commands. During this process, also check for correct file names, handles,
and addresses. Examine the external device to see if it is functioning properly,
and manually perform the actions you are trying to take through automation.
Consider using delays in the program if the external device is not responding
quickly. Investigate the execution order of your code to ensure that the correct
sequence of events is occurring. Race conditions can result if the code is not
executing as intended.

Inspect arrays for correct usage of indices. Arrays, lists, rings, and enumerated
types all start off at zero and can cause potential problems if not accounted for.
During this inspection, check case structures that are driven by these values to see
if they correspond. Also make sure that you have a default case set up to ensure the

Exception Handling 295

correct code is executing. You should also examine loop structures to make proper
use of shift registers so data is not lost. This includes proper initialization of the
shift registers.

Set personal time limits for how long you will attempt to determine where an
error exists in code. It becomes very frustrating to attempt to debug a section of
code for hours. When your time limit expires, a second opinion should be brought
in. This second perspective will see the programming problem differently and may
well propose a solution or at least ask questions that may lead you to a solution.

6.5.10 EvALUATING RAceE CONDITIONS

LabVIEW has always had inherent multitasking capabilities. In LabVIEW 5.0,
multithreading became available. As the combination of hardware, operating sys-
tems, and software advances capabilities, new and exciting programming problems
evolve in step with the newest technologies. This section will outline steps that can
be taken to understand race conditions that can occur in LabVIEW code that lever-
ages LabVIEW’s parallel execution. Chapter 9 discusses multithreading in detail;
this section will cover a more generic set of exceptions which are race conditions.

A race condition is simply when two branches of code are attempting to use the
same set of data. Generally, a race condition involves one branch of code getting
access to data in an order that was not intended. As an example, one branch of code
might be coordinating instrument communications and is in the process of reading
a trace from an instrument. A second branch of code is attempting to access the
trace for analysis. The intention of the developer is to have the trace be read, stored,
and then signaled to the analysis branch. A race condition exists if it is possible for
the analysis branch to read the array before the communications branch has had the
ability to write the array in memory.

Race conditions create special issues that may not be identified by typical
debugging tools, and the reason is race conditions are timing related; most debugging
tools do not give the developer a view of what is going on without altering the timing
of the application. Single-stepping or execution highlighting most certainly changes
execution timing in very profound ways. It will be almost impossible to identify a
race condition in an application when the code is being stepped through.

Application logging can help identify some issues. In very high performance
applications, it may disguise some issues though.

One way to view race conditions is they are not entirely deterministic. There
are some probabilities that become involved. Essentially every VI, or VI subsystem,
has a probability that it will be executing on a processor core at a given period of
time. When application logging is used such as writing debugging information to a
file, the amount of code running in a VI has been changed relative to the rest of the
application. The code which is used to write the log file is the “new” code which is
impacting application timing. This timing change can make some race conditions
less likely to appear.

One way that we have successfully used to troubleshoot multithreaded C++ code
that is applicable to LabVIEW is to draw out trees of the call stacks. Examine the
LabVIEW application. Are the branches of code running in different subsystems?

296 LabVIEW: Advanced Programming Techniques

If so, draw out the hierarchy of each subsystem. Record which VIs are called, and
what data the VI is accessing. As the programmer, you will know which VIs have
fairly small execution time, and which VIs have longer execution times. The smaller
execution time of a VI, the lower the probability it is running concurrently with
another specific VI.

Once you have the hierarchies drawn out for each branch or subsystems, examine
the data accessed. Any data that is accessed by multiple branches is suspect of
causing a race condition. Some common data may only be read by all branches. For
example, at application start up, initial configuration information may be read in
and stored. This type of data is unlikely to cause issues after application startup.
Any data that is commonly accessed that can be written to by any of the branches
may be a race condition.

In general, this level of analysis is not required for strictly LabVIEW code. If
an application using external code such as .NET objects external code segments is
exhibiting behavior such as crashing, examine which branches of code are accessing
the external code. It is entirely possible, especially if LabVIEW’s subsystems are
being used, that there is a thread-related race condition. A semaphore can be used
to restrict access to the code or object. Every branch or subsystem will need to use
the semaphore to access the suspect code object.

