
Orchard Publications
www.orchardpublications.com

Introduction to Simulink®
with Engineering Applications

Steven T. Karris

Introduction to Simulink®
with Engineering Applications

Steven T. Karris

Orchard Publications
www.orchardpublications.com

Introduction to Simulink ® with Engineering Applications

Copyright ® 2006 Orchard Publications. All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

Direct all inquiries to Orchard Publications, info@orchardpublications.com

Product and corporate names are trademarks or registered trademarks of The MathWorks™, Inc. They are used only
for identification and explanation, without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Library of Congress Control Number (LCCN) 2006926850

ISBN 0-9744239-8-X

ISBN 978-0-9744239-8-2

Disclaimer

The author has made every effort to make this text as complete and accurate as possible, but no warranty is implied.
The author and publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this text.

Preface

This text is an introduction to Simulink ®, a companion application to MATLAB ®. It is written
for students at the undergraduate and graduate programs, as well as for the working professional.

Although some previous knowledge of MATLAB would be helpful, it is not absolutely necessary;
Appendix A of this text is an introduction to MATLAB to enable the reader to begin learning
both MATLAB and Simulink simultaneously, and to perform graphical computations and
programming.

Chapters 2 through 18 describe the blocks of all Simulink libraries. Their application is illustrated
with practical examples through Simulink models, some of which are supplemented with
MATLAB functions, commands, and statements. Some background information is provided for
lesser known definitions and topics. Chapters 1 and 19 contain several Simulink models to
illustrate various applied math and engineering applications. Appendix B is an introduction to
difference equations as they apply to discrete-time systems, and Appendix C introduces the reader
to random generation procedures.

This text supplements our Numerical Analysis with MATLAB and Spreadsheet Applications, ISBN
0−9709511−1−6. It is self-contained; the blocks of each library are described in an orderly fashion
that is consistent with Simulink’s documentation. This arrangement provides insight into how a
model is used and how its parts interact with each another.

Like MATLAB, Simulink can be used with both linear and nonlinear systems, which can be
modeled in continuous time, sample time, or a hybrid of these. Examples are provided in this text.

Most of the examples presented in this book can be implemented with the Student Versions of
MATLAB and Simulink. A few may require the full versions of these outstanding packages, and
these examples may be skipped. Some add−ons, known as Toolboxes and Blocksets can be
obtained from The MathWorks,™ Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098, USA,
www.mathworks.com.

To get the most out of this outstanding application, it is highly recommended that this text is used
in conjunction with the MATLAB and Simulink User’s Guides. Other references are provided in
the reference section of this text.

The author wishes to express his gratitude to the staff of The MathWorks™, the developers of
MATLAB® and Simulink®, especially to Ms. Courtney Esposito, for the encouragement and
unlimited support they have provided me with during the production of this text.

This is the first edition of this title, and although every effort was made to correct possible
typographical errors and erroneous references to figures and tables, some may have been
overlooked. Accordingly, the author will appreciate it very much if any such errors are brought to
his attention so that corrections can be made for the next edition.

Orchard Publications
www.orchardpublications.com
info@orchardpublications.com

Introduction to Simulink with Engineering Applications i
Copyright © Orchard Publications

Table of Contents
1 Introduction to Simulink 1−1

1.1 Simulink and its Relation to MATLAB..1−1
1.2 Simulink Demos ..1−20
1.3 Summary ..1−28
1.4 Exercises ..1−29
1.5 Solutions to End−of−Chapter Exercises ..1−30

2 The Commonly Used Blocks Library 2−1

2.1 The Inport, Outport, and Subsystem Blocks ..2−2
2.2 The Ground Block ...2−4
2.3 The Terminator Block ..2−5
2.4 The Constant and Product Blocks ...2−6
2.5 The Scope Block ...2−7
2.6 The Bus Creator and Bus Selector Blocks ..2−7
2.7 The Mux and Demux Blocks ..2−11
2.8 The Switch Block ..2−14
2.9 The Sum Block ...2−15
2.10 The Gain Block ...2−16
2.11 The Relational Operator Block ..2−17
2.12 The Logical Operator Block ...2−18
2.13 The Saturation Block ..2−19
2.14 The Integrator Block ..2−20
2.15 The Unit Delay Block ...2−24
2.16 The Discrete−Time Integrator Block ...2−26
2.17 Data Types and The Data Type Conversion Block ...2−29
2.18 Summary ...2−35
2.19 Exercises ..2−39
2.20 Solutions to End−of−Chapter Exercises ...2−41

3 The Continuous Blocks Library 3−1

3.1 The Continuous−Time Linear Systems Sub−Library.. 3−2
3.1.1 The Integrator Block... 3−2
3.1.2 The Derivative Block .. 3−2
3.1.3 The State−Space Block ... 3−6
3.1.4 The Transfer Fcn Block .. 3−6
3.1.5 The Zero−Pole Block... 3−8

3.2 The Continuous−Time Delays Sub−Library... 3−10

ii Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

3.2.1 The Transport Delay Block... 3−10
3.2.2 The Variable Time Delay Block.. 3−11
3.2.3 The Variable Transport Delay Block .. 3−12

3.3 Summary ... 3−14
3.4 Exercises ... 3−16
3.5 Solutions to End−of−Chapter Exercises ... 3−17

4 The Discontinuities Blocks Library 4−1

4.1 The Saturation Block ... 4−2
4.2 The Saturation Dynamic Block.. 4−3
4.3 The Dead Zone Block... 4−4
4.4 The Dead Zone Dynamic Block ... 4−5
4.5 The Rate Limiter Block .. 4−6
4.6 The Rate Limiter Dynamic Block .. 4−8
4.7 The Backlash Block .. 4−9
4.8 The Relay Block ... 4−11
4.9 The Quantizer Block .. 4−12
4.10 The Hit Crossing Block .. 4−13
4.11 The Coulomb and Viscous Friction Block ... 4−14
4.12 The Wrap to Zero Block... 4−16
4.13 Summary ... 4−17
4.14 Exercises ... 4−19
4.15 Solutions to End−of−Chapter Exercises ... 4−20

5 The Discrete Blocks Library 5−1

5.1 The Discrete−Time Linear Systems Sub−Library .. 5−2
5.1.1 The Unit Delay Block .. 5−2
5.1.2 The Integer Delay Block .. 5−2
5.1.3 The Tapped Delay Block ... 5−3
5.1.4 The Discrete−Time Integrator Block... 5−4
5.1.5 The Discrete Transfer Fcn Block... 5−4
5.1.6 The Discrete Filter Block... 5−5
5.1.7 The Discrete Zero−Pole Block ... 5−8
5.1.8 The Difference Block... 5−9
5.1.9 The Discrete Derivative Block .. 5−10
5.1.10 The Discrete State−Space Block .. 5− 11
5.1.11 The Transfer Fcn First Order Block .. 5−14
5.1.12 The Transfer Fcn Lead or Lag Block ... 5−15
5.1.13 The Transfer Fcn Real Zero Block .. 5−18
5.1.14 The Weighted Moving Average Block.. 5−19

Introduction to Simulink with Engineering Applications iii
Copyright © Orchard Publications

5.2 The Sample & Hold Delays Sub−Library ... 5−21
5.2.1 The Memory Block... 5−21
5.2.2 The First−Order Hold Block .. 5−22
5.2.3 The Zero−Order Hold Block .. 5−23

5.3 Summary ... 5−25
5.4 Exercises.. 5−27
5.5 Solutions to End−of−Chapter Exercises ... 5−29

6 The Logic and Bit Operations Library 6−1

6.1 The Logic Operations Group Sub−Library.. 6−2
6.1.1 The Logical Operator Block... 6−2
6.1.2 The Relational Operator Block.. 6−2
6.1.3 The Interval Test Block ... 6−2
6.1.4 The Interval Test Dynamic Block.. 6−3
6.1.5 The Combinational Logic Block .. 6−4
6.1.6 The Compare to Zero Block... 6−9
6.1.7 The Compare to Constant Block ... 6−10

6.2 The Bit Operations Group Sub−Library... 6−11
6.2.1 The Bit Set Block ... 6−12
6.2.2 The Bit Clear Block.. 6−13
6.2.3 The Bitwise Operator Block... 6−14
6.2.4 The Shift Arithmetic Block.. 6−16
6.2.5 The Extract Bits Block ... 6−17

6.3 The Edge Detection Group Sub−Library ... 6−18
6.3.1 The Detect Increase Block... 6−18
6.3.2 The Detect Decrease Block.. 6−20
6.3.3 The Detect Change Block.. 6−21
6.3.4 The Detect Rise Positive Block.. 6−22
6.3.5 The Detect Rise Nonnegative Block ... 6−23
6.3.6 The Detect Fall Negative Block... 6−24
6.3.7 The Detect Fall Nonpositive Block ... 6−25

6.4 Summary... 6−27
6.5 Exercises ... 6−31
6.6 Solutions to End−of−Chapter Exercises ... 6−32

7 The Lookup Tables Library 7−1

7.1 The Lookup Table Block...7−2
7.2 The Lookup Table (2−D) Block..7−3
7.3 The Lookup Table (n−D) Block ...7−5
7.4 The PreLookup Index Search Block ...7−7

iv Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

7.5 The Interpolation (n−D) Using PreLookup Block ... 7−8
7.6 The Direct Lookup Table (n−D) Block.. 7−9
7.7 The Lookup Table Dynamic Block .. 7−15
7.8 The Sine and Cosine Blocks... 7−16
7.9 Summary ... 7−20
7.10 Exercises.. 7−22
7.11 Solutions to End−of−Chapter Exercises ... 7−23

8 The Math Operations Library 8−1

8.1 The Math Operations Group Sub−Library.. 8−2
8.1.1 The Sum Block .. 8−2
8.1.2 The Add Block... 8−2
8.1.3 The Subtract Block .. 8−3
8.1.4 The Sum of Elements Block... 8−4
8.1.5 The Bias Block ... 8−4
8.1.6 The Weighted Sample Time Math Block.. 8−5
8.1.7 The Gain Block.. 8−6
8.1.8 The Slider Gain Block ... 8−6
8.1.9 The Product Block ... 8−7
8.1.10 The Divide Block ... 8−7
8.1.11 The Product of Elements Block ... 8−7
8.1.12 The Dot Product Block.. 8−8
8.1.13 The Sign Block... 8−9
8.1.14 The Abs Block ... 8−10
8.1.15 The Unary Minus Block... 8−10
8.1.16 The Math Function Block ... 8−11
8.1.17 The Rounding Function Block .. 8−13
8.1.18 The Polynomial Block.. 8−14
8.1.19 The MinMax Block.. 8−14
8.1.20 The MinMax Running Resettable Block... 8−15
8.1.21 The Trigonometric Function Block... 8−16
8.1.22 The Sine Wave Function Block .. 8−17
8.1.23 The Algebraic Constraint Block.. 8−18

8.2 The Vector / Matrix Operations Group Sub−Library ... 8−19
8.2.1 The Assignment Block... 8−19
8.2.2 The Reshape Block .. 8−20
8.2.3 The Matrix Concatenate Block ... 8−21
8.2.4 The Vector Concatenate Block... 8−23

8.3 The Complex Vector Conversions Group Sub−Library .. 8−24
8.3.1 The Complex to Magnitude−Angle Block .. 8−24
8.3.2 The Magnitude−Angle to Complex Block .. 8−24

Introduction to Simulink with Engineering Applications v
Copyright © Orchard Publications

8.3.3 The Complex to Real−Imag Block .. 8−25
8.3.4 The Real−Imag to Complex Block .. 8−26

8.4 Summary.. 8−28
8.5 Exercises .. 8−32
8.6 Solutions to End−of−Chapter Exercises.. 8−34

9 The Model Verification Library 9−1

9.1 The Check Static Lower Bound Block .. 9−2
9.2 The Check Static Upper Bound Block.. 9−3
9.3 The Check Static Range Block.. 9−4
9.4 The Check Static Gap Block ... 9−5
9.5 The Check Dynamic Lower Bound Block... 9−6
9.6 The Check Dynamic Upper Bound Block... 9−8
9.7 The Check Dynamic Range Block .. 9−9
9.8 The Check Dynamic Gap Block.. 9−10
9.9 The Assertion Block .. 9−12
9.10 The Check Discrete Gradient Block ... 9−13
9.11 The Check Input Resolution Block... 9−14
9.12 Summary .. 9−16
9.13 Exercises... 9−18
9.14 Solutions to End−of−Chapter Exercises .. 9−19

10 The Model−Wide Utilities Library 10−1

10.1 The Linearization of Running Models Sub−Library..10−2
10.1.1 The Trigger−Based Linearization Block ..10−2
10.1.2 The Time−Based Linearization Block ...10−4

10.2 The Documentation Sub−Library...10−6
10.2.1 The Model Info Block ...10−6
10.2.2 The Doc Text Block..10−8

10.3 The Modeling Guides Sub−Library...10−9
10.4 Summary ...10−11

11 The Ports & Subsystems Library 11−1

11.1 The Inport, Outport, and Subsystem Blocks... 11−2
11.2 The Trigger Block.. 11−2
11.3 The Enable Block .. 11−2
11.4 The Function−Call Generator Block .. 11−3
11.5 The Atomic Subsystem Block ... 11−4
11.6 The Code Reuse Subsystem Block .. 11−9
11.7 The Model Block ... 11−17

vi Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

11.7 The Configurable Subsystem Block ... 11−19
11.8 The Triggered Subsystem Block.. 11−25
11.9 The Enabled Subsystem Block .. 11−27
11.10 The Enabled and Triggered Subsystem Block .. 11−30
11.11 The Function−Call Subsystem Block.. 11−34
11.12 The For Iterator Subsystem Block .. 11−36
11.13 The While Iterator Subsystem Block.. 11−38
11.14 The If and If Action Subsystem Blocks... 11−40
11.15 The Switch Case and The Switch Case Action Subsystem Blocks 11−41
11.16 The Subsystem Examples Block.. 11−41
11.17 S−Functions in Simulink... 11−43
11.18 Summary.. 11−50

12 The Signal Attributes Library 12−1

12.1 The Signal Attribute Manipulation Sub−Library... 12−2
12.1.1 The Data Type Conversion Block.. 12−2
12.1.2 The Data Type Duplicate Block .. 12−2
12.1.3 The Data Type Propagation Block... 12−4
12.1.4 The Data Type Scaling Strip Block.. 12−5
12.1.5 The Data Conversion Inherited Block... 12−5
12.1.6 The IC (Initial Condition) Block ... 12−6
12.1.7 The Signal Conversion Block... 12−7
12.1.8 The Rate Transition Block... 12−8
12.1.9 The Signal Specification Block .. 12−11
12.1.10 The Data Type Propagation Examples Block 12−12

12.2 The Signal Attribute Detection Sub−Library .. 12−13
12.2.1 The Probe Block... 12−14
12.2.2 The Weighted Sample Time Block.. 12−15
12.2.3 The Width Block.. 12−16

12.3 Summary .. 12−17

13 The Signal Routing Library 13−1

13.1 Signal Routing Group Sub−Library13−2
13.1.1 The Bus Creator Block .. 13−2
13.1.2 The Bus Selector Block.. 13−2
13.1.3 The Bus Assignment Block.. 13−2
13.1.4 The Mux Block .. 13−5
13.1.5 The Demux Block.. 13−5
13.1.6 The Selector Block... 13−6
13.1.7 The Index Vector Block .. 13−7

Introduction to Simulink with Engineering Applications vii
Copyright © Orchard Publications

13.1.9 The Merge Block ..13−8
13.1.10 The Environmental Controller Block ..13−9
13.1.11 The Manual Switch Block..13−9
13.1.12 The Multiport Switch Block ..13−10
13.1.13 The Switch Block ...13−11
13.1.14 The From Block..13−11
13.1.14 The Goto Tag Visibility Block ...13−12
13.1.15 The Goto Block ..13−13

13.2 The Signal Storage and Access Group Sub−Library......................................13−14
13.2.1 The Data Store Read Block ...13−14
13.2.2 The Data Store Memory Block ..13−15
13.2.3 The Data Store Write Block ..13−15

13.3 Summary ..13−18

14 The Sinks Library 14−1

14.1 Models and Subsystems Outputs Sub−Library..14−2
14.1.1 The Outport Block ...14−2
14.1.2 The Terminator Block ...14−2
14.1.3 The To File Block ..14−2
14.1.4 The To Workspace Block..14−4

14.2 The Data Viewers Sub−Library ...14−5
14.2.1 The Scope Block..14−6
14.2.2 The Floating Scope Block..14−8
14.2.3 The XY Graph Block ...14−12
14.2.4 The Display Block..14−13

14.3 The Simulation Control Sub−Library..14−14
14.4 Summary..14−16

15 The Sources Library 15−1

15.1 Models and Subsystems Inputs Sub−Library .. 15−2
15.1.1 The Inport Block..15−2
15.1.2 The Ground Block.. 15−2
15.1.3 The From File Block ... 15−2
15.1.4 The From Workspace Block... 15−2

15.2 The Signal Generators Sub−Library... 15−3
15.2.1 The Constant Block.. 15−3
15.2.2 The Signal Generator Block ... 15−4
15.2.3 The Pulse Generator Block .. 15−5
15.2.4 The Signal Builder Block.. 15−6
15.2.5 The Ramp Block ... 15−9

viii Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

15.2.6 The Sine Wave Block ... 15−9
15.2.7 The Step Block ... 15−11
15.2.8 The Repeating Sequence Block.. 15−13
15.2.9 The Chirp Signal Block .. 15−14
15.2.10 The Random Number Block .. 15−14
15.2.11 The Uniform Random Number Block.. 15−15
15.2.12 The Band Limited White Noise Block ... 15−17
15.2.13 The Repeating Sequence Stair Block ... 15−21
15.2.14 The Repeating Sequence Interpolated Block................................. 15−21
15.2.15 The Counter Free−Running Block... 15−23
15.2.16 The Counter Limited Block ... 15−24
15.2.17 The Clock Block... 15−25
15.2.18 The Digital Clock Block... 15−26

15.3 Summary... 15−28

16 The User−Defined Functions Library 16−1

16.1 The Fcn Block ... 16−2
16.2 The MATLAB Fcn Block ... 16−2
16.3 The Embedded MATLAB Function Block... 16−3
16.4 The S−Function Block .. 16−7
16.5 The Level−2 M−file S−Function Block ... 16−7
16.6 The S−Function Builder Block.. 16−12
16.7 The S−Function Examples Block .. 16−13
16.8 Summary.. 16−14

17 The Additional Discrete Library 17−1
17.1 The Transfer Fcn Direct Form II Block ... 17−2
17.2 The Transfer Fcn Direct Form II Time Varying Block................................ 17−3
17.3 The Fixed-Point State-Space Block ... 17−4
17.4 The Unit Delay External IC Block... 17−6
17.5 The Unit Delay Resettable Block... 17−7
17.6 The Unit Delay Resettable External IC Block... 17−8
17.7 The Unit Delay Enabled Block .. 17−9
17.8 The Unit Delay Enabled Resettable Block... 17−11
17.9 The Unit Delay Enabled External IC Block... 17−12
17.10 The Unit Delay Enabled Resettable External IC Block............................. 17−13
17.11 The Unit Delay With Preview Resettable Block 17−15
17.12 The Unit Delay With Preview Resettable External RV Block 17−16
17.13 The Unit Delay With Preview Enabled Block ... 17−17

Introduction to Simulink with Engineering Applications ix
Copyright © Orchard Publications

17.14 The Unit Delay With Preview Enabled Resettable Block 17−19
17.15 The Unit Delay With Preview Enabled Resettable External RV Block.... 17−20
17.16 Summary .. 17−22

18 The Additional Math Increment / Decrement Library 18−1

18.1 The Increment Real World Block ...18−2
18.2 The Decrement Real World Block..18−3
18.3 The Increment Stored Integer Block...18−4
18.4 The Decrement Stored Integer Block ...18−5
18.5 The Decrement to Zero Block...18−6
18.6 The Decrement Time To Zero Block ..18−7
18.7 Summary ..18−8

19 Engineering Applications 19−1

19.1 Analog−to−Digital Conversion...19−1
19.2 The Zero−Order Hold and First−Order Hold as Reconstructors19−2
19.3 Digital Filter Realization Forms..19−4

19.3.1 The Direct Form I Realization of a Digital Filter19−4
19.3.2 The Direct Form II Realization of a Digital Filter19−5
19.3.3 The Series Form Realization of a Digital Filter19−7
19.3.4 The Parallel Form Realization of a Digital Filter..............................19−9

19.4 Models for Binary Counters ...19−13
19.4.1 Model for a 3−bit Up / Down Counter ...19−13
19.4.2 Model for a 4−bit Ring Counter ...19−14

19.5 Models for Mechanical Systems ...19−15
19.5.1 Model for a Mass−Spring−Dashpot ..19−15
19.5.2 Model for a Cascaded Mass−Spring System...................................19−17
19.5.3 Model for a Mechanical Accelerometer...19−19

19.6 Feedback Control Systems ...19−20
19.7 Models for Electrical Systems ...19−23

19.7.1 Model for an Electric Circuit in Phasor Form................................19−23
19.7.2 Model for the Application of the Superposition Principle.............19−25

19.8 Transformations..19−27
19.9 Another S−Function Example ...19−28
19.10 Concluding Remarks ..19−31
19.11 Summary...19−32

x Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

A Introduction to MATLAB A−1

A.1 MATLAB® and Simulink® ... A−1
A.2 Command Window ... A−1
A.3 Roots of Polynomials ... A−3
A.4 Polynomial Construction from Known Roots ... A−4
A.5 Evaluation of a Polynomial at Specified Values .. A−6
A.6 Rational Polynomials ... A−8
A.7 Using MATLAB to Make Plots... A−10
A.8 Subplots ... A−18
A.9 Multiplication, Division, and Exponentiation .. A−18
A.10 Script and Function Files .. A−26
A.11 Display Formats ... A−31

B Difference Equations B−1

B.1 Recursive Method for Solving Difference Equations...B−1
B.2 Method of Undetermined Coefficients ..B−1

C Random Number Generation C−1

C.1 Random Numbers ..C−1
C.2 An Example..C−1

 References R−1

 Index IN−1

Introduction to Simulink with Engineering Applications 1−1
Copyright © Orchard Publications

Chapter 1

Introduction to Simulink

his chapter is an introduction to Simulink. This author feels that we can best introduce
Simulink with a few examples. Tools for simulation and model−based designs will be pre-
sented in the subsequent chapters. Some familiarity with MATLAB is essential in under-

standing Simulink, and for this purpose, Appendix A is included as an introduction to MATLAB.

1.1 Simulink and its Relation to MATLAB
The MATLAB® and Simulink® environments are integrated into one entity, and thus we can
analyze, simulate, and revise our models in either environment at any point. We invoke Simulink
from within MATLAB. We begin with a few examples and we will discuss generalities in subse-
quent chapters. Throughout this text, a left justified horizontal bar will denote the beginning of
an example, and a right justified horizontal bar will denote the end of the example. These bars
will not be shown whenever an example begins at the top of a page or at the bottom of a page.
Also, when one example follows immediately after a previous example, the right justified bar will
be omitted.

Example 1.1

For the circuit of Figure 1.1, the initial conditions are , and . We will
compute .

Figure 1.1. Circuit for Example 1.1

For this example,
(1.1)

and by Kirchoff’s voltage law (KVL),

T

iL 0−() 0= vc 0−() 0.5 V=

vc t()

−

+
R L

+
−

C1 Ω

vs t() u0 t()=

vC t()
i t()

1 4⁄ H

4 3⁄ F

i iL iC C
dvC

dt
---------= = =

Chapter 1 Introduction to Simulink

1−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(1.2)

Substitution of (1.1) into (1.2) yields

(1.3)

Substituting the values of the circuit constants and rearranging we get:

(1.4)

(1.5)

To appreciate Simulink’s capabilities, for comparison, three different methods of obtaining the
solution are presented, and the solution using Simulink follows.

First Method − Assumed Solution

Equation (1.5) is a second-order, non-homogeneous differential equation with constant coeffi-
cients, and thus the complete solution will consist of the sum of the forced response and the natu-
ral response. It is obvious that the solution of this equation cannot be a constant since the deriva-
tives of a constant are zero and thus the equation is not satisfied. Also, the solution cannot
contain sinusoidal functions (sine and cosine) since the derivatives of these are also sinusoids.

However, decaying exponentials of the form where k and a are constants, are possible candi-
dates since their derivatives have the same form but alternate in sign.

It can be shown* that if and where and are constants and and are the
roots of the characteristic equation of the homogeneous part of the given differential equation,

the natural response is the sum of the terms and . Therefore, the total solution will
be

(1.6)

* Please refer to Circuit Analysis II with MATLAB Applications, ISBN 0-9709511−5−9, Appendix B for a
thorough discussion.

RiL L
diL

dt
------- vC+ + u0 t()=

RC
dvC

dt
--------- LC

d2vC

dt2
----------- vC+ + u0 t()=

1
3
---d2vC

dt2
----------- 4

3
---dvC

dt
--------- vC+ + u0 t()=

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3u0 t()=

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3= t 0>

ke at–

k1e
s1t–

k2e
s2t–

k1 k2 s1 s2

k1e
s1t–

k2e
s2t–

vc t() natural response forced response+ vcn t() vcf t()+ k1e
s1t–

k2e
s2t–

vcf t()+ += = =

Introduction to Simulink with Engineering Applications 1−3
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

The values of and are the roots of the characteristic equation

(1.7)

Solution of (1.7) yields of and and with these values (1.6) is written as

(1.8)

The forced component is found from (1.5), i.e.,

(1.9)

Since the right side of (1.9) is a constant, the forced response will also be a constant and we
denote it as . By substitution into (1.9) we get

or
 (1.10)

Substitution of this value into (1.8), yields the total solution as

 (1.11)

The constants and will be evaluated from the initial conditions. First, using
and evaluating (1.11) at , we get

 (1.12)

Also,

and

(1.13)

Next, we differentiate (1.11), we evaluate it at , and equate it with (1.13). Thus,

(1.14)

s1 s2

s2 4s 3+ + 0=

s1 1–= s2 3–=

vc t() k1e t– k2e 3– t vcf t()+ +=

vcf t()

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3= t 0>

vCf k3=

0 0 3k3+ + 3=

vCf k3 1= =

vC t() vCn t() vCf+= k1e t– k2e 3– t 1+ +=

k1 k2 vC 0() 0.5 V=

t 0=

vC 0() k1e0 k2e0 1+ + 0.5= =

k1 k2+ 0.5–=

iL iC C
dvC
dt

---------= =
dvC
dt

--------- iL
C
----=,

dvC
dt

t 0=

iL 0()
C

------------ 0
C
---- 0= = =

t 0=

dvC
dt

t 0=

k1– 3k2–=

Chapter 1 Introduction to Simulink

1−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

By equating the right sides of (1.13) and (1.14) we get

(1.15)

Simultaneous solution of (1.12) and (1.15), gives and . By substitution into
(1.8), we obtain the total solution as

(1.16)

Check with MATLAB:

syms t % Define symbolic variable t
y0=−0.75*exp(−t)+0.25*exp(−3*t)+1; % The total solution y(t), for our example, vc(t)
y1=diff(y0) % The first derivative of y(t)

y1 =
3/4*exp(-t)-3/4*exp(-3*t)

y2=diff(y0,2) % The second derivative of y(t)

y2 =
-3/4*exp(-t)+9/4*exp(-3*t)

y=y2+4*y1+3*y0 % Summation of y and its derivatives

y =
3

Thus, the solution has been verified by MATLAB. Using the expression for in (1.16), we
find the expression for the current as

 (1.17)

Second Method − Using the Laplace Transformation

The transformed circuit is shown in Figure 1.2.

Figure 1.2. Transformed Circuit for Example 1.1

k1– 3k2– 0=

k1 0.75–= k2 0.25=

vC t() 0.75– e t– 0.25e 3– t 1+ +()u0 t()=

vC t()

i iL= iC C
dvC
dt

---------- 4
3
--- 3

4
---e t– 3

4
---– e 3t–

⎝ ⎠
⎛ ⎞ e t– e 3t–– A= == =

−

+
R L

+
−

C 1

Vs s() 1 s⁄= VC s()

I s()

0.25s

3 4s⁄

+
− VC 0()

0.5 s⁄

Introduction to Simulink with Engineering Applications 1−5
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

By the voltage division* expression,

Using partial fraction expansion,† we let

(1.18)

and by substitution into (1.18)

Taking the Inverse Laplace transform‡ we find that

Third Method − Using State Variables

**

* For derivation of the voltage division and current division expressions, please refer to Circuit Analysis I with
MATLAB Applications, ISBN 0−9709511−2−4.

† A thorough discussion of partial fraction expansion with MATLAB Applications is presented in Numerical
Analysis with MATLAB and Spreadsheet Applications, ISBN 0−9709511−1−6.

‡ For an introduction to Laplace Transform and Inverse Laplace Transform, please refer to Circuit Analysis II
with MATLAB Applications, ISBN 0−9709511−5−9.

** Usually, in State−Space and State Variables Analysis, denotes any input. For distinction, we will denote
the Unit Step Function as . For a detailed discussion on State−Space and State Variables Analysis, please
refer to Signals and Systems with MATLAB Applications, ISBN 0−9709511−6−7.

VC s() 3 4s⁄
1 0.25s 3 4s⁄+ +()

-- 1
s
--- 0.5

s
-------–⎝ ⎠

⎛ ⎞⋅ 0.5
s

-------+= 1.5
s s2 4s 3+ +()
--------------------------------- 0.5

s
-------+ 0.5s2 2s 3+ +

s s 1+() s 3+()
------------------------------------= =

0.5s2 2s 3+ +
s s 1+() s 3+()

r1
s

r2
s 1+()

r3

s 3+()
----------------+ +=

r1
0.5s2 2s 3+ +
s 1+() s 3+()

s 0=

1= =

r2
0.5s2 2s 3+ +

s s 3+()

s 1–=

0.75–= =

r3
0.5s2 2s 3+ +

s s 1+()

s 3–=

0.25= =

VC s() 0.5s2 2s 3+ +
s s 1+() s 3+()
------------------------------------ 1

s
--- 0.75–

s 1+()
---------------- 0.25

s 3+()
----------------+ += =

vC t() 1 0.75e t– 0.25e 3t–+–=

RiL L
diL

dt
------- vC+ + u0 t()=

u t()
u0 t()

Chapter 1 Introduction to Simulink

1−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

By substitution of given values and rearranging, we obtain

or

(1.19)

Next, we define the state variables and . Then,

* (1.20)

and

(1.21)

Also,

and thus,

or

(1.22)

Therefore, from (1.19), (1.20), and (1.22), we get the state equations

and in matrix form,

(1.23)

Solution† of (1.23) yields

* The notation (x dot) is often used to denote the first derivative of the function , that is, .

† The detailed solution of (1.23) is given in Signals and Systems with MATLAB Applications, ISBN 0-
9709511-6-7, Chapter 5.

1
4
---diL

dt
------- 1–()iL vC– 1+=

diL

dt
------- 4iL– 4vC– 4+=

x1 iL= x2 vC=

x· 1
diL

dt
-------=

x· x x· dx dt⁄=

x· 2
dvC

dt
---------=

iL C
dvC

dt
---------=

x1 iL C
dvC

dt
--------- Cx· 2

4
3
---x· 2= = = =

x· 2
3
4
---x1=

x· 1 4x1– 4x2– 4+=

x· 2
3
4
--- x1=

x· 1

x· 2

4– 4–

3 4⁄ 0
x1

x2

4
0

u0 t()+=

Introduction to Simulink with Engineering Applications 1−7
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

Then,

(1.24)

and

(1.25)

Modeling the Differential Equation of Example 1.1 with Simulink

To run Simulink, we must first invoke MATLAB. Make sure that Simulink is installed in your sys-
tem. In the Command Window, we type:

simulink

Alternately, we can click on the Simulink icon shown in Figure 1.3. It appears on the top bar on
MATLAB’s Command Window.

Figure 1.3. The Simulink icon

Upon execution of the Simulink command, the Commonly Used Blocks are shown in Figure
1.4.

In Figure 1.4, the left side is referred to as the Tree Pane and displays all Simulink libraries
installed. The right side is referred to as the Contents Pane and displays the blocks that reside in
the library currently selected in the Tree Pane.

Let us express the differential equation of Example 1.1 as

(1.26)

A block diagram representing (1.26) is shown in Figure 1.5. Now, we will use Simulink to draw a
similar block diagram.

x1

x2

e t– e– 3t–

1 0.75– e t– 0.25e 3t–+
=

x1 iL e t– e– 3t–= =

x2 vC 1 0.75e– t– 0.25e 3t–+= =

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC 3u0 t()+––=

Chapter 1 Introduction to Simulink

1−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 1.4. The Simulink Library Browser

Figure 1.5. Block diagram for equation (1.26)

To model the differential equation (1.26) using Simulink, we perform the following steps:

1. On the Simulink Library Browser, we click on the leftmost icon shown as a blank page on the
top title bar. A new model window named untitled will appear as shown in Figure 1.6.

3u0 t() Σ dt∫ dt∫

-4

-3

d2vC

dt2
----------- dvC

dt
--------- vC

Introduction to Simulink with Engineering Applications 1−9
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

Figure 1.6. The Untitled model window in Simulink.

The window of Figure 1.6 is the model window where we enter our blocks to form a block dia-
gram. We save this as model file name Equation_1_26. This is done from the File drop menu of
Figure 1.6 where we choose Save as and name the file as Equation_1_26. Simulink will add the
extension .mdl. The new model window will now be shown as Equation_1_26, and all saved
files will have this appearance. See Figure 1.7.

Figure 1.7. Model window for Equation_1_26.mdl file

2. With the Equation_1_26 model window and the Simulink Library Browser both visible, we
click on the Sources appearing on the left side list, and on the right side we scroll down until
we see the unit step function. See Figure 1.8. We select it, and we drag it into the
Equation_1_26 model window which now appears as shown in Figure 1.8. We save file
Equation_1_26 using the File drop menu on the Equation_1_26 model window (right side of
Figure 1.8).

3. With reference to block diagram of Figure 1.5, we observe that we need to connect an ampli-
fier with Gain 3 to the unit step function block. The gain block in Simulink is under Com-
monly Used Blocks (first item under Simulink on the Simulink Library Browser). See Figure
1.8. If the Equation_1_26 model window is no longer visible, it can be recalled by clicking on
the white page icon on the top bar of the Simulink Library Browser.

4. We choose the gain block and we drag it to the right of the unit step function. The triangle on
the right side of the unit step function block and the > symbols on the left and right sides of
the gain block are connection points. We point the mouse close to the connection point of the
unit step function until is shows as a cross hair, and draw a straight line to connect the two

Chapter 1 Introduction to Simulink

1−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

blocks. We double−click on the gain block and on the Function Block Parameters, we
change the gain from 1 to 3. See Figure 1.9.

Figure 1.8. Dragging the unit step function into File Equation_1_26

Figure 1.9. File Equation_1_26 with added Step and Gain blocks

5. Next, we need to add a thee−input adder. The adder block appears on the right side of the
Simulink Library Browser under Math Operations. We select it, and we drag it into the
Equation_1_26 model window. We double click it, and on the Function Block Parameters

Introduction to Simulink with Engineering Applications 1−11
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

window which appears, we specify 3 inputs. We then connect the output of the of the gain
block to the first input of the adder block as shown in Figure 1.10.

Figure 1.10. File Equation_1_26 with added gain block

6. From the Commonly Used Blocks of the Simulink Library Browser, we choose the Integra-
tor block, we drag it into the Equation_1_26 model window, and we connect it to the output
of the Add block. We repeat this step and to add a second Integrator block. We click on the
text “Integrator” under the first integrator block, and we change it to Integrator 1. Then, we
change the text “Integrator 1” under the second Integrator to “Integrator 2” as shown in Fig-
ure 1.11.

Figure 1.11. File Equation_1_26 with the addition of two integrators

7. To complete the block diagram, we add the Scope block which is found in the Commonly
Used Blocks on the Simulink Library Browser, we click on the Gain block, and we copy and
paste it twice. We flip the pasted Gain blocks by using the Flip Block command from the For-
mat drop menu, and we label these as Gain 2 and Gain 3. Finally, we double-click on these
gain blocks and on the Function Block Parameters window, we change the gains from to −4
and −3 as shown in Figure 1.12.

Figure 1.12. File Equation_1_26 complete block diagram

8. The initial conditions , and are entered by double

clicking the Integrator blocks and entering the values for the first integrator, and for the

iL 0−() C
dvC
dt

t 0=

0= = vc 0−() 0.5 V=

0 0.5

Chapter 1 Introduction to Simulink

1−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

second integrator. We also need to specify the simulation time. This is done by specifying the
simulation time to be seconds on the Configuration Parameters from the Simulation drop
menu. We can start the simulation on Start from the Simulation drop menu or by clicking on

the icon.

9. To see the output waveform, we double click on the Scope block, and then clicking on the

Autoscale icon, we obtain the waveform shown in Figure 1.13.

Figure 1.13. The waveform for the function for Example 1.1

Another easier method to obtain and display the output for Example 1.1, is to use State-
Space block from Continuous in the Simulink Library Browser, as shown in Figure 1.14.

Figure 1.14. Obtaining the function for Example 1.1 with the State−Space block.

The simout To Workspace block shown in Figure 1.14 writes its input to the workspace. As we
know from our MATLAB studies, the data and variables created in the MATLAB Command
window, reside in the MATLAB Workspace. This block writes its output to an array or structure

10

vC t()

vC t()

vC t()

Introduction to Simulink with Engineering Applications 1−13
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

that has the name specified by the block's Variable name parameter. It is highly recommended
that this block is included in the saved model. This gives us the ability to delete or modify selected
variables. To see what variables reside in the MATLAB Workspace, we issue the command who.

From Equation 1.23,

The output equation is

or

We double-click on the State−Space block, and in the Functions Block Parameters window we
enter the constants shown in Figure 1.15.

Figure 1.15. The Function block parameters for the State−Space block.

x· 1

x· 2

4– 4–

3 4⁄ 0
x1

x2

4
0

u0 t()+=

y Cx du+=

y 0 1[] x1

x2

0[]u+=

Chapter 1 Introduction to Simulink

1−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The initials conditions are specified in MATLAB’s Command Window as

x1=0; x2=0.5;

As before, to start the simulation we click clicking on the icon, and to see the output wave-

form, we double click on the Scope block, and then clicking on the Autoscale icon, we
obtain the waveform shown in Figure 1.16.

Figure 1.16. The waveform for the function for Example 1.1 with the State-Space block.

The state-space block is the best choice when we need to display the output waveform of three or
more variables as illustrated by the following example.

Example 1.2
A fourth−order network is described by the differential equation

(1.27)

where is the output representing the voltage or current of the network, and is any input,
and the initial conditions are .

a. We will express (1.27) as a set of state equations

x1 x2[]'

vC t()

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t()+ + + + u t()=

y t() u t()
y 0() y' 0() y'' 0() y''' 0() 0= = = =

Introduction to Simulink with Engineering Applications 1−15
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

b. It is known that the solution of the differential equation

(1.28)

subject to the initial conditions , has the solution

(1.29)

In our set of state equations, we will select appropriate values for the coefficients
 so that the new set of the state equations will represent the differential equa-

tion of (1.28) and using Simulink, we will display the waveform of the output .

1. The differential equation of (1.28) is of fourth-order; therefore, we must define four state vari-
ables that will be used with the four first-order state equations.

We denote the state variables as , and , and we relate them to the terms of the
given differential equation as

(1.30)

We observe that

(1.31)

and in matrix form

(1.32)

In compact form, (1.32) is written as

(1.33)
Also, the output is

(1.34)
where

d4y
dt4
-------- 2d2y

dt2
-------- y t()+ + tsin=

y 0() y' 0() y'' 0() y''' 0() 0= = = =

y t() 0.125 3 t2–() 3t tcos–[]=

a3 a2 a1 and a0, , ,

y t()

x1 x2 x3, , x4

x1 y t()= x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x· 1 x2=

x· 2 x3=

x· 3 x4=

d 4y
dt4
--------- x· 4 a0x1– a1x2 a2x3–– a3x4– u t()+= =

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t()+=

x· Ax bu+=

y Cx du+=

Chapter 1 Introduction to Simulink

1−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(1.35)

and since the output is defined as

relation (1.34) is expressed as

(1.36)

2. By inspection the differential equation of (1.27) will be reduced to the differential equation of
(1.28) if we let

and thus the differential equation of (1.28) can be expressed in state−space form as

(1.37)

where

(1.38)

Since the output is defined as

in matrix form it is expressed as

x·

x· 1

x· 2

x· 3

x· 4

= A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

= x

x1

x2

x3

x4

= b

0
0
0
1

 and u,=, , , u t()=

y t() x1=

y 1 0 0 0[]

x1

x2

x3

x4

⋅ 0[]u t()+=

a3 0= a2 2= a1 0= a0 1= u t() tsin=

x· 1

x· 2

x· 3

x· 4

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

x1

x2

x3

x4

0
0
0
1

tsin+=

x·

x· 1

x· 2

x· 3

x· 4

= A

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

= x

x1

x2

x3

x4

= b

0
0
0
1

 and u,=, , , tsin=

y t() x1=

Introduction to Simulink with Engineering Applications 1−17
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

(1.39)

We invoke MATLAB, we start Simulink by clicking on the Simulink icon, on the Simulink
Library Browser, we click on the Create a new model (blank page icon on the left of the top
bar), and we save this model as Example_1_2. On the Simulink Library Browser we select
Sources, we drag the Signal Generator block on the Example_1_2 model window, we click
and drag the State−Space block from the Continuous on Simulink Library Browser, and we
click and drag the Scope block from the Commonly Used Blocks on the Simulink Library
Browser. We also add the Display block found under Sinks on the Simulink Library
Browser. We connect these four blocks and the complete block diagram is as shown in Figure
1.17.

Figure 1.17. Block diagram for Example 1.2

We now double-click on the Signal Generator block and we enter the following in the Func-
tion Block Parameters:

Wave form: sine

Time (t): Use simulation time

Amplitude: 1

Frequency: 2

Units: Hertz

Next, we double-click on the state−space block and we enter the following parameter values
in the Function Block Parameters:

A: [0 1 0 0; 0 0 1 0; 0 0 0 1; −a0 −a1 −a2 −a3]

B: [0 0 0 1]’

C: [1 0 0 0]

D: [0]

y 1 0 0 0[]

x1

x2

x3

x4

⋅ 0[] tsin+=

Chapter 1 Introduction to Simulink

1−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Initial conditions: x0

Absolute tolerance: auto

Now, we switch to the MATLAB Command Window and we type the following:

>> a0=1; a1=0; a2=2; a3=0; x0=[0 0 0 0]’;

We change the Simulation Stop time to , and we start the simulation by clicking on the
icon. To see the output waveform, we double click on the Scope block, then clicking on the

Autoscale icon, we obtain the waveform shown in Figure 1.18.

Figure 1.18. Waveform for Example 1.2

The Display block in Figure 1.17 shows the value at the end of the simulation stop time.

Examples 1.1 and 1.2 have clearly illustrated that the State−Space is indeed a powerful block. We
could have obtained the solution of Example 1.2 using four Integrator blocks by this approach
would have been more time consuming.

Example 1.3
Using Algebraic Constraint blocks found in the Math Operations library, Display blocks found
in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, we will create
a model that will produce the simultaneous solution of three equations with three unknowns.

The model will display the values for the unknowns , , and in the system of the equations

25

z1 z2 z3

Introduction to Simulink with Engineering Applications 1−19
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

(1.40)

The model is shown in Figure 1.19.

Figure 1.19. Model for Example 1.3

Next, we go to MATLAB’s Command Window and we enter the following values:

a1=2; a2=−3; a3=−1; a4=1; a5=5; a6=4; a7=−6; a8=1; a9=2;...
k1=−8; k2=−7; k3=5;

After clicking on the simulation icon, we observe the values of the unknowns as ,
, and .These values are shown in the Display blocks of Figure 1.19.

The Algebraic Constraint block constrains the input signal to zero and outputs an algebraic
state . The block outputs the value necessary to produce a zero at the input. The output must
affect the input through some feedback path. This enables us to specify algebraic equations for
index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter is zero. We

a1z1 a2z2 a3z3 k1+ + + 0=

a4z1 a5z2 a6z3 k2+ + + 0=

a7z1 a8z2 a9z3 k3+ + + 0=

z1 2=

z2 3–= z3 5=

f z()
z

Chapter 1 Introduction to Simulink

1−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

can improve the efficiency of the algebraic loop solver by providing an Initial guess for the alge-
braic state z that is close to the solution value.

An outstanding feature in Simulink is the representation of a large model consisting of many
blocks and lines, to be shown as a single Subsystem block. For instance, we can group all blocks
and lines in the model of Figure 1.19 except the display blocks, we choose Create Subsystem
from the Edit menu, and this model will be shown as in Figure 1.20* where in MATLAB’s Com-
mand Window we have entered:

a1=5; a2=−1; a3=4; a4=11; a5=6; a6=9; a7=−8; a8=4; a9=15;...
k1=14; k2=−6; k3=9;

Figure 1.20. The model of Figure 1.19 represented as a subsystem

The Display blocks in Figure 1.20 show the values of , , and for the values specified in
MATLAB’s Command Window.

The Subsystem block is described in detail in Chapter 2, Section 2.1, Page 2−2.

1.2 Simulink Demos
At this time, the reader with no prior knowledge of Simulink, should be ready to learn Simulink’s
additional capabilities. We will explore other features in the subsequent chapters. However, it is
highly recommended that the reader becomes familiar with the block libraries found in the Sim-
ulink Library Browser. Then, the reader can follow the steps delineated in The MathWorks Sim-
ulink User’s Manual to run the Demo Models beginning with the thermo model. This model can
be started by typing thermo in the MATLAB Command Window.

In the subsequent chapters, we will study each of the blocks under each of libraries in the Tree
Pane. They are listed in Table 1.1 below in alphabetical order, library, chapter, section/subsection,
and page number in which they are described.

* The contents of the Subsystem block are not lost. We can double-click on the Subsystem block to see its con-
tents. The Subsystem block replaces the inputs and outputs of the model with Inport and Outport blocks. These
blocks are described in Section 2.1, Chapter 2, Page 2-2.

z1 z2 z3

Introduction to Simulink with Engineering Applications 1−21
Copyright © Orchard Publications

Simulink Demos

TABLE 1.1 Simulink blocks

Block Name Library Chapter Section/Subsection Page
Abs Math Operations Group 8 8.1.14 8−10
Add Math Operations Group 8 8.1.2 8−2
Algebraic Constraint Math Operations Group 8 8.1.23 8−18
Assertion Model Verification 9 9.9 9−12
Assignment Vector / Matrix Operations 8 8.2.1 8−19
Atomic Subsystem Ports & Subsystems 11 11.5 11−4
Backlash Discontinuities 4 4.7 4−9
Band-Limited White Noise Signal Generators 15 15.2.12 15−17
Bias Math Operations Group 8 8.1.5 8−4
Bit Clear Bit Operations Group 6 6.2.2 6−13
Bit Set Bit Operations Group 6 6.2.1 6−12
Bitwise Operator Bit Operations Group 6 6.2.3 6−14
Block Support Table Modeling Guides 10 10.3 10−9
Bus Assignment Signal Routing Group 13 13.1.3 13−2
Bus Creator Commonly Used blocks 2 2.6 2−7
Bus Selector Commonly Used blocks 2 2.6 2−7
Check Discrete Gradient Model Verification 9 9.10 9−13
Check Dynamic Gap Model Verification 9 9.8 9−10
Check Dynamic Lower Bound Model Verification 9 9.5 9−6
Check Dynamic Range Model Verification 9 9.7 9−9
Check Dynamic Upper Bound Model Verification 9 9.6 9−8
Check Input Resolution Model Verification 9 9.11 9−14
Check Static Gap Model Verification 9 9.4 9−5
Check Static Lower Bound Model Verification 9 9.1 9−2
Check Static Range Model Verification 9 9.3 9−4
Check Static Upper Bound Model Verification 9 9.2 9−3
Chirp Signal Signal Generators 15 15.2.9 15−14
Clock Signal Generators 15 15.2.17 15−26
CodeReuse Subsystem Ports & Subsystems 11 11.6 11−9
Combinational Logic Logic Operations Group 6 6.1.5 6−4
Compare To Constant Logic Operations Group 6 6.1.7 6−10
Compare To Zero Logic Operations Group 6 6.1.6 6−9
Complex to Magnitude-Angle Complex Vector Conversions Group 8 8.3.1 8−24
Complex to Real−Imag Complex Vector Conversions Group 8 8.3.3 8−25
Configurable Subsystem Ports & Subsystems 11 11.8 11−19
Constant Commonly Used blocks 2 2.4 2−6
Cosine Lookup Tables 7 7.8 7−16
Coulomb and Viscous Friction Discontinuities 4 4.11 4−14

Chapter 1 Introduction to Simulink

1−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(con’t)
Block Name Library Chapter Section/Subsection Page

Counter Free-Running Signal Generators 15 15.2.16 15−25
Counter Limited Signal Generators 15 15.2.15 15−24
Data Store Memory Signal Storage and Access Group 13 13.2.2 13−15
Data Store Read Signal Storage and Access Group 13 13.2.1 13−14
Data Store Write Signal Storage and Access Group 13 13.2.3 13−15
Data Type Conversion Commonly Used blocks 2 2.17 2−29
Data Type Conversion
Inherited

Signal Attribute Manipulation 12 12.1.5 12−5

Data Type Duplicate Signal Attribute Manipulation 12 12.1.2 12−2
Data Type Propagation Signal Attribute Manipulation 12 12.1.3 12−4
Data Type Propagation
Examples

Signal Attribute Manipulation 12 12.1.10 12−12

Data Type Scaling Strip Signal Attribute Manipulation 12 12.1.4 12−5
Dead Zone Discontinuities 4 4.3 4−4
Dead Zone Dynamic Discontinuities 4 4.4 4−5
Decrement Real World Increment / Decrement 18 18.2 18−3
Decrement Stored Integer Increment / Decrement 18 18.4 18−5
Decrement Time To Zero Increment / Decrement 18 18.6 18−7
Decrement To Zero Increment / Decrement 18 18.5 18−6
Demux Commonly Used blocks 2 2.7 2−11
Derivative Continuous-Time Linear Systems 3 3.1.2 3−2
Detect Change Edge Detection Group 6 6.3.3 6−21
Detect Decrease Edge Detection Group 6 6.3.2 6−20
Detect Fall Negative Edge Detection Group 6 6.3.6 6−24
Detect Fall Nonpositive Edge Detection Group 6 6.3.7 6−25
Detect Increase Edge Detection Group 6 6.3.1 6−18
Detect Rise Nonnegative Edge Detection Group 6 6.3.5 6−23
Detect Rise Positive Edge Detection Group 6 6.3.4 6−22
Difference Discrete−Time Linear Systems 5 5.1.8 5−9
Digital Clock Signal Generators 15 15.2.18 15−27
Direct Lookup Table (n-D) Lookup Tables 7 7.6 7−9
Discrete Derivative Discrete−Time Linear Systems 5 5.1.9 5−10
Discrete Filter Discrete−Time Linear Systems 5 5.1.6 5−5
Discrete State-Space Discrete−Time Linear Systems 5 5.1.10 5−11
Discrete Transfer Fcn Discrete−Time Linear Systems 5 5.1.5 5−4
Discrete Zero-Pole Discrete−Time Linear Systems 5 5.1.7 5−8
Discrete-Time Integrator Commonly Used blocks 2 2.16 2−26
Display Data Viewers 14 14.2.4 14−13

TABLE 1.1 Simulink blocks

Introduction to Simulink with Engineering Applications 1−23
Copyright © Orchard Publications

Simulink Demos

(con’t)
Block Name Library Chapter Section/Subsection Page

Divide Math Operations Group 8 8.1.10 8−7
Doc Text (DocBlock) Documentation 10 10.2.2 10−8
Dot Product Math Operations Group 8 8.1.12 8−8
Embedded MATLAB
Function

User−Defined Functions 16 16.3 16−3

Enable Ports & Subsystems 11 11.3 11−2
Enabled and Triggered
Subsystem

Ports & Subsystems 11 11.11 11−30

Enabled Subsystem Ports & Subsystems 11 11.10 11−27
Environment Controller Signal Routing Group 13 13.1.9 13−9
Extract Bits Bit Operations Group 6 6.2.5 6−17
Fcn User−Defined Functions 16 16.1 16−2
First-Order Hold Sample & Hold Delays 5 5.2.2 5−22
Fixed-Point State-Space Additional Discrete 17 17.3 17−4
Floating Scope Data Viewers 14 14.2.2 14−8
For Iterator Subsystem Ports & Subsystems 11 11.13 11−36
From Signal Routing Group 13 13.1.13 13−11
From File Models and Subsystems Inputs 15 15.1.3 15−2
From Workspace Models and Subsystems Inputs 15 15.1.4 15−2
Function-Call Generator Ports & Subsystems 11 11.4 11−3
Function-Call Subsystem Ports & Subsystems 11 11.12 11−34
Gain Commonly Used blocks 2 2.10 2−16
Goto Signal Routing Group 13 13.1.15 13−13
Goto Tag Visibility Signal Routing Group 13 13.1.14 13−12
Ground Commonly Used blocks 2 2.2 2−4
Hit Crossing Discontinuities 4 4.10 4−13
IC (Initial Condition) Signal Attribute Manipulation 12 12.1.6 12−6
If Ports & Subsystems 11 11.15 11−40
If Action Subsystem Ports & Subsystems 11 11.15 11−40
Increment Real World Increment / Decrement 18 18.1 18−2
Increment Stored Integer Increment / Decrement 18 18.3 18−4
Index Vector Signal Routing Group 13 13.1.7 13−7
Inport Commonly Used blocks 2 2.1 2−2
Integer Delay Discrete-Time Linear Systems 5 5.1.2 5−2
Integrator Commonly Used blocks 2 2.14 2−20
Interpolation (n-D) Using
PreLookup

Lookup Tables 7 7.5 7−8

Interval Test Logic Operations Group 6 6.1.3 6−2
Interval Test Dynamic Logic Operations Group 6 6.1.4 6−3

TABLE 1.1 Simulink blocks

Chapter 1 Introduction to Simulink

1−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(con’t)
Block Name Library Chapter Section/Subsection Page

Level-2 M-File S-Function User−Defined Functions 16 16.5 16−7
Logical Operator Commonly Used blocks 2 2.12 2−18
Lookup Table Lookup Tables 7 7.1 7−2
Lookup Table (2-D) Lookup Tables 7 7.2 7−3
Lookup Table (n-D) Lookup Tables 7 7.3 7−5
Lookup Table Dynamic Lookup Tables 7 7.7 7−15
Magnitude−Angle to Complex Complex Vector Conversions Group 8 8.3.2 8−24
Manual Switch Signal Routing Group 13 13.1.10 13−9
Math Function Math Operations Group 8 8.1.16 8−11
MATLAB Fcn User−Defined Functions 16 16.2 16−2
Matrix Concatenate Vector / Matrix Operations 8 8.2.3 8−21
Memory Sample & Hold Delays 5 5.2.1 5−21
Merge Signal Routing Group 13 13.1.8 13−8
MinMax Math Operations Group 8 8.1.19 8−14
MinMax Running Resettable Math Operations Group 8 8.1.20 8−15
Model Ports & Subsystems 11 11.7 11−17
Model Info Documentation 10 10.2.1 10−6
Multiport Switch Signal Routing Group 13 13.1.11 13−10
Mux Commonly Used blocks 2 2.7 2−11
Outport Commonly Used blocks 2 2.1 2−2
Polynomial Math Operations Group 8 8.1.18 8−14
Prelookup Index Search Lookup Tables 7 7.4 7−7
Probe Signal Attribute Detection 12 12.2.1 12−14
Product Commonly Used blocks 2 2.4 2−6
Product of Elements Math Operations Group 8 8.1.11 8−7
Pulse Generator Signal Generators 15 15.2.3 15−5
Quantizer Discontinuities 4 4.9 4−12
Ramp Signal Generators 15 15.2.5 15−9
Random Number Signal Generators 15 15.2.10 15−14
Rate Limiter Discontinuities 4 4.5 4−6
Rate Limiter Dynamic Discontinuities 4 4.6 4−8
Rate Transition Signal Attribute Manipulation 12 12.1.8 12−8
Real−Imag to Complex Complex Vector Conversions Group 8 8.3.4 8−26
Relational Operator Commonly Used blocks 2 2.11 2−17
Relay Discontinuities 4 4.8 4−11
Repeating Sequence Signal Generators 15 15.2.8 15−13

TABLE 1.1 Simulink blocks

Introduction to Simulink with Engineering Applications 1−25
Copyright © Orchard Publications

Simulink Demos

(con’t)
Block Name Library Chapter Section/Subsection Page

Repeating Sequence
Interpolated

Signal Generators 15 15.2.14 15−22

Repeating Sequence Stair Signal Generators 15 15.2.13 15−21
Reshape Vector / Matrix Operations 8 8.2.2 8−20
Rounding Function Math Operations Group 8 8.1.17 8−13
S-Function Ports & Subsystems

User-Defined Functions
11
16

11.18
16.4

11−43
16−7

S−Function Builder User−Defined Functions 16 16.6 16−13
S−Function Examples User−Defined Functions 16 16.7 16−13
Saturation Commonly Used blocks

Discontinuities
2
4

2.13
4.1

2−19
4−2

Saturation Dynamic Discontinuities 4 4.2 4−3
Scope Data Viewers 14 14.2.1 14−6
Selector Signal Routing Group 13 13.1.6 13−6
Shift Arithmetic Bit Operations Group 6 6.2.4 6−16
Sign Math Operations Group 8 8.1.13 8−9
Signal Builder Signal Generators 15 15.2.4 15−6
Signal Conversion Signal Attribute Manipulation 12 12.1.7 12−7
Signal Generator Signal Generators 15 15.2.2 15−4
Signal Specification Signal Attribute Manipulation 12 12.1.9 12−11
Sine Lookup Tables 7 7.8 7−16
Sine Wave Signal Generators 15 15.2.6 15−9
Sine Wave Function Math Operations Group 8 8.1.22 8−17
Slider Gain Math Operations Group 8 8.1.8 8−6
State-Space Continuous-Time Linear Systems 3 3.1.3 3−6
Step Signal Generators 15 15.2.7 15−11
Stop Simulation Simulation Control 14 14.3 14−14
Subsystem Commonly Used blocks 2 2.1 2−2
Subsystem Examples Ports & Subsystems 11 11.17 11−41
Subtract Math Operations Group 8 8.1.3 8−3
Sum Commonly Used blocks 2 2.9 2−15
Sum of Elements Math Operations Group 8 8.1.4 8−4
Switch Commonly Used blocks 2 2.8 2−14
Switch Case Ports & Subsystems 11 11.16 11−41
Switch Case Action Subsystem Ports & Subsystems 11 11.16 11−41
Tapped Delay Discrete−Time Linear Systems 5 5.1.3 5−3

TABLE 1.1 Simulink blocks

Chapter 1 Introduction to Simulink

1−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(con’t)
Block Name Library Chapter Section/Subsection Page

Terminator Commonly Used blocks 2 2.3 2−5
Time-Based Linearization Linearization of Running Models 10 10.1.2 10−4
To File Model and Subsystem Outputs 14 14.1.3 14−2
To Workspace Model and Subsystem Outputs 14 14.1.4 14−4
Transfer Fcn Continuous-Time Linear Systems 3 3.1.4 3−6
Transfer Fcn Direct Form II Additional Discrete 17 17.1 17−2
Transfer Fcn Direct Form II
Time Varying

Additional Discrete 17 17.2 17−3

Transfer Fcn First Order Discrete−Time Linear Systems 5 5.1.11 5−14
Transfer Fcn Lead or Lag Discrete−Time Linear Systems 5 5.1.12 5−15
Transfer Fcn Real Zero Discrete−Time Linear Systems 5 5.1.13 5−18
Transport Delay Continuous-Time Delay 3 3.2.1 3−10
Trigger Ports & Subsystems 11 11.2 11−2
Trigger−Based Linearization Linearization of Running Models 10 10.1.1 10−2
Triggered Subsystem Ports & Subsystems 11 11.9 11−25
Trigonometric Function Math Operations Group 8 8.1.21 8−16
Unary Minus Math Operations Group 8 8.1.15 8−10
Uniform Random Number Signal Generators 15 15.2.11 15−16
Unit Delay Commonly Used blocks 2 2.15 2−24
Unit Delay Enabled Additional Discrete 17 17.7 17−9
Unit Delay Enabled
External IC

Additional Discrete 17 17.9 17−12

Unit Delay Enabled Resettable Additional Discrete 17 17.8 17−11
Unit Delay Enabled Resettable
External IC

Additional Discrete 17 17.10 17−13

Unit Delay External IC Additional Discrete 17 17.4 17−6
Unit Delay Resettable Additional Discrete 17 17.5 17−7
Unit Delay Resettable
External IC

Additional Discrete 17 17.6 17−8

Unit Delay With Preview
Enabled

Additional Discrete 17 17.13 17−17

Unit Delay With Preview
Enabled Resettable

Additional Discrete 17 17.14 17−19

Unit Delay With Preview
Enabled Resettable External RV

Additional Discrete 17 17.15 17−20

Unit Delay With Preview
Resettable

Additional Discrete 17 17.11 17−15

TABLE 1.1 Simulink blocks

Introduction to Simulink with Engineering Applications 1−27
Copyright © Orchard Publications

Simulink Demos

(con’t)
Block Name Library Chapter Section/Subsection Page

Unit Delay With Preview Reset-
table External RV

Additional Discrete 17 17.12 17−16

Variable Time Delay Continuous-Time Delay 3 3.2.2 3−11
Variable Transport Delay Continuous-Time Delay 3 3.2.3 3−12
Vector Concatenate Vector / Matrix Operations 8 8.2.4 8−23
Weighted Moving Average Discrete−Time Linear Systems 5 5.1.14 5−19
Weighted Sample Time Signal Attribute Detection 12 12.2.2 12−15
Weighted Sample Time Math Math Operations Group 8 8.1.6 8−5
While Iterator Subsystem Ports & Subsystems 11 11.14 11−38
Width Signal Attribute Detection 12 12.2.3 12−16
Wrap To Zero Discontinuities 4 4.12 4−16
XY Graph Data Viewers 14 14.2.3 14−12
Zero-Order Hold Sample & Hold Delays 5 5.2.3 5−23
Zero-Pole Continuous-Time Linear Systems 3 3.1.5 3−8

TABLE 1.1 Simulink blocks

Chapter 1 Introduction to Simulink

1−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

1.3 Summary
• MATLAB and Simulink are integrated and thus we can analyze, simulate, and revise our mod-

els in either environment at any point. We invoke Simulink from within MATLAB.

• When Simulink is invoked, the Simulink Library Browser appears. The left side is referred to as
the Tree Pane and displays all libraries installed. The right side is referred to as the Contents
Pane and displays the blocks that reside in the library currently selected in the Tree Pane.

• We open a new model window by clicking on the blank page icon that appears on the leftmost
position of the top title bar. On the Simulink Library Browser, we highlight the desired library
in the Tree Pane, and on the Contents Pane we click and drag the desired block into the new
model. Once saved, the model window assumes the name of the file saved. Simulink adds the
extension .mdl.

• The > and < symbols on the left and right sides of a block are connection points.

• We can change the parameters of any block by double-clicking it, and making changes in the
Function Block Parameters window.

• We can specify the simulation time on the Configuration Parameters from the Simulation
drop menu. We can start the simulation on Start from the Simulation drop menu or by click-

ing on the icon. To see the output waveform, we double click on the Scope block, and

then clicking on the Autoscale icon.

• It is highly recommended that the simout To Workspace block be added to the model so all
data and variables are saved in the MATLAB workspace. This gives us the ability to delete or
modify selected variables. To see what variables reside in the MATLAB Workspace, we issue
the command who.

• The state−space block is the best choice when we need to display the output waveform of three
or more variables.

• We can use Algebraic Constrain blocks found in the Math Operations library, Display blocks
found in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, to
draw a model that will produce the simultaneous solution of two or more equations with two or
more unknowns.

• The Algebraic Constraint block constrains the input signal f(z) to zero and outputs an alge-
braic state z. The block outputs the value necessary to produce a zero at the input. The output
must affect the input through some feedback path. This enables us to specify algebraic equa-
tions for index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter
is zero. We can improve the efficiency of the algebraic loop solver by providing an Initial guess
for the algebraic state z that is close to the solution value.

Introduction to Simulink with Engineering Applications 1−29
Copyright © Orchard Publications

Exercises

1.4 Exercises
1. Use Simulink with the Step function block, the Continuous−Time Transfer Fcn block, and the

Scope block shown, to simulate and display the output waveform of the RLC circuit shown
below where is the unit step function, and the initial conditions are , and

.

2. Repeat Exercise 1 using integrator blocks in lieu of the transfer function block.

3. Repeat Exercise 1 using the State Space block in lieu of the transfer function block.

4. Using the State−Space block, model the differential equation shown below.

subject to the initial conditions , and

vC

u0 t() iL 0() 0=

vC 0()

+
−

R 1 Ω L

1 H

C

1 F −

+
vC

u0t iL

d2vC

dt2

dvC
dt

--------- vC+ + 2 t 30°+() 5 t 60°+()cos–sin=

vc 0−() 0= v'c 0−() 0.5 V=

Chapter 1 Introduction to Simulink

1−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

1.5 Solutions to End-of-Chapter Exercises
Dear Reader:

The remaining pages on this chapter contain solutions to all end−of−chapter exercises.

You must, for your benefit, make an honest effort to solve these exercises without first looking at
the solutions that follow. It is recommended that first you go through and solve those you feel that
you know. For your solutions that you are uncertain, look over your procedures for inconsistencies
and computational errors, review the chapter, and try again. Refer to the solutions as a last resort
and rework those problems at a later date.

You should follow this practice with all end−of−chapter exercises in this book.

Introduction to Simulink with Engineering Applications 1−31
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

1.
The s−domain equivalent circuit is shown below.

and by substitution of the given circuit constants,

By the voltage division expression,

from which

We invoke Simulink from the MATLAB environment, we open a new file by clicking on the
blank page icon at the upper left on the task bar, we name this file Exercise_1_1, and from the
Sources, Continuous, and Commonly Used Blocks in the Simulink Library Browser, we
select and interconnect the desired blocks as shown below.

As we know, the unit step function is undefined at . Therefore, we double click on the
Step block, and in the Source Block Parameters window we enter the values shown in the
window below.

+
−

1

−

+
VC s() VOUT s()=1

s
--- Ls

1/sCVIN s()

+
−

1

−

+
VC s() VOUT s()=1

s
--- s

1/sVIN s()

VOUT s() s 1 s⁄⋅() s 1 s⁄+()⁄
s 1 s⁄⋅() s 1 s⁄+()⁄ 1+

--- VIN s()⋅ s
s2 s 1+ +
---------------------- VIN s()⋅= =

Transfer function G s()
VOUT s()
VIN s()

--------------------- s
s2 s 1+ +
----------------------= = =

t 0=

Chapter 1 Introduction to Simulink

1−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Next, we double click on the Transfer Fcn block and on the and in the Source Block Param-
eters window we enter the values shown in the window below.

On the Exercise_1_1 window, we click on the Start Simulation icon, and by double-click-
ing on the Scope block, we obtain the Scope window shown below.

Introduction to Simulink with Engineering Applications 1−33
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

It would be interesting to compare the above waveform with that obtained with MATLAB
using the plot command. We want the output of the given circuit which we have defined as

. The input is the unit step function whose Laplace transform is . Thus, in
the complex frequency domain,

We obtain the Inverse Laplace transform of with the following MATLAB script:

syms s
fd=ilaplace(1/(s^2+s+1))

fd = 2/3*3^(1/2)*exp(-1/2*t)*sin(1/2*3^(1/2)*t)
t=0.1:0.01:15;...
td=2./3.*3.^(1./2).*exp(−1./2.*t).*sin(1./2.*3.^(1./2).*t);...
plot(t,td); grid

The plot shown below is identical to that shown above which was obtained with Simulink.

vout t() vC t()= 1 s⁄

VOUT s() G s() VIN s()⋅ s
s2 s 1+ +
---------------------- 1

s
---⋅ 1

s2 s 1+ +
----------------------= = =

1 s2 s 1+ +()⁄

Chapter 1 Introduction to Simulink

1−34 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.

By Kirchoff’s Current Law (KCL),

By substitution of the circuit constants, observing that , and differentiating the above
integro-differential equation, we get

Invoking MATLAB, starting Simulink, and following the procedures of the examples and
Exercise 1, we create the new model Exercise_1_2, shown below.

+
−

R

1 Ω L

1 H

C

1 F −

+
vC

u0t

iR
iC

iL

iL iC+ iR=

1
L
--- vL td

0

t
∫ C

dvC
dt

---------+
1 vC–

R
---------------=

vL vC=

d2vC

dt2

dvC
dt

--------- vC+ + 0=

Introduction to Simulink with Engineering Applications 1−35
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

Next, we double-click on Integrator 1 and in the Function Block Parameters window we set
the initial value to 0. We repeat this step for Integrator 2 and we also set the initial value to 0.
We start the simulation, and double-clicking on the Scope we obtain the graph shown below.

The plot above looks like the curve of a quadratic function. This is reasonable since the first
integration of the unit step function yields a ramp function, and the second integration yields a
quadratic function.

Chapter 1 Introduction to Simulink

1−36 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

3.
We assign state variables and as shown below where and .

Then,

and the initial conditions are

We form the block diagram below and we name it Exercise_1_3.

We double-click on the State-Space block and we enter the following parameters:

A=[0 1; −1 −1]

B=[0 1]’

C=[0 1]’

D=[0]

Initial conditions: x0

The initial conditions are entered in MATLAB’s Command Window as follows:

x0=[0 0]';

x1 x2 x1 iL= x2 vC=

+
−

R

1 Ω L

1 H

C

1 F −

+
vC

u0t

iR
iC

iL
x1 x2

x· 1 x2=

x2 u0t–

1
------------------ x1 x· 2+ + 0=

x· 1 x2=

x· 2 x1– x2 u0t+–=

x· 1 Ax Bu+=
x· 1

x· 2

0 1
1– 1–

x1

x2

0
1

u0t+=→

y Cx Du+= 0 1
x1

x2
0 u0t+→

x0
x10

x20

0
0

= =

Introduction to Simulink with Engineering Applications 1−37
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

To avoid the unit step function discontinuity at , we double-click the Step block, and in
the Source Block Parameters window, we change the Initial value from 0 to 1.

The Display block shows the output value at the end of the simulation time, in this case 15. We
click on the Simulation start icon, we double-click on the Scope block, and the output wave-
form is as shown below. We observe that the waveform is the same as in Exercises 1 and 2.

4.

subject to the initial conditions , and

t 0=

d2vC

dt2

dvC
dt

--------- vC+ + 2 t 30°+() 5 t 60°+()cos–sin=

vc 0−() 0= v'c 0−() 0.5 V=

Chapter 1 Introduction to Simulink

1−38 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

We let and . Then, , and . Expressing the given

equation as

we obtain the state-space equations

In matrix form,

subject to the initial conditions

Our simulation model is as shown below.

1. We double-click on the Sine Wave 1 block and in the Source Block Parameters, we make
the following entries:

x1 vC= x2
dvC
dt

---------= x· 1
dvC
dt

--------- x2= = x· 2
d2vC

dt2
-----------=

d2vC

dt2

dvC
dt

---------– vC– 2 t 30°+() 5 t 60°+()cos–sin+ x2– x1– 2 t 30°+() 5 t 60°+()cos–sin+= =

x· 1 x2=

x· 2 x2– x1– 2 t 30°+() 5 t 60°+()cos–sin+=

x· Ax Bu+
x· 1

x· 2

⇒= 0 1
1– 1–

x1

x2

1
0

2 t 30°+() 5 t 60°+()cos–sin()+=

y Cx Du 0 1
x1

x2
0 2 t 30°+() 5 t 60°+()cos–sin()+⇒+=

x0
x10

x20

0
0

= =

Introduction to Simulink with Engineering Applications 1−39
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

Sine type: Time based

Time (t): Use simulation time

Amplitude: 2

Bias: 0

Frequency: 2

Phase: pi/6

and we click on OK

2. We double-click on the Sine Wave 2 block and in the Source Block Parameters, we make
the following entries:

Sine type: Time based

Time (t): Use simulation time

Amplitude: -5

Bias: 0

Frequency: 2

Phase: 5*pi/6

and we click on OK

3. We double-click on the Signal Generator block and in the Source Block Parameters, we
make the following entries:

Waveform: Sine

Time (t): Use external signal

Amplitude: 1

Frequency: 2

and we click on OK

4. We double-click on the State−Space block and in the Source Block Parameters, we make
the following entries:

A: [0 1; −1 −1], B=[1 0]’, C=[0 1], D=[0], Initial conditions [x10 x 20]

and we click on OK

5. On MATLAB’s Command Window we enter the initial conditions as

x10=0; x20=0;

Chapter 1 Introduction to Simulink

1−40 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6. We click on the Start Simulation icon, and double-clicking on the scope we see the wave-
form below after clicking on the Autoscale icon.

Introduction to Simulink with Engineering Applications 2−1
Copyright © Orchard Publications

Chapter 2

The Commonly Used Blocks Library

his chapter is an introduction to the Commonly Used Blocks Library. This is the first
library in the Simulink group of libraries and contains the blocks shown below. In this chap-
ter, we will describe the function of each block included in this library and we will perform

simulation examples to illustrate their application.

T

Chapter 2 The Commonly Used Blocks Library

2−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.1 The Inport, Outport, and Subsystem Blocks

Inport blocks are ports that serve as links from outside a system into the system. Outport blocks
are output ports for a subsystem. A Subsystem block represents a subsystem of the system that
contains it. As our model increases in size and complexity, we can simplify it by grouping blocks
into subsystems. As we can see from Example 1.3 in Chapter 1, if we increase the number of the
simultaneous equations, this model increases in size and complexity.

To create a subsystem before adding the blocks it will contain, we add a Subsystem block to the
model, then we add the blocks that make up the subsystem. If the model already contains the
blocks we want to convert to a subsystem, we create the subsystem by grouping the appropriate
blocks.

Example 2.1
Figure 2.1 shows the model of Example 1.1, Figure 1.12 in Chapter 1. We will create a subsystem
by grouping all blocks except the Step and the Scope blocks.

Figure 2.1. Model for Example 2.1

As a first step, we enclose the blocks and connecting lines that we want to include in the sub-
system within a bounding box. This is done by forming a rectangle around the blocks and the con-
necting lines to select them. Then, we choose Create Subsystem from the Edit menu, and Sim-
ulink replaces the selected blocks and connecting lines with a Subsystem block as shown in Figure
2.2.

Introduction to Simulink with Engineering Applications 2−3
Copyright © Orchard Publications

The Inport, Outport, and Subsystem Blocks

Figure 2.2. Model for Example 2.1 with Subsystem block

Next, we double-click on the Subsystem block in Figure 2.2, and we observe that Simulink dis-
plays all blocks and interconnecting lines as shown in Figure 2.3 where the Step and Scope blocks
in Figure 2.2, have been replaced by In1 and Out1 blocks respectively.

Figure 2.3. Model for Example 2.1 with Inport and Outport blocks

The Inport (In1) and Outport (Out1) blocks represent the input to the subsystem and the output
from the subsystem respectively. The Inport block name appears in the Subsystem icon as a port
label. To suppress display of the label In1, we select the Inport block, we choose Hide Name from
the Format menu, then choose Update Diagram from the Edit menu.

We can create any number of duplicates of an Inport block. The duplicates are graphical repre-
sentations of the original intended to simplify block diagrams by eliminating unnecessary lines.
The duplicate has the same port number, properties, and output as the original. Changing a dupli-
cate's properties changes the original's properties and vice versa.

To create a duplicate of an Inport block, we select the block, we select Copy from the Simulink
Edit menu or from the block's context menu, we position the mouse cursor in the model's block
diagram where we want to create the duplicate. and we select Paste Duplicate Inport from the
Simulink Edit menu or the block diagram's context menu.

For the rules by which Simulink assigns port numbers, please refer to the Simulink’s Help menu
for this block.

Chapter 2 The Commonly Used Blocks Library

2−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.2 The Ground Block

The Ground block can be used to connect blocks whose input ports are not connected to other
blocks. If we run a simulation with blocks having unconnected input ports, Simulink issues warn-
ing messages. We can avoid the warning messages by using Ground blocks. Thus, the Ground
block outputs a signal with zero value. The data type of the signal is the same as that of the port to
which it is connected.

Example 2.2

Let us consider the model shown in Figure 2.4 where and and these
values have been specified in MATLAB’s Command Window. Upon execution of the Simulation
start command, the sum of these two complex numbers is shown in the Display block.

Figure 2.4. Display of the sum of two complex numbers for Example 2.2

Next, let us delete the block with the value and execute the Simulation start command. The
model is now shown as in Figure 2.5.

Figure 2.5. Model for Example 2.2 with Block K2 deleted.

Now, let us add the Ground block at the unconnected input of the Sum block and execute the
Simulation start command. The model is now shown as in Figure 2.6.

K1 3 j1+= K2 4 j3+=

K2

Introduction to Simulink with Engineering Applications 2−5
Copyright © Orchard Publications

The Terminator Block

Figure 2.6. Model of Figure 2.5 with a Ground block connected to the Sum block

2.3 The Terminator Block

The Terminator block can be used to cap blocks whose output ports are not connected to other
blocks. If we run a simulation with blocks having unconnected output ports, Simulink issues
warning messages. We can avoid the warning messages by using Terminator blocks.