In general, semaphores should be used to protect very specific areas — not entire
sets of VIs. If entire sets of VIs are blocked off with a semaphore, then there is a
very strong chance that application performance is going to be degraded. For exam-
ple, code surrounding direct read or writes to a suspect object should be blocked
off. Processing data that has been read or preparing data that is about to be written
should be done outside the confines of the semaphore.

In many cases, access restrictions such as semaphores or notifications will
resolve these types of problems. On occasion, a set of troublesome code will show
up that access restriction does not fix. A last resort would be to set the suspect code
to run in the User Interface subsystem of the application. This will force all calls to
the code to be done by specific threads of the LabVIEW runtime engine. Forcing
particular threads to be used is discussed in Chapter 9, multithreading.

6.6 SUMMARY

When you are developing an application, it may be easier to just omit code to perform
error detection and handling because it requires extra work. However, exception
handling is needed to manage the problems that may arise during execution. An
exception is something that might occur during the execution of a program. These
unintended events, or exceptions, must be dealt with in the appropriate manner. If
exceptions are left unattended, you can lose control over the program, which may
result in more problems.

An exception handler allows programmers to deal with situations that might
arise when an application is running. It is a mechanism to detect and possibly correct
errors. LabVIEW provides some built-in tools to aid the programmer in error detec-
tion and handling, but it is the responsibility of the programmer to implement the
exception handling code. Several methods for dealing with errors were described in

Exception Handling 297

this chapter. The topics discussed will assist the programmer in writing more robust
code through the implementation of exception handlers.

Exception handling should be considered at an early phase of application devel-
opment. It is appropriate to take exception handling into account when the structure
or architecture of the application is being decided upon. Better applications can be
developed when exception handling is a forethought, not an afterthought. Exception
handling, when built into an application, will lead to sound and reliable code.

BIBLIOGRAPHY

G Programming Reference, National Instruments, Austin, TX, 1999.

Professional G Developers Tools Reference Manual, National Instruments, Austin, TX.
LabVIEW Function and VI Reference Manual, National Instruments, Austin, TX.
LabVIEW On-line Reference, National Instruments, Austin, TX.

7 Shared Variable

This chapter discusses the shared variable concept released in LabVIEW 8. The
shared variable is a standard feature for the language that provides a service for
distributed data throughout LabVIEW. The Data logging and Supervisory Control
module extends the level of functionality. Shared variables are available for use on
any operating system and real time (RT) targets. The shared variable engine itself
requires a Windows installation or an RT target.

This chapter is devoted to a discussion of the shared variable and includes a
discussion of the shared variable engine and communications employed to distribute
data. On the surface, it may seem questionable to devote an entire chapter to a
distributed data system. As this chapter progresses, it will become clear that the
shared variable is not a simple service.

7.1 OVERVIEW OF SHARED VARIABLES

Shared variables are primarily a mechanism for distributed networking support. In
general, distributed applications have processes that perform specific tasks with
information that needs to be shared with other elements of the application. The
shared variable provides a mechanism to the LabVIEW programmer that abstracts
away the complexities of distributed programming. Distributed applications do not
make life easier on the developer as they add-in a number of exception cases that
need to be considered. For example, how does the application know if messages
were lost, what if messages are late, the data is old, or what if it is necessary for IP
networks to check that multiple copies of the same message have not been received?

The shared variable engine absolves LabVIEW developers from the vast major-
ity of these issues. From a development perspective, what we primarily need to be
concerned about is dragging and dropping the correct shared variable. Networking
issues are handled by the shared variable engine and the client. It is possible from
a shared variable to determine if the information is “fresh” or if the variable has
not been updated in awhile. Network security issues are also addressed in config-
urable fashions through the shared variable engine and supporting NI security
services. Distributed application development is roughly as complex as working
with global variables.

Adding shared variables to projects and basic information are provided in Chap-
ter 1 and Chapter 2. This section expands on shared variable mechanics and the
benefits and penalties for using them.

299

300 LabVIEW: Advanced Programming Techniques

Shared variables support essentially every data type that can be found in Lab-
VIEW. Pull-down selection menus in the shared variable configuration screen pro-
vide what might be considered an incomplete list until you arrive at the last entry:
custom control. Complex clusters can be configured as custom controls which, as
stated, make the shared variable capable of supporting any data type that would be
needed for distribution.