Example 2.3
Let us consider the unconnected output of the Sum block in Figure 2.7.

Figure 2.7. Sum block with unconnected output for Example 2.3

Figure 2.8 shows the Sum block output connected to a Terminator block.

Figure 2.8. Sum block of Figure 2.7 with output connected to a Terminator block

Chapter 2 The Commonly Used Blocks Library

2−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.4 The Constant and Product Blocks

The Constant block is used to define a real or complex constant value. This block accepts scalar
(1x1 2−D array), vector (1−D array), or matrix (2−D array) output, depending on the dimension-
ality of the Constant value parameter that we specify, and the setting of the Interpret vector
parameters as 1−D parameter. The output of the block has the same dimensions and elements as
the Constant value parameter. If we specify a vector for this parameter, and we want the block to
interpret it as a vector (i.e., a 1−D array), we select the Interpret vector parameters as 1−D param-
eter; otherwise, the block treats the Constant value parameter as a matrix (i.e., a 2−D array).

By default, the Constant block outputs a signal whose data type and complexity are the same as
that of the block's Constant value parameter. However, we can specify the output to be any sup-
ported data type supported by Simulink, including fixed-point data types. For a discussion on the
data types supported by Simulink, please refer to Data Types Supported by Simulink in the Using
Simulink documentation.

The Product block performs multiplication or division of its inputs. This block produces outputs
using either element−wise or matrix multiplication, depending on the value of the Multiplication
parameter. We specify the operations with the Number of inputs parameter. Multiply(*) and
divide(/) characters indicate the operations to be performed on the inputs.

Example 2.4

The model is shown in Figure 2.9 performs the multiplication . After
the Start simulation command is executed, it may be necessary to stretch the Display block hori-
zontally to read the result.

Figure 2.9. Model for Example 2.4

3 j4+() 4 j3+()× 5 j8–()×

Introduction to Simulink with Engineering Applications 2−7
Copyright © Orchard Publications

The Scope Block

The Divide block is an implementation of the Product block. It can be used to multiply or divide
inputs.

Example 2.5

The model is shown in Figure 2.10 performs the division .

Figure 2.10. Model for Example 2.5

2.5 The Scope Block

The Scope block displays waveforms as functions of simulation time. The Scope block can have
multiple y−axes with a common time range. We can adjust the amount of time and the range of
input values displayed, we can move and resize the Scope window, and we can modify the Scope's
parameter values during the simulation. The Scope block does not automatically display the
waveforms, but it does write data to connected Scopes. The Scope's input signal or signals will be
displayed if after a simulation is terminated, we double−click on the Scope block and the signal(s)
will then be displayed. The Scope assigns colors to each signal element in this order: yellow,
magenta, cyan, red, green, and dark blue. When more than six signals are displayed, the Scope
cycles through the colors in the order listed. The Scope block is described in detail in Subsection
14.2.1, Chapter 14, Page 14−6.

2.6 The Bus Creator and Bus Selector Blocks

To understand the uses of the Bus Creator and Bus Selector blocks, let us review the concept of a
signal bus which can be thought of as a bundle of several wires held together by tie wraps. Graph-

3 j4+() 4 j3+()⁄

Chapter 2 The Commonly Used Blocks Library

2−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

ically, we can represent a bus as a composite signal comprised of a set of individual signals with a
group of lines, each line representing an individual signal. We use Bus Creator blocks to create
signal buses and Bus Selector blocks to access the components of a bus. Simulink hides the name
of a Bus Creator and Bus Selector blocks when we copy them from the Simulink library to a
model. However, we can make the names visible by clicking Show Name on the Format menu.
Making the names visible is a good idea since the Bus Creator, Bus Selector, Mux, and Demux
blocks are all represented by a heavy vertical line. The Mux and Demux blocks are described in
the next section.

The Bus Creator block is normally shown as a heavy vertical line. We use this block to combine
a set of signals into a bus, i.e., a group of signals represented by a single line. The Bus Creator
block, when used in conjunction with the Bus Selector block, described later also in this section,
allows us to reduce the number of lines required to route signals from one part of a diagram to
another. This makes our diagram easier to understand.

Example 2.6

The model of Figure 2.11 simulates the combined functions , , and into a

bus and displays all three on a single scope.

Figure 2.11. Model for Example 2.6

We begin by entering the following in the MATLAB Command Window:

syms t; y=sin(2*t), der_y=diff(y), int_y=int(y)

and MATLAB displays

y =
sin(2*t)

der_y =
2*cos(2*t)

int_y =

2tsin d
dt
----- 2tsin 2tsin td∫

Introduction to Simulink with Engineering Applications 2−9
Copyright © Orchard Publications

The Bus Creator and Bus Selector Blocks

-1/2*cos(2*t)

From the Sources Library* browser, we select the Sine Wave block and we drag it into a new
model window which we name Figure_2_11. From the Continuous Library† Browser we select
the Derivative block and we drag it into the model window. Also, from the Continuous Library
Browser, we select the Integrator block and we drag it into our model. From the Commonly
Used Blocks Library Browser we select the Bus Creator block and we drag it into the model win-
dow. Then, we select the Scope and Simout to Workspace blocks from the Sinks Library‡ and
we drag them into the model window. On the model window we click on the Integrator block
and on the Function Block Parameters dialog box we set the initial condition to zero. Also, on
the model window we click on the Bus Creator block and on the Function Block Parameters
dialog box we change the number of inputs from 2 to 3. We connect the blocks as shown in Figure
2.11.

Now, we configure Simulink to run the simulation for 10 seconds (the default value). We choose
the parameters shown in Figure 2.12 from the Simulation menu of the model.

Figure 2.12. Specifying the configuration parameters for Example 2.6

We close the Configuration Parameters dialog box by clicking the OK button, and Simulink
applies the parameters. Finally, we double click the Scope block and the output is as shown in
Figure 2.13. To scale the vertical axis as shown in Figure 2.13, we move the cursor close to the
vertical axis, we right−click, and we enter the lower and upper limits shown in Figure 2.13.

The Bus Creator block assigns a name to each signal on the bus that it creates. This allows us to
refer to signals by name when searching for their sources (see Browsing Bus Signals) or selecting
signals for connection to other blocks. The block offers two bus signal naming options. We can
specify that each signal on the bus inherit the name of the signal connected to the bus (the
default) or that each input signal must have a specific name. To specify that bus signals inherit

* The Sources Library is described in Chapter 15.
† The Continues Library is described in Chapter 3.
‡ The Sinks Library is described in Chapter 14.

Chapter 2 The Commonly Used Blocks Library

2−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

their names from input ports, we select Inherit bus signal names from input ports from the list
box on the block's parameter dialog box. The names of the inherited bus signals appear in the Sig-
nals in bus list box shown in Figure 2.14.

Figure 2.13. Output waveforms for Example 2.6

Figure 2.14. Bus Creator function block parameters dialog box

The Bus Editor allows us to change the properties of the bus types objects. We select the Bus Edi-
tor from the model’s Tools menu. For details, please refer to the Simulink Owner’s Manual or
Simulink’s Help menu.

Often, it is desirable to annotate our models. These annotations provide textual information
about a model. We can add an annotation to any unoccupied area of our model. To insert an
annotation, we double−click in an unoccupied section of the model, then a small rectangle
appears, and the cursor changes to an insertion point. We start typing the annotation text and we
observe that each line is centered within the rectangle. Then we can move it to the desired loca-
tion by dragging it. We can choose another Font and Text Alignment from the Format menu. We

Introduction to Simulink with Engineering Applications 2−11
Copyright © Orchard Publications

The Mux and Demux Blocks

can delete an annotation by first selecting it, holding down the Shift key and pressing the Delete
or Backspace key.

2.7 The Mux and Demux Blocks

Before describing the Mux and Demux blocks, let us review the functions of a multiplexer (mux)
and demultiplexer (demux).

Multiplexing is a method of sending multiple signal streams of information on a carrier at the same
time in the form of a single, complex signal and then recovering the separate signals at the receiv-
ing end. Analog signals are commonly multiplexed using Frequency Division Multiplexing (FDM),
in which the carrier bandwidth is divided into subchannels of different frequency widths, each
carrying a signal at the same time in parallel. Cable television is an example of FDM. Digital sig-
nals are commonly multiplexed using Time Division Multiplexing (TDM), in which the multiple
signals are carried over the same channel in alternating time slots. If the inputs take turns to use
the output channel (time division multiplexing) then the output bandwidth need be no greater
than the maximum bandwidth of any input. If many inputs may be active simultaneously then the
output bandwidth must be at least as great as the total bandwidth of all simultaneously active
inputs. In this case the multiplexer is also known as a concentrator.

A demultiplexer performs the reverse operation of a multiplexer. Figure 2.15 shows a functional
block diagram of a typical 4−line time−division digital multiplexer / demultiplexer pair.

Figure 2.15. Digital Mux−Demux pair

In Figure 2.15, , , , and represent input data to be multiplexed and appear on a single
transmission path denoted as . This path will carry the data of input , , , or depending
on the settings of the selection switches and . These setting must be the same on both the

Multiplexer Demultiplexer

A A

B B

CC

D D

X

S0S1 S1 S0

S1 S0
0 0
0 1
1 0
1 1

X

A
B
C
D

Truth Table

A B C D
X A B C D

S0 S1

Chapter 2 The Commonly Used Blocks Library

2−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

multiplexer and demultiplexer. For instance, if the setting are and , the output
line of the multiplexer will carry the data of signal and it will appear at the output line on
the demultiplexer. The other combinations are shown in the truth table of Figure 2.15. A model
for a digital multiplexer is presented in Chapter 11, Example 11.2, Page 11−4.

The Simulink Mux block combines its inputs into a single output. An input can be a scalar, vec-
tor, or matrix signal. For details, please refer to the Simulink Owner’s Manual or Simulink’s Help
menu. The Mux block's Number of Inputs parameter allows us to specify input signal names and
dimensionality as well as the number of inputs. A value of −1 means that the corresponding port
can accept signals of any dimensionality. Simulink hides the name of a Mux block when we drag
it from the Simulink block library to a model. However, we can make the name visible by clicking
Show Name on the Format menu.

The Simulink Demux block extracts the components of an input signal and outputs the compo-
nents as separate signals. The block accepts either vector (1−D array) signals or bus signals (see
Signal Buses in the Using Simulink documentation for more information). The Number of out-
puts parameter allows us to specify the number and the dimensionality of each output port. If we
do not specify the dimensionality of the outputs, the block determines the dimensionality of the
outputs for us.

Simulink hides the name of a Demux block when we drag it from the Simulink library to a model.
However, we can make the name visible by clicking Show Name on the Format menu.

Let represent an n−element input vector, and represent the block output scalar signals where
 cannot be greater than .

Case I:

If we specify outputs for a n−element input vector, the Demux block will output the same num-
ber of outputs as the number of elements in the input vector. For instance, if the input to the
Demux block is a four−element vector, and we specify four outputs, the Demux block will output
four scalar signals. However, if we specify the number of outputs as fewer than the number of
input elements, the Demux block will distribute the elements as evenly as possible over the out-
puts.

Case II:

a. : The Demux block outputs vector signals each having elements. For
instance, if the input to the Demux block is an eight−element vector, and we specify four out-
puts, the Demux block will output four two-element vectors.

b. : The Demux block outputs vector signals each having elements and
 signals having elements. For instance, if the input to the Demux block is a five−ele-

S0 0= S1 1=

X C C

n p
p n

p n=

p

p n<

n mod p 0= p n p⁄

n mod p m= m n p⁄ 1+

p m– n p⁄

Introduction to Simulink with Engineering Applications 2−13
Copyright © Orchard Publications

The Mux and Demux Blocks

ment vector, and we specify three outputs, the Demux block will output two 2−element vector
signals and one scalar signal.

For other cases please refer to the Simulink Owner’s Manual or Simulink’s Help menu.

We use in a vector expression to indicate that the block should dynamically size the corre-
sponding port. If a vector expression comprises positive values and values, the Demux block
assigns as many elements as needed to the ports with positive values and distributes the remain
elements as evenly as possible over the ports with values.

Example 2.7

The input to a Demux block is a row vector (digits 1 through 9) and the block output has
three ports. We want to specify that there will be four elements on the second port, and the first
and third ports will be dynamically sized. We will create a model that will meet these specifica-
tions.

The model is shown in Figure 2.16. We first drag the Constant block from the Sources of the
Simulink Library Browser into a new model window, we drag the Demux block from the Com-
monly Used Blocks Library Browser, we drag the Display blocks from the Sinks Library Browser,
and we make the connections as indicated.

We double−click on the Constant Block and we enter the row vector .
We uncheck the Interpret vector parameter as 1−D. We double click on the Demux block and
for the Number of outputs we enter . The numbers displayed appear after we start
the simulation. We observe that there are three elements on the first output port, four on the sec-
ond, and two on the third. The elements on the second port are as specified, and those on the first
and third rows are dynamically sized.

Figure 2.16. Model for Example 2.7

1–

1–

1–

1 9×[]

1 2 3 4 5 6 7 8 9[]

1 4 1–,–[]

Chapter 2 The Commonly Used Blocks Library

2−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

For additional examples please refer to Simulink’s Help menu. Some of these examples have
replaced the Display blocks with Terminator blocks. As we’ve learned earlier, a Terminator block
prevents warnings about unconnected output ports.

2.8 The Switch Block

The Switch block will output the first input or the third input depending on the value of the sec-
ond input. The first and third inputs are called data inputs. The second input is called the con-
trol input and it is specified on the Function Block Parameters for the Switch block. The fol-
lowing options are available:

u2>=Threshold

u2>Threshold

u2~=0

where u2~=0 indicates a non-zero condition.

Example 2.8
In Figure 2.17, the Function Block Parameters for the Switch block has been set for u2>=Thresh-
old, Threshold =0, in the Source Block Parameters for the Sine Wave we have entered Ampli-
tude=1, Bias=75, Frequency =1, and in MATLAB’s Command Window we have entered the
statement a=70;

Figure 2.17. Switch block set for u2>=Threshold, Threshold=0

In the model of Figure 2.17, Input 2 satisfies the selected criterion u2>=Threshold where Thresh-
old =0, and thus the Switch block outputs the first input, i.e., .y 75 xsin+=

Introduction to Simulink with Engineering Applications 2−15
Copyright © Orchard Publications

The Sum Block

In the model of Figure 2.18, Input 2 does not satisfy the selected criterion u2>=Threshold where
Threshold =76, and thus the Switch block outputs the third input, i.e., .

Figure 2.18. Switch block set for u2>=Threshold, Threshold=76

2.9 The Sum Block

The Sum block is an implementation of the Add block which is described in Subsection 8.1.2,
Chapter 8, Page 8−2. This block performs addition or subtraction on its inputs. This block can
add or subtract scalar, vector, or matrix inputs. From the Block Parameters dialog box we can
choose the icon shape of the block, rectangular or round. We specify the operations of the block
with the List of Signs parameter. Plus (+), minus (−), and spacer (|) characters indicate the oper-
ations to be performed on the inputs. If there are two or more inputs, then the number of charac-
ters must equal the number of inputs. For example, "+−+" requires three inputs and configures
the block to subtract the second (middle) input from the first (top) input, and then add the third
(bottom) input.

Example 2.9

Let us consider the matrices , , and defined in MATLAB’s Command Window as:

A=[3+4j 1+0j 5−2j; 2−3j 4+j 7−4j; 1+6j 8−5j 4+7j];
B=[4+3j 0+2j −2+5j; −3+2j 6+7j −3-4j; 1+8j −5−3j 2−7j];
C=[−2+3j 7+2j −5−2j; 3−2j 4−7j −4+3j; −3+8j 7−4j −6+9j];

The model in Figure 2.19 performs the operation .

a 70=

A B C

A B C–+

Chapter 2 The Commonly Used Blocks Library

2−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 2.19. Model for Example 2.9

2.10 The Gain Block

The Gain block multiplies the input by a constant value (gain). The input and the gain can each
be a scalar, vector, or matrix. We specify the value of the gain in the Gain parameter. The Multi-
plication parameter lets us specify element−wise or matrix multiplication. For matrix multiplica-
tion, this parameter also lets us indicate the order of the multiplicands.

Example 2.10

The model shown in Figure 2.20 performs the matrix multiplication where

and .

Figure 2.20. Model for Example 2.10

We double−click on the Constant block and we enter . The apostrophe is required to

indicate that this is a column vector. Next, we double click on the Gain block, we enter the row

vector , and for Multiplication we choose Matrix (u*K). Initially, the Display block may

show just one value with two small black triangles at the lower right corner. This tells us that we
must resize the Display block in both directions to see all the elements of the resultant
matrix.

A B⋅ A 1 1– 2 '=

B 2 3 4=

1 1– 2 '

2 3 4

3 3×

Introduction to Simulink with Engineering Applications 2−17
Copyright © Orchard Publications

The Relational Operator Block

2.11 The Relational Operator Block

The Relational Operator block performs the specified comparison of its two inputs. We select
the relational operator connecting the two inputs with the Relational Operator parameter. The
block updates to display the selected operator. The supported operations are given below.

Operation Description:

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second input

>= TRUE if the first input is greater than or equal to the second input

> TRUE if the first input is greater than the second input

Example 2.11

The model shown in Figure 2.21 determines whether the determinants of the matrices and
defined below are equal or unequal.

In MATLAB’s Command Window, we enter and as follows:

A=[2 −3 5; 1 0 −1; −2 1 0]; B=[2 1 −2; −3 0 1; 5 −1 0];

Figure 2.21. Model for Example 2.11

A B

A
2 3– 5
1 0 1–

2– 1 0

= B
2 1 2–

3– 0 1
5 1– 0

=

A B

Chapter 2 The Commonly Used Blocks Library

2−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

In the Source Block Parameters dialog box of the Constant blocks we enter det(A) and det(B).
The Display block in Figure 2.21 indicates that the determinants of Matrices A and B are equal.

2.12 The Logical Operator Block

The Logical Operator block performs the specified logical operation on its inputs. An input
value is TRUE (1) if it is nonzero and FALSE (0) if it is zero. The Boolean operation connecting
the inputs is selected with the Operator parameter list in the Function Block Parameters dialog
box. The block updates to display the selected operator. The logical operations are given below.

Operation Description:

AND − TRUE if all inputs are TRUE

OR − TRUE if at least one input is TRUE

NAND − TRUE if at least one input is FALSE

NOR − TRUE when no inputs are TRUE

XOR − TRUE if an odd number of inputs are TRUE

NOT − TRUE if the input is FALSE and vice-versa

The number of input ports is specified with the Number of input ports parameter. The output type
is specified with the Output data type mode and/or the Output data type parameters. An output
value is if TRUE and if FALSE.

Example 2.12

The model shown in Figure 2.22 simulates the Boolean expression * where the dot
denotes the ANDing of the variables , , and the plus (+) sign denotes the ORing of
with . The blocks indicated as Variable A, Variable B, and Variable C are Constant blocks. We
specify the values , , and in MATLAB’s Command Window, and after exe-

* The ANDing operation has precedence over the ORing operation. For instance, the Boolean expression
 implies that must first be ANDed with and the result must be ORed with as shown in Fig-

ure 2.22. The dot symbol between and is often omitted. For a detailed discussion on Boolean expressions,
please refer to Digital Circuit Analysis and Design with an Introduction to CPLDs and FPGAs, ISBN 0-
9744239-6-3.

1 0

D A B⋅ C+=

A B⋅ C+ A B C
A B

A B A B⋅
C

A 1= B 0= C 1=

Introduction to Simulink with Engineering Applications 2−19
Copyright © Orchard Publications

The Saturation Block

cution of the Simulation start command we observe the values 0 and 1 in Display 1 and Display 2
blocks respectively.

Figure 2.22. Model for Example 2.12

2.13 The Saturation Block

The Saturation block establishes upper and lower bounds for an input signal. When the input sig-
nal is within the range specified by the Lower limit and Upper limit parameters, the input signal
passes through unchanged. When the input signal is outside these bounds, the signal is clipped to
the upper or lower bound. When the Lower limit and Upper limit parameters are set to the same
value, the block outputs that value.

Example 2.13

For the model shown in Figure 2.23 the Constant block performs the function where
and are specified in MATLAB’s Command Window as

Figure 2.23. Model for Example 2.13

x=0: 1: 6; y=3.*x.^2;

y 3x2= x
y

Chapter 2 The Commonly Used Blocks Library

2−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

and on the Function Block Parameters dialog box for the Saturation block we have specified the
Upper limit at and the Lower limit at . The MATLAB statement above specifies (
through) values of and these are shown in the Display block of Figure 2.23. The last is also
because we specified the Upper limit to be that value.

2.14 The Integrator Block

The Integrator block integrates its input and it is used with continuous−time signals. As shown in
the Configuration Parameters dialog box which is displayed after selecting the Integrator block
and clicking on Simulation in the model window, we can use different numerical integration
methods to compute the Integrator block's output. The Configuration Parameters window that
appears when we double−click on the Integrator block and then on Simulation shown in Figure
2.24.

Figure 2.24. The configuration parameters window for the Integrator block

Simulink treats the Integrator block as a dynamic system with one state, its output. The Integra-
tor block's input is the state's time derivative. The selected solver computes the output of the
Integrator block at the current time step, using the current input value and the value of the state
at the previous time step. The block also provides the solver with an initial condition for use in
computing the block's initial state at the beginning of a simulation run. The default value of the
initial condition is .

75 1 7 0
6 x 75

0

Introduction to Simulink with Engineering Applications 2−21
Copyright © Orchard Publications

The Integrator Block

The Function Block Parameter dialog box shown in Figure 2.25 allows us to specify another
value for the initial condition or create an initial value input port on the block. It also allows us to
specify the upper and lower limits of integration, create an input that resets the block's output
(state) to its initial value, depending on how the input changes, and create an optional state out-
put that allows us to use the value of the block's output to trigger a block reset. Depending on the
options selected, the Integrator block appears in any of the nine forms shown in Figure 2.26.

Figure 2.25. Function Block Parameters for the Continuous Integrator block

The Integrator 1 block in Figure 2.26 is the default block. This block appears when the Function
Block Parameters in the dialog box are in their default states. The appearance of the Integrator 2
through Integrator 9 blocks depends on the settings in the block’s parameter dialog box. Thus,

Integrator 2 block − Initial condition source: external. All other parameters in their default states.

Integrator 3 block − Limit output: check mark. All other parameters in their default states.

Integrator 4 block − External reset: rising. All other parameters in their default states.

Chapter 2 The Commonly Used Blocks Library

2−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 2.26. Different configurations for the Integrator block

Integrator 5 block − External reset: falling. All other parameters in their default states.

Integrator 6 block − External reset: either. All other parameters in their default states.

Integrator 7 block − External reset: level. All other parameters in their default states.

Integrator 8 block − Show state port: check mark. All other parameters in their default states.

Integrator 9 block − External reset: rising.

Initial condition source: external.

Limit output: check mark

Show saturation port: check mark

Show state port: check mark

The Integrator block's state port allows us to avoid creating algebraic loops when creating an
integrator that resets itself based on the value of its output. An algebraic loop is formed when two
or more blocks with direct feedthrough (the output of the block at time t, is a function of the
input at time t) form a feedback loop. The basic problem with algebraic loops is that the output, y,
at time, t, is a function of itself. An algebraic loop generally occurs when an input port with direct
feedthrough is driven by the output of the same block, either directly, or by a feedback path
through other blocks with direct feedthrough. An example of an algebraic loop is the simple loop
shown in Figure 2.27.

For the model of Figure 2.27, or .

Another example of a model with algebraic loops is the model of Figure 1.19, Solution of 3 equa-
tions with 3 unknowns, Chapter 1, Page 1−19.

y 10 y–= y 5=

Introduction to Simulink with Engineering Applications 2−23
Copyright © Orchard Publications

The Integrator Block

Figure 2.27. An example of an algebraic loop

For further discussion on algebraic loops, please refer to Simulink’s User Manual, Help menu for
the Integrator block, and MATLAB Technical Report 7.1 − Algebraic Loops and S−Functions,
http://www.utexas.edu/math/Matlab/Manual/tec7.1.html. S−Functions are described in Chapter
15.

The Integrator block's state port makes it possible to avoid creating algebraic loops when creating
an integrator that resets itself based on the value of its output. The state port shown in Integrators
8 and 9 in Figure 2.26 is intended to be used specifically for self-resetting integrators (see Creating
Self-Resetting Integrators), and Handing off a state from one enabled subsystem to another (see
Handing Off States Between Enabled Subsystems) in Simulink’s Help menu. The state port
should only be used in these two scenarios. When updating a model, Simulink checks to ensure
that the state port is being used in one of these two scenarios. If not, Simulink signals an error.

Example 2.14
The model of Figure 2.28 simulates the differential equation

subject to the initial conditions and .

The Constant 1 and Constant 2 blocks represent the initial conditions.

d2vC

dt2
----------- 4

dvC

dt
--------- 3vC+ + 3u0 t()=

vC 0() 0.5= v'C 0() 0=

Chapter 2 The Commonly Used Blocks Library

2−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 2.28. Model for Example 2.14

2.15 The Unit Delay Block

The Unit Delay block delays its input by the specified sample period. That is, the output equals
the input delayed by one sample. If the model contains multirate transitions, we must add Unit
Delay blocks between the slow−to−fast transitions. For fast−to−slow transitions we use Zero−
Order Hold blocks. The Zero−Order Hold block is described in Subsection 5.2.3, Chapter 5, Page
5−23. For multirate transitions it is preferable to use the Rate Transition block since it is easier to
use and offers a wider range of options. Multirate transitions and the Rate Transition block are
described in Subsection 12.1.8, Chapter 12, Page 12−8.

This Unit Delay block is equivalent to the discrete−time operator shown in Figure 2.29. It is
one of the basic blocks for designing digital filters as shown in Figure 2.30.

Figure 2.29. Analogy between integration and delay devices

z 1–

Delay
x· t()

Continuous Time Discrete Time

L x· t()[] L x t()[]

s−domain z−domain

td∫
x t() x n 1+[] x n[]

Z x n 1+[]{ } Z x n[]{ }
z 1–1 s⁄

Introduction to Simulink with Engineering Applications 2−25
Copyright © Orchard Publications

The Unit Delay Block

Figure 2.30. Recursive and non−recursive digital filters

The unit delay appears also in the definition of the discrete time system transfer function
shown in relation (2.1) below.

(2.1)

With the Unit Delay block, the first sampling period and initial conditions are specified in the
Function Block Parameters dialog box. The time between samples is specified with the Sample
time parameter. A setting of −1 means the sample time is inherited.

The Unit Delay block also allows for discretization of one or more signals in time, or for resam-
pling the signal at a different rate. If our model contains multirate transitions, then we must add
Unit Delay blocks between the slow−to−fast transitions. The sample rate of this block must be set
to that of the slower block. An example is presented in the next section of this chapter.

+

+ A

Constant MultiplierUnit Delay
Adder/Subtractor

±

a3

a2

a0

a1

−b3

−b2

−b1

Z 1– Z 1– Z 1–

+ +a3

a2

a0

a1

Z 1– Z 1– Z 1–

Z 1–

Non-Recursive Digital Filter Realization

Recursive Digital Filter Realization

x n[] y n[]

x n[] y n[]

y n[]

y n[]x n[]

x n[]v n[]

y n[] x n[] v n[]+= y n[] x n 1–[]= y n[] Ax n[]=

H z()

H z() N z()
D z()

a0 a1z 1– a2z 2– … akz k–+ + + +

1 b1z 1– b2z 2– … bkz k–+ + + +
---= =

Chapter 2 The Commonly Used Blocks Library

2−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.16 The Discrete−Time Integrator Block

The Discrete−Time Integrator block performs discrete−time integration or accumulation of a
signal. We use this block in discrete−time systems instead of the Continuous Integrator block in
continuous−time systems. This block can integrate or accumulate using the Forward Euler, Back-
ward Euler, and Trapezoidal methods. For a given step , Simulink updates and .
The block's sample time in integration mode is and in triggered sample time is . In accumu-
lation mode, and the block's sample time determines when the block's output is computed
but not the output's value. The constant is the gain value. Values are clipped according to
upper or lower limits. Purely discrete systems can be simulated using any of the solvers. For addi-
tional information, please refer to the Simulink Owner’s Manual or Simulink’s Help menu.

The Discrete−Time Integrator block allows us to:

1. Define initial conditions on the block dialog box or as input to the block.

2. Define an input gain (K) value.

3. Output the block state.

4. Define upper and lower limits on the integral.

5. Reset the state depending on an additional reset input.

With continuous time systems, the Forward Euler method, also known as Forward Rectangular,
or left−hand approximation, truncates the Taylor series* after two terms. Thus,

(2.2)

and assuming that the value at point is correct, the Forward Euler method computes the value
at point . With Simulink, the continuous time integrator in discrete time integration
with the Forward Euler method is approximated by . As mentioned earlier, is the
block's sample time. The Forward Euler method is the default. With this method, input port 1
does not have direct feedthrough. The resulting expression for the output of the block at step is

(2.3)

The steps to compute the output are listed in the Help menu for this block.

* For a detailed discussion on Taylor series, please refer to Numerical Analysis Using MATLAB and Spread-
sheets, ISBN 0-9709511-1-6

n y n() x n 1+()
T ∆T

T 1=

K

y t h+() y t() hy' t()+=

t
t h+ 1 s⁄

T z 1–()⁄ T

n

y n() y n 1–() K T u n 1–()⋅ ⋅+=

Introduction to Simulink with Engineering Applications 2−27
Copyright © Orchard Publications

The Discrete−Time Integrator Block

The Backward Euler method, also known as Backward Rectangular or right-hand approxima-
tion, also truncates the Taylor series after two terms. The difference is that the derivative is
evaluated at point instead of at point . Thus,

(2.4)

With Simulink, the continuous time integrator in discrete time integration with the Back-
ward Euler method is approximated by . With this method, input port 1 has direct
feedthrough. The resulting expression for the output of the block at step is

(2.5)

The steps to compute the output are listed in the Help menu.

In numerical analysis, relation (2.6) below is known as the first−order trapezoidal integration rule.

(2.6)

With Simulink, the continuous time integrator in discrete time integration with the Trape-
zoidal method is approximated by . With this method, input port 1 has
direct feedthrough. When T is fixed (equal to the sampling period), the resulting expression for
the output of the block at step is

(2.7)

If T is variable (i.e. obtained from the triggering times), the block uses another algorithm to com-
pute its outputs. In either case, the steps to compute the output are listed in the Help menu.

A discrete−time accumulator is characterized by the difference equation

(2.8)

The output at time instant is the sum of the input sample at time instant and the
previous output at time instant , which is the sum of all previous input sample val-
ues from to . In other words, the accumulator cumulative adds, i.e., it accumulates all
input sample values.

A discrete−time integrator may be represented by any of the blocks shown in Figure 2.31. Any of
these blocks can be selected from the Integrator method menu in the Function Blocks Parame-
ters dialog box.

t h+ t

y t h+() y t() hy' t h+()+=

1 s⁄
Tz z 1–()⁄

n

y n() y n 1–() K T u n()⋅ ⋅+=

y n() 1
2
--- x n() x n 1–()+[] y n 1–()+= n 0≥

1 s⁄
T 2⁄() z 1+() z 1–()⁄

n

x n() y n 1–() K T 2⁄() u n 1–()⋅ ⋅+=

y n() x l[]

l ∞–=

n

∑ x l[]

l ∞–=

n 1–

∑ x n[]+ y n 1–[] x n[]+= = =

y n[] n x n[] n
y n 1–[] n 1–

∞– n 1–

Chapter 2 The Commonly Used Blocks Library

2−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 2.31. Discrete-time integrator blocks

Example 2.15
For the model of Figure 2.32, the parameters of a Pulse Generator Block found under the
Sources Simulink Library are set as follows:

Pulse type: Time based

Time (t): Use simulation time
Amplitude: 0.25

Period (secs): 2

Pulse width (% of period): 50

Phase delay (secs): 0

Figure 2.32. Model for Example 2.15

After the Simulation start command is issued, the Scope in Figure 2.33 displays the pulse wave-
form which is the output of the Unit Delay block and the output of the Discrete−Time Integrator
which is the accumulation (integration) of the input waveform. To center the waveform on the
scope, we right-click on the y−axis, we left−click on the Axes properties, and in the Scope proper-
ties window we enter Y−min: −1.5, and Y−max: 1.5.

Introduction to Simulink with Engineering Applications 2−29
Copyright © Orchard Publications

Data Types and The Data Type Conversion Block

Figure 2.33. Waveforms for the model of Figure 2.32

2.17 Data Types and The Data Type Conversion Block

There are two classes of data types: those defined by MATLAB and Simulink users, and those
strictly defined by MATLAB. The latter type is referred to as MATLAB built−in data types. Sim-
ulink supports all built−in MATLAB data types except int64 and uint64. Table 2.1 lists the built−
in data types supported by Simulink.

In addition to the above, Simulink defines the boolean (1 or 0) type and these are represented
internally by the uint8 values.

TABLE 2.1 Built-in data types supported by Simulink

Type Name Description

single Single-precision floating point

double Double-precision floating point

int8 Signed 8-bit integer

uint8 Unsigned 8-bit integer

int16 Signed 16-bit integer

uint16 Unsigned 16-bit integer

int32 Signed 32-bit integer

uint32 Unsigned 32-bit integer

Chapter 2 The Commonly Used Blocks Library

2−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The Data Type Conversion block converts an input signal of any Simulink data type to the data
type and scaling specified by the block's Output data type mode, Output data type, and/or Output
scaling parameters. The input can be any real− or complex−valued signal. Thus, if the input is
real, the output is real, and if the input is complex, the output is complex. We must specify the
data type and/or scaling for the conversion. The Data Type Conversion block handles any data
type supported by Simulink, including fixed−point data types.

The Input and output to have equal parameter is used to select the method by which the input is
processed. The possible values are Real World Value (RWV) and Stored Integer (SI):

We select Real World Value (RWV) to treat the input as V = SQ + B* where S is the slope and
B is the bias. V is used to produce Q = (V − B)/S, which is stored in the output. This is the default
value. Select Stored Integer (SI) to treat the input as a stored integer, Q. The value of Q is
directly used to produce the output. In this mode, the input and output are identical except that
the input is a raw integer lacking proper scaling information. Selecting Stored Integer may be use-
ful if we are generating code for a fixed-point processor so that the resulting code only uses inte-
gers and does not use floating-point operations. We also can use Stored Integer if we want to par-
tition our model based on hardware characteristics. For example, part of our model may involve
simulating hardware that produces integers as output.

Example 2.16
The model is shown in Figure 2.34 uses three Data Type Conversion blocks. In the Data Type
Conversion 1 block the input is processed as Stored Integer (SI) and scales the value to be
shown as . In the Data Type Conversion 2 block the input is processed as Real World Value
(RWV) so that the input and output will be equal. We use the third block to treat the input as a
Stored Integer with no scaling so that the Display 3 block will show the true value .

Figure 2.34. Model for Example 2.16

* We observe that this is the equation of a straight line with non−zero y-intercept, that is, y mx b+=

63
7.875

63

Introduction to Simulink with Engineering Applications 2−31
Copyright © Orchard Publications

Data Types and The Data Type Conversion Block

We double-click the Data Type Conversion 1 block in Figure 2.34 and on the Function Block
Parameters dialog box shown in Figure 2.35, we change the Output data type mode from Inherit
via back propagation to Specify via dialog. On the new Function Block Parameters dialog box
shown in Figure 2.36, we enter the following:

Output data type: sfix(8)

Output scaling value: 2^−3

Input and output to have equal: Stored Integer (SI)

Figure 2.35. Function Block Parameters Dialog Box 1 for Example 2.16

The labels in Figure 2.34 are displayed by choosing Format>Port/Signal Displays>Port Data
Types. Display 1 block shows the value 7.875. This is because the binary presentation of 63 with
8 bits is 00111111 and since we specified the Output scaling value as 2^−3, the binary point is
shifted 3 places to the left of the least significant bit, and becomes 00111.111 whose value in dec-
imal is 7.875. Display 2 block shows the same value for reasons explained below. Display 3 block
shows the true value 63. This is because we specified the Output scaling value as 2^0, and thus
the binary number is 00111111 whose value in decimal is 63.

Chapter 2 The Commonly Used Blocks Library

2−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 2.36. Function Block Parameters Dialog Box for the Data Type Conversion 1 block, Example 2.16

Next, we double-click the Data Type Conversion 2 block and we enter the following informa-
tion:

Output data type mode: Specify via dialog

Output data type: sfix(8)

Output scaling value: 2^−3

Input and output to have equal: Real World Value (RWV)

The Function Block Parameters dialog box for the Data Type Conversion 2 block are as shown in
Figure 2.37.

Introduction to Simulink with Engineering Applications 2−33
Copyright © Orchard Publications

Data Types and The Data Type Conversion Block

Figure 2.37. Function Block Parameters Dialog Box for the Data Type Conversion 2 block, Example 2.16

Finally, we double-click the Data Type Conversion 3 block and we enter the following:

Output data type mode: Specify via dialog

Output data type: sfix(8)

Output scaling value: 2^0

Input and output to have equal: Stored Integer (SI)

The Function Block Parameters dialog box for the Data Type Conversion 3 block are as shown in
Figure 2.38.

Chapter 2 The Commonly Used Blocks Library

2−34 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 2.38. Function Block Parameters Dialog Box for the Data Type Conversion 3 block, Example 2.16

Introduction to Simulink with Engineering Applications 2−35
Copyright © Orchard Publications

Summary

2.18 Summary
• A Subsystem block represents a subsystem of the system that contains it.

• Inport blocks are ports that serve as links from outside a system into the system.

• Outport blocks are output ports for a subsystem.

• The Ground block can be used to connect blocks whose input ports are not connected to
other blocks. If we run a simulation with blocks having unconnected input ports, Simulink
issues warning messages. Using Ground blocks to ground those blocks avoids warning mes-
sages. The Ground block outputs a signal with zero value. The data type of the signal is the
same as that of the port to which it is connected.

• The Terminator block can be used to cap blocks whose output ports are not connected to
other blocks. If we run a simulation with blocks having unconnected output ports, Simulink
issues warning messages. Using Terminator blocks to cap those blocks avoids warning mes-
sages.

• The Constant block generates a real or complex constant value. The block generates scalar
(1x1 2−D array), vector (1−D array), or matrix (2−D array) output, depending on the dimen-
sionality of the Constant value parameter and the setting of the Interpret vector parameters as
1−D parameter. By default, the Constant block outputs a signal whose data type and complex-
ity are the same as that of the block's Constant value parameter. However, we can specify the
output to be any supported data type supported by Simulink, including fixed-point data types.

• The Product block performs multiplication or division of its inputs. This block produces out-
puts using either element-wise or matrix multiplication, depending on the value of the Multi-
plication parameter. We specify the operations with the Number of inputs parameter. Multi-
ply(*) and divide(/) characters indicate the operations to be performed on the inputs.

• The Scope block displays waveforms as functions of simulation time. The Scope block can
have multiple y-axes with a common time range.

• We use Bus Creator blocks to create signal buses and Bus Selector blocks to access the com-
ponents of a bus. Simulink hides the name of a Bus Creator and Bus Selector blocks when we
copy them from the Simulink library to a model. However, we can make the names visible by
clicking Show Name on the Format menu.

• The Bus Editor allows us to change the properties of the bus types objects. We select the Bus
Editor from the model’s Tools menu.

• We can add an annotation to any unoccupied area of our model. To insert an annotation, we
double-click in an unoccupied section of the model, a small rectangle appears, and the cursor
changes to an insertion point. We start typing the annotation text and we observe that each
line is centered within the rectangle. Then we can move it to the desired location by dragging
it. We can choose another Font and Text Alignment from the Format menu. We can delete an

Chapter 2 The Commonly Used Blocks Library

2−36 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

annotation by first selecting it, holding down the Shift key and pressing the Delete or Back-
space key.

• The Mux block combines its inputs into a single output. An input can be a scalar, vector, or
matrix signal. Simulink hides the name of a Mux block when we drag it from the Simulink
block library to a model. However, we can make the name visible by clicking Show Name on
the Format menu.

• The Demux block extracts the components of an input signal and outputs the components as
separate signals. The Number of outputs parameter allows us to specify the number and,
optionally, the dimensionality of each output port. If we do not specify the dimensionality of
the outputs, the block determines the dimensionality of the outputs for us. Simulink hides the
name of a Demux block when we drag it from the Simulink library to a model. However, we
can make the name visible by clicking Show Name on the Format menu.

• The Switch block outputs the first input or the third input depending on the value of the sec-
ond input. The first and third inputs are called data inputs. The second input is called the
control input and it is specified on the Function Block Parameters for the Switch block.
The following options are available:

u2>=Threshold

u2>Threshold

u2~=0

where u2~=0 indicates a non-zero condition.

• The Divide block is an implementation of the Product block. It can be used to multiply or
divide inputs.

• The Gain block multiplies the input by a constant value (gain). The input and the gain can
each be a scalar, vector, or matrix. We specify the value of the gain in the Gain parameter. The
Multiplication parameter lets us specify element−wise or matrix multiplication. For matrix mul-
tiplication, this parameter also lets us indicate the order of the multiplicands.

• The Relational Operator block performs the specified comparison of its two inputs. We select
the relational operator connecting the two inputs with the Relational Operator parameter.
The block updates to display the selected operator. The supported operations are given below.

Operation Description:

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second input

Introduction to Simulink with Engineering Applications 2−37
Copyright © Orchard Publications

Summary

>= TRUE if the first input is greater than or equal to the second input

> TRUE if the first input is greater than the second input

• The Logical Operator block performs the specified logical operation on its inputs. An input
value is TRUE (1) if it is nonzero and FALSE (0) if it is zero. The Boolean operation connect-
ing the inputs is selected with the Operator parameter list in the Function Block Parameters
window. The block updates to display the selected operator. The supported operations are
given below.

Operation Description:

AND − TRUE if all inputs are TRUE

OR − TRUE if at least one input is TRUE

NAND − TRUE if at least one input is FALSE

NOR − TRUE when no inputs are TRUE

XOR − TRUE if an odd number of inputs are TRUE

NOT − TRUE if the input is FALSE and vice-versa

The number of input ports is specified with the Number of input ports parameter. The output
type is specified with the Output data type mode and/or the Output data type parameters. An
output value is 1 if TRUE and 0 if FALSE.

• The Saturation block sets upper and lower bounds on a signal. When the input signal is within
the range specified by the Lower limit and Upper limit parameters, the input signal passes
through unchanged. When the input signal is outside these bounds, the signal is clipped to the
upper or lower bound. When the Lower limit and Upper limit parameters are set to the same
value, the block outputs that value.

• The Integrator block outputs the integral of its input. We can use different numerical integra-
tion methods to compute the Integrator block's output. The Integrator block's state port
allows us to avoid creating algebraic loops when creating an integrator that resets itself based
on the value of its output. An algebraic loop is formed when two or more blocks with direct
feedthrough (the output of the block at time t, is a function of the input at time t) form a
feedback loop. The basic problem with algebraic loops is that the output, y, at time, t, is a
function of itself.

• The Unit Delay block delays its input by the specified sample period. That is, the output

equals the input delayed by one sample. This block is equivalent to the discrete−time oper-
ator. This block allows for discretization of one or more signals in time, or for resampling the
signal at a different rate. If our model contains multirate transitions, then we must add Unit
Delay blocks between the slow−to−fast transitions. The sample rate of the Unit Delay block
must be set to that of the slower block.

z 1–

Chapter 2 The Commonly Used Blocks Library

2−38 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The Discrete−Time Integrator block performs discrete-time integration or accumulation of a
signal. This block appears also in the Discrete Library Browser. We use this block in discrete−
time systems instead of the Continuous Integrator block in continuous−time systems. The
block can integrate or accumulate using the Forward Euler, Backward Euler, and Trapezoidal
methods.

• There are two classes of data types: those defined by MATLAB and Simulink users, and those
strictly defined by MATLAB. The latter type is referred to as MATLAB built-in data types.
Simulink supports all built-in MATLAB data types except int64 and uint64. Table 2.1 lists the
built-in data types supported by Simulink.

• The Data Type Conversion block converts an input signal of any Simulink data type to the
data type and scaling specified by the block's Output data type mode, Output data type, and/or
Output scaling parameters. The input can be any real− or complex−valued signal. If the input
is real, the output is real. If the input is complex, the output is complex. This block requires
that we specify the data type and/or scaling for the conversion. Also, the Data Type Conver-
sion block handles any data type supported by Simulink, including fixed−point data types. The
Input and output to have equal parameter is used to select the method by which the input is
processed. The possible values are Real World Value (RWV) and Stored Integer (SI).

Introduction to Simulink with Engineering Applications 2−39
Copyright © Orchard Publications

Exercises

2.19 Exercises
1 Repeat Example 2.6 using the Mux block instead of the Bus Creator block.

2. It is desired to convert a DC signal from 2.5 volts to 5.0 volts, another DC signal from 12 volts
to 15 volts, and a third from +15 volts to −15 volts. The conversions are to be performed at a
distant location. Create a model that includes a Bus Creator block, a Signal bus, and a Bus
Selector block to accomplish these conversions.

3. Using Constant blocks, a Product block, and the Display block, perform the operation
.

4. Using a Constant block, a Gain block, and a Display block, perform the matrix multiplication
 where

5. Create a model similar to that of Example 2.5 with the constant 255 as input that will display
the true value in one Display block and will scale this number by a factor of eight to be shown
in another Display block.

6. Explain why when the Start simulation command is issued for the model shown below, an error
message is displayed.

7. The parameters of a Pulse Generator Block found under the Sources Simulink Library are set as
follows:

Pulse type: Time based

Time (t): Use simulation time
Amplitude: 0.25

3 j4+() 4 j3+()⁄ 5 j8–()×

A A∗⋅

A 1 j2+ j
3 2 j3–

= A∗ 1 j2– j–

3 2 j3+
=

Chapter 2 The Commonly Used Blocks Library

2−40 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Period (secs): 2

Pulse width (% of period): 50

Phase delay (secs): 0

Integrate this pulse using a Unit Delay block and the Backward Euler integration method.
Compare the output with the Forward Euler Integration block in Example 2.9.

8. Create a model to simulate the Boolean expression .* Display the value of
the output variable for all combinations of the variables , , and .†

9. Using a model with a Relational Operator block, prove or disprove that the beta function
 is equal to the gamma function .

10. Create a model to display a three-phase power system on a single Scope block where the
waveforms of three phases are three sine waves degrees apart.

11. Create a model to display a sine wave with unity amplitude clipped at points and .

.

* Variables in parentheses have precedence over other operations.
† In other words, form the truth table for this Boolean expression. For a detailed discussion on truth tables, please

refer to Digital Circuit Analysis and Design with an Introduction to CPLDs & FPGAs, ISBN 0-9744239-5-5.

D A B C+() AB+=

D A B C

B 5 4,() Γ 5() Γ 4()⋅ Γ 5 4+()⁄

120°

+0.5 0.5–

Introduction to Simulink with Engineering Applications 2−41
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

2.20 Solutions to End−of−Chapter Exercises
1.

We substitute the Bus Creator block with the Mux block, we double click on the Mux block
and in the Function Block Parameters window, we change the number of inputs to 3.

2.

The Constant blocks are selected and dragged from the Sources Simulink Library Browser, the
Bus Creator (left bus), Bus Selector (right bus), and Gain blocks from the Commonly Used
Simulink Library Browser, and the Display blocks from the Sinks Simulink Library Browser.
The Signal bus is normally shown as a single line arrow. It will change to a three line arrow
when we click on the Start simulation icon.

The “Signal bus” annotation was created by double-clicking in a blank space of the model
block, and in the small rectangle we entered this annotation. We moved it to location shown
by dragging it.

3.
We connect the blocks as shown in the figure below. We double-click on the Constant blocks
and we enter the complex numbers shown. Then, we double click on the Product block, and
on the Function Blocks Parameters, in Number of inputs, we type */*. This sequence defines 3

Chapter 2 The Commonly Used Blocks Library

2−42 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

inputs, a multiplication, a division, and another multiplication. After executing the Start simu-
lation command, it may be necessary to stretch the Display block to see the result.

4.

We enter the elements of matrix in the Constant block, and the elements of matrix in
the Gain block. After the Simulate start command is executed, the product appears on the
Display block.

5.

The Data Type Conversion 1 block treats the input as a real-world value, and maps that
value to an 16-bit signed generalized fixed-point data type with a scaling of 2^-3. When the
value is then output from the Data Type Conversion 2 block as a real-world value, the scaling
and data type information is retained and the output value is 000011111111.000, or 255.
When the value is output from the Data Type Conversion 3 block as a stored integer, the
scaling and data type information is not retained and the stored integer is interpreted as
000011111111000, or 2040. For all three Data Type Conversion blocks after double-clicking,
we change the Output data type mode from Inherit via back propagation to Specify via dia-
log. On the new Function Block Parameters window we enter the following:

A 1 j2+ j
3 2 j3–

= A∗ 1 j2– j–

3 2 j3+
=

A A∗

Introduction to Simulink with Engineering Applications 2−43
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

Output data type − all three blocks: sfix(16)

Output scaling value − block 1: 2^−3, blocks 2 and 3: 2^0

Input and output to have equal − blocks 1and 2: Real World Value (RWV), block 3: Stored
Integer (SI)

Next, we double-click the Data Type Conversion 2 block and we enter the following informa-
tion:

Output data type mode: Specify via dialog

Output data type: sfix(8)

Output scaling value: 2^−3

Input and output to have equal: Real World Value (RWV)

Finally, we double-click the Data Type Conversion 3 block and we enter the following:

Output data type mode: Specify via dialog

Output data type: sfix(8)

Output scaling value: 2^0

Input and output to have equal: Stored Integer (SI)

The Inport and Outport labels are displayed by choosing Format>Port/Signal Displays>Port
Data Types.

6. The state ports are intended to be used specifically for self-resetting integrators (see Creating
Self-Resetting Integrators), and Handing off a state from one enabled subsystem to another
(see Handing Off States Between Enabled Subsystems) in Simulink’s Help menu for the Inte-
grator block. The state port should only be used in these two scenarios. When updating a
model, Simulink checks to ensure that the state port is being used in one of these two scenar-
ios. If not, Simulink signals an error.

7.
The simulation model and the output of the Discrete-Time Backward Euler Integrator are
shown below.

Chapter 2 The Commonly Used Blocks Library

2−44 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

A comparison of the waveform above and that of Figure 2.33 in Example 2.15 shows that the
accumulation (integration) begins one step earlier. We recall that for the Forward Euler Dis-
crete−Time Integrator,

and for the Backward Euler Discrete−Time Integrator,

8.
The model is shown below where the blocks indicated as Variable A, Variable B, and Variable
C are Constant blocks. We begin by specifying the values for the combination , ,
and in MATLAB’s Command Window, and after execution of the Simulation start
command we observe the value 0 in Display Output D block.

The remaining combinations for the variables , , and and the corresponding value of the
output D are shown in the truth table below.

n

y n() y n 1–() K T u n 1–()⋅ ⋅+=

y n() y n 1–() K T u n()⋅ ⋅+=

A 0= B 0=

C 0=

A B C

Introduction to Simulink with Engineering Applications 2−45
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

9. The model below indicates that .

In the Source Block Parameters for the Beta Function block we enter beta(5,4), and in the
Source Block Parameters for the Gamma function we enter gamma(5)*gamma(4)/gamma(9).
For both functions, on the Signal data types we select int8.

10.

The model is shown below where in The Source Block Parameters for the Sine Wave 1 block
the phase is specified as 0 radians, for the Sine Wave 2 block the phase is specified as
radians, and for the Sine Wave 3 block the phase is specified as radians.

The three-phase waveforms are shown below.

Inputs Output

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

A B C D

B 5 4,() Γ 5() Γ 4()⋅ Γ 5 4+()⁄=

2π 3⁄
4π 3⁄

Chapter 2 The Commonly Used Blocks Library

2−46 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

11.

The model is shown below where in the Saturation block’s parameters dialog box we have
specified Upper and Lower limits at points and respectively.

The input and output waveforms are shown below.

+0.5 0.5–

Introduction to Simulink with Engineering Applications 3−1
Copyright © Orchard Publications

Chapter 3

The Continuous Blocks Library

his chapter is an introduction to the Continuous Blocks library. This is the second library
in the Simulink group of libraries and contains the Continuous−Time Linear Systems
Sub−Library, and the Continuous−Time Delays Sub−Library blocks shown below. We

will describe the function of each block included in this library and we will perform simulation
examples to illustrate their application.

T

Chapter 3 The Continuous Blocks Library

3−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

3.1 The Continuous−Time Linear Systems Sub−Library
The Continuous−Time Linear Systems Sub−Library contains the blocks described in Subsec-
tions 3.1.1 through 3.1.5 below.

3.1.1 The Integrator Block

The Integrator block is described in Section 2.14, Chapter 2, Page 2−20.

3.1.2 The Derivative Block

The Derivative block approximates the derivative of its input. The initial output for the block is
zero. The accuracy of the results depends on the size of the time steps taken in the simulation.
Smaller steps allow a smoother and more accurate output curve from this block. Unlike blocks
that have continuous states, the solver does not take smaller steps when the input changes rap-
idly. Let us consider the following simple example.

Example 3.1
We will create a model that will compute and display the waveform of the derivative of the func-
tion .

The model is shown in Figure 3.1, and the input and output waveforms are shown in Figure 3.2.

Figure 3.1. Model for Example 3.1

To convert the sine function in the Sine Wave block to a cosine function, in the Source Block
Parameters dialog box we specify . As we know, the derivative of the cosine func-
tion is the negative of the sine function and this is shown in Figure 3.2.

y xcos=

Phase π 2⁄=

Introduction to Simulink with Engineering Applications 3−3
Copyright © Orchard Publications

The Continuous−Time Linear Systems Sub−Library

To scale the vertical axis in Figure 3.2, we move the cursor near that axis, we right−click, and we
set the values as indicated. We will follow this practice in subsequent illustrations.

Figure 3.2. Input and output waveforms for the model of Figure 3.1

The Simulink Help for the derivative block states that using the MATLAB function linmod to
linearize a model that contains a Derivative block can be troublesome. Let us elaborate on linear-
ization.

We prefer to work with linear functions since the slope is constant and thus we can find the out-
put for any input. Unfortunately, the equations that describe the behavior of most physical phe-
nomena are non−linear. If we are interested in values of the function close to some point (a,b), we
can replace the given function by its first Taylor polynomial, which is a linear function.* We recall
that the Taylor series are defined as in relation (3.1) below.

(3.1)

In (3.1), the first two terms on the right side define an equation of a straight line, i.e., ,

a linear function. For example, if , the first two terms on the right side of (3.1) at
point x=3 are represented by . The same is true for a function of two vari-
ables, say and , i.e., , where if we let denote the local linearization at the point ,
we get

(3.2)

* The first Taylor polynomial is often called the local linearization.

f x() f x0() f ′ x0() x x0–()
f ′′ x0()

2!
---------------- x x0–()2 …

f n() x0()
n!

------------------- x x0–()n+ + + +=

y mx b+=

y f x() x2= =

9 6 x 3–()+ 6x 9–= f
x y f x y,() L a b,()

L x y,() f a b,()=
f∂
x∂

----- a b,() x a–() f∂
y∂

----- a b,() y b–()+ +

Chapter 3 The Continuous Blocks Library

3−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Relation (3.2) yields the three numbers required to define the local linearization. The first number
is the value of at point , the second is the value of the partial derivative with respect to
at point , and the third is the value of the partial derivative with respect to at point .

Taking the partial derivative of and evaluating it at the point we find
that the local linearization is . We observe that this local
linearization contains and terms of first degree. We can plot these functions with the follow-
ing MATLAB script. The plot is shown in Figure 3.3.

x=-3:0.01:3; y=x; z=x.^2+y.^2;...
w=5+2.*(x−1)+4.*(y−2);...
plot(x,z,x,w); grid

Figure 3.3. An example of linearization at a specified point

MATLAB provides three functions to extract linear functions in the form of state−space matrices
, , , and . We recall that the input−output relationship in terms of these matrices is

(3.3)

where represents the state(s), the input, and the output, and the inputs and outputs must
be Inport and Outport blocks. Other blocks cannot be used as inputs and outputs.

Example 3.2
We will use the MATLAB linmod(‘x’) function to extract the linear model for the model shown
in Figure 3.4.

We save the given model as Figure_3_4, and in MATLAB’s Command Window we execute the
command [A,B,C,D]=linmod('Figure_3_4'). MATLAB displays the four matrices as

f a b,() x
a b,() y a b,()

z f x y,() x2 y2+= = 1 2,()
w L 1 2,() 5 2 x 1–() 4 y 2–()+ += =

x y

A B C D

x· Ax Bu+=

y Cx Du+=

x u y

Introduction to Simulink with Engineering Applications 3−5
Copyright © Orchard Publications

The Continuous−Time Linear Systems Sub−Library

Figure 3.4. Model for Example 3.2

A =
-5 -6 -1
 1 0 0

 0 1 -2

B =
 1
 0
 0

C =
 0 1 0

D =
 0

and thus the model of Figure 3.4 can be represented as

The Simulink Extras library contains the Switched derivative for linearization block and the
Switched transport delay for linearization block. The former should be used in place of the
derivative when we are linearizing the model. It approximates the derivative with a proper trans-
fer function. The latter delays the input by a specified amount of time. It can be used to simulate a
time delay.

To avoid possible problems with derivatives we can incorporate the derivative block in other
blocks.

Example 3.3
Let us consider the model of Figure 3.5.

x·
5– 6– 1–

1 0 0
0 1 2–

x
1
0
0

u+=

y 0 1 0 x 0 u+=

Chapter 3 The Continuous Blocks Library

3−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 3.5. Model with derivative block

Recalling that differentiation in the time domain corresponds to multiplication by in the com-

plex frequency domain minus the initial value of at , that is,

and assuming that the initial value is zero, we can replace the model of Figure 3.5 with that of Fig-
ure 3.6.

Figure 3.6. Model equivalent to the model of Figure 3.5

3.1.3 The State−Space Block

The State-Space block implements a system defined by the state−space equations

(3.4)

where and are column vectors, matrix must be an square matrix where represents
the number of the states, matrix must have dimension where represents the number
of inputs, matrix must have dimension where represents the number of outputs, and
matrix must have dimension .

For examples with the state−space block please refer to Chapter 1, Examples 1.1 and 1.2.

3.1.4 The Transfer Fcn Block

s

f t() t 0−=

f ' t() d
dt
----- f t()= sF s() f 0−()–⇔

x· Ax Bu+=

y Cx Du+=

x u A n n× n
B n m× m

C r n× r
D r m×

Introduction to Simulink with Engineering Applications 3−7
Copyright © Orchard Publications

The Continuous−Time Linear Systems Sub−Library

The Transfer Fcn block implements a transfer function where the input and output
 can be expressed in transfer function form as the following equation

(3.5)

Example 3.4
Let us consider the op amp circuit of Figure 3.7.

Figure 3.7. Circuit for Example 3.3 to be simulated.

It can be shown* that the transfer function of the op amp circuit of Figure 3.7 is given by

(3.6)

and this transfer function describes a second order lowpass filter. For simplicity, we let

and by substitution of these values into (3.6) we obtain

(3.7)

Assuming that the input is the unit step function, we will create a model using the Trans-
fer Fcn block to simulate the output .

The model is shown in Figure 3.8 where in the Function Block Parameters dialog box for the
Transfer Fcn block we have entered for the numerator and for the denominator.

* The derivation of this transfer function is shown in Chapter 4, Signals and Systems with MATLAB Applica-
tions, ISBN 0-9709511-6-7.

Vin s()

Vout s()

G s()
Vout s()
Vin s()
------------------=

R2

1/sC1

R3R1
1/sC2

Vin (s)
Vout (s)

G s()
Vout s()
Vin s()
------------------ 1–

R1 1 R1⁄ 1 R2⁄ 1 R3⁄ sC1+ + +() sR3C2() 1 R2⁄+[]
---= =

R1 R2 R3 1 Ω= = =

C1 C2 1 F= =

G s()
Vout s()
Vin s()
------------------ 1–

s2 3+ s 1+[]
--------------------------------= =

Vin s()

Vout s()

1– 1 3 1 []

Chapter 3 The Continuous Blocks Library

3−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 3.8. Model for Example 3.4

Upon execution of the Simulation start command, the Scope displays the waveform shown in Fig-
ure 3.9.

Figure 3.9. Output waveform for the model of Figure 3.8

3.1.5 The Zero−Pole Block

The Zero-Pole block implements a system with the specified zeros, poles, and gain in the s−
domain. This block displays the transfer function depending on how the parameters are specified:

1. If each is specified as an expression or a vector, the icon shows the transfer function with the
specified zeros, poles, and gain. If we specify a variable in parentheses, the variable is evaluated.
For example, if in the Function Block Parameters dialog box we specify Zeros as [2 4 6 8], Poles
as [1 3 5 7 9], and Gain as 25, the block looks like as shown in Figure 3.10.*

Figure 3.10. The Zero-Pole block specified in vector form

* We may need to stretch the block to see the entire block shown above.

Introduction to Simulink with Engineering Applications 3−9
Copyright © Orchard Publications

The Continuous−Time Linear Systems Sub−Library

2. If each is specified as a variable, e.g., zeros, poles, Gain, in MATLAB’s Command Window we
enter

zeros=[2 4 6 8]; poles=[1 3 5 7 9]; Gain=25;

the block shows the variable name followed by (s) if appropriate. For this example the block
appearance will be as shown in Figure 3.11.

Figure 3.11. The Zero-Pole block specified as variables

Example 3.5

The system transfer function of a system has a gain factor of , zeros at , and poles at
and at . We will create a model to display the step response of this system.

The model and the input and output waveforms are shown in Figures 3.12 and 3.13 respectively.

Figure 3.12. Model for Example 3.5

Figure 3.13. Input and output waveforms for the model of Figure 3.12

1.5 2– j± 3–

1– j±

Chapter 3 The Continuous Blocks Library

3−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

3.2 The Continuous−Time Delays Sub−Library
The Continuous−Time Delays Sub−Library contains the blocks described in Subsections 3.2.1
through 3.2.3 below.

3.2.1 The Transport Delay Block

The Transport Delay block delays the input by a specified amount of time. It can be used to sim-
ulate a time delay. At the start of the simulation, the block outputs the Initial input parameter
until the simulation time exceeds the Time delay parameter. The Time delay parameter must be
nonnegative. Best accuracy is achieved when the delay is larger than the simulation step size.

Example 3.6
For the model shown in Figure 3.14, the Time delay in the Function Block Parameters dialog box
is specified as 2, and this delay is shown in Figure 3.15.

Figure 3.14. Model to illustrate the use of the Transport Delay block

Figure 3.15. Input and output waveforms for the model of Figure 3.14

Introduction to Simulink with Engineering Applications 3−11
Copyright © Orchard Publications

The Continuous−Time Delays Sub−Library

When an output is required at a time that does not correspond to the times of the stored input
values, the Transport Delay block interpolates linearly between points. For a more detailed dis-
cussion please refer to the Help menu for this block.

The Transport Delay block does not interpolate discrete signals. Instead, it returns the discrete
value at the required time.

3.2.2 The Variable Time Delay Block

The Variable Time Delay block and the Variable Transport Delay block appear as two blocks in
the Simulink block library. However, they are actually the same built−in Simulink block with dif-
ferent settings of a Select delay type parameter. In the Variable Time Delay mode, the block has a
data input, a time delay input, and a data output. The block's output at the current time step
equals the value of its data input at a previous time which is equal to the current simulation time
minus a delay time specified by the block's time delay input.

Example 3.7
The model in Figure 3.16 shows a Variable Time Delay block where the Signal Generator block
output is a square wave and the Constant block is set to the value 0.5 to introduce a delay of 0.5
second. The input and output of the Variable Time Delay block are shown in Figure 3.17.

Figure 3.16. Model with Variable Time Delay

Chapter 3 The Continuous Blocks Library

3−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 3.17. Signal Generator block and Variable Time Delay block for the model of Figure 3.16

3.2.3 The Variable Transport Delay Block

In the Variable Transport Delay block the output is equal to the value of its data input at an ear-
lier time which is equal to the current time minus a transportation delay. If we let be the
input, the transportation delay, and the output, then

(3.8)

Example 3.8

From electric circuit theory, we know that an alternating current through a capacitor leads
the voltage by . Using a Variable Transport Delay block, we will create a model that will
display the current and voltage waveforms.

The model and the input and output waveforms are shown in Figures 3.18 and 3.19 respectively.

Figure 3.18. Model for Example 3.8

u t()
td t() y t()

y u t td t()–()=

iC C

vC 90°

Introduction to Simulink with Engineering Applications 3−13
Copyright © Orchard Publications

The Continuous−Time Delays Sub−Library

Figure 3.19. Input and output waveforms for the model of Figure 3.18

Chapter 3 The Continuous Blocks Library

3−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

3.3 Summary
• The Integrator block outputs the integral of its input at the current time step.

• The Derivative block approximates the derivative of its input. The block accepts one input
and generates one output. The initial output for the block is zero. For nonlinear models, we
can use the MATLAB function linmod to linearize a model that contains a Derivative block.
To avoid problems, it is recommended that before linearizing we replace troublesome blocks
with blocks found in the Simulink Extras library in the Linearization sublibrary. To avoid possi-
ble problems with derivatives we can incorporate the derivative block in other blocks.

• MATLAB provides three functions to extract linear functions in the form of state-space matri-
ces , , , and . The input-output relationship in terms of these matrices is

where represents the state(s), the input, and the output, and the inputs and outputs
must be Inport and Outport blocks. Source and Sink blocks cannot be used as inputs and out-
puts.

• The Simulink Extras library contains the Derivative for linearization block and the Transport
Delay block. The former should be used in place of the derivative when we are linearizing the
model. It approximates the derivative with a proper transfer function. The latter delays the
input by a specified amount of time. It can be used to simulate a time delay.

• The State-Space block implements a system defined by the state-space equations

where and are column vectors, and must be matrices conformable for multiplication
with , and and must be matrices conformable for multiplication with .

• The Transfer Fcn block implements a transfer function where the input and output (y)
can be expressed in transfer function form as the following equation

• The Zero-Pole block implements a system with the specified zeros, poles, and gain in the s-
domain. The Zero-Pole block displays the transfer function depending on how the parameters
are specified. If each is specified as an expression or a vector, the icon shows the transfer func-
tion with the specified zeros, poles, and gain. If we specify a variable in parentheses, the vari-
able is evaluated.

A B C D

x· Ax Bu+=

y Cx Du+=

x u y

x· Ax Bu+=

y Cx Du+=

x u A C
x B D u

Vin s()

G s()
Vout s()
Vin s()
------------------=

Introduction to Simulink with Engineering Applications 3−15
Copyright © Orchard Publications

Summary

• The Transport Delay block delays the input by a specified amount of time. It can be used to
simulate a time delay. At the start of the simulation, the block outputs the Initial input param-
eter until the simulation time exceeds the Time delay parameter, when the block begins gener-
ating the delayed input. The Time delay parameter must be nonnegative. Best accuracy is
achieved when the delay is larger than the simulation step size.

• The Variable Time Delay block and the Variable Transport Delay block appear as two blocks
in the Simulink block library. However, they are actually the same built-in Simulink block with
different settings of a Select delay type parameter. In the Variable Time Delay mode, the block
has a data input, a time delay input, and a data output. The block's output at the current time
step equals the value of its data input at a previous time equal to the current simulation time
minus a delay time specified by the block's time delay input.

• In the Variable Transport Delay block the output at the current time step is equal to the
value of its data input at an earlier time equal to the current time minus a transportation delay.
If we let be the input, the transportation delay, and the output, then

u t() td t() y t()

y u t td t()–()=

Chapter 3 The Continuous Blocks Library

3−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

3.4 Exercises
1. Using MATLAB’s linmod(‘x’) function, express the model below in state−space form.

2. Create a model that includes a Transfer Fcn block to simulate the output of the circuit
below where represents the internal resistance of the applied (source) voltage , and
represents the resistance of the load that consists of , , and . The values of the circuit
constants are , , , and .

3. From electric circuit theory, it is known that charging a capacitor with a constant current pro-
duces a linear voltage across it, that is,

where is the capacitance in farads, is the constant current through the capacitor in
amperes, and is the linear voltage across the capacitor in volts. Using a Variable Transport
Delay block create a model to display the output if , , and the voltage
across the capacitor at some time is .

vout

Rg vg RL

RL L C

Rg 100 Ω= RL 1 KΩ= L 10 mH= C 500 µF=

+

−

Rg

RL

L

C

vout

vg

VC
I
C
----t=

C I
VC

I 2 mA= C 1000 µF=

t0 V0 2 v=

Introduction to Simulink with Engineering Applications 3−17
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

3.5 Solutions to End−of−Chapter Exercises
1. The first step is to replace the source and sink blocks with Inport and Outport blocks as shown

below. This model is saved as Exercise_3_1A.

From MATLAB’s Command Window we execute the statement

[A,B,C,D]=linmod('Exercise_3_1A')

and MATLAB displays

A =
 3 0
 10 -1
B =
 1
 0
C =
 1 0

 0 1
D =
 0
 0

Therefore, the linear model of the given model in state-space form is expressed as

x· 3 0
10 1–

x 1
0

u+=

y 1 0
0 1

x 0
0

u+=

Chapter 3 The Continuous Blocks Library

3−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.
The equivalent circuit is shown below.

The transfer function is readily found by application of the voltage division expression

Then,

With , , , and , the transfer function
becomes

This transfer function is very nearly unity for all values of the variable and thus we expect
the output to be the same as the input. In the model shown below, the Signal Generator’s
waveform was chosen as sawtooth with amplitude and frequency 0.25 Hz.

s domain–

+

−
Vin s()

Rg

RL

sL

1
sC

Vout s()

G s()

Vout s()
RL sL 1 sC⁄+ +

Rg RL sL 1 sC⁄+ + +
--Vin s()=

G s()
Vout s()
Vin s()
------------------=

RL Ls 1 sC⁄+ +

Rg RL Ls 1 sC⁄+ + +
--=

G s()
Vout s()
Vin s()
------------------=

LCs2 RLCs 1+ +

LCs2 Rg RL+()Cs 1+ +
--=

Rg 100 Ω= RL 1 KΩ= L 10 mH= C 500 µF=

G s()
Vout s()
Vin s()
------------------= 5 10 6– s2× 5 10 4– s× 1+ +

5 10 6– s2× 5.5 10 4– s× 1+ +
--=

G s()
Vout s()
Vin s()
------------------= s2 500s 2 105×+ +

s2 550s 2 105×+ +
--=

s

2

Introduction to Simulink with Engineering Applications 3−19
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

3.

. Then

For

The model and the input and output are shown below where the slope for the Ramp block is
set to 2 and the time delay of 1 second is specified by the Constant block.

VC
I
C
----t 2 103× t= =

Slope m I C⁄= =

m I
C
---- 2 10 3–×

10 3–
-------------------- 2= = =

VC
I
C
----t 2t= =

VC V0 2 v= =

t t0
2
2
--- 1 s= = =

Chapter 3 The Continuous Blocks Library

3−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Introduction to Simulink with Engineering Applications 4−1
Copyright © Orchard Publications

Chapter 4

The Discontinuities Blocks Library

his chapter is an introduction to the Discontinuities Blocks library. This is the third library
in the Simulink group of libraries and contains the blocks shown below. We will describe
the function of each block included in this library and we will perform simulation examples

to illustrate their application.

T

Chapter 4 The Discontinuities Blocks Library

4−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

4.1 The Saturation Block

The Saturation block sets upper and lower bounds on a signal. When the input signal is within
the range specified by the Lower limit and Upper limit parameters, the input signal passes through
unchanged. When the input signal is outside these bounds, the signal is clipped to the upper or
lower bound. When the Lower limit and Upper limit parameters are set to the same value, the
block outputs that value. This block is also described in Section 2.13, Chapter 2, Page 2−19.

Example 4.1 *

We will create a model with a Saturation block where the upper limit is clipped at and the
lower limit is clipped at . The input will be a sine function with amplitude and frequency

.

The model is shown in Figure 4.1 and the input and output waveforms are shown in Figure 4.2.

Figure 4.1. Model for Example 4.1

Figure 4.2. Input and output waveforms for the model of Example 4.10

* Another example with the Saturation block was given as Example 2.13, Chapter 2, Page 2.19.

+0.5
0.5– 1

0.25 Hz

Introduction to Simulink with Engineering Applications 4−3
Copyright © Orchard Publications

The Saturation Dynamic Block

4.2 The Saturation Dynamic Block

The Saturation Dynamic block bounds the range of the input signal to upper and lower satura-
tion values. The input signal outside of these limits saturates to one of the bounds where the input
below the lower limit is set to the lower limit, the input above the upper limit is set to the upper
limit. The input for the upper limit is the up port, and the input for the lower limit is the lo port.

Example 4.2

We will create a model with a Saturation block where the upper limit is clipped at and the
lower limit is clipped at . The Signal Generator block is specified in the Block Parameters dialog
box as a sine function with amplitude and frequency .

The values of the Constant blocks are entered in the MATLAB Command Window as:

a=1; b=0;

The model is shown in Figure 4.3 and the input and output waveforms are shown in Figure 4.4.

Figure 4.3. Model for Example 4.2

+1
0

1 0.25 Hz

Chapter 4 The Discontinuities Blocks Library

4−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 4.4. Input and output waveforms for the model of Figure 4.3

4.3 The Dead Zone Block

The Dead Zone block generates zero output within a specified region, called its dead zone. The
lower and upper limits of the dead zone are specified as the Start of dead zone and End of dead
zone parameters. The block output depends on the input and dead zone:

1. If the input is within the dead zone (greater than the lower limit and less than the upper limit),
the output is zero.

2. If the input is greater than or equal to the upper limit, the output is the input minus the upper
limit.

3. If the input is less than or equal to the lower limit, the output is the input minus the lower
limit.

Example 4.3
We will create a model with the Dead Zone block where the Function Block Parameters dialog
box for this block the start of the dead zone is , and the end of the dead zone is . The
input will be a sine waveform with amplitude and frequency .

The model is shown in Figure 4.5 and the input and output waveforms are shown in Figure 4.6.
This model uses lower and upper limits of and with the Signal Generator block spec-
ified in the Block Parameters dialog box as a sine wave of unity amplitude. Since the input is

0.25– +0.25
1 0.2 Hz

0.25– +0.25

Introduction to Simulink with Engineering Applications 4−5
Copyright © Orchard Publications

The Dead Zone Dynamic Block

greater than he upper limit, the output is the input minus the upper limit, i.e., .
Likewise, for the negative half−cycle the output is .

Figure 4.5. Model for Example 4.3

Figure 4.6. Input and output waveforms for the model of Figure 4.5

4.4 The Dead Zone Dynamic Block

The Dead Zone Dynamic block dynamically bounds the range of the input signal, providing a
region of zero output. The bounds change according to the upper and lower limit input signals
where:

1. The input within the bounds is set to zero.

2. The input below the lower limit is shifted down by the lower limit.

3. The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is the lo port.

1.00 0.25– 0.75=

1.00– 0.25–()– 0.75–=

Chapter 4 The Discontinuities Blocks Library

4−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 4.4
We will create a model with the Dead Zone Dynamic block where the input for the upper limit is

, and the input for the lower limit is . The input will be a sine waveform with amplitude
 and frequency .

The model is shown in Figure 4.7 and the input and output waveforms are shown in Figure 4.8.

Figure 4.7. Model for Example 4.4

In Figure 4.8, the positive half−cycle of the output has a maximum value of ; that
is, the input above the upper limit at the up port is shifted down by the upper limit whose value is

. The input for the lower limit at the lo port is . The negative half−cycle of the output
has a minimum value of ; that is, the input below the lower limit is shifted
down by the lower limit.

Figure 4.8. Input and output waveforms for the model of Figure 4.7

4.5 The Rate Limiter Block

+1.0 1.5–

2 0.2 Hz

2.0 1.0– 1.0=

+1.0 1.5–

2.0– 1.5–()– 0.5–=

Introduction to Simulink with Engineering Applications 4−7
Copyright © Orchard Publications

The Rate Limiter Block

The Rate Limiter block limits the first derivative of the signal passing through it. The equation
and parameters used with this block are described in the Help menu for this block. The Function
Block Parameters window for the Rate Limiter indicates that we can specify rising and falling slew
rates where the default values are and respectively.

To understand the meaning of the slew rate, let us consider a typical operational amplifier,* or op
amp for short. There is a limit to the rate at which the output voltage of an op amp can change.
Therefore, manufacturers specify a new parameter referred to as the slew rate. By definition, the
slew rate (SR) is the maximum rate of change of an output voltage produced in response to a large
input step function and it is normally expressed in volts per microsecond, that is,

(4.1)

Of course, relation (4.1) is the slope of the output voltage under maximum rate of change condi-
tions. Typical slew rates range from to , and most internally compensated op
amps have slew rates in the order of . Figure 4.9 shows a step function of amplitude
applied to the input of a unity gain op amp, and the waveform at the output of this op amp.

Figure 4.9. The resultant slew rate when a step function is applied to a unity gain op amp

The linearly rising slew rate shown in Figure 4.9 will not be produced if the input voltage is
smaller than that specified by the manufacturer. In this case, the slew rate will be a rising expo-
nential such as the rising voltage across a capacitor. In most op amps the slew rate is set by the
charging rate of the frequency compensating capacitor and the output voltage is

(4.2)

Example 4.5
We will create a model with a Rate Limiter block where the rising and falling slew rates will be the
default values and the input will be the unit step function.

* For a detailed discussion on operational amplifiers, or op amps for short, please refer to Chapter 5, Electronic
Devices and Amplifier Circuits with MATLAB Applications, ISBN 0-9709511-7-5.

+1 1–

Slew Rate SR
dvout
dtmax
-------------= =

0.1 V µs⁄ 100 V µs⁄
1 V µs⁄ 10 V

vin V() vout V()

t

Slew rate Slope=

t

10 10

−R

+

vin

vout+ +

−

−

vout Vf 1 e
ωugt–

–()=

Chapter 4 The Discontinuities Blocks Library

4−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The model is shown in Figure 4.10 and the input and output waveforms are shown in Figure 4.11.

Figure 4.10. Model for Example 4.5

Figure 4.11. Input and output waveforms for the model of Example 4.7

4.6 The Rate Limiter Dynamic Block

The Rate Limiter Dynamic block limits the rising and falling rates of the signal. The external sig-
nal up sets the upper limit on the rising rate of the signal. The external signal lo sets the lower
limit on the falling rate of the signal.

Example 4.6
We will create a model with a Rate Limiter Dynamic block where the upper limit on the rising
rate of the signal will be and the lower limit on the falling rate of the signal will be . The
input will be a sine function with amplitude and frequency .

The model is shown in Figure 4.12 and the input and output waveforms are shown in Figure 4.13.

+1 1–

2 2 Hz

Introduction to Simulink with Engineering Applications 4−9
Copyright © Orchard Publications

The Backlash Block

Figure 4.12. Model for Example 4.6

Figure 4.13. Input and output waveforms for the model of Figure 4.12

For this example, the input is specified as a sine wave, and since the rate of change (slope or deriv-
ative) of the sine is the cosine, for the Sine Wave block we specified Amplitude , Frequency

, and Phase . The values and assigned to the Constant blocks represent the rising
and falling rates, that is, the slopes defined as the upper and lower limits respectively.

4.7 The Backlash* Block

* In engineering, backlash is the amount of clearance between mated gear teeth in a gear pair. Some backlash
is required to allow for lubrication, manufacturing errors, deflection under load and differential expansion
between the gears and the housing. Backlash is created when the tooth thickness of either gear is less than the
tooth thickness of an ideal gear, or the zero backlash tooth thickness. Additional backlash is created when the
operating center distance of the gear pair is less than that for two ideal gears. Standard practice is to make allow-
ance for half the backlash in the tooth thickness of each gear.

2
2 Hz π 2⁄ +1 1–

Chapter 4 The Discontinuities Blocks Library

4−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The Backlash block implements a system in which a change in input causes an equal change in
output. However, when the input changes direction, an initial change in input has no effect on
the output. The amount of side−to−side play in the system is referred to as the deadband. The
deadband is centered about the output. A system can be in one of three modes:

• Disengaged − In this mode, the input does not drive the output and the output remains con-
stant.

• Engaged in a positive direction − In this mode, the input is increasing (has a positive slope) and
the output is equal to the input minus half the deadband width.

• Engaged in a negative direction − In this mode, the input is decreasing (has a negative slope)
and the output is equal to the input plus half the deadband width.

For illustrations and examples please refer to the Help menu for this block.

Example 4.7
We will create a model with a Backlash block with deadband width of unity and initial output
zero whose input will be a square waveform with amplitude and frequency .

The model is shown in Figure 4.14, and the input and output are shown in Figure 4.15.

Figure 4.14. Model for Example 4.7

Figure 4.15. Input and output for the model of Figure 4.14

In the Function Block Parameters window for the Signal Generator block in the Block Parameters
dialog box we have specified a square waveform with amplitude 1 and frequency at 0.25 Hz. In the

1 0.25 Hz

Introduction to Simulink with Engineering Applications 4−11
Copyright © Orchard Publications

The Relay Block

Function Block Parameters dialog box for the Backlash block we have specified the deadband
width at 1 and initial output at 0. In Figure 4.15, we observe that the deadband extends from
to .

4.8 The Relay Block

The Relay block output can switch between two specified values. When the relay is on, it remains
on until the input drops below the value of the Switch off point parameter. When the relay is off,
it remains off until the input exceeds the value of the Switch on point parameter. The block
accepts one input and generates one output. The Switch on point value must be greater than or
equal to the Switch off point. Specifying a Switch on point value greater than the Switch off point
value models hysteresis, whereas specifying equal values models a switch with a threshold at that
value.

Example 4.8
The Function Block Parameters dialog box for the Relay block in Figure 4.16 are specified as:

a. Switch on point: 10

b. Switch off point: 0

c. Output when on: 1

d. Output when off: 0

We will choose appropriate values for blocks and so that the Relay block output will be on.

Figure 4.16. Model for Example 4.8

Two appropriate values would be and . Thus in the MATLAB Command Window
we have entered:

a=11; b=1;

0.5–

+0.5

a b

a 11= b 1=

Chapter 4 The Discontinuities Blocks Library

4−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

4.9 The Quantizer Block

The Quantizer block passes its input signal through a stair−step function so that many neighbor-
ing points on the input axis are mapped to one point on the output axis. The effect is to quantize
a smooth signal into a stair−step output. The output is computed using the round−to−nearest
method, which produces an output that is symmetric about zero. That is,

(4.3)

where is the output, is the input, and is the quantization interval.

Example 4.9

We will create a model with a Quantizer block with Quantization Interval . The input will be
a sine waveform with amplitude and frequency .

The model is shown in Figure 4.17 and the input and output waveforms are shown in Figure 4.18.

Figure 4.17. Model for Example 4.9

Figure 4.18. Input and output waveforms for the model of Figure 4.17

y q round u q⁄()×=

y u q

0.25
1 0.25 Hz

Introduction to Simulink with Engineering Applications 4−13
Copyright © Orchard Publications

The Hit Crossing Block

4.10 The Hit Crossing Block

The Hit Crossing block detects when the input reaches the Hit crossing offset parameter value in
the direction specified by the Hit crossing direction (rising, falling, or either) parameter. To see
where the crossing occurs, we click on the Show output port check box. If the Show output port
check box is not selected, the block ensures that the simulation finds the crossing point but does
not generate an output.

Example 4.10

We will create a model with the Hit Crossing block where the Hit crossing offset is set at . The
input is a sine waveform with amplitude and frequency .

The model is shown in Figure 4.19, and the input and output waveform in Figure 4.20. The Data
Type Conversion block converts the output of the Hit Crossing block which is Boolean, i.e., logi-
cal or logical , to double so that both inputs to the Bus Creator block are of the same type.

Figure 4.19. Model for Example 4.10

Figure 4.20. Input and output waveforms for the model of Figure 4.19

1–

1 0.25 Hz

0 1

Chapter 4 The Discontinuities Blocks Library

4−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

As stated in the Help menu, the use of the Hit Crossing block is illustrated in the hardstop and
clutch demos. In the hardstop demo, the Hit Crossing block is in the Friction Model subsystem. In
the clutch demo, the Hit Crossing block is in the Lockup Detection subsystem.

4.11 The Coulomb and Viscous Friction Block

The Coulomb and Viscous Friction block models Coulomb (static) and Viscous (dynamic) fric-
tion. The block produces an offset at zero and a linear gain elsewhere. The offset corresponds to
the Coulombic friction; the gain corresponds to the viscous friction.

As we know from physics, friction is a force that resists the relative motion or tendency to such
motion of two bodies in contact. Friction is undesirable in some parts of rotating machinery such
as bearings and cylinders, but very beneficial in the automotive industry such as the design of
brakes and tires. Theoretically, there should be no friction in a motor with zero velocity, but in
reality, a small amount of “static” (no velocity) friction known as Coulomb friction, is always
present even in roller or ball type anti−friction bearings. Viscous friction, on the other hand, is
friction force caused by the viscosity of lubricants.

The Coulomb friction function, the Viscous friction function, and the combined Coulomb plus
Viscous friction functions are illustrated in Figure 4.21.

Figure 4.21. Coulomb friction and Viscous friction functions

The Coulomb friction function is defined as

(4.4)

where is the Coulomb friction coefficient.

The Viscous friction function is defined as

(a) Coulomb friction (b) Viscous friction (c) Coulomb plus Viscous friction

Friction force Friction force Friction force

Sliding velocity Sliding velocity Sliding velocity

µCFn µVvFn

FfcvFfvFfc

v v v

Ffc µCFn±=

µC

Introduction to Simulink with Engineering Applications 4−15
Copyright © Orchard Publications

The Coulomb and Viscous Friction Block

(4.5)

and the Coulomb plus Viscous friction is defined as

(4.6)

Coulomb friction force can be represented by at least four different continuous functions. Each of
these functions involves one constant that controls the level of accuracy of that function's repre-
sentation of the friction force. Simulink uses the default values for the offset (Cou-
lomb friction value). For the signal gain (coefficient of viscous friction) at nonzero input points
the default is 1.

Example 4.11
We will create a model with the Coulomb and Viscous Friction block where the Function Block
Parameters for this block the offset are the default values, the gain is 2, and the input is the Step
function.

The model is shown in Figure 4.22 and the input and output waveforms are shown in Figure 4.23.

Figure 4.22. Model for Example 4.11

Figure 4.23. Input and output waveforms for the model of Figure 4.22

Ffv µvvFn=

Ffc fv+ µvvFn µC± Fn=

1 3 2 0[]

Chapter 4 The Discontinuities Blocks Library

4−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

4.12 The Wrap to Zero Block

The Wrap To Zero block sets the output to zero if the input is above the value set by the Thresh-
old parameter, and outputs the input if the input is less than or equal to the Threshold.

Example 4.12
We will create a model with a Wrap to Zero block where the Threshold in the Function Block
Parameters is specified as . We will choose an appropriate value for the input to this block so
that the output will display the input value.

The model is shown in Figure 4.24. Any input value equal of less than will cause the Wrap to
Zero block to display the input value.

Figure 4.24. Model for Example 4.12

75

75

Introduction to Simulink with Engineering Applications 4−17
Copyright © Orchard Publications

Summary

4.13 Summary

• The Saturation block sets upper and lower bounds on a signal. When the input signal is within
the range specified by the Lower limit and Upper limit parameters, the input signal passes
through unchanged. When the input signal is outside these bounds, the signal is clipped to the
upper or lower bound. When the Lower limit and Upper limit parameters are set to the same
value, the block outputs that value.

• The Saturation Dynamic block bounds the range of the input signal to upper and lower satu-
ration values. The input signal outside of these limits saturates to one of the bounds where the
input below the lower limit is set to the lower limit, the input above the upper limit is set to the
upper limit. The input for the upper limit is the up port, and the input for the lower limit is the
lo port.

• The Dead Zone block generates zero output within a specified region, called its dead zone.
The lower and upper limits of the dead zone are specified as the Start of dead zone and End of
dead zone parameters. The block output depends on the input and dead zone.

• The Dead Zone Dynamic block dynamically bounds the range of the input signal, providing a
region of zero output. The bounds change according to the upper and lower limit input signals.

• The Rate Limiter block limits the first derivative of the signal passing through it. We can
specify rising and falling slew rates.

• The Rate Limiter Dynamic block limits the rising and falling rates of the signal. The external
signal up sets the upper limit on the rising rate of the signal. The external signal lo sets the
lower limit on the falling rate of the signal.

• The Backlash block implements a system in which a change in input causes an equal change
in output. However, when the input changes direction, an initial change in input has no effect
on the output. The amount of side-to-side play in the system is referred to as the deadband.
The deadband is centered about the output.

• The Relay block allows its output to switch between two specified values. When the relay is
on, it remains on until the input drops below the value of the Switch off point parameter.
When the relay is off, it remains off until the input exceeds the value of the Switch on point
parameter. The block accepts one input and generates one output. The Switch on point value
must be greater than or equal to the Switch off point. Specifying a Switch on point value
greater than the Switch off point value models hysteresis, whereas specifying equal values
models a switch with a threshold at that value.

• The Quantizer block passes its input signal through a stair-step function so that many neigh-
boring points on the input axis are mapped to one point on the output axis. The effect is to
quantize a smooth signal into a stair-step output. The output is computed using the round-to-
nearest method, which produces an output that is symmetric about zero.

Chapter 4 The Discontinuities Blocks Library

4−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The Hit Crossing block detects when the input reaches the Hit crossing offset parameter
value in the direction specified by the Hit crossing direction (rising, falling, or either) parame-
ter. To see where the crossing occurs, we click on the Show output port check box. If the
Show output port check box is not selected, the block ensures that the simulation finds the
crossing point but does not generate output.

• The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic)
friction. The block models a discontinuity at zero and a linear gain otherwise. The offset corre-
sponds to the Coulombic friction; the gain corresponds to the viscous friction.

• The Wrap To Zero block sets the output to zero if the input is above the value set by the
Threshold parameter, and outputs the input if the input is less than or equal to the Threshold.

Introduction to Simulink with Engineering Applications 4−19
Copyright © Orchard Publications

Exercises

4.14 Exercises
1. Create a model with a Backlash block whose input is the Step block and the Function Block

Parameters for both blocks are the default values.

2. Create a model with the Coulomb and Viscous Friction block where the Function Block
Parameters for this block the offset are the default values, the gain is 0.5, and the input is the
Ramp function with unity slope.

3. Using the Dead Zone block, create a model that will display the following input (yellow) and
output (magenta) waveforms.

4. Using the Hit Crossing block, create a model with the Hit crossing offset set at and the input
is a square waveform with amplitude and frequency .

5. Create a model with a Quantizer block with Quantization Interval . The input is a straight
line passing through the origin with slope .

6. Create a model with a Relay block and choose appropriate values so that the relay will be in
the off condition.

1
1 0.25 Hz

0.2
0.25

Chapter 4 The Discontinuities Blocks Library

4−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

4.15 Solutions to End-of-Chapter Exercises
1.

2.

3.
The model is shown below where the waveform for the Signal Generator block is chosen as
Saw Tooth, unity amplitude, and 0.2 Hz frequency. The Dead Zone block parameters are set
for lower limit of and upper limit 0.5– +0.5

Introduction to Simulink with Engineering Applications 4−21
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

4.

The output of the Hit Crossing block is shown as a pulse with 50% duty cycle. Since the input
signal reaches the offset value and remains at this value, the block outputs 1 from the hit time
till the time when the input signal leaves the offset value.

Chapter 4 The Discontinuities Blocks Library

4−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

5.

The Ramp block slope is set at . The Quantizer block is set for Quantization Interval .

6.

The Function Block Parameters for the Relay block in the above model are specified as:

a. Switch on point: 4

b. Switch off point: 0

c. Output when on: 1

d. Output when off: 0

Two appropriate values would be and . Thus, in the MATLAB Command Win-
dow we enter:

a=5; b=4;

0.25 0.2

a 5= b 4=

Introduction to Simulink with Engineering Applications 5−1
Copyright © Orchard Publications

Chapter 5

The Discrete Blocks Library

his chapter is an introduction to the Discrete Blocks library. This is the fourth library in
the Simulink group of libraries and contains the Discrete−Time Linear Systems Sub−
Library, and the Sample & Hold Delays Sub−Library blocks shown below. We will

describe the function of each block included in this library and we will perform simulation exam-
ples to illustrate their application.

T

Chapter 5 The Discrete Blocks Library

5−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

5.1 The Discrete−Time Linear Systems Sub−Library
The Discrete−Time Linear Systems Sub−Library contains the blocks described in Subsections
5.1.1 through 5.1.14 below.

5.1.1 The Unit Delay Block

The Unit Delay block is described in Chapter 2, Section 2.15, Chapter 2, Page 2−24.

5.1.2 The Integer Delay Block

The Integer Delay block delays its input by N sample periods. Both the input and the output can
be scalar or vector.

Example 5.1

We will create a model using an Integer Delay block with five delays () where the input
will be a discrete sine wave with amplitude , frequency , and sample time .

The model is shown in Figure 5.1 and the input and output waveforms are shown in Figure 5.2.

Figure 5.1. Model for Example 5.1

For the Sine Wave block, in the Block Parameters dialog box we specified:

Sine type: Time based

Sample time: 0.1

For the Integer Delay block, in the Block Parameters dialog box we specified:

Initial condition: 0.0

Number of delays: 5

N 5=

1 1 Hz 0.1 s

Introduction to Simulink with Engineering Applications 5−3
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

Figure 5.2. Input and output waveforms for the model of Figure 5.1

5.1.3 The Tapped Delay Block

The Tapped Delay block delays its input by the specified number of sample periods, and outputs

all the delayed versions. Each delay is equivalent to the discrete−time operator, which is rep-
resented by the Unit Delay block.

Example 5.2

We will create a model using a Tapped Delay block with five delays () where the input is a
a discrete sine wave with amplitude , frequency , and sample time .

The model is shown in Figure 5.3 and the input and output waveforms are shown in Figure 5.4.
We observe that unlike the Integer Delay block in Subsection 5.1.2, the Tapped Delay block out-
puts all the delayed versions.

Figure 5.3. Model for Example 5.2

For the Sine Wave block, in the Block Parameters dialog box we specified Sine type: Time based,
Frequency: 0.5, Sample time: 0.25. For the Tapped Delay block, in the Block Parameters dialog
box we specified Initial condition: 0.0, Number of delays: 5

z 1–

N 5=

1 0.5 Hz 0.25 s

Chapter 5 The Discrete Blocks Library

5−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 5.4. Input and output waveforms for the model of Figure 5.3

5.1.4 The Discrete−Time Integrator Block

The Discrete−Time Integrator block is described in Section 2.16, Chapter 2, Page 2−26.

5.1.5 The Discrete Transfer Fcn Block

The Discrete Transfer Fcn block implements the Z−transform transfer function described by
the following equation:

(5.1)

The order of the denominator must be greater than or equal to the order of the numerator.

Example 5.3
It is known that the discrete transfer function of a system is

G z() N z()
D z()

a0zn a1zn 1– … amzn m–+ + +

b0zn b1zn 1– … bmzn m–+ + +
---= =

G z() 0.951z
z2 0.618z 1+ +
-------------------------------------=

Introduction to Simulink with Engineering Applications 5−5
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

We will create a model to display the input and output waveforms when the input is the discrete
sine wave with amplitude , frequency , and sample time .

The model is shown in Figure 5.5 and the input and output waveforms are shown in Figure 5.6
where in the Function Block Parameters for the Discrete Transfer Fcn block we have entered:

Numerator coefficient:

Denominator coefficient:

Sample time:

Figure 5.5. Model for Example 5.3

Figure 5.6. Input and Output waveforms for the model of Figure 5.5

5.1.6 The Discrete Filter Block

The Discrete Filter block implements Infinite Impulse Response (IIR) and Finite Impulse

Response (FIR) filters. We must specify the filter as a ratio of polynomials in . We can specify
that the block will have a single output or multiple outputs where the outputs correspond to a set
of filters that have the same denominator polynomial but different numerator polynomials.

1 1 r/s 0.1 s

0.951 0[]

1 0.618 1[]

0.1

z 1–

Chapter 5 The Discrete Blocks Library

5−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Digital filters are classified in terms of the duration of the impulse response, and in forms of real-
ization.

1. Impulse Response Duration

a. An Infinite Impulse Response (IIR) digital filter has infinite number of samples in its impulse
response

b. A Finite Impulse Response (FIR) digital filter has a finite number of samples in its impulse
response

2. Realization

a. In a Recursive Realization digital filter the output is dependent on the input and the previ-
ous values of the output. In a recursive digital filter, both the coefficients and are
present.

b. In a Non-Recursive Realization digital filter the output depends on present and past values
of the input only. In a non-recursive digital filter, only the coefficients are present, that is,

.

For block diagrams of third−order (3−delay element) recursive and non−recursive realizations
please refer to Figure 2.30, Chapter 2, Page 2−25. Generally, IIR filters are implemented by recur-
sive realization, whereas FIR filters are implemented by non−recursive realization.

Example 5.4
The step response indicates how a system will respond when the input is the unit step function.
For this example, it is known that the transfer function of a system is

We will use the bilinear transformation to convert the transfer function to the Z−transform
equivalent and create a model showing the waveforms of both the step response in the s−domain
and in the z−domain. The bilinear transformation is

and the MATLAB function for this conversion is [numd,dend]=bilinear(num,den,fs) where
num and den are row vectors containing numerator and denominator transfer function coeffi-
cients in descending powers of s, fs is the sample frequency in Hz, and numd and dend are the z−
transform coefficients for the discrete transfer function. Thus, for this example in MATLAB’s
Command Window we type the following:

h n[]

h n[]

ai bi

ai

bi 0=

G s() 5 s 3+()

s2 3s 15+ +
-----------------------------=

G z() G s() s 2 Fs z 1–()×× z 1+()⁄=
=

Introduction to Simulink with Engineering Applications 5−7
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

num=[1 3]; den=[1 3 15]; fs=0.25; [numd,dend] = bilinear(num,den,fs)

and MATLAB displays

numd =
 0.2090 0.3582 0.1493

dend =
 1.0000 1.7612 0.8209

Therefore,

and with this information we create the model shown in Figure 5.7.

Figure 5.7. Model for Example 5.4

The output waveforms for the continuous and discrete transfer functions are shown in Figure 5.8.

Figure 5.8. Waveforms for the model of Figure 5.7

G z() 0.2090 0.3582z 1– 0.1493z 2–+ +

1 1.7612z 1– 0.8209z 2–+ +
---=

Chapter 5 The Discrete Blocks Library

5−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

5.1.7 The Discrete Zero−Pole Block

The Discrete Zero−Pole block implements a discrete system with the specified zeros, poles, and
gain in terms of the delay operator Z. A transfer function can be expressed in factored or zero-
pole−gain form, which, for a single-input, single-output system in MATLAB, is

(5.2)

where represents the zeros, the poles, and is the gain. The number of poles must be
greater than or equal to the number of zeros. If the poles and zeros are complex, they must be
complex conjugate pairs.

Example 5.5
It is known that the discrete transfer function of a system is

We will create a model to display the input and output waveforms when the input is the discrete
sine wave with amplitude , frequency , and sample time .

The model is shown in Figure 5.9 and the input and output waveforms are shown in Figure 5.10
where in the Function Block Parameters for the Discrete Pole-Zero block we have entered:

Numerator coefficient:

Denominator coefficient:

Sample time:

We also specified sample time for the discrete sine wave block.

Figure 5.9. Model for Example 5.5

H z() KN z()
D z()
------------ K

z z1–() z z2–()… z zn–()
z p1–() z p2–()… z pn–()

---= =

zi pi K

H z() z 0.5–()
z 0.25–() z 0.75–()

--=

1 1 r/s 0.1 s

0.5[]

0.25 0.75[]

0.1

0.1

Introduction to Simulink with Engineering Applications 5−9
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

Figure 5.10. Input and output waveforms for the model of Figure 5.9

5.1.8 The Difference Block

The Difference block outputs the current input value minus the previous input value.

Example 5.6
Using the Difference block, we will create a model that will output the current input value minus
the previous input value.

The model is shown in Figure 5.11 and the input and output waveforms in Figure 5.12. The Dis-
play blocks show the input and output values at the end of the simulation time, that is, at the end
of .

Figure 5.11. Model for Example 5.6

10 s

Chapter 5 The Discrete Blocks Library

5−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

For this example, the amplitude for the Pulse Generator block is specified as , the period as ,
and the pulse width as . The initial condition for the previous input in the Difference block
was set to .

Figure 5.12. Input and output waveforms for the model of Example 5.11

5.1.9 The Discrete Derivative Block

The Discrete Derivative block computes a discrete time derivative by subtracting the input value
at the previous time step from the current value, and dividing by the sample time. We observe
that this block is the same as the Difference block except that the numerator in this case is multi-
plied by the Gain , and it is divided by the sample time .

Example 5.7

We will create a model using the Discrete Derivative block with gain whose input is a Sine
Wave in the Discrete mode with amplitude and frequency .

The model is shown in Figure 5.13 and the input and output waveforms in Figure 5.14. The Dis-
crete Sine Wave is obtained from the Continuous Sine Wave block where in the Block Parame-
ters dialog box for this block the Sample time is specified as .

1 4
50%

0

K Ts

K 1=

1 1 Hz

1

Introduction to Simulink with Engineering Applications 5−11
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

Figure 5.13. Model for Example 5.7

Figure 5.14. Input and output waveforms for the model of Figure 5.13

5.1.10 The Discrete State−Space Block

The Discrete State-Space block implements the system described by the equations

(5.3)

where represents the current sample, represents the next sample, is the input, is the
state, and is the output. Matrix must be an square matrix where represents the num-
ber of the states, matrix must have dimension where represents the number of inputs,
matrix must have dimension where represents the number of outputs, and matrix
must have dimension .

Example 5.8
In Example 1.1, Chapter 1, Page 1−6, we derived the continuous−time state−space equations

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

n n 1+ u x
y A n n× n

B n m× m
C r n× r D

r m×

Chapter 5 The Discrete Blocks Library

5−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(5.4)
or

(5.5)

and
(5.6)

or

(5.7)

Using the MATLAB c2d function we will convert (5.5) and (5.7) to their equivalent discrete−
time state space equations shown in relation (5.3), with a sampling period of . Then, using the
Discrete State−Space block, we will create a model to display the output waveform and the value
of the output at the end of the simulation time.

To convert the given matrices to their discrete−time state−space, we use the MATLAB statement

[Ad,Bd]=c2d(A,B,Ts)

where and are the discrete−time state−space matrices which are equivalent to the contin-
uous−time state−space matrices and , and is the sampling period specified as . Thus,
for this example, we use the MATLAB script

Ac=[−4 −4; 3/4 0]; Bc=[4 0]’; Ts=0.1; [Ad,Bd]=c2d(Ac,Bc,Ts)

and MATLAB displays

Ad =
 0.6588 -0.3280
 0.0615 0.9868

Bd =
 0.3280
 0.0132

Thus, the relation

becomes

(5.8)

The discrete−time state−space equation for the output is

x· Ax bu+=

x· 1

x· 2

4– 4–

3 4⁄ 0
x1

x2

4
0

u0 t()+=

y Cx du+=

y 0 1[] x1

x2

0[]u+=

0.1

Ad Bd

A B Ts 0.1 s

x n 1+[] Ax n[] Bu n[]+=

x1 n 1+[]

x2 n 1+[]
0.6588 0.3280–

0.0615 0.9868
x1 n[]

x2 n[]
0.3280
0.0132

u n[]+=

Introduction to Simulink with Engineering Applications 5−13
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

or

(5.9)

The model is shown in Figure 5.15 where we have included the continuous state−space block for
comparison.

In the Function Block Parameters for the continuous−time state-space we have entered the val-
ues shown in (5.5), and in the Function Block Parameters for the discrete-time state-space we
have entered the values shown in (5.8) and (5.9) with and .

Figure 5.15. Model for Example 5.8

Figure 5.16 shows the output waveforms for both the continuous state−space block and the dis-
crete state-space block.

Figure 5.16. Waveforms for the model of Figure 5.15

y n[] Cx n[] Du n[]+=

y n[] 0 1
x1 n[]

x2 n[]
Du n[]+=

D 0= Sample time 0.1=

Chapter 5 The Discrete Blocks Library

5−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

5.1.11 The Transfer Fcn First Order Block

The Transfer Fcn First Order block implements a discrete−time first order transfer function of
the input. The transfer function has a unity DC gain.

Example 5.9
It is known that the discrete transfer function of a first order system is

We will create a model to display the input and output waveforms when the input is the discrete
sine wave with amplitude , frequency , and sample time .

The model is shown in Figure 5.17 and the input and output waveforms are shown in Figure 5.18.
The sample rate for the discrete Sine Wave block is specified as .

Figure 5.17. Model for Example 5.9

Figure 5.18. Input and output waveforms for the model of Figure 5.17

G z() 0.3z
z 0.7–
----------------=

1 1 r/s 0.1 s

0.1 s

Introduction to Simulink with Engineering Applications 5−15
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

5.1.12 The Transfer Fcn Lead or Lag Block

The Transfer Fcn Lead or Lag block implements a discrete-time lead or lag compensator of the
input. The instantaneous gain of the compensator is one, and the DC gain is equal to

, where is the zero and is the pole of the compensator. The block implements a
lead compensator when , and implements a lag compensator when .

Lead and lag compensators are used quite extensively in control systems. A lead compensator can
increase the stability or speed of response of a system; a lag compensator can reduce (but not elim-
inate) the steady state error. Depending on the effect desired, one or more lead and lag compensa-
tors may be used in various combinations. Lead, lag, and lead/lag compensators are usually
designed for a system in transfer function form.

In general, the transfer function of a lead compensator is defined as

(5.10)

where , both and are real, and the lead compensator has a positive phase angle.

The transfer function of a lag compensator is defined as

(5.11)

where . We observe that in (5.11) the zero is at and the pole is at . Both
and are real, and the lag compensator has a negative phase angle. The ratio is the gain fac-
tor.

The transfer function of a lead-lag compensator is defined as

(5.12)

Example 5.10

An R−C network implementation of a lead compensator is shown in Figure 5.19 where ,
, and .

a. We will derive its transfer function

1 z–() 1 p–()⁄ z p
0 z p 1< < < 0 p z 1< < <

G s()lead
s a+
s b+
-----------=

b a> a b

G s()lag
a s b+()
b s a+()
-------------------=

b a> s b–= s a–= a
b a b⁄

G s()lead lag–

s a1+()
s b1+()

s b2+()
s a2+()

------------------=

C 1 F=

R1 R2 1 Ω= = vC 0() 0=

Chapter 5 The Discrete Blocks Library

5−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

b. Using the bilinear transformation we will convert the continuous−time transfer function to its
equivalent discrete−time transfer function. We will use the sample rate of .

c. We will create a model that includes the Transfer Fcn Lead of Lag block.

Figure 5.19. R-C lead compensator for Example 5.10

1. The s−domain equivalent circuit is shown in Figure 5.20.

Figure 5.20. The s-domain equivalent circuit of Figure 5.19

By KCL,

Thus,

(5.13)

and by substitution of the given values,

(5.14)

2. Using MATLAB’s bilinear transformation function, we obtain

num=[1 1]; den=[1 2]; fs=0.25; [numd,dend] = bilinear(num,den,fs)

numd =

0.25 s

R1

R2C
vOUT t()vIN t()

R1

R21 Cs⁄
VOUT s()VIN s()

VOUT s() VIN s()–

R1
--

VOUT s() VIN s()–

1 Cs⁄
--

VOUT s()
R2

---------------------+ + 0=

VOUT s()
R1

VOUT s()

R2
--------------------- CsVOUT s()+ +

VIN s()
R1

----------------- CsVIN s()+=

1
R1
------ 1

R2
------ Cs+ +⎝ ⎠

⎛ ⎞ VOUT s() 1
R1
------ Cs+⎝ ⎠

⎛ ⎞ VIN s()=

G s()
VOUT s()
VIN s()

1 R1⁄ Cs+

1 R1⁄ 1 R2⁄ Cs+ +
--= =

G s() s 1+
s 2+
-----------=

Introduction to Simulink with Engineering Applications 5−17
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

 0.6000 0.2000

dend =
 1.0000 0.6000

Therefore, the discrete transfer function is

or

3. The model is shown in Figure 5.21. The input and output waveforms are shown in Figure 5.22.
The sample rate for the discrete Sine Wave block is specified as .

Figure 5.21. Model for Example 5.10

Figure 5.22. Input and output waveforms for the model of Figure 5.21

G z() 0.6 0.2z 1–+

1 0.6z 1–+
-----------------------------=

G z() z 1 3⁄+
z 0.6+
-------------------=

0.1 s

Chapter 5 The Discrete Blocks Library

5−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

5.1.13 The Transfer Fcn Real Zero Block

The Transfer Fcn Real Zero block implements a discrete−time transfer function that has a real
zero and no pole.

Example 5.11

We will create a model with a Transfer Fcn Real Zero block that has a real zero with value .

The model is shown in Figure 5.23and the input and output waveforms are shown in Figure 5.24.
The sample rate for the discrete Sine Wave block has been set to .

Figure 5.23. Model for Example 5.11

Figure 5.24. Input and output waveforms for the model of Figure 5.23

0.5

0.1 s

Introduction to Simulink with Engineering Applications 5−19
Copyright © Orchard Publications

The Discrete−Time Linear Systems Sub−Library

5.1.14 The Weighted Moving Average Block

The Weighted Moving Average block samples and holds the N most recent inputs, multiplies
each input by a specified value (given by the Weights parameter), and stacks them in a vector.
This block supports both single−input / single−output (SISO) and single−input / multi−output
(SIMO) modes. For a detailed discussion please refer to the Help menu for this block.

The following discussion will help us understand the meaning of a weighted moving average.

Suppose that the voltages displayed by an electronic instrument in a 5-day period, Monday
through Friday, were volts respectively. The average of those five
readings is

Now, suppose that on the following Monday the reading was found to be volts. Then, the
new 5−day average based on the last five days, Tuesday through Monday is

We observe that the 5−day average has changed from to volts. In other words, the
average has “moved” from to volts. Hence, the name moving average.

However, a more meaningful moving average can be obtained if we assign weights to each reading
where the most recent reading carries the most weight. Thus, using a 5−day moving average we
could take the reading obtained on the 5th day and multiply it by 5, the 4th day by 4, the 3rd day
by 3, the 2nd day by 2, and the 1st day by 1. We could now add these numbers and divide the sum
by the sum of the multipliers, i.e., 5+4+3+2+1=15. Thus, the 5−day weighted moving average
would be

and the value is referred to as the Weighted Moving Average (WMA).

An Exponential Moving Average (EMA) takes a percentage of the most recent value and adds
in the previous value’s exponential moving average times 1 minus that percentage. For instance,
suppose we wanted a 10% EMA. We would take the most recent value and multiply it by 10%
then add that figure to the previous value’s EMA multiplied by the remaining percent, that is,

23.5 24.2 24.0 23.9 and 24.1, , ,

23.5 24.2 24.0 23.9 24.1+ + + +
5

-- 23.94=

24.2

24.2 24.0 23.9 24.1 24.2+ + + +
5

-- 24.08=

23.94 24.08
23.94 24.08

1 24.2× 2 24.0× 3 23.9× 4 24.1× 5 24.2×+ + + +
15

-- 24.09=

24.09

Chapter 5 The Discrete Blocks Library

5−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

(5.15)

Alternately, we can use the following formula to determine the percentage to be used in the cal-
culation:

(5.16)

For example, if we wanted a 20 period EMA, we would use

(5.17)

Example 5.12
The price of a particular security (stock) over a 5−day period is as follows:

where the last value is the most recent. We will create single-input / single output (SISO) model
with a Weighted Moving Average block to simulate the weighted moving average over this 5−day
period.

For this example, we will represent the SISO output as follows:

(5.18)

where

(5.19)

The model is shown in Figure 5.25 where in the Function Block Parameters dialog box for the
Weighted Moving Average block we have entered:

Weights:

Initial conditions:

Constant block − Output scaling value:

Weighted Moving Average block − Parameter data types: , Parameter scaling:

Signal data types: , Parameter scaling:

Most Recent Value 0.1 Previous Value's EMA 1 0.1–()×+×

Exponential Percentage 2
Time Periods 1+
---=

2
20 1+
--------------- 9.52 %=

77 80 82 85 90

y1 k() a1u k() b1u k 1–() c1u k 2–() d1u k 3–() e1u k 4–()+ + + +=

u k() 5 15⁄ u k 1–() 4 15⁄ u k 2–() 3 15 u k 3–() 2 15 u k 4–() 1 15⁄=⁄=⁄===

[5 15⁄ 4 15⁄ 3 15 2 15 1 15⁄]⁄⁄

85 82 80 77[]

1.25 3[]

sfix 16() 2 4–

sfix 16() 2 6–

Introduction to Simulink with Engineering Applications 5−21
Copyright © Orchard Publications

The Sample & Hold Delays Sub−Library

Figure 5.25. Model for Example 5.12

5.2 The Sample & Hold Delays Sub−Library
The Sample & Hold Delays Sub−Library contains the blocks described in Subsections 5.2.1
through 5.2.3 below.

5.2.1 The Memory Block

The Memory block outputs its input from the previous time step, applying a one integration step
sample−and−hold to its input signal.

Example 5.13
We will create a model using a Memory block whose output is subtracted from its input where the
input is a pulse generator with amplitude , period , pulse width , and Phase delay .
For the Memory block, the Initial condition is specified as and the Inherit sample time is
checked.

The model is shown in Figure 5.26 and the input and output waveforms are shown in Figure 5.27.

Figure 5.26. Model for Example 5.13

1 5 s 50% 1 sec
0

Chapter 5 The Discrete Blocks Library

5−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 5.27. Input and output waveforms for the model of Figure 5.26

5.2.2 The First−Order Hold Block

The First-Order Hold block implements a first−order sample−and−hold that operates at the spec-
ified sampling interval. In some signal processing applications it is necessary to retain (hold) the
value that a signal has at a specified instant of time. A circuit used to perform this function is
referred to as sample-and-hold circuit. For example, a sample−and−hold circuit can be used to
provide a steady voltage into a device that cannot process a continuously varying signal. An ana-
log−to−digital converter is such a device.

Example 5.14

We will create a model using a First−Order Hold block with sample time where the input is
a sine wave with amplitude , and frequency .

The model is shown in Figure 5.28 and the input and output waveforms are shown in Figure 5.29.

Figure 5.28. Model for Example 5.14

0.5 s
1 1 Hz

Introduction to Simulink with Engineering Applications 5−23
Copyright © Orchard Publications

The Sample & Hold Delays Sub−Library

Figure 5.29. Input and output waveforms for the model of Figure 5.28

5.2.3 The Zero−Order Hold Block

The Zero−Order Hold block samples and holds its input for the specified sample period. The
block accepts one input and generates one output, both of which can be scalar or vector. If the
input is a vector, all elements of the vector are held for the same sample period. If the model con-
tains multirate transitions, we must add Zero−Order Hold blocks between the fast−to−slow transi-
tions. The sample rate of the Zero−Order Hold must be set to that of the slower block. For slow−
to−fast transitions, we use the Unit Delay block which was described in Section 2.15, Chapter 2,
Page 2−24.

For multirate transitions it is preferable to use the Rate Transition block since it is easier to use
and offers a wider range of options. The Rate Transition block and multirate transitions are
described in Subsection 12.1.8, Chapter 12, Page 12−8.

Example 5.15

We will create a model using a Zero−Order Hold block with sample time and input a random
waveform with amplitude and frequency .

The model is shown in Figure 5.30 and the input and output waveforms are shown in Figure 5.31.

1
1 1 Hz

Chapter 5 The Discrete Blocks Library

5−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 5.30. Model for Example 5.15

Figure 5.31. Input and output waveforms for the model of Figure 5.30

Introduction to Simulink with Engineering Applications 5−25
Copyright © Orchard Publications

Summary

5.3 Summary
• The Unit Delay block delays its input by the specified sample period. That is, the output

equals the input delayed by one sample. This block is equivalent to the discrete−time oper-
ator. This block allows for discretization of one or more signals in time, or for resampling the
signal at a different rate. If our model contains multirate transitions, then we must add Unit
Delay blocks between the slow−to−fast transitions. The sample rate of the Unit Delay block
must be set to that of the slower block.

• The Integer Delay block delays its input by N sample periods. This block accepts one input
and generates one output, both of which can be scalar or vector.

• The Tapped Delay block delays its input by the specified number of sample periods, and out-

puts all the delayed versions. Each delay is equivalent to the discrete-time operator, which
is represented by the Unit Delay block.

• The Discrete−Time Integrator block performs discrete-time integration or accumulation of a
signal. This block appears also in the Discrete Library Browser. We use this block in discrete−
time systems instead of the Continuous Integrator block in continuous−time systems. The
block can integrate or accumulate using the Forward Euler, Backward Euler, and Trapezoidal
methods.

• The Discrete Transfer Fcn block implements the z−transform transfer function described by
the following equation:

The order of the denominator must be greater than or equal to the order of the numerator.

• The Discrete Filter block implements Infinite Impulse Response (IIR) and Finite Impulse

Response (FIR) filters. We must specify the filter as a ratio of polynomials in . We can spec-
ify that the block have a single output or multiple outputs where the outputs correspond to a
set of filters that have the same denominator polynomial but different numerator polynomials.

• The Discrete Zero-Pole block implements a discrete system with the specified zeros, poles,
and gain in terms of the delay operator Z. A transfer function can be expressed in factored or
zero-pole-gain form, which, for a single-input, single-output system in MATLAB, is

where represents the zeros, the poles, and K the gain. The number of poles must be
greater than or equal to the number of zeros.

z 1–

z 1–

G z() N z()
D z()

a0zn a1zn 1– … amzn m–+ + +

b0zn b1zn 1– … bmzn m–+ + +
---= =

z 1–

G z() KN z()
D z()
------------ K

z z1–() z z2–()… z zn–()
z p1–() z p2–()… z pn–()

---= =

zi pi

Chapter 5 The Discrete Blocks Library

5−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The Difference block outputs the current input value minus the previous input value.

• The Discrete Derivative block computes a discrete time derivative by subtracting the input
value at the previous time step from the current value, and dividing by the sample time. This
block is the same as the Difference block except that the numerator is multiplied by the Gain

 and it is divided by the sample time .

• The Discrete State-Space block implements the system described by the equations

where represents the current sample, represents the next sample, is the input, is
the state, and is the output. Matrix must be an square matrix where represents
the number of the states, matrix must have dimension where represents the num-
ber of inputs, matrix must have dimension where represents the number of outputs,
and matrix must have dimension .

• The Transfer Fcn First Order block implements a discrete-time first order transfer function of
the input. The transfer function has a unity DC gain.

• The Transfer Fcn Lead or Lag block implements a discrete-time lead or lag compensator of
the input. The instantaneous gain of the compensator is one, and the DC gain is equal to

, where is the zero and is the pole of the compensator. The block imple-
ments a lead compensator when , and implements a lag compensator when

.

• The Transfer Fcn Real Zero block implements a discrete-time transfer function that has a real
zero and no pole.

• The Weighted Moving Average block samples and holds the N most recent inputs, multiplies
each input by a specified value (given by the Weights parameter), and stacks them in a vector.
This block supports both single−input/single−output (SISO) and single−input/multi−output
(SIMO) modes.

• The Memory block outputs its input from the previous time step, applying a one integration
step sample-and-hold to its input signal.

• The First−Order Hold block implements a first−order sample−and−hold that operates at the
specified sampling interval. In some signal processing applications it is necessary to retain
(hold) the value that a signal has at a specified instant of time.

• The Zero−Order Hold block samples and holds its input for the specified sample period. The
block accepts one input and generates one output, both of which can be scalar or vector. If the
input is a vector, all elements of the vector are held for the same sample period.

K Ts

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

n n 1+ u x
y A n n× n

B n m× m
C r n× r

D r m×

1 z–() 1 p–()⁄ z p
0 z p 1< < <

0 p z 1< < <

Introduction to Simulink with Engineering Applications 5−27
Copyright © Orchard Publications

Exercises

5.4 Exercises
1. It is known that the transfer function of a system is

Use the bilinear transformation to convert this transfer function to the Z−transform equiva-
lent, and create a model showing the waveforms of both the step response in the s−domain and
in the z−domain.

2. It is known that the discrete transfer function of a system is

Create a model to display the input and output waveforms when the input is the unit step
function and the sample time is specified as .

3. It is known that the discrete transfer function of a system is

Create a model to display the input and output waveforms when the input is the discrete sine
function and the sample time is specified as .

4. An R−C network implementation of a lag compensator is shown below where ,
, and .

a. Derive its transfer function

b. Use the bilinear transformation, convert the continuous−time transfer function to its equiv-
alent discrete−time transfer function. Use the sample rate of .

c. Create a model that includes the Transfer Fcn Lead or Lag block to implement the dis-
crete−time transfer function.

G s() 0.5279
s2 1.0275s 0.5279+ +
---=

G z() 0.8394z2 1.5511z 0.8394+–

z2 1.5511– z 0.6791+
--=

0.1 s

G z() 0.2 z2 1.1– z 0.3+()

z3 2.4– z2 1.91z 0.504–+
---=

0.1 s

C 1 F=

R1 R2 1 Ω= = vC 0() 0=

0.25 s

R1

R2

C
vOUT t()vIN t()

Chapter 5 The Discrete Blocks Library

5−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

5. The price of a particular security (stock) over a 5−day period is as follows:

where the last value is the most recent. Create a a single-input / multi-output (SIMO) model
with a Weighted Moving Average block to simulate the weighted moving average over this 5-
day period.

77 80 82 85 90

Introduction to Simulink with Engineering Applications 5−29
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

5.5 Solutions to End−of−Chapter Exercises
1.

Using the bilinear transformation we enter the following in MATLAB’s Command window:

num=[0.5279]; den=[1 1.0275 0.5279]; fs=0.25; [numd,dend] = bilinear(num,den,fs)

MATLAB outputs the following z−domain coefficients:

numd =
 0.4087 0.8174 0.4087

dend =
 1.0000 0.4303 0.2045

The model and the waveforms are shown below.

Chapter 5 The Discrete Blocks Library

5−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

2.
The model and the input and output waveforms are shown below where in the Function Block
Parameters for the Discrete Transfer Fcn block we have entered:

Numerator coefficient:

Denominator coefficient:

Sample time:

3.

The model and the input and output waveforms are shown below where in the Function Block
Parameters for the Discrete Transfer Fcn block we have entered:

Numerator coefficient:

Denominator coefficient:

Sample time:

We also specify sample time for the discrete sine wave block.

0.8394 -1.5511 0.8394[]

1 -1.5511 0.6791[]

0.1

1 1.1– 0.3[]

1 -2.4 1.91 -0.504[]

0.1

0.1

Introduction to Simulink with Engineering Applications 5−31
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

4.
a.

The s−domain equivalent circuit is shown below.

Application of the voltage division expression yields,

and by substitution of the given values,

(5.20)

R1

R2

VOUT s()VIN s()

1 Cs⁄

VOUT s()
1 Cs⁄ R2+

R1 1 Cs⁄ R2+ +
--------------------------------------- VIN s()⋅=

G s()
VOUT s()
VIN s()

1 Cs⁄ R2+

R1 1 Cs⁄ R2+ +

R2Cs 1+

R1 R2+()Cs 1+
--= = =

G s() s 1+
2s 1+
--------------- 2 s 1+()

s 0.5+()
---------------------= =

Chapter 5 The Discrete Blocks Library

5−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

b.

Using MATLAB’s bilinear transformation function, we obtain

num=[2 2]; den=[1 0.5]; fs=0.25; [numd,dend] = bilinear(num,den,fs)

numd =
 3 1

dend =
 1 0

Therefore, the discrete transfer function is

c.
The model and the input and output waveforms are shown below. The sample rate for the
discrete Sine Wave block is specified as .

G z() 3 z 1–+
1 0+

---------------- 3z 1+
z 0+

--------------- z 1 3⁄+
1 3⁄()z 0+

---------------------------= = =

0.1 s

Introduction to Simulink with Engineering Applications 5−33
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

5.
The SIMO model is represented by the following equations:

where

The model is shown below where in the Function Block Parameters dialog box we entered:

Weights:

Initial conditions:

Constant block - Output scaling value:

Weighted Moving Average block − Parameter data types: , Parameter scaling:

Signal data types: , Parameter scaling:

The value at the top is the sum of the 5−day WMAs, the next value is the sum of the WMAs
Tuesday through Friday, the next Wednesday through Friday, and so on. Shown below is a
table with the values computed in an Excel spreadsheet for comparison.

Monday Tuesday Wednesday Thursday Friday Sum

Price 77 80 82 85 90

Weight 1/15 2/15 3/15 4/15 5/15

WMA 5.133 10.667 16.400 22.667 30.000 84.867

y1 k() a1u k() b1u k 1–() c1u k 2–() d1u k 3–() e1u k 4–()+ + + +=

y2 k() a2u k() b2u k 1–() c2u k 2–() d2u k 3–()+ + +=

y3 k() a3u k() b3u k 1–() c3u k 2–()+ +=

y4 k() a4u k() b4u k 1–()+=

y5 k() a5u k() (Input)=

u k() 5 15⁄ u k 1–() 4 15⁄ u k 2–() 3 15 u k 3–() 2 15 u k 4–() 1 15⁄=⁄=⁄===

[5 15⁄ 4 15⁄ 3 15 2 15 1 15 5 15⁄ 4 15⁄ 3 15 2 15 0⁄⁄;⁄ ;⁄⁄
5 15⁄ 4 15⁄ 3 15 0 0 5 15⁄ 4 15⁄ 0 0 0;⁄ 5 15⁄ 0 0 0 0];

85 82 80 77[]

1.25 3[]

sfix 16() 2 4–

sfix 16() 2 6–

Introduction to Simulink with Engineering Applications 6−1
Copyright © Orchard Publications

Chapter 6

The Logic and Bit Operations Library

his chapter is an introduction to the Logic and Bit Operations Library. This is the fifth
library in the Simulink group of libraries and contains the Logic Operations Group Sub−
Library, the Bit Operations Group Sub−Library, and the Edge Detection Group Sub−

Library blocks shown below. We will describe the function of each block included in this library
and we will perform simulation examples to illustrate their application.

T

Chapter 6 The Logic and Bit Operations Library

6−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.1 The Logic Operations Group Sub−Library
The Logic Operations Group Sub−Library contains the blocks described in Subsections 6.1.1
through 6.1.7 below.

6.1.1 The Logical Operator Block

The Logical Operator block is described in Section 2.12, Chapter 2, Page 2−18.

6.1.2 The Relational Operator Block

The Relational Operator block is described in Section 2.11, Chapter 2, Page 2−17.

6.1.3 The Interval Test Block

The Interval Test block performs a test to determine if a signal is in a specified interval. The
block outputs TRUE if the input is between the values specified by the Lower limit and Upper
limit parameters. The block outputs FALSE if the input is outside those values. The output of the
block when the input is equal to the Lower limit or the Upper limit is determined by whether the
boxes next to Interval closed on left and Interval closed on right are selected in the dialog box.

Example 6.1
We will create a model with an Interval Test block where the Upper limit parameter is set to the
binary value , the Lower limit is set to the binary value , and the boxes
next to Interval closed on left and Interval closed on right are selected in the dialog box. Select
the largest positive value and the smallest negative value so that the Interval Test block will be
TRUE.

The model is shown in Figure 6.1. We recall that in an 8−bit binary string the largest positive
number is (binary) and the smallest negative number in an 8−bit binary string is

01111111[] 10000000[]

127 01111111[]

Introduction to Simulink with Engineering Applications 6−3
Copyright © Orchard Publications

The Logic Operations Group Sub−Library

 (binary). In the model of Figure 6.1, the Constant 1 and Constant 2 blocks
have been specified as Output data type sfix(8), the Display 1 and Display 3 blocks have been
specified as binary (Stored Integer), and the Display 2 block has been specified as Format short.

Figure 6.1. Model for Example 6.1

6.1.4 The Interval Test Dynamic Block

Like the Interval Test block, the Interval Test Dynamic block performs a test to determine if a
signal is in a specified interval. This block outputs TRUE (1) if the input is between the values of
the external signals up and lo. The block outputs FALSE (0) if the input is outside those values.
The output of the block when the input is equal to the signal up or the signal lo is determined by
whether the boxes next to Interval closed on left and Interval closed on right are selected in the
Parameters dialog box.

Example 6.2
We will create a model with an Interval Test Dynamic block where the external signal up is spec-
ified as the decimal value , the external signal lo is specified as the decimal value ,
and the boxes next to Interval closed on left and Interval closed on right are both checked in the
Block Parameters dialog box. We will use a Display block to show the output when the input to
the Interval Test Dynamic block is specified for the decimal value .

The model is shown in Figure 6.2. The Constant 1, Constant 2, and Constant 3 blocks have been
specified as Output data type sfix(12), the Display 1, Display 3, and Display 4 blocks have been
specified as binary (Stored Integer), and the Display 2 block has been specified as Format short.

128– 10000000[]

127[] 128–[]

129[]

Chapter 6 The Logic and Bit Operations Library

6−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 6.2. Model for Example 6.2

6.1.5 The Combinatorial Logic Block

The Combinatorial Logic block, often referred to as combinational block, implements a standard
truth table for modeling programmable logic arrays (PLAs)*, logic circuits, decision tables, and
other Boolean expressions. In a Combinatorial Logic block we specify a matrix that defines all
outputs as the Truth table parameter. Each row of the matrix contains the output for a different
combination of input elements. We must specify outputs for every combination of inputs. The
number of columns is the number of block outputs.

Example 6.3

We will create a model with Combinatorial Logic blocks to implement a full adder† logic circuit.

The Truth table for a full adder digital circuit is shown in Table 6.1 where is the augend, is
the addend, is the carry from a previous addition, is the Sum of the present addition, and

 is the output carry, i.e., the carry generated by the present addition.

* For a detailed description of PLAs, please refer to Digital Circuit Analysis and Design with an Introduction to
CPLDs and FPGAs, ISBN 0−9744239−6−3.

† For a detailed description of full adders, full subtractors, and other logic circuits please refer to the reference
cited above.

X Y
CIN S

COUT

Introduction to Simulink with Engineering Applications 6−5
Copyright © Orchard Publications

The Logic Operations Group Sub−Library

The model is shown in Figure 6.3 where we have specified:

Constant blocks - Constant value: , , ... in Constant blocks 1 through 8
respectively − Signal data types: boolean − Interpret vector parameters: check
mark

Combinatorial Logic blocks (all) − Truth table: − Sample
time:

Display blocks − Format: short

Figure 6.3. Model for Example 6.3

TABLE 6.1 Truth table for a full adder
Inputs Outputs

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

X Y CIN S COUT

0 0 0[] 0 0 1[] 1 1 1[]

0 0; 1 0; 1 0; 0 1; 1 0; 0 1; 0 1; 11[]
1–

Chapter 6 The Logic and Bit Operations Library

6−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The model of Figure 6.3 looks more presentable in Figure 6.4 where the individual segments were
lined−up one below the other,* we selected all Combinatorial Logic blocks, and from the Edit
drop menu we selected Create Subsystem.

Figure 6.4. Modified model for Example 6.3

We can also implement sequential circuits (that is, circuits with states) with the Combinatorial
Logic block by including an additional input for the state of the block and feeding the output of
the block back into this state input.

Example 6.4
We will create a model with Combinatorial Logic blocks to simulate a Set−Reset (S−R) flip−flop
constructed with NAND gates.

* It was necessary to edit the view (Fit Selection to View) so that we could see all segments of the model and select
all Combinatorial Logic blocks at once.

Introduction to Simulink with Engineering Applications 6−7
Copyright © Orchard Publications

The Logic Operations Group Sub−Library

Figure 6.5(a) shows a basic Set−Reset (S−R) flip flop constructed with two NAND gates, and Figure
6.5(b) shows the symbol for the S−R flip flop where stands for Set and stands for Reset.

Figure 6.5. Construction and symbol for the S−R flip flop

We recall that for a 2−input NAND gate the output is logical 0 when both inputs are 1s and the
output is 1 otherwise. We denote the present state of the flip flop as and the next state as ,
and with reference to Figure 6.5(a) we construct the characteristic table shown in Table 6.2.

The characteristic table of Table 6.2 shows that when both inputs S and R are logic 0 simulta-
neously, both outputs and are logic 1 which is an invalid condition since and are com-
plements of each other. Therefore. the S = R = 0 condition must be avoided during flip−flop
operation with NAND gates.* When R = 1 and S = 0, the next state output becomes 0
regardless of the previous state and this is known as the reset or clear condition, that is, when-
ever Q = 0, we say that the flip−flop is reset or clear. When R= 0 and S = 1, the next state out-
put becomes 1 regardless of the previous state and this is known as the preset or simply

TABLE 6.2 Characteristic table for the SR flip flop with NAND gates
Inputs Present State Next State

S R

0 0 0 1 But also The condition where
 must be

avoided0 0 1 1 But also

0 1 0 0 No Change

0 1 1 0 Reset (or Clear)

1 0 0 1 Set

1 0 1 1 No Change

1 1 0 0 No Change

1 1 1 1 No Change

* For an S−R flip-flop constructed with NOR gates, the condition S=R=1 must be avoided. For a detailed dis-
cussion please refer to Chapter 8, Section 8.2 of Digital Circuit Analysis and Design with an Introduction to
CPLDs and FPGAs, ISBN 0-9744239-6-3.

S R

S

R
a()

Q

Q

S

R

Q

Q

b()

Qn Qn 1+

Qn Qn 1+

Qn 1+ 1=
S R 0= =

Qn 1+ 1=

Q Q Q Q

Qn 1+

Qn

Qn 1+ Qn

Chapter 6 The Logic and Bit Operations Library

6−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

set condition, that is, whenever Q = 1, we say that the flip−flop is set. When R= 1 and S = 1, the
next state output remains the same as the present state, i.e., there is no state change.

The model is shown in Figure 6.6.

Figure 6.6. Model for Example 6.4

For the model in Figure 6.6, we have specified:

Constant blocks 1 through 8 − Constant value: , , ... − Signal data types:
boolean − Interpret vector parameters: check mark

Combinatorial Logic blocks (all) − Truth table: − Sample time: − Dis-
play blocks − Format: short

The model looks more presentable in Figure 6.7 where we selected all Combinatorial Logic
blocks, and from the Edit drop menu we selected Create Subsystem.

Qn 1+

0 0 0[] 0 0 1[] 1 1 1[]

1 1; ; 0; 0 1; ; 1; 0 1;[] 1–

Introduction to Simulink with Engineering Applications 6−9
Copyright © Orchard Publications

The Logic Operations Group Sub−Library

Figure 6.7. Simplified model for Example 6.4

6.1.6 The Compare to Zero Block

The Compare To Zero block compares an input signal to zero. We specify how the input is com-
pared to zero with the Operator parameter. The Operator parameters are listed in Table 6.3.

TABLE 6.3 Operator parameters for the Compare to Zero block
Operator Action

== Determine whether the input is equal to the specified constant
~= Determine whether the input is not equal to the specified constant
< Determine whether the input is less than the specified constant

<= Determine whether the input is less than or equal to the specified constant
> Determine whether the input is greater than the specified constant

>= Determine whether the input is greater than or equal to the specified constant

Chapter 6 The Logic and Bit Operations Library

6−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 6.5
We will create a model with the Compare To Zero block to test a matrix for singularity.

As we know, an n square matrix is called singular if ; if , it is called non−sin-
gular. To test for singularity, we will use the operator . For this example we will use the matrix

The model is shown in Figure 6.8 where the matrix was defined in MATLAB’s Command win-
dow as

A=[1 2 3; 2 3 4; 3 5 7];

In the model of Figure 6.8, the Display 1 block value of zero indicates that the matrix is singular
and the Display 2 block indicates logical 1, a true condition.

Figure 6.8. Model for Example 6.5

6.1.7 The Compare to Constant Block

The Compare To Constant block compares an input signal to a constant. We must specify the
constant in the Constant value parameter and how the input is compared to the constant value
with the specified Operator parameter. The Operator parameters are listed in Table 6.4.

A detA 0= detA 0≠
= =

A
1 2 3
2 3 4
3 5 7

=

A

Introduction to Simulink with Engineering Applications 6−11
Copyright © Orchard Publications

The Bit Operations Group Sub−Library

The output is 0 if the comparison is false, and 1 if it is true.

Example 6.6

We will create a model with the Compare To Zero block to determine whether the product
of matrices A and B, where , and , results in a positive or
negative value. The elements and are assumed to be real numbers.

We observe that A is a row vector and B is a column vector and thus the product is con-
formable for multiplication. The model is shown in Figure 6.9 where in MATLAB’s Command
Window we have entered

A=[1 2 3 4 5]; B=[−2 6 −3 −8 −4]';

Figure 6.9. Model for Example 6.6

In the model of Figure 6.9, the Display 1 block value of indicates the product and the
Display 2 block indicates logical 1, a true condition.

6.2 The Bit Operations Group Sub−Library
The Bit Operations Group Sub−Library contains the blocks described in Subsections 6.2.1
through 6.2.5 below.

TABLE 6.4 Operator parameters for the Compare to Constant block

Operator Action

== Determine whether the input is equal to the specified constant

~= Determine whether the input is not equal to the specified constant

< Determine whether the input is less than the specified constant

<= Determine whether the input is less than or equal to the specified constant

> Determine whether the input is greater than the specified constant

>= Determine whether the input is greater than or equal to the specified constant

A∗B
A a1 a2 … an[]= B b1 b2 … bn[]'=

a1 a2 … an[] b1 b2 … bn[]'

A∗B

51– A∗B

Chapter 6 The Logic and Bit Operations Library

6−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.2.1 The Bit Set Block

The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored. We specify
the bit to be set to one with the Index of bit parameter. Bit zero is the least significant bit.

Example 6.7

We will express the row vector in 8−bit binary form, and using the Bit Set block we
will create a model that will convert this vector to . The converted vector will be
displayed in binary form.

The model is shown in Figure 6.10.

Figure 6.10. Model for Example 6.7

For this model we have configured the blocks as follows:

Constant block − Constant value: − Signal data types: uint(8)

Set bit block − Function block Parameters, Index bit: [0 2 1 3]

Sink block parameters − Display 1 and Display 2 blocks, Format: Binary (Stored Integer)

12 8 5 7[]
13 12 7 15[]

12 8 5 7[]

Introduction to Simulink with Engineering Applications 6−13
Copyright © Orchard Publications

The Bit Operations Group Sub−Library

6.2.2 The Bit Clear Block

The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero. Scaling
is ignored. We can specify the bit to be set to zero with the Index of bit parameter. Bit zero is the
least significant bit.

Example 6.8

We will express the row vector in 8−bit binary form and using the Bit Clear block we
will create a model that will convert this vector to . We will display the converted vec-
tor in binary form.

The model is shown in Figure 6.11.

Figure 6.11. Model for Example 6.8

For this model we have configured the blocks as follows:

Constant block - Constant value: - Signal data types: uint(8)

Clear bit block - Function block Parameters, Index bit: 3

Sink block parameters - Display 1 and Display 2 blocks, Format: Binary (Stored Integer)

14 8 5 12[]
6 0 5 4[]

14 8 5 12[]

Chapter 6 The Logic and Bit Operations Library

6−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.2.3 The Bitwise Operator Block

The Bitwise Operator block performs the specified bitwise operation on its operands. Unlike the
logic operations performed by the Logical Operator block described in Section 2.12, Chapter 2,
Page 2−18, bitwise operations treat the operands as a vector of bits rather than a single number.
The operations are listed below.

Operation Description:

AND − TRUE if the corresponding bits are all TRUE

OR − TRUE if at least one of the corresponding bits is TRUE

NAND − TRUE if at least one of the corresponding bits is FALSE

NOR − TRUE if no corresponding bits are TRUE

XOR − TRUE if an odd number of corresponding bits are TRUE

NOT − TRUE if the input is FALSE and vice-versa

The Bitwise Operator block cannot be used for shift operations. Shift operations are described in
Subsection 6.2.4.

The size of the output of the Bitwise Operator block depends on the number of inputs, their vec-
tor size, and the selected operator. For a single vector input, the block applies the operation
(except the NOT operator) to all elements of the vector. If a bit mask is not specified, then the
output is a scalar. If a bit mask is specified, then the output is a vector. The NOT operator accepts
only one input, which can be a scalar or a vector. If the input is a vector, the output is a vector of
the same size containing the bitwise logical complements of the input vector elements.

For two or more inputs, the block performs the operation between all of the inputs. If the inputs
are vectors, the operation is performed between corresponding elements of the vectors to produce
a vector output. If we do not select the Use bit mask check box, the block will accept multiple
inputs. We select the number of input ports from the Number of input ports parameter. The input
data types must be identical. For more information on the Bitwise Operator block please refer to
the Simulink Help menu for this block.

Example 6.9
We will create a model containing a 3−input Bitwise AND block, a 3−input Bitwise NOR block,
and a 2−input Bitwise XOR block. The inputs to the Bitwise AND and Bitwise NOR blocks are:

Introduction to Simulink with Engineering Applications 6−15
Copyright © Orchard Publications

The Bit Operations Group Sub−Library

The inputs to the Bitwise XOR block are:

The model is shown in Figure 6.12.

Figure 6.12. Model for Example 6.9

For the model of Figure 6.12 we have entered:

Constant blocks 1, 2, and 3 − Constant value: , , and respectively − Signal data
types: uint8

Bitwise AND block − Operator: AND, Number of input ports: 3

Bitwise NOR block − Operator: NOR, Number of input ports: 3

Bitwise XOR block − Operator: XOR, Number of input ports: 2

Data type Conversion 1, 2, and 3 blocks - Output data type mode: Specify via dialog − Output
data type: ‘double’ - Input and output to have equal: Stored Integer (SI)

Display 1, 3, and 5 blocks − Format: decimal (Stored Integer)

152()10 10011000()2=

141()10 10001101()2=

75()10 01001011()2=

152()10 10011000()2=

141()10 10001101()2=

152[] 141[] 75[]

Chapter 6 The Logic and Bit Operations Library

6−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Display 2, 4, and 6 blocks − Format: binary (Stored Integer)

A binary value used to selectively screen out or let through certain bits in a data value. Masking is
performed by using a logical operator (AND, OR, XOR, NOT) to combine the mask and the data
value. For example, the mask , when used with the AND operator, removes (masks
off) the two uppermost bits in a data value but does not affect the rest of the value.

If we select the Use bit mask check box, then a single input is associated with the bit mask that we
have specified with the Bit Mask parameter. We can specify the bit mask using any MATLAB
expression in the Command Window. For example, we can specify the bit mask as

. For long strings, we can use hexadecimal bit masks, e.g., [‘DA87’], and
[‘E2F9B’]. If the bit mask is larger than the input signal data type, it is ignored.

We can use the bit mask to perform a bit set or a bit clear on the input. To perform a bit set, we
set the Operator parameter list to OR and create a bit mask with a 1 for each corresponding input
bit that we want to set to 1. To perform a bit clear, we set the Operator parameter list to AND
and create a bit mask with a 0 for each corresponding input bit that we want to set to 0.

6.2.4 The Shift Arithmetic Block

The Shift Arithmetic block is be used to shift the bits or the binary point of a binary word, or
both. This block performs arithmetic bit shifts on signed numbers. Therefore, the most significant
bit is recycled for each bit shift. If the bits and the binary point are to be shifted to the left, we
specify negative values.

Example 6.10

We will create a model with a Shift Arithmetic block with inputs decimal and decimal
 to display the outputs when both of these numbers are shifted left by 3 bits and the binary

point is shifted left by 2 bits.

The model is shown in Figure 6.13 where the Constant blocks have been set for Output data type
sfix(12) and the output scaling value 2^−3. Since it is specified that the bits and the binary point
are to be shifted to the left, in the Shift Arithmetic block we enter the values and respec-
tively. All three display blocks have been set for binary (Stored Integer) format. We can check the
Shift Arithmetic block outputs as follows:

00111111[]

10100110[]

27 25 22 21+ + +[]

+32.75
48.875–

3– 2–

Introduction to Simulink with Engineering Applications 6−17
Copyright © Orchard Publications

The Bit Operations Group Sub−Library

Figure 6.13. Model for Example 6.10

and after shifting 3 bits to the left and the binary point 2 places to the left we obtain

Likewise,

and after shifting 3 bits to the left and the binary point 2 places to the left we obtain

6.2.5 The Extract Bits Block

The Extract Bits block allows us to output a contiguous selection of bits from the stored integer
value of the input signal. The Bits to extract parameter defines the method by which we select the
output bits. We select Upper half to output the half of the input bits that contain the most signif-
icant bit. If there is an odd number of bits in the input signal, the number of output bits is given by

* (6.1)

We select Lower half to output the half of the input bits that contain the least significant bit. If
there is an odd number of bits in the input signal, the number of output bits is given by relation
(6.1).

* The notation Ceil() rounds “up”, e.g., ceil(4.6) rounds to 5, and ceil(-4.6) rounds to -4. The notation Floor()
rounds “down”, e.g., floor(8.999) = 8.

+32.75()10 0001 0000 0.110()2=

1000 .0011 0000

48.875–()10 0001 1000 0.111–() 2 1110 0111 1.001()2s complement= =

0011 .1100 1000

Number of output bits ceil Number of input bits 2⁄()=

Chapter 6 The Logic and Bit Operations Library

6−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

We select Range starting with most significant bit to output a certain number of the most signifi-
cant bits of the input signal. We specify the number of most significant bits to output in the Num-
ber of bits parameter.

We select Range ending with least significant bit to output a certain number of the least signifi-
cant bits of the input signal. We specify the number of least significant bits to output in the Num-
ber of bits parameter.

We select Range of bits to indicate a series of contiguous bits of the input to output in the Bit
indices parameter. We indicate the range in [start end] format, and the indices of the input bits
are labeled contiguously starting at 0 for the least significant bit.

Example 6.11

We will create a model with an Extract Bits block to accept the decimal number as the
input and outputs the binary number .

The model is shown in Figure 6.14 where the Constant block is set for Signal data types − Output
data type mode: uint16, the Display 1 block shows the given decimal number in binary form, and
the Display 2 block shows the Upper Half of that binary number. Both display blocks have been
set for binary (Stored Integer) format. Had we specified the display blocks for decimal (Stored
Integer), Display 1 block would show the decimal number 65403 and Display 2 block would show
the decimal value 255 which is equivalent to binary 1111 1111.

Figure 6.14. Model for Example 6.11

6.3 The Edge Detection Group Sub−Library
The Edge Detection Group Sub−Library contains the blocks described in Subsections 6.3.1
through 6.3.7 below.

6.3.1 The Detect Increase Block

65403
1111 1111[]

Introduction to Simulink with Engineering Applications 6−19
Copyright © Orchard Publications

The Edge Detection Group Sub−Library

The Detect Increase block determines if an input is strictly greater than its previous value. The
output is true (not 0), when the input signal is greater than its previous value. The output is false
(equal to 0), when the input signal is less than or equal to its previous value.

Example 6.12
We will create a model with the Detect Increase block to display changes in output for changes in
the input.

The model is shown in Figure 6.15 and the input and output waveforms are shown in Figure 6.16.
In Figure 6.15, the Signal Generator block is specified for a square waveform of amplitude 1 and
frequency 0.5, the Unit Delay is included to delay the Step block one time unit, the Detect
Increase block initial value is specified as 0, and the Convert Block is used to convert the output
signal of the Detect Change block from uint(8) to double. The waveforms in Figure 6.16 indicate
that the output is true (not 0), when the input signal is greater than its previous value. The output
is false (equal to 0), when the input signal is less than or equal to its previous value.

Figure 6.15. Model for Example 6.12

Figure 6.16. Input and output waveforms for the model of Figure 6.15

Chapter 6 The Logic and Bit Operations Library

6−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.3.2 The Detect Decrease Block

The Detect Decrease block determines if an input is strictly less than its previous value where the
output is true (not 0), when the input signal is less than its previous value, and the output is false
(equal to 0), when the input signal is greater than or equal to its previous value.

Example 6.13
We will create a model with the Detect Decrease block to display changes in output for changes
in the input.

The model is shown in Figure 6.17 and the input and output waveforms are shown in Figure 6.18.
In Figure 6.17, the Signal Generator block is set for a square waveform of amplitude 1 and fre-
quency 0.5, the Unit Delay is included to delay the Step block one time unit, the Detect Decrease
block initial value was set to 0, and the Convert Block is used to convert the output signal of the
Detect Change block from uint(8) to double. The waveforms in Figure 6.18 indicate that the out-
put waveform is true (not 0), when the input signal is less than its previous value, and the output
is false (equal to 0), when the input signal is greater than or equal to its previous value.

Figure 6.17. Model for Example 6.13

Figure 6.18. Input and output waveforms for the model of Figure 6.17

Introduction to Simulink with Engineering Applications 6−21
Copyright © Orchard Publications

The Edge Detection Group Sub−Library

6.3.3 The Detect Change Block

The Detect Change block determines if an input does not equal its previous value where the out-
put is true (not 0), when the input signal does not equal its previous value, and the output is false
(equal to 0), when the input signal equals its previous value.

Example 6.14
We will create a model with the Detect Change block to display changes in output for changes in
the input.

The model is shown in Figure 6.19 and the input and output waveforms are shown in Figure 6.20.
In Figure 6.19, the Detect Change block value was set to 0, and the Convert Block is used to con-
vert the output signal of the Detect Change block from uint(8) to double. The waveforms in Fig-
ure 6.20 indicate that the output waveform is 0 for the interval because the step function
is also 0 during this interval. At the step function jumps to 1 and thus the output assumes a
non−zero value, in this case 1. For , there are no further changes in the input signal and thus
the output drops to 0 indicating that the input signal equals its previous value.

Figure 6.19. Model for Example 6.14

Figure 6.20. Input and output waveforms for the model of Figure 6.19

0 t 1< <
t 1=

t 1>

Chapter 6 The Logic and Bit Operations Library

6−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.3.4 The Detect Rise Positive Block

The Detect Rise Positive block determines if the input is strictly positive, and its previous value
was nonpositive. The output is true (not 0), when the input signal is greater than zero, and its pre-
vious value was less than zero. The output is false (equal to 0), when the input is negative or zero,
or if the input is positive and its previous value was also positive.

Example 6.15
We will create a model with the Detect Rise Nonnegative block to display changes in output for
changes in the input.

The model is shown in Figure 6.21 and the input and output waveforms are shown in Figure 6.22.

Figure 6.21. Model for Example 6.15

Figure 6.22. Input and output waveforms for the model of Figure 6.21

In Figure 6.21, the Signal Generator block is specified as a square waveform of amplitude 1 and
frequency 0.5, the Unit Delay is included to delay the Step block one time unit, the Detect Rise

Introduction to Simulink with Engineering Applications 6−23
Copyright © Orchard Publications

The Edge Detection Group Sub−Library

Nonnegative block initial value was set to 0, and the Convert Block is used to convert the output
signal of the Detect Change block from uint(8) to double. The waveforms in Figure 6.22 indicate
that the output is true (not 0), when the input signal is greater than zero, and its previous value
was less than zero. The output is false (equal to 0), when the input is negative or zero, or if the
input is positive and its previous value was also positive.

6.3.5 The Detect Rise Nonnegative Block

The Detect Rise Nonnegative block determines if the input is greater than or equal to zero, and
its previous value was less than zero. The output is true (not 0), when the input signal is greater
than or equal to zero, and its previous value was less than zero. The output is false (equal to 0),
when the input signal is less than zero, or if nonnegative, its previous value was greater than or
equal to zero.

Example 6.16
We will create a model with the Detect Rise Nonnegative block to display changes in output for
changes in the input.

The model is shown in Figure 6.23 and the input and output waveforms are shown in Figure 6.24.

Figure 6.23. Model for Example 6.16

In Figure 6.23, the Signal Generator block is set for a square waveform of amplitude 1 and fre-
quency 0.5, the Unit Delay is included to delay the Step block one time unit, the Detect Rise
Nonnegative block initial value was set to 0, and the Convert Block is used to convert the output
signal of the Detect Change block from uint(8) to double. The waveforms in Figure 6.24 indicate
that the output is true (not 0), when the input signal is greater than or equal to zero, and its pre-
vious value was less than zero. The output is false (equal to 0), when the input signal is less than
zero, or if nonnegative and its previous value was greater than or equal to zero.

Chapter 6 The Logic and Bit Operations Library

6−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 6.24. Input and output waveforms for the model of Figure 6.23

6.3.6 The Detect Fall Negative Block

The Detect Fall Negative block determines if the input is less than zero, and its previous value
was greater than or equal to zero. The output is true (not 0), when the input signal is less than
zero, and its previous value was greater than or equal to zero. The output is false (equal to 0),
when the input signal is greater than or equal to zero, or if the input signal is nonnegative and its
previous value was positive or zero.

Example 6.17
We will create a model with the Detect Fall Negative block to display changes in output for
changes in the input.

The model is shown in Figure 6.25 and the input and output waveforms are shown in Figure 6.26.

Figure 6.25. Model for Example 6.17

Introduction to Simulink with Engineering Applications 6−25
Copyright © Orchard Publications

The Edge Detection Group Sub−Library

Figure 6.26. Input and output waveforms for the model of Figure 6.25

In Figure 6.25, the Signal Generator block is set for a square waveform of amplitude 1 and fre-
quency 0.5, the Unit Delay is included to delay the Step block one time unit, the Detect Fall Neg-
ative block initial value was set to 0, and the Convert Block is used to convert the output signal of
the Detect Change block from uint(8) to double. The waveforms in Figure 6.26 indicate that the
output is true (not 0), when the input signal is less than zero, and its previous value was greater
than or equal to zero. The output is false (equal to 0), when the input signal is greater than or
equal to zero, or if the input signal is nonnegative and its previous value was positive or zero.

6.3.7 The Detect Fall Nonpositive Block

The Detect Fall Nonpositive block determines if the input is less than or equal to zero, and its
previous value was positive. The output is true (not 0), when the input signal is less than or equal
to zero, and its previous value was greater than zero. The output is false (equal to 0), when the
input signal is greater than zero, or if it is nonpositive and its previous value was nonpositive.

Example 6.18
We will create a model with the Detect Fall Nonpositive block to display changes in output for
changes in the input.

The model is shown in Figure 6.27 and the input and output waveforms are shown in Figure 6.28.