7.1.1 SINGLE-PROCESS VARIABLES

When creating a shared variable, one of the configuration items is to determine if
the variable is network-published or single process. Single-process shared variables
do not sound so intuitive. What is the benefit of using a shared variable that is not
shared? It would seem not of much benefit at all. Essentially, a single-process shared
variable functions much like a global variable. In fact, there is a considerable amount
of common code used between the shared single-process variable and the standard
LabVIEW global variable. Any place a global variable is used, a single-process
shared variable will also work — such as sharing data between two parallel loops.

Using a single process shared variable does have two advantages: The first is
the ability to network-publish the variable with a simple configuration change; going
from a global variable to a network-published variable requires code rework. The
second advantage is the ability to use the time-stamp functionality of the shared
variable, which does not exist on the global variable.

There is one significant disadvantage to using the shared variable in a single
process. Performance benchmarking performed by National Instruments shows that
the reading of a shared variable and global variable are roughly equivalent. The time
required to write data to a shared variable, however, is more than for a global variable.

The buffering feature of the shared variable can also be used to emulate the
performance of a queue. Similar to replacement for a global variable, this is useful
for RT targets and should be used in any queues that are expected to be distributed
at a later time.

One key difference between the single process variable and network-published
variable is that historical data logging is not available to single-process variables.

7.1.2 NETWORK-PUBLISHED VARIABLE

There are two supported formats for network-published variables. The shared vari-
able configuration screen only allows the selection of a network-published variable.
Data socket bindings are still supported and usable; however, new development
should focus on the use of shared variables.

Unlike single-process variables, network-published variables can be buffered.
The nomenclature of buffering is somewhat misleading; the variable’s buffering
functions as a FIFO queue. When using the queue, time-stamping data corresponds
to when the particular copy was added into the queue. The use of the buffering
feature needs to be carefully designed. All designs involving a queue have one
exception case that must be considered: queue overflow. In the case of the shared
variable, overflowing the queue is not allowed. Any writes to the queue when it is

Shared Variable 301

full get silently discarded. LabVIEW does not receive an error notification that
overflow errors are occurring.

One disadvantage of a network-published variable, compared to its single-pro-
cess counterpart, is the setting of initial values. Default values for published shared
variables are not defined unless the DSC module is installed. When designing an
application without the DSC module, a VI needs to step up and write data to that
variable at system startup. Otherwise, the nodes subscribed to the variable will be
receiving undefined data.

7.2 SHARED VARIABLE ENGINE

Shared variables are published through the shared variable engine. The engine itself
is available only on Windows-based machines or RT targets. On Windows, the
engine runs as a service on the machine. As a service, there are a few items to the
engine that are worth noting. Services do not require a user to be logged in. The
service is running as a part of the operating system and is not tagged to a user in
the task manager. This allows for the engine to run regardless of who is or is not
actively logged into the machine. Unfortunately, services are not allowed to have
their own user interfaces; external applications need to run to communicate with
the service.

7.2.1 ACCESSING THE SHARED VARIABLE ENGINE

As the shared variable engine is a service, it does not present a direct user interface.
There are two ways for an administrator to access the engine: The first interface is
through the shared variable manager. The manager is a NI provided application that
permits configuration of the engine. The second is the Windows Event Viewer. As
a service, the engine logs events to the operating system. The event viewer does not
permit configuration of the engine but does allow an administrator to evaluate events
the service is generating.

7.2.1.1 Shared Variable Manager

The shared variable manager is shown in Figure 7.1. The manager will be the primary
tool for accessing the engine as it gives the administrator the most control over the
engine. The manager window consists of three frames which are (1) a list of items,
(2) the watch list, and (3) the alarms window. The items list provides a listing of all
shared variable libraries available on the system, including RT targets. Each library
is listed as an independent process and can be stopped and started independently.
This is a core feature on large distribution points which may have libraries for
multiple applications running concurrently.

From the variable manager you can add or remove libraries, assuming you have
appropriate permissions. By default, LabVIEW installation sets the shared variable
services to operate without security restrictions. In Section 7.7, it will be pointed
out that leaving this configuration without security is, in general, not advisable.