Chapter 6 The Logic and Bit Operations Library

6−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 6.27. Model for Example 6.18

Figure 6.28. Input and output waveforms for the model of Figure 6.27

In Figure 6.27, the Signal Generator block is set for a square waveform of amplitude 1 and fre-
quency 0.5, the Unit Delay is included to delay the Step block one time unit, the Detect Fall
Nonpositive block initial value was set to 0, and the Convert Block is used to convert the output
signal of the Detect Change block from uint(8) to double. The waveforms in Figure 6.28 indicate
that the output is true (not 0), when the input signal is less than or equal to zero, and its previous
value was greater than zero. The output is false (equal to 0), when the input signal is greater than
zero, or if it is nonpositive and its previous value was nonpositive.

Introduction to Simulink with Engineering Applications 6−27
Copyright © Orchard Publications

Summary

6.4 Summary
• The Logical Operator block performs the specified logical operation on its inputs. An input

value is TRUE (1) if it is nonzero and FALSE (0) if it is zero. The Boolean operation connect-
ing the inputs is selected with the Operator parameter list in the Function Block Parameters
window. The block updates to display the selected operator. The supported operations are
given below.

Operation Description:

AND − TRUE if all inputs are TRUE

OR − TRUE if at least one input is TRUE

NAND − TRUE if at least one input is FALSE

NOR − TRUE when no inputs are TRUE

XOR − TRUE if an odd number of inputs are TRUE

NOT − TRUE if the input is FALSE and vice-versa

The number of input ports is specified with the Number of input ports parameter. The output
type is specified with the Output data type mode and/or the Output data type parameters. An
output value is 1 if TRUE and 0 if FALSE.

• The Relational Operator block performs the specified comparison of its two inputs. We select
the relational operator connecting the two inputs with the Relational Operator parameter.
The block updates to display the selected operator. The supported operations are given below.

Operation Description:

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the second input

>= TRUE if the first input is greater than or equal to the second input

> TRUE if the first input is greater than the second input

• The Interval Test block performs a test to determine if a signal is in a specified interval. The
block outputs TRUE if the input is between the values specified by the Lower limit and Upper
limit parameters. The block outputs FALSE if the input is outside those values. The output of
the block when the input is equal to the Lower limit or the Upper limit is determined by
whether the boxes next to Interval closed on left and Interval closed on right are selected in
the dialog box.

Chapter 6 The Logic and Bit Operations Library

6−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The Interval Test Dynamic block performs a test to determine if a signal is in a specified inter-
val. This block outputs TRUE if the input is between the values of the external signals up and
lo. The block outputs FALSE if the input is outside those values. The output of the block when
the input is equal to the signal up or the signal lo is determined by whether the boxes next to
Interval closed on left and Interval closed on right are selected in the dialog box.

• The Combinatorial Logic block implements a standard truth table for modeling programma-
ble logic arrays (PLAs), logic circuits, decision tables, and other Boolean expressions. In a
Combinatorial Logic block we specify a matrix that defines all outputs as the Truth table
parameter. Each row of the matrix contains the output for a different combination of input
elements. We must specify outputs for every combination of inputs. The number of columns is
the number of block outputs. We can also implement sequential circuits (that is, circuits with
states) with the Combinatorial Logic block by including an additional input for the state of the
block and feeding the output of the block back into this state input. We can also implement
sequential circuits (that is, circuits with states) with the Combinatorial Logic block by includ-
ing an additional input for the state of the block and feeding the output of the block back into
this state input.

• The Compare To Zero block compares an input signal to zero. We specify how the input is
compared to zero with the Operator parameter. The Operator parameters are listed in the
table below.

The output is 0 if the comparison is false, and 1 if it is true.

• The Compare To Constant block compares an input signal to a constant. We must specify
the constant in the Constant value parameter and how the input is compared to the constant
value with the Operator parameter. The Operator parameters are the same as those of the
Compare to Zero block listed above.

• The Bit Set block sets the specified bit of the stored integer to one. Scaling is ignored. We
specify the bit to be set to one with the Index of bit parameter, where bit zero is the least signif-
icant bit.

Operator Action

== Determine whether the input is equal to the specified constant

~= Determine whether the input is not equal to the specified constant

< Determine whether the input is less than the specified constant

<= Determine whether the input is less than or equal to the specified constant

> Determine whether the input is greater than the specified constant

>= Determine whether the input is greater than or equal to the specified constant

Introduction to Simulink with Engineering Applications 6−29
Copyright © Orchard Publications

Summary

• The Bit Clear block sets the specified bit, given by its index, of the stored integer to zero. Scal-
ing is ignored. We can specify the bit to be set to zero with the Index of bit parameter, where
bit zero is the least significant bit.

• The Bitwise Operator block performs the specified bitwise operation on its operands. Unlike
the logic operations performed by the Logical Operator block, bitwise operations treat the
operands as a vector of bits rather than a single number. The supported operations are given
below.

Operation Description:

AND − TRUE if the corresponding bits are all TRUE

OR − TRUE if at least one of the corresponding bits is TRUE

NAND − TRUE if at least one of the corresponding bits is FALSE

NOR − TRUE if no corresponding bits are TRUE

XOR − TRUE if an odd number of corresponding bits are TRUE

NOT − TRUE if the input is FALSE and vice-versa

• Masking is performed by using a logical operator (AND, OR, XOR, NOT) to combine the
mask and the data value.

• The Shift Arithmetic block is be used to shift the bits or the binary point of a binary word, or
both. This block performs arithmetic bit shifts on signed numbers. Therefore, the most signifi-
cant bit is recycled for each bit shift. If the bits and the binary point are to be shifted to the left,
we specify negative values.

• The Extract Bits block allows us to output a contiguous selection of bits from the stored inte-
ger value of the input signal. The Bits to extract parameter defines the method by which we
select the output bits. We select Upper half to output the half of the input bits that contain
the most significant bit. If there is an odd number of bits in the input signal, the number of out-
put bits is given by

We select Lower half to output the half of the input bits that contain the least significant bit. If
there is an odd number of bits in the input signal, the number of output bits is given by the
relation above.

• The Detect Increase block determines if an input is strictly greater than its previous value.
The output is true (not 0), when the input signal is greater than its previous value. The output
is false (equal to 0), when the input signal is less than or equal to its previous value.

Number of output bits ceil Number of input bits 2⁄()=

Chapter 6 The Logic and Bit Operations Library

6−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The Detect Decrease block determines if an input is strictly less than its previous value where
the output is true (not 0), when the input signal is less than its previous value, and the output
is false (equal to 0), when the input signal is greater than or equal to its previous value.

• The Detect Change block determines if an input does not equal its previous value where the
output is true (not 0), when the input signal does not equal its previous value, and the output
is false (equal to 0), when the input signal equals its previous value.

• The Detect Rise Positive block determines if the input is strictly positive, and its previous
value was nonpositive. The output is true (not 0), when the input signal is greater than zero,
and its previous value was less than zero. The output is false (equal to 0), when the input is
negative or zero, or if the input is positive and its previous value was also positive.

• The Detect Rise Nonnegative block determines if the input is greater than or equal to zero,
and its previous value was less than zero. The output is true (not 0), when the input signal is
greater than or equal to zero, and its previous value was less than zero. The output is false
(equal to 0), when the input signal is less than zero, or if nonnegative, its previous value was
greater than or equal to zero.

• The Detect Fall Negative block determines if the input is less than zero, and its previous value
was greater than or equal to zero. The output is true (not 0), when the input signal is less than
zero, and its previous value was greater than or equal to zero. The output is false (equal to 0),
when the input signal is greater than or equal to zero, or if the input signal is nonnegative and
its previous value was positive or zero.

• The Detect Fall Nonpositive block determines if the input is less than or equal to zero, and its
previous value was positive. The output is true (not 0), when the input signal is less than or
equal to zero, and its previous value was greater than zero. The output is false (equal to 0),
when the input signal is greater than zero, or if it is nonpositive and its previous value was non-
positive.

Introduction to Simulink with Engineering Applications 6−31
Copyright © Orchard Publications

Exercises

6.5 Exercises

1. Convert the row vector to by creating a
model using the Bit Clear block. Display the converted vector in decimal form.

2. Create a model with the Bitwise Operator block to convert the binary number to
the binary number using the bit mask check box to specify the appropriate bits.

3. Create a model with Combinatorial Logic blocks to implement a full subtractor* logic circuit.

4. Create a model with the Detect Change block to display changes in output when the input is a
square waveform.

5. Create a model with an Extract Bits block that accepts the decimal number as the input
and outputs the binary number .

6. Create a model with an Extract Bits block that accepts the decimal number as the input
and outputs the binary number .

7. Create a model with an Extract Bits block that accepts the decimal number as the input
and outputs the binary number .

8. Create a model with an Extract Bits block that accepts the decimal number as the input
and outputs the binary number .

9. Create a model with a Shift Arithmetic block with inputs decimal and decimal
to display the outputs when both of these numbers are shifted right by 3 bits and the binary
point is shifted right by 2 bits.

* For a detailed description of a full subtractor and other logic circuits please refer to Digital Circuit Analysis and
Design with an Introduction to CPLDs and FPGAs, ISBN 0-9744239-6-3.

8125 5963 2473 8690[] 8117 5961 2472 8690[]

01111111[]
01100010[]

65403
0111 1011[]

65403
1111[]

65403
111011[]

65403
11110111[]

+32.75 48.875–

Chapter 6 The Logic and Bit Operations Library

6−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.6 Solutions to End−of−Chapter Exercises
1.

The given vector is shown in the Display 1 block and the converted vector in Display 2 block.

For this model we have configured the blocks as follows:

Constant block − Constant value: − Signal data types: int(32)

Clear bit block − Function block Parameters, Index bit: [3 1 0 2]

Display 1 and Display 2 blocks, Format: decimal (Stored Integer)

2.
The model is shown below where we have configured the blocks as follows:

Constant block - Constant value: − Signal data types: uint(8)

Bitwise Operator block − Operator: AND − Use bit mask: Check mark − Bit Mask:

Display 1 and Display 2 blocks, Format: binary (Stored Integer)

3.
The Truth table for a full subtractor digital circuit is shown below where is the minuend,
is the subtrahend, is the previous borrow, addition, is the difference resulting from the of
the present subtraction, and is the present borrow.

8125 5963 2473 8690[]

127[]

26 25 21+ +

X Y
Z D

B

Introduction to Simulink with Engineering Applications 6−33
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

The model is shown below where we have specified:

Constant blocks - Constant value: , , ... in Constant blocks 1 through 8
respectively − Signal data types: boolean − Interpret vector parameters:
check mark

Combinatorial Logic blocks (all) − Truth table: − Sample
time:

Display blocks − Format: short

The model looks more presentable below where we lined-up the individual segments one below
the other, we selected all Combinatorial Logic blocks, and from the Edit drop menu we
selected Create Subsystem.

Inputs Outputs

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

X Y Z D B

0 0 0[] 0 0 1[] 1 1 1[]

0 0; 1 1; 1 1; 0 1; 1 0; 0 0; 0 0; 11[]
1–

Chapter 6 The Logic and Bit Operations Library

6−34 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

4.

In the model above, the Signal Generator block was set to square waveform with amplitude 1
and frequency 0.5 Hz. The Unit Delay is included to delay the Step block one time unit, the
Detect Change block value was set to 0, and the Convert Block is used to convert the output
signal of the Detect Change block from uint(8) to double. The waveforms below indicate that
the output waveform remains at a non-zero value for all since the input changes repeat-
edly every time interval.

t 1>

Introduction to Simulink with Engineering Applications 6−35
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

5.
The model is shown below where the Constant block is set for Signal data types − Output data
type mode: uint16, the Display 1 block shows the given decimal number in binary form, and the
Display 2 block shows the Lower Half of that binary number. Both display blocks have been set
for binary (Stored Integer) format.

6.
The binary equivalent of the decimal number is and since we
want the output to be , we select Range starting with most significant bit for the Bits to
extract parameter, and specify 4 for the Number of bits parameter. The model is shown below.

7.
The binary equivalent of the decimal number is and since we
want the output to be , we select Range starting with least significant bit for the Bits to
extract parameter, and specify 6 for the Number of bits parameter. The model is shown below.

65403 1111 1111 0111 1011
1111

65403 1111 1111 0111 1011
111011

Chapter 6 The Logic and Bit Operations Library

6−36 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.
The binary equivalent of the decimal number is and since we
want the output to be , we select Range of bits for the Bits to extract parameter, and
we specify [5 12] for the Bit indices parameter. The model is shown below.

9.
The model is shown below where the Constant blocks have been set for Output data type
sfix(12) and the output scaling value 2^−3. Since it is specified that the bits and the binary
point are to be shifted to the right, in the Shift Arithmetic block we enter positive values, that
is, the values and respectively. All three display blocks have been set for binary (Stored
Integer) format. We can check the Shift Arithmetic block outputs as follows:

and after shifting 3 bits to the right and the binary point 2 places to the right we obtain

and the binary point is understood to be to the right of the least significant bit.

Likewise,

and after shifting 3 bits to the right and the binary point 2 places to the right we obtain

and the binary point is understood to be 2 places to the right of the least significant bit.

65403 1111 1111 0111 1011
11110111

3 2

+32.75()10 0001 0000 0.110()2=

0000 0010 0000

48.875–()10 0001 1000 0.111–() 2 1110 0111 1.001()2s complement= =

1111 1100 1111

Introduction to Simulink with Engineering Applications 6−37
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

Introduction to Simulink with Engineering Applications 7−1
Copyright © Orchard Publications

Chapter 7

The Lookup Tables Library

his chapter is an introduction to the Lookup Tables library. This is the sixth library in the
Simulink group of libraries and contains the blocks shown below. We will describe the func-
tion of each block included in this library and we will perform simulation examples to illus-

trate their application.

T

Chapter 7 The Lookup Tables Library

7−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

7.1 The Lookup Table Block

The Lookup Table block computes an approximation to a function where the data
vectors x and y are given, and it is required that the x data vector must be monotonically increas-
ing. Moreover, the length of the x and y data vectors must be the same. Please refer to the Help
menu for this block for additional information. The Lookup Table icon displays a graph of the
input vector versus the output vector. When a parameter is changed on the Block Parameters dia-
log box, the graph is automatically redrawn when we click on the Apply button.

To define a table, we specify the Vector of input values parameter as a vector and the Vec-
tor of output values parameter as another . The block generates output based on the input
values using one of these methods selected from the Look-up method parameter list:

1. Interpolation−Extrapolation—This is the default method; it performs linear interpolation and
extrapolation of the inputs.

If a value matches the block's input, the output is the corresponding element in the output
vector. If no value matches the block's input, then the block performs linear interpolation
between the two appropriate elements of the table to determine an output value. If the block
input is less than the first or greater than the last input vector element, then the block extrap-
olates using the first two or last two points.

2. Interpolation−Use End Values—This method performs linear interpolation as described above
but does not extrapolate outside the end points of the input
vector. Instead, the end−point values are used.

The methods 3, 4, and 5 listed below neither interpolate nor extrapolate. Also, there is no differ-
ence among these methods when the input x corresponds exactly to table breakpoints.

3. Use Input Nearest—With this method the element in x nearest the current input is found. The
corresponding element in y is then used as the output.

4. Use Input Below—With this method the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output. If there is
no element in x below the current input, the nearest element is used.

5. Use Input Above—With this method the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output. If there
is no element in x above the current input, the nearest element is used.

To create a table with step transitions, we repeat an input value with different output values.

y f x()=

1 n×
1 n×

Introduction to Simulink with Engineering Applications 7−3
Copyright © Orchard Publications

The Lookup Table (2−D) Block

Example 7.1
We will create a model with a Lookup Table block configured to use a vector of input values
given by , and a vector of output values given by .*

The model is shown in Figure 7.1 where the Display 1 block shows the true values of the natural
log for the range and the Display 2 block shows the Lookup Table values for the same range
of numbers. In the Constant block we have specified the range and the Lookup Table block
has been configured with Vector of input values , Vector output values , and
Lookup method Interpolation − Extrapolation. The Math Function block is part of the Math
Operations library, and it is described in Subsection 8.1.16, Chapter 8, Page 8.11.

Figure 7.1. Model for Example 7.1

7.2 The Lookup Table (2−D) Block

The Lookup Table (2−D) block computes an approximation for a function when
the data points x, y, and z are given. The Row index input values parameter is a vector of x
data points, the Column index input values parameter is a vector of y data points, and the
Matrix of output values parameter is an matrix of z data points. Both the row and column

* We recall that in MATLAB and Simulink log(x) implies the natural logarithm of x. The common (base 10) log-
arithm is denoted as log10(x).

1:5[] 1:5[]()log

1:5[]
1:5[]

1:5[] 1:5[]()log

z f x y,()=

1 m×
1 n×

m n×

Chapter 7 The Lookup Tables Library

7−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

vectors must be monotonically increasing. The block generates output based on the input values
using one of these methods selected from the Look-up method parameter list:

Interpolation−Extrapolation — This is the default method; it performs linear interpolation and
extrapolation of the inputs. If the inputs match row and column
parameter values, the output is the value at the intersection of the
row and column. If the inputs do not match row and column
parameter values, then the block generates output by linearly
interpolating between the appropriate row and column values. If
either or both block inputs are less than the first or greater than
the last row or column values, the block extrapolates using the first
two or last two points.

Interpolation−Use End Values — This method performs linear interpolation as described above but
does not extrapolate outside the end points of x and y. Instead,
the end-point values are used.

Use Input Nearest — This method does not interpolate or extrapolate. Instead, the elements in x
and y nearest the current inputs are found. The corresponding element in z
is then used as the output.

Use Input Below — This method does not interpolate or extrapolate. Instead, the elements in x
and y nearest and below the current inputs are found. The corresponding
element in z is then used as the output. If there are no elements in x or y
below the current inputs, then the nearest elements are found.

Use Input Above — This method does not interpolate or extrapolate. Instead, the elements in x
and y nearest and above the current inputs are found. The corresponding
element in z is then used as the output. If there are no elements in x or y
above the current inputs, then the nearest elements are found.

Example 7.2
Consider the matrix

We will create a model using the Lookup Table (2-D) block to display the second element of the
third row of the Inverse matrix of .

The model is shown in Figure 7.2 where in the Lookup Table (2-D) block we have entered:

A
1 1 j– 2

1 j+ 3 j
2 j– 0

=

A

Introduction to Simulink with Engineering Applications 7−5
Copyright © Orchard Publications

The Lookup Table (n−D) Block

Row and Column index of input values:

Vector of output values: inv(A)

Lookup method: Interpolation-Extrapolation

and in MATLAB’s Command Window we entered

A=[1 1−j 2; 1+j 3 j; 2 −j 0];

Figure 7.2. Model for Example 7.2

Check with MATLAB:

A =

 1.0000 1.0000 - 1.0000i 2.0000
 1.0000 + 1.0000i 3.0000 0 + 1.0000i
 2.0000 0 - 1.0000i 0

inv(A)

 0.1111 - 0.0000i 0.0000 + 0.2222i 0.5556 - 0.1111i
 0 - 0.2222i 0.4444 - 0.0000i -0.2222 - 0.1111i
 0.5556 + 0.1111i -0.2222 + 0.1111i -0.1111

7.3 The Lookup Table (n−D) Block

The Lookup Table (n−D) block n−dimensional interpolated table lookup including index
searches. The table is a sample representation of a function of N variables. Breakpoint sets relate
the input values to the positions in the table. The first dimension corresponds to the top (or left)
input port. Thus, the block generates an output value by comparing the block inputs with the
breakpoint set parameters. The first input identifies the first dimension (row) breakpoints, the
second breakpoint set identifies a column, the third a page, and so on.

1 2 3[]

Chapter 7 The Lookup Tables Library

7−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 7.3
We will create a model using a Lookup Table (n−D) block with the following specifications:

Number of table dimensions: 2

First input (row) breakpoint set: x=[0 1 2 3 4 5];

Second input (column) breakpoint set: y=[0 1 2 3 4 5];

Index search method: Binary Search

Table data:

A=[0 1 2 3 4 5; 6 7 8 9 10 11; 12 13 14 15 16 17;...
18 19 20 21 22 23; 24 25 26 27 28 29; 30 31 32 33 34 35];

Interpolation and extrapolation method: Linear

The model is shown in Figure 7.3 where in the Lookup Table (n−D) block we have entered the
following:

Number of table dimensions: 2

First input (row) breakpoint set: x

Second input (column) breakpoint set: y

Index search method: Binary Search

Table data: A

Interpolation and extrapolation method: Linear

In MATLAB’s Command Window we have entered:

x=[0 1 2 3 4 5]; y=[0 1 2 3 4 5];

A=[0 1 2 3 4 5; 6 7 8 9 10 11; 12 13 14 15 16 17;...
18 19 20 21 22 23; 24 25 26 27 28 29; 30 31 32 33 34 35];

Figure 7.3. Model for Example 7.3

The Display block shows the value of the element located on Row 2 and Column 5. We can verify
that with MATLAB by typing

Introduction to Simulink with Engineering Applications 7−7
Copyright © Orchard Publications

The PreLookup Index Search Block

A(3,6)

ans =
 17

The indices (2,5) in Simulink and (3,6) in MATLAB are same since Simulink uses zero−based
indices whereas MATLAB uses one−based indices.

7.4 The PreLookup Index Search Block

The PreLookup Index Search block calculates the indices and interval fractions for the input
value in the Breakpoint data parameter. This block is intended for use with the Interpolation (n−
D) Using PreLookup block which is described in the next section.To use this block, we must
define a set of breakpoint values. In normal use, this breakpoint data set corresponds to one
dimension of a Table data parameter in an Interpolation (n−D) using PreLookup block. The block
generates a pair of outputs for each input value by calculating the index of the breakpoint set ele-
ment that is less than or equal to the input value and the resulting fractional value that is a num-
ber that represents the input value's normalized position between the index and the next
index value for in-range input.

Example 7.4

The breakpoint data in a PreLookup Index Search block is . We will cre-
ate a model to display the (index, fraction) pair denoted as k and f on the block when the input
value u is 4.13.

The model is shown in Figure 7.4 where in the Display block the first value is the index, i.e.,
, and the second value is the fraction, i.e.

Figure 7.4. Model for Example 7.4

0 f 1<≤

0 1 2 3 4 5 6 7 8 9[]

k 4= f 0.13=

Chapter 7 The Lookup Tables Library

7−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

7.5 The Interpolation (n−D) Using PreLookup Block

The Interpolation (n−D) Using PreLookup block uses the precalculated indices and interval
fractions from the PreLookup Index Search block to perform the equivalent operation that the
Lookup Table (n−D) performs. This block supports two interpolation methods: flat (constant)
interval lookup and linear interpolation. These operations can be applied to 1−D, 2−D, 3−D, 4−D,
and higher dimensioned tables. We define a set of output values as the Table data parameter.
These table values must correspond to the breakpoint data sets that are in the PreLookup Index
Search block. The block generates its output by interpolating the table values based on the
(index, fraction) pairs fed into the block by each PreLookup Index Search block.

The block generates output based on the input values:

1. If the inputs match breakpoint parameter values, the output is the table value at the intersec-
tion of the row, column, and higher dimensions' breakpoints.

2. If the inputs do not match row and column parameter values, the block generates output by
interpolating between the appropriate table values. If either or both block inputs are less than
the first or greater than the last row or column parameter values, the block extrapolates from
the first two or last two points in each corresponding dimension.

Example 7.5
We will create a model with an Interpolation (n−D) Using PreLookup block with two input indi-
ces representing the rows and columns of a square matrix and the output set to display the square
root of a number in the range of integer numbers 1 through 100. For this example, we want to
define the two inputs such that the output displayed will be the square root of 12.

We can form a array with the row vector and the column
vector and multiplying these. The products are as shown below.

 1 2 3 4 5 6 7 8 9 10
 2 4 6 8 10 12 14 16 18 20
 3 6 9 12 15 18 21 24 27 30
 4 8 12 16 20 24 28 32 36 40
 5 10 15 20 25 30 35 40 45 50
 6 12 18 24 30 36 42 48 54 60
 7 14 21 28 35 42 49 56 63 70

10 10× a 1 2 3 4 5 6 7 8 9 10[]=

b 1 2 3 4 5 6 7 8 9 10[]'=

Introduction to Simulink with Engineering Applications 7−9
Copyright © Orchard Publications

The Direct Lookup Table (n−D) Block

 8 16 24 32 40 48 56 64 72 80
 9 18 27 36 45 54 63 72 81 90
 10 20 30 40 50 60 70 80 90 100

We can address any element of this array by indexing the rows and columns. Recalling that Sim-
ulink uses zero−based indexing, we can access the number 12 by the indices , , ,
or . The model is shown in Figure 7.5 where the indices for the Constant blocks are as
shown, the Interpolation (n−D) Using PreLookup block has been set for

Number of table dimensions: 2

Table data: sqrt(a*b)

Interpolation and Extrapolation methods: Linear

and in MATLAB’s Command Window we entered

a=[1; 2; 3; 4; 5; 6; 7; 8; 9; 10]; b=a';

Figure 7.5. Model for Example 7.5

7.6 The Direct Lookup Table (n−D) Block

The Direct Lookup Table (n−D) block uses its block inputs as zero−based indices into an n−D
table. The number of inputs varies with the shape of the output desired. The output can be a sca-
lar, a vector, or a 2−D matrix. The lookup table uses zero−based indexing, thus an input of 2
returns the third element in that dimension. We recall that MATLAB uses one−based indexing
and thus an input of 2 returns the second element in that dimension.

We define a set of output values as the Table data parameter, and we specify whether the output
shape is an element, a column, or a 2−D matrix. The first input specifies the zero−based index to
the first dimension higher than the number of dimensions in the output, the second input speci-
fies the index to the next table dimension, and so on, as illustrated in the Help menu for this

1 5,() 2 3,() 3 2,()
5 1,()

Chapter 7 The Lookup Tables Library

7−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

block. The Help menus shows also the 15 different icons that this block displays depending on the
options we choose in the block’s dialog box.

To better understand the use of this block, let us review multi−dimensional arrays and illustrate
with examples.

Let us consider the matrix defined in MATLAB as

A=[1 2 3; 2 4 −5; 3 −5 6];

This is a two−dimensional array that uses two subscripts where the first references the row (1st
dimension), and the second references the column (2nd dimension). Thus, A(3,3) is a two-
dimensional array with 3 rows and 3 columns are displayed below.

A =
 1 2 3
 2 4 −5
 3 −5 6

A three−dimensional array adds another dimension to the two−dimensional array where the addi-
tional dimension is another page* behind the two−dimensional array. Thus for a three-
dimensional array with three pages the first page is displayed as

the second page is displayed as

and the third page is displayed as

* The term page used to describe the third dimension can be thought of as two or more two−dimensional arrays
stacked one on top of another in the same way the pages of a closed book are stacked one on top of another.
Dimensions higher than three can be created but it is not possible to visualize.

A

3 3×

1 1 1, ,() 1 2 1, ,() 1 3 1, ,()
2 1 1, ,() 2 2 1, ,() 2 3 1, ,()
3 1 1, ,() 3 2 1, ,() 3 3 1, ,()

1 1 2, ,() 1 2 2, ,() 1 3 2, ,()
2 1 2, ,() 2 2 2, ,() 2 3 2, ,()
3 1 2, ,() 3 2 2, ,() 3 3 2, ,()

1 1 3, ,() 1 2 3, ,() 1 3 3, ,()
2 1 3, ,() 2 2 3, ,() 2 3 3, ,()
3 1 3, ,() 3 2 3, ,() 3 3 3, ,()

Introduction to Simulink with Engineering Applications 7−11
Copyright © Orchard Publications

The Direct Lookup Table (n−D) Block

It is to be noted that in a three−dimensional array the page number is indicated by the third index
in each element of the array. For instance, the fourth page would contain the elements ,

, and so on.

Suppose that is defined as

A=[1 2 3; −2 4 5; 3 −1 8];

and we want to add a third dimension to by adding a second page with another matrix whose
elements are . The second page is defined as

A(:,:,2)=[4 5 6; −1 3 2; 7 8 -2]

and thus in MATLAB’s Command Window we type

A=[1 2 3; −2 4 5; 3 −1 8]; A(:,:,2)=[4 5 6; −1 3 2; 7 8 −2];

and MATLAB outputs

A(:,:,1) =
 1 2 3
 -2 4 5
 3 -1 8

A(:,:,2) =
 4 5 6
 -1 3 2
 7 8 -2

Now suppose that we want to add a third page whose all elements have the same value, say 2. We
enter
A(:,:,3)=2;

and when we type

A(:,:,3)=2

MATLAB displays

 2 2 2
 2 2 2
 2 2 2

Next let us consider the three−dimensional array

A(:,:,1)=[1 2 3; −2 4 5; 3 −1 8]; A(:,:,2)=[4 5 6; −1 3 2; 7 8 −2];...
A(:,:,3)=[2 4 −6; − 3 5 8; 7 9 −2]

and suppose that we want to convert it to a four−dimensional array. We enter

1 1 4, ,()
1 2 4, ,()

A

A
4 5 6; 1 3 2; 7 8 2––[]

3 3 3××

Chapter 7 The Lookup Tables Library

7−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

A(:,:,1)=[1 2 3; −2 4 5; 3 −1 8];
A(:,:,2)=[4 5 6; −1 3 2; 7 8 −2];
A(:,:,3)=[2 4 −6; − 3 5 8; 7 9 −2]

and MATLAB outputs

A(:,:,1,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,2,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,3,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,1,2) =
 1 2 3
 -2 4 5
 3 -1 8

A(:,:,2,2) =
 4 5 6
 -1 3 2
 7 8 -2

A(:,:,3,2) =
 2 4 -6
 -3 5 8
 7 9 -2

We observe that A(:,:,1,1), A(:,:,2,1), and A(:,:,3,1) are padded with zeros to
maintain the corresponding sizes of the dimensions.

The MATLAB User’s Manual describes the procedure for generating arrays using MATLAB
functions, and several examples are provided.

Let us suppose that we want to generate a four−dimensional array with 10 rows, 5 columns, 3
pages, with a fourth dimension and all elements are 2. The array that will satisfy this requirement
is

a=ones(10,5,3,1)*2

Introduction to Simulink with Engineering Applications 7−13
Copyright © Orchard Publications

The Direct Lookup Table (n−D) Block

and when this statement is executed, MATLAB displays

a(:,:,1) =
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2
 2 2 2 2 2

Arrays a(:,:,2) and a(:,:,3) also display the same array.

The following example is similar to that in the Help menu for this block.

Example 7.6
We will create a model with a Direct Lookup Table (n−D) block with the four−dimensional array
a=ones(10,3,4,3), to display the first column of the array a(:,:,4,3).

In MATLAB’s Command Window we enter

a=ones(10,3,4,3); L=prod(size(a)); a(1:L)=[1:L]';

The model is shown in Figure 7.6 where in the Direct Lookup Table (n−D) block we have entered

Number of table dimensions: 4

Input select this object from table: Column

Figure 7.6. Model for Example 7.6

Chapter 7 The Lookup Tables Library

7−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Make table an input: unchecked

Table data: a

Constant 1 block: 0 (The Lookup table uses zero−based indexing so 0 is the index for the first col-
umn.

Constant 2 block: 4 (or uint16(3) if we wish to specify unassigned integer number)

Constant 3 block: 3 (or uint8(3) if we wish to specify unassigned integer number)

To verify the Display block in Figure 7.6, in MATLAB’s Command Window we enter

a(:,:,4,3)

and MATLAB displays the array below.

 331 341 351
 332 342 352
 333 343 353
 334 344 354
 335 345 355
 336 346 356
 337 347 357
 338 348 358
 339 349 359
 340 350 360

To display the second or third column, in the Display 1 block we replace 0 with 1 or 2 as appropri-
ate.

Example 7.7
It is given that a=ones(5,5,3,4,2); L=prod(size(a)); a(1:L)=[1:L]'; We will create a model to display
the output corresponding to this array if the Input select this object from table is specified as 2−D
Matrix.

The model is shown in Figure 7.7 where in MATLAB’s Command Window we have entered

a=ones(5,5,3,4,2); L=prod(size(a)); a(1:L)=[1:L]';

Introduction to Simulink with Engineering Applications 7−15
Copyright © Orchard Publications

The Lookup Table Dynamic Block

Figure 7.7. Model for Example 7.7

The values in the Display block of Figure 7.7 can be verified by typing

a(:,:,3,4,2)

in MATLAB’s Command Window which displays the array below.

 576 581 586 591 596
 577 582 587 592 597
 578 583 588 593 598
 579 584 589 594 599
 580 585 590 595 600

7.7 The Lookup Table Dynamic Block

The Lookup Table Dynamic block computes an approximation to some function
given x and y data vectors. The lookup method can use interpolation, extrapolation, or the origi-
nal values of the input. Unlike the Lookup Table block, the Lookup Table Dynamic block allows
us to change the table data without stopping the simulation. For example, we may want to auto-
matically incorporate new table data if the physical system we are simulating changes.

There are certain restrictions in using this block. Please refer to the Help menu for this block.

Example 7.8
The square root of the numbers 50 through 56 is given in the table below. We will create a model
with a Lookup Table Dynamic block to compute an approximation to .

y f x()=

f 52.6()

Chapter 7 The Lookup Tables Library

7−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The model is shown in Figure 7.8 where in MATLAB’s Command Window we have entered:

xdata=[50 51 52 53 54 55 56];...

ydata=[7.07107 7.14143 7.21110 7.28011 7.34847 7.41620 7.48331];

Figure 7.8. Model for Example 7.8

7.8 The Sine and Cosine Blocks

The Sine and Cosine blocks implement a sine and / or cosine wave in fixed point using a lookup
table method that uses quarter wave symmetry. From Fourier series* textbooks we recall that:

1. Any waveform that repeats itself after some time, can be expressed as a series of harmonically
related sinusoids, i.e., sinusoids whose frequencies are multiples of a fundamental frequency (or
first harmonic). For example, a series of sinusoids with frequencies , , ,
and so on, contains the fundamental frequency of , a second harmonic of , a
third harmonic of , and so on. In general, any periodic waveform can be expressed
as

50 51 52 53 54 55 56

7.071 7.141 7.211 7.280 7.348 7.416 7.483

* For a detailed discussion on Fourier series, please refer to Signals and Systems with MATLAB Applications,
ISBN 0−9709511−6−7.

x

y f x() x= =

1 MHz 2 MHz 3 MHz
1 MHz 2 MHz

3 MHz f t()

Introduction to Simulink with Engineering Applications 7−17
Copyright © Orchard Publications

The Sine and Cosine Blocks

(7.1)

or

(7.2)

where the first term is a constant, and represents the (average) component of .
Thus, if represents some voltage , or current , the term is the average value
of or .

The terms with the coefficients and together, represent the fundamental frequency com-

ponent *. Likewise, the terms with the coefficients and together, represent the second
harmonic component , and so on.

2. Odd functions have only sine terms.

3. Even functions have no sine terms.

4. If there is half−wave symmetry, only odd harmonics (sine and cosine) are present.

Quarter−wave symmetry implies that a waveform contains only sine odd harmonics and these can
be formed digitally with a series of zeros and ones.† With quarter−wave symmetry, we begin with a
single quadrant, we copy it, we reverse the copy, we shift it by 90 degrees, we add it to the first
quarter to obtain half of the waveform, and finally we copy the half waveform, we reverse it, we
shift it by 180 degrees, and we add it to the first half too obtain the full waveform.

In Simulink, the Sine and Cosine block can output the following functions of the input signal,
depending upon what we select for the Output formula parameter:

We define the number of lookup table points in the Number of data points for lookup table
parameter. The block implementation is most efficient when we specify the lookup table data

* We recall that where is a constant.

† Sinewaves with repeating long sequences of zeros and ones are referred to as “magic sinewaves”. They can be
created with simple but extremely carefully chosen digitally switched pulses.

f t() 1
2
---a0 a1 ωtcos a2 2ωtcos a3 3ωt a4 4ωtcos+cos …+ + + +=

 + b1 ωtsin b2 2ωtsin b3 3ωt b4 4ωtsin+sin …+ + +

f t() 1
2
---a0 an nωtcos bn nωtsin+()

n 1=

∞

∑+=

a0 2⁄ DC f t()

f t() v t() i t() a0 2⁄

v t() i t()

a1 b1

ω a2 b2

k1 ωtcos k2 ωtsin+ k ωt θ+()cos= θ

2ω

2πx()sin
2πx()cos

eiπx

2πx() and 2πx()cossin

Chapter 7 The Lookup Tables Library

7−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

points to be , where n is an integer. We use the Output word length parameter to specify
the word length of the fixed-point output data type. The fraction length of the output is the out-
put word length minus 2.

A function Lookup Table is a procedure by which we approximate a function by a table with a
finite number of points (x,y). A tutorial on producing Lookup Tables in Simulink is presented in
the Simulink Fixed Point User’s Guide.

Simulink implements lookup tables that use breakpoints whose spacing is uneven, even, and
power of two. For a comparison, please review the Simulink demo fxpdemo_approx_sin. To open
the demo, type at the MATLAB prompt

fxpdemo_approx_sin

There are three fixed−point lookup tables in this model. All three lookup tables approximate the

function over the first quadrant. All three achieve a worst-case error of less than .

The example below illustrates the creation of a model using the Repeating Stair Sequence block
described in the Sources Library, Section 15.2.13, Chapter 15, Page15−21, and the Lookup Table
block described in this chapter.

Example 7.9
We will create a model using the uneven spacing fixed−point option of a Lookup Table block to
approximate the function over the first quadrant.

The model is shown in Figure 7.9 and the input and output waveforms in Figure 7.10. For the
model of Figure 7.9, the Configuration Parameters are chosen as Type: Fixed-step, and Solver:
Discrete (no continuous states). For the Repeating Stair Sequence block the Vector of output
values was set as linspace(0, 0.25, 50). For the Lookup Table block the Vector of input values is
specified as xuneven, the Table data is specified as yuneven, and the Lookup method is specified
as Interpolation - Use End Values.

Figure 7.9. Model for Example 7.9

2n 1+

2πxsin 2 8–

2πxsin

Introduction to Simulink with Engineering Applications 7−19
Copyright © Orchard Publications

The Sine and Cosine Blocks

Figure 7.10. Input and output waveforms for the model of Figure 7.9

Chapter 7 The Lookup Tables Library

7−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

7.9 Summary
• A function Lookup Table is a procedure by which we approximate a function by a table with a

finite number of points . Simulink implements lookup tables that use breakpoints whose
spacing is uneven, even, and power of two. For a comparison, please review the Simulink demo
fxpdemo_approx_sin. To view this demo, type at the MATLAB prompt

fxpdemo_approx_sin

• The Lookup Table block computes an approximation to a function where the data
vectors x and y are given. The length of the x and y data vectors provided to this block must
match. The length of the x and y data vectors provided to this block must match. It is required
that the x data vector must be monotonically increasing. To create a table with step transi-
tions, we repeat an input value with different output values.

• The Lookup Table (2−D) block computes an approximation for a function when
the data points x, y, and z are given. The Row index input values parameter is a vector of
x data points, the Column index input values parameter is a vector of y data points, and
the Matrix of output values parameter is an matrix of z data points. Both the row and
column vectors must be monotonically increasing.

• The Lookup Table (n−D) block evaluates a sampled representation of a function in N vari-
ables by interpolating between samples to give an approximate value for, even when the func-
tion is known only empirically. The block efficiently maps the block inputs to the output value
using interpolation on a table of values defined by the block's parameters. Interpolation meth-
ods are flat (constant), linear, and cubic spline. We can apply any of these methods to 1−D, 2−
D, 3−D, or higher dimensional tables.

• The PreLookup Index Search block calculates the indices and interval fractions for the input
value in the Breakpoint data parameter. To use this block, we must define a set of breakpoint
values. In normal use, this breakpoint data set corresponds to one dimension of a Table data
parameter in an Interpolation (n−D) using PreLookup block. The block generates a pair of
outputs for each input value by calculating the index of the breakpoint set element that is less
than or equal to the input value and the resulting fractional value that is a number
that represents the input value's normalized position between the index and the next index
value for in-range input.

• The Interpolation (n−D) Using PreLookup block uses the precalculated indices and interval
fractions from the PreLookup Index Search block to perform the equivalent operation that the
Lookup Table (n−D) performs. This block supports two interpolation methods: flat (constant)
interval lookup and linear interpolation. These operations can be applied to 1−D, 2−D, 3−D,
4−D, and higher dimensioned tables.

x y,()

y f x()=

z f x y,()=

1 m×
1 n×

m n×

0 f 1<≤

Introduction to Simulink with Engineering Applications 7−21
Copyright © Orchard Publications

Summary

• The Direct Lookup Table (n−D) block uses its block inputs as zero-based indices into an n−D
table. The number of inputs varies with the shape of the output desired. The output can be a
scalar, a vector, or a 2−D matrix. The lookup table uses zero-based indexing, thus an input of 2
returns the third element in that dimension. We recall that MATLAB uses one-based index-
ing and thus an input of 2 returns the second element in that dimension.

• The Lookup Table Dynamic block computes an approximation to some function
given x and y data vectors. The lookup method can use interpolation, extrapolation, or the
original values of the input. Unlike the Lookup Table block, the Lookup Table Dynamic block
allows us to change the table data without stopping the simulation.

• The Sine and Cosine blocks implement a sine and / or cosine wave in fixed point using a
lookup table method that uses quarter wave symmetry. In Simulink, the Sine and Cosine block
can output the following functions of the input signal, depending upon what we select for the
Output formula parameter:

y f x()=

2πx()sin 2πx()sin 2πx()cos eiπx 2πx() and 2πx()cossin

Chapter 7 The Lookup Tables Library

7−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

7.10 Exercises

1. Define a lookup table that will display a square waveform in the ranges and
.

2. Bessel functions* of the first kind are denoted as where the subscript n indicates the
order for . Thus, denotes the zero order of the first kind of Bessel func-
tions. Create a model with a Lookup Table block configured to display the values of x from 0 to
1.0 in steps of 0.1 for .

3. It is given that a=ones(5,5,3,4,2); L=prod(size(a)); a(1:L)=[1:L]'; Create a model to display the
output corresponding to this array if the Input select this object from table is specified as col-
umn.

4. Create a model with an Interpolation (n−D) Using PreLookup block with two input indices
representing the rows and columns of a square matrix and the output set to display the square
root of a number in the range of integer numbers 1 through 100. For this example, we want to
define the two inputs such that the output displayed will be the square root of 19.25.
Hint: .

5. Consider the matrix

Create a model using the Lookup Table (2-D) block to interpolate and display the value of the
Inverse matrix of A at .

6. Using the data of the table below create a model with a Lookup Table Dynamic block to com-
pute an approximation to .

* For a detailed discussion of Bessel functions, please refer to Numerical Analysis Using MATLAB and Spread-
sheets, ISBN 0−9709511−1−6.

x 1.1 1.2 1.5 1.7 1.8 2.0

y=f(x) 1.112 1.219 1.636 2.054 2.323 3.011

2 x 2< <–

1 y 1< <–

Jn x()

n 0 1 2 3 …, , , ,= J0 x()

J0 x()

19.25 3.5 5.5×=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

=

x y,() 2.75 5.25,()=

f 1.35()

Introduction to Simulink with Engineering Applications 7−23
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

7.11 Solutions to End-of-Chapter Exercises
1.

Vector x of input values:

Vector y of output values:

We observe that this waveform has three step discontinuities: at , , and .

2.
The model is shown below where in the Constant block we have enter the range ,
and in the Lookup Table block we have entered Vector of input values , Vector
output values , and Lookup method Interpolation − Extrapolation.

3.
The model is shown below where we have entered:

Number of table dimensions: 5

Input select this object from table: Column

Make table an input: unchecked

Table data: a

Constant blocks: The values shown

-2 2-1 1

-1

1

x

y

2 1 1 0 0 1 1 2–––

1 1 1 1 1– 1– 1 1––

x 1–= x 0= x 1=

0:0.1:1.0[]
0:0.0:1.0[]

besselj 0 0:0.0:1.0[]',()

Chapter 7 The Lookup Tables Library

7−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

To verify the Display block values, in MATLAB’s Command Window we enter

a(:,:,3,4,2)

and MATLAB displays the array below.

576 581 586 591 596
577 582 587 592 597
578 583 588 593 598
579 584 589 594 599
580 585 590 595 600

4.
The model is shown below where the PreLookup Index Search blocks 1 and 2 were set for:

Breakpoint data:

Index search method: Linear Search

Process out of range input: Linear Extrapolation

We can form a array with the row vector and the col-
umn vector and multiplying these.

The Interpolation (n−D) Using PreLookup block has been set for

Number of table dimensions: 2

Table data: sqrt(a*b)

Interpolation and Extrapolation methods: Linear

and in MATLAB’s Command Window we enter

a=[1; 2; 3; 4; 5; 6; 7; 8; 9; 10]; b=a';

1 2 3 4 5 6 7 8 9 10[]

10 10× a 1 2 3 4 5 6 7 8 9 10[]=

b 1 2 3 4 5 6 7 8 9 10[]'=

Introduction to Simulink with Engineering Applications 7−25
Copyright © Orchard Publications

Solutions to End-of-Chapter Exercises

5.
The model is shown below where Row and Column index of input values have been defined as

 and respectively.

Vector of output values: inv(A)

Lookup method: Interpolation-Extrapolation

and in MATLAB’s Command Window we entered

A=[1 1−j 2; 1+j 3 j; 2 −j 0];

6.
The model is shown below where in MATLAB’s Command Window we have entered:

xdata=[1.1 1.2 1.5 1.7 1.8 2.0]; ydata=[1.112 1.219 1.636 2.054 2.323 3.011];

1 2 3[] 4 5 6[]

Introduction to Simulink with Engineering Applications 8−1
Copyright © Orchard Publications

Chapter 8

The Math Operations Library

his chapter is an introduction to the Math Operations Library. This is the seventh library
in the Simulink group of libraries and contains and contains the Math Operations Group
Sub−Library, the Vector / Matrix Operations Group Sub−Library, and the Complex

Vector Conversions Group Sub−Library. We will describe the function of each block included
in this library and we will perform simulation examples to illustrate their application.

T

Chapter 8 The Math Operations Library

8−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.1 The Math Operations Group Sub−Library
The Math Operations Group Sub−Library contains the blocks described in Subsections 8.1.1
through 8.1.23 below.

8.1.1 The Sum Block

The Sum block is an implementation of the Add block which is described in Section 8.1.2 below.
We can choose the icon shape (round or rectangular) of the block on the Block Parameters dialog
box.

8.1.2 The Add Block

The Add block performs addition or subtraction on its inputs. This block can add or subtract sca-
lar, vector, or matrix inputs. It can also collapse the elements of a single input vector. We specify
the operations of the block with the List of Signs parameter. Plus (+), minus (−), and spacer (|)
characters indicate the operations to be performed on the inputs. The spacer character creates
extra space between ports on the block's icon.

If there are two or more inputs, then the number of characters must equal the number of inputs.
For example, "+−+" requires three inputs and configures the block to subtract the second (mid-
dle) input from the first (top) input, and then add the third (bottom) input.

Example 8.1

The matrices , , and are defined as shown. We will create a model using the Add block to
display the result of .

The model is shown in Figure 8.1 where in the MATLAB’s Command Window we have entered

A=[1 −1 4; 5 7 −2; 3 −5 6]; B=[5 9 −3; −2 8 2; 7 −4 6]; C=[4 6 1; −3 8 −2; 5 −2 3];

A B C
A B C–+

A
1 1– 4–

5 7 2–

3 5– 6

= B
5 9 3–

2– 8 2
7 4– 6

= C=
4 6 1
3– 8 2–

5 2– 3

Introduction to Simulink with Engineering Applications 8−3
Copyright © Orchard Publications

The Math Operations Group Sub−Library

Figure 8.1. Model for Example 8.1

8.1.3 The Subtract Block

The Subtract block is an implementation of the Add block which is described in Subsection 8.1.2
above.

Example 8.2

Let and . We will create a model using a Subtract block to perform
the operation .

The model is shown in Figure 8.27 where in MATLAB’s Command Window we have entered

a=1/(4+3j); b=1/(2−5j);

Figure 8.2. Model for Example 8.2

a 1 4 j3+()⁄= b 1 2 j– 5()⁄=

a b–

Chapter 8 The Math Operations Library

8−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.1.4 The Sum of Elements Block

The Sum of Elements block is an implementation of the Add block described in Subsection 8.1.2
above.

8.1.5 The Bias Block

The Bias block adds a bias (offset) to the input signal.

Example 8.3

We will create a model using a Bias block to display the waveform .

The model is shown in Figure 8.3 and the input and output waveforms are shown in Figure 8.4
where for the Bias block Block Parameters dialog box we specified Bias: 1

Figure 8.3. Model for Example 8.3

Figure 8.4. Input and output waveforms for the model of Figure 8.3

y xsin 1+=

Introduction to Simulink with Engineering Applications 8−5
Copyright © Orchard Publications

The Math Operations Group Sub−Library

8.1.6 The Weighted Sample Time Math Block

The Weighted Sample Time Math block adds, subtracts, multiplies, or divides the input signal,
u, by a weighted sample time Ts. We use the Operation parameter to specify the math operation.
This block also allows us to use only the weight with either the sample time or its inverse. We
enter the weighting factor in the Weight value parameter. If the weight is 1, w is removed from
the equation.

Example 8.4
We will create a model using a Weighted Sample Time Math block where the input signal is a
Digital Clock block specified at Sample time 1, and the Weighted Sample Time Math block
Operation parameter is specified as Divide with Weight value 2.

The model is shown in Figure 8.5 and the input and output waveforms are shown in Figure 8.6.

Figure 8.5. Model for Example 8.4

Figure 8.6. Input and output waveforms for the model of Figure 8.5

Chapter 8 The Math Operations Library

8−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.1.7 The Gain Block

The Gain block multiplies the input by a constant value (gain). The input and the gain can each
be a scalar, vector, or matrix. This block was described in Section 2.10, Chapter 2, Page 2−16.

8.1.8 The Slider Gain Block

The Slider Gain block is used to vary a scalar gain during a simulation. The default for the lower
limit is 0, and the default for the upper limit is 2.

Example 8.5
We will create a model using a Slider Gain block to display the input and output sinusoidal wave-
forms when the Slider Gain block has been specified as 0.5.

The model is shown in Figure 8.7 and the input and output waveforms are shown in Figure 8.8.

Figure 8.7. Model for Example 8.5

Figure 8.8. Input and output waveforms for the model of Figure 8.7

Introduction to Simulink with Engineering Applications 8−7
Copyright © Orchard Publications

The Math Operations Group Sub−Library

8.1.9 The Product Block

The Product block performs multiplication or division of its inputs. This block is described in Sec-
tion 2.4, Chapter 2, Page 2−6. To perform a dot product on input vectors, we use the Dot Product
block described in Section 8.1.12, this chapter, Page 8−8.

Example 8.6
We will create a model using a Product block to perform element−by−element multiplication of
the row vectors and .

The model is shown in Figure 8.9 where in MATLAB’s Command Window we have entered

a=[1 2 3 4 5]; b=[−2 6 −3 8 7];

and the Product block Multiplication has been specified as element−wise.

Figure 8.9. Model for Example 8.6

8.1.10 The Divide Block

The Divide block is an implementation of the Product block. The Product block is described in
Section 2.4, Chapter 2, Page 2−6.

8.1.11 The Product of Elements Block

a 1 2 3 4 5[]= b 2 6 3 8 7––[]=

Chapter 8 The Math Operations Library

8−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The Product of Elements block is used to multiply of divide inputs. It is essentially a Product
block. The Product block was described in Section 2.4, Chapter 2, Page 2−6.

Example 8.7

We will create a model using the Product of Elements block to compute the product where

The model is shown in Figure 8.10 where in MATLAB’s Command Window we have entered

a=[1 0 −3 0 5 7 9]; b=[2 −8 0 0 4 10 12];

Figure 8.10. Model for Example 8.7

8.1.12 The Dot Product Block

The Dot Product block generates the dot product of its two input vectors. The scalar output, y, is
equal to the MATLAB operation y=sum(conj(A.*B)) where vectors A and B are defined as

, , and

Example 8.8
We will create a model using a Dot Product block to perform the dot (inner) product of the row

vectors and .

The model is shown in Figure 8.11 where in MATLAB’s Command Window we have entered

A=[1 2 3 4 5]; B=[−2 6 −3 8 7];

a b⋅

a 1 0 3 0 5 7 9–[]=
b 2 8 0 0 4 10 12–[]=

A a1 a2 … an[] = B b1 b2 … bn[] = A*B=[a1b1 a2b2 … +an bn+ +]

A 1 2 3 4 5[]= B 2 6 3 8 7––[]=

Introduction to Simulink with Engineering Applications 8−9
Copyright © Orchard Publications

The Math Operations Group Sub−Library

Figure 8.11. Model for Example 8.8

8.1.13 The Sign Block

The Sign block indicates the sign of the input. The output is 1 when the input is greater than
zero, the output is 0 when the input is equal to zero, and the output is −1 when the input is less
than zero.

Example 8.9
We will create a model using the Sign block to determine whether the expression

is positive, zero, or negative.

Solution:

The model is shown in Figure 8.12 where in MATLAB’s Command Window we have entered

x=1/(−0.224)^7+2/(0.294)^8−3/(0.484)^2;

MATLAB outputs the value and thus the Sign block outputs 1 indicating a positive
value.

Figure 8.12. Model for Example 8.9

x 1
0.224–()7

------------------------ 2
0.294()8

-------------------- 3
0.484()2

--------------------–+=

x 477.786=

Chapter 8 The Math Operations Library

8−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.1.14 The Abs Block

The Abs block outputs the absolute value of the input. This block accepts real signals of any data
type supported by Simulink, except Boolean, and supports real fixed−point data types. The block
also accepts complex single and double inputs. Outputs are a real value of the same data type as
the input.

When the Saturate on integer overflow is selected, the block maps signed integer input elements
corresponding to the most negative value of that data type to the most positive value of that data
type. Thus, if the input is and the signal data type is specified as int8 for the interval

, the output is the absolute value of the input, but when the input is , the output
displayed is . Likewise, if the input signal data type is specified as int16, for the input ,
the output is , and if the input signal data type is specified as int32, for the input

, the output is .

When the Saturate on integer overflow is not selected, the block ignores signed integer input
elements and outputs the absolute value of the input.

If the input is a complex number, the signal data type must be specified either as single or double.

Example 8.10
We will create a model using the Abs block to display the absolute value of the product

The model is shown in Figure 8.13 where the input signal type is specified as double.

Figure 8.13. Model for Example 8.10

8.1.15 The Unary Minus Block

x
127 x 0≤ ≤– 128–

127 32768–

32767
2147483648– 2147483647

3– j4–() 5 j8–()×

Introduction to Simulink with Engineering Applications 8−11
Copyright © Orchard Publications

The Math Operations Group Sub−Library

The Unary Minus block negates the input. The block accepts only signed data types. For signed
data types, we cannot accurately negate the most negative value since the result is not represent-
able by the data type. In this case, the behavior of the block is controlled by the Saturate to max
or min when overflows occur check box in the Block Parameters dialog box. If selected, the most
negative value of the data type wraps to the most positive value. If not selected, the operation has
no effect. If an overflow occurs, then a warning is returned to the MATLAB command line.

Example 8.11

We will create a model using a Unary Minus block to negate the number .

The model is shown in Figure 8.14 where the Signal data types for the Constant block is set to
Inherit from constant value, and the Display block is set for Binary (Stored Integer).

Figure 8.14. Model for Example 8.11

8.1.16 The Math Function Block

The Math Function block performs the following mathematical functions:

exp

log

10^u

log10

magnitude^2

square

sqrt

pow (power)

conj (complex conjugate)

reciprocal

hypot (computation of the square root of the sum of squares)

101101101

Chapter 8 The Math Operations Library

8−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

rem (remainder after division)

mod (modulus after division)*

transpose (transpose of a vector or matrix)

hermitian (a square matrix such that)

The block output is the result of the operation of the function on the input or inputs. The name
of the function appears on the block. Simulink automatically draws the appropriate number of
input ports. We use the Math Function block instead of the Fcn block when we want vector or
matrix output, because the Fcn block produces only scalar output. For data types supported,
please refer to the Help menu for this block.

Example 8.12

We will create a model with a Hermitian block to output the output the Hermitian matrix of
defined as

The model is shown in Figure 8.15 where in MATLAB’s Command Window we entered

A=[1 1−j 2; 1+j 3 j; 2 −j 0];

Figure 8.15. Model for Example 8.12

Check:

* For differences between rem and mod type help rem and help mod in MATLAB’s Command Window.

AT* A=

A

A
1 1 j– 2

1 j+ 3 j
2 j– 0

=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

= AT
1 1 j+ 2

1 j– 3 j–

2 j 0

= AT*
1 1 j– 2

1 j+ 3 j
2 j– 0

A= =

Introduction to Simulink with Engineering Applications 8−13
Copyright © Orchard Publications

The Math Operations Group Sub−Library

8.1.17 The Rounding Function Block

The Rounding Function block applies a rounding function to the input signal to produce the
output signal. The name of the selected function appears on the block where floor rounds each
element of the input signal to the nearest integer value towards minus infinity, ceil rounds each
element of the input signal to the nearest integer towards positive infinity, round rounds each ele-
ment of the input signal to the nearest integer, and fix rounds each element of the input signal to
the nearest integer towards zero.

Example 8.13

We will create a model using the Rounding Function block to round the number towards
minus infinity, towards positive infinity, to the nearest integer, and to the nearest integer towards
zero.

The model is shown in Figure 8.16 where floor rounds the given number to the nearest integer
value towards minus infinity, ceil rounds it to the nearest integer towards positive infinity, round
rounds it to the nearest integer, and fix rounds it to the nearest integer towards zero.

Figure 8.16. Model for Example 8.13

3.495

Chapter 8 The Math Operations Library

8−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.1.18 The Polynomial Block

The Polynomial block uses a coefficients parameter to evaluate a real polynomial for the input
value. We define a set of polynomial coefficients in the form accepted by the MATLAB polyval
command. The block then calculates P(u) for the input u. Inputs and coefficients must be real.

Example 8.14
We will create a model using the Polynomial block to evaluate the polynomial

at .

The model is shown in Figure 8.17 where in MATLAB’s Command Window we have entered the
coefficients of , i.e.,

px=[1 −3 0 5 −4 3 2];

and in the Parameters dialog box for the Polynomial block we have typed px.

Figure 8.17. Model for Example 8.14

8.1.19 The MinMax Block

The MinMax block outputs either the minimum or the maximum element or elements of the
inputs. We choose the function to apply by selecting one of the choices from the Function param-
eter list. If the block has one input port, the input must be a scalar or a vector. The block outputs
a scalar equal to the minimum or maximum element of the input vector. If the block has multiple
input ports, the non-scalar inputs must all have the same dimensions. The block expands any sca-
lar inputs to have the same dimensions as the non-scalar inputs. The block outputs a signal hav-
ing the same dimensions as the input. Each output element equals the minimum or maximum of
the corresponding input elements.

p x() x6 3x5– 5x3 4x2– 3x 2+ + +=
x 3.7–=

p x()

Introduction to Simulink with Engineering Applications 8−15
Copyright © Orchard Publications

The Math Operations Group Sub−Library

Example 8.15
We will create a model using a MinMax block to display smallest and the largest numbers in the
row vector

The model is shown in Figure 8.18 where in MATLAB’s Command Window we have entered

a=[1 −1 −4 5 7 −2 3 −5 6 9 −3 8 2 4 8 5];

Figure 8.18. Model for Example 8.15

8.1.20 The MinMax Running Resettable Block

The MinMax Running Resettable block outputs the minimum or maximum of all past inputs u.
We specify whether the block outputs the minimum or the maximum with the Function parame-
ter. The block can reset its state based on an external reset signal R. When the reset signal R is
TRUE, the block resets the output to the value of the Initial condition parameter.

Example 8.16
Let the input u in a MinMax Running Resettable block be

We will create a model that will display all positive values of u and will display all negative values
of u.

The model is shown in Figure 8.19 where in MATLAB’s Command Window we have entered

u=[1 −1 −4 5 7 −2 3 −5 6 9 −3 8 2 4 8 5];

and the initial conditions in both MinMax Running Resettable blocks is set to zero.

a 1 1 4 5 7 2 3 5 6 9 3 8 2 4 8 5–––––[]=

u 1 1 4 5 7 2 3 5 6 9 3 8 2 4 8 5–––––[]=

Chapter 8 The Math Operations Library

8−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 8.19. Model for Example 8.16

8.1.21 The Trigonometric Function Block

The Trigonometric Function block performs the principle trigonometric functions sine, cosine,

and tangent, the Inverse trigonometric functions asin, acos, atan, and atan2*, the hyperbolic
functions sinh, cosh, and tanh, and the Inverse hyperbolic functions asinh, acosh, and atanh.
The block output is the result of the operation of the function on the input or inputs. The name
of the function appears on the block. If we select the atan2 function, the block displays two
inputs. The first (upper) input is the y−axis or complex part of the function argument. The second
(lower) input is the x−axis or real part of the function argument.

* The trigonometric function atan2(y,x) is referred to as the four-quadrant inverse tangent whereas atan is
referred to as the two-quadrant inverse tangent. We recall that for , and thus the
two-quadrant atan(x) returns the inverse tangent in the range . The four-quadrant atan2(y,x)
returns the inverse tangent in the range .

∞ x ∞< <– π 2⁄– x π 2⁄<atan<
π 2 π 2⁄,⁄–[]

π π,–[]

Introduction to Simulink with Engineering Applications 8−17
Copyright © Orchard Publications

The Math Operations Group Sub−Library

We should use the Trigonometric Function block instead of the Fcn block when we want dimen-
sionalized output, because the Fcn block can produce only scalar output.

Example 8.17

We will create a model to display the values of the hyperbolic functions and for
.

The model is shown in Figure 8.20.

Figure 8.20. Model for Example 8.17

We recall that

and thus for ,

8.1.22 The Sine Wave Function Block

The Sine Wave Function block generates a sinusoid. The block can operate in either time-based
or sample-based mode. The time-based mode has two submodes: continuous mode or discrete
mode. The value of the Sample time parameter determines whether the block operates in contin-
uous mode or discrete mode. Thus, zero (the default) causes the block to operate in continuous
mode and a value greater than zero causes the block to operate in discrete mode.

Example 8.18
We will create a model using two Sine Wave Function blocks, one to display the waveform oper-
ating in the continuous mode, and the other to display the waveform operating in the discrete
mode.

xsinh xcosh
x 9.5=

xsinh ex e x––
2

------------------= hxcos ex e x–
+
2

-------------------=

x 0» xsinh hxcos 1
2
---ex≈ ≈

Chapter 8 The Math Operations Library

8−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The model is shown in Figure 8.21 and the waveforms in Figure 8.22 where the frequency of the
Sinewave Function 1 block was specified as , the Digital Clock block was specified for sam-
ple time , the Sine type in the Sinewave Function 2 block was selected as Sample based, and
the Time as Use external signal.

Figure 8.21. Model for Example 8.18

Figure 8.22. Output waveforms for the model of Figure 8.21

8.1.23 The Algebraic Constraint Block

The Algebraic Constraint block constrains the input signal to zero and outputs an algebraic
state . The block outputs the value necessary to produce a zero at the input. The output must
affect the input through a feedback path. This block accepts and outputs real values of type dou-
ble.

An example using this block was presented in Chapter 1 as Example 1.3. Another example is
given below.

2.5 Hz
2.5

f z()
z

Introduction to Simulink with Engineering Applications 8−19
Copyright © Orchard Publications

The Vector / Matrix Operations Group Sub−Library

Example 8.19
We will create a model using an Algebraic Constraint block to find a solution for the non-linear
equation

The model is shown in Figure 8.23 where in the Algebraic Constraint block the Initial guess value

entered is . The term is represented by the block from the Math Function block and the
sine and cosine blocks from the Trigonometric Function block both of which are blocks within
the Math Operations library. We observe that all inputs are feedbacks from the output of the
Algebraic Constraint block.

Figure 8.23. Model for Example 8.19

8.2 The Vector / Matrix Operations Group Sub−Library
The Vector / Matrix Operations Group Sub−Library contains the blocks described in Subsec-
tions 8.2.1 through 8.2.4 below.

8.2.1 The Assignment Block

F z() z2 4z 3 zsin z zcos–+ + +=

1– z2 u2

Chapter 8 The Math Operations Library

8−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The Assignment block assigns values to specified elements of the signal. We specify the indices of
the elements to be assigned values either by entering the indices in the block's dialog box, or by
connecting an external indices source or sources to the block. The signal at the block's data port,
labeled in most modes, specifies values to be assigned to . The block replaces the specified
elements of with elements from the data signal, leaving unassigned elements unchanged from
their initial values. If the assignment indices source is internal or is external and the Initialize
using input option is selected, the Assignment block uses the signal at the block's initialization
port, labeled , to initialize the elements of the output signal before assigning them values from

.

Example 8.20

We will create a model using an Assignment block to assign the value in the zero−based index
mode position of the matrix defined as

The model is shown in Figure 8.24 where we have made the following entries:

Constant 1 block - Constant value:

Constant 2 block - Constant value:

Assignment block - Input type: Matrix - Index mode: Zero-based - Rows: 1 - Columns: 2

Figure 8.24. Model for Example 8.20

8.2.2 The Reshape Block

U2 Y
Y

U1
U2

6
A 1 2,() A

A
1 2 3
4 5 0
7 8 9

=

1 2 3; 4 5 0; 7 8 9[]

6[]

Introduction to Simulink with Engineering Applications 8−21
Copyright © Orchard Publications

The Vector / Matrix Operations Group Sub−Library

The Reshape block changes the dimensionality of the input signal to another dimensionality that
we specify, using the block's Output dimensionality parameter. The Output dimensionality
parameter allows us to select the 1−D array, Column vector, Row vector, or Customize options.
These options are described in the Help menu for this block.

Example 8.21
We will create a model using the Reshape block to convert the row vector

to a column vector.

The model is shown in Figure 8.25 where in MATLAB’s Command Window we have entered

A=[1 0 −3 −2 5 7 9 4 6];

and for the Reshape block we have selected the Column vector Output dimensionality option.

Figure 8.25. Model for Example 8.21

8.2.3 The Matrix Concatenate Block

The Matrix Concatenate block concatenates input matrices u1 u2 u3 ... un along rows or col-
umns, where n is specified by the Number of inputs parameter. When the Concatenate method
parameter is set to Horizontal, the block concatenates the input matrices along rows.

y = [u1 u2 u3 ... un] % Equivalent MATLAB code

A 1 0 3 2 5 7 9 4 6––[]=

Chapter 8 The Math Operations Library

8−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

For horizontal concatenation, inputs must all have the same row dimension, M, but can have dif-
ferent column dimensions. The output matrix has dimension M−by−Ni, where Ni is the number
of columns in input ui (i =1, 2, ..., n).

When the Concatenate method parameter is set to Vertical, the block concatenates the input
matrices along columns.

y = [u1;u2;u3;...;un] % Equivalent MATLAB code

For vertical concatenation, inputs must all have the same column dimension, N, but can have dif-
ferent row dimensions. The output matrix has dimension Mi−by−N, where Mi is the number of
rows in input ui (i = 1, 2, ..., n).

Example 8.22
We will create a model using a Matrix Concatenate block to concatenate horizontally the matri-
ces A, B, and C defined as

The model is shown in Figure 8.26 where in MATLAB’s Command Window we have entered

A=[1 −1 4; 5 7 −2; 3 −5 6]; B=[5 9 −3; −2 8 2; 7 −4 6]; C=[4 6; −3 8; 5 −2];

Figure 8.26. Model for Example 8.22

A
1 1– 4–

5 7 2–

3 5– 6

= B
5 9 3–

2– 8 2
7 4– 6

= C=
4 6
3– 8
5 2–

Introduction to Simulink with Engineering Applications 8−23
Copyright © Orchard Publications

The Vector / Matrix Operations Group Sub−Library

8.2.4 The Vector Concatenate Block

The Vector Concatenate block is a special case of the Matrix Concatenate block where the block
operates in Vector Concatenation Mode, Horizontal Matrix Concatenation Mode, or Vertical
Matrix Concatenation Mode. In Vector Concatenation Mode, all input signals must be either row
vectors (matrices) or column vectors (matrices) or a combination of vectors and
either row or column vectors. The output is a vector if all inputs are vectors.

The output is a row or column vector if any of the inputs are row or column vectors, respectively.

Example 8.23
We will create a model using a Vector Concatenate block to concatenate vertically the column
vectors a, b, and c defined as

The model is shown in Figure 8.27 where in MATLAB’s Command Window we have entered the
column vectors

a=[1 5 3]’; b=[5 −2 7]’; c=[4 −3 5]’;

Figure 8.27. Model for Example 8.23

1 m× m 1×

a
1
5
3

= b
5
2–

7

= c=
4
3–

5

Chapter 8 The Math Operations Library

8−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.3 The Complex Vector Conversions Group Sub−Library
The Complex Vector Conversions Group Sub−Library contains the blocks described in Subsec-
tions 8.3.1 through 8.3.4 below.

8.3.1 The Complex to Magnitude−Angle Block

The Complex to Magnitude−Angle block accepts a complex−valued signal of type double in the
form of . It outputs the magnitude, the phase angle in radians, or magnitude and phase
depending on the setting of the Output parameter. The outputs are real values of type double.
The input can be an array of complex signals, in which case the output signals are also arrays. The
magnitude signal array contains the magnitudes of the corresponding complex input elements.
The angle output similarly contains the angles of the input elements

Example 8.24
We will create a model using a Complex to Magnitude−Angle block to convert the complex num-
ber to the polar form .

The model is shown in Figure 8.28 where the Complex to Magnitude−Angle block Output
parameter has been specified as Magnitude and angle.

Figure 8.28. Model for Example 8.24

8.3.2 The Magnitude−Angle to Complex Block

The Magnitude−Angle to Complex block converts magnitude and / or phase angle inputs to a
complex−valued output signal. The inputs must be real-valued signals of type double. The angle
input is assumed to be in radians. The data type of the complex output signal is double.

x jy+

5.43 j4.54– A θ∠

Introduction to Simulink with Engineering Applications 8−25
Copyright © Orchard Publications

The Complex Vector Conversions Group Sub−Library

The inputs can both be signals of equal dimensions, or one input can be an array and the other a
scalar. If the block has an array input, the output is an array of complex signals. The elements of a
magnitude input vector are mapped to magnitudes of the corresponding complex output ele-
ments. An angle input vector is similarly mapped to the angles of the complex output signals. If
one input is a scalar, it is mapped to the corresponding component (magnitude or angle) of all the
complex output signals.

Example 8.25

We will create a model using a Magnitude−Angle to Complex block to convert to its
equivalent real and imaginary components.

The model is shown in Figure 8.29 where the magnitude is entered in the Constant 1 block and
phase angle in radians is entered in the Constant 2 block.

Figure 8.29. Model for Example 8.25

8.3.3 The Complex to Real−Imag Block

The Complex to Real−Imag block accepts a complex−valued signal of any data type supported by
Simulink, including fixed-point data types. It outputs the real and / or imaginary part of the input
signal, depending on the setting of the Output parameter. The real outputs are of the same data
type as the complex input. The input can be an array (vector or matrix) of complex signals, in
which case the output signals are arrays of the same dimensions. The real array contains the real
parts of the corresponding complex input elements. The imaginary output similarly contains the
imaginary parts of the input elements.

Example 8.26
Let us consider the electric network of Figure 8.30.

120 240°∠

Chapter 8 The Math Operations Library

8−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 8.30. Electric network for Example 8.26

With the given values of resistance, inductance, and capacitance, the impedance as a func-
tion of the radian frequency can be computed from the following expression.

(8.1)

Assuming that the operating frequency is , we will create a model to display the real
and imaginary values of the relation (8.1).

The model is shown in Figure 8.31 where in MATLAB’s Command Window we have entered

Z=10+(10^4 −j*10^6/(2*pi*60))/(10 + j*(0.1*(2*pi*60)−10^5/(2*pi*60)));

Display 1 block shows the real component and Display 2 shows the imaginary component.

Figure 8.31. Model for Example 8.26

8.3.4 The Real−Imag to Complex Block

The Real−Imag to Complex block converts real and/or imaginary inputs to a complex-valued
output signal. The inputs can both be arrays (vectors or matrices) of equal dimensions, or one
input can be an array and the other a scalar. If the block has an array input, the output is a com-
plex array of the same dimensions. The elements of the real input are mapped to the real parts of

a

b

10 Ω

0.1 H

10 µFZab
10 Ω

Zab

ω

Zab Z 10 104 j 106 ω⁄()–

10 j 0.1ω 105 ω⁄ –()+
--+= =

f 100 Hz=

Introduction to Simulink with Engineering Applications 8−27
Copyright © Orchard Publications

The Complex Vector Conversions Group Sub−Library

the corresponding complex output elements. The imaginary input is similarly mapped to the
imaginary parts of the complex output signals. If one input is a scalar, it is mapped to the corre-
sponding component (real or imaginary) of all the complex output signals.

Example 8.27

We will create a model to convert the rectangular form of the complex number to the
polar form where is the magnitude and the angle is in degrees (not radians).

The model is shown in Figure 8.32 where , , and the Gain .

Figure 8.32. Model for Example 8.27

25 j40+

A θ°∠ A θ

A 47.17= θ 57.99°= K 180 π⁄=

Chapter 8 The Math Operations Library

8−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.4 Summary
• The Sum block is an implementation of the Add block. We can choose the icon shape (round

or rectangle) of the block.

• The Add block performs addition or subtraction on its inputs. This block can add or subtract
scalar, vector, or matrix inputs. It can also collapse the elements of a single input vector. We
specify the operations of the block with the List of Signs parameter. Plus (+), minus (−), and
spacer (|) characters indicate the operations to be performed on the inputs.

• The Subtract block is an implementation of the Add block.

• The Sum of Elements block is an implementation of the Add block.

• The Bias block adds a bias (offset) to the input signal.

• The Weighted Sample Time Math block adds, subtracts, multiplies, or divides the input sig-
nal, u, by a weighted sample time Ts. We use the Operation parameter to specify the math
operation. This block also allows us to use only the weight with either the sample time or its
inverse.

• The Gain block multiplies the input by a constant value (gain). The input and the gain can
each be a scalar, vector, or matrix.

• The Slider Gain block allows us to vary a scalar gain during a simulation using a slider. The
block accepts one input and generates one output. In the Slider Gain dialog box Low indicates
the lower limit of the slider range where the default is 0, and High indicates the upper limit of
the slider range where the default is 2.

• The Product block performs multiplication or division of its inputs.

• The Divide block is an implementation of the Product block.

• The Product of Elements block is used to multiply of divide inputs. It is essentially a Product
block.

• The Dot Product block generates the dot product of its two input vectors. The scalar output,
y, is equal to the MATLAB operation y=sum(conj(A.*B)) where vectors A and B are defined as

, , and .

• The Sign block indicates the sign of the input. The output is 1 when the input is greater than
zero, the output is 0 when the input is equal to zero, and the output is −1 when the input is less
than zero.

• The Abs block outputs the absolute value of the input. This block accepts real signals of any
data type supported by Simulink, except Boolean, and supports real fixed-point data types. The
block also accepts complex single and double inputs.

A a1 a2 … an[] = B b1 b2 … bn[] = A*B=[a1b1 a2b2 … +an bn+ +]

Introduction to Simulink with Engineering Applications 8−29
Copyright © Orchard Publications

Summary

• The Unary Minus block negates the input. The block accepts only signed data types. For
signed data types, we cannot accurately negate the most negative value since the result is not
representable by the data type.

• The Math Function block performs the following common mathematical functions:
exp

log

10^u

log10

magnitude^2

square

sqrt

pow (power)

conj (complex conjugate)

reciprocal

hypot (computation of the square root of the sum of squares)

rem (remainder after division)

mod (modulus after division)

transpose (transpose of a vector or matrix)

hermitian (a square matrix such that)

The name of the function appears on the block. Simulink automatically draws the appropriate
number of input ports.

• The Rounding Function block applies a rounding function to the input signal to produce the
output signal. The name of the selected function appears on the block where floor rounds each
element of the input signal to the nearest integer value towards minus infinity, ceil rounds
each element of the input signal to the nearest integer towards positive infinity, round rounds
each element of the input signal to the nearest integer, and fix rounds each element of the
input signal to the nearest integer towards zero.

• The Polynomial block uses a coefficients parameter to evaluate a real polynomial for the input
value. We define a set of polynomial coefficients in the form accepted by the MATLAB poly-
val command. The block then calculates P(u) at each time step for the input u. Inputs and
coefficients must be real.

AT* A=

Chapter 8 The Math Operations Library

8−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The MinMax block outputs either the minimum or the maximum element or elements of the
inputs. We choose the function to apply by selecting one of the choices from the Function
parameter list.

• The MinMax Running Resettable block outputs the minimum or maximum of all past inputs
u. We specify whether the block outputs the minimum or the maximum with the Function
parameter. The block can reset its state based on an external reset signal R. When the reset
signal R is TRUE, the block resets the output to the value of the Initial condition parameter.

• The Trigonometric Function block performs the principle trigonometric functions sine,
cosine, and tangent, the Inverse trigonometric functions asin, acos, atan, and atan2, the
hyperbolic functions sinh, cosh, and tanh, and the Inverse hyperbolic functions asinh, acosh,
and atanh. The block output is the result of the operation of the function on the input or
inputs. The name of the function appears on the block. If we select the atan2 function, the
block displays two inputs. The first (upper) input is the y−axis or complex part of the function
argument. The second (lower) input is the x−axis or real part of the function argument.

• The Sine Wave Function block generates a sinusoid. The block can operate in either time-
based or sample-based mode. The time-based mode has two submodes: continuous mode or
discrete mode. The value of the Sample time parameter determines whether the block operates
in continuous mode or discrete mode.

• The Algebraic Constraint block constrains the input signal to zero and outputs an alge-
braic state . The block outputs the value necessary to produce a zero at the input. The output
must affect the input through a feedback path. This block accepts and outputs real values of
type double.

• The Assignment block assigns values to specified elements of the signal. We specify the indi-
ces of the elements to be assigned values either by entering the indices in the block's dialog box
or by connecting an external indices source or sources to the block. The signal at the block's
data port, labeled U2 in most modes, specifies values to be assigned to Y. The block replaces
the specified elements of Y with elements from the data signal, leaving unassigned elements
unchanged from their initial values.

• The Reshape block changes the dimensionality of the input signal to another dimensionality
that we specify, using the block's Output dimensionality parameter. The Output dimensional-
ity parameter allows us to select the 1-D array, Column vector, Row vector, or Customize
options. These options are described in the Help menu for this block.

• The Matrix Concatenate block concatenates input matrices u1 u2 u3 ... un along rows or col-
umns, where n is specified by the Number of inputs parameter. When the Concatenation
method parameter is set to Horizontal, the block concatenates the input matrices along rows.

y = [u1 u2 u3 ... un] % Equivalent MATLAB code

f z()
z

Introduction to Simulink with Engineering Applications 8−31
Copyright © Orchard Publications

Summary

For horizontal concatenation, inputs must all have the same row dimension, M, but can have
different column dimensions.

When the Concatenation method parameter is set to Vertical, the block concatenates the
input matrices along columns.

y = [u1;u2;u3;...;un] % Equivalent MATLAB code

For vertical concatenation, inputs must all have the same column dimension, N, but can have
different row dimensions.

• The Vector Concatenate block is a special case of the Matrix Concatenate block where the
block operates in Vector Concatenation Mode, Horizontal Matrix Concatenation Mode, or
Vertical Matrix Concatenation Mode. In Vector Concatenation Mode, all input signals must
be either row vectors [1xM matrices] or column vectors [Mx1 matrices] or a combination of
vectors and either row or column vectors. The output is a vector if all inputs are vectors. The
output is a row or column vector if any of the inputs are row or column vectors, respectively.

• The Complex to Magnitude−Angle block accepts a complex−valued signal of type double in
the form of . It outputs the magnitude, the phase angle in radians, or magnitude and
phase depending on the setting of the Output parameter. The outputs are real values of type
double.

• The Magnitude−Angle to Complex block converts magnitude and/or phase angle inputs to a
complex-valued output signal. The inputs must be real-valued signals of type double. The
angle input is assumed to be in radians.

• The Complex to Real−Imag block accepts a complex-valued signal of any data type supported
by Simulink, including fixed-point data types. It outputs the real and/or imaginary part of the
input signal, depending on the setting of the Output parameter. The real outputs are of the
same data type as the complex input.

• The Real−Imag to Complex block converts real and/or imaginary inputs to a complex-valued
output signal. The inputs can both be arrays (vectors or matrices) of equal dimensions, or one
input can be an array and the other a scalar.

x jy+

Chapter 8 The Math Operations Library

8−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.5 Exercises
1. Create a model using an Abs block to display the magnitude of the expression

2. Three phasors* are defined as , , and . Create a model
using an Abs block to display the result of the operation .

3. Create a model using an Algebraic Constraint block to find a solution for the non-linear equa-
tion

4. Create a model using an Assignment block to assign the value 7 in the zero-based index mode
elements position of the vector defined as .

5. Create a model using a Complex to Magnitude-Angle block to convert the array of complex
number , , and to the polar form , , and

 respectively.

6. Create a model using one Magnitude-Angle to Complex block to convert , ,
and to their equivalent real and imaginary components.

7. Create a model using the appropriate Math Function block from the Math Operations library
to invert the elements of the matrix

8. Create a model using a Matrix Concatenation block to concatenate vertically the matrices A,
B, and C defined as

9. Create a model using a MinMax block to display the largest number in the row vector

* A phasor is a rotating vector.

z j1.49–() 0.8– j4.52+() 1.2– j7.4–()
5 j1.84+() 2.5 j4.8–() 3.25 j5.2+()

---=

A 3 60°∠= B 4– 30°∠= C 5 45– °∠=

A B– C+

F x() 3x5 2– x3 6x 8–+=

2 5[] A A 0 5 10 15 20 25[]=

7.5 j15.4– 28.4 j12.2+ 48.3 j72.8– A1 θ1∠ A2 θ2∠

A3 θ3∠

8 30°∠ 20 45°∠
50 60°∠

A
1 1 j– 2

1 j+ 3 j
2 j– 5

=

A
1 1– 4–

5 7 2–

3 5– 6

= B
5 9 3–

2– 8 2
7 4– 6

= C 1 2– 3
3– 6 4–

=

a 1 1 4 5 7 2 3 5 6 9 3 8 2 4 8 5–––––[]=

Introduction to Simulink with Engineering Applications 8−33
Copyright © Orchard Publications

Exercises

10. Create a model using the Reshape block to convert the row vector

to a matrix.

11. Create a model using the atan2 trigonometric function block to find the phase angle of the
complex number in degrees.

A 1 0 3 2 5 7 9 4 6––[]=

3 3×

108 j84+

Chapter 8 The Math Operations Library

8−34 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

8.6 Solutions to End-of Chapter Exercises
1.

The model is shown below where for the Constant block we have Signal data types we have
selected double and in MATLAB’s Command Window we have entered

z=((−1.49j)*(−0.8+4.52j)*(−1.2−7.4j))/((5+1.84j)*(2.5−4.8j)*(3.25+5.2j));

2.
The model is shown below where in MATLAB’s Command Window we have entered

A=3*(cos(60*pi/180)+j*sin(60*pi/180)); B=−4*(cos(30*pi/180)+j*sin(30*pi/180));...
C=5*(cos(−45*pi/180)+j*sin(−45*pi/180));

3.
We recall that the Algebraic Constraint block accepts and outputs real values of type double.
Since the given polynomial is of fifth power and complex roots, if present occur in complex
conjugate pairs, we expect at least one real root.

The model is shown below and it displays the only real root. We can use MATLAB to verify
that the remaining four roots are complex and occur in conjugate pairs.

The fifth and third powers in the first and second terms of the given polynomial are repre-

sented by the block from the Math Function block.uv

Introduction to Simulink with Engineering Applications 8−35
Copyright © Orchard Publications

Solutions to End-of Chapter Exercises

4.
The model is shown below where we have made the following entries:

Constant 1 block - Constant value:

Constant 2 block - Constant value:

Assignment block - Input type: Vector - Index mode: Zero-based - Elements:

5.
The model is shown below where in MATLAB’s Command Window we have entered

A=[7.5−15.4j 28.4+12.2j 48.3−72.8j];

0:5:25[]

7[]

2 5[]

Chapter 8 The Math Operations Library

8−36 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

6.
The model is shown below where in the Constant 1 block we have enter the magnitudes and in
the Constant 2 block we have entered in phase angles in radians.

7.
The appropriate block to accomplish this task is the Reciprocal Function block which we
select from the Math Function selection of blocks. The model is shown below where in MAT-
LAB’s Command Window we have entered

A=[1 1−j 2; 1+j 3 j; 2 −j 4];

8.
The model is shown below where in MATLAB’s Command Window we have entered

A=[1 −1 4; 5 7 −2; 3 −5 6]; B=[5 9 −3; −2 8 2; 7 −4 6]; C=[1 −2 3; −3 6 −4];

Introduction to Simulink with Engineering Applications 8−37
Copyright © Orchard Publications

Solutions to End-of Chapter Exercises

9.
The model is shown below where in MATLAB’s Command Window we have entered

a=[1 −1 −4 5 7 −2 3 −5 6 9 −3 8 2 4 8 5];

10.

The model is shown below where in MATLAB’s Command Window we have entered

A=[1 0 −3 −2 5 7 9 4 6];

and for the Reshape block we have selected the Customize Output dimensionality option with
Output dimensions .

11.

The model is shown below where the Constant 1 block contains the imaginary part of the
complex number, the Constant 2 block contains the real part of the complex number, and the
Gain block contains the factor to convert radians to degrees.

3 3,[]

180 π⁄

Introduction to Simulink with Engineering Applications 9−1
Copyright © Orchard Publications

Chapter 9

The Model Verification Library

his chapter is an introduction to the Model Verification Library, also referred to as the
Run−Time Model Verification Library. This is the eighth library in the Simulink group of
libraries and contains the blocks shown below. The blocks in this library are intended to

facilitate creation of self−validating models. We use model verification blocks to check whether
the signals exceed specified limits during simulation.

T

Chapter 9 The Model Verification Library

9−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

9.1 The Check Static Lower Bound Block

The Check Static Lower Bound block performs a check to verify that each element of the input
signal is greater than or equal to a specified lower bound. The block's parameter dialog box allows
us to specify the value of the lower bound and whether the lower bound is inclusive. If the verifi-
cation condition is true, the block takes no action. If not, simulation is halted and an error mes-
sage is displayed.

Example 9.1

In the model of Figure 9.1, the amplitude of a sinusoidal signal may vary from its nominal
value of . We will configure this model to display error messages when the lower inclusive
boundary is specified as .

The Signal Generator block is specified for a sine waveform with amplitude , frequency
, and the Check Static Lower Bound block is specified at with the Inclusive boundary

checked, Enable assertion checked, Output assertion signal checked, and icon type graphic. The
Convert block was inserted to convert the Boolean output of the Check Dynamic Gap to double
as required by the Bus Creator block.

Figure 9.1. Model for Example 9.1

The input and output waveforms are shown in Figure 9.2.

10%±
1 volt

1– volt

1.1 volt
0.3 Hz 1–

Introduction to Simulink with Engineering Applications 9−3
Copyright © Orchard Publications

The Check Static Upper Bound Block

Figure 9.2. Input and output waveforms for the model of Figure 9.1

9.2 The Check Static Upper Bound Block

The Check Static Upper Bound block performs a check to verify that each element of the input
signal is less than or equal to a specified lower bound. The block's parameter dialog box allows us
to specify the value of the upper bound and whether the bound is inclusive. If the verification
condition is true, the block takes no action. If not, simulation is halted and an error message is
displayed.

Example 9.2

In the model of Figure 9.3, the amplitude of a sinusoidal signal may vary from its nominal
value of . We will configure this model to display error messages when the lower boundary
inclusive boundary is specified as .

The Signal Generator block is specified for a sine waveform with amplitude , frequency
, and the Check Static Upper Bound block is specified at with the Inclusive boundary

checked, Enable assertion checked, Output assertion signal checked, and icon type graphic. The
Convert block was inserted to convert the Boolean output of the Check Dynamic Gap to double
as required by the Bus Creator block.

The input and output waveforms are shown in Figure 9.4.

10%±
1 volt

1– volt

1.1 volt
0.3 Hz +1

Chapter 9 The Model Verification Library

9−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 9.3. Model for Example 9.2

Figure 9.4. Input and output waveforms for the model of Figure 9.3

9.3 The Check Static Range Block

The Check Static Range block performs checks to verify that each element of the input signal
falls inside the same range of amplitudes. The block's parameter dialog box allows us to specify the
upper and lower bounds of the valid amplitude range and whether the range includes the bounds.
If the verification condition is true, the block takes no action. If not, simulation is halted and an
error message is displayed.

Example 9.3

In the model of Figure 9.5, the amplitude of a sinusoidal signal may vary from its nominal
value of . We will configure this model to convert a sine waveform of amplitude 1 to a pulse
waveform of the same amplitude and frequency.

10%±
1 volt

Introduction to Simulink with Engineering Applications 9−5
Copyright © Orchard Publications

The Check Static Gap Block

The Signal Generator block is specified for a sine waveform with amplitude , frequency
, and the Check Static Range block is specified as with the Inclusive upper bound

checked, as with the Inclusive lower bound checked, Enable assertion checked, Output asser-
tion signal checked, and icon type graphic. The Convert block was inserted to convert the Bool-
ean output of the Check Dynamic Gap to double as required by the Bus Creator block.

Figure 9.5. Model for Example 9.3

The input and output waveforms are shown in Figure 9.6.

Figure 9.6. Input and output waveforms for the model of Figure 9.5

9.4 The Check Static Gap Block

The Check Static Gap block performs a check to verify that each element of the input signal is
less than or equal to a static lower bound, or greater than or equal to a static upper bound. If the
verification condition is true, the block takes no action. If not, simulation is halted and an error
message is displayed.

1 volt
0.3 Hz 1.0

0

Chapter 9 The Model Verification Library

9−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 9.4
We will configure the model of Figure 9.7 whose input is a sawtooth waveform to display error
messages when the upper bound is specified at or greater and the lower bound is specified as

 or less.

The Signal Generator block is specified for a sawtooth waveform with amplitude , frequency
, and the Check Static Gap block is specified at with the Inclusive upper bound

checked, at with the Inclusive lower bound checked, Enable assertion checked, Output
assertion signal checked, and icon type graphic. The Convert block was inserted to convert the
Boolean output of the Check Dynamic Gap to double as required by the Bus Creator block. The
input and output waveforms are shown in Figure 9.8.

Figure 9.7. Model for Example 9.4

Figure 9.8. Input and output waveforms for the model of Figure 9.7

9.5 The Check Dynamic Lower Bound Block

0.5
0.5–

1 volt
0.5 Hz 0.5

0.5–

Introduction to Simulink with Engineering Applications 9−7
Copyright © Orchard Publications

The Check Dynamic Lower Bound Block

The Check Dynamic Lower Bound block performs a check to verify that the amplitude of a test
signal is less than the amplitude of a reference signal at the current time step. The test signal is the
signal connected to the input labeled sig. If the verification condition is true, the block takes no
action. If not, simulation is halted and an error message is displayed.

Example 9.5

For the model of Figure 9.9 the amplitude of a sinusoidal signal may vary from its nominal
value of . We will configure the model to display error messages when the amplitude
exceeds .

The Signal Generator block has been specified as a sine waveform with the amplitude set at 1.1,
frequency at 0.1 Hz, Constant blocks with the values shown, in the Check Dynamic Lower Bound
block the Enable assertion and Output assertion signal are checked, and the icon type is selected
as graphic. The Convert block was inserted to convert the Boolean output of the Lower Bound
block to double as required by the Bus Creator block. The input and output waveforms are shown
in Figure 9.10.

Figure 9.9. Model for Example 9.5

Figure 9.10. Input and output waveforms for the model of Figure 9.9

10%±
1 volt
1– volt

Chapter 9 The Model Verification Library

9−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

9.6 The Check Dynamic Upper Bound Block

The Check Dynamic Upper Bound block performs checks to verify that the amplitude of a test
signal is greater than the amplitude of a reference signal. The test signal is the signal connected to
the input labeled sig. If the verification condition is true, the block takes no action. If not, simula-
tion is halted and an error message is displayed.

Example 9.6

For the model of Figure 9.11 the amplitude of a sinusoidal signal may vary from its nominal
value of . We will configure the model to display error messages when the amplitude
exceeds .

The Signal Generator block has been selected as a sine waveform with the amplitude set at 1.1,
frequency at 0.1 Hz, Constant blocks at the values shown, in the Check Dynamic Upper Bound
block the Enable assertion and Output assertion signal are checked, and the icon type is selected
as graphic. The Convert block was inserted to convert the Boolean output of the Check Dynamic
Upper Bound block to double as required by the Bus Creator block. The input and output wave-
forms are shown in Figure 9.12.

Figure 9.11. Model for Example 9.6

10%±
1 volt

+1 volt

Introduction to Simulink with Engineering Applications 9−9
Copyright © Orchard Publications

The Check Dynamic Range Block

Figure 9.12. Input and output waveforms for the model of Figure 9.11

9.7 The Check Dynamic Range Block

The Check Dynamic Range block performs a check to verify that a test signal falls within a range
of amplitudes. The width of the range can vary from time step to time step. The input labeled sig
is the test signal, and the inputs labeled min and max are the lower and upper bounds respectively
of the valid range. If the verification condition is true, the block takes no action. If not, simulation
is halted and an error message is displayed.

Example 9.7

The amplitude of a random waveform may vary from its nominal value of . We will
create a model using a Check Dynamic Range block to display error messages when the amplitude
exceeds .

In Figure 9.13 the Signal Generator block has been selected as a random waveform with ampli-
tude specified at 1.2, frequency at 1 Hz, Constant blocks with the values as indicated, in the
Check Dynamic Range block the Enable assertion and Output assertion signal are checked, and
the icon type is selected as graphic. The Convert block was inserted to convert the Boolean out-
put of the Check Dynamic Range block to double as required by the Bus Creator block. The input
and output waveforms are shown in Figure 9.14.

20%± 1 volt

1± volt

Chapter 9 The Model Verification Library

9−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 9.13. Model for Example 9.7

Figure 9.14. Input and output waveforms for the model of Figure 9.13

As stated above this block performs a check to verify that a signal falls inside a range of ampli-
tudes that varies from time step to time step.

9.8 The Check Dynamic Gap Block

The Check Dynamic Gap block performs checks to determine whether a gap of possibly varying
width occurs in the range of a signal's amplitudes. The test signal is the signal connected to the
input labeled sig, and the inputs labeled min and max specify the lower and upper bounds respec-
tively of the dynamic gap. If the verification condition is true, the block takes no action. If not,
simulation is halted and an error message is displayed.

Introduction to Simulink with Engineering Applications 9−11
Copyright © Orchard Publications

The Check Dynamic Gap Block

Example 9.8

The amplitude of a sinusoidal signal may vary from its nominal value of . We will cre-
ate a model using a Check Dynamic Gap block to display error messages when the amplitude
exceeds .

In Figure 9.15, the Signal Generator block has been selected as a sine waveform with amplitude
set at 1.1, frequency at 0.1 Hz, Constant blocks with the values shown, in the Check Dynamic
Gap block the Enable assertion and Output assertion signal are checked, and the icon type is
selected as graphic. The Convert block was inserted to convert the Boolean output of the Check
Dynamic Gap block to double as required by the Bus Creator block. The input and output wave-
forms are shown in Figure 9.16.

Figure 9.15. Model for Example 9.8

Figure 9.16. Input and output waveforms for the model of Figure 9.15

The Assertion warnings are listed in MATLAB’s Command Window.

10%± 1 volt

1 volt±

Chapter 9 The Model Verification Library

9−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

9.9 The Assertion Block

The Assertion block verifies that the elements of the signal at its input have a non−zero value. If
all elements are non−zero, the block takes no action. If any element is zero, the block halts the
simulation and displays an error message. The block's parameter dialog box allows us to specify
that the block should display an error message when the assertion fails but allows the simulation
to continue.

Example 9.9
In the model of Figure 9.17, the Signal Generator block was specified for a square waveform, inad-
vertently the amplitude was specified as 0, and thus the Scope block displayed 0 also. To this
model we will add an Assertion block to display an error message.

Figure 9.17. Model for Example 9.9 without Assertion block

The model with the addition of an Assertion block is shown in Figure 9.18 where after the simula-
tion command is executed, the following message is displayed:

Assertion detected in ‘Figure_9_18/Assertion’ at time 0.000000

Figure 9.18. Model for Example 9.9 with Assertion block

Introduction to Simulink with Engineering Applications 9−13
Copyright © Orchard Publications

The Check Discrete Gradient Block

9.10 The Check Discrete Gradient Block

The Check Discrete Gradient block performs a check to determine whether the absolute value
of the difference between successive samples of the element is less than an upper bound. The
block's parameter dialog box allows us to specify the value of the upper bound whose default value
is unity. If the verification condition is true, the block takes no action. Otherwise, the block halts
the simulation and displays an error message in the Simulation Diagnostics Viewer.

Example 9.10
In Figure 9.19, the Digital Clock block has been set for Sample time 1 as shown on the Scope
block and thus the difference between successive samples is 1. We will add a Check Discrete Gra-
dient block specifying that the value of the upper bound is unity (the default) to determine
whether an error message will be displayed.

Figure 9.19. Model for Example 9.10 without a Check Discrete Gradient block

The model with the addition of a Check Discrete Gradient block where the value of the upper
bound is specified as 1 (default), is shown in Figure 9.20. After the simulation command is exe-
cuted, the following message is displayed:

Assertion detected in ‘Figure_9_20/Check Discrete Gradient’ at time
1.000000.

However, if the Digital Clock block is specified for Sample time less than 1, no error message will
be displayed.

Chapter 9 The Model Verification Library

9−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 9.20. Model for Example 9.2 with a Check Discrete Gradient block

9.11 The Check Input Resolution Block

The Check Input Resolution block performs a check to determine whether the input signal has a
specified scalar or vector resolution.* If the resolution is a scalar, the input signal must be a multi-

ple of the resolution within a tolerance. If the resolution is a vector, the input signal must
equal an element of the resolution vector. If the verification condition is true, the block takes no
action. If not, simulation is halted and an error message is displayed.

In general, the resolution of an analog-to-digital (A/D) converter that spans an input volt-

age of volts is given by where is the number of bit. For instance, an A/D con-
verter with a range of 0 to 12 volts, with the range is divided to so the
resolution is .

Example 9.11
In the model of Figure 9.21, the resolution for both Check Input Resolution blocks is specified as
the row vector

* Accuracy and resolution have different meaning. Accuracy is the degree with which an instrument measures a
variable in terms of an accepted standard value or true value; usually measured in terms of inaccuracy but
expressed as accuracy; often expressed as a percentage of full-scale range. Resolution is the smallest change in
the parameter being measured that causes a detectable change in the output of the instrument. For a detailed dis-
cussion on accuracy and resolution, please refer to Electronic Devices and Amplifier Circuits with MATLAB
Applications, ISBN 0-9709511-7-5.

10 3–

n bit–

X X 2n 1–()⁄ n
n 8= 12 255⁄ 47.1 mV≈

47.1 mV

Introduction to Simulink with Engineering Applications 9−15
Copyright © Orchard Publications

The Check Input Resolution Block

and the Enable assertion and Output assertion signal is checked. The values 1 (true) and 0 (false)
in the Display blocks are justified as follows:

Since the resolution specified in the Check Input Resolution blocks is a vector, the input signal
must be equal to an element of the resolution vector. The resolution specified in the Constant 1
block is an element of the resolution vector and thus the output is 1 indicating a True condition.
However, the resolution specified in the Constant 2 block is not an element of the resolution vec-
tor and thus the output is 0 indicating a False condition.

Figure 9.21. Model for Example 9.11

12 1
27 1–()

------------------- 1
28 1–()

------------------- 1
29 1–()

------------------- 1
210 1–()

--------------------- 1
211 1–()

---------------------×

Chapter 9 The Model Verification Library

9−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

9.12 Summary
The blocks in the Model Verification library are intended to facilitate creation of self−validating
models. For instance, we can use model verification blocks to verify that signals do not exceed
specified limits during simulation. When we are satisfied that a model is correct, we can turn error
checking off by disabling the verification blocks. We need not to physically remove them from the
model.

• The Check Static Lower Bound block performs a check to verify that each element of the
input signal is greater than (or optionally equal to) a specified lower bound at the current time
step. The block's parameter dialog box allows us to specify the value of the lower bound and
whether the lower bound is inclusive. If the verification condition is true, the block takes no
action. If not, the block halts the simulation and displays an error message.

• The Check Static Upper Bound block performs a check to verify that each element of the
input signal is less than (or optionally equal to) a specified lower bound at the current time
step. The block's parameter dialog box allows us to specify the value of the upper bound and
whether the bound is inclusive. If the verification condition is true, the block takes no action.
If not, the block halts the simulation and displays an error message.

• The Check Static Range block performs a check to ascertain that each element of the input
signal falls inside the same range of amplitudes at each time step. The block's parameter dialog
box allows us to specify the upper and lower bounds of the valid amplitude range and whether
the range includes the bounds. If the verification condition is true, the block takes no action. If
not, the block halts the simulation and displays an error message.

• The Check Static Gap block performs a check to verify that each element of the input signal
is less than (or optionally equal to) a static lower bound or greater than (or optionally equal
to) a static upper bound at the current time step. If the verification condition is true, the block
takes no action. If not, the block halts the simulation and displays an error message.

• The Check Dynamic Lower Bound block performs a check to verify that the amplitude of a
test signal is less than the amplitude of a reference signal at the current time step. The test sig-
nal is the signal connected to the input labeled sig. If the verification condition is true, the
block takes no action. If not, the block halts the simulation and displays an error message.

• The Check Dynamic Upper Bound block performs a check to verify that the amplitude of a
test signal is greater than the amplitude of a reference signal at the current time step. The test
signal is the signal connected to the input labeled sig. If the verification condition is true, the
block takes no action. If not, the block halts the simulation and displays an error message.

• The Check Dynamic Range block performs a check to verify that a test signal falls inside a
range of amplitudes at each time step. The width of the range can vary from time step to time
step. The input labeled sig is the test signal. The inputs labeled min and max are the lower and

Introduction to Simulink with Engineering Applications 9−17
Copyright © Orchard Publications

Summary

upper bounds of the valid range at the current time step. If the verification condition is true,
the block takes no action. If not, the block halts the simulation and displays an error message.

• The Check Dynamic Gap block performs checks to determine whether a gap of possibly vary-
ing width occurs in the range of a signal's amplitudes. The test signal is the signal connected to
the input labeled sig. The inputs labeled min and max specify the lower and upper bounds of
the dynamic gap, respectively. If the verification condition is true, the block takes no action. If
not, the block halts the simulation and displays an error message.

• The Assertion block verifies that the elements of the signal at its input have a non-zero value.
If all elements are non-zero, the block takes no action. If any element is zero, the block halts
the simulation, by default, and displays an error message. The block's parameter dialog box
allows us to specify that the block should display an error message when the assertion fails but
allows the simulation to continue.

• The Check Discrete Gradient block performs a check to determine whether the absolute
value of the difference between successive samples of the element is less than an upper bound.
The block's parameter dialog box allows us to specify the value of the upper bound (1 by
default). If the verification condition is true, the block takes no action. Otherwise, the block
halts the simulation and displays an error message in the Simulation Diagnostics Viewer.

• The Check Input Resolution block performs a check to determine whether the input signal
has a specified scalar or vector resolution. If the resolution is a scalar, the input signal must be

a multiple of the resolution within a tolerance. If the resolution is a vector, the input sig-
nal must equal an element of the resolution vector. If the verification condition is true, the
block takes no action. If not, the block halts the simulation and displays an error message.

10 3–

Chapter 9 The Model Verification Library

9−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

9.13 Exercises
1. Consider the model shown below where the inputs and outputs of the Signal Generator block

are also shown, and in the parameters for the Assertion block the Enable Assertion is checked
and the Stop simulation when assertion fails is unchecked. The Signal Generator block has
been specified for a sine waveform of amplitude 1 and frequency 0.25 Hz to accept an external
signal, i.e., the Clock block. Under those conditions will the Assertion block produce a warn-
ing?

2. It is known that noise voltages generated within the circuitry of an analog−to−digital converter
are . Create a model using a Check Dynamic Gap block to display error mes-
sages when the amplitude exceeds this range.

3. For the models shown below, the resolution in both Check Input Resolution blocks 1 and 2 has
been specified as

with . What is the maximum value that can be specified in Constant block 1 to cause
the Display 1 block to display 0 (False), and what is the minimum value that will cause the
Display 2 block to display 1 (True)?

0.75 mv 10%±

12
2n 1–()

n 9=

Introduction to Simulink with Engineering Applications 9−19
Copyright © Orchard Publications

Solutions to End−of−Chapter Exercises

9.14 Solutions to End−of−Chapter Exercises
1.

The Assertion block detects a 0 value at the start of the simulation time, in this case 10 sec-
onds as shown by the Clock block, and thus in MATLAB’s Command Window it outputs the
message:

Assertion detected in 'Exercise_9_1/Assertion' at time 0.000000.

However, the simulation continues for 10 seconds since the Stop simulation when assertion
fails is unchecked.

2.
The model and input and output waveforms are shown below. Since voltage noise occurs in
random, we set the Signal Generator block for Random waveform with amplitude and
frequency at . To allow for the tolerance from the nominal value, we set
the Constant blocks for and .

The output waveform is logic 0 (False) whenever assertions are detected, and jumps to 1
(True) when no assertions are detected. The precise times when assertions are detected are
displayed in MATLAB’s Command Window.

0.01
0.1 Hz 10%± 0.75 mv

+0.0085 0.0085–

Chapter 9 The Model Verification Library

9−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

3.
Since the resolution specified in both Check Input Resolution blocks is the scalar

 the input signal must be a multiple of this resolution within a tolerance. Since,

any value equal of greater than will cause a display 1 (True), and any value less than
 will cause a display of 0 (False) as shown in the models below.

Upon execution of the Simulation command, MATLAB’s Command Window displays Asser-
tions detected in the Check Input Resolution block 1 from 0 to 10 in steps of 0.2.

12
29 1–()

10 3–

12
29 1–()

------------------- 0.0235=

0.0235
0.0235

Introduction to Simulink with Engineering Applications 10−1
Copyright © Orchard Publications

Chapter 10

The Model−Wide Utilities Library

his chapter is an introduction to the Model−Wide Utilities library. This is the ninth library
in the Simulink group of libraries and contains the Linearization of Running Models Sub−
Library, the Documentation Sub−Library, and the Modeling Guides Sub−Library. We

will describe the function of each block included in this library and we will perform simulation
examples to illustrate their application.

T

Chapter 10 The Model−Wide Utilities Library

10−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

10.1 The Linearization of Running Models Sub−Library
The Linearization of Running Models Sub−Library contains the blocks described in Subsections
10.1.1 and 10.1.2 below.

10.1.1 The Trigger−Based Linearization Block

The Trigger−Based Linearization block, when triggered, invokes the MATLAB functions lin-

mod or dlinmod to create a linear model for the system. No trimming* is performed. The linear
model is stored in the base workspace as a structure, along with information about the operating
point at which the snapshot was taken. Multiple snapshots are appended to form an array of struc-
tures.

The name of the structure used to save the snapshots is the name of the model appended by
_Trigger_Based_Linearization, for example, vdp_Trigger_Based_Linearization. The structure has
the fields shown in the Help menu for this block.

Example 10.1
We will use a Trigger−Based Linearization block to extract the linear model for the model shown
in Figure 10.1.

Figure 10.1. Model for Example 10.1

This is the same model as that of Figure 3.4, Example 3.2, Chapter 3, Page 3−4, where with the
execution of the command [A,B,C,D]=linmod('Figure_3_4') the linear model in the form of the
state−space MATLAB displayed the four matrices as

A =

* The trim function uses a Simulink model to determine steady−state points of a dynamic system that satisfy input,
output, and state conditions that we can specify. For details please type help trim in MATLAB’s Command
Window.

Introduction to Simulink with Engineering Applications 10−3
Copyright © Orchard Publications

The Linearization of Running Models Sub−Library

 -5 -6 -1
 1 0 0
 0 1 -2
B =
 1
 0
 0
C =
 0 1 0
D =
 0

and thus the model of Figure 10.1 can be represented as

Next, let us reconsider the model of Figure 10.1 shown as Figure 10.2 where we have included a
Trigger−Based Linearization block triggered by a Pulse Generator block whose period is arbitrarily
specified for 10 seconds.

Figure 10.2. Model for Example 10.1 with Trigger−Based Linearization

For the model of Figure 10.2, we execute the simulation command, we save this model as
Figure_10_2.mdl, and in MATLAB’s Command Window we type and execute the command

Figure_10_2_Trigger_Based_Linearization

MATLAB displays the following:

Figure_10_2_Trigger_Based_Linearization =

 a: [3x3 double]

 b: [3x1 double]

x·
5– 6– 1–

1 0 0
0 1 2–

x
1
0
0

u+=

y 0 1 0 x 0 u+=

Chapter 10 The Model−Wide Utilities Library

10−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

 c: [0 1 0]

 d: 0

 StateName: {3x1 cell}

 OutputName: {'Figure_10_2/Out1'}

 InputName: {'Figure_10_2/In1'}

 OperPoint: [1x1 struct]

 Ts: 0

We observe that a, b, c, and d indicate the sizes of the state−space matrices A, B, C, and D
respectively.

10.1.2 The Time−Based Linearization Block

The Time−Based Linearization block invokes the MATLAB functions linmod or dlinmod to
create a linear model for the system when the simulation clock reaches the time specified by the
Linearization time parameter. No trimming is performed. The linear model is stored in the base
workspace as a structure, along with information about the operating point at which the snapshot
was taken. Multiple snapshots are appended to form an array of structures.

The name of the structure used to save the snapshots is the name of the model appended by
_Timed_Based_Linearization, for example, vdp_Timed_Based_Linearization. The structure has
the fields shown in the Help menu for this block.

Example 10.2
The model shown in Figure 10.3 is the same model as that of Figure 10.1, Example 10.1. We will
use a Time-Based Linearization block to extract its linear model.

We begin by adding a Time-Based Linearization block with the linearization time arbitrarily set
for 2 seconds, and the new model is now as shown in Figure 10.4.

Introduction to Simulink with Engineering Applications 10−5
Copyright © Orchard Publications

The Linearization of Running Models Sub−Library

Figure 10.3. Model for Example 10.2

Figure 10.4. Model for Example 10.2 with Timed−Based Linearization block

For the model of Figure 10.4, we execute the simulation command, we save this model as
Figure_10_2.mdl, and in MATLAB’s Command Window we type

Figure_10_4_Timed_Based_Linearization

and when this command is executed MATLAB displays the following:

Figure_10_4_Timed_Based_Linearization =

 a: [3x3 double]

 b: [3x1 double]

 c: [0 1 0]

 d: 0

 StateName: {3x1 cell}

 OutputName: {'Figure_10_4/Out'}

 InputName: {'Figure_10_4/In'}

 OperPoint: [1x1 struct]

 Ts: 0

We observe that a, b, c, and d indicate the sizes of the state-space matrices A, B, C, and D
respectively.

Chapter 10 The Model−Wide Utilities Library

10−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

We can use state and simulation time logging to extract the model states and inputs at operating
points. For example, suppose that we want to get the states of the Figure_10_4 model at lineariza-
tion times of 3 seconds and 7 seconds. This can be done with the following steps:

1. We open the model and drag an instance of this block from the Model−Wide Utilities library
and drop the instance into the model.

2. We open the block's parameter dialog box and set the Linearization time to .

3. We open the model's Configuration Parameters dialog box from the Simulation drop menu and
we select the Data Import/Export pane.

4. We check States and Time on the Save to Workspace control panel, we leave all other param-
eters in their default state, and we click on OK to confirm the selections and close the dialog
box.

5. We start the simulation.

6. At the end of the simulation, we type and execute whos in MATLAB’s Command Window,
and the following variables appear in the MATLAB workspace:

Figure_10_4_Timed_Based_Linearization, tout, and xout.

7. We obtain the indices to the operating point times by entering and executing the following in
MATLAB’s Command Window:

ind1 = find(Figure_10_4_Timed_Based_Linearization(1).OperPoint.t==tout);
ind2 = find(Figure_10_4_Timed_Based_Linearization(1).OperPoint.t==tout);

We type and execute whos in MATLAB’s Command Window, and the indices ind1 and ind2
are now included in the MATLAB workspace:

8. We obtain the state vectors at the operating points by entering and executing the following in
MATLAB’s Command Window:

x1 = xout(ind1,:); x2 = xout(ind2,:);

10.2 The Documentation Sub−Library
The Documentation Sub−Library contains the blocks described in Subsections 10.2.1 and 10.2.2
below.

10.2.1 The Model Info Block

The Model Info block displays revision control information about a model as an annotation block
in the model's block diagram.

3 7[]

Introduction to Simulink with Engineering Applications 10−7
Copyright © Orchard Publications

The Documentation Sub−Library

Example 10.3
The model in Figure 10.5 solves the non-linear equation

Figure 10.5. Model for Example 10.3

We would like to add a Model Info block to indicate that this model was created by John Smith
on 02/16/06 and was last modified by Bill Johnson on 04/27/06.

We drag a Model Info block into the model of Figure 10.5, we double−click it, and on the Model
Info dialog box shown in Figure 10.6 we enter the desired information. The model now appears as
shown in Figure 10.7.

Figure 10.6. Model Properties and Text for the Model Info block

f z() z2 4z 3 z z zcos–sin+ + +=

Chapter 10 The Model−Wide Utilities Library

10−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 10.7. Updated model for Example 10.3

10.2.2 The Doc Text Block

The Doc Text block or DocBlock allows us to create and edit text that documents a model and
save that text with the model. To create a file that contains relevant text, we double−click on this
block to open the file in the text editor that we have selected in the MATLAB Preferences dialog
box. We use the text editor to modify the text and save the file. Simulink stores the contents of
the saved file in the model file block.

Example 10.4
In Figure 10.8 the DOC Text block is provided to justify the necessity for the Data Type Conver-
sion block. Let us insert appropriate text for justification.

We double-click on the DOC Text block and in the Text Editor we replace the displayed message
with the following text:

The Convert block was inserted to convert the Boolean output of the
Check Dynamic Gap to double as required by the Bus Creator block.

Introduction to Simulink with Engineering Applications 10−9
Copyright © Orchard Publications

The Modeling Guides Sub−Library

Figure 10.8. Model for Example 10.4

This message will be displayed on MATLAB’s Editor whenever we double click on the Doc Text
block in the model of Figure 10.8.

10.3 The Modeling Guides Sub−Library
The Modeling Guides Sub-Library contains only the Block Support Table which is described
below.

The Block Support Table block includes a table which describes the data types that are sup-
ported by blocks in the main Simulink library. All blocks that can generate code contain an "X" in
the column titled "Code Generation Support". A subset of these blocks is not recommended for
production code as flagged by Note N6. Guidelines to determine when a block is recommended
for production code are listed below the table. Some blocks include caveats and notes that should
be taken into account when they are used. Caveats and notes are indicated in the table by "C#"
and "N#", respectively, and are described below the table.

Example 10.5
For the model of Figure 10.9, we will determine the types of data the Clock, Signal Generator, and
the Scope blocks will accept.

Figure 10.9. Model for Example 10.5

Chapter 10 The Model−Wide Utilities Library

10−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

We double−click on the Block Support Table block and from the table displayed we find that the
Clock and Signal Generator blocks will accept the double data type but as noted by Note N6 nei-
ther is recommended for production code. The Scope block will accept all data types listed in the
table.

Introduction to Simulink with Engineering Applications 10−11
Copyright © Orchard Publications

Summary

10.4 Summary
• The Trigger−Based Linearization block, when triggered, invokes the MATLAB command

linmod or dlinmod to create a linear model for the system.

• The Time−Based Linearization block invokes the MATLAB command linmod or dlinmod
to create a linear model for the system when the simulation clock reaches the time specified by
the Linearization time parameter.

• The Model Info block The Model Info block displays revision control information about a
model as an annotation block in the model's block diagram.

• The Doc Text block or DocBlock allows us to create and edit text that documents a model
and save that text with the model.

• The Block Support Table block describes the data types that are supported by blocks in the
main Simulink library.

Introduction to Simulink with Engineering Applications 11−1
Copyright © Orchard Publications

Chapter 11

The Ports & Subsystems Library

his chapter is an introduction to the Ports & Subsystems library. This is the tenth library
in the Simulink group of libraries and contains the blocks shown below. All nonvirtual sub-
systems, defined in Section 11.17, are shown with a bold border.We will describe the func-

tion of each block included in this library and we will perform simulation examples to illustrate
their application.

T

Chapter 11 The Ports & Subsystems Library

11−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

11.1 The Inport, Outport, and Subsystem Blocks

Inport blocks are ports that serve as links from outside a system into the system. Outport blocks
are output ports for a subsystem. A Subsystem block represents a subsystem of the system that
contains it. These blocks are described in Section 2.1, Chapter 2, Page 2−2.

11.2 The Trigger Block

The Trigger block is used with a subsystem or a model to allow its execution only when triggered
by an external signal provided by the Trigger block. We can configure this block to enable a
change in the value of the external signal to trigger execution of a subsystem once on each inte-
gration step when the value of the signal that passes through the trigger port changes in a specifi-
able way. We can also configure the Trigger block to accept a function−call trigger. This allows a
Function−Call Generator block or S−function* to trigger execution of a subsystem or model mul-
tiple times during a time step. A subsystem or model can contain only one Trigger block. Exam-
ples are presented in Sections 11.9 and 11.11, this chapter, Pages 11−25 and 11−30. For addi-
tional information, please refer also to Triggered Subsystems in Simulink’s documentation.

11.3 The Enable Block

The Enable block adds an enable block to a subsystem to make it an enabled subsystem. Enable
subsystems are subsystems that execute at each simulation step where the control signal has a pos-
itive value. A Control Signal is a signal that determines whether a subsystem executes. An
enabled subsystem has a single control input which can have a scalar or vector value. If the input
is a scalar, the subsystem executes if the input is greater than zero. For instance, if the signal is a
waveform (sinusoid, square, sawtooth, etc.), crosses zero, and the slope is positive, the subsystem
is enabled. If the signal crosses zero and the slope becomes negative, the subsystem is disabled. If
the input is a vector, the subsystem executes if any of the vector elements is greater than zero.

At the start of simulation, Simulink initializes the states of blocks inside an enabled subsystem to
their initial conditions. When an enabled subsystem restarts, that is, it executes after having been

* An introduction and an example of an S−Function is presented in Section 11.18, this Chapter, Page 11−43.

Introduction to Simulink with Engineering Applications 11−3
Copyright © Orchard Publications

The Function−Call Generator Block

disabled, the States parameters determine the status of the blocks contained in the enabled sub-
system. Thus,

reset resets the states to their initial conditions (zero if not defined).

held holds the states at their previous values.

We can output the enabling signal by selecting the Show output port check box in the Block
Parameters dialog box. Selecting this option allows the system to process the enabling signal.

To add an Enable block to a subsystem model, we double−click on the subsystem block, and when
the subsystem appears, we drag the Enable block into it. An example is presented in Section 11.6,
Figure 11.15, this chapter, Page 11−14.

11.4 The Function−Call Generator Block

The Function-Call Generator block executes a function−call subsystem at the rate specified by
the block's Sample time parameter. We can execute multiple function−call subsystems in a pre-
scribed order by first connecting a Function−Call Generator block to a Demux block that has as
many output ports as there are function−call subsystems to be controlled. Then, we can connect
the output ports of the Demux block to the systems to be controlled. The system connected to the
first demux port executes first, the system connected to the second demux port executes second,
and so on. We can configure Stateflow®* blocks to execute function−call subsystems, thereby
extending the capabilities of the blocks. For more information on their use in Stateflow, please
refer to the Stateflow documentation.

Example 11.1
The model of Figure 11.1 shows how a Function−Call Generator and a Demux can be used to
control four different Function−Call Subsystem blocks. The Function−Call Subsystem block is
described in Section 11.12, this chapter, Page 11−34.

* A Stateflow diagram is a graphical representation of a finite state machine where states and transitions form the
basic building blocks of the system. Stateflow provides a block that we can include in a Simulink model.

Chapter 11 The Ports & Subsystems Library

11−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.1. Model for Example 11.1

11.5 The Atomic Subsystem Block

In Chapter 2, Section 2.1, Page 2−2, we described the Subsystem, Inport, and Outport blocks. As
we recall, we select the blocks and lines which will become parts of the subsystem using a bound-
ing box, then we choose Create Subsystem from the Edit menu. Simulink replaces the blocks with
a Subsystem block. When we double−click the subsystem block, a model appears which displays
the blocks that we have selected, and adds Inport and Outport blocks to indicate the signals
entering and leaving the subsystem.

We can also create a subsystem using the Atomic Subsystem block. This is done by copying the
Atomic Subsystem block from the Ports & Subsystems library into our model. Then we can add
blocks to the subsystem by opening the Subsystem block and copying blocks into it.

Example 11.2
Figure 11.2 shows a four−line−to−one−line digital multiplexer whose truth table is shown as Table
11.1 below. This model is saved as Figure_11_2.

Introduction to Simulink with Engineering Applications 11−5
Copyright © Orchard Publications

The Atomic Subsystem Block

We will use an Atomic Subsystem block to create a subsystem for this multiplexer. We do so by
selecting all blocks in this model and copying them into new model which we name
Figure_11_2S. From the Ports & Subsystems library, we drag the Atomic Subsystem block into
model Figure_11_2S and we save it with the same name. It is shown as Figure 11.3, and it is
annotated as Saved as Figure_11_2S.

Next, we double−click the Atomic Subsystem block in Figure 11.3, and we observe that it is now
displayed with an Inport block and an Outport block connected by a straight line as shown in Fig-
ure 11.4. It is annotated as Figure_11_2S/Atomic Subsystem, and it is saved with this name.

Figure 11.2. Digital multiplexer circuit for Example 11.2

TABLE 11.1 Truth table for Example 11.2

Inport 6 Inport 5 Output

0 0 D

0 1 C

1 0 B

1 1 A

Chapter 11 The Ports & Subsystems Library

11−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.3. Model for Example 11.2 saved as Figure_11_2S

Figure 11.4. The updated appearance of the Atomic Subsystem block of Figure 11.3

We open the model of Figure 11.2, saved as Figure_11_2, we choose Select All from the Edit
menu, and we drag it into the model of Figure 11.4 which now appears as in Figure 11.5. We save
the model of Figure 11.5 with the same name as that of Figure 11.4, i.e., Figure_11_2S/Atomic
Subsystem.

Now, we reopen the model of Figure 11.3 and we observe that the Atomic Subsystem block
appears as shown in Figure 11.6. We double-click on the Atomic Subsystem block of Figure 11.6
and we observe that it has the appearance of Figure 11.5.

We no longer need the In1 and Out1 blocks on top of the model of Figure 11.5, so we delete
them, and we also delete the interconnecting line. We also relabel the In and Out blocks as In 1,
In 2,..., In 6, and Out, and we save this model with the same name. We return to the model with
the Atomic Subsystem block, we copy it into a new model, we expand it, and we save it. It is
shown as Figure 11.7.

Introduction to Simulink with Engineering Applications 11−7
Copyright © Orchard Publications

The Atomic Subsystem Block

Figure 11.5. The model of Figure 11.2 copied into the model of Figure 11.4

Chapter 11 The Ports & Subsystems Library

11−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.6. Updated appearance of the Atomic Subsystem block

Figure 11.7. The multiplexer of Example 11.2 shown as an Atomic Subsystem.

To verify that the Atomic Subsystem of Figure 11.7 performs in accordance with the truth table,
we assign the variables A, B, C, and D and control lines C0 and C1 as shown in Figure 11.8 and
successively we assign the values shown below in MATLAB’s Command Window. With these
values, the output of the digital multiplexer is logical 1 (True).

A=1; C0=1; C1=1;
B=1; C0=0; C1=1;
C=1; C0=1; C1=0;
D=1; C0=0; C1=0;

Introduction to Simulink with Engineering Applications 11−9
Copyright © Orchard Publications

The Code Reuse Subsystem Block

Figure 11.8. The Atomic Subsystem with inputs and output to verify the truth table of Example 11.2

11.6 The Code Reuse Subsystem Block

The Code Reuse Subsystem block is a Subsystem block that represents a subsystem of the system
that contains it. It is very similar to the Atomic Subsystem which we discussed in the previous sec-
tion. We can create a subsystem either by copying the Subsystem (or Atomic Subsystem) block
from the Ports & Subsystems library into our model and add blocks to the subsystem by opening
the Subsystem block and copying blocks into its window, or by selecting the blocks and lines that
are to make up the subsystem using a bounding box, then choosing Create Subsystem from the
Edit menu. Simulink replaces the blocks with a Subsystem block. When we double−click the
block, the window displays the blocks which we selected.

Example 11.3
Figure 11.9 is a block diagram of a decimal−to−BCD encoder digital circuit. We will use the truth
table of Table 11.2 to create a model for the decimal−to−BCD encoder circuit.

Figure 11.9. Block diagram for decimal-to-BCD encoder

A msd()

B

C

D lsd()

S0

S1

S9

Decimal to– BCD–
Encoder

Chapter 11 The Ports & Subsystems Library

11−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

From the truth table above we derive the following relations:

(11.1)

where A is the most significant bit and D is the least significant bit. We can implement the deci-
mal−to−BCD encoder with either the circuit of Figure 11.10 or the circuit of Figure 11.11. The
latter is more practical since five−input OR gates are not standard IC devices. In both circuits the
input is terminated inside the circuit since it does not appear in the relations of (11.1).

The problem statement instructs us to design a logic circuit whose inputs are the decimal numbers
0 through 9 denoted as switches through , and the output is the BCD code, that is, the logic
circuit has ten input lines and four output lines as shown in Figures 11.10 and 11.11. Obviously,
only one of the ten switches through will be closed (will be logical 1) at any time and thus
the truth table is as presented.

TABLE 11.2 Truth table for decimal-to-BCD encoder

Inputs Outputs

A B C D

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

A S8 S9+=

B S4 S5 S6 S7+ + +=

C S2 S3 S6 S7+ + +=

D S1 S3 S5 S7 S9+ + + +=

S0

S0 S9

S0 S9

Introduction to Simulink with Engineering Applications 11−11
Copyright © Orchard Publications

The Code Reuse Subsystem Block

Figure 11.10. Decimal−to−BCD encoder circuit with non−standard OR gates

We save the model in Figure 11.10 as Figure_11_10, and we save the model in Figure 11.11 as
Figure_11_11. Next, we open a new model and we name it Figure_11_12. From the Ports & Sub-
systems library we drag a Code Reuse Subsystem block into model Figure_11_12 and we label it
Code Reuse Subsystem 1. We double−click on the Code Reuse Subsystem 1 block and in the
Figure_11_12/Code Reuse Subsystem 1 window we drag the model of Figure_11_10, and we save
it. Now, we double−click on the Code Reuse Subsystem 1 block in the model Figure_11_12 and
the encoder circuit of Figure 11.10 appears.

Chapter 11 The Ports & Subsystems Library

11−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.11. Decimal−to−BCD encoder with standard 2−input OR gates

Figure 11.12. Models of Figures 11.10 and 11.11 shown as subsystems

Introduction to Simulink with Engineering Applications 11−13
Copyright © Orchard Publications

The Code Reuse Subsystem Block

We repeat these steps for model Figure_11_11 shown in Figure 11.11 and we label it Code Reuse
Subsystem 2 as shown in Figure 11.12.

We can verify that the outputs of both subsystems in Figure 11.12 are as specified in the given
truth table. With the inputs and outputs labeled as shown in Figure 11.13, we can verify the BCD
codes by entering the values of in MATLAB’s Command
Window. The MATLAB script below displays the BCD value 1001 which is equivalent to deci-
mal number 9.

S0=0; S1=0; S2=0; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0; S9=0;
S0=0; S1=0; S2=1; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0; S9=0;
S0=0; S1=0; S2=0; S3=1; S4=0; S5=0; S6=0; S7=0; S8=0; S9=0;
S0=0; S1=0; S2=0; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0; S9=1;

Figure 11.13. Subsystems for truth table verification of Table 11.2, Example 11.3

Example 11.4
In this example, we will add an Enable block to Code Reuse Subsystem 1 of Figure 11.13 which
now is shown in Figure 11.14. We will use a Pulse Generator block to generate the enable control
signal.

0000 0001 0010 … 1001 S1 S2 … S9, , ,

Chapter 11 The Ports & Subsystems Library

11−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.14. Subsystem for Example 11.4

We cannot drag the Enable block into the subsystem model of Figure 11.14; we must double−click
it, and when its subsystem appears, from the Ports & Subsystems library we drag the Enable block
which now appears as shown in Figure 11.15. We save it as Figure_11_15.

Figure 11.15. Model for Example 11.4 with Enable block

Introduction to Simulink with Engineering Applications 11−15
Copyright © Orchard Publications

The Code Reuse Subsystem Block

The subsystem of Figure 11.14 now appears as shown in Figure 11.16 with another input on top of
it for the Enable control signal. To this input we connect a Pulse Generator block as shown in Fig-
ure 11.17.

Figure 11.16. The Code Reuse Subsystem 1 block with the Enable input on top

Figure 11.17. The Code Reuse Subsystem 1 block with Pulse Generator block connected to Enable port

When the Simulation command is executed, the outputs are , , , and
since the last entry into MATLAB’s Command Window was as follows:

S0=0; S1=0; S2=0; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0; S9=1;

A 1= B 0= C 0= D 1=

Chapter 11 The Ports & Subsystems Library

11−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Next, we remove the Pulse Generator block from the model of Figure 11.17 and reissue the Simu-
late command. We observe that all four outputs are now zero as shown in Figure 11.18 even
though in MATLAB’s Command Window we have entered

S0=0; S1=0; S2=0; S3=0; S4=0; S5=0; S6=0; S7=0; S8=0; S9=1;

This occurred because the Enable Control Signal provided by the Pulse Generator block has been
removed.

Figure 11.18. Outputs when the Pulse Generator block is removed from the subsystem of Figure 11.17

As stated earlier, we can output the enabling signal by selecting the Show output port check box.
When we choose this option we allow the subsystem to display the status the Enable signal. The
subsystem then appears as shown in Figure 11.19 assuming that the Pulse Generator block is con-
nected as shown in Figure 11.17.

Introduction to Simulink with Engineering Applications 11−17
Copyright © Orchard Publications

The Model Block

Figure 11.19. The Enable block with the Show output selected

11.7 The Model Block

The Model block is used to specify the name of a Simulink model. The name must be a valid
MATLAB identifier. The model must exist on the MATLAB path and the MATLAB path must
contain no other model having the same name. To add the name of a saved model on the MAT-
LAB path, we open the Command Window, we choose Set Path from the File menu, we click on
the Add Folder field, we select the path to be added from the Browse for Folder, and we click on
OK.

Chapter 11 The Ports & Subsystems Library

11−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 11.5
We will use the Model block to specify the model Figure_11_11 which we saved by this name in
Example 11.3, Page 11−11.

We open a new model and we drag a Model block into it. The Model block appears as shown in
Figure 11.20.

Figure 11.20. The first appearance of a Model block in a new model

We double click on the Model block and in the Parameters dialog box we enter the saved model
name without the < and the > symbols and without the .mdl extension. The Model block now
appears as shown in Figure 11.21.

Figure 11.21. The appearance of a Model block with a saved model name

Next, we double−click on the Model block in Figure 11.21 and the model Figure_11_11 appears
as shown in Figure 11.22. This is the same model as that shown in Figure 11.11.

Introduction to Simulink with Engineering Applications 11−19
Copyright © Orchard Publications

The Configurable Subsystem Block

Figure 11.22. Model displayed by the Model block in Figure 11.21

11.8 The Configurable Subsystem Block

The Configurable Subsystem block* represents one of a set of blocks contained in a specified
library of blocks. The block's context menu lets us choose which block the configurable subsystem
represents. A configurable Subsystem block simplifies the creation of models that represent fami-
lies of designs.

* We cannot insert this block to a new model window. This block must be placed in a library to be used. We cre-
ate a new library by choosing New Library from the File menu.

Chapter 11 The Ports & Subsystems Library

11−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

For example, suppose that we want to model a full adder* digital circuit that offers a choice of
logic gates, e.g., NAND, NOR, AND, OR and NOT, or by the combination of two half−adders.
To model such a design, we must first create a library of models of the logic gates available. We
would then use a Configurable Subsystem block in our model to represent the choice of the logic.
To model a particular variant of the basic design, a user need only choose the logic gate type,
using the configurable block's dialog box.

To create a configurable subsystem in a model, we must first create a library containing a master
configurable subsystem and the blocks that it represents. We can then create configurable
instances of the master subsystem by dragging copies of the master subsystem from the library and
dropping them into models. We can add any type of block to a master configurable subsystem
library. Simulink derives the port names for the configurable subsystem by making a unique list
from the port names of all the choices. Simulink uses default port names for non−subsystem block
choices.

Example 11.6
We will create a new library with two binary full−adder circuits. The first will be designed with a
combination of AND, OR, and NOT gates as shown in Figure 11.23, and the second will be
formed by cascading two half−adders as shown in Figure 11.24. We will create a subsystem for
each, and these subsystems will constitute the blocks of the new library where Subsystem 1 will
represent the full−adder of Figure 11.23, and Subsystem 2 will represent the full adder of Figure
11.24. Then, we will create a model for a four-bit binary adder by cascading four one−bit full
adder blocks of the Subsystem 1.

In both models of Figures 11.23 and 11.24 the first output represents the Sum bit and the second
output represents the Carry bit. It is not necessary to assign Outport blocks but it is necessary to
assign Inport blocks as shown, otherwise the inputs would be shown as unconnected lines. Next,
we create subsystems for each by enclosing all blocks except the Inport blocks, and we choose
Create Subsystem from the Edit menu. The created subsystems are as shown on the left side of
Figures 11.25 and 11.26. The Inport blocks are no longer required and are deleted. The subsystem
blocks are thus simplified as shown on the right side of Figures 11.25 and 11.26.

We will now create a new library. This is done by clicking on File>New>Library, and we name it
Library_Example_11_6. From the subsystem model of Figure 11.25 we drag the Subsystem 1A
block into this new library. We also drag the Subsystem 2A block from the model of Figure 11.26
into this library. Our library now looks as shown in Figure 11.27 where Subsystem 1A block repre-
sents the full−adder implemented with AND, OR, and NOT gates, and Subsystem 2A block rep-
resents the full−adder implemented with two half−adders.

* For a detailed discussion and design of a full adder digital circuit please refer to Digital Circuit Analysis and
Design with an Introduction to CPLDs and FPGAs, ISBN 0-9744239-6-3.

Introduction to Simulink with Engineering Applications 11−21
Copyright © Orchard Publications

The Configurable Subsystem Block

Figure 11.23. Full−Adder circuit for Subsystem 1

Figure 11.24. Full−Adder circuit for Subsystem 2

Figure 11.25. The model of Figure 11.23 shown as a subsystem

Chapter 11 The Ports & Subsystems Library

11−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.26. The model of Figure 11.24 shown as a subsystem

Figure 11.27. Library with Subsystems 1A and 2A blocks

We save the library, and then we drag a Configurable Subsystem block in the library. The library
now looks as shown in Figure 11.28.

Figure 11.28. The library with the addition of the Configurable Subsystem

We double click on Configurable Subsystem block and in the Configuration dialog box we place
check marks in the Member squares as shown in Figure 11.29. The Port names panel shows the
inputs indicated as Inports. To see the outputs, we click on the Outports tab.

Figure 11.29. The Configuration dialog for the library of Example 11.6

Introduction to Simulink with Engineering Applications 11−23
Copyright © Orchard Publications

The Configurable Subsystem Block

We can now select either Subsystem 1A or Subsystem 2A from the Configuration dialog to imple-
ment the 4−bit Adder by cascading four one−bit adders. For this example we choose Subsystem
1A. This is done by unselecting Subsystem 2A on the Configuration dialog box of Figure 11.29.

We create a new model by dragging the Configurable Subsystem block from this library into this
model, copy and paste this block three times, and we interconnect these as shown in Figure 11.30.

Figure 11.30. Four-bit binary adder for Example 11.6 with Subsystem 1A blocks

In the model of Figure 11.30, the carry bit of the right−most one−bit adder is set to zero since
there is no previous one−bit adder. We observe that Simulink displays small arrows on the bottom
left corner of each of the subsystem blocks. A small arrow indicates that each subsystem block
represents a library link in the model, and it is only visible if the Link Library Display option of
the Format menu is selected All.

To verify that the 4−bit adder of Figure 11.30 operates properly, let us perform the binary addition

In MATLAB’s Command Window we enter

x0=1; y0=0; x1=1; y1=1; x2=0; y2=1; x3=1; y3=0;

and the addition is verified where the most significant bit of the sum is displayed as Carry Out.

Should we, later decide to replace the Subsystem 1A blocks with Subsystem 2A blocks, we return
to our library, we click on the Configurable Subsystem block, on the Configuration dialog of Fig-
ure 11.29 we unselect Subsystem 1A block and we select the Subsystem 2A block. We copy this
block into our model of Figure 11.30 and we replace the Subsystem 1A blocks with Subsystem 2A
blocks. The new model is now as shown in Figure 11.31.

 1011
 + 0110
 10001

Chapter 11 The Ports & Subsystems Library

11−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.31. Four-bit binary adder for Example 11.1 with Subsystem 2 blocks

Using the Subsystem 1 or Subsystem 2 blocks in Figure 11.30 or Figure 11.31 we can create
another library with subsystems representing a 4-bit adder block as shown in Figure 11.32. Of
course, we can next combine four 4−bit adder blocks to form a 16−bit adder subsystems, and so
on.

Figure 11.32. A 4−bit Adder Subsystem

For more details on Creating a Master Configurable Subsystem please refer to the Help menu for
the Configurable Subsystem block.

Introduction to Simulink with Engineering Applications 11−25
Copyright © Orchard Publications

The Triggered Subsystem Block

11.9 The Triggered Subsystem Block

A Triggered Subsystem block is used to represent a subsystem whose execution is triggered by an
external input.

Example 11.7
Let us reconsider the Atomic Subsystem block of Figure 11.8, Example 11.2, Section 11.5, this
chapter, Page 11−9, repeated below as Figure 11.33, and add a Trigger block to it. We will use a
Pulse Generator block to generate the trigger control signal. The Display block indicates the value
1, provided that in MATLAB’s Command Window we have enter the following script:

A=1; C0=1; C1=1;
B=1; C0=0; C1=1;
C=1; C0=1; C1=0;
D=1; C0=0; C1=0;

Figure 11.33. The Atomic Subsystem block for a four−line−to−one−line digital multiplexer

We cannot drag the Trigger block into the subsystem model of Figure 11.33; we must double click
it, and when its subsystem appears, from the Ports & Subsystems library we drag the Trigger block
which now appears as shown in Figure 11.34. We save it as Figure_11_34.

Chapter 11 The Ports & Subsystems Library

11−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.34. Model for Example 11.7 with Trigger block

The subsystem of Figure 11.33 now appears as shown in Figure 11.35 with another input on top of
it for the Trigger control signal. We observe that the Display block now indicates the value 0; this
is because with the addition of the Trigger control input without a signal, the subsystem block is
disabled. To this input we connect a Pulse Generator block as shown in Figure 11.36.

Figure 11.35. The Atomic Subsystem block with the Trigger input on top

Introduction to Simulink with Engineering Applications 11−27
Copyright © Orchard Publications

The Enabled Subsystem Block

Figure 11.36. The Atomic Subsystem block with Pulse Generator connected to Trigger port

We observe that, because the subsystem is now enabled, the Display block now indicates the
value 1, provided that in MATLAB’s Command Window we have enter the following script:

A=1; C0=1; C1=1;
B=1; C0=0; C1=1;
C=1; C0=1; C1=0;
D=1; C0=0; C1=0;

11.10 The Enabled Subsystem Block

The Enable Subsystem block represents a subsystem whose execution is enabled by an external
input which can be a scalar or a vector. If the input is a scalar, the subsystem executes if the input
value is greater than zero. If the input is a vector, the subsystem executes if any of the vector ele-
ments is greater than zero. Consider the waveform of Figure 11.37 where an up arrow denotes an
enable condition, and a down arrow denotes a disable condition.

Figure 11.37. An alternating waveform that can cause alternate enable and disable conditions

Chapter 11 The Ports & Subsystems Library

11−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Thus, when the control input signal is alternating, the subsystem will be alternately enabled and
disabled. Simulink uses the zero−crossing slope method to determine whether an enable is to
occur. Thus, if the signal crosses zero and the slope is positive, the subsystem is enabled, and if the
slope is negative at the zero crossing, the subsystem is disabled.

We create an enabled subsystem by copying an Enable block from the Ports & Subsystems library
into a subsystem. Simulink adds an enable symbol and an enable control input port to the Sub-
system block, and although an enabled subsystem does not execute while it is disabled, the output
signal is still available to other blocks. While an enabled subsystem is disabled, we can choose to
hold the subsystem outputs at their previous values or reset them to their initial conditions. We
choose held to cause the output to maintain its most recent value and we choose reset to cause
the output to revert to its initial condition.

Example 11.8
The model of Figure 11.38 is the same as that of Figure 2.28, Example 2.14, Section 2.14, Chapter
2, Page 2−24. We will create a subsystem using an Enabled Subsystem block by grouping all blocks
except the Step and the Scope blocks, then we add an appropriate Enable control input to the
created subsystem block.

Figure 11.38. Model for Example 11.8

We open a new model, and from the Ports & Subsystems library we drag the Enabled Subsystem
shown in Figure 11.39.

Figure 11.39. The Enable and Triggered Subsystem for replacing the model of Figure 11.38

Introduction to Simulink with Engineering Applications 11−29
Copyright © Orchard Publications

The Enabled Subsystem Block

We double−click on the Enabled Subsystem block of Figure 11.39, we drag the entire model of
Figure 11.38 into the Enable Subsystem window, we replace the Step and Scope blocks with the
In and Out ports, for the Enable block we select the Show output port check box, and we connect
its output to a Display block as shown in Figure 11.40.

Figure 11.40. Contents of the Enable Subsystem block for the Subsystem of Figure 11.39

We return to the Enabled and Triggered Subsystem of Figure 11.39, we drag the Pulse Generator
and Step blocks from the Sources library, and we connect them to the Enable and Triggered
inputs of the subsystem. We also add a Bus Creator block and a Scope block by dragging them
from the Commonly Used Blocks Library. The model now is as shown in Figure 11.41.

Figure 11.41. The model of Figure 11.40 replaced with an Enabled Subsystem block

After execution of the Simulation command for the model of Figure 11.41, the Enable signal and
Subsystem outputs are displayed on the Scope block as shown in Figure 11.42.

Chapter 11 The Ports & Subsystems Library

11−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.42. The Enable signal and Subsystem block outputs for the model of Figure 11.38

11.11 The Enabled and Triggered Subsystem Block

The Enabled and Triggered Subsystem block is a combination of the enabled subsystem and the
triggered subsystem. When the trigger occurs, Simulink checks the enable input port to evaluate
the enable control signal. If its value is greater than zero, Simulink executes the subsystem. If both
inputs are vectors, the subsystem executes if at least one element of each vector is nonzero. The
subsystem executes once at the time step at which the trigger event occurs. We create a triggered
and enabled subsystem by dragging both the Enable and Trigger blocks from the Ports & Sub-
systems library into an existing subsystem. Simulink adds enable and trigger symbols and enable
and trigger and enable control inputs to the Subsystem block.

Example 11.9
Figure 11.43 is a model for the second−order, discrete−time transfer function

(11.2)

We will create a subsystem using an Enabled and Triggered Subsystem block by grouping all
blocks except the Pulse Generator and the Scope blocks, and we will add appropriate Enable and
Trigger control inputs to the created subsystem block. The delay blocks are specified for
Sample time (Inherited).

H z() 0.5 1 0.25z 2–+()
1 0.1z 1– 0.75z 2––+
---=

1 Z⁄
1–

Introduction to Simulink with Engineering Applications 11−31
Copyright © Orchard Publications

The Enabled and Triggered Subsystem Block

Figure 11.43. Model for Example11.9

We open a new model, and from the Ports & Subsystems library we drag the Enabled and Trig-
gered Subsystem shown in Figure 11.26.

Figure 11.44. The Enable and Triggered Subsystem for replacing the model of Figure 11.43

We double-click on the Enabled and Triggered block of Figure 11.44, we drag the entire model of
Figure 11.43 into the Enable and Triggered Subsystem window, we replace the Pulse Generator
and Scope blocks with the In and Out ports, for the Trigger and Enable blocks we select the Show
output port check box, and we connect their outputs to Display blocks as shown in Figure 11.45.

We return to the Enabled and Triggered Subsystem of Figure 11.44, we drag the Pulse Generator
and Step blocks from the Sources library and we connect them to the Enable and Triggered inputs
of the subsystem. We also connect a Sine Wave block to its input and a Scope block to its output
as shown in Figure 11.46 where the Sine Wave block is specified for Sample time .0.2

Chapter 11 The Ports & Subsystems Library

11−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.45. Contents for the Enable and Triggered Subsystem block for the Subsystem of Figure 11.44

Figure 11.46. The model of Figure 11.43 replaced with an Enabled and Triggered Subsystem block

After execution of the Simulation command for the model of Figure 11.46, the Enable and Trig-
gered Subsystem block output is as shown in Figure 11.47.

Figure 11.47. Output waveforms for the Enabled and Triggered Subsystem of Figure 11.46

Introduction to Simulink with Engineering Applications 11−33
Copyright © Orchard Publications

The Enabled and Triggered Subsystem Block

We also observe that the outputs of Trigger and Enable blocks in Figure 11.45 are now as shown
in Figure 11.48 indicating that the trigger and enable commands were issued.

Figure 11.48. The outputs of the Trigger and Enable blocks after the Simulation command is issued

The model in Figure 11.49 is the model of Figure 11.46 with execution context to which a block
belongs and execution context indicators.* The execution context is the sorted order index for
each block and it is shown in the upper right corner of each block. It is shown as s:b where is s
denotes the subsystem and b denotes the block’s sorted order. Thus, the execution context 0:0
shown inside the Sine Wave block indicates that this block is the first block† in the subsystem’s
execution context, and the Pulse Generator 1 block is the next. The execution context 0:2 is not
shown; that would be the Enable input in the Subsystem block. The execution context 0:4 is not
shown either; that would be the Trigger input in the Subsystem block. In the execution context
0:5{1} 0 indicates that the Enabled and Triggered Subsystem block resides in the model’s root
system, 5 indicates that the subsystem is the fifth block on the root subsystem’s sorted list, and {1}
indicates that the index of the enabled subsystem is 1.

Figure 11.49. The model of Figure 11.46 with Execution Context and context indicators

The Enabled and Triggered Subsystem block in Figure 11.49 also shows two vertical bars at the
input and output ports referred to as execution context bars.‡ These bars indicate that at these
ports execution contexts will not be propagated.

* To see the context indicators, we invoke Format>Block Displays>Sorted order
† We must remember that the default indexing in Simulink is the zero−based indexing.
‡ To see the execution context bars, we invoke Format>Block Displays>Execution Context Indicator

Chapter 11 The Ports & Subsystems Library

11−34 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

11.12 The Function−Call Subsystem Block

The Function−Call Subsystem block is used to represent a subsystem that can be invoked as a
function by another block. With a Function−Call Subsystem block we can create a triggered sub-
system whose execution is determined by logic internal to an S−function instead of by the value of
a signal. A subsystem so configured is called a Function−Call subsystem.

To implement a Function−Call Subsystem we can use a Trigger block − as in Example 11.7, Sec-
tion 11.9, Page 11−26 − in which we select function−call as the Trigger type parameter. Another
method is to connect an S−Function block output directly to the trigger port. A third method is to
use an S−Function using the ssEnableSystemWithTid and ssDisableSystemWithTid to enable
or disable the triggered subsystem, and the ssCallSystemWithTid macro to call the triggered sub-
system. These are discussed in the Simulink documentation.

All blocks in a triggered subsystem must have either inherited (−1) or constant (inf) sample time.
This is to indicate that the blocks in the triggered subsystem run only when the triggered sub-
system is triggered. A triggered subsystem cannot contain continuous blocks, such as an Integra-
tor block.

Function−Call subsystems implement callable functions using Simulink blocks. They are executed
by a function−call initiator. S−Functions, Function−Call generators, and Stateflow charts, the
latter being the most common, are all function−call initiators.

Example 11.10

The model shown in Figure 11.50 is the same as in Example 11.9. The delay blocks are spec-
ified for Sample time (Inherited). We will create a subsystem using a Function−Call Subsystem
block by grouping all blocks in Figure 11.50 except the Pulse Generator and the Scope blocks. We
will add a Trigger control input to the created subsystem block.

We open a new model, and from the Ports & Subsystems library we drag the Function−Call Sub-
system shown in Figure 11.51.

We double−click on the block of Figure 11.51, we drag the entire model of Figure 11.50 into the
Function−Call Subsystem window, we replace the Pulse Generator and Scope blocks with the In
and Out ports, for the Trigger block we select the Show output port check box, and we connect
their outputs to Display blocks as shown in Figure 11.52.

1 Z⁄
1–

Introduction to Simulink with Engineering Applications 11−35
Copyright © Orchard Publications

The Function−Call Subsystem Block

Figure 11.50. Model for Example 11.10

Figure 11.51. The Function−Call Subsystem for replacing the model of Figure 11.50

Figure 11.52. Contents for the Function−Call Subsystem block for the Subsystem of Figure 11.51

We return to the Function−Call Subsystem of Figure 11.51, to the Function input on top of the
block we connect A Function−Call Generator block, to the In1 input we connect a Rate Transi-
tion* block, to the Out1 output we connect another Rate Transition block, and we add the In1
and Out1 ports, and the new model is now as shown in Figure 11.53.

* The Rate Transition block is described in Subsection 12.1.8, Chapter 12, Page 12-8

Chapter 11 The Ports & Subsystems Library

11−36 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.53. The model of Figure 11.50 replaced with a Function-Call Subsystem block

The model of Figure 11.53 does not illustrate the full power of a Function−Call Subsystem. Func-
tion−Call Subsystems are not executed directly by Simulink; the S−function determines when to
execute the subsystem. When the subsystem completes execution, control returns to the S−func-
tion. For a detailed description for this block, and an illustration of the interaction between a
Function−Call Subsystem and an S−function, please refer to Simulink’s Help menu.

Function−Call subsystems are a powerful modeling construct. We can configure Stateflow®
blocks to execute function−call subsystems, thereby extending the capabilities of the blocks. For
more information on their use in Stateflow, please refer to the Stateflow documentation.

11.13 The For Iterator Subsystem Block

The For Iterator Subsystem block is a subsystem that executes repeatedly during a simulation
time step until an iteration variable exceeds a specified iteration limit. We can use this block the
same way as a for loop in MATLAB.

Example 11.11
The components of the For Iterator Subsystem in Figure 11.54 are shown in Figure 11.55 and this
subsystem was created following the steps of Examples 11.2 and 11.3. The Display block in Figure
11.55 shows the constant assigned to the input of the For Iterator Subsystem in Figure 11.54. The
XY Graph block* appears in Simulink’s Sink library and displays an X−Y plot of its inputs in a
MATLAB figure window. We will assign an appropriate value to the Memory block in Figure
11.55 so that the XY Graph block will display a linear segment for the equation .

* The XY Graph block is described in Subsection 14−2−3, Chapter 14, Page 14−12.

y x– 5+=

Introduction to Simulink with Engineering Applications 11−37
Copyright © Orchard Publications

The For Iterator Subsystem Block

Figure 11.54. For Iterator Subsystem for Example 11.11

Figure 11.55. Contents of the For Iterator Subsystem block for the Subsystem of Figure 11.54

The straight line equation has slope , and y−intercept . Since the slope
is negative, we want the y values to decrease with increasing values of x, and since the y−intercept
is 5, we set the initial value in the Memory block to . Next, we double click on the XY Graph
block, and on the Block parameters we set , , , and

. After execution of the Simulation command the XY Graph block displays the
straight line shown in Figure 11.56.

Figure 11.56. XY plot for the model of Figure 11.55

y x– 5+= m 1–= b 5=

5
x min– 0= x max– 6= y min– 0=

y max– 6=

Chapter 11 The Ports & Subsystems Library

11−38 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

11.14 The While Iterator Subsystem Block

The While Iterator Subsystem block is a Subsystem block that is pre−configured to serve as a
starting point for creating a subsystem that executes repeatedly while a condition is satisfied dur-
ing a simulation time step. The While Iterator block, when placed in a subsystem, repeatedly exe-
cutes the contents of the subsystem at the current time step while a specified condition is true. If
a While Iterator block is placed within a subsystem, it makes it an atomic subsystem.

We can use this block to implement the block−diagram equivalent of a C program while or do-
while loop. In particular, the block's While loop style parameter allows us to choose either the do−
while mode, or the while mode.

In the do-while mode, the While Iterator block has one input, the while condition input, whose
source must reside in the subsystem. At each time step, the block runs all the blocks in the sub-
system once and then checks whether the while condition input is true. If the input is true, the
iterator block runs the blocks in the subsystem again. This process continues as long as the while
condition input is true and the number of iterations is less than or equal to the iterator block's
Maximum number of iterations parameter.

In the while mode, the iterator block has two inputs: a while condition input and an initial condi-
tion (IC) input. The source of the initial condition signal must be external to the while subsystem.
At the beginning of the time step, if the IC input is true, the iterator block executes the contents
of the subsystem and then checks the while condition input. If the while condition input is true,
the iterator executes the subsystem again. This process continues as long as the while condition
input is true and the number of iterations is less than or equal to the iterator block's Maximum
number of iterations parameter. If the IC input is false at the beginning of a time step, the iterator
does not execute the contents of the subsystem during the time step.

Example 11.12
We will create a model to compute the sum of the first N integers where the sum should be equal
or less than 1000.

We begin by dragging a While Iterator Subsystem block into a new model as shown in Figure
11.57. We double−click on it and the subsystem now appears as shown in Figure 11.58. We add
and interconnect In1, Out1, Sum, Memory, and Relational Operator blocks, and the model of
Figure 11.58 is now as shown in Figure 11.59. This example is similar to the example given in
Simulink’s Help menu for the While Iterator Subsystem block.

Introduction to Simulink with Engineering Applications 11−39
Copyright © Orchard Publications

The While Iterator Subsystem Block

Figure 11.57. The While Iterator Subsystem block before configuration, Example 11.12

Figure 11.58. The While Iterator block for the While Iterator Subsystem block of Figure 11.57

Figure 11.59. The contents of the While Iterator Subsystem of Figure 11.57

We return to the While Iterator Subsystem of Figure 11.57 and we add the Constant, Relational
Operator, and Display blocks as shown in Figure 11.60. The output of the Relational Operator
block is True (logical one) and this establishes the Initial Condition (IC) input to the While Iter-
ator Subsystem block. As noted below the Display block in the model of Figure 11.60, the number
of iterations is specified in the While Iterator is 5. The Display block in the model of Figure 11.61
indicates that the sum of the first N integers after 5 iterations is 765.

Figure 11.60. Final form for the model for Example 11.12

Chapter 11 The Ports & Subsystems Library

11−40 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.61. Model for Example 11.12 to indicate the sum of the first N integers

11.15 The If and If Action Subsystem Blocks

The If block, along with an If Action subsystem, implements standard C−like if−else logic. The If
Action Subsystem block is a Subsystem block that is pre−configured to serve as a starting point
for creating a subsystem whose execution is triggered by an If block.

For an example, please refer to the Help menu for the If block which includes also a pseudocode.*

* Abbreviated p-code. A machine language for a nonexistent processor (a pseudomachine). Such code is executed
by a software interpreter. The major advantage of p−code is that it is portable to all computers for which a p−
code interpreter exists. The p−code approach has been tried several times in the microcomputer industry, with
mixed success. The best known attempt was the UCSD p−System.

Introduction to Simulink with Engineering Applications 11−41
Copyright © Orchard Publications

The Switch Case and The Switch Case Action Subsystem Blocks

11.16 The Switch Case and The Switch Case Action Subsystem Blocks

The Switch Case block implement a C−like switch control flow statement. The Switch Case
Action Subsystem block is a Subsystem block that is pre−configured to serve as a starting point
for creating a subsystem whose execution is triggered by a Switch Case block.

For an example, please refer to the Help menu for the Switch Case block that includes also a
pseudocode.

11.17 The Subsystem Examples Block

The Subsystem Examples block includes a library of S−functions. To run an example, in MAT-
LAB’s Command Window we type

sfundemos

and MATLAB will display the S−Function directory blocks shown in Figure 11.62. In this text we
will be concerned with the M−file S−Functions only. An introduction to S−functions with an
example is presented in the next section.

Next, we double-click on the M−file S−Functions block of Figure 11.62 and MATLAB displays
the Level−1 and Level−2 M−file S−Functions shown in Figure 11.63.

Figure 11.62. S−Function directory blocks

Chapter 11 The Ports & Subsystems Library

11−42 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 11.63. Levels of M−file S−Functions

The Level−1 M−file S−Functions are shown in Figure 11.64 and the Level−1 M−file S−Functions
are shown in Figure 11.65.

Figure 11.64. List of Level−1 M−file S−Functions

Figure 11.65. List of Level−2 M−file S−Functions

Introduction to Simulink with Engineering Applications 11−43
Copyright © Orchard Publications

S−Functions in Simulink

Figure 11.66 shows the Subsystem Semantics (Definitions) for the Simulink family of subsystems.

Figure 11.66. Classes and types of Simulink subsystems

Simulink consists of two classes of subsystems, Virtual subsystems and Nonvirtual subsystems.
Virtual subsystems provide graphical hierarchy in models and do not impact execution. Nonvir-
tual subsystems are executed as a single unit (atomic execution) by Simulink. The blocks within
a nonvirtual subsystem execute only when all subsystems inputs are valid. All nonvirtual sub-
systems are drawn with a bold border.

It is highly recommended that each of the subsystem blocks shown in Figure 11.66 be explored to
become familiar with them.

11.18 S−Functions in Simulink

An S−function is a computer language description of a Simulink block. S−functions can be writ-
ten in MATLAB, C, C++, Ada, or Fortran. Files in C, C++, Ada, and Fortran S−functions are
compiled as mex-files using the mex utility.* S−functions use a special calling syntax that enables
us to interact with Simulink's equation solvers. The form of an S−function is very general and
applies to continuous, discrete, and hybrid systems.

S−functions allow us to add our own blocks to Simulink models. After we write our S−function
and place its name in an S−Function block. We can also use S−functions with the Real-Time
Workshop.† With m−file S−Functions we can define our own ordinary differential equations, dis-
crete-time system equations and any type of algorithm that can be used with Simulink block dia-
grams.

To become familiar with S−Functions, we begin our discussion with an example.

* For a discussion on mex−files please refer to in the online MATLAB documentation. These files are dynami-
cally linked into MATLAB when specified. In this text we will only be concerned with m−files.

† Real-Time Workshop® is an extension of the capabilities provided by MATLAB and Simulink. It generates,
and compiles source code from Simulink models to create real-time software applications on a variety of systems.
Refer to Writing S−Functions for Real−Time Workshop and the Real−Time Workshop documentation for more
information.

Chapter 11 The Ports & Subsystems Library

11−44 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 11.13

For the simple RC circuit of Figure 11.41 it can be shown* that the state−space equations are

(11.3)

Figure 11.67. RC circuit for Example 11.13

Example 11.14
We will create an S−Function block that implements the relations of (11.3). We begin by writing
the function m−file below and we save it as RCckt.m
function dx = RCckt(t,x,Vs)
%
% Model for RC series circuit, function m-file RCckt.m
%
% Define circuit constants
%
R = 10^6; % Resistance in Ohms
C = 10^(-6); % Capacitance in Farads

dx = -1/(R*C)*x+Vs; % The arguments x and dx are column vectors
 % for state and derivative respectively. The
 % variable t on the first line above specifies
 % the simulation time. The default is [0 10].

To test this function m−file for correctness, on MATLAB’s Command Window we issue the com-
mand

[t,x,Vs]=ode45(@RCckt, [0 10], 0, [], 1)

The above command specifies a simulation time interval [0 10], an initial condition value of 0,
the null vector [] can be used for options, and the input value is set to 1. Upon execution of this
command MATLAB displays several values for t, x, and Vs.

Next, we write the S−function m−file shown below, and we save it as RCckt_sfun.m

An explanation for each line of this file is provided afterwards.

* For a detailed discussion on state variables, please refer to Signals and Systems with MATLAB Applications,
ISBN 0−9709511−6−7.

dx
dt
------ 1

RC
--------–⎝ ⎠

⎛ ⎞ x VS+=

y x=

VS

R
C vC y=

+

−

Introduction to Simulink with Engineering Applications 11−45
Copyright © Orchard Publications

S−Functions in Simulink

function [sys,x0,str,ts]=...
 RCckt_sfcn(t,x,u,flag,xinit)
%
% This is the m-file S-Function RCckt_sfcn.m
%
switch flag

 case 0 % Initialize

 str = [];
 ts = [0 0];
 x0 = xinit;

% Alternately, the three lines above can be combined into a single line as
% [sys,x0,str,ts]=mdlInitializeSizes(t,x,u)

 sizes = simsizes;

 sizes.NumContStates = 1;
 sizes.NumDiscStates = 0;
 sizes.NumOutputs = 1;
 sizes.NumInputs = 1;
 sizes.DirFeedthrough = 0;
 sizes.NumSampleTimes = 1;

 sys =simsizes(sizes);
 case 1 % Derivatives

 Vs = u;

 sys = RCckt(t,x,Vs);

 case 3 % Output

 sys = x;

 case {2 4 9} % 2:discrete
 % 3:calcTimeHit
 % 9:termination
 sys = [];

 otherwise

 error(['unhandled flag =',num2str(flag)]);

end

The first line of the S−function m-file RCckt_sfun.m is written as

function [sys,x0,str,ts]=...
 RCckt_sfcn(t,x,u,flag,xinit)

This specifies the input and output arguments.

a. Input arguments

t − time variable

Chapter 11 The Ports & Subsystems Library

11−46 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

x − column vector for the state variables

u − column vector for the input variables; will be supplied by other Simulink blocks

flag − an indication of which group of information and calculations. The table below lists
the integer numbers assigned to an S−function routine.

xinit - additional supplied parameter; in this example the initial condition
a. Output arguments

sys − a vector of information requested by Simulink. This vector will hold different informa-
tion depending on the flag value as shown in the table below.

x0 − a column vector of initial conditions. Applies only to flag = 0

TABLE 11.3 Flags used in S-function m-files

Flag S-Function Routine Simulation Stage

0 mdlInitializeSizes Initialization - sets input and output vector sizes and
specifies initial conditions for the state variables.

1 mdlDerivatives Calculation of derivatives

2 mdlUpdate Update of discrete states - not used for this example

3 mdlOutputs Calculation of outputs

4 mdlGetTimeOfNextVarHit Calculation of next sample hit - not used for this example

9 mdlTerminate End of simulation tasks

TABLE 11.4 Information for vector sys for different flag values

Flag Information requested

0 sys = [a, b, c, d, e, f, g]
a = number of continuous time states
b = number of discrete time states
c = number of outputs
d= number of inputs
e = not used but must be set to 0 if requested
f = applies to direct algebraic feed through of input to output, 0

for No, 1 for Yes. It is relevant if during flag=3, the output
variables depend on the input variables.

g = number of sample times. For continuous systems must be set
to 1.

1 sys = column vector of the state variables derivatives

3 sys = column vector of output variables

2,4,9 sys = [] (null vector) if not applicable

Introduction to Simulink with Engineering Applications 11−47
Copyright © Orchard Publications

S−Functions in Simulink

str − reserved for future use; for m-file S−functions it must be set to null vector. Applies
only to flag = 0

ts − an array of two columns to specify sample time and time offsets. For continuous-time
systems it is set to [0 0]. If it is desired that S−function should run at the same rate as
the block to which it is connected (inherited sample time), we must set ts to [−1 0]. If
we want to run at discrete sample time, say 0.25 seconds starting at 0.1 seconds after
the start of simulation time, we must set ts to [0.25 0.1]. Applies only to flag = 0.

Let us now review the m−file S−function RCckt_sfcn structure.

We begin with the function RCckt_sfcn defined as follows:

function [sys,x0,str,ts]=...
 RCckt_sfcn(t,x,u,flag,xinit)
%
% This is the m-file S-Function RCckt_sfun.m
%

Next, we use flag; this specifies an integer value that indicates the task to be performed by the S−
function and begins with the statement
switch flag
Initialization begins with

 case 0 % Initialize

 str = []; % Must be set to null. Reserved for future use
 ts = [0 0]; % Specify sampling time. For continuous-time
 % systems is always set to [0 0]
 x0 = xinit; % Column vector for initial conditions

Simulink will not recognize our m−file S−function unless we provide specific information about
number of inputs, number of outputs, states, and other characteristics. This information is pro-
vided with the simsizes function. This function returns an initialized structure of the variables in
which we can assign the required values. Thus, in MATLAB’s Command Window we invoke this
command as shown below and we manually enter the values shown.

 sizes = simsizes;

 sizes.NumContStates = 1;
 sizes.NumDiscStates = 0;
 sizes.NumOutputs = 1;
 sizes.NumInputs = 1;
 sizes.DirFeedthrough = 0;
 sizes.NumSampleTimes = 1;

Direct Feedthrough in line 5 above implies that the output is controlled by the value of the
input. Generally, if an S−Function has an input port, it has direct feedthrough if the input u is
accessed in mdlOutputs. For instance, if where u is the input, k is the gain, and y is the
output, the system has direct feedthrough only if flag=3.

After we initialize the sizes structure we invoke simsizes again as shown below

y ku=

Chapter 11 The Ports & Subsystems Library

11−48 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

 sys =simsizes(sizes);

and this passes the information in the sizes structure to sys which is a vector that holds the infor-
mation required by Simulink.*

For case 1 (derivatives) we assign to the input and then we apply it to the RCckt.m file.
Thus,

 case 1 % Derivatives

 Vs = u;

 sys = RCckt(t,x,Vs);

For case 3 (output) we assign the output to the input sys. Thus,

 case 3 % Output
 sys = x;

Flags 2, 4, and 9 are not used so they output the null vector sys = [] shown below.

 case {2 4 9} % 2:discrete
 % 3:calcTimeHit
 % 9:termination
 sys = [];

 otherwise
 error(['unhandled flag =',num2str(flag)]);

end

Next, we open a window to create a new model, from the User−Defined Functions library we
drag an S−Function block into it, in the Function Block Parameters dialog box we assign the S−
function name RCckt_sfcn to it, we type the initial condition 0, and we add the other blocks
shown in Figure 11.68. The parameter values can be constants, names of variables defined in the
model’s workspace, or MATLAB expressions. The input and output waveforms are shown in Fig-
ure 11.69.

Figure 11.68. Model for Example 11.14

* Upon execution of the statement sys=simsizes(sizes), MATLAB displays a row vector of seven 0s, one
for each of the simsizes function above. Sys(5) is reserved for root finding and for the present must be set to 0.

VS u

x

Introduction to Simulink with Engineering Applications 11−49
Copyright © Orchard Publications

S−Functions in Simulink

Figure 11.69. Input and output waveforms for the model of Figure 11.68

Chapter 11 The Ports & Subsystems Library

11−50 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

11.19 Summary
• A Subsystem block represents a subsystem of the system that contains it. We use subsystems to

group blocks together in our model to manage model complexity.

• Inport blocks are ports that serve as links from outside a system into a subsystem.

• Outport blocks are output ports for a subsystem.

• The Trigger block is used with a subsystem or a model allowing its execution to be triggered by
an external signal.

• The Enable block adds an external enable block to a subsystem to make it an enabled sub-
system.

• The Function−Call Generator block executes a function−call subsystem at the rate specified
by the block's Sample time parameter.

• The Atomic Subsystem block can be used as an alternate method of creating a subsystem in
lieu of the method of selecting blocks and lines that are to make up the subsystem using a
bounding box and choosing Create Subsystem from the Edit menu.

• The Code Reuse Subsystem block is a Subsystem block that represents a subsystem of the sys-
tem that contains it. It is very similar to the Atomic Subsystem block.

• The Model block is used to specify the name of a Simulink model. The name must be a valid
MATLAB identifier. The model must exist on the MATLAB path and the MATLAB path
must contain no other model having the same name.

• The Configurable Subsystem block represents one of a set of blocks contained in a specified
library of blocks. The block's context menu lets us choose which block the configurable sub-
system represents. A configurable Subsystem block simplifies the creation of models that repre-
sent families of designs.

• The Triggered Subsystem block is used to represent a subsystem whose execution is triggered
by external input.

• The Enable Subsystem block represents a subsystem whose execution is enabled by an exter-
nal input.

• The Enabled and Triggered Subsystem block is a combination of the enabled subsystem and
the triggered subsystem.

• The Function−Call Subsystem block is used to represent a subsystem that can be invoked as a
function by another block.

• The For Iterator Subsystem block is a subsystem that executes repeatedly during a simulation
time step until an iteration variable exceeds a specified iteration limit.

Introduction to Simulink with Engineering Applications 11−51
Copyright © Orchard Publications

Summary

• The While Iterator Subsystem block is a Subsystem block that is pre−configured to serve as a
starting point for creating a subsystem that executes repeatedly while a condition is satisfied
during a simulation time step.

• The If block, along with an If Action subsystem, implements standard C−like if−else logic. The
If Action Subsystem block is a Subsystem block that is pre−configured to serve as a starting
point for creating a subsystem whose execution is triggered by an If block.

• The Switch Case block implement a C−like switch control flow statement. The Switch
Action Subsystem block is a Subsystem block that is pre−configured to serve as a starting
point for creating a subsystem whose execution is triggered by a Switch Case block.

• The Subsystem Examples block includes a library of S−functions.

• An S−function is a computer language description of a Simulink block. S−functions can be
written in MATLAB, C, C++, Ada, or Fortran. Files in C, C++, Ada, and Fortran S−func-
tions are compiled as mex-files using the mex utility.

Introduction to Simulink with Engineering Applications 12−1
Copyright © Orchard Publications

Chapter 12

The Signal Attributes Library

his chapter is an introduction to the Signal Attributes library. This is the eleventh library
in the Simulink group of libraries and consists of two sub−libraries, the Signal Attribute
Manipulation Sub−Library, and the Signal Attribute Detection Sub−Library blocks

shown below. We will describe the function of each block included in this library and we will per-
form simulation examples to illustrate their application.

T

Chapter 12 The Signal Attributes Library

12−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

12.1 The Signal Attribute Manipulation Sub−Library
The Signal Attribute Manipulation Sub−Library contains the blocks described in Subsections
12.1.1 through 12.1.10 below.

12.1.1 The Data Type Conversion Block

The Data Type Conversion block converts an input signal of any Simulink data type to the data
type and scaling specified by the block's Output data type mode, Output data type, and / or Out-
put scaling parameters. The input can be any real− or complex−valued signal. If the input is real,
the output is real, and if the input is complex, the output is complex. When using this block, we
must specify the data type and / or scaling for the conversion. The data types and the Data Type
Conversion block are described in Section 2.17, Chapter 2, Page 2−29.

12.1.2 The Data Type Duplicate Block

The Data Type Duplicate block is used to ascertain that all inputs have the same data type. We
use the Data Type Duplicate block to check for consistency of data types among blocks. If all sig-
nals do not have the same data type, the block returns an error message. The Data Type Dupli-
cate block is typically used in such a way that one signal to the block controls the data type for all
other blocks. The other blocks are set to inherit their data types via back propagation. The block
is also used in a user created library. These library blocks can be placed in any model, and the data
type for all library blocks are configured according to the usage in the model. To create a library
block with more complex data type rules than duplication, we use the Data Type Propagation
block which is described in Subsection 12.1.3, this chapter, Page 12−4.

Example 12.1
Let us consider the model of Figure 12.1. For all three gain blocks the Signal data types have been
specified as Inherit via back propagation. The gains in Gain 2 and Gain 3 blocks are very high and
thus the Display 2 and Display 3 blocks output the value of 0 indicating an overflow condition. To
obtain the true values in Display 2 and Display 3 blocks, we change the Signal data types from
Inherit via back propagation to uint(16) and uint(32) respectively as shown in Figure 12.2.

Introduction to Simulink with Engineering Applications 12−3
Copyright © Orchard Publications

The Signal Attribute Manipulation Sub−Library

Figure 12.1. Model 1 for Example 12.1

Figure 12.2. Model 2 for Example 12.1

Next, we return to the model of Figure 12.1, we add a Data Type Duplicate block, and we specify
the Signal data type for the Constant block as uint(32), and now our model appears as shown in
Figure 12.3. The advantage here is that we can specify any Signal data type and that will be inher-
ited by the three gain blocks.

Figure 12.3. Model 3 for Example 12.1

Chapter 12 The Signal Attributes Library

12−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

12.1.3 The Data Type Propagation Block

The Data Type Propagation block allows us to control the data type and scaling of signals in our
model. We can use this block in conjunction with fixed−point blocks that have their Specify data
type and scaling parameter configured to Inherit via back propagation. The block has three
inputs: Ref1 and Ref2 are the reference inputs, while the Prop input back propagates the data
type and scaling information gathered from the reference inputs. This information is subsequently
passed on to other fixed−point blocks.

Example 12.2

The model of Figure 12.4 performs the arithmetic operation . The Ref1
signal represents the sum of the terms, the Ref2 signal represents the multiplier, and the Prop sig-
nal is the product. For all four Constant blocks the parameter Signal data types is specified as
Inherit from “Constant value”, and for the Sum and Product blocks the parameter Signal data
types is specified as Inherit via back propagation. The Display block Format is specified as decimal
(Stored Integer.)

Figure 12.4. Model for Example 12.2

2.5 5.75 2.375 1.8125+ +()

Introduction to Simulink with Engineering Applications 12−5
Copyright © Orchard Publications

The Signal Attribute Manipulation Sub−Library

12.1.4 The Data Type Scaling Strip Block

The Data Type Scaling Strip block removes the scaling off a fixed−point signal. It maps the input
data type to the smallest built in data type that has enough data bits to hold the input. The stored
integer value of the input is the value of the output. The output always has nominal scaling (slope
= 1.0 and bias = 0.0), so the output does not make a distinction between real world value and
stored integer value.

Example 12.3
For the model of Figure 12.5, the parameters for the Constant block the Signal data types were
specified as Output data type ufix(8) and output scaling value . Accordingly, the binary pre-
sentation of the constant is

The Scaling Strip block removes the scaling and thus it outputs the value

Figure 12.5. Model for Example 12.3

12.1.5 The Data Conversion Inherited Block

The Data Type Conversion Inherited block converts one data type to another using inherited
data types. In other words, this block dictates that different types of data be converted to be all
the same. The first input is used as the reference signal and the second input is converted to the

2 3–

5.875

00101.111()2 1 22× 1 20× 1 2 1–× 1 2 2–× 1 2 3–×+ + + + 5.875()10= =

00101111()2 1 25× 1 23× 1 22× 1 21× 1 20×+ + + + 47()10= =

Chapter 12 The Signal Attributes Library

12−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

reference type by inheriting the data type and scaling information. Either input is scalar expanded
such that the output has the same width as the widest input.

Example 12.4
I the model of Figure 12.6, the input at u from the Constant 2 bloc appears at the output y but the
signal has been converted to that specified by the first input, i.e., ufix(8) .

Figure 12.6. Model for Example 12.4

12.1.6 The IC (Initial Condition) Block

The IC (Initial Condition) block sets the initial condition of the signal at its input port, i.e., the
value of the signal at t=0. The block does this by outputting the specified initial condition at t=0,
regardless of the actual value of the input signal. Thereafter, the block outputs the actual value of
the input signal. This block is useful for providing an initial guess for the algebraic state variables
in the loop.

Example 12.5
In the model of Figure 12.7, the Memory block introduces a delay of 1 second while the IC block
establishes an initial condition of 2. The output waveforms with and without the initial condition
are shown in Figure 12.8.

2 3–

Introduction to Simulink with Engineering Applications 12−7
Copyright © Orchard Publications

The Signal Attribute Manipulation Sub−Library

Figure 12.7. Model for Example 12.5

Figure 12.8. Output waveforms for the model of Figure 12.7

12.1.7 The Signal Conversion Block

The Signal Conversion block converts a signal from one type to another. The block's Output
parameter allows us to choose the type of conversion to be performed. We can choose one of the
four types listed below:

Contiguous copy − Converts a muxed signal whose elements occupy discontiguous areas of mem-
ory to a vector signal whose elements occupy contiguous areas of memory.
The block does this by allocating a contiguous area of memory for the ele-
ments of the muxed signal and copying the values from the discontiguous
areas (represented by the block's input) to the contiguous areas (represented
by the block's output) at each time step.

Bus copy − Outputs a copy of the bus connected to the block's input.

Chapter 12 The Signal Attributes Library

12−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Virtual bus − Converts a nonvirtual bus to a virtual bus. This option enables us to combine an
originally nonvirtual bus with a virtual bus.

Nonvirtual bus − Converts a virtual bus to a nonvirtual bus.

Example 12.6
In the model of Figure 12.9, the Signal Conversion block’s output is specified as Contiguous copy.
Accordingly the numbers and originally occupying discontiguous areas of memory,
are converted to a vector signal whose elements occupy contiguous areas of memory as indicated
in the Display block.

Figure 12.9. Model for Example 12.6

12.1.8 The Rate Transition Block

The Rate Transition block transfers data from the output of a block operating at one rate to the
input of another block operating at a different rate. Systems containing blocks that are sampled at
different rates are referred to as multirate systems. The Rate Transition block's parameters allows
us to specify options that trade data integrity and deterministic transfer for faster response and / or
lower memory requirements.

Example 12.7
In the model of Figure 12.10, the parameters for the Discrete Zero−Pole blocks 1 and 2 are speci-
fied as Zeros: −0.2, Poles: 0.5. The Sample time for the Discrete Zero−Pole block 1 is specified as

 where is the sample time, and is the offset. Since the initial condition is zero, the
offset causes no output until . The Sample time for the Discrete Zero−Pole block 2 is spec-

5.878 5.879

1 0.5[] 1 0.5
t 0.5=

Introduction to Simulink with Engineering Applications 12−9
Copyright © Orchard Publications

The Signal Attribute Manipulation Sub−Library

ified as with no offset. Accordingly, the model of Figure 12.10 is a multirate system and the
output waveforms are shown in Figure 12.11.

Figure 12.10. Model for Example 12.7

Figure 12.11. Output waveforms for the multirate model of Figure 12.10

An application of the Rate Transition block is illustrated with the next example.

Example 12.8
The model of Figure 12.12 shows three multirate systems where the sample times are as indicated.
The Rate Transition 1 block behaves as a Zero−Order Hold block in a fast−to−slow transition,
while the Rate Transition 2 block behaves as a Unit Delay block in a slow−to−fast transition.
After the simulation command is executed, a label appears on the upper left of the block to indi-
cate its behavior. The Rate Transition 1 block behaves as a Zero−Order Hold block and this is
indicated as ZOH. Likewise, the Rate Transition 2 block behaves as a Unit Delay block and this is
indicated as . The Unit Delay block is described in Section 2.15, Chapter 2, Page 2−24, and
the Zero−Order Hold block is described in Subsection 5.2.3, Chapter 5, Page 5−23. For other
behaviors of the Rate Transition block, please refer to the Help menu for this block.

0.75

1 z⁄

Chapter 12 The Signal Attributes Library

12−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 12.12. Model for Example 12.8

The waveforms displayed by the Scope blocks in Figure 12.12 are shown in Figures 12.13, 12.14,
and 12.15. The amplitude for all three Sine Wave blocks is specified as 2.

Figure 12.13. Waveform for Scope 1 in Figure 12.12

Introduction to Simulink with Engineering Applications 12−11
Copyright © Orchard Publications

The Signal Attribute Manipulation Sub−Library

Figure 12.14. Waveform for Scope 2 in Figure 12.12

Figure 12.15. Waveform for Scope 3 in Figure 12.12

12.1.9 The Signal Specification Block

The Signal Specification block allows us to specify the attributes of the signal connected to its
input and output ports. If the specified attributes conflict with the attributes specified by the
blocks connected to its ports, Simulink displays an error. If no conflict exists, Simulink eliminates
the Signal Specification block from the compiled model, that is, the Signal Specification block
behaves as a virtual block.

Example 12.9
In the model of Figure 12.16, the Zero-Order Hold and the Unit Delay blocks are both specified
for Inherited Sample Time and thus no conflict exists and the Signal Specification block is a vir-
tual block. However, if the Sample Time for the Unit Delay block is changed to 0.2 as shown in

Chapter 12 The Signal Attributes Library

12−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 12.17, Simulink displays an error message that an illegal rate transition was found involv-
ing the Unit Delay block.

Figure 12.16. Model with the Signal Specification block acting as a virtual block

Figure 12.17. Model where the attributes (sample times) of the Signal Specification block do not agree

12.1.10 The Data Type Propagation Examples Block

The Data Type Propagation Examples block shown in Figure 12.18 contains example uses of
Data Type Propagation blocks.

Introduction to Simulink with Engineering Applications 12−13
Copyright © Orchard Publications

The Signal Attribute Detection Sub−Library

Figure 12.18. Example uses of Data Type Propagation blocks

12.2 The Signal Attribute Detection Sub−Library
The Signal Attribute Detection Sub−Library contains the blocks described in Subsections
12.2.1 through 12.2.3 below.

Chapter 12 The Signal Attributes Library

12−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

12.2.1 The Probe Block

The Probe block provides essential information about the signal on its input. The block can out-
put the input signal's width, dimensionality, sample time, and/or a flag indicating whether the
input is a complex-valued signal. The block has one input port. The number of output ports
depends on the information that we select for probing. Each probed value is output as a separate
signal on a separate output port. During simulation, the block's icon displays the probed data.

Example 12.10
In the model of Figure 12.19, the Display 1 block indicates the number of the elements of the
probed signal, the Display 2 block is a vector that specifies the period and offset of the sam-
ple time, respectively, the Display 3 block shows the value implying that the probed signal is not
complex, the Display 4 block indicates the output the dimensions of the probed signal, and the
Display 5 block shows the value implying that the probed signal is not framed.*

Figure 12.19. Model for Example 12.10

* Please logon to http://festvox.org/docs/speech_tools−1.2.0/x15608.htm#SIGPR-EXAMPLE−FRAMES for a
description of frame−based signals.

2 1×
0

0

Introduction to Simulink with Engineering Applications 12−15
Copyright © Orchard Publications

The Signal Attribute Detection Sub−Library

12.2.2 The Weighted Sample Time Block

The Weighted Sample Time block adds, subtracts, multiplies, or divides the input signal, u, by a
weighted sample time Ts. The math operation is specified with the Operation parameter. Also, we
can specify to use only the weight with either the sample time or its inverse. We enter the weight-
ing factor in the Weight value parameter. If the weight is 1, w is removed from the equation.

Example 12.11
In the model of Figure 12.20, the parameters for all blocks are specified as annotated. Thus, the
Display 1 block shows the values of the constant blocks, the Display 2 block shows the Weighted
Sample Time, the Display 3 block shows the inverse of the Weighted Sample Time, and the Dis-
play 4 block shows the results of the division , where for .

Figure 12.20. Model for Example 12.11

u Ts⁄ w⁄ w 2= u 1 2 and 3, ,=

Chapter 12 The Signal Attributes Library

12−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

12.2.3 The Width Block

The Width block generates an output that displays the width of its input vector, or the sum of the
widths of two or more vectors.

Example 12.12

In the model of Figure 12.21, the vectors and are specified in MATLAB’s Command Win-
dow as

A=[1 3 5 7 9]; B=[2 4 6 8];

The Width block outputs the sum of the widths of the vectors and .

Figure 12.21. Model for Example 12.12

A B

A B

Introduction to Simulink with Engineering Applications 12−17
Copyright © Orchard Publications

Summary

12.3 Summary
• The Data Type Conversion block converts an input signal of any Simulink data type to the

data type and scaling specified by the block's Output data type mode, Output data type, and/or
Output scaling parameters.

• The Data Type Duplicate block is used to ascertain that all inputs have the same data type.
We use the Data Type Duplicate block to check for consistency of data types among blocks. If
all signals do not have the same data type, the block returns an error message.

• The Data Type Propagation block allows us to control the data type and scaling of signals in
our model. We can use this block in conjunction with fixed-point blocks that have their Spec-
ify data type and scaling parameter configured to Inherit via back propagation.

• The Data Type Scaling Strip block removes the scaling off a fixed point signal. It maps the
input data type to the smallest built in data type that has enough data bits to hold the input.
The stored integer value of the input is the value of the output.

• The Data Type Conversion Inherited block converts one data type to another using inher-
ited data types. In other words, this block commands that different types of data be converted
to be all the same. The first input is used as the reference signal and the second input is con-
verted to the reference type by inheriting the data type and scaling information.

• The IC (Initial Condition) block sets the initial condition of the signal at its input port, i.e.,
the value of the signal at t=0. The block does this by outputting the specified initial condition
at t=0, regardless of the actual value of the input signal. Thereafter, the block outputs the
actual value of the input signal.

• The Signal Conversion block converts a signal from one type to another. The block's Output
parameter lets us select the type of conversion to be performed. We can choose one of four
types: Contiguous copy, Bus copy, Virtual bus, or Nonvirtual bus.

• The Rate Transition block transfers data from the output of a block operating at one rate to
the input of another block operating at a different rate. Systems containing blocks that are
sampled at different rates are referred to as multirate systems.

• The Signal Specification block allows us to specify the attributes of the signal connected to its
input and output ports. If the specified attributes conflict with the attributes specified by the
blocks connected to its ports, Simulink displays an error at the beginning of a simulation.

• The Data Type Propagation Examples block contains example uses of Data Type Propaga-
tion blocks.

• The Probe block provides essential information about the signal on its input. The block can
output the input signal's width, dimensionality, sample time, and/or a flag indicating whether
the input is a complex-valued signal.

Chapter 12 The Signal Attributes Library

12−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

• The Weighted Sample Time block adds, subtracts, multiplies, or divides the input signal, u, by
a weighted sample time Ts. The math operation is specified with the Operation parameter.

• The Width block generates an output that displays the width of its input vector, or the sum of
the widths of two or more vectors.

Introduction to Simulink with Engineering Applications 13−1
Copyright © Orchard Publications

Chapter 13

The Signal Routing Library

his chapter is an introduction to the Signal Routing library. This is the twelfth library in
the Simulink group of libraries and consists of two sub-libraries, the Signal Routing Group
Sub−Library, and the Signal Storage & Access Group Sub−Library blocks shown below.

We will describe the function of each block included in this library and we will perform simula-
tion examples to illustrate their application.

T

Chapter 13 The Signal Routing Library

13−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

13.1 Signal Routing Group Sub−Library
The Signal Routing Group Sub-Library contains the fifteen blocks described in Subsections
13.1.1 through 13.1.15 below.

13.1.1 The Bus Creator Block

The Bus Creator block combines a set of signals into a group of signals represented by a single
line. This block is described in Section 2.6, Chapter 2, Page 2−7.

13.1.2 The Bus Selector Block

The Bus Selector block outputs a specified subset of the elements of the bus at its input. This
block is described in Section 2.6, Chapter 2, Page 2−7.

13.1.3 The Bus Assignment Block

The Bus Assignment block assigns values, specified by signals connected to its assignment (:=)
input ports, to specified elements of the bus connected to its Bus input port. We use the block's
dialog box to specify the bus elements to be assigned values. The block displays an assignment
input port for each bus element to be assigned a signal.

In the Function Block Parameters dialog box, the Signals in the bus displays the names of the sig-
nals contained by the bus at the block's Bus input port. We can click any item in the list to select
it. To find the source of the selected signal, we click the adjacent Find button. Simulink opens the
subsystem containing the signal source, if necessary, and highlights the source's icon. We use the
Select button to move the currently selected signal into the adjacent list of signals to be assigned
values (see Signals that are being assigned below). To refresh the display (e.g., to reflect modifica-
tions to the bus connected to the block), we click the adjacent Refresh button.

Introduction to Simulink with Engineering Applications 13−3
Copyright © Orchard Publications

Signal Routing Group Sub−Library

In the Function Block Parameters dialog box, the Signals that are being assigned lists the names
of bus elements to be assigned values. This block displays an assignment input port for each bus
element in this list. The label of the corresponding input port contains the name of the element.
We can re-order the signals by using the Up, Down, and Remove buttons. Port connectivity is
maintained when the signal order is changed.

Occasionally, we may see three question marks (???) before the name of a bus element. This indi-
cates that the input bus no longer contains an element of that name, for example, because the bus
has changed since the last time we refreshed the Bus Assignment block's input and bus element
assignment lists. We can fix the problem either by modifying the bus to include a signal of the
specified name, or by removing the name from the list of bus elements to be assigned values.

Example 13.1
We begin with the model 13.1. Initially, the Bus Assignment 1 block appears with two inputs, one
for the block's Bus input port, and the other which serves as the assignment input port for each
bus element to be assigned a signal. We double−click on this block and we configure the Function
Block Parameters as shown in Figure 13.2. We output waveforms are shown in Figure 13.3.

Figure 13.1. Model for Example 13.1

Next, suppose that we wish to replace the Square Wave Generator 1 block and the Sawtooth
Wave Generator 1 block with a Random Wave Generator block and a Band-Limited White Noise
block. Instead of replacing the blocks, we add the Random Wave Generator block and the Band-
Limited White Noise block as shown in Figure 13.4, we double−click on the Bus Assignment
block, and we use the Select button to move the currently selected signal into the adjacent list of
signals to be assigned values. To refresh the display, we click the adjacent Refresh button, and the
Function Block Parameters dialog box now appears as shown in Figure 13.5. When this is done,
the output waveforms appear as shown in Figure 13.6.

Chapter 13 The Signal Routing Library

13−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 13.2. Configuration of the Function Block Parameters for the Bus Assignment Block in Figure 13.1

Figure 13.3. Output waveforms for the model of Figure 13.1

Figure 13.4. Modified model for Example 13.1

Introduction to Simulink with Engineering Applications 13−5
Copyright © Orchard Publications

Signal Routing Group Sub−Library

Figure 13.5. Configuration of the Function Block Parameters for the Bus Assignment Block in Figure 13.4

Figure 13.6. Output waveforms for the model of Figure 13.4

13.1.4 The Mux Block

The Mux block combines its inputs into a single output. An input can be a scalar, vector, or
matrix signal. This block is described in Section 2.7, Chapter 2, Page 2−11.

13.1.5 The Demux Block

The Demux block extracts the components of an input signal and outputs the components as
separate signals. This block is described in Section 2.7, Chapter 2, Page 2−11.

Chapter 13 The Signal Routing Library

13−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

13.1.6 The Selector Block

The Selector block generates as output selected elements of an input vector or matrix. If the
input type is vector, the block outputs a vector of selected elements specified by element indices.
The meaning of the indices depends on the setting of the Index mode parameter. If the setting is
One−based (the default), the index of the first input element is 1, the second 2, and so on. If the
setting is Zero−based, the index of the first element is 0, the second element 1, and so on.

If the input type is matrix, the Selector block outputs a matrix of elements selected from the input
matrix. The block determines the row and column indices of the elements to select either from its
Rows and Columns parameters or from external signals. We set the block's Source of row indices
and Source of column indices to the source that we choose (internal or external). If we set either
source to external, the block adds an input port for the external indices signal. If we set both
sources to external, the block adds two input ports.

Example 13.2

For the model of Figure 13.7, the elements of the matrix in the Constant
block are specified in MATLAB’s Command Window as:

a11=2; a12=−1; a13=0; a14=−3;...
a21=−1; a22=1; a23=0; a24=−1;...
a31=4; a32=0; a33=3; a34=−2;...
a41=−3; a42=0; a43=0; a44=1;

Figure 13.7. Model for Example 13.2

The Display block shows the cofactor of defined as , where the index denotes
the row, the index denotes the column, and is the minor of the element .

In the Selector block Function Block Parameters dialog box we specified the parameters as fol-
lows:

Input type: Matrix

a11 a12 …a44,, 4 4×

a11 1–()i j+ Mij[] i
ith j jth M aij

Introduction to Simulink with Engineering Applications 13−7
Copyright © Orchard Publications

Signal Routing Group Sub−Library

Index mode: One−based

Source of row indices: Internal

Rows: [2 3 4]

Source of column indices: Internal

Columns: [2 3 4]

13.1.7 The Index Vector Block

The Index Vector block switches the output between different inputs based on the value of the
first input, referred to as the Control Input. This block is an implementation of the Multiport
Switch block which is described in Subsection 13.1.11, this chapter, Page 13−10.

Example 13.3
For the Index Vector block in Figure 13.8, the parameters are specified as Number of inputs 2,
and the Use zero−based indexing box is unchecked. All other parameters are left in their default
state. Since the Control Input is specified as 2, the Index Vector block outputs the value of Data
Input 2.

Figure 13.8. Model for Example 13.3

Chapter 13 The Signal Routing Library

13−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

13.1.8 The Merge Block

The Merge block combines its inputs into a single output line whose value at any time is equal to
the most recently computed output of its driving blocks. We can specify any number of inputs by
setting the block's Number of inputs parameter. This block is useful in creating alternately execut-
ing subsystems as illustrated by the example below.

Example 13.4
The Enable Subsystem 1 and 2 blocks in the model of Figure 13.9 are specified as shown in Figure
13.10. This model outputs the half−wave rectification* waveform shown in Figure 13.11.

Figure 13.9. Model for Example 13.4

Figure 13.10. Configuration of the Enabled Subsystem 1 and 2 blocks in Figure 13.9

* For the creation of a full−wave rectification waveform, please refer to the Help menus for the Merge block and
click on the “Creating Alternately Executing Subsystems” link. Full-wave rectifiers are used in the conversion
from AC to DC signals. For a detailed discussion, please refer to Signals & Systems with MATLAB Applica-
tions, ISBN 0−9709511−6−7.

Introduction to Simulink with Engineering Applications 13−9
Copyright © Orchard Publications

Signal Routing Group Sub−Library

Figure 13.11. Waveforms for the model of Figure 13.9

13.1.9 The Environmental Controller Block

The Environmental Controller block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its Real−Time Workshop* (RTW) port only
if code is being generated from the model.

13.1.10 The Manual Switch Block

The Manual Switch block is a toggle switch that selects one of its two inputs to pass through to
the output. There is no dialog box for this block; to toggle between inputs, we double-click the
block. The block retains its current state when the model is saved.

Example 13.5

In Figure 13.12, the matrix is defined in MATLAB’s Command Window as

A=[1 2 −3; 2 −4 2; −1 2 −6];

* Real−Time Workshop is an extension of MATLAB and Simulink capabilities that generates source code from
Simulink models to create real−time software applications. We will not discuss source code generation in this
text. Examples are provided in the “Real−Time Workshop For Use with Simulink” documentation.

A

Chapter 13 The Signal Routing Library

13−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 13.12. Model for Example 13.5

The MATLAB function in the block’s parameters dialog box is specified as inv (for matrix inver-
sion), and when the Switch block is as shown in the upper model of Figure 13.5, we execute the
simulation command, Display 1 block shows the elements of the matrix. When we double−click
on the Switch block, it changes to the position shown in the lower model of Figure 13.5, and
when we issue the simulation command, Display 2 block shows the elements of the inverted
matrix.

13.1.11 The Multiport Switch Block

The Multiport Switch block chooses between a number of inputs. The first (top) input is called
the control input, while the rest of the inputs are called data inputs. The value of the control
input determines which data input is passed through to the output port. If the control input is an
integer value, the specified data input is passed through to the output. For example, if the one−
based indexing parameter is selected and the control input is 1, the first data input is passed
through to the output. If the control input is 2, the second data input is passed through to the
output, and so on.

Example 13.6

The model of Figure 13.3 outputs the value corresponding to the control input value .64 4

Introduction to Simulink with Engineering Applications 13−11
Copyright © Orchard Publications

Signal Routing Group Sub−Library

Figure 13.13. Model for Example 13.6

13.1.12 The Switch Block

The Switch block outputs the first (top) input or the third (bottom) input depending on the value
of the second (middle) input. The first and third inputs are the data inputs. The second input is
the control input. This block is described in Section 2.8, Chapter 2, Page 2−14.

13.1.13 The From Block

The From block accepts a signal from a corresponding Goto block which is described in Subsec-
tion 13.1.15, this chapter, Page 13−13, and passes it as output. The visibility of a Goto block tag
determines the From blocks that can receive its signal.

Example 13.7

In Figure 13.14, the matrix is defined in MATLAB’s Command Window as

A=[1 2 −3; 2 −4 2; −1 2 −6];

In the upper model of Figure 13.14, the Display 1 block shows the elements of matrix . In the
lower model of Figure 13.14, the Constant 2 block sends the elements of matrix to the Goto
block, it is accepted by the From block, and outputs it to the Display 1 block.

The upper and lower models in Figure 13.14 are equivalent. As we can see, the From and Goto
blocks allow us to pass a signal from one block to another without a physical connection.

A

A
A

Chapter 13 The Signal Routing Library

13−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 13.14. Models for Example 13.7

To associate a Goto block with a From block, we enter the Goto block's tag in the Goto Tag
parameter. A From block can receive its signal from only one Goto block, although a Goto block
can pass its signal to more than one From block.

13.1.14 The Goto Tag Visibility Block

The Goto Tag Visibility block defines the accessibility of Goto block tags that have scoped visi-
bility. The tag specified as the Goto tag parameter is accessible by From blocks in the same sub-
system that contains the Goto Tag Visibility block and in subsystems below it in the model hierar-
chy. A Goto Tag Visibility block is required for Goto blocks whose Tag visibility parameter value
is specified as scoped. No Goto Tag Visibility block is needed if the tag visibility is either local or
global. When scoped, the block shows the tag name enclosed in braces ({}).

Example 13.8
The model in Figure 13.15, is the same as that of in Figure 13.14, except that it includes the Goto
Tag Visibility Tag block.

Figure 13.15. Model for Example 13.8

Introduction to Simulink with Engineering Applications 13−13
Copyright © Orchard Publications

Signal Routing Group Sub−Library

As indicated, in Figure 13.15, the Goto Tag Visibility block has no input and no output but it
must be included whenever the visibility is specified as scoped. Since the tag visibility is specified
as scoped, the Goto Tag Visibility block is shown in the model with the tag name enclosed in
braces ({}).

13.1.15 The Goto Block

The Goto block passes its input to its corresponding From blocks. From and Goto blocks allow us
to pass a signal from one block to another without actually connecting them. A Goto block can
pass its input signal to more than one From block, although a From block can receive a signal
from only one Goto block. The input to that Goto block is passed to the From blocks associated
with it as though the blocks were physically connected. Goto blocks and From blocks are matched
by the use of Goto tags, defined in the Tag parameter. The Tag visibility parameter determines
whether the location of From blocks that access the signal is limited. The three options are:

1. Local, the default, means that From and Goto blocks using the same tag must be in the same
subsystem. A local tag name is enclosed in brackets ([]).

2. Global means that From and Goto blocks using the same tag can be anywhere in the model
except in locations that span nonvirtual subsystem boundaries. The rule that From-Goto block
connections cannot cross nonvirtual subsystem boundaries has the following exception. A
Goto block connected to a state port in one conditionally executed subsystem is visible to a
From block inside another conditionally executed subsystem. A global tag name is not
enclosed.

3. Scoped means that From and Goto blocks using the same tag must be in the same subsystem
or at any level in the model hierarchy below the Goto Tag Visibility block that does not entail
crossing a nonvirtual subsystem boundary, i.e., the boundary of an atomic, conditionally exe-
cuted, or function-call subsystem or a model reference. A scoped tag name is enclosed in
braces ({}).

Example 13.9
The upper and lower models in Figure 13.16, are equivalent and thus both Scope 1 and Scope 2
blocks display the same waveform shown in Figure 13.17.

Chapter 13 The Signal Routing Library

13−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 13.16. Model for Example 13.9

Figure 13.17. Waveform displayed in Scope 1 and Scope 2 blocks in Figure 13.16

13.2 The Signal Storage and Access Group Sub−Library
Data stores are signals that are accessible at any point in a model hierarchy at or below the level
in which they are defined. Because they are accessible across model levels, data stores allow sub-
systems and model references to share data without having to use I/O ports to pass the data from
level to level. The Signal Storage and Access Group Sub−Library contains the three blocks
described in Subsections 13.2.1 through 13.2.3 below.

13.2.1 The Data Store Read Block

The Data Store Read block copies data from the named data store to its output. The data store
from which the data is read is determined by the location of the Data Store Memory block or sig-
nal object that defines the data store. More than one Data Store Read block can read from the
same data store. For more information, please refer to Working with Data Stores and Data Store
Memory in Help menu for this block. An example is presented in Subsection 13.2.3, this chapter,
Page 13−15.

Introduction to Simulink with Engineering Applications 13−15
Copyright © Orchard Publications

The Signal Storage and Access Group Sub−Library

13.2.2 The Data Store Memory Block

The Data Store Memory block defines and initializes a named shared data store, which is a mem-
ory region usable by Data Store Read and Data Store Write blocks with the same data store name.
The location of the Data Store Memory block that defines a data store determines the Data Store
Read and Data Store Write blocks that can access the data store:

1. If the Data Store Memory block is in the top-level system, the data store can be accessed by
Data Store Read and Data Store Write blocks located anywhere in the model.

2. If the Data Store Memory block is in a subsystem, the data store can be accessed by Data Store
Read and Data Store Write blocks located in the same subsystem or in any subsystem below it
in the model hierarchy.

An example is presented in Subsection 13.2.3 below.

13.2.3 The Data Store Write Block

The Data Store Write block copies the value at its input to the named data store. Each write
operation performed by a Data Store Write block writes over the data store, replacing the previ-
ous contents. The data store to which this block writes is determined by the location of the Data
Store Memory or signal object that defines the data store. More than one Data Store Write block
can write to the same data store.

Example 13.10
In this example, we will create a model that will alternately will display the outputs of a low−pass
filter and a high−pass filter whose transfer functions are , and respectively,
when the input is the step function.

We begin with a new model, we drag two Data Store Memory blocks into it, and for the first we
define the name lpfilter, and for the second the name hpfilter as shown in Figure 13.18. Then, we
drag two Step blocks, two Transfer Fcn blocks, two Gain blocks, two Data Store Write blocks,
and two Scope blocks into the same model, we connect them as shown, and to the first Data Store
Write block we assign the name lpfilter, and to the second the name hpfilter as shown in Figure
13.18.

1 s 1+()⁄ s s 1+()⁄

Chapter 13 The Signal Routing Library

13−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 13.18. Initial model for Example 13.10

Next, we select the Transfer Fcn 1, Gain 1, and Data Store 1 blocks by enclosing them in a
bounding box around them, we choose Create Subsystem from the Edit menu. We label this sub-
system as Subsystem 1. We repeat for the Transfer Fcn 2, Gain 2, and Data Store 2 blocks, and we
label this subsystem as Subsystem 2. The model is now as shown in Figure 13.19, after reshaping
and renaming the subsystem blocks.

Figure 13.19. Modified model for Example 13.10

Now, we revise the model of Figure 13.19 by adding the Manual Switch block as shown in Figure
13.20 so that we can switch between Subsystem 1 for the low−pass filter, and Subsystem 2 for the
high−pass filter to observe their waveforms shown in Figures 13.21 and 13.22 respectively.

Figure 13.20. The model of Example 13.10 in its final form

Introduction to Simulink with Engineering Applications 13−17
Copyright © Orchard Publications

The Signal Storage and Access Group Sub−Library

Figure 13.21. Waveform of the output of Subsystem 1 (Low-pass filter with Gain = 1.5)

Figure 13.22. Waveform of the output of Subsystem 2 (High-pass filter with Gain = 1.5)

In Example 13.10 we illustrated the use of the Data Store Memory block and the Data Store
Write block. The use of the Data Store Read block is illustrated in Figure 13.23.

Figure 13.23. Models to illustrate the use of the Data Store Read block

The Scope 1 and Scope 2 blocks in Figure 13.23 display the same waveforms as those in Figure
13.21 and Figure 13.22.

Chapter 13 The Signal Routing Library

13−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

13.3 Summary
• The Bus Creator block combines a set of signals into a group of signals represented by a single

line.

• The Bus Selector block outputs a specified subset of the elements of the bus at its input.

• The Bus Assignment block assigns values, specified by signals connected to its assignment
(:=) input ports, to specified elements of the bus connected to its Bus input port.

• The Mux block combines its inputs into a single output. An input can be a scalar, vector, or
matrix signal.

• The Demux block extracts the components of an input signal and outputs the components as
separate signals.

• The Selector block generates as output selected elements of an input vector or matrix. If the
input type is vector, the block outputs a vector of selected elements specified by element indi-
ces. If the input type is matrix, the Selector block outputs a matrix of elements selected from
the input matrix.

• The Index Vector block switches the output between different inputs based on the value of
the first input, referred to as the Control Input. This block is an implementation of the Multi-
port Switch block.

• The Merge block combines its inputs into a single output line whose value at any time is equal
to the most recently computed output of its driving blocks. We can specify any number of
inputs by setting the block's Number of inputs parameter.

• The Environmental Controller block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its Real−Time Workshop (RTW) port
only if code is being generated from the model.

• The Manual Switch block is a toggle switch that selects one of its two inputs to pass through
to the output. There is no dialog box for this block; to toggle between inputs, we double-click
the block. The block retains its current state when the model is saved.

• The Multiport Switch block chooses between a number of inputs. The first (top) input is
called the control input, while the rest of the inputs are called data inputs. The value of the
control input determines which data input is passed through to the output port.

• The Switch block outputs the first (top) input or the third (bottom) input depending on the
value of the second (middle) input. The first and third inputs are the data inputs. The second
input is the control input.

• The From block accepts a signal from a corresponding Goto block, then passes it as output.

Introduction to Simulink with Engineering Applications 13−19
Copyright © Orchard Publications

Summary

• The Goto Tag Visibility block defines the accessibility of Goto block tags that have scoped
visibility.

• The Goto block passes its input to its corresponding From blocks.

• The Data Store Read block copies data from the named data store to its output. The data
store from which the data is read is determined by the location of the Data Store Memory
block or signal object that defines the data store.

• The Data Store Memory block defines and initializes a named shared data store, which is a
memory region usable by Data Store Read and Data Store Write blocks with the same data
store name.

• The Data Store Write block copies the value at its input to the named data store. Each write
operation performed by a Data Store Write block writes over the data store, replacing the pre-
vious contents.

Introduction to Simulink with Engineering Applications 14−1
Copyright © Orchard Publications

Chapter 14

The Sinks Library

his chapter is an introduction to the Sinks library. This is the thirteenth library in the Sim-
ulink group of libraries and consists of three sub−libraries, the Model & Subsystem Out-
puts Sub−Library, the Data Viewers Sub−Library, and the Simulation Control Sub−

Library blocks shown below. We will describe the function of each block included in this library
and we will perform simulation examples to illustrate their application.

T

Chapter 14 The Sinks Library

14−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

14.1 Models and Subsystems Outputs Sub−Library
The Models and Subsystems Outputs Sub−Library contains the blocks described in Subsections
14.1.1 through 14.1.4 below.

14.1.1 The Outport Block

The Outport block creates an external output or an output port for a subsystem. This block is
described in Section 2.1, Chapter 2, Page 2−2.

14.1.2 The Terminator Block

The Terminator block can be used to cap blocks whose output ports are not connected to other
blocks. If we run a simulation with blocks having unconnected output ports, Simulink issues
warning messages. We use Terminator blocks to cap those blocks to avoid warning messages. This
block is described in Section 2.3, Chapter 2, Page 2−5.

14.1.3 The To File Block

The To File block writes its input to a matrix in a MAT−file. The block writes one column for
each time step: the first row is the simulation time; the remainder of the column is the input data,
one data point for each element in the input vector.

Example 14.1

Let us consider matrix defined as

where the elements of the first row are time points,* and the remaining rows contain data points
that correspond to the time point in that column. Thus at time 3, the outputs are 0, 3, and 2,

* The time points must always be monotonically increasing.

C

C

1 2 3 4
1– 1 0 1–

4 0 3 2–

3– 1– 2 4–

=

Introduction to Simulink with Engineering Applications 14−3
Copyright © Orchard Publications

Models and Subsystems Outputs Sub−Library

which are the data points for the third column encountered at time 3. We enter the elements of
matrix C in MATLAB’s Command Window as

C=[1 2 3 4; −1 1 0 −1; 4 0 3 −2; −3 −1 2 −4];

and we save it as matrixC.mat by selecting Save Workspace As from MATLAB’s File menu.

Next, we drag the From File block* found in the Sources library and the To File block into a new
model as shown in Figure 14.1 where to the From File block we have assigned the name matrixC,
and to the To File block we have assigned the name matrixCToFile.mat.

Figure 14.1. Example of copying the contents of a From File block to a To File block

Upon execution of the simulation command the contents of the matrixC file are copied into the
matrixCToFile.mat file and saved by that name. We can verify this as follows:

In MATLAB’s Command Window we type

open matrixCToFile.mat

ans =

 ans: [4x51 double]

Next, in MATLAB’s Command Window we type

whos

Name Size Bytes Class

C 4x4 128 double array
ans 1x1 1756 struct array
tout 51x1 408 double array

Grand total is 272 elements using 2292 bytes

From MATLAB’s Command Window we select Import Data from the File menu, and we choose
the file matrixCToFile.mat. The Import Wizard window displays the data shown in Figure 14.2.

* The From File block belongs to the Model and Subsystem Input sub−library described in the Sources Library,
Section 15.1.3, Chapter 15., Page 15−2.

Chapter 14 The Sinks Library

14−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 14.2. Displaying the contents of matrix C of Example 14.1 in Import Wizard

14.1.4 The To Workspace Block

The To Workspace block writes its input to the workspace. This block writes its output to an
array or structure that has the name specified by the block's Variable name parameter. The Save
format parameter determines the output format.

The MATLAB Workspace consists of the set of variables generated by the execution of a program
and these are stored in memory.

Example 14.2

Let us consider the matrix multiplication where and , and cre-
ate a model to include a To Workspace block at the output.

Matrix is a size and matrix is a size and matrix so these matrices are conformable
for multiplication. The model is shown in Figure 14.3 where to the To Workspace block we
assigned the name matrixmult.

Next, in MATLAB’s Command Window we type

who

and MATLAB lists the current workspace variables as

Your variables are:

 matrixmult simout tout

A B⋅ A 1 1 2–[]'= B 2 3 4[]=

A 3 1× B 1 3×

Introduction to Simulink with Engineering Applications 14−5
Copyright © Orchard Publications

The Data Viewers Sub−Library

Figure 14.3. Model for Example 14.2

Also, in MATLAB’s Command Window we type

whos

and MATLAB lists the current workspace variables and information about their size and class as

Name Size Bytes Class

matrixmult 1x1 4482 struct array

simout 1x1 4482 struct array

tout 51x1 408 double array

Grand total is 1035 elements using 9372 bytes

If we exit MATLAB, the workspace is cleared. But we can save any or all of the variables to a
MAT−file.* MAT−files use the .mat extension. We can then invoke this MAT−file at a later
time.

To save the workspace variables for this file, we select Save Workspace As from MATLAB’s File
menu.

14.2 The Data Viewers Sub−Library
The Data Viewers Sub−Library contains the four blocks described in Subsections 14.2.1 through
14.2.4 below.below.

* A MAT−file stores data in binary (not human-readable) form. We need not know the internal format of a MAT−
file. This file writes the arrays currently in memory to a file as a continuous byte stream. For a detailed discussion
please log on to www.csb.yale.edu/userguides/ datamanip/matlab/pdf/matfile_format.pdf.

Chapter 14 The Sinks Library

14−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

14.2.1 The Scope Block

The Scope block displays its input with respect to simulation time. The Scope block can have
multiple axes (one per port), but all axes have a common time range with independent y−axes.
The Scope allows us to adjust the amount of time and the range of input values displayed. We can
move and resize the Scope window and we can modify the Scope's parameter values during the
simulation. At the end of the simulation, Simulink transmits data to the connected Scopes but
does not automatically open the Scope windows. The signal(s) will be displayed when we double-
click on the Scope block after simulation termination.

If the signal is continuous, the Scope produces a point−to−point plot. If the signal is discrete, the
Scope produces a stair−step plot. When displaying a vector or matrix signal, the Scope assigns col-
ors to each signal element in this order: yellow, magenta, cyan, red, green, and dark blue. When
more than six signals are displayed, the Scope cycles through the colors in the order listed. We set
y−limits by right−clicking an axis and choosing Axes Properties.

When we open the Scope block we observe several toolbar icons that enable us to zoom in on dis-
played data, preserve axis settings from one simulation to the next, limit data displayed, and save
data to the workspace. The toolbar icons are labeled in the Help menu for this block. The Help
menu provides more information than what is provided in this subsection.

Example 14.3
The model shown in Figure 14.4 displays a sine waveform, a square waveform, a sawtooth wave-
form, and a random signal waveform on a single Scope block with one input. All four generators
are Signal Generator blocks configured to produce and display the four different waveforms. Each
was specified at 0.2 Hz frequency, and all other parameters were left in their default states. The
waveforms are shown in Figure 14.5.

Figure 14.4. Model for Example 14.3

Introduction to Simulink with Engineering Applications 14−7
Copyright © Orchard Publications

The Data Viewers Sub−Library

Figure 14.5. Waveforms for sine wave, square wave, sawtooth wave and random wave signal generators

In all of the previous examples we have shown the Scope block with only one input where the sig-
nals from the previous blocks have been combined via a Bus Creator block. However, we can dis-
play the Scope block with two or more inputs as illustrated with the following example.

Example 14.4
The model shown in Figure 14.6 displays a sine waveform, a square waveform, a sawtooth wave-
form, and a random signal waveform on a single Scope block with four inputs. All four generators
are Signal Generator blocks configured to produce and display the four different waveforms. Each
was specified at 0.2 Hz frequency, and all other parameters were left in their default states.

On the Scope block we click on the Parameters icon (second from left), and we specify Number of
Axes: 4. The waveforms are shown in Figure 14.7.

Figure 14.6. Model for Example 14.4

Chapter 14 The Sinks Library

14−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 14.7. Waveforms for the model of Figure 14.6

14.2.2 The Floating Scope Block

One of the options appearing on the General parameters pane for the Scope block described in
the previous subsection, is the Floating Scope. A Floating scope is a Scope block that can display
the signals carried on one or more lines. We can create a Floating Scope block in a model either
by copying a Scope block from the Simulink Sinks library into a model and selecting this option
or, more simply, by copying the Floating Scope block from the Sinks library into the model win-
dow. The Floating Scope block has the Floating scope parameter selected by default. The proce-
dure for using and displaying one or more signals on a Floating Scope is illustrated with the exam-
ple below.

Example 14.5
The model shown in Figure 14.8 displays a sine waveform, a square waveform, a sawtooth wave-
form, and a random signal waveform on a single Floating Scope block with four inputs. All four
generators are Signal Generator blocks configured to produce and display the four different wave-
forms. Each specified set at 0.2 Hz frequency, and all other parameters were left in their default
states.

Before executing the simulation command, we click on the Floating Scope whose display is as
shown in Figure 14.9. On the Floating Scope block, we click on the Parameters icon (second from
left − to the right of the print icon), and we specify Number of Axes: 4. The Floating Scope block
now becomes a a multi−axis floating scope as shown in Figure 14.10.

Introduction to Simulink with Engineering Applications 14−9
Copyright © Orchard Publications

The Data Viewers Sub−Library

Figure 14.8. Model for Example 14.5

Figure 14.9. Floating Scope for the model of Figure 14.8

Figure 14.10. The Floating Scope of Figure 14.9 with 4 axes

Chapter 14 The Sinks Library

14−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

1. To specify the display of the sine waveform on the first (top) axis, we click on that axis. Sim-
ulink draws a blue border around that axis as shown in Figure 14.11.

Figure 14.11. Specifying display of a signal on the Floating Scope

2. We return to the model of Figure 14.8 and we select one or more signal (broken) line(s). To
select multiple lines, we hold down Shift key while clicking another line.

3. To use a floating scope during a simulation, we must disable the signal storage reuse and block
reduction optimization options. To disable them, we click Simulation on the model of Figure
14.8, we click on the Configuration Parameters, we click on the Optimization field (left
side), and we deselect the Signal storage reuse and Block reduction optimization parameters.

4. We right−click on the axis with the blue border around it, we click on Axis properties we set
the y−axis at −1 (min) and +1 (max), we right−click again, and we click on Signal selection.
On the Signal Selector window shown in Figure 14.12 we choose the Sine Wave Generator.

Figure 14.12. The Signal Selector window for the model of Figure 14.8

5. We issue the Simulation command and the displays on the Floating Scope are as shown in Fig-
ure 14.13.

Introduction to Simulink with Engineering Applications 14−11
Copyright © Orchard Publications

The Data Viewers Sub−Library

Figure 14.13. The display of the sine waveform on the Floating Scope

We repeat steps 1 through 5 for the remaining axes. The Floating Scope displays are now as
shown in Figure 14.14.

Figure 14.14. Floating Scope for the model of Figure 14.8 with all signals displayed

Chapter 14 The Sinks Library

14−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

We can choose to have more than one Floating Scope in a model, but only one set of axes in one
scope can be active at a given time. Active floating scopes show the active axes with a blue bor-
der.

14.2.3 The XY Graph Block

The XY Graph block displays an X−Y plot of its inputs in a MATLAB figure window. This block
plots data in the first input (the x direction) against data in the second input (the y direction).

Example 14.6
The For Iterator Subsystem in Figure 14.15 is shown in Figure 14.16 where the initial condition
for the Memory block is set to and for the MATLAB Fcn block we have selected the sine
function from the Block Parameters menu. With the values shown, upon execution of the simula-
tion command, the XY Graph block displays the waveform shown in Figure 14.17. This waveform
indicates that at the beginning of the simulation cycle the value of y jumps to the value corre-
sponding to and decreases to its minimum value.

Figure 14.15. Model for Example 14.6

Figure 14.16. The subsystem of Figure 14.15

π 128⁄

2π

Introduction to Simulink with Engineering Applications 14−13
Copyright © Orchard Publications

The Data Viewers Sub−Library

Figure 14.17. The XY Plot displayed by the XY Graph block in Figure 14.16

14.2.4 The Display Block

The Display block shows the value of its input on its icon. The display formats are the same as
those of MATLAB. They are also specified in the Help menu for this block. The Decimation
parameter enables us to display data at every nth sample, where n is the decimation factor. Thus,
the default decimation 1 displays data at every time step. We use the Sample time parameter to
specify a sampling interval at which to display points. This parameter is useful when we are using
a variable−step solver where the interval between time steps might not be the same. The default
value of −1 causes the block to ignore the sampling interval when determining the points to dis-
play.

If the block input is an array, we must resize the block to see more than just the first element. The
Display block can be resized vertically or horizontally. The presence of a small black triangle indi-
cates that the block is not displaying all input array elements.

Example 14.7

The model of Figure 14.18 displays the trigonometric functions , , , , ,
and evaluated at and . It was necessary to resize the Display block to display all
values.

xsin xcos xtan hxsin hcos x
htan x π 6⁄ π 3⁄

Chapter 14 The Sinks Library

14−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 14.18. Model for Example 14.7

14.3 The Simulation Control Sub−Library
The Simulation Control Sub−Library contains only one block, the Stop Simulation block
described below.

The Stop Simulation block stops the simulation when the input is nonzero. A common use of this
block is when used in conjunction with a relational operator. The simulation completes the cur-
rent time step before terminating. If the block input is a vector, any nonzero vector element
causes the simulation to stop.

Example 14.8
The model is shown in Figure 14.19 uses a Stop Simulation block and a Relational Operator block
to terminate simulation when the first input is equal to the second input. We observe that the
simulation stops when the digital clock attains the value 10. The waveforms are shown in Figure
14.20.

Introduction to Simulink with Engineering Applications 14−15
Copyright © Orchard Publications

The Simulation Control Sub−Library

Figure 14.19. Model for Example 14.8

Figure 14.20. Waveforms for the model of Figure 14.19

Chapter 14 The Sinks Library

14−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

14.4 Summary
• The Outport block creates an external output or an output port for a subsystem.

• The Terminator block is used to cap blocks whose output ports are not connected to other
blocks. We use Terminator blocks to cap those blocks to avoid warning messages.

• The To File block writes its input to a matrix in a MAT−file. The block writes one column for
each time step: the first row is the simulation time; the remainder of the column is the input
data, one data point for each element in the input vector.

• The To Workspace block writes its input to the workspace. The block writes its output to an
array or structure that has the name specified by the block's Variable name parameter. The
Save format parameter determines the output format.

• The Scope block displays its input with respect to simulation time. The Scope block can have
multiple axes (one per port); all axes have a common time range with independent y−axes. We
can use a Bus Creator block to combine two or more signals to a Scope block with only one
input. We can also display the input signals to a Scope block with two or more inputs.

• The Floating scope is a Scope block that can display the signals carried on one or more lines.

• The XY Graph block displays an X−Y plot of its inputs in a MATLAB figure window. This
block plots data in the first input (the x direction) against data in the second input (the y
direction).

• The Display block shows the value of its input on its icon. The display formats are the same as
those of MATLAB. They are also specified in the Help menu for this block. If the block input
is an array, we must resize the block to see more than just the first element. The Display block
can be resized vertically or horizontally. The presence of a small black triangle indicates that
the block is not displaying all input array elements.

• The Stop Simulation block stops the simulation when the input is nonzero. A common use of
this block is when used in conjunction with a relational operator. The simulation completes
the current time step before terminating. If the block input is a vector, any nonzero vector ele-
ment causes the simulation to stop.

Introduction to Simulink with Engineering Applications 15−1
Copyright © Orchard Publications

Chapter 15

The Sources Library

his chapter is an introduction to the Sources library. This is the fourteenth library in the
Simulink group of libraries and consists of two sub−libraries, the Model & Subsystem
Inputs Sub−Library, and the Signal Generators Sub−Library blocks shown below. We will

describe the function of each block included in this library and we will perform simulation exam-
ples to illustrate their application.

T

Chapter 15 The Sources Library

15−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

15.1 Models and Subsystems Inputs Sub−Library
The Models and Subsystems Inputs Sub−Library contains the blocks described in Subsections
15.1.1 through 15.1.4 below.

15.1.1 The Inport Block

The Inport block creates an input port for a subsystem or an external input. This block is
described in Section 2.1, Chapter 2, Page 2−2.

15.1.2 The Ground Block

The Ground block grounds an unconnected input port. This block is described in Section 2.2,
Chapter 2, Page 2−4.

15.1.3 The From File Block

The From File block outputs data read from a MAT file. The name of the file is displayed inside
the block. An example using the From File and the To File blocks was presented in Subsection
14.1.3, Chapter 14, Page 14−2.

15.1.4 The From Workspace Block

The From Workspace block reads data from the MATLAB workspace. The workspace data are
specified in the block's Data parameter via a MATLAB expression that evaluates to a 2−D array.

Example 15.1
For the model of Figure 15.1, the MATLAB workspace contains the statement

t=1:10; u=log10(t);

In the Display block, the first 10 values are those specified by t, and the last ten values are those
specified by u.

Introduction to Simulink with Engineering Applications 15−3
Copyright © Orchard Publications

The Signal Generators Sub−Library

Figure 15.1. Model for Example 15.1

15.2 The Signal Generators Sub−Library
The Signal Generators Sub−Library contains the eighteen blocks described in Subsections
15.2.1 through 15.2.18 below.

15.2.1 The Constant Block

The Constant block generates a real or complex constant value. This block is described in Sec-
tion 2.4, Chapter 2, Page 2−6.

Chapter 15 The Sources Library

15−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

15.2.2 The Signal Generator Block

The Signal Generator block can produce one of four different waveforms: sine wave, square
wave, sawtooth wave, and random wave. The signal parameters can be expressed in Hertz (the
default) or radians per second. We can invert the waveform by specifying a negative amplitude in
the block’s parameters window.

Example 15.2
The model in Figure 15.2 shows all four possible configurations of the Signal Generator block to
produce and display the four different waveforms. Each is specified at 0.2 Hz frequency with the
unlisted parameters in their default state. The waveforms are shown in Figure 15.3.

Figure 15.2. Model for Example 15.2

Introduction to Simulink with Engineering Applications 15−5
Copyright © Orchard Publications

The Signal Generators Sub−Library

Figure 15.3. Waveforms for sine wave, square wave, sawtooth wave and random wave signal generators

15.2.3 The Pulse Generator Block

The Pulse Generator block generates square wave pulses at regular intervals. The shape of the
generated waveform depends on the parameters, Amplitude, Pulse Width, Period, and Phase
Delay as shown in Figure 15.4.

Figure 15.4. Illustration of the Pulse Generator block parameters

Example 15.3
In the model of Figure 15.5, the Pulse Generator block parameters are specified as:

Amplitude: 1, Period: 3, Pulse Width: 50, Phase Delay: 1

Amplitude

Phase Delay
Pulse Width

Period

Chapter 15 The Sources Library

15−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The unlisted parameters are left in their default states.

Figure 15.5. Model for Example 15.3

The Scope block displays the waveform shown in Figure 15.6.

Figure 15.6. Waveform for the model of Figure 15.5

15.2.4 The Signal Builder Block

The Signal Builder block allows us to create interchangeable groups of piece−wise linear signal
sources and use them in a model. The procedure for building a piece−wise linear signal is as fol-
lows:

1. We first double−click on the Signal Builder block, a waveform similar to that shown in Figure
15.7 is displayed. The points at the ends of each line segment indicate that this waveform is
selected. To deselect it, we press the Esc key.

2. To select a particular point, we position the mouse cursor over that point and we left−click. A
circle is drawn around that point to indicate that it is selected.

3. To select a line segment, we left−click on that segment. That line segment is now shown as a
thick line indicating that it is selected. To deselect it, we press the Esc key.

Introduction to Simulink with Engineering Applications 15−7
Copyright © Orchard Publications

The Signal Generators Sub−Library

Figure 15.7. Waveform displayed when the Signal Builder block is double-clicked the first time

4. To drag a line segment to a new position, we place the mouse cursor over that line segment
and the cursor shape shows the position in which we can drag the segment.

5. To drag a point along the y−axis, we move the mouse cursor over that point, and the cursor
changes to a circle indicating that we can drag that point. We can then move that point in a
direction parallel to the x−axis.

6. To drag a point along the x−axis, we select that point, and we hold down the Shift key while
dragging that point.

7. When we select a line segment on the time axis (x−axis) we observe that at the lower end of
the waveform display window the Left Point and Right Point fields become visible. We can
then reshape the given waveform by specifying the Time (T) and Amplitude (Y) points. For
our example we will use the triangular waveform shown in Figure 15.8.

Example 15.4
For the triangular waveform of Figure 15.8 it is specified that the Time (T) and Amplitude (Y)
points are (0,0), (1,1), (2,0), (3,1), (4,0), (5,1), (6,0), (7,1), (8,0), (9,1), and (10,0).

The menu bar at the top contains several icons that we could use to modify our waveform.

After the simulation command is executed, the model of Figure 15.9 displays the triangular wave-
form and its integrated waveform in Figure 15.10.

Chapter 15 The Sources Library

15−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 15.8. Triangular waveform for Example 15.4

Figure 15.9. Model for Example 15.4

Figure 15.10. Waveforms for the model of Figure 15.9

Introduction to Simulink with Engineering Applications 15−9
Copyright © Orchard Publications

The Signal Generators Sub−Library

15.2.5 The Ramp Block

The Ramp block generates a signal that starts at a specified time and value and changes by a spec-
ified rate. The characteristics of the generated signal are determined by the specified Slope, Start
time, Duty Cycle, and Initial output parameters.

Example 15.5
With the Ramp block parameters at their default states, the Scope block in Figure 15.11 displays
the waveform shown in Figure 15.12.

Figure 15.11. Model for Example 15.5

Figure 15.12. Waveform for the model of Figure 15.11

15.2.6 The Sine Wave Block

The Sine Wave block generates a sine wave. To generate a cosine wave, we specify the Phase
parameter as .The Sine type can be either time−based mode or sample−based mode sine
wave block.

π 2⁄

Chapter 15 The Sources Library

15−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

1. The time−based mode has two submodes: continuous submode or discrete submode. We use
the Sample time parameter to specify that the block will operate in the continuous submode or
discrete submode. For the continuous submode we specify the 0 value (the default), and for the
discrete submode we specify a value greater than zero.

2. The sample−based mode requires a finite discrete time. A Sample time parameter value greater
than zero causes the block to behave as if it were driving a Zero−Order Hold block whose sam-
ple time is set to that value. The formulas used are given in the Help menu for this block.

The following parameters appear in the Dialog Box:

Sine type − Type of sine wave generated by this block, either time− or sample−based. Some of the
other options presented by the Sine Wave dialog box depend on whether we select
time-based or sample-based as the value of Sine type parameter.

Time − Specifies whether to use simulation time as the source of values for the sine wave's time
variable or an external source. If we specify an external time source, the block displays
an input port for the time source.

Amplitude − The amplitude of the signal. The default is 1.

Bias − Constant (DC) value added to the sine to produce the output of this block.

Frequency − The frequency, in radians/second. The default is 1 rad/s. This parameter appears only
if we specify time−based as the Sine type of the block.

Samples per period − Number of samples per period. This parameter appears only if we specify
sample-based as the Sine type of the block.

Phase − The phase shift, in radians. The default is 0 radians. This parameter appears only if we
specify time−based as the Sine type of the block.

Number of offset samples − The offset (discrete phase shift) in number of sample times. This
parameter appears only if we specify sample-based as the Sine type
of the block.

Sample time − The sample period. The default is 0. If the sine type is sample-based, the sample
time must be greater than 0. We can refer to Specifying Sample Time in the
online documentation for more information.

Interpret vector parameters as 1−D − If checked, column or row matrix values for the Sine Wave
block's numeric parameters result in a vector output signal;
otherwise, the block outputs a signal of the same dimension-
ality as the parameters. If this option is not selected, the
block always outputs a signal of the same dimensionality as
the block's numeric parameters.

Introduction to Simulink with Engineering Applications 15−11
Copyright © Orchard Publications

The Signal Generators Sub−Library

Example 15.6
For the model shown in Figure 15.13 the parameters for the Sine Wave blocks are specified as fol-
lows:

Figure 15.13. Model for Example 15.6

Sine Wave 1 block − All parameters in their default state.

Sine Wave 2 block − Sample time: 0.25. All other parameters in default state.

Sine Wave 3 block − Sine type: Sample based, Sample time: 0.25. All other parameters in default

state.

The waveform for each is shown in Figure 15.14.

Figure 15.14. Waveforms for the model of Figure 15.13

15.2.7 The Step Block

Chapter 15 The Sources Library

15−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The Step block generates a step between two defined levels at some specified time. If the simula-
tion time is less than the Step time parameter value, the block's output is the Initial value param-
eter value. For simulation time greater than or equal to the Step time, the output is the Final
value parameter value.

Example 15.7
For the model shown in Figure 15.15 the parameters for the Step blocks were specified as follows:

Step 1 block − Step time: 1. All other parameters are in their default state.

Step 2 block − Step time: 5. All other parameters are in their default state.

Step 3 block − Step time: 10. All other parameters are in their default state.

The waveforms are shown in Figure 15.16.

Figure 15.15. Model for Example 15.7

Figure 15.16. Waveforms for the model of Figure 15.15

Introduction to Simulink with Engineering Applications 15−13
Copyright © Orchard Publications

The Signal Generators Sub−Library

15.2.8 The Repeating Sequence Block

The Repeating Sequence block outputs a periodic waveform that we specify using the block dia-
log's Time values and Output values parameters. The default of the Time values and Output val-
ues parameters are both set to . This setting specifies a sawtooth waveform that repeats
every 2 seconds from the start of the simulation with a maximum amplitude of 2. This block uses
linear interpolation to compute the value of the waveform between the specified sample points.

Example 15.8
For the model shown in Figure 15.17, the parameters for the Repeating Sequence blocks are as
follows:

Figure 15.17. Model for Example 15.8

Repeating Sequence 1 block − Time values: , Output values:

Repeating Sequence 2 block − Time values: , Output values:

With these parameter specifications, the waveforms are as shown in Figure 15.18.

Figure 15.18. Waveforms for the model of Figure 15.17

0 2[]

0 2[] 0 2[]

0 1 2[] 0 2 0[]

Chapter 15 The Sources Library

15−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

15.2.9 The Chirp Signal Block

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate with
time. The model of Figure 15.19 displays the waveform shown in Figure 15.20.

Figure 15.19. Model for displaying the output of the Chirp Signal block

Figure 15.20. Output waveform of the Chirp Signal block

Chirp signals* can be used for analyzing the spectral components of a variety of nonlinear systems.
They offer practical solutions to problems arising in radar and sonar systems design.

15.2.10 The Random Number Block

The Random Number block generates normally distributed random numbers. The seed† is reset
to the specified value each time a simulation starts. By default, the sequence produced has a mean
of 0 and a variance of 1, but we can specify other values for these parameters. The sequence of

* Another Chirp block is included in the Signal Processing Sources library of the Signal Processing Blockset. This
block outputs a swept-frequency cosine (chirp) signal with unity amplitude and continuous phase. We can see
an example by typing doc_chirp_ref at the MATLAB command line.

† The seed is defined in Appendix C.

Introduction to Simulink with Engineering Applications 15−15
Copyright © Orchard Publications

The Signal Generators Sub−Library

numbers is repeatable and can be produced by any Random Number block with the same seed
and parameters. To generate a vector of random numbers with the same mean and variance, we
specify the Initial seed parameter as a vector. To generate uniformly distributed random numbers,
we use the Uniform Random Number block which is described in Section 15.2.11, this chapter,
Page 15−16.

For a discussion and an example of generating a sequence for a random number generator, please
refer to Appendix C.

Example 15.9
With the Random Number block Sample time parameter specified as 0.25 and the remaining at
their default states, the Scope block in Figure 15.21 displays the waveform shown in Figure 15.22.

Figure 15.21. Model for Example 15.9

Figure 15.22. Waveform for the model of figure 15.21

15.2.11 The Uniform Random Number Block

Chapter 15 The Sources Library

15−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The Uniform Random Number block generates uniformly distributed* random numbers over a
specified interval with a specified starting seed. The seed is reset each time a simulation starts.
The generated sequence is repeated and can be produced by any Uniform Random Number block
with the same seed and parameters. To generate normally distributed random numbers, we use
the Random Number block which is described in Subsection 15.2.10, this chapter, Page 15−14.

Example 15.10
For comparison, the model of Figure 15.23 contains the Random Number (normally distributed)
block and the Uniform Random Number block. With the Sample time parameter at 0.25 for both
blocks and the remaining at their default states, the Scope block in Figure 15.23 displays the
waveforms shown in Figure 15.24.

Figure 15.23. Model for Example 15.10

Figure 15.24. Waveforms for the model of Figure 15.23

* For a detailed discussion on uniform and normal distributions, please refer to Mathematics for Business, Sci-
ence, and Technology, ISBN 0-970951108.

Introduction to Simulink with Engineering Applications 15−17
Copyright © Orchard Publications

The Signal Generators Sub−Library

15.2.12 The Band Limited White Noise Block

White noise* has a constant power, usually denoted as , over a bandwidth that theoretically
extends from to as shown in Figure 15.25.

Figure 15.25. White noise in a theoretical sense

In a practical sense, white noise is limited is some way. For instance, the thermal noise† in a resis-
tor is contained in a certain finite bandwidth extended from to as shown in Figure 15.26,
and thus it is referred to as band-limited white noise.

In Simulink, the Band−Limited White Noise block is an implementation of white noise into
Zero−Order Hold block. As described in Subsection 5.2.3, Chapter 5, Page 5-23, the Zero−Order
Hold block samples and holds its input for the specified sample period. The block accepts one
input and generates one output, both of which can be scalar or vector.

Figure 15.26. Band-limited white noise

* The adjective "white" is used to describe this type of noise in analogy with the white light. White light is a blend
of all the colors in the visual spectrum, resulting in the color white that is made up of all of the different colors
(frequencies) of light combined together. As we know from physics, a prism separates white light back into its
component colors.

† Thermal noise is the result of random fluctuations of the charge carriers in any conductive medium and is
dependent on the temperature.

P0

∞– +∞

∞– +∞
P0

pv

v
0

B– +B

B– +B

P0

pv

v0

Chapter 15 The Sources Library

15−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

In Simulink, we can simulate the effect of white noise by using a random sequence* with a corre-
lation time† much smaller than the shortest time constant of the system. The Band−Limited
White Noise block produces such a sequence. For good results, the Simulink documentation rec-
ommends that we use the relation

(15.1)

where is the correlation time and is the bandwidth of the system in rad/sec.

Example 15.11

Consider an RC low−pass filter whose input is random noise denoted as and the filtered
output is denoted as . The constants are and . This network is
referred to as first order low−pass filter. For this filter we will:

a. Derive the transfer function for this filter and create a model to display the output when the
input is a Band-Limited White Noise block.

b. Use the bilinear transformation‡ to derive the equivalent discrete time transfer function and
create a model to display the output when the input is a Band-Limited White Noise block. For
simplicity, we will neglect the effect of warping.**

The s−domain transformed filter is shown in Figure 15.27.

Figure 15.27. The transformed first order RC low−pass filter

1. By the voltage division expression,

* The Random Number block, described in Subsection 15.2.10, this chapter, Page15−14, produces random
sequences also. The primary difference is that the Band−Limited White Noise block produces an output at a
specific sample rate, which is related to the correlation time of the noise.

† The correlation time of the noise is the sample rate of the Band−Limited White Noise block.
‡ For a detailed discussion on the bilinear transformation, please refer to Signals and Systems with MATLAB

Applications, ISBN 0−9709511−6−7.
** The continuous−time frequency to discrete-time frequency transformation results in a non−linear mapping and

this condition is known as warping. A detailed discussion appears in the Signals and Systems text cited above.

tC
1

100
--------- 2π

ωmax
-----------⋅=

tC ωmax

nin t()

nout t() R 1 MΩ= C 1 µF=

R

Nin s() Nout s()
+

−

+
−1 sC⁄

Introduction to Simulink with Engineering Applications 15−19
Copyright © Orchard Publications

The Signal Generators Sub−Library

(15.2)

Rearranging, substituting the given values, and simplifying we get the continuous−time trans-
fer function

(15.3)

The Simulink block for this transfer function is found in the Continuous Library, Chapter 3,
and thus we create the model shown in Figure 15.28.

Figure 15.28. Model for Example 15.11 with continuous−time transfer function

Figure 15.29. Input and output waveforms for the model of Figure 15.28

The parameters for the Band−Limited White Noise block in Figure 15.28 are specified as fol-
lows:

Noise power: [0.1] (default)

Sample time: 0.5

Seed: [23341] (default)

2. The bilinear transformation uses the relation

(15.4)

Nout s() 1 sC⁄
R 1 sC⁄+
------------------------Nin s()=

G s()
Nout s()
Nin s()
----------------- 1

s 1+
-----------= =

H z() H s()
s 2

Ts
------ z 1–

z 1+
------------⋅=

=

Chapter 15 The Sources Library

15−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

For convenience, we will use MATLAB’s bilinear(Z,P,K,Fs) function where column vectors Z
and P specify the zeros and poles respectively, scalar K specifies the gain, and Fs is the sample
frequency in Hz. In Part (1), the sample time is specified as , therefore, we specify

 for part (2). Denoting the numerator and denominator of (15.3) as and
, we type and execute the statement

numa=1; dena=[1 1]; Fs=2; [numd,dend]=bilinear(numa,dena,Fs)

and MATLAB displays the discrete−time coefficients as

numd =
 0.2000 0.2000

dend =
 1.0000 -0.6000

Our model with the discrete−time transfer function is as shown in Figure 15.30 where the Dis-
crete Transfer Fcn block was dragged from the Discrete library and we substituted the values
above into that block. The input and output waveforms are shown in Figure 15.31.

Figure 15.30. Model for Example 15.11 with discrete−time transfer function

Figure 15.31. Input and output waveforms for the model of Figure 15.30

Ts 0.5 s=

Fs 2 Hz= numa 1=

dena 1 1[]=

Introduction to Simulink with Engineering Applications 15−21
Copyright © Orchard Publications

The Signal Generators Sub−Library

15.2.13 The Repeating Sequence Stair Block

The Repeating Sequence Stair block outputs and repeats a discrete time sequence. We specify
the stair sequence with the Vector of output values parameter.

Example 15.12
For the model shown in Figure 15.32, the Vector of output values parameter is specified as

 and the Sample time as . The waveform produced is
shown in Figure 15.33.

Figure 15.32. Model for Example 15.12

Figure 15.33. Waveform for the model of Figure 15.32

15.2.14 The Repeating Sequence Interpolated Block

The Repeating Sequence Interpolated block generates a repeating discrete−time sequence. This
block uses any of the methods specified by the Lookup Method parameter.

4 2 0 2 4 2 0 – 2 4 2––––[] 0.5

Chapter 15 The Sources Library

15−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 15.13
For the model shown in Figure 15.34, the parameters for the Repeating Sequence blocks are as
annotated inside the model.

The waveforms generated by each of the Repeating Sequence Interpolated blocks are shown in
Figure 15.35.

Figure 15.34. Model for Example 15.13

Figure 15.35. Waveforms for the model of Figure 15.34

Introduction to Simulink with Engineering Applications 15−23
Copyright © Orchard Publications

The Signal Generators Sub−Library

15.2.15 The Counter Free−Running Block

The Counter Free−Running block counts up until the maximum possible value, , is
reached, where N bits is the number of bits. The counter then returns to zero, and restarts count-
ing up. It is always initialized to zero.

Example 15.14
For the model of Figure 15.36, in the Counter Free−Running block the Number of bits was speci-
fied as 5, that is, , and thus . We observe on the Scope block of Figure
15.37 that the counter reaches the value of 31, resets to zero at approximately 6.5 seconds, and
restarts counting up. At the end of the simulation time, the counter has reached the value of 18
and this is also indicated in the Display block.

Figure 15.36. Model for Example 15.14

Figure 15.37. Waveform for the model of Figure 15.36

2N 1–

N 5= 2N 1– 25 1– 31= =

Chapter 15 The Sources Library

15−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

15.2.16 The Counter Limited Block

The Counter Limited block counts up until the specified upper limit is reached. Then the
counter wraps back to zero, and restarts counting up. The counter is always initialized to zero.

Example 15.15
For the model of Figure 15.38, in the Counter Limited block the Upper limit is specified as 32, and
as we observe on the Scope block of Figure 15.39 that the counter reaches the value of 32, resets
to zero at approximately 6.6 seconds, and restarts counting up. At the end of the simulation time,
that is, 10 sec, the counter has reached the value of 17 and this is also indicated in the Display
block.

Figure 15.38. Model for Example 15.15

Figure 15.39. Waveform for the model of Figure 15.38

Introduction to Simulink with Engineering Applications 15−25
Copyright © Orchard Publications

The Signal Generators Sub−Library

15.2.17 The Clock Block

The Clock block outputs the current simulation time at each simulation step. This block is useful
for other blocks that need the simulation time. For discrete−time systems we use the Digital Clock
block which is described in Subsection 15.2.18, this chapter, Page 15−26. We use the Display time
check box to display the current simulation time inside the Clock icon. The Decimation parame-
ter value is the increment at which the clock is updated and it can be any positive integer.

Example 15.16
In the model of Figure 15.40, the Display time check box is checked to display the simulation
time. The Decimation parameter in Clock 1 is specified as 10, and this is the increment at which
the clock is updated. Thus, for a fixed integration step of 1 second, the clock updates at 1 second,
2 seconds, and so on. The Decimation parameter in Clock 2 is specified as 100 and this is the
increment at which the clock is updated. Thus, for a fixed integration step of 1/100 second, the
clock updates at 1/100 second, 2/100 second, and so on. The Decimation parameter in Clock 3
has been set to 1000 and this is the increment at which the clock is updated. Thus, for a fixed
integration step of 1/1000 second, the clock updates at 1/1000 second, 2/1000 second, and so on.
The waveforms are shown in Figure 15.41.

Figure 15.40. Model for Example 15.16

Chapter 15 The Sources Library

15−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 15.41. Waveforms for the model of Figure 15.40

15.2.18 The Digital Clock Block

The Digital Clock block displays the simulation time at a specified sampling interval. At all other
times, the output is held at the previous value. This block is useful when we desire to know the
current time within a discrete system.

Example 15.17
For the model of Figure 15.42, in the Digital Clock block Sample time was specified as 0.25, and
its output is displayed on the Scope block of Figure 15.43.

Figure 15.42. Model for Example 15.17

Introduction to Simulink with Engineering Applications 15−27
Copyright © Orchard Publications

The Signal Generators Sub−Library

Figure 15.43. Waveform for the model of Figure 15.42

Chapter 15 The Sources Library

15−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

15.3 Summary
• The Inport block creates an input port for a subsystem or an external input.

• The Ground block grounds an unconnected input port.

• The From File block outputs data read from a MAT file. The name of the file is displayed
inside the block.

• The From Workspace block reads data from the MATLAB workspace. The workspace data
are specified in the block's Data parameter via a MATLAB expression that evaluates to a 2−D
array.

• The Constant block generates a real or complex constant value.

• The Signal Generator block can produce one of four different waveforms: sine wave, square
wave, sawtooth wave, and random wave.

• The Pulse Generator block generates square wave pulses at regular intervals. The shape of the
generated waveform depends on the parameters, Amplitude, Pulse Width, Period, and Phase
Delay.

• The Signal Builder block allows us to create interchangeable groups of piece wise linear signal
sources and use them in a model.

• The Ramp block generates a signal that starts at a specified time and value and changes by a
specified rate. The characteristics of the generated signal are determined by the specified
Slope, Start time, Duty Cycle, and Initial output parameters.

• The Sine Wave block generates a sine wave. The Sine type can be either time−based or sam-
ple−based mode.

• The Step block provides a step between two definable levels at a specified time.

• The Repeating Sequence block outputs a periodic waveform that we specify using the block
dialog's Time values and Output values parameters.

• The Chirp Signal block generates a sine wave whose frequency increases at a linear rate with
time.

• The Random Number block generates normally distributed random numbers. The seed is
reset to the specified value each time a simulation starts. By default, the sequence produced
has a mean of 0 and a variance of 1, but we can specify other values for these parameters. The
sequence of numbers is repeatable and can be produced by any Random Number block with
the same seed and parameters.

• The Uniform Random Number block generates uniformly distributed random numbers over
a specifiable interval with a specifiable starting seed. The seed is reset each time a simulation
starts. The generated sequence is repeatable and can be produced by any Uniform Random

Introduction to Simulink with Engineering Applications 15−29
Copyright © Orchard Publications

Summary

Number block with the same seed and parameters. To generate normally distributed random
numbers, we use the Random Number block.

• The Band−Limited White Noise block is an implementation of white noise into Zero-Order
Hold block.

• The Repeating Sequence Stair block outputs and repeats a discrete time sequence.

• The Repeating Sequence Interpolated block outputs a discrete-time sequence and then
repeats it.

• The Counter Free−Running block counts up until the maximum possible value, , is
reached, where N bits is the number of bits. Then the counter overflows to zero, and restarts
counting up. The counter is always initialized to zero.

• The Counter Limited block counts up until the specified upper limit is reached. Then the
counter wraps back to zero, and restarts counting up. The counter is always initialized to zero.

• The Clock block outputs the current simulation time at each simulation step. For discrete-
time systems we use the Digital Clock block.

• The Digital Clock block displays the simulation time at a specified sampling interval. At all
other times, the output is held at the previous value.

2N 1–

Introduction to Simulink with Engineering Applications 16−1
Copyright © Orchard Publications

Chapter 16

The User−Defined Functions Library

his chapter is an introduction to the User−Defined Functions Library. This is the fifteenth
library in the Simulink group of libraries and contains the blocks shown below. We will
describe the function of each block included in this library and we will perform simulation

examples to illustrate their application.

T

Chapter 16 The User−Defined Functions Library

16−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

16.1 The Fcn Block

The Fcn block applies a specified expression to its input denoted as u. If u is a vector, u(i) repre-
sents the ith element of the vector; u(1) or u alone represents the first element. The specified
expression can consist of numeric constants, arithmetic operators, relational operators, logical
operators, and the math functions abs, acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor,
hypot, ln, log, log10, pow, power, rem, sgn, sin, sinh, sqrt, tan, and tanh.

Example 16.1
It can be shown that the solution of the differential equation

(16.1)

is
(16.2)

where the constants and can be evaluated from the initial conditions. Then we can com-
pute and display any value of by specifying , , and , using the model shown in Figure 16.1.

Figure 16.1. Model for Example 16.1

For the model of Figure 16.1 we specified , , ,
and in MATLAB’s Command window we entered:

u(1)=pi/6; u(2)=−1; u(3)=−3;
y=−(1/4)*cos(2*u(1))*log(sec(2*u(1))+tan(2*u(1)))+υ(2)*cos(2*u(1))+υ(3)*cos(2*u(1));

16.2 The MATLAB Fcn Block

The MATLAB Fcn block applies the specified MATLAB function or expression to the input.
This block is slower than the Fcn block because it calls the MATLAB parser during each integra-

d2y
dt2
-------- 4y+ 2ttan=

y 1 4⁄() 2t 2t 2ttan+sec() k1 2t k2 2tsin+cos+ln⋅cos–=

k1 k2

y t k1 k2

u 1() t π 6⁄= = u 2() k1 1–= = u 3() k2 3–= =

Introduction to Simulink with Engineering Applications 16−3
Copyright © Orchard Publications

The Embedded MATLAB Function Block

tion step. As an alternative, we can use built-in blocks such as the Fcn block or the Math Func-
tion block, or writing the function as an M−file S−function, then accessing it using the S−Func-
tion block.

Example 16.2
In the model of Figure 16.2, the function in the MATLAB Fcn block is specified as eig and out-
puts the eigenvalues of Matrix .

Figure 16.2. Model for Example 16.2

16.3 The Embedded MATLAB Function Block

The Embedded MATLAB Function block contains a MATLAB language function in a Simulink
model. This block accepts multiple input signals and produces multiple output signals. For more
information and an example, please refer to the Simulink User’s Manual.

Example 16.3
In this example we will create a model using an Embedded MATLAB Function block to accept a

 matrix and output the value of its determinant and its inverse matrix.

We begin with a model that contains a Constant block, an Embedded MATLAB Function block,
and two Display blocks as shown in Figure 16.3. We save this model as matrix_det_inv.mdl

Figure 16.3. Blocks for the model for Example 16.3

A

3 3×

Chapter 16 The User−Defined Functions Library

16−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

We double−click the Embedded MATLAB Function block to open it for editing, and the Embed-
ded MATLAB Editor appears as shown in Figure 16.4.

Figure 16.4. The Embedded MATLAB Editor window

Using MATLAB’s Editor, we define a new function file as

function [det, inv] = matrix(A)

The contents of this function file as follows:*

function [det, inv] = matrix(A)
% This function computes the determinant and the inverse of a 3x3
% matrix A which must be defined in MATLAB's Command Window.
%
det=A(1,1)*A(2,2)*A(3,3)+A(1,2)*A(2,3)*A(3,1)+A(1,3)*A(2,1)*A(3,2)...
 −A(3,1)*A(2,2)*A(1,3)−A(3,2)*A(2,3)*A(1,1)−A(3,3)*A(2,1)*A(1,2);
%
% For a 3x3 matrix where A=[a11 a12 a13; a21 a22 a23; a31 a32 a33],
% the inverse of A is obtained as invA = (1/detA)*adjA where adjA
% represents the adjoint of A. Ref: Numerical Analysis, ISBN 0-9709511-1-6
% The cofactors are defined below.
%
b11=A(2,2)*A(3,3)−A(2,3)*A(3,2);
b12=−(A(2,1)*A(3,3)−A(2,3)*A(3,1));
b13=A(2,1)*A(3,2)−A(2,2)*A(3,1);
b21=−(A(1,2)*A(3,3)−A(1,3)*A(3,2));
b22=A(1,1)*A(3,3)−A(1,3)*A(3,1);
b23=−(A(1,1)*A(3,2)−A(1,2)*A(3,1));
b31=A(1,2)*A(2,3)−A(1,3)*A(2,2);
b32=−(A(1,1)*A(2,3)−A(1,3)*A(2,1));
b33=A(1,1)*A(2,2)−A(1,2)*A(2,1);
%
% We must remember that the cofactors of the elemements of the ith
% row (column) of A are the elements of the ith column (row) of AdjA.

* The script for the user defined function used in this example is not the best choice. For the computation of the
determinant of a square matrix of any size, we could use for loops such as for i=1:n, and for the computation of
the inverse of a square matrix of any size, we can use the LU decomposition method.

Introduction to Simulink with Engineering Applications 16−5
Copyright © Orchard Publications

The Embedded MATLAB Function Block

% Accordingly, for the next statement below,we use the single quotation
% character (') to transpose the elements of the resulting matrix.
%
adjA=[b11 b12 b13; b21 b22 b23; b31 b32 b33]';
%
inv=(1/det)*adjA

We delete the contents shown in Figure 16.4, we copy the above script into the Embedded MAT-
LAB Ed i to r , f rom the Fi le menu we se lec t Save as Model , and we save i t a s
matrix_det_inv01.mdl. The content of the modified Embedded MATLAB Editor is now as
shown in Figure 16.5.

Figure 16.5. Function definition for the computation of the determinant and inverse of a 3x3 matrix

Next, we return to the model of Figure 16.3, and we observe that the Embedded MATLAB Func-
tion block appears as shown in Figure 16.6.

Chapter 16 The User−Defined Functions Library

16−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 16.6. Modified model for Example 16.3

Now, we connect the blocks shown in Figure 16.6 as shown in Figure 16.7 where in the Constant
block we have assigned matrix defined in MATLAB’s Command window as

A=[1 2 3; 1 3 4; 1 4 3];

Figure 16.7. The connected blocks for the model of Example 16.3

Finally, in MATLAB’s Command Window we type and execute the command

matrix_det_inv01

After execution of the simulation command in Figure 16.7, the model appears as shown in Figure
16.8.

Figure 16.8. The model for Example 16.3 in its final form

The functions det(A) and inv(A) are defined in MATLAB but are not included in the Embedded
MATLAB Run−Time Function Library List. This list includes common functions as sqrt, sin, cos,
and others. Thus, had we issued the simulation command without defining the function [det, inv]
= matrix(A), Simulink would have issued the following warnings:

Output det must be assigned before returning from the function

Output inv must be assigned before returning from the function

A

Introduction to Simulink with Engineering Applications 16−7
Copyright © Orchard Publications

The S−Function Block

16.4 The S−Function Block

The S−Function block provides access to S−functions. The S−function named as the S−function
name parameter can be a Level−1 M−file or a Level−1 or Level−2 C MEX−file S−function. We
should use the M−File S−Function block to include a Level−2 M−file S−function in a block dia-
gram. This block is described in Section 11.18, Chapter 11, Page 11−43.

16.5 The Level−2 M−file S−Function Block

We introduced the S−Function blocks in Section 11.18, Chapter 11, Page 11-43. We will now
describe some additional blocks.

A Level−2 M−file S−function is an M−file that defines the properties and behavior of an instance
of a Level−2 M−File S−Function block that references the M−file in a Simulink model.

The Level−2 M−file S−Function block allows us to use a Level−2 M−file S−function in a model.
We do this by creating an instance of this block in the model. Then, we enter the name of the
Level−2 M−File S−function in the M−file name field of the block's parameter dialog box.

For a Level−1 M−file S−function we use the S−Function block.

To become familiar with this block, let us review the demos as we did in Section 11.17, Chapter
11, Page 11-41. In MATLAB’s Command Window we type

sfundemos

and MATLAB will display the S−Function directory blocks shown in Figure 16.9. In this text we
will be concerned with the M−file S−Functions only.

Next, we double-click on the M−file S−Functions block of Figure 16.9 and MATLAB displays the
Level−1 and Level−2 M−file S−Functions shown in Figure 16.10.

Chapter 16 The User−Defined Functions Library

16−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 16.9. S−Function directory blocks

Figure 16.10. Levels of M−file S−Functions

The Level−1 M−file S−Functions are shown in Figure 16.11 and the Level−2 M−file S−Functions
are shown in Figure 16.12. We observe that the first 5 models of the Level−2 M−file S−Functions
and the same as those of the Level−1 M−file S−Functions but of course are implemented differ-
ently in each case.

Figure 16.11. List of Level−1 M−file S−Functions

Introduction to Simulink with Engineering Applications 16−9
Copyright © Orchard Publications

The Level−2 M−file S−Function Block

Figure 16.12. List of Level−2 M−file S−Functions

The Level−2 M−file S−function Application Programming Interface (API) allows us to use the
MATLAB language to create custom blocks with multiple inputs and outputs and capable of han-
dling any type of signal produced by a Simulink model, including matrix and frame signals of any
data type. The Level−2 M−file S-Functions resemble those defined by the C MEX−file S−func-
tions and consist of a set of callback methods that Simulink invokes when updating or simulating
the model. The callback methods perform the actual work of initializing and computing the out-
puts of the block defined by the S−function. Thus, the Level−2 M−file S−function API specifies a
set of callback methods that an M−file S−function must implement and others that it may choose
to omit, depending on the requirements of the block that the S−function defines.

To create an Level−2 M−file S−function, we can begin by making a copy of the template that Sim-
ulink provides and edit the copy as necessary to reflect the desired behavior of the S-function you
are creating. The comments in the template explain how it is done. To access this template, we
double-click on the Level−2 M−file template block shown in Figure 16.11.

To access the Level−1 M−file S−function template, we double-click on the Level−1 M−file tem-
plate block shown in Figure 16.10.

Table 16.1 lists the Level−2 M−file S−function callback methods and their C MEX−file equiva-
lents.

Chapter 16 The User−Defined Functions Library

16−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 16.4
Let us review the Level−1 M−file S−function file script for the Times two m−file shown in Figure
16.11 above, and the Level−2 M−file S−function file script for the Times two m−file shown in Fig-
ure 16.12 above. To view the script for these files denoted as sfundemo_timestwo, and
msfcn_times_two.m respectively, we double−click on the Times two blocks and on the annotated
blocks shown in green.

The Level−1 M−file S−function file script for the Times two m−file is as shown below where we
have disabled the executable mex file. We observe that the script for this file has the same syntax
as Example 11.14, Section 11.18, Chapter 11, Page 11-44.

function [sys,x0,str,ts] = timestwo(t,x,u,flag)
%TIMESTWO S-function whose output is two times its input.
% This M-file illustrates how to construct an M-file S-function that
% computes an output value based upon its input. The output of this

TABLE 16.1 Level-2 M-file S-Function and corresponding C MEX-file callback methods

Level-2 M-file callback method C MEX-file callback method

setup method (see Setup Method) mdlInitializeSizes

CheckParameters mdlCheckParameters

Derivatives mdlDerivatives

Disable mdlDisable

Enable mdlEnable

InitializeCondition mdlInitializeConditions

Outputs mdlOutputs

ProcessParameters mdlProcessParameters

SetInputPortComplexSignal mdlSetInputPortComplexSignal

SetInputPortDataType mdlSetInputPortDataType

SetInputPortDimensions mdlSetInputPortDimensionInfo

SetInputPortSampleTime mdlSetInputPortSampleTime

SetInputPortSamplingMode mdlSetInputPortFrameData

SetOutputPortComplexSignal mdlSetOutputPortComplexSignal

SetOutputPortDataType mdlSetOutputPortDataType

SetOutputPortDimensions mdlSetOutputPortDimensionInfo

SetOutputPortSampleTime mdlSetOutputPortSampleTime

Start mdlStart

Update mdlUpdate

WriteRTW mdlRTW

ZeroCrossings mdlZeroCrossings

Introduction to Simulink with Engineering Applications 16−11
Copyright © Orchard Publications

The Level−2 M−file S−Function Block

% S-function is two times the input value:
%
% y = 2 * u;
%
% See sfuntmpl.m for a general S-function template.
%
% See also SFUNTMPL.
%
% Copyright 1990-2002 The MathWorks, Inc.
% $Revision: 1.7 $
%
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage of the S-function.
%
switch flag,
 %%%%%%%%%%%%%%%%%%
 % Initialization %
 %%%%%%%%%%%%%%%%%%
 % Initialize the states, sample times, and state ordering strings.
 case 0
 [sys,x0,str,ts]=mdlInitializeSizes;

 %%%%%%%%%%%
 % Outputs %
 %%%%%%%%%%%
 % Return the outputs of the S-function block.
 case 3
 sys=mdlOutputs(t,x,u);

 %%%%%%%%%%%%%%%%%%%
 % Unhandled flags %
 %%%%%%%%%%%%%%%%%%%
 % There are no termination tasks (flag=9) to be handled.
 % Also, there are no continuous or discrete states,
 % so flags 1,2, and 4 are not used, so return an emptyu
 % matrix
 case { 1, 2, 4, 9 }
 sys=[];

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % Unexpected flags (error handling)%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % Return an error message for unhandled flag values.
 otherwise
 error(['Unhandled flag = ',num2str(flag)]);

end

% end timestwo

The Level−2 M−file S−function file script for the Times two m−file is as shown below where we
observe that only the required Level-2 N-file callback methods appearing in Table 16.1 are used.
function msfcn_times_two(block)
% Level-2 M file S-Function for times two demo.
% Copyright 1990-2004 The MathWorks, Inc.
% $Revision: 1.1.6.1 $

Chapter 16 The User−Defined Functions Library

16−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

 setup(block);

%endfunction

function setup(block)

 %% Register number of input and output ports
 block.NumInputPorts = 1;
 block.NumOutputPorts = 1;

 %% Setup functional port properties to dynamically
 %% inherited.
 block.SetPreCompInpPortInfoToDynamic;
 block.SetPreCompOutPortInfoToDynamic;

 block.InputPort(1).DirectFeedthrough = true;

 %% Set block sample time to inherited
 block.SampleTimes = [-1 0];

 %% Run accelerator on TLC
 block.SetAccelRunOnTLC(true);

 %% Register methods
 block.RegBlockMethod('Outputs', @Output);

%endfunction

function Output(block)

 block.OutputPort(1).Data = 2*block.InputPort(1).Data;

%endfunction

16.6 The S−Function Builder Block

The S−Function Builder block creates a C MEX−file S−function from specifications and C source
code that we provide. As stated earlier, we will not discuss C MEX−files in this text. To view some
examples we type

sfundemos

at the MATLAB Command window, and we choose the appropriate block from those shown in
Figure 16.13 below.

Introduction to Simulink with Engineering Applications 16−13
Copyright © Orchard Publications

The S−Function Examples Block

Figure 16.13. Examples of S−Functions

16.7 The S−Function Examples Block

The S−Function Examples block displays M−file S−Function, C−file S−Function, C++ S−Func-
tion, Ada S−Function, and Fortran S−Function examples shown in Figure 16.13 above.

Chapter 16 The User−Defined Functions Library

16−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

16.8 Summary

• The Fcn block applies a specified expression to its input denoted as u.

• The MATLAB Fcn block applies the specified MATLAB function or expression to the input.

• The Embedded MATLAB Function block contains a MATLAB language function in a Sim-
ulink model. This block accepts multiple input signals and produces multiple output signals.

• The S−Function block provides access to S−functions. The S−function named as the S−func-
tion name parameter can be a Level−1 M−file or a Level−1 or Level−2 C MEX−file S−function.

• The Level−2 M−file S−Function block allows us to use a Level−2 M−file S−function in a
model.

• The S-Function Builder block creates a C MEX−file S−function from specifications and C
source code that we provide.

• The S−Function Examples block displays M−file S−Function, C−file S−Function, C++ S−
Function, Ada S−Function, and Fortran S−Function examples.

Introduction to Simulink with Engineering Applications 17−1
Copyright © Orchard Publications

Chapter 17
The Additional Discrete Library

his chapter is an introduction to the Additional Discrete Library. This is the sixteenth
library in the Simulink group of libraries and contains the blocks shown below. We will
describe the function of each block included in this library and we will perform simulation

examples to illustrate their application.

T

Chapter 17 The Additional Discrete Library

17−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

17.1 The Transfer Fcn Direct Form II Block

The Transfer Fcn Direct Form II block implements a Direct Form II realization of the transfer
function specified by the Numerator coefficients and the Denominator coefficients without the
leading* coefficient in the Denominator.

Example 17.1
The model of Figure 17.1 implements the discrete−time function

(17.1)

Figure 17.1. Direct Form−II of a second-order digital filter

In Figure 17.1, the Sample time for the Sine Wave block is specified as 0.1. The for the
Transfer Fcn Direct Form II block is specified as , and the is
specified as . The leading coefficient 1 in the denominator is excluded. The
input and output waveforms are shown in Figure 17.2.

* By lead we mean that the leading coefficient 1 in the denominator which has the form .1 + z 1– + z 2–

H z() 0.5276 1.5828z 1–– 1.5828z 2–+

1 1.7600z 1–– 1.1829z 2–+
--=

num z()
0.5276 1.5828 1.5828–[] den z()

1.7600 1.1829–[]

Introduction to Simulink with Engineering Applications 17−3
Copyright © Orchard Publications

The Transfer Fcn Direct Form II Time Varying Block

Figure 17.2. Input and output waveforms for the model of Figure 17.1

17.2 The Transfer Fcn Direct Form II Time Varying Block

The Transfer Fcn Direct Form II Time Varying block implements a Direct Form II realization
of a specified transfer function. Essentially, this block performs the same function as that of the
Transfer Fcn Direct Form II block which is described in the previous section, except that the
numerator and denominator coefficients of the discrete−time transfer function are specified exter-
nally by two inputs Num and Den.

Example 17.2
The model of Figure 17.3 is essentially the same as that of Figure 17.1 and thus the input and out-
put waveforms of Figure 17.4 are the same as those of Figure 17.2.

Chapter 17 The Additional Discrete Library

17−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 17.3. Model for Example 17.3

Figure 17.4. Input and output waveforms for the model of Figure 17.3

17.3 The Fixed−Point State−Space Block

The Fixed−Point State−Space block implements the system described by

(17.2)

where:

 is a matrix with dimensions , , is a matrix with dimensions
, , is a matrix with dimensions , ,

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

A n n× n number of states= B
n m× m number of inputs= C r n× r number of outputs= D

Introduction to Simulink with Engineering Applications 17−5
Copyright © Orchard Publications

The Fixed−Point State−Space Block

is a matrix with dimensions , , , and
.

Example 17.3
The matrix form of a 3−input 2−output 3−state discrete−time system is specified as

(17.3)

In the model of Figure 17.5 we enter the values of matrices A, B, C, and D in the Fixed−Point
State−Space block parameters dialog box, and we specify initial condition 0. The input vector is as
shown and when the simulation command is given the input and output waveforms are as shown
in Figure 17.6.

Figure 17.5. Model for Example 17.3

r m× x state, an n 1× vector= u input, an m 1 vector×=

y output, an r 1 vector×=

x1 n 1+[]
x2 n 1+[]
x3 n 1+[]

0.25 0 0
0 0.5 0
0 0.25– 0.75–

x1 n[]
x2 n[]
x3 n[]

0 1 0
0 0 1
1 0 1

u1 n[]
u2 n[]
u3 n[]

⋅+⋅=

 A B

y1 n[]
y2 n[]

1 0 1
0 1 0

x1 n[]
x2 n[]
x3 n[]

0 1 0
0 0 1

u1 n[]
u2 n[]
u3 n[]

⋅+⋅=

 C D

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎨ ⎪ ⎩

Chapter 17 The Additional Discrete Library

17−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 17.6. Input and output waveforms for the model of Figure 17.5

17.4 The Unit Delay External IC Block

The Unit Delay External IC (Initial Condition) block delays its input by one sample period. This
block is equivalent to the discrete−time operator. The block accepts one input and generates
one output, both of which can be scalar or vector. If the input is a vector, all elements of the vec-
tor are delayed by the same sample period. The block's output for the first sample period is equal
to the signal IC. The input u and initial condition IC data types must be the same.

Example 17.4
In the model of Figure 17.7, the Pulse Generator block is specified for a period 2 sec. All other
parameters are in their default state. The input and output waveforms are shown in Figure 17.8.

Figure 17.7. Model for Example 17.4

z 1–

Introduction to Simulink with Engineering Applications 17−7
Copyright © Orchard Publications

The Unit Delay Resettable Block

Figure 17.8. Input and output waveforms for the model of Figure 17.7

17.5 The Unit Delay Resettable Block

The Unit Delay Resettable block delays a signal one sample period. If the reset input signal is
false, the block outputs the input signal delayed by one time step. If the reset signal is true, the
block resets the current state to the initial condition, specified by the Initial condition parameter,
and outputs that state delayed by one time step.

Example 17.5
In the model of Figure 17.9, the Pulse Generator 1 block is specified for a period 2 sec. and the
Pulse Generator 2 block is set for a period 4 sec. All other parameters are in their default state.
The input and output waveforms are shown in Figure 17.10.

Figure 17.9. Model for Example 17.5

Chapter 17 The Additional Discrete Library

17−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 17.10. Input and output waveforms for the model of Figure 17.9

17.6 The Unit Delay Resettable External IC Block

The Unit Delay Resettable External IC block delays a signal one sample period. The block can
be reset by the external reset signal R. The block has two input ports, one for the input signal u
and the other for the reset signal R. When the reset signal is false, the block outputs the input sig-
nal delayed by one time step. When the reset signal is true, the block resets the current state to
the initial condition given by the signal IC and outputs that state delayed by one time step.

Example 17.6
In the model of Figure 17.11, the Pulse Generator 1 block is set for a period 2 sec. and the Pulse
Generator 2 block is set for a period 4 sec. All other parameters are in their default state. The
input and output waveforms are shown in Figure 17.12.

Introduction to Simulink with Engineering Applications 17−9
Copyright © Orchard Publications

The Unit Delay Enabled Block

Figure 17.11. Model for Example 17.6

Figure 17.12. Input and output waveforms for the model of Figure 17.11

17.7 The Unit Delay Enabled Block

The Unit Delay Enabled block delays a signal by one sample period when the external enable sig-
nal E is on. When the enable signal E is off, the block is disabled. The block holds the current
state at the same value and outputs that value. The enable signal is on when E is not 0, and is off
when E is 0.

Chapter 17 The Additional Discrete Library

17−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 17.7
Figure 17.13 contains two models where in the upper model the Unit Delay Enabled 1 block is
disabled and thus its output is zero. In the lower model the Unit Delay Enabled 2 block is enabled
and causes a delay in the input signal before being propagated to the Discrete Time Integrator
Forward Euler 2 block. The inputs and outputs are shown in Figure 17.14.

Figure 17.13. Models for Example 17.7

Figure 17.14. Input and Output waveforms for the models of Figure 17.7

Introduction to Simulink with Engineering Applications 17−11
Copyright © Orchard Publications

The Unit Delay Enabled Resettable Block

17.8 The Unit Delay Enabled Resettable Block

The Unit Delay Enabled Resettable block delays a signal one sample period, if the external
enable signal is on. This block combines the features of the Unit Delay Enabled and Unit Delay
Resettable blocks. When the enable signal E is on and the reset signal R is false, the block outputs
the input signal delayed by one sample period. When the enable signal E is on and the reset signal
R is true, the block resets the current state to the initial condition, specified by the Initial condi-
tion parameter, and outputs that state delayed by one sample period. When the enable signal is
off, the block is disabled, and the state and output do not change except for resets. The enable sig-
nal is on when E is not 0, and off when E is 0.

Example 17.8
In the model of Figure 17.15, the Pulse Generator 1 block is specified for a period 2 sec., the Pulse
Generator 2 block is specified for a period 3 sec., and the Pulse Generator 3 block is specified for a
period 4 sec. All other parameters are in their default state. The input and output waveforms are
shown in Figure 17.16.

Figure 17.15. Model for Example 17.8

Chapter 17 The Additional Discrete Library

17−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 17.16. Input and output waveforms for the model of Figure 17.15

17.9 The Unit Delay Enabled External IC Block

The Unit Delay Enabled External IC block delays a signal by one sample period when the enable
signal E is on. When the enable is off, the block holds the current state at the same value and out-
puts that value. The enable E is on when E is not 0, and off when E is 0. The initial condition of
this block is specified by the input signal IC. Essentially, this block is the same as the Unit Delay
Enabled block which we described in the previous section of this chapter except that the initial
condition is specified by an external block.

Example 17.9
In the model of Figure 17.17, the Constant 1 block enables the Unit Delay Enabled External IC
block while the Constant 2 block is set to 1 to specify the initial condition. The input and output
waveforms are shown in Figure 17.18.

Introduction to Simulink with Engineering Applications 17−13
Copyright © Orchard Publications

The Unit Delay Enabled Resettable External IC Block

Figure 17.17. Model for Example 17.9

Figure 17.18. Input and output waveforms for the model of Figure 17.17

17.10 The Unit Delay Enabled Resettable External IC Block

The Unit Delay Enabled Resettable External IC block is a combination of the functions per-
formed by the Unit Delay Enabled, Unit Delay External IC, and Unit Delay Resettable blocks.
The block can reset its state based on an external reset signal R. When the enable signal E is on
and the reset signal R is false, the block outputs the input signal delayed by one sample period.
When the enable signal E is on and the reset signal R is true, the block resets the current state to
the initial condition given by the signal IC, and outputs that state delayed by one sample period.
When the enable signal is off, the block is disabled, and the state and output do not change
except for resets. The enable signal is on when E is not 0, and off when E is 0.

Chapter 17 The Additional Discrete Library

17−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 17.10
In the model of Figure 17.19, the Pulse Generator 1 block is specified for a period 2 sec., the Pulse
Generator 2 block is specified for a period 3 sec., and the Pulse Generator 3 block is specified for a
period 4 sec. All other parameters are in their default state. The input and output waveforms are
shown in Figure 17.20.

Figure 17.19. Model for Example 17.10

Figure 17.20. Input and output waveforms for the model of Figure 17.19

Introduction to Simulink with Engineering Applications 17−15
Copyright © Orchard Publications

The Unit Delay With Preview Resettable Block

17.11 The Unit Delay With Preview Resettable Block

The Unit Delay With Preview Resettable block can reset its state based on an external reset sig-
nal R. The block has two output ports. When the reset R is false, the upper port outputs the signal
and the lower port outputs the signal delayed by one sample period. When the reset R is true, the
block resets the current state to the initial condition given by the Initial condition parameter. The
block outputs that state delayed by one sample time through the lower output port, and outputs
the state without a delay through the upper output port.

Example 17.11
In the model of Figure 17.21, the Pulse Generator 1 block is specified for a period 2 sec. and the
Pulse Generator 2 block is specified for a period 4 sec. All other parameters are in their default
state. The input and output waveforms are shown in Figure 17.22.

Figure 17.21. Model for Example 17.11

Chapter 17 The Additional Discrete Library

17−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 17.22. Waveforms for the model of Figure 17.21

17.12 The Unit Delay With Preview Resettable External RV Block

The Unit Delay With Preview Resettable External RV block has three input and two output
ports. This block can reset its state based on the state of the an external input reset signal R.
When the external reset R is false, the upper port outputs the signal and the lower port outputs
the signal delayed by one sample period. When the external reset R is true, the upper output sig-
nal is forced to equal the external input reset signal RV. The lower output signal is not affected
until one time step later, at which time it is equal to the external reset signal RV at the previous
time step. The block uses the internal Initial condition only when the model starts or when a par-
ent enabled subsystem is used. The internal Initial condition only affects the lower output signal.

Example 17.12
In the model of Figure 17.23, the Pulse Generator 1, 2, and 3 blocks are specified for the periods
shown on the model. All other parameters are in their default state. The input and output wave-
forms are shown in Figure 17.24.

Introduction to Simulink with Engineering Applications 17−17
Copyright © Orchard Publications

The Unit Delay With Preview Enabled Block

Figure 17.23. Model for Example 17.12

Figure 17.24. Waveforms for the model of Figure 17.23

17.13 The Unit Delay With Preview Enabled Block

The Unit Delay With Preview Enabled block has two input and two output ports. When the
external input enable signal E is on, the upper port outputs the signal and the lower port outputs

Chapter 17 The Additional Discrete Library

17−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

the signal delayed by one sample period. When the enable signal E is off, the block is disabled, and
the state and output values do not change. The enable signal is on when E is not 0, and off when
E is 0.

Example 17.13
In the model of Figure 17.25, the Pulse Generator block is set for a period 2 sec. All other param-
eters are in their default state. The input and output waveforms are shown in Figure 17.26.

Figure 17.25. Model for Example 17.13

Figure 17.26. Waveforms for the model of Figure 17.25

Introduction to Simulink with Engineering Applications 17−19
Copyright © Orchard Publications

The Unit Delay With Preview Enabled Resettable Block

17.14 The Unit Delay With Preview Enabled Resettable Block

The Unit Delay With Preview Enabled Resettable block has three inputs and two outputs. This
block can reset its state based on an external input reset signal R. When the external enable sig-
nal E is on and the reset R is false, the upper port outputs the signal and the lower port outputs
the signal delayed by one sample period. When the enable input signal E is on and the reset R is
true, the block resets the current state to the initial condition given by the Initial condition
parameter. The block outputs that state delayed by one sample time through the lower output
port, and outputs the state without a delay through the upper output port. When the Enable sig-
nal is off, the block is disabled, and the state and output values do not change, except for resets.
The enable signal is on when E is not 0, and off when E is 0.

Example 17.14
In the model of Figure 17.27, the Pulse Generator 1, 2, and 3 blocks are specified for the period
shown on the model. All other parameters are in their default state. The input and output wave-
forms are shown in Figure 17.28.

Figure 17.27. Model for Example 17.14

Chapter 17 The Additional Discrete Library

17−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 17.28. Waveforms for the model of Figure 17.27

17.15 The Unit Delay With Preview Enabled Resettable External RV Block

The Unit Delay With Preview Enabled Resettable External RV block has four inputs and two
outputs. This block can reset its state based on an external reset signal R. When the external
enable signal E is on and the reset R is false, the upper port outputs the signal and the lower port
outputs the signal delayed by one sample period.

When the enable signal E is on and the reset R is true, the upper output signal is forced to equal
the external input reset signal RV. The lower output signal is not affected until one time step
later, at which time it is equal to the external reset signal RV at the previous time step. The block
uses the internal Initial condition only when the model starts or when a parent enabled subsystem
is used. The internal Initial condition only affects the lower output signal. When the Enable signal
is off, the block is disabled, and the state and output values do not change, except for resets. The
enable signal is on when E is not 0, and off when E is 0.

Introduction to Simulink with Engineering Applications 17−21
Copyright © Orchard Publications

The Unit Delay With Preview Enabled Resettable External RV Block

Example 17.15
In the model of Figure 17.29, the Pulse Generator 1, 2, and 3 blocks are set for the periods shown
on the model. All other parameters are in their default state. The input and output waveforms are
shown in Figure 17.30.

Figure 17.29. Model for Example 17.15

Figure 17.30. Waveforms for the model of Figure 11.29

Chapter 17 The Additional Discrete Library

17−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

17.16 Summary
• The Transfer Fcn Direct Form II block implements a Direct Form II realization of the trans-

fer function specified by the Numerator coefficients and the Denominator coefficients without
the leading coefficient in the Denominator.

• The Transfer Fcn Direct Form II Time Varying block implements a Direct Form II realiza-
tion of a specified transfer function. Essentially, this block performs the same function as that
of the Transfer Fcn Direct Form II block.

• The Fixed−Point State−Space block implements the system described by

• The Unit Delay External IC (Initial Condition) block delays its input by one sample period.
This block is equivalent to the discrete-time operator. The block accepts one input and
generates one output, both of which can be scalar or vector. If the input is a vector, all ele-
ments of the vector are delayed by the same sample period. The block's output for the first
sample period is equal to the signal IC. The input u and initial condition IC data types must be
the same.

• The Unit Delay Resettable block delays a signal one sample period. If the reset input signal is
false, the block outputs the input signal delayed by one time step. If the reset signal is true, the
block resets the current state to the initial condition, specified by the Initial condition parame-
ter, and outputs that state delayed by one time step.

• The Unit Delay Resettable External IC block delays a signal one sample period. The block
can be reset by the external reset signal R. The block has two input ports, one for the input sig-
nal u and the other for the reset signal R. When the reset signal is false, the block outputs the
input signal delayed by one time step. When the reset signal is true, the block resets the current
state to the initial condition given by the signal IC and outputs that state delayed by one time
step.

• The Unit Delay Enabled block delays a signal by one sample period when the external enable
signal E is on. When the enable signal E is off, the block is disabled. The block holds the cur-
rent state at the same value and outputs that value. The enable signal is on when E is not 0,
and is off when E is 0.

• The Unit Delay Enabled Resettable block delays a signal one sample period, if the external
enable signal is on. This block combines the features of the Unit Delay Enabled and Unit Delay
Resettable blocks.

• The Unit Delay Enabled External IC block delays a signal by one sample period when the
enable signal E is on. When the enable is off, the block holds the current state at the same

x n 1+[] Ax n[] Bu n[]+=

y n[] Cx n[] Du n[]+=

z 1–

Introduction to Simulink with Engineering Applications 17−23
Copyright © Orchard Publications

Summary

value and outputs that value. The enable E is on when E is not 0, and off when E is 0. The ini-
tial condition of this block is specified by the input signal IC.

• The Unit Delay Enabled Resettable External IC block is a combination of the functions per-
formed by the Unit Delay Enabled, Unit Delay External IC, and Unit Delay Resettable blocks.

• The Unit Delay With Preview Resettable block has two input and two output ports. This
block can reset its state based on the state of the external input reset signal R. When the reset
R is false, the upper port outputs the signal and the lower port outputs the signal delayed by
one sample period. When the reset R is true, the block resets the current state to the initial
condition given by the Initial condition parameter. The block outputs that state delayed by
one sample time through the lower output port, and outputs the state without a delay through
the upper output port.

• The Unit Delay With Preview Resettable External RV block has three input and two output
ports. This block can reset its state based on the state of the an external input reset signal R.
When the external reset R is false, the upper port outputs the signal and the lower port outputs
the signal delayed by one sample period. When the external reset R is true, the upper output
signal is forced to equal the external input reset signal RV. The lower output signal is not
affected until one time step later, at which time it is equal to the external reset signal RV at the
previous time step. The block uses the internal Initial condition only when the model starts or
when a parent enabled subsystem is used. The internal Initial condition only affects the lower
output signal.

• The Unit Delay With Preview Enabled block has two input and two output ports. When the
external input enable signal E is on, the upper port outputs the signal and the lower port out-
puts the signal delayed by one sample period. When the enable signal E is off, the block is dis-
abled, and the state and output values do not change. The enable signal is on when E is not 0,
and off when E is 0.

• The Unit Delay With Preview Enabled Resettable block has three inputs and two outputs.
This block can reset its state based on an external input reset signal R. When the external
enable signal E is on and the reset R is false, the upper port outputs the signal and the lower
port outputs the signal delayed by one sample period. When the enable input signal E is on and
the reset R is true, the block resets the current state to the initial condition given by the Initial
condition parameter. The block outputs that state delayed by one sample time through the
lower output port, and outputs the state without a delay through the upper output port. When
the Enable signal is off, the block is disabled, and the state and output values do not change,
except for resets. The enable signal is on when E is not 0, and off when E is 0.

• The Unit Delay With Preview Enabled Resettable External RV block has four inputs and
two outputs. This block can reset its state based on an external reset signal R. When the exter-
nal enable signal E is on and the reset R is false, the upper port outputs the signal and the lower
port outputs the signal delayed by one sample period. When the enable signal E is on and the

Chapter 17 The Additional Discrete Library

17−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

reset R is true, the upper output signal is forced to equal the external input reset signal RV.
The lower output signal is not affected until one time step later.

Introduction to Simulink with Engineering Applications 18−1
Copyright © Orchard Publications

Chapter 18

The Additional Math − Increment / Decrement Library

his chapter is an introduction to the Additional Math − Increment / Decrement Library.
This is the seventeenth and last library in the Simulink group of libraries and contains the
blocks shown below. We will describe the function of each block included in this library

and we will perform simulation examples to illustrate their applications.

T

Chapter 18 The Additional Math − Increment / Decrement Library

18−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

18.1 The Increment Real World Block

The Increment Real World block increases the real−world value of the signal by one.

Example 18.1

The model of Figure 18.1 implements the function as indicated by the XY Graph in
Figure 18.2.

Figure 18.1. Model for Example 18.1

Figure 18.2. The XY graph for the model of Figure 18.1

y 3x 5+=

Introduction to Simulink with Engineering Applications 18−3
Copyright © Orchard Publications

The Decrement Real World Block

18.2 The Decrement Real World Block

The Decrement Real World block decreases the real−world value of the signal by one.

Example 18.2

The model of Figure 18.3 implements the function as indicated by the XY Graph
in Figure 18.4.

Figure 18.3. Model for Example 18.2

Figure 18.4. XY graph for the model of Figure 18.3

y 3 x 1+()–=

Chapter 18 The Additional Math − Increment / Decrement Library

18−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

18.3 The Increment Stored Integer Block

The Increment Stored Integer block increases the stored integer value of a signal by one.

Example 18.3

The model of Figure 18.5 implements the function . The XY Graph for this
model is shown in Figure 18.6.

Figure 18.5. Model for Example 18.3

Figure 18.6. XY graph for the model of Figure 18.5

y 2 x+() x 1–sin=

Introduction to Simulink with Engineering Applications 18−5
Copyright © Orchard Publications

The Decrement Stored Integer Block

18.4 The Decrement Stored Integer Block

The Decrement Stored Integer block decreases the stored integer value of a signal by one.

Example 18.4

The model of Figure 18.7 implements the function . The XY Graph for this model is
shown in Figure 18.8.

Figure 18.7. Model for Example 18.4

Figure 18.8. XY graph for the model of Figure 18.7

y 2x4 1+=

Chapter 18 The Additional Math − Increment / Decrement Library

18−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

18.5 The Decrement to Zero Block

The Decrement To Zero block decreases the real−world value of the signal by one. The output
never goes below zero.

Example 18.5
For the model of Figure 18.9, the output value never goes below zero as shown in Figure 18.10.

Figure 18.9. Model for Example 18.5

Figure 18.10. XY graph for the model of Figure 18.9

Introduction to Simulink with Engineering Applications 18−7
Copyright © Orchard Publications

The Decrement Time To Zero Block

18.6 The Decrement Time To Zero Block

The Decrement Time To Zero block decreases the real−world value of the signal by the sample
time, . This block works only with fixed sample rates and the output never goes below zero.

Example 18.6
The model of Figure 18.11 implements the waveform shown in Figure 18.12.

Figure 18.11. Model for Example 18.6

Figure 18.12. XY graph for the model of Figure 18.11

Ts

Chapter 18 The Additional Math − Increment / Decrement Library

18−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

18.7 Summary
• The Increment Real World block increases the real−world value of the signal by one.

• The Decrement Real World block decreases the real−world value of the signal by one.

• The Increment Stored Integer block increases the stored integer value of a signal by one.

• The Decrement Stored Integer block decreases the stored integer value of a signal by one.

• The Decrement To Zero block decreases the real−world value of the signal by one. The out-
put never goes below zero.

• The Decrement Time To Zero block decreases the real−world value of the signal by the sam-
ple time, . This block works only with fixed sample rates and the output never goes below
zero.

Ts

Introduction to Simulink with Engineering Applications 19−1
Copyright © Orchard Publications

Chapter 19

Engineering Applications

his chapter is devoted to engineering applications using appropriate Simulink blocks to
illustrate the application of the blocks in the libraries which we described in Chapters 2
through 18. Most of these applications may be considered components or subsystems of

large systems such as the demos provided by Simulink. Some of these applications describe some
of the new blocks added to the latest Simulink revision.

19.1 Analog−to−Digital Conversion
One of the recently added Simulink blocks is the Idealized ADC Quantizer. Figure 19.1 shows
how this block can be used to discretize a continuous−time signal such as a clock. The Function
Block Parameters dialog box provides a detailed description for this block.

Figure 19.1. Model for Analog−to−Digital conversion

The settings specified for the Idealized ADC Quantizer are noted in Figure 19.1. The output data
types for the Clock and the Idealized ADC Quantizer blocks are specified as double. The input
and output waveforms are shown in Figure 19.2.

Figure 19.2. Input and output waveforms for the model of Figure 19.1

T

Chapter 19 Engineering Applications

19−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

19.2 The Zero−Order Hold and First−Order Hold as Reconstructors

Suppose that a continuous−time signal is bandlimited with bandwidth , and its Fourier
transform is zero for . The Sampling Theorem states that if the sampling frequency

 is equal or greater than , the signal can be recover entirely from the sampled signal
 by applying to an ideal lowpass filter with bandwidth . Another method for recover-

ing the continuous−time signal from the sampled signal is to use a holding circuit that
holds the value of the sampled signal at time until it receives the next value at time . A
Zero−Order Hold circuit behaves like a low-pass filter and thus can be used as a holding circuit to
recover the continuous−time signal from the sampled signal .

The model of Figure 19.3 shows the output of a Zero−Order Hold block specified at a low sam-
pling frequency, and Figure 19.4 shows the input and output waveforms.

Figure 19.3. Model producing a piecewise constant waveform when the sampling frequency is low

Figure 19.4. Input and output waveforms for the model of Figure 19.3

Whereas the Zero−Order Hold circuit generates a continuous input signal by holding each
sample value constant over one sample period, a First−Order Hold circuit uses linear inter-
polation between samples as shown by the model of Figure 19.5 and the waveforms in Figure 19.6.

x t() B
X ω() ω B>

ωS 2B x t()

xS t() xS t() B
x t() xS t()

nT nT T+

x t() xS t()

u t()
u k[]

Introduction to Simulink with Engineering Applications 19−3
Copyright © Orchard Publications

The Zero−Order Hold and First−Order Hold as Reconstructors

Figure 19.5. The model of Figure 19.2 with a First−Order Hold block

Figure 19.6. Input and output waveforms for the model of Figure 19.4

A comparison of the outputs produced by a Zero-Order Hold block and a First-Order Hold block
with the same input, is shown in the model of Figure 19.7. The outputs are shown in Figure 19.8.

Figure 19.7. Model for comparison of a Zero-Order Hold and a First-Order Hold blocks with same input

Chapter 19 Engineering Applications

19−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.8. Waveforms for the model of Figure 19.7

19.3 Digital Filter Realization Forms

A given transfer function of a digital filter can be realized in several forms, the most com-
mon being the Direct Form I, Direct Form II, Cascade (Series), and Parallel. These are
described in Subsections 19.3.1 through 19.3.4 below. Similar demo models can be displayed as
indicated in these subsections.

19.3.1 The Direct Form I Realization of a Digital Filter
The Direct Form I Realization of a second−order digital filter is shown in Figure 19.9.

Figure 19.9. Direct Form I Realization of a second−order digital filter

At the summing junction of Figure 19.9 we obtain

H z()

+

y n[]

a1

a0

a2

b– 2

b– 1

x n[] z 1– z 1– z 1– z 1–

a0X z() a1z 1– X z() a2z 2– X z() b1–()z 1– Y z() b2–()z 1– Y z()+ + + + Y z()=

Introduction to Simulink with Engineering Applications 19−5
Copyright © Orchard Publications

Digital Filter Realization Forms

and thus the transfer function of the Direct Form I Realization of the second−order digital filter of
Figure 19.9 is

(19.1)

A disadvantage of a Direct Form I Realization digital filter is that it requires registers where
represents the order of the filter. We observe that the second−order () digital filter of Figure

11.9 requires 4 delay (register) elements denoted as . However, this form of realization has the
advantage that there is no possibility of internal filter overflow.*

19.3.2 The Direct Form II Realization of a Digital Filter

Figure 19.10 shows the Direct Form-II† Realization of a second−order digital filter. The Sim-
ulink Transfer Fcn Direct Form II block implements the transfer function of this filter.

Figure 19.10. Direct Form-II Realization of a second-order digital filter

The transfer function for the Direct Form−II second−order digital filter of Figure 19.10 is the same
as for a Direct Form−I second−order digital filter of Figure 19.9, that is,

(19.2)

A comparison of Figures 19.9 and 19.10 shows that whereas a Direct Form−I second−order digital
filter is requires registers, where represents the order of the filter, a Direct Form−II second−

order digital filter requires only register elements denoted as . This is because the register

* For a detailed discussion on overflow conditions please refer to Digital Circuit Analysis and Design with an
Introduction to CPLDs and FPGAs, ISBN 0-9744239-6-3, Section 10.5, Chapter 10, Page 10−6.

† The Direct Form-II is also known as the Canonical Form.

X z() a0 a1z 1– a2z 2–+ +() Y z() 1 b1z 1– b2z 2–+ +()=

H z() Y z()
X z()
------------ a0 a1z 1– a2z 2–+ +

1 b1z 1– b2z 2–+ +
---= =

2k k
k 2=

z 1–

x n[]

b2

y n[]

++

++

z 1–

z 1–

a1–

a2–

b1

b0

H z()
a0 a1z 1– a2z 2–+ +

1 b1z 1– b2z 2–+ +
---=

2k k

k z 1–

Chapter 19 Engineering Applications

19−6 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

() elements in a Direct Form−II realization are shared between the zero section and the pole
section.

Example 19.1
Figure 19.11 shows a Direct Form−II second−order digital filter whose transfer function is

(19.3)

The input and output waveforms are shown in Figure 19.12.

Figure 19.11. Model for Example 19.1

Figure 19.12. Input and output waveforms for the model of Figure 19.11

z 1–

H z() 1 1.5z 1– 1.02z 2–+ +

1 0.25z 1–– 0.75z 2–+
--=

Introduction to Simulink with Engineering Applications 19−7
Copyright © Orchard Publications

Digital Filter Realization Forms

A demo model using fixed−point Simulink blocks can be displayed by typing

fxpdemo_direct_form2

in MATLAB’s Command Window. This demo is an implementation of the third−order transfer
function

19.3.3 The Series Form Realization of a Digital Filter

For the Series* Form Realization, the transfer function is expressed as a product of first−order and
second-order transfer functions as shown in relation (19.4) below.

(19.4)

Relation (19.4) is implemented as the cascaded blocks shown in Figure 19.13.

Figure 19.13. Series Form Realization

Figure 19.14 shows the Series−Form Realization of a second−order digital filter.

Figure 19.14. Series Form Realization of a second-order digital filter

The transfer function for the Series Form second−order digital filter of Figure 19.14 is

(19.5)

* The Series Form Realization is also known as the Cascade Form Realization

H z() 1 2.2z 1– 1.85z 2– 0.5z 3–+ + +

1 0.5– z 1– 0.84z 2– 0.09z 3–+ +
---=

H z() H1 z() H2 z()…HR z()()⋅=

X z() HR z()H2 z()H1 z() Y z()

z 1– z 1–

a1

a2

b– 1

b– 2

+ + y[n]x[n]

H z()
1 a1z 1– a2z 2–+ +

1 b1z 1– b2z 2–+ +
--=

Chapter 19 Engineering Applications

19−8 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Example 19.2
The transfer function of the Series Form Realization of a certain second−order digital filter is

To implement this filter, we factor the numerator and denominator polynomials as

* (19.6)

The model is shown in Figure 19.15, and the input and output waveforms are shown in Figure
19.16.

Figure 19.15. Model for Example 19.2

* The combination of the of factors in parentheses is immaterial. For instance, we can group the factors as

 and or as and

H z() 0.5 1 0.36– z 2–()
1 0.1z 1– 0.72– z 2–+
---=

H z() 0.5 1 0.6z 1–+() 1 0.6z 1––()
1 0.9z 1–+() 1 0.8z 1––()

---=

1 0.6z 1–
+()

1 0.9z 1–
+()

----------------------------- 1 0.6z 1–
–()

1 0.8z 1–
–()

----------------------------- 1 0.6z 1–
+()

1 0.8z 1–
–()

----------------------------- 1 0.6z 1–
–()

1 0.9z 1–
+()

Introduction to Simulink with Engineering Applications 19−9
Copyright © Orchard Publications

Digital Filter Realization Forms

Figure 19.16. Input and output waveforms for the model of Figure 19.15

A demo model using fixed-point Simulink blocks can be displayed by typing

fxpdemo_series_cascade_form

in MATLAB’s Command Window. This demo is an implementation of the third−order transfer
function

19.3.4 The Parallel Form Realization of a Digital Filter
The general form of the transfer function of a Parallel Form Realization is

(19.7)

Relation (19.7) is implemented as the parallel blocks shown in Figure 19.17.

H z() 1 0.5z 1–+() 1 1.7z 1– z 2–+ +()
1 0.1z 1–+() 1 0.6– z 1– 0.9z 2–+()

--=

H z() K H1 z() H2 z() … HR z()+ + + +=

Chapter 19 Engineering Applications

19−10 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.17. Parallel Form Realization

As with the Series Form Realization, the ordering of the individual filters in Figure 19.17 is imma-
terial. But because of the presence of the constant , we can simplify the transfer function
expression by performing partial fraction expansion after we express the transfer function in the
form .

Figure 19.18 shows the Parallel Form Realization of a second−order digital filter. The transfer
function for the Parallel Form second−order digital filter of Figure 19.18 is

(19.8)

Figure 19.18. Parallel Form Realization of a second-order digital filter

X z()

HR z()

H2 z() Y z()

K

H1 z()

K

H z() z⁄

H z()
a1 a2z 2–+

1 b1z 1– b2z 2–+ +
--=

z 1– z 1–

a1

a2

b– 1

b– 2

+ + y[n]x[n]

Introduction to Simulink with Engineering Applications 19−11
Copyright © Orchard Publications

Digital Filter Realization Forms

Example 19.3
The transfer function of the Parallel Form Realization of a certain second−order digital filter is

To implement this filter, we first express the transfer function as

Next, we perform partial fraction expansion.

Therefore,

(19.9)

The model is shown in Figure 19.19, and the input and output waveforms are shown in Figure
19.20.

H z() 0.5 1 0.36– z 2–()
1 0.1z 1– 0.72– z 2–+
---=

H z()
z

------------ 0.5 z 0.6+() z 0.6–()
z z 0.9+() z 0.8–()

--=

0.5 z 0.6+() z 0.6–()
z z 0.9+() z 0.8–()

-- r1

z
---- r2

z 0.9+()
--------------------- r3

z 0.8–()
---------------------+ +=

r1
0.5 z 0.6+() z 0.6–()

z 0.9+() z 0.8–()
--

z 0=

0.25= =

r2
0.5 z 0.6+() z 0.6–()

z z 0.8–()
--

z 0.9–=

0.147= =

r3
0.5 z 0.6+() z 0.6–()

z z 0.9+()
--

z 0.8=

0.103= =

H z()
z

------------ 0.25
z

---------- 0.147
z 0.9+
---------------- 0.103

z 0.8–
----------------+ +=

H z() 0.25 0.147z
z 0.9+
---------------- 0.103z

z 0.8–
----------------+ +=

H z() 0.25 0.147
1 0.9z 1–+
------------------------ 0.103

z 0.8z 1––
-----------------------+ +=

Chapter 19 Engineering Applications

19−12 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.19. Model for Example 19.3

Figure 19.20. Input and output waveforms for the model of Figure 19.19

A demo model using fixed-point Simulink blocks can be displayed by typing

fxpdemo_parallel_form

in MATLAB’s Command Window. This demo is an implementation of the third−order transfer
function

Introduction to Simulink with Engineering Applications 19−13
Copyright © Orchard Publications

Models for Binary Counters

19.4 Models for Binary Counters

In this section we will draw two models for binary counters.* Subsection 19.4.1 presents a 3−bit up
/ down counter, and Subsection 19.4.2 presents a 4−bit Johnson counter.

19.4.1 Model for a 3−bit Up / Down Counter
A model for the operation of a 3−bit counter with three D Flip-Flop blocks, six NAND gate
blocks, a NOT gate (Inverter) block, and a Clock block is shown in Figure 19.21. The D Flip−
Flop and Clock blocks are in the Simulink Extras Toolbox, Flip−Flops library, and the NAND
and NOT gates are in the Logic and Bit Operations Library. The D Flip−Flop CLK (clock)
inputs are Negative Edge Triggered. The Clock waveform and the D Flip−Flops output waveforms
when the Manual Switch block is the Count up position, are shown in Figure 19.22.

Figure 19.21. Model for a 3−bit Up / Down binary counter

* For a detailed discussion on the analysis and design of binary counters, please refer to Digital Circuit Analysis
and Design with an Introduction to CPLDs and FPGAs, ISBN 0-9744239-6-3.

H z() 5.5556 3.4639
1 0.1z 1–+()

----------------------------– 1.0916– 3.0086z 1–+

1 0.6z 1–– 0.9z 2–+
---+=

Chapter 19 Engineering Applications

19−14 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.22. Waveforms for the model of Figure 19.20

19.4.2 Model for a 4−bit Ring Counter
The model of Figure 19.23 implements a 4−bit binary counter known as Johnson counter. The D
Flip−Flop and Clock blocks are in the Simulink Extras Toolbox, Flip−Flops library. The wave-
forms for this model are shown in Figure 11.24.

Figure 19.23. Model for a 4−bit Johnson counter

Introduction to Simulink with Engineering Applications 19−15
Copyright © Orchard Publications

Models for Mechanical Systems

Figure 19.24. Waveforms for the model of Figure 19.23

19.5 Models for Mechanical Systems
In this section we will draw three models for mechanical systems. Subsection 19.5.1 presents a
Block−Spring−Dashpot system, Subsection 19.5.2 presents a system with two mass blocks and two
springs, and Subsection 19.5.3 is a simple mechanical accelerometer system

19.5.1 Model for a Mass−Spring−Dashpot
Figure 19.25 shows a system consisting of a block, a dashpot, and a spring. It is shown in feedback
and control systems textbooks that this system is described by the second-order differential equa-
tion

(19.10)

where represents the mass of the block, is a positive constant of proportionality of the force
that the dashpot exerts on the block, and is also a positive constant of proportionality of the
force that the spring exerts on the block, known as Hooke’s law.

Figure 19.25. Mechanical system with a block, spring and dashpot

m d2

dt2
-------x t() p d

dt
-----x t() kx t()+ + F t()=

m p
k

F

Dashpot

Spring

Block

Mass m

x

Chapter 19 Engineering Applications

19−16 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

The mass of the dashpot and the mass of the spring are small and are neglected. Friction is also
neglected. For the system of Figure 19.25, the input is the applied force and the output is the
change in distance .

Let us express the differential equation of (19.10) with numerical coefficients as

(19.11)

where is the unit step function, and the initial conditions are , and .
For convenience, we denote these are denoted as and respectively.

For the solution of (19.11) we will use the State−Space block found in the Continuous Library,
and thus our model is as shown in Figure 19.26.

Figure 19.26. Model for Figure 19.25

The state equations are defined as
(19.12)

and

(19.13)

Then,

(19.14)

From (19.11), (19.13), and (19.14) we obtain the system of state equations

(19.15)

and in matrix form,

(19.16)

F
x

d2

dt2
-------x t() 2 d

dt
-----x t() 3x t()+ + 20 tsin()u0 t()=

u0 t() x 0() 4= dx dt⁄ 0=

x10 x20

x1 t() x t()=

x2 t() d
dt
-----x1 t()=

d
dt
-----x2 t() d2

dt2
-------x1 t() d2

dt2
-------x t()= =

d
dt
-----x1 t() x2 t()=

d
dt
-----x2 t() 3x1 t() 2x2 t()–– 20 tsin()u0 t()+=

d
dt
-----x1 t()

d
dt
-----x2 t()

0 1
3– 2–

x1 t()
x2 t()

0
20 tsin

u0 t()+=

Introduction to Simulink with Engineering Applications 19−17
Copyright © Orchard Publications

Models for Mechanical Systems

The output state equation is

or

Therefore, for the model of Figure 19.26, the coefficients , , , and are

(19.17)

The initial conditions and are denoted by the matrix

(19.18)

The values in (19.17) and (19.18) are entered in the Block parameters dialog box for the State-
Space block, and after the simulation command is issued, the Scope block displays the waveform
of Figure 19.27.

Figure 19.27. Waveform for the model of Figure 19.26

19.5.2 Model for a Cascaded Mass−Spring System
Figure 19.28 shows a a cascaded mass-spring system where is the applied force, is the mass,

 is the spring constant, is the friction, and is the displacement. It is shown in feedback and
control systems textbooks that the transfer function is

(19.19)

y Cx Du+=

y t() 1 0
x1 t()
x2 t()

=

A B C D

A 0 1
3– 2–

= B 0
5

= C 1 0= D 0=

x10 x20

x10
x20

4
0

=

F M
k f X

G s() X1 F⁄=

G s()
k1

M1s2 f+ 1s k1+() M2s2 f+ 2s k1 k2+ +() k1
2–

--=

Chapter 19 Engineering Applications

19−18 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.28. Cascaded mass−spring system

For simplicity, let us assume that the constants and conditions are such that after substitution into
(19.19), this relation reduces to

(19.20)

and the force applied at . The model under those conditions is shown in Figure 19.29, and
the input and output waveforms are shown in Figure 19.30.

Figure 19.29. Model for the system of Figure 19.28

Figure 19.30. Input and output waveforms for the model of Figure 19.29

k1 k2

X1 X2

M1f1 f2
M2 F

G s() 12
s4 10s3 36s2 56s 32+ + + +
--=

50 tsin

Introduction to Simulink with Engineering Applications 19−19
Copyright © Orchard Publications

Models for Mechanical Systems

19.5.3 Model for a Mechanical Accelerometer
A simple mechanical accelerometer system consisting of a block, a dashpot, and a spring is con-
nected as shown in Figure 19.31.

Figure 19.31. A simple mechanical accelerometer

It is shown in feedback and control systems textbooks that the transfer function is

(19.21)

For simplicity, let us assume that the constants and conditions are such that after substitution into
(19.21), this relation reduces to

(19.22)

and the force applied is where is the unit step function. The model under those
conditions is shown in Figure 19.32, and the input and output waveforms are shown in Figure
19.33.

Figure 19.32. Model for the system of Figure 19.31

x

Spring

Block
Mass

Dashpot

D

k

M
Acceleration a=

G s() x a⁄=

G s() 1
s2 D M⁄()+ s k M⁄+
--=

G s() 1
s2 0.1s 0.2+ +
----------------------------------=

0.8u0 t() u0 t()

Chapter 19 Engineering Applications

19−20 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.33. Input and output waveforms for the model of Figure 19.32

19.6 Feedback Control Systems
In our previous discussions in this chapter, we have used system components that are intercon-
nected in series. These are referred to as open−loop control systems. An example of an open−
loop system is a microwave oven which is controlled by a timer. However, most control systems
are closed−loop control systems where the control action ia affected by the output. An example
of a closed−loop system is the autopilot subsystem in an airplane which continuously measures the
actual airplane direction and automatically adjusts other subsystems of the airplane to change the
airplane heading to the desired direction. Feedback is the characteristic of a closed−loop control
system which distinguishes it from open−loop systems. It is beyond the scope of this text to
describe feedback control systems in detail. We will only describe some basics to aid the reader in
understanding some of the advanced designs of the systems provided by the Simulink demos.

Figure 19.34 shows a simple feedback control system with two elements represented as blocks, the
first of which is generally known as the control element or controller, and the second is known as
the plant. The feedback (the line connecting the output to the summing point) is the same as the
output and for this reason the entire system is referred to as unity feedback system. The path
represents the error, that is, the difference .

Figure 19.34. A unity feedback system

In Figure 19.34, the Controller and Plant blocks are in series and according to Feedback and Con-
trol Systems theory, can be replace by a single block whose transfer function is their product as
shown in Figure 19.35.

E
E X Y–=

+
E

X Y
1

s a+
----------- 1

s b+

Controller Plant
−

Introduction to Simulink with Engineering Applications 19−21
Copyright © Orchard Publications

Feedback Control Systems

Figure 19.35. Simplified representation for the system of Figure 19.33

To find the overall transfer function , observe that

or

Dividing both sides by we obtain

and thus

Therefore, the block diagram of Figure 19.34can be replaced with only one block in an open−loop
form as shown in Figure 19.36.

Figure 19.36. The system of Figure 19.33 in an open−loop form

A feedback control system in the form of the feedback path shown as in Figure 19.37 is referred to
as a feedback control system in canonical form. For the system of Figure 19.37, the ratio is

(19.23)

Figure 19.37. Canonical form of a feedback control system

X Y1
s a+() s b+()

E

−
+

G s() Y X⁄=

Y 1
s a+() s b+()

-------------------------------E 1
s a+() s b+()

------------------------------- X Y–[]= =

Y 1
s a+() s b+()

-------------------------------Y+
1

s a+() s b+()
-------------------------------X=

Y s a+() s b+()
s a+() s b+()

------------------------------- 1
s a+() s b+()

-------------------------------Y+
1

s a+() s b+()
-------------------------------X=

s a+() s b+()

s a+() s b+()Y Y+ X=

s a+() s b+() 1+[]Y X=

G s() Y
X
---- 1

s a+() s b+() 1+
--= =

1
s a+() s b+() 1+

---X Y

Y X⁄

Y
X
---- G

1 GH±
------------------=

X

H

Y

R

E G+
+
−

Chapter 19 Engineering Applications

19−22 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

More complicated block diagrams can be reduced by methods described in Feedback and Control
Systems textbooks. For instance, the block diagram of Figure 19.38 below,

Figure 19.38. Feedback control system to be simplified to an open−loop system

can be replaced with the open−loop system of Figure 19.39.

Figure 19.39. Open-loop equivalent control system for the closed−loop system of Figure 19.38

We can prove that the systems of Figures 19.37 and 19.38 are equivalent with Simulink blocks.
The system of Figure 19.38 is represented by the model in Figure 19.40 and there is no need to
represent it as an open−loop equivalent. Instead, we can represent it as the subsystem shown in
Figure 19.41.

Figure 19.40. A complicated feedback control system

1
s 1+

3s 5+

s3 15+

4
s 2+

7
s2 3+

2s 1+

s2 3s 2+ +

12s

+ + +
+ +

+
−

+ −
X Y

G1 G2 G3

G4

H2

H1

0.5
s4 4+

G1G2G3 G4 G1G2G4H1– G2G4H1 G2G3G4H2+ + +
1 G1G2H1– G2H1 G2G3H2+ +

---X Y

Introduction to Simulink with Engineering Applications 19−23
Copyright © Orchard Publications

Models for Electrical Systems

Figure 19.41. The model of Figure 19.40 replaced by a Subsystem block

19.7 Models for Electrical Systems
In this section we will draw two models for mechanical systems. Subsection 19.7.1 presents an
electric circuit whose output voltage is determined by application of Thevenin’s theorem, and
Subsection 19.7.2 presents an electric circuit to be analyzed by application of the Superposition
Principle.

19.7.1 Model for an Electric Circuit in Phasor* Form

By application of Thevenin’s theorem, the electric circuit of Figure 19.42 can be simplified† to
that shown in Figure 19.43.

Figure 19.42. Electric circuit to be replaced by its Thevenin equivalent

Figure 19.43. The circuit of Figure 19.42 replaced by its Thevenin equivalent

* A phasor is a rotating vector. Phasors are used extensively in the analysis of AC electric circuits. For a thorough
discussion on phasors, please refer to Circuit Analysis I with MATLAB Applications, ISBN 0-9709511-2-4.

† For a step-by-step procedure, please see same reference.

170 0° V∠

85 Ω

50 Ω
100 Ω

j200 Ω

IX

j100– Ω

VTH = 110−j6.87 V

100 Ω

j10.6 Ω
X

Y

112 Ω

Chapter 19 Engineering Applications

19−24 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Next, we let , , , and . Application of the volt-
age division expression yields

(19.24)

Now, we use the model of Figure 19.44 to convert all quantities from the rectangular to the polar
form, perform the addition and multiplication operations, display the output voltage in both polar
and rectangular forms, and show the output voltage on a Scope block in Figure 19.45. The Sim-
ulink blocks used for the conversions are in the Math Operations library.

Figure 19.44. Model for the computation and display of the output voltage for the circuit of Figure 19.43

Figure 19.45. Waveform for the output voltage of model of Figure 19.44

VIN VTH= VOUT VXY= Z1 112 j10+= Z2 100=

VOUT
Z2

Z1 Z2+
------------------VIN=

Introduction to Simulink with Engineering Applications 19−25
Copyright © Orchard Publications

Models for Electrical Systems

19.7.2 Model for the Application of the Superposition Principle
We will create a model to illustrate the superposition principle by computing the phasor voltage
across capacitor in the circuit of Figure 19.46.

Figure 19.46. Electric circuit to illustrate the superposition principle

Let the phasor voltage across due to the current source acting alone be denoted as
, and that due to the current source as . Then, by the superposition principle,

With the current source acting alone, the circuit reduces to that shown in Figure 19.47.

Figure 19.47. Circuit of Figure 7.45 with the current source acting alone

By application of the current division expression, the current through is

The voltage across with the current source acting alone is

Next, with the current source acting alone, the circuit reduces to that shown in Figure
19.48.

C2

10 0° A∠5 0° A∠
4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 Ω C2
C1

LR2

R1
R3

C2 5 0° A∠

V 'C2 10 0° A∠ V ''C2

VC2 V 'C2 V ''C2+=

5 0° A∠

V 'C2

5 0° A∠
4 Ω

j– 6 Ω

R1

C1

R2

2 Ω

L

j3 Ω

8 Ω R3

j– 3 Ω
C2

5 0° A∠

I 'C2 C2

I 'C2
4 j6–

4 j6– 2 j3 8 j3–+ + +
---5 0°∠ 7.211 56.3°–∠

15.232 23.2°–∠
-------------------------------------5 0°∠ 2.367 33.1°–∠= = =

C2 5 0°∠

V 'C2 j3–() 2.367 33.1°–∠() 3 90°–∠() 2.367 33.1°–∠()= =

7.102 123.1°–∠ 3.878– j5.949–==

10 0° A∠

Chapter 19 Engineering Applications

19−26 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.48. Circuit with the current source acting alone

and by application of the current division expression, the current through is

The voltage across with the current source acting alone is

Addition of (7.13) with (7.14) yields

or

The models for the computation of and are shown in Figures 19.49 and 19.50 respec-
tively.

Figure 19.49. Model for the computation of

10 0° A∠
4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 Ω
C2

V ''C2C1

L

R3R1

R2

10 0° A∠

I ''C2 C2

I ''C2
4 j6– 2 j3+ +

4 j6– 2 j3 8 j3–+ + +
--- 10– 0°∠()=

6.708 26.6°–∠
15.232 23.2°–∠
-------------------------------------10 180°∠ 4.404 176.6°∠==

C2 10 0°∠

V ''C2 j3–() 4.404 176.6°∠() 3 90°–∠() 4.404 176.6°∠()= =

13.213 86.6∠ 0.784 j13.189+=()=

VC2 V 'C2 V ''C2+ 3.878– j5.949– 0.784 j13.189+ += =

VC2 3.094– j7.240+ 7.873 113.1°∠= =

V 'C2 V ''C2

V'C2

Introduction to Simulink with Engineering Applications 19−27
Copyright © Orchard Publications

Transformations

Figure 19.50. Model for the computation of

The final step is to add with . This addition is performed by the model of Figure 19.51
where the models of Figures 19.49 and 19.50 have been converted to Subsystems 1 and 2 respec-
tively.

Figure 19.51. Model for the addition of with

The model of Figure 19.51 can now be used with the circuit of Figure 19.46 for any values of the
impedances .

19.8 Transformations
The conversions from complex to magnitude−angle and magnitude−angle to complex used in the
previous section, can also be performed with the Cartesian to Polar and Polar to Cartesian blocks.
Examples are presented in the model of Figure 19.52 where transformations from Cartesian to
Spherical and Spherical to Cartesian are shown. The equations used in these transformations are
shown in the Block Parameters dialog box for each block.

V''C2

V 'C2 V ''C2

V'C2 V''C2

Z

Chapter 19 Engineering Applications

19−28 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

Figure 19.52. Transformation examples

Other transformation blocks include Fahrenheit to Celsius, Celsius to Fahrenheit, Degrees to
Radians, and Radians to Degrees.

19.9 Another S−Function Example
An S−Function example is presented in Subsection 11.18, Chapter 11, Page 11−44. In this sec-
tion, we will present another example.

For semiconductor diodes, the empirical equations describing the temperature coefficient
 in as a function of forward current in are

where, for this example,

We begin with the user−defined m−file below which we type in the Editor Window and we save it
as diode.m
function dx=diode(t,x,Ifv)
%
% Model for gold-doped and non-gold-doped diodes
%
Vf1 = x(1); % Gold-doped diode forward voltage, volts
Vf2 = x(2); % Non-gold-doped diode forward voltage, volts

dVF dT⁄ mV °C⁄ IF mA

dVF1

dT
------------ 0.6 10 Iff() 1.92–log= for gold doped diodes

dVF1

dT
------------ 0.33 10 Iff Ifv–() 1.66–log= for non g– old doped diodes

Iff final value of forward current=

Ifv variable value of forward current=

Introduction to Simulink with Engineering Applications 19−29
Copyright © Orchard Publications

Another S−Function Example

Iff = 100; % Iff = final value in of forward current in mA

dVf1 = 0.6*log10(Iff)-1.92;
dVf2 = 0.33*log10(Iff-Ifv)-1.66; % Ifv = variable value of forward current in mA

dx = [dVf1;dVf2];

To test this function for correctness, on MATLAB’s Command Window we type and execute the
command

[t,x,Ifw]=ode45(@diode, [0 10], [1;10],[], 50)

where the vector [0 10] specifies the start and the end of the simulation time, the vector [1;10]
specifies an initial value column vector, the null vector [] can be used for other options, and the
input value is set to 50.

Next, using the Editor Window we write the m−file below and we save it as diode_sfcn.m

function [sys,x0,str,ts]=...
 diode_sfcn(t,x,u,flag,Vf1init,Vf2init)

switch flag

 case 0 % Initialize

 str = [];
 ts = [0 0];

 s = simsizes;

 s.NumContStates = 2;
 s.NumDiscStates = 0;
 s.NumOutputs = 2;
 s.NumInputs = 1;
 s.DirFeedthrough = 0;
 s.NumSampleTimes = 1;

 sys =simsizes(s);

 x0 = [Vf1init,Vf2init];

 case 1 % Derivatives

 Ifw = u

 sys = diode(t,x,Ifw);

 case 3 % Output

 sys = x;

 case {2 4 9} % 2:discrete
 % 3:calcTimeHit
 % 9:termination
 sys = [];

 otherwise

Chapter 19 Engineering Applications

19−30 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

 error(['unhandled flag =',num2str(flag)]);

end

The syntax for the diode_sfcn.m file above is the same as that of Example 11.14, Chapter 11,
Page 11−44.

Next, we open a new model window, from the User−Defined Functions Library we drag an S−
Function block into it, we double−click this block, in the Function Block Parameters dialog box
we name it diode_sfcn, and we add and interconnect the other blocks shown in Figure 19.53.

Figure 19.53. Another example illustrating the construction of an S−Function block

The waveforms displayed by the Scope 1 and Scope 2 blocks are shown in Figures 19.54 and 19.55
respectively.

Figure 19.54. Waveform displayed by the Scope 1 block in the model of Figure 19.53

Introduction to Simulink with Engineering Applications 19−31
Copyright © Orchard Publications

Concluding Remarks

Figure 19.55. Waveform displayed by the Scope 2 block in the model of Figure 19.53

19.10 Concluding Remarks
This text, as its title indicates, is an introduction to Simulink. In Chapters 2 through 18 we have
described all blocks of all Simulink Libraries and provided examples to illustrate their application.
Chapter 1 and this chapter provided additional examples. This text is not a substitute for the Sim-
ulink User’s Manual which provides much more information on MATLAB and Simulink, and
should be treated as a supplement. Moreover, the demos provided with Simulink are real−world
examples and should be studied in thoroughly after reading this text. Undoubtedly, new MAT-
LAB and Simulink releases will include new functions and new blocks.

Chapter 19 Engineering Applications

19−32 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

19.11 Summary
• An analog−to−digital conversion (ADC) application with an Idealized ADC Quantizer block

was presented in Section 19.1.

• Examples of using Zero−Order Hold and First−Order Hold blocks as reconstructors for digital-
to-analog conversion were presented in Section 19.2.

• The four forms of digital filter realization forms were presented in Section 19.3.

• Models for binary counters were presented in Section 19.4.

• Three models for mechanical systems were presented in Section 19.5.

• A brief review of feedback control systems was provided in Section 19.6.

• Two models for AC electric circuit analysis were presented in Section 19.7.

• Four transformations blocks were introduced in Section 19.8.

• An S−Function example was presented in Section 11.18, Chapter 11. Another example was
given in Section 19.9, this chapter.

Introduction to Simulink with Engineering Applications A−1
Copyright © Orchard Publications

Appendix A
Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions,
procedures for naming and saving the user generated files, comment lines, access to MAT-
LAB’s Editor / Debugger, finding the roots of a polynomial, and making plots. Several exam-

ples are provided with detailed explanations.

A.1 MATLAB® and Simulink®
MATLAB and Simulink are products of The MathWorks,™ Inc. These are two outstanding soft-
ware packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and
environmental applications. MATLAB enables us to solve many advanced numerical problems
rapidly and efficiently.

A.2 Command Window
To distinguish the screen displays from the user commands, important terms, and MATLAB
functions, we will use the following conventions:

Click: Click the left button of the mouse
Courier Font: Screen displays
Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>*

Helvetica Bold: MATLAB functions
Normal Font Bold Italic: Important terms and facts, notes and file names

When we first start MATLAB, we see various help topics and other information. Initially, we are
interested in the command screen which can be selected from the Window drop menu. When the
command screen, we see the prompt >> or EDU>>. This prompt is displayed also after execution
of a command; MATLAB now waits for a new command from the user. It is highly recommended
that we use the Editor/Debugger to write our program, save it, and return to the command screen
to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M−File. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. Impor-

* EDU>> is the MATLAB prompt in the Student Version

T

Appendix A Introduction to MATLAB®

A−2 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

tant! MATLAB is case sensitive, that is, it distinguishes between upper− and lower−case let-
ters. Thus, t and T are two different letters in MATLAB language. The files that we create are
saved with the file name we use and the extension .m; for example, myfile01.m. It is a good
practice to save the script in a file name that is descriptive of our script content. For instance,
if the script performs some matrix operations, we ought to name and save that file as
matrices01.m or any other similar name. We should also use a floppy disk or an external drive
to backup our files.

2. Once the script is written and saved as an m−file, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the >> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information
on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example,
to get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide con-
tains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu.
We can do this periodically to become familiar with them. Whenever we want to return to the
command window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the command clear. This
command erases everything; it is like exiting MATLAB and starting it again. The command clc
clears the screen but MATLAB still remembers all values, variables and equations that we have
already used. In other words, if we want to clear all previously entered commands, leaving only
the >> prompt on the upper left of the screen, we use the clc command.

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance,

conv(p,q) % performs multiplication of polynomials p and q

% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.

Roots of Polynomials

Introduction to Simulink with Engineering Applications A−3
Copyright © Orchard Publications

One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either , or to denote the imaginary part of a complex number, such as
3-4i or 3-4j. For example, the statement

z=3−4j

displays

z = 3.0000−4.0000i

In the above example, a multiplication (*) sign between 4 and was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function, or
variable such as , we must use the multiplication sign, that is, we must type cos(x)*j or
j*cos(x) for the imaginary part of the complex number.

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . These
are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1
Find the roots of the polynomial

Solution:
The roots are found with the following two statements where we have denoted the polynomial as
p1, and the roots as roots_ p1.

p1=[1 −10 35 −50 24] % Specify and display the coefficients of p1(x)

p1 =
 1 -10 35 -50 24

roots_ p1=roots(p1) % Find the roots of p1(x)

roots_p1 =
 4.0000
 3.0000
 2.0000
 1.0000

i j

j

x()cos

an an 1– … a2 a1 a0[]

p1 x() x4 10x3– 35x2 50x– 24+ +=

Appendix A Introduction to MATLAB®

A−4 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2
Find the roots of the polynomial

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with
the statements below, where we have defined the polynomial as p2, and the roots of this polyno-
mial as roots_ p2. The result indicates that this polynomial has three real roots, and two complex
roots. Of course, complex roots always occur in complex conjugate* pairs.

p2=[1 −7 0 16 25 52]

p2 =
 1 -7 0 16 25 52

roots_ p2=roots(p2)

roots_p2 =
 6.5014
 2.7428
 -1.5711
 -0.3366 + 1.3202i
 -0.3366 - 1.3202i

A.4 Polynomial Construction from Known Roots
We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) func-
tion where r is a row vector containing the roots.

Example A.3

It is known that the roots of a polynomial are . Compute the coefficients of this
polynomial.

* By definition, the conjugate of a complex number is

p2 x() x5 7x4– 16x2 25x+ + 52+=

A a jb+= A∗ a jb–=

1 2 3 and 4, , ,

Polynomial Construction from Known Roots

Introduction to Simulink with Engineering Applications A−5
Copyright © Orchard Publications

Solution:

We first define a row vector, say , with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

r3=[1 2 3 4] % Specify the roots of the polynomial

r3 =
 1 2 3 4

poly_r3=poly(r3) % Find the polynomial coefficients

poly_r3 =
 1 -10 35 -50 24

We observe that these are the coefficients of the polynomial of Example A.1.

Example A.4

It is known that the roots of a polynomial are . Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

r4=[−1 −2 −3 4+5j 4−5j]

r4 =
 Columns 1 through 4
 -1.0000 -2.0000 -3.0000 -4.0000+ 5.0000i
 Column 5
 -4.0000- 5.0000i

poly_r4=poly(r4)

poly_r4 =
 1 14 100 340 499 246

Therefore, the polynomial is

r3

p1 x()

1 2 3 4 j5 and 4, j5–+,–,–,–

r4

p4 x() x
5

14x
4

100x
3

340x
2

499x 246+ + + + +=

Appendix A Introduction to MATLAB®

A−6 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial at some specified value of the indepen-
dent variable .

Example A.5
Evaluate the polynomial

(A.1)

at .

Solution:
p5=[1 −3 0 5 −4 3 2]; % These are the coefficients of the given polynomial

% The semicolon (;) after the right bracket suppresses the
% display of the row vector that contains the coefficients of p5.

%
val_minus3=polyval(p5, −3) % Evaluate p5 at x=−3; no semicolon is used here

% because we want the answer to be displayed

val_minus3 =
 1280

Other MATLAB functions used with polynomials are the following:

conv(a,b) − multiplies two polynomials a and b

[q,r]=deconv(c,d) −divides polynomial c by polynomial d and displays the quotient q and
remainder r.

polyder(p) − produces the coefficients of the derivative of a polynomial p.

Example A.6
Let

and

Compute the product using the conv(a,b) function.

p x()
x

p5 x() x6 3x5
– 5x3 4x2

– 3x 2+ + +=
x 3–=

p1 x5 3x4
– 5x2 7x 9+ + +=

p2 2x6 8x4– 4x2 10x 12+ + +=

p1 p2⋅

Evaluation of a Polynomial at Specified Values

Introduction to Simulink with Engineering Applications A−7
Copyright © Orchard Publications

Solution:
p1=[1 −3 0 5 7 9]; % The coefficients of p1
p2=[2 0 −8 0 4 10 12]; % The coefficients of p2
p1p2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2

p1p2 =
2 -6 -8 34 18 -24 -74 -88 78 166 174 108

Therefore,

Example A.7
Let

and

Compute the quotient using the [q,r]=deconv(c,d) function.

Solution:
% It is permissible to write two or more statements in one line separated by semicolons
p3=[1 0 −3 0 5 7 9]; p4=[2 −8 0 0 4 10 12]; [q,r]=deconv(p3,p4)

q =
 0.5000
r =
 0 4 -3 0 3 2 3

Therefore,

Example A.8
Let

Compute the derivative using the polyder(p) function.

p1 p2⋅ 2x11 6x10 8x9
–– 34x8 18x7 24x6

–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5– 5x3 7x 9+ + +=

p4 2x6 8x5
– 4x2 10x 12+ + +=

p3 p4⁄

q 0.5= r 4x5 3x4
– 3x2 2x 3+ + +=

p5 2x6 8x4
– 4x2 10x 12+ + +=

d
dx
------p5

Appendix A Introduction to MATLAB®

A−8 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Solution:
p5=[2 0 −8 0 4 10 12]; % The coefficients of p5
der_p5=polyder(p5) % Compute the coefficients of the derivative of p5

der_p5 =
 12 0 -32 0 8 10

Therefore,

A.6 Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if
we separate them by commas or semicolons. Commas will display the results whereas semicolons
will suppress the display.

Example A.9
Let

Express the numerator and denominator in factored form, using the roots(p) function.

Solution:
num=[1 −3 0 5 7 9]; den=[1 0 −4 0 2 5 6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =
 2.4186 + 1.0712i 2.4186 - 1.0712i -1.1633
 -0.3370 + 0.9961i -0.3370 - 0.9961i

d
dx
------p5 12x5 32x3

– 4x2 8x 10+ + +=

R x() Num x()
Den x()

bnxn bn 1– xn 1– bn 2– xn 2– … b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2– … a1x a0+ + + + +
--= =

R x()
pnum
pden
------------ x5 3x4

– 5x2 7x 9+ + +

x6 4x4
– 2x2 5x 6+ + +

---= =

Rational Polynomials

Introduction to Simulink with Engineering Applications A−9
Copyright © Orchard Publications

roots_den =
 1.6760 + 0.4922i 1.6760 - 0.4922i -1.9304
 -0.2108 + 0.9870i -0.2108 - 0.9870i -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that, in a quadratic equation of the form
whose roots are and , the negative sum of the roots is equal to the coefficient of the
term, that is, , while the product of the roots is equal to the constant term , that
is, . Accordingly, we form the coefficient by addition of the complex conjugate roots
and this is done by inspection; then we multiply the complex conjugate roots to obtain the con-
stant term using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 −1.0712i)

ans = 6.9971

(−0.3370+ 0.9961i)*(−0.3370−0.9961i)

ans = 1.1058

(1.6760+ 0.4922i)*(1.6760−0.4922i)

ans = 3.0512

(−0.2108+ 0.9870i)*(−0.2108−0.9870i)

ans = 1.0186

Thus,

pnum x 2.4186– j1.0712–() x 2.4186– j1.0712+() x 1.1633+()=

x 0.3370 j0.9961–+() x 0.3370 j0.9961+ +()

pden x 1.6760– j0.4922–() x 1.6760– j0.4922+() x 1.9304+()=

x 0.2108 j– 0.9870+() x 0.2108 j0.9870+ +() x 1.0000+()

x2 bx c+ + 0=

x1 x2 b x

x1 x2+()– b= c

x1 x2⋅ c= b

c

R x()
pnum
pden
------------ x2 4.8372x– 6.9971+() x2 0.6740x 1.1058+ +() x 1.1633+()

x2 3.3520x– 3.0512+() x2 0.4216x 1.0186+ +() x 1.0000+() x 1.9304+()
--= =

Appendix A Introduction to MATLAB®

A−10 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

We can check this result of Example A.9 above with MATLAB’s Symbolic Math Toolbox which is
a collection of tools (functions) used in solving symbolic expressions. They are discussed in detail
in MATLAB’s Users Manual. For the present, our interest is in using the collect(s) function that
is used to multiply two or more symbolic expressions to obtain the result in polynomial form. We
must remember that the conv(p,q) function is used with numeric expressions only, that is, poly-
nomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following script:

syms x % Define a symbolic variable and use collect(s) to express numerator in polynomial form
collect((x^2−4.8372*x+6.9971)*(x^2+0.6740*x+1.1058)*(x+1.1633))

ans =
x^5-29999/10000*x^4-1323/3125000*x^3+7813277909/
1562500000*x^2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression
in polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots
Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x, where x is the horizontal axis (abscissa) and y is the ver-
tical axis (ordinate).

Example A.10
Consider the electric circuit of Figure A.1, where the radian frequency ω (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant.

Figure A.1. Electric circuit for Example A.10

A

V L

C

R2

R1

Using MATLAB to Make Plots

Introduction to Simulink with Engineering Applications A−11
Copyright © Orchard Publications

The ammeter readings were then recorded for each frequency. The magnitude of the impedance
|Z| was computed as and the data were tabulated on Table A.1.

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type (omega) in the MATLAB Command prompt, so we will use the English letter
w instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers that we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];
%
z=[39.339 52.789 71.104 97.665 140.437 222.182 436.056....
1014.938 469.830 266.032 187.052 145.751 120.353 103.111....
90.603 81.088 73.588 67.513 62.481 58.240 54.611 51.468....
48.717 46.286 44.122 42.182 40.432 38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press

TABLE A.1 Table for Example A.10

ω (rads/s) |Z| Ohms ω (rads/s) |Z| Ohms

300 39.339 1700 90.603

400 52.589 1800 81.088

500 71.184 1900 73.588

600 97.665 2000 67.513

700 140.437 2100 62.481

800 222.182 2200 58.240

900 436.056 2300 54.611

1000 1014.938 2400 51.428

1100 469.83 2500 48.717

1200 266.032 2600 46.286

1300 187.052 2700 44.122

1400 145.751 2800 42.182

1500 120.353 2900 40.432

1600 103.111 3000 38.845

Z V A⁄=

ω

ω

Appendix A Introduction to MATLAB®

A−12 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

<enter>. To plot (y−axis) versus (x−axis), we use the plot(x,y) command. For this example,
we use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s
graph screen and MATLAB denotes this plot as Figure 1. This plot is shown in Figure A.2.

Figure A.2. Plot of impedance versus frequency for Example A.10

This plot is referred to as the magnitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull−down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull−down
menu, and we choose Figure 1.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the x− and y−axis respectively.

The magnitude frequency response is usually represented with the x−axis in a logarithmic scale.
We can use the semilogx(x,y) command which is similar to the plot(x,y) command, except that
the x−axis is represented as a log scale, and the y−axis as a linear scale. Likewise, the semil-
ogy(x,y) command is similar to the plot(x,y) command, except that the y−axis is represented as a

* A default is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.

z w

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

z ω

Using MATLAB to Make Plots

Introduction to Simulink with Engineering Applications A−13
Copyright © Orchard Publications

log scale, and the x−axis as a linear scale. The loglog(x,y) command uses logarithmic scales for
both axes.

Throughout this text it will be understood that log is the common (base 10) logarithm, and ln is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm
to the base 2 as log2(x).

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid; % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, the plot is as shown in Figure A.3.

If the y−axis represents power, voltage or current, the x−axis of the frequency response is more
often shown in a logarithmic scale, and the y−axis in dB (decibels).

Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage in a dB scale on the y−axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’)* switches to the current Figure Window, and displays a cross−hair
that can be moved around with the mouse. For instance, we can use the command gtext(‘Imped-
ance |Z| versus Frequency’), and this will place a cross−hair in the Figure window. Then, using

* With the latest MATLAB Versions 6 and 7 (Student Editions 13 and 14), we can add text, lines and arrows directly into
the graph using the tools provided on the Figure Window. For advanced MATLAB graphics, please refer to The Math-
Works Using MATLAB Graphics documentation.

10
2

10
3

10
4

0

200

400

600

800

1000

1200
Magnitude of Impedance vs. Radian Frequency

w in rads/sec

|Z
| i

n
O

hm
s

v

Appendix A Introduction to MATLAB®

A−14 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

the mouse, we can move the cross−hair to the position where we want our label to begin, and we
press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some
specific location specified by x and y, and string is the label which we want to place at that loca-
tion. We will illustrate its use with the following example which plots a 3−phase sinusoidal wave-
form.

The first line of the script below has the form

linspace(first_value, last_value, number_of_values)

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The script for the 3−phase plot is as follows:

x=linspace(0, 2*pi, 60); % pi is a built−in function in MATLAB;
% we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3);
plot(x,y,x,u,x,v); % The x−axis must be specified for each function
grid on, box on, % turn grid and axes box on
text(0.75, 0.65, 'sin(x)'); text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure A.4.

Figure A.4. Three−phase waveforms

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

sin(x) sin(x+2*pi/3) sin(x+4*pi/3)

Using MATLAB to Make Plots

Introduction to Simulink with Engineering Applications A−15
Copyright © Orchard Publications

In our previous examples, we did not specify line styles, markers, and colors for our plots. How-
ever, MATLAB allows us to specify various line types, plot symbols, and colors. These, or a com-
bination of these, can be added with the plot(x,y,s) command, where s is a character string con-
taining one or more characters shown on the three columns of Table A.2. MATLAB has no
default color; it starts with blue and cycles through the first seven colors listed in Table A.2 for
each additional line in the plot. Also, there is no default marker; no markers are drawn unless
they are selected. The default line is the solid line. But with the latest MATLAB versions, we can
select the line color, line width, and other options directly from the Figure Window.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs−'). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are two−dimensional, that is, they are drawn on two axes.
MATLAB has also a three−dimensional (three−axes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3−space through the points whose coordinates are the
elements of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two−dimensional plots.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style

b blue . point − solid line

g green o circle : dotted line

r red x x−mark −. dash−dot line

c cyan + plus −− dashed line

m magenta * star

y yellow s square

k black d diamond

w white ∨ triangle down

∧ triangle up

< triangle left

> triangle right

p pentagram

h hexagram

Appendix A Introduction to MATLAB®

A−16 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Example A.11
Plot the function

(A.3)
Solution:
We arbitrarily choose the interval (length) shown on the script below.

x= −10: 0.5: 10; % Length of vector x
y= x; % Length of vector y must be same as x

z= −2.*x.^3+x+3.*y.^2−1; % Vector z is function of both x and y*

plot3(x,y,z); grid

The three−dimensional plot is shown in Figure A.5.

Figure A.5. Three dimensional plot for Example A.11

In a two−dimensional plot, we can set the limits of the x− and y−axes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a three−dimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The three−dimensional text(x,y,z,’string’) command will
place string beginning at the co−ordinate (x,y,z) on the plot.

For three−dimensional plots, grid on and box off are the default states.

We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication, division,
and exponential operators are preceded by a dot. These important operations will be explained in Section A.9.

z 2x3– x 3y2 1–+ +=

-10
-5

0
5

10

-10
-5

0
5

10
-2000

-1000

0

1000

2000

3000

Using MATLAB to Make Plots

Introduction to Simulink with Engineering Applications A−17
Copyright © Orchard Publications

 and where . In this case, the vertices of the mesh
lines are the triples . We observe that x corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say , we must first generate the
X and Y matrices that consist of repeated rows and columns over the range of the variables x and
y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the
matrix X whose rows are copies of the vector x, and the matrix Y whose columns are copies of the
vector y.

Example A.12

The volume of a right circular cone of radius and height is given by

(A.4)

Plot the volume of the cone as and vary on the intervals and meters.

Solution:
The volume of the cone is a function of both the radius r and the height h, that is,

The three−dimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, dot division, and dot expo-
nentiation. This will be explained in Section A.9.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h;...
V=(pi .* R .^ 2 .* H) ./ 3; mesh(R, H, V);...
xlabel('x−axis, radius r (meters)'); ylabel('y−axis, altitude h (meters)');...
zlabel('z−axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three−dimensional plot of Figure A.6 shows how the volume of the cone increases as the
radius and height are increased.

The plots of Figure A.5 and A.6 are rudimentary; MATLAB can generate very sophisticated
three−dimensional plots. The MATLAB User’s Manual and the Using MATLAB Graphics Man-
ual contain numerous examples.

length x() n= length y() m= m n,[] size Z()=

x j() y i() Z i j,(),,{ }

z f x y,()=

V r h

V 1
3
---πr2h=

r h 0 r 4≤ ≤ 0 h 6≤ ≤

V f r h,()=

Appendix A Introduction to MATLAB®

A−18 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Figure A.6. Volume of a right circular cone.

A.8 Subplots
MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m × n matrix of plotting areas
and chooses the pth area to be active. No spaces or commas are required between the three inte-
gers m, n and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

Figure A.7. Possible subplot arrangements in MATLAB

A.9 Multiplication, Division, and Exponentiation
MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the element−by−element multiplication,
division, and exponentiation. They are explained in the following paragraphs.

0
1

2
3

4

0

2

4

6
0

50

100

150

x-axis, radius r (meters)

Volume of Right Circular Cone

y-axis, altitude h (meters)

z-
ax

is
,

vo
lu

m
e

(c
ub

ic
 m

et
er

s)

 111
Full Screen Default

 211
 212

 221 222
 223 224

 121 122

 221 222
 212

 211
 223 224

 221
 223

 122 121
 222
224

Multiplication, Division, and Exponentiation

Introduction to Simulink with Engineering Applications A−19
Copyright © Orchard Publications

In Section A.2, the arrays , such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character (′) to transpose a vector. Thus, a column vector can be written either as

b=[−1; 3; 6; 11]

or as

b=[−1 3 6 11]'

As shown below, MATLAB produces the same display with either format.

b=[−1; 3; 6; 11]

b =
 -1
 3
 6
 11

b=[−1 3 6 11]' % Observe the single quotation character (‘)

b =
 -1
 3
 6
 11

We will now define Matrix Multiplication and Element−by−Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and

be two vectors. We observe that is defined as a row vector whereas is defined as a col-
umn vector, as indicated by the transpose operator (′). Here, multiplication of the row vector

 by the column vector , is performed with the matrix multiplication operator (*). Then,

(A.5)

a b c …[]

A a1 a2 a3 … an[]=

B b1 b2 b3 … bn[]'=

A B

A B

A*B a1b1 a2b2 a3b3 … anbn+ + + +[] gle valuesin= =

Appendix A Introduction to MATLAB®

A−20 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

For example, if

and

the matrix multiplication produces the single value 68, that is,

and this is verified with the MATLAB script

A=[1 2 3 4 5]; B=[−2 6 −3 8 7]'; A*B % Observe transpose operator (‘) in B

ans =

 68

Now, let us suppose that both and are row vectors, and we attempt to perform a row−by−
row multiplication with the following MATLAB statements.

A=[1 2 3 4 5]; B=[−2 6 −3 8 7]; A*B % No transpose operator (‘) here

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects
vector to be a column vector, not a row vector. It recognizes that is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator
(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. Element−by−Element Multiplication (multiplication of a row vector by another row vector)

Let

and

be two row vectors. Here, multiplication of the row vector by the row vector is per-
formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

(A.6)

A 1 2 3 4 5[]=

B 2– 6 3– 8 7[]'=

A*B

A∗B 1 2–() 2 6 3 3–() 4 8 5 7×+×+×+×+× 68= =

A B

B B

C c1 c2 c3 … cn[]=

D d1 d2 d3 … dn[]=

C D

C.∗D c1d1 c2d2 c3d3 … cndn[]=

Multiplication, Division, and Exponentiation

Introduction to Simulink with Engineering Applications A−21
Copyright © Orchard Publications

This product is another row vector with the same number of elements, as the elements of
and .

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1 2 3 4 5]; % Vectors C and D must have
D=[−2 6 −3 8 7]; % same number of elements
C.*D % We observe that this is a dot multiplication

ans =
 -2 12 -9 32 35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.^) are used for element−
by−element division and exponentiation, as illustrated in Examples A.11 and A.12 above.

We must remember that no space is allowed between the dot (.) and the multiplication, divi-
sion, and exponentiation operators.

Note: A dot (.) is never required with the plus (+) and minus (−) operators.

Example A.13
Write the MATLAB script that produces a simple plot for the waveform defined as

(A.7)

in the seconds interval.

Solution:
The MATLAB script for this example is as follows:

t=0: 0.01: 5; % Define t−axis in 0.01 increments
y=3 .* exp(−4 .* t) .* cos(5 .* t)−2 .* exp(−3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);
plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example A.13')

The plot for this example is shown in Figure A.8.

C
D

C 1 2 3 4 5[]=

D 2– 6 3– 8 7[]=

C.∗D 1 2–()× 2 6× 3 3–()× 4 8 5 7×× 2– 12 9– 32 35= =

y f t() 3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-----------+= =

0 t 5≤ ≤

Appendix A Introduction to MATLAB®

A−22 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less
than , say as , MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero
when . To avoid division by zero, we use the special MATLAB function eps, which is a

number approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.
The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability
of displaying up to four windows of different plots.

Example A.14
Plot the functions

in the interval using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2

3

4

5

t

y=
f(

t)

Plot for Example A.13

1– 3 t 3≤ ≤–

t 1–=

2.2 10 16–×

y x2sin z, x2cos w, x2sin x2cos⋅ v, x2sin x2cos⁄= = = =

0 x 2π≤ ≤

Multiplication, Division, and Exponentiation

Introduction to Simulink with Engineering Applications A−23
Copyright © Orchard Publications

Solution:
The MATLAB script to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).^ 2); z=(cos(x).^ 2);
w=y.* z;
v=y./ (z+eps);% add eps to avoid division by zero
subplot(221);% upper left of four subplots
plot(x,y); axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z); axis([0 2*pi 0 1]);
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w); axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v); axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure A.9.

Figure A.9. Subplots for the functions of Example A.14

The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions that display the real and imaginary parts of the complex quan-
tity z = x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
tude) and phase angle of the complex quantity z = x + iy = r∠θ. We will also use the
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta

0 2 4 6
0

0.5

1
y=(sinx)2

0 2 4 6
0

0.5

1
z=(cosx)2

0 2 4 6
0

0.1

0.2

w=(sinx)2*(cosx)2

0 2 4 6
0

200

400
v=(sinx)2/(cosx)2

Appendix A Introduction to MATLAB®

A−24 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example A.15
Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance as a func-
tion of the radian frequency ω can be computed from the following expression:

(A.8)

a. Plot (the real part of the impedance Z) versus frequency ω.

b. Plot (the imaginary part of the impedance Z) versus frequency ω.

c. Plot the impedance Z versus frequency ω in polar coordinates.

Solution:

The MATLAB script below computes the real and imaginary parts of which, for simplicity,

are denoted as , and plots these as two separate graphs (parts a & b). It also produces a polar
plot (part c).

w=0: 1: 2000; % Define interval with one radian interval;...
z=(10+(10 .^ 4 −j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w −10.^5./ (w+eps))));...
%
% The first five statements (next two lines) compute and plot Re{z}
real_part=real(z); plot(w,real_part);...
xlabel('radian frequency w'); ylabel('Real part of Z'); grid

a

b

10 Ω

10 Ω

0.1 H

10 µF
Zab

Zab

Zab Z 10 104 j 106 ω⁄()–

10 j 0.1ω 105 ω⁄ –()+
--+= =

Re Z{ }

Im Z{ }

Zab

z

Multiplication, Division, and Exponentiation

Introduction to Simulink with Engineering Applications A−25
Copyright © Orchard Publications

Figure A.11. Plot for the real part of the impedance in Example A.15

% The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z); plot(w,imag_part);...
xlabel('radian frequency w'); ylabel('Imaginary part of Z'); grid

Figure A.12. Plot for the imaginary part of the impedance in Example A.15

% The last six statements (next five lines) below produce the polar plot of z
mag=abs(z); % Computes |Z|;...
rndz=round(abs(z)); % Rounds |Z| to read polar plot easier;...
theta=angle(z); % Computes the phase angle of impedance Z;...
polar(theta,rndz); % Angle is the first argument
ylabel('Polar Plot of Z'); grid

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

radian frequency w

R
ea

l p
ar

t
of

 Z

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-600

-400

-200

0

200

400

600

radian frequency w

Im
ag

in
ar

y
pa

rt
 o

f
Z

Appendix A Introduction to MATLAB®

A−26 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Figure A.13. Polar plot of the impedance in Example A.15

Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10 Script and Function Files
MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m−files since both require the .m extension.

A script file consists of two or more built−in functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an m−file with an editor such as the MAT-
LAB’s Editor/Debugger.

A function file is a user−defined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign (=), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x.^ 3 + cos(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions:

fzero(f,x) − attempts to find a zero of a function of one variable, where f is a string containing the
name of a real−valued function of a single real variable. MATLAB searches for a value near a
point where the function f changes sign, and returns that value, or returns NaN if the search fails.

 500

 1000

 1500

30

210

60

240

90

270

120

300

150

330

180 0

P
ol

ar
 P

lo
t

of
 Z

Script and Function Files

Introduction to Simulink with Engineering Applications A−27
Copyright © Orchard Publications

Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fplot(fcn,lims) − plots the function specified by the string fcn between the x−axis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y−axis limits.
The string fcn must be the name of an m−file function or a string with variable .

NaN (Not−a−Number) is not a function; it is MATLAB’s response to an undefined expression
such as , , or inability to produce a result as described on the next paragraph. We can
avoid division by zero using the eps number, which we mentioned earlier.

Example A.16
Find the zeros, the minimum, and the maximum values of the function

(A.9)

in the interval

Solution:
We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script.

x=−1.5: 0.01: 1.5;
y=1./ ((x−0.1).^ 2 + 0.01) −1./ ((x−1.2).^ 2 + 0.04) −10;
plot(x,y); grid

The plot is shown in Figure A.14.

Figure A.14. Plot for Example A.16 using the plot command

x

0 0⁄ ∞ ∞⁄

f x() 1
x 0.1–()2 0.01+

-- 1
x 1.2–()2 0.04+

--– 10–=

1.5 x 1.5≤ ≤–

-1.5 -1 -0.5 0 0.5 1 1.5
-40

-20

0

20

40

60

80

100

Appendix A Introduction to MATLAB®

A−28 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

The roots (zeros) of this function appear to be in the neighborhood of and . The
maximum occurs at approximately where, approximately, , and the minimum

occurs at approximately where, approximately, .

Next, we define and save f(x) as the funczero01.m function m−file with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot as follows:

fplot('funczero01', [−1.5 1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14
which was obtained with the plot(x,y) command as shown in Figure A.14.

Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of in Equation (A.9) more precisely.
The MATLAB script below will accomplish this.

x1= fzero('funczero01', −0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)

x 0.2–= x 0.3=

x 0.1= ymax 90=

x 1.2= ymin 34–=

f x()

-1.5 -1 -0.5 0 0.5 1 1.5
-40

-20

0

20

40

60

80

100

f x()

Script and Function Files

Introduction to Simulink with Engineering Applications A−29
Copyright © Orchard Publications

MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function or a maximum of since a maximum of

 is equal to a minimum of . This can be visualized by flipping the plot of a function
upside−down. This function is no longer used in MATLAB and thus we will compute the maxima
and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a function can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10;...
zmin=diff(ymin)

zmin =
-1/((x-1/10)^2+1/100)^2*(2*x-1/5)+1/((x-6/5)^2+1/25)^2*(2*x-12/5)

When the command

solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
 0.6585 + 0.3437i
ans =
 0.6585 - 0.3437i
ans =
 1.2012

The real value above is the value of at which the function has its minimum value as
we observe also in the plot of Figure A.15.

To find the value of y corresponding to this value of x, we substitute it into , that is,

x=1.2012; ymin=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

ymin = -34.1812

We can find the maximum value from whose plot is produced with the script

x=−1.5:0.01:1.5; ymax=−1./((x−0.1).^2+0.01)+1./((x−1.2).^2+0.04)+10; plot(x,ymax); grid

and the plot is shown in Figure A.16.

f x() f x()
f x() f x()– f x()

y f x()=

x

1.2012 x y

f x()

f x()–

Appendix A Introduction to MATLAB®

A−30 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Figure A.16. Plot of for Example A.16

Next we compute the first derivative of and we solve for to find the value where the max-
imum of occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=−(1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10); zmax=diff(ymax)

zmax =
 1/((x-1/10)^2+1/100)^2*(2*x-1/5)-1/((x-6/5)^2+1/25)^2*(2*x-12/5)

solve(zmax)

When the command

solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
 0.6585 + 0.3437i

ans =
 0.6585 - 0.3437i

ans =
 1.2012
ans =
 0.0999

From the values above we choose which is consistent with the plots of Figures A.15
and A.16. Accordingly, we execute the following script to obtain the value of .

-1.5 -1 -0.5 0 0.5 1 1.5
-100

-80

-60

-40

-20

0

20

40

f x()–

f x()– x
ymax

x 0.0999=

ymin

Display Formats

Introduction to Simulink with Engineering Applications A−31
Copyright © Orchard Publications

x=0.0999; % Using this value find the corresponding value of ymax
ymax=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

ymax = 89.2000

A.11 Display Formats
MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available MATLAB formats can
be displayed with the help format command as follows:

help format

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output display formats
as follows:

FORMAT Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed for positive, negative,

and zero elements.Imaginary parts are ignored.
FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short 33.3335 Four decimal digits (default)
format long 33.33333333333334 16 digits
format short e 3.3333e+01 Four decimal digits plus exponent
format short g 33.333 Better of format short or format short e
format bank 33.33 two decimal digits
format + only + or - or zero are printed

Appendix A Introduction to MATLAB®

A−32 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the
text is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is
used, the values will be displayed and printed in fixed decimal format, and if %e is used, the val-
ues will be displayed and printed in scientific notation format. With this command only the real
part of each parameter is processed.
This appendix is just an introduction to MATLAB.* This outstanding software package consists
of many applications known as Toolboxes. The MATLAB Student Version contains just a few of
these Toolboxes. Others can be bought directly from The MathWorks,™ Inc., as add−ons.

* For more MATLAB applications, please refer to Numerical Analysis Using MATLAB and Spreadsheets,
ISBN 0−9709511−1−6.

Introduction to Simulink with Engineering Applications B−1
Copyright © Orchard Publications

Appendix B

Difference Equations

his appendix is a treatment of linear difference equations with constant coefficients and it is
confined to first− and second−order difference equations and their solution. Higher−order
difference equations of this type and their solution is facilitated with the Z−transform.*

B.1 Recursive Method for Solving Difference Equations

In mathematics, a recursion is an expression, such as a polynomial, each term of which is deter-
mined by application of a formula to preceding terms. The solution of a difference equation is
often obtained by recursive methods. An example of a recursive method is Newton’s method† for
solving non−linear equations. While recursive methods yield a desired result, they do not provide
a closed−form solution. If a closed−form solution is desired, we can solve difference equations
using the Method of Undetermined Coefficients, and this method is similar to the classical
method of solving linear differential equations with constant coefficients. This method is
described in the next section.

B.2 Method of Undetermined Coefficients
A second−order difference equation has the form

(B.1)

where and are constants and the right side is some function of . This difference equation
expresses the output at time as the linear combination of two previous outputs
and . The right side of relation (B.1) is referred to as the forcing function. The general
(closed-form) solution of relation (B.1) is the same as that used for solving second−order differen-
tial equations. The three steps are as follows:

1. Obtain the natural response (complementary solution) in terms of two arbitrary real
constants and , where and are also real constants, that is,

(B.2)

* For an introduction and applications of the Z-transform please refer to Signals and Systems with MATLAB
Applications, ISBN 0-9709511-6-7.

† For a complete discussion of Newton’s Method, please refer to Numerical Analysis Using MATLAB and
Spreadsheets, ISBN 0-9709511-1-6.

T

y n() a1y n 1–() a2 n 2–()+ + f n()=

a1 a2 n
y n() n y n 1–()

y n 2–()

yC n()

k1 k2 a1 a2

yC n() k1a1
n k2a2

n+=

Appendix B Difference Equations

B−2 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

2.Obtain the forced response (particular solution) in terms of an arbitrary real constant
, that is,

(B.3)

where the right side of (B.3) is chosen with reference to Table B.1.*

3. Add the natural response (complementary solution) and the forced response (particular
solution) to obtain the total solution, that is,

(B.4)

4. Solve for and in (B.4) using the given initial conditions. It is important to remember
that the constants and must be evaluated from the total solution of (B.4), not from the
complementary solution .

It is best to illustrate the Method of Undetermined Coefficients via examples.

Example B.1

Find the total solution for the second−order difference equation

* For a complete discussion on the solution of ordinary differential equations with constant coefficients, please
refer to Numerical Analysis Using MATLAB and Spreadsheets, ISBN 0-9709511-1-6.

TABLE B.1 Forms of the particular solution for different forms of the forcing function
Form of forcing function Form of particular solutiona

a. As in the case with the solutions of ordinary differential equations with con-
stant coefficients, we must remember that if is the sum of several terms,
the most general form of the particular solution is the linear combina-
tion of these terms. Also, if a term in is a duplicate of a term in the com-

plementary solution , we must multiply by the lowest power of
that will eliminate the duplication.

Constant − a constant

 − a is a constant − is constant

 − a and b are constants Expression proportional to

yP n()

k3

yP n() k3a3
n=

f n()
yP n()

yP n()

yC n() yP n() n

k

ank k0 k1n k2n2 … kknk+ + + + ki

ab n± b n±

nω() or nω()asinacos k1 nω()cos k2 nω()sin+

yC n()

yP n()

y n() yC n() yP n()+ k1a1
n k2a2

n yP n()+ += =

k1 k2

k1 k2

yC n()

Introduction to Simulink with Engineering Applications B−3
Copyright © Orchard Publications

Method of Undetermined Coefficients

(B.5)

subject to the initial conditions and

Solution:

1. We assume that the complementary solution has the form

(B.6)

The homogeneous equation of (B.5) is

(B.7)

Substitution of into (B.7) yields

(B.8)

Division of (B.8) by yields

(B.9)

The roots of (B.9) are

(B.10)

and by substitution into (B.6) we get

(B.11)

2. Since the forcing function is , we assume that the particular solution is

(B.12)

and by substitution into (B.5),

Division of both sides by yields

y n() 5
6
---y n 1–() 1

6
---y n 2–()+– 5 n–= n 0≥

y 2–() 25= y 1–() 6=

yC n()

yC n() k1a1
n k2a2

n+=

y n() 5
6
---y n 1–() 1

6
---y n 2–()+– 0= n 0≥

y n() an=

an 5
6
---an 1––

1
6
---an 2–+ 0=

an 2–

a2 5
6
---a– 1

6
---+ 0=

a1
1
2
---= a2

1
3
---=

yC n() k1
1
2
---⎝ ⎠

⎛ ⎞
n

k2
1
3
---⎝ ⎠

⎛ ⎞
n

+ k12 n– k23 n–+= =

5 n–

yP n() k35 n–=

k35 n– k3
5
6
---⎝ ⎠

⎛ ⎞ 5 n 1–()–– k3
1
6
---⎝ ⎠

⎛ ⎞ 5 n 2–()–+ 5 n–=

5 n–

k3 1 5
6
---⎝ ⎠

⎛ ⎞ 5–
1
6
---⎝ ⎠

⎛ ⎞ 52+ 1=

Appendix B Difference Equations

B−4 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

or and thus

(B.13)

The total solution is the addition of (B.11) and (B.13), that is,

(B.14)

To evaluate the constants and we use the given initial conditions, i.e., s and
. For , (B.14) reduces to

from which

(B.15)

For , (B.14) reduces to

from which

(B.16)

Simultaneous solution of (B.15) and (B.16) yields

(B.17)

and by substitution into (B.14) we obtain the total solution as

(B.18)

To plot this difference equation for the interval , we use the following MATLAB
script:

n=0:1:10; yn=1.5.*2.^(−n)−(2./3).*3.^(−n)+5.^(−n); stem(n,yn); grid

The plot is shown in Figure B.1.

k3 1=

yP n() 5 n–=

y n() yC n() yP n()+ k12 n– k23 n– 5 n–+ += =

k1 k2 y 2–() 25=

y 1–() 6= n 2–=

y 2–() k122 k232 52+ + 25= =

4k1 9k2+ 0=

n 1–=

y 1–() k121 k231 51+ + 6= =

2k1 3k2+ 1=

k1
3
2
---= k2

2
3
---–=

y n() yC n() yP n()+
3
2
---⎝ ⎠

⎛ ⎞ 2 n– 2
3
---–⎝ ⎠

⎛ ⎞ 3 n– 5 n–+ += = n 0≥

0 n 10≤ ≤

Introduction to Simulink with Engineering Applications B−5
Copyright © Orchard Publications

Method of Undetermined Coefficients

Figure B.1. Plot for the difference equation of Example B.1

Example B.2

Find the total solution for the second−order difference equation

(B.19)

subject to the initial conditions and

Solution:

1. We assume that the complementary solution has the form

(B.20)

The homogeneous equation of (B.19) is

(B.21)

Substitution of into (B.21) yields

(B.22)

y n() 3
2
---y n 1–() 1

2
---y n 2–()+– 1 3 n–+= n 0≥

y 2–() 0= y 1–() 2=

yC n()

yC n() k1a1
n k2a2

n+=

y n() 3
2
---y n 1–() 1

2
---y n 2–()+– 0= n 0≥

y n() an=

an 3
2
---an 1––

1
2
---an 2–+ 0=

Appendix B Difference Equations

B−6 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Division of (B.22) by yields

(B.23)

The roots of (B.23) are

(B.24)

and by substitution into (B.20) we get

(B.25)

2. Since the forcing function is , in accordance with the first and third rows of Table B.1,
we would assume that the particular solution is

(B.26)

However, we observe that both relations (B.25) and (B.26) contain common terms, that is,
the constants and . To avoid the duplication, we choose the particular solution as

(B.27)

and by substitution of (B.27) into (B.19) we obtain

Equating like terms, we get

and after simplification,

By substitution into (B.27),

an 2–

a2 3
2
---a– 1

2
---+ 0=

a1
1
2
---= a2 1=

yC n() k1
1
2
---⎝ ⎠

⎛ ⎞
n

k2 1()n+ k12 n– k2+= =

1 3 n–+

yP n() k3 k43 n–+=

k2 k3

yP n() k3n k43 n–+=

k3n k43 n– 3
2
---⎝ ⎠

⎛ ⎞ k3 n 1–()–
3
2
---⎝ ⎠

⎛ ⎞ k43 n 1–()––
1
2
---k3 n 2–() 1

2
---⎝ ⎠

⎛ ⎞ k43 n 2–()–+ + + 1 3 n–+=

k3n k43 n– 3
2
---⎝ ⎠

⎛ ⎞ k3n–
3
2
---⎝ ⎠

⎛ ⎞ k3
9
2
---⎝ ⎠

⎛ ⎞ k43 n––
1
2
---k3n k3–

9
2
---⎝ ⎠

⎛ ⎞ k43 n–+ + + + 1 3 n–+=

k43 n– 3
2
---⎝ ⎠

⎛ ⎞ k3 k3–+ 1 3 n–+=

3
2
---⎝ ⎠

⎛ ⎞ k3 k3– 1=

k43 n– 3 n–=

k3 2= k4 1=

Introduction to Simulink with Engineering Applications B−7
Copyright © Orchard Publications

Method of Undetermined Coefficients

(B.28)

The total solution is the addition of (B.25) and (B.28), that is,

(B.29)

To evaluate the constants and we use the given initial conditions, i.e., s and
. For , (B.29) reduces to

from which

(B.30)
For , (B.29) reduces to

from which
(B.31)

Simultaneous solution of (B.30) and (B.31) yields

(B.32)

and by substitution into (B.29) we obtain the total solution as

(B.33)

To plot this difference equation for the interval , we use the following MATLAB
script:

n=0:1:10; yn=(−3).*2.^(−n)+7+2.*n+3.^(−n); stem(n,yn); grid

yP n() 2n 3 n–+=

y n() yC n() yP n()+ k12 n– k2 2n 3 n–+ + += =

k1 k2 y 2–() 0=

y 1–() 2= n 2–=

y 2–() k122 k2 4– 9+ + 0= =

4k1 k2+ 5–=

n 1–=

y 1–() k121 k2 2– 31+ + 2= =

2k1 k2+ 1=

k1 3–= k2 7=

y n() yC n() yP n()+ 3–()2 n– 7 2n 3 n–+ + += = n 0≥

0 n 10≤ ≤

Appendix B Difference Equations

B−8 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

Figure B.2. Plot for the difference equation of Example B.2

Example B.3

Find the total solution for the first-order difference equation

(B.34)

subject to the initial condition

Solution:

1. We assume that the complementary solution has the form

(B.35)

The homogeneous equation of (B.34) is

(B.36)

Substitution of into (B.35) yields

(B.37)

Division of (B.22) by yields

y n() 0.9y n 1–()– 0.5 0.9()n 1–+= n 0≥

y 1–() 5=

yC n()

yC n() k1an=

y n() 0.9y n 1–()– 0= n 0≥

y n() an=

an 0.9an 1–– 0=

an 1–

Introduction to Simulink with Engineering Applications B−9
Copyright © Orchard Publications

Method of Undetermined Coefficients

(B.38)

and by substitution into (B.35) we get

(B.39)

2. Since the forcing function is , in accordance with the first and third rows of Table
B.1, we would assume that the particular solution is

(B.40)

However, we observe that both relations (B.39) and (B.40) contain common terms, that is, the
constants and . To avoid the duplication, we choose the particular solution as

(B.41)

and by substitution of (B.41) into (B.34) we obtain

Equating like terms, we get

and after simplification,

By substitution into (B.41),

(B.42)

The total solution is the addition of (B.39) and (B.42), that is,

(B.43)

To evaluate the constant we use the given initial condition, i.e., . For ,

a 0.9– 0=

a 0.9=

yC n() k1 0.9()n=

0.5 0.9()n 1–+

yP n() k2 k3 0.9()n+=

k1 0.9()n k3 0.9()n

yP n() k2 k3n 0.9()n+=

k2 k3n 0.9()n 0.9k2– 0.9k3 n 1–() 0.9() n 1–()–+ 0.5 0.9()n 1–+=

0.1k2 k3n 0.9()n 0.9k3n 0.9() n 1–()– 0.9k3 0.9() n 1–()+ + 0.5 0.9()n 1–+=

0.1k2 k3n 0.9()n 0.9k3n 0.9()n0.9 1–– 0.9k3 0.9()n0.9 1–+ + 0.5 0.9()n 1–+=

0.1k2 k3n 0.9()n k3n 0.9()n– k3 0.9()n+ + 0.5 0.9()n 1–+ 0.5 0.9() 1– 0.9()
n

+= =

0.1k2 0.5=

k3 0.9()n 0.9() 1– 0.9()
n

=

k2 5= k3
10
9
------=

yP n() 5 10
9

------n 0.9()n+=

y n() yC n() yP n()+ k1 0.9() n 10
9

------n 0.9()n 5+ += =

k1 y 1–() 5= n 1–=

Appendix B Difference Equations

B−10 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

(B.43) reduces to

from which

(B.44)

and by substitution into (B.43) we obtain the total solution as

(B.45)

To plot this difference equation for the interval , we use the following MATLAB
script:

n=0:1:10; yn=(n+1).*(0.9).^(n-1)+5; stem(n,yn); grid

Figure B.3. Plot for the difference equation of Example B.3

y 1–() k1 0.9() 1– 10
9

------ 1–() 0.9() 1– 5+ + 5= =

10
9
------k1

100
81
---------– 0=

k1
10
9

------=

y n() 0.9() n 1– n 0.9() n 1– 5+ +=

y n() n 1+() 0.9() n 1– 5+= n 0≥

0 n 10≤ ≤

Introduction to Simulink with Engineering Applications B−11
Copyright © Orchard Publications

Method of Undetermined Coefficients

Example B.4

Find the total solution for the second−order difference equation

(B.46)

subject to the initial conditions and

Solution:

No initial conditions are given and thus we will express the solution in terms of the unknown con-
stants.

1. We assume that the complementary solution has the form

(B.47)

The homogeneous equation of (B.46) is

(B.48)

Substitution of into (B.48) yields

(B.49)

Division of (B.49) by yields

(B.50)

The roots of (B.50) are repeated roots, that is,

(B.51)

and as in the case of ordinary differential equations, we accept the complementary solution to
be of the form

(B.52)

2. Since the forcing function is , we assume that the particular solution is

(B.53)
and by substitution into (B.46),

Division of both sides by yields

y n() 1.8y n 1–() 0.81y n 2–()+– 2 n–= n 0≥

y 2–() 25= y 1–() 6=

yC n()

yC n() k1a1
n k2a2

n+=

y n() 1.8y n 1–() 0.81y n 2–()+– 0= n 0≥

y n() an=

an 1.8an 1–– 0.81an 2–+ 0=

an 2–

a2 1.8a– 0.81+ 0=

a1 a2 0.9= =

yC n() k1 0.9()n k2n 0.9()n+=

2 n–

yP n() k32 n–=

k32 n– k3 1.8()2 n 1–()–– k3 0.81()2 n 2–()–+ 2 n–=

2 n–

k3 1 1.8()2– 0.81()22+[] 1=

k3 1 3.6– 3.24+[] 1=

Appendix B Difference Equations

B−12 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

and thus

(B.54)

The total solution is the addition of (B.52) and (B.54), that is,

(B.55)

Example B.5

For the second−order difference equation

(B.56)

what would be the appropriate choice for the particular solution?
Solution:

This is the same difference equation as that of Example B.4 where the forcing function is

instead of where we found that the complementary solution is

(B.57)

Row 3 in Table B.1 indicates that a good choice for the particular solution would be . But
this is of the same form as the first term on the right side of (B.57). The next choice would be a
term of the form but this is of the same form as the second term on the right side of
(B.57). Therefore, the proper choice would be

(B.58)

Example B.6

Find the particular solution for the first-order difference equation

(B.59)

k3
1

0.64
---------- 25

16
------= =

yP n() 25
16
------⎝ ⎠

⎛ ⎞ 2
n–

=

y n() yC n() yP n()+ k1 0.9()n k2n 0.9()n 25
16
------⎝ ⎠

⎛ ⎞ 2
n–

+ += =

y n() 1.8y n 1–() 0.81y n 2–()+– 0.9()n= n 0≥

0.9()n

2 n–

yC n() k1 0.9()n k2n 0.9()n+=

k3 0.9()n

k3n 0.9()n

yP n() k3n2 0.9()
n

=

y n() 0.5y n 1–()–
nπ
2

------⎝ ⎠
⎛ ⎞sin= n 0≥

Introduction to Simulink with Engineering Applications B−13
Copyright © Orchard Publications

Method of Undetermined Coefficients

Solution:

From Row 4 in Table B.1 we see that for a sinusoidal forcing function, the particular solution has
the form

(B.60)

and by substitution of (B.60) into (B.59)

(B.61)

From trigonometry,

Then,

and by substitution into (B.61)

(B.62)

Equating like terms, we get
(B.63)

(B.64)

and simultaneous solution of (B.63) and (B.64) yields

Therefore, the particular solution of (B.59) is

yP n() k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos+=

k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k1

n 1–()π
2

--------------------sin 0.5k2
n 1–()π

2
--------------------cos––+

nπ
2

------⎝ ⎠
⎛ ⎞sin=

k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k1

nπ
2

------ π
2
---–sin 0.5k2

nπ
2

------ π
2
---–cos––+

nπ
2

------⎝ ⎠
⎛ ⎞sin=

θ π
2
---–⎝ ⎠

⎛ ⎞sin θcos–=

θ π
2
---–⎝ ⎠

⎛ ⎞cos θsin=

nπ
2

------ π
2
---–sin nπ

2
------⎝ ⎠

⎛ ⎞cos–=

nπ
2

------ π
2
---–cos nπ

2
------⎝ ⎠

⎛ ⎞sin=

k1
nπ
2

------⎝ ⎠
⎛ ⎞sin k2

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k1

nπ
2

------⎝ ⎠
⎛ ⎞cos 0.5k2

nπ
2

------⎝ ⎠
⎛ ⎞sin–+ +

nπ
2

------⎝ ⎠
⎛ ⎞sin=

k1 0.5k2– 1=

0.5k1 k2+ 0=

k1
4
5
---= k2

2
5
---–=

Appendix B Difference Equations

B−14 Introduction to Simulink with Engineering Applications
Copyright © Orchard Publications

(B.65)yP n() 4
5
--- nπ

2
------⎝ ⎠
⎛ ⎞sin 2

5
---–

nπ
2

------⎝ ⎠
⎛ ⎞cos=

Introduction to Simulink with Engineering Applications C−1
Copyright © Orchard Publications

Appendix C

Random Number Generation

his appendix is a short tutorial on Random Number Generation. An example is presented to
illustrate the sequence which most random generators use.

C.1 Random Numbers

Random numbers are used in many applications. Random number generation is the production of
an unpredictable sequence of numbers in which no number is any more likely to occur at a given
time or place in the sequence than any other. Truly random number generation is generally
viewed as impossible. The process used in computers would be more properly called pseudoran-
dom number generation.

C.2 An Example
A typical random number generator creates a sequence in accordance with the following recur-
rence:

(C.1)

where is used to indicate that the sum is divided by N and then is replaced by
the remainder of that division. The values of (seed), , , and must be specified. As an
example, let

then, in MATLAB notation

x0=1, P1=281, P2=123, N=75
x1=P1*x0+P2, y1=mod(x1,N)
x2=P1*y1+P2, y2=mod(x2,N)
.............
xn=P1*y(n-1)+P2, yn=mod(xn,N)

To find the sequence of numbers for the random number generator, we use the following MAT-
LAB script:

P1=281; P2=123; N=75; x=1:100; y=zeros(100,2);
y(:,1)=x'; y(:,2)=mod((P1.*x+P2),N)'; fprintf(' x y \n'); disp(' ------');
fprintf('%3.0f\t %3.0f\n',y')

T

xn 1+ P1xn P2+= mod N() n=0,1,2,… x0 seed=

mod N P1xn P2+

x0 P1 P2 N

x0 1= P1 281= P2 123= N 75=

Appendix C Random Number Generation

C−2 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

MATLAB outputs the following table:

 x y

 1 29
 2 10
 3 66
 4 47
 5 28
 6 9
 7 65
 8 46
 9 27
 10 8
 11 64
 12 45
 13 26
 14 7
 15 63
 16 44
 17 25
 18 6
 19 62
 20 43
 21 24
 22 5
 23 61
 24 42
 25 23
 26 4
 27 60
 28 41
 29 22
 30 3
 31 59
 32 40
 33 21
 34 2
 35 58
 36 39
 37 20
 38 1

Introduction to Simulink with Engineering Applications C−3
Copyright © Orchard Publications

An Example

 39 57
 40 38
 41 19
 42 0
 43 56
 44 37
 45 18
 46 74
 47 55
 48 36
 49 17
 50 73
 51 54
 52 35
 53 16
 54 72
 55 53
 56 34
 57 15
 58 71
 59 52
 60 33
 61 14
 62 70
 63 51
 64 32
 65 13
 66 69
 67 50
 68 31
 69 12
 70 68
 71 49
 72 30
 73 11
 74 67
 75 48
 76 29
 77 10
 78 66
 79 47
 80 28
 81 9

Appendix C Random Number Generation

C−4 Introduction to Simulink with Engineering Applications
 Copyright © Orchard Publications

 82 65
 83 46
 84 27
 85 8
 86 64
 87 45
 88 26
 89 7
 90 63
 91 44
 92 25
 93 6
 94 62
 95 43
 96 24
 97 5
 98 61
 99 42
100 23

We observe that for , , and for , also. This indicates that the
sequence repeats. For this reason, this generator is referred to as a pseudo-random generator. For
a true random number generator all numbers from 0 to 99 should be included in the sequence, of
course, in a random manner.

If we wanted to transform the above sequence in the interval 0 to 1, we would divide the original
sequence of numbers again by N.

x 1= y 39= x 76= y 39=

References and Suggestions for Further Study
A. The following publications by The MathWorks, are highly recommended for further study. They

are available from The MathWorks, 3 Apple Hill Drive, Natick, MA, 01760,
www.mathworks.com.

1. Getting Started with MATLAB

2. Using MATLAB

3. Using MATLAB Graphics

4. Using Simulink

5. Sim Power Systems

6. Fixed−Point Toolbox

7. Simulink Fixed−Point

8. Real−Time Workshop

9. Signal Processing Toolbox

10. Getting Started with Signal Processing Blockset

10. Signal Processing Blockset

11. Control System Toolbox

12. Stateflow

B. Other references indicated in footnotes throughout this text, are listed below.

1. Mathematics for Business, Science, and Technology, ISBN 0−9709511−0−8

2. Numerical Analysis Using MATLAB and Spreadsheets, ISBN 0−9709511−1−6

3. Circuit Analysis I with MATLAB Applications, ISBN 0−9709511−2−4

4. Circuit Analysis II with MATLAB Applications, ISBN 0−9709511−5−9

5. Signals and Systems with MATLAB Applications, ISBN 0−9709511−6−7

6. Electronic Devices and Amplifier Circuits with MATLAB Applications, ISBN 0−9709511−7−5

7. Digital Circuit Analysis and Design with an Introduction to CPLDs and FPGAs,
ISBN 0−9744239−6−3

Index
Symbols Cartesian to Polar transformation 19-27 Coulomb and Viscous Friction 4-14

Cartesian to Spherical Coulomb Friction 4-14
% (percent) symbol in MATLAB A-2 transformation 19-26 Counter Free-Running block 15-23
10^u in Math Function block 8-11 Cascade Form Realization 19-7 Counter Limited block 15-24

characteristic table 6-7
A Check Discrete Gradient block 9-13 D

Check Dynamic Gap block 9-10
Abs block 8-10 Check Dynamic Lower Bound block 9-7 data inputs 13-10
abs(z) MATLAB function A-23 Check Dynamic Range block 9-9 data points in MATLAB A-14
Accuracy defined 9-14 Check Dynamic Upper Bound block 9-8 Data Store Memory block 13-15
acos in Trigonometric Function block 8-16 Check Input Resolution block 9-14 Data Store Read block 13-14
acosh in Trigonometric Function block 8-16 Check Static Gap block 9-5 Data Store Write block 13-15
Add block 8-2 Check Static Lower Bound block 9-2 Data Type Conversion block 2-30
Additional Discrete library 17-1 Check Static Range block 9-4 Data Type Conversion Inherited block 12-5
Additional Math Check Static Upper Bound block 9-3 Data Type Duplicate block 12-2
 Increment / Decrement library 18-1 Chirp Signal block 15-14 Data Type Propagation block 12-4
Algebraic Constrain blocks 1-18, 8-18 clc MATLAB command A-2 Data Type Propagation
algebraic loop 2-22 clear MATLAB command A-2 Examples block 12-12
Analog-to-Digital Conversion 19-1 Clock block 15-25 Data Type Scaling Strip block 12-5
angle(z) MATLAB function A-23 closed-form B-1 data types 2-29
asin in Trigonometric Function block 8-16 closed-loop control systems 19-20 Data Viewers 14-1
asinh in Trigonometric Function block 8-16 Code Reuse Subsystem block 11-9 Data Viewers Sub-Library 14-5
Assertion block 9-12 column vector in MATLAB A-19 Dead Zone block 4-4
Assignment block 8-20 Combinatorial Logic block 6-4 Dead Zone Dynamic block 4-5
atan in Trigonometric Function block 8-16 command screen in MATLAB A-1 deadband 4-10
atan2 in Trigonometric Function block 8-16 Command Window in MATLAB A-1 decibels A-14
atanh in Trigonometric Function block 8-16 commas in MATLAB A-8 decimal-to-BCD encoder 11-9
Atomic Subsystem block 11-4 comment line in MATLAB A-2 deconv MATLAB command A-6
autoscale icon 1-12 Commonly Used Blocks Library 2-1 Decrement Real World block 18-3
axis in MATLAB A-16 Compare To Constant block 6-10 Decrement Stored Integer block 18-5

Compare To Zero block 6-9 Decrement Time To Zero block 18-7
B complementary solution B-1 Decrement To Zero block 18-6

complex conjugate in MATLAB A-4 default values in MATLAB A-12
Backlash block 4-10 complex numbers in MATLAB A-3 default color in MATLAB A-15
Band-Limited White Noise Block 15-17 Complex to Magnitude-Angle block 8-24 default line in MATLAB A-15
Bias block 8-4 Complex to Real-Imag block 8-25 default marker in MATLAB A-16
bilinear transformation 5-6, 15-18 Complex Vector Conversions Group demo in MATLAB A-2
bilinear(Z,P,K,Fs) MATLAB function 15-20 Sub-Library 8-24 Demux block 2-12
Bit Clear block 6-13 Configurable Subsystem block 11-19 Derivative block 3-2
Bit Operations Group Sub-Library 6-11 Configuration Parameters 1-12, 2-9 Derivative for linearization 3-5
Bit Set block 6-12 conj (complex conjugate) in Detect Change block 6-21
Bitwise Operator block 6-14 Math Function block 8-11 Detect Decrease block 6-20
Block reduction optimization 14-10 Constant block 2-6 Detect Fall Negative block 6-24
Block Support Table block 10-9 Contents Pane 1-7 Detect Fall Nonpositive 6-25
box in MATLAB A-12 Contiguous copy 12-7 Detect Fall Nonpositive block 6-25
Breakpoint data parameter 7-7 Continuous Blocks Library 3-1 Detect Increase block 16-9
Bus Assignment block 13-2 continuous mode Detect Rise Nonnegative block 6-23
Bus copy 12-7 Sine Wave Function block 8-17 Detect Rise Positive block 6-22
Bus Creator block 2-8 control element 19-20 Difference block 5-9
Bus Editor 2-10 control input 13-10 difference equations B-1
Bus Selector block 2-8 control signal 11-2 Digital Clock block 15-26

controller 19-20 Digital Filter Realization Forms 19-4
C conv MATLAB command A-6 digital multiplexer 11-4

correlation time 15-18 Direct Form I Realization 19-4
C MEX-file S-function 16-12 cosh in Trigonometric Function block 8-16 Direct Form-II Realization 19-5
c2d MATLAB function 5-12 Cosine block 7-16 Direct Lookup Table (n-D) block 7-9
callback methods 16-9 cosine in Trigonometric Discontinuities Blocks library 4-1
canonical form 19-21 Function block 8-16 Discrete Derivative block 5-10

IN-1

Discrete Filter block 5-5 forcing function B-1 L
Discrete Blocks Library 5-1 format MATLAB command A-31
discrete mode in fplot in MATLAB command A-27 lag compensator 5-15
 Sine Wave Function block 8-17 frequency response plot A-12 lead compensator 5-15
Discrete State-Space block 15-1 From block 13-11 lead-lag compensator 5-15
discrete time system From File block 15-2 Level-1 M-file S-Functions 11-41, 16-8
 transfer function 2-25 From Workspace block 15-2 Level-2 M-file S-Function block 16-7
Discrete Transfer Fcn block 5-4 Function Block Parameters 1-10 Level-2 M-file S-Functions 11-41, 16-8
Discrete Zero-Pole block 5-8 function files in MATLAB A-28 limod MATLAB function 10-2
Discrete-Time Integrator block 2-26 Function-Call Generator block 3 lims= in MATLAB A-27
Display block 1-37, 14-13 function-call initiator 34 linear factor - expressed as A-9
display formats in MATLAB A-31 Function-Call Subsystem block 34 linearization 3-3
Divide block 8-7 fundamental frequency 7-16 Linearization of Running
dlimod MATLAB function 10-2 fzero MATLAB command A-26 Models Sub-Library 10-2
Doc Text block 10-8 Link Library Display 11-23
DocBlock 10-8 G linmod MATLAB command 3-3
Documentation Sub-Library 10-6 linspace in MATLAB A-14
dot multiplication operator Gain block 2-16 ln (natural log) A-14
 in MATLAB A-20 Goto block 13-13 log in Math Function block 8-11
Dot Product block 8-8 Goto Tag Visibility block 13-12 log in MATLAB A-14

grid MATLAB command A-12 log(x) MATLAB function A-13
E Ground block 15-11 log10 in Math Function block 8-11

Ground block 2-4 log10(x) MATLAB function A-13
Edge Detection Group Sub-Library 6-18 gtext MATLAB command A-13 log2(x) MATLAB functionA-13
Editor Window in MATLAB A-1 Logic and Bit Operations Library 6-1
Editor/Debugger in MATLAB A-1 H Logic Operations Group Sub-Library 6-2
element-by-element division and Logical Operator block 2-18
 exponentiation in MATLAB A-21 half-wave symmetry 7-17 loglog MATLAB command A-13
element-by-element multiplication help in MATLAB A-2 Lookup Table (2-D) block 7-3
 in MATLAB A-20 hermitian in Math Function block 8-12 Lookup Table (n-D) block 7-5
Embedded MATLAB Function 16-3 Hide Name 2-3 Lookup Table block 7-2
Enable Subsystem block 11-27 Hit Crossing 4-13 Lookup Table Dynamic block 7-15
Enabled and Triggered Hit Crossing block 4-13 Lookup Tables Library 7-1
 Subsystem block 11-30 hypot in Math Function block 18-1
Engineering Applications 19-1 M
Environmental Controller block 13-9 I
eps in MATLAB A-22 magic sinewaves 7-17
execution context bars 11-33 IC (Initial Condition) block 12-6 magnitude^2 in Math Function block 8-11
execution context indicators 11-33 Idealized ADC Quantizer 19-1 Magnitude-Angle to Complex block 8-24
exit MATLAB command A-2 If Action Subsystem block 11-40 Manual Switch block 13-9
exp in Math Function block 8-11 If block 11-40 Math Function block 8-11
Exponential Moving Average 5-19 IIR digital filter 5-6 Math Operations Group Sub-Library 8-2
Extract Bits block 6-17 imag(z) MATLAB command A-23 Math Operations Library 8-1

Impulse Response Duration 5-6 MATLAB Demos A-2
F Increment Real World block 18-2 MATLAB Fcn block 16-2

Increment Stored Integer block 18-4 MATLAB’s Editor/Debugger A-1
Fcn block 16-2 increments between points Matrix Concatenation block 8-21
Feedback Control Systems 19-20 in MATLAB A-14 matrix multiplication in MATLAB A-19
Figure Window in MATLAB A-13 Index Vector block 13-7 Memory block 5-21
Finite Impulse Response (FIR) Infinite Impulse Response (IIR) Merge block 13-8
 digital filter 5-6 digital filter 5-6 mesh(x,y,z) MATLAB command A-17
first harmonic 7-16 Inherit via back propagation 2-31 meshgrid(x,y) MATLAB command A-19
First-Order Hold block 5-22 Inport block 2-2 method of undetermined coefficients B-1
First-Order Hold Reconstructor 19-2 Integer Delay block 5-2 m-file in MATLAB A-2, A-28
first-order low-pass filter 15-18 Integrator block 2-20 M-file S-Functions 11-41
Fixed-Point State-Space block 17-4 Integrator block 3-2 MinMax block 8-14
Flip Block command 1-11 Interpolation (n-D) Using MinMax Running Resettable block 8-15
Floating Scope block 14-8 PreLookup block 7-8 mod in Math Function block 12
fmax MATLAB command - invalid Interval Test block 6-2 Model & Subsystem Outputs 14-1
fmin MATLAB command A-29 Interval Test Dynamic block 6-3 Model block 11-17
For Iterator Subsystem block 36 Introduction to MATLAB A-1 Model for 3-bit Up / Down Counter 19-13

IN-2

Model for 4-bit Ring Counter 19-14 Quantizer block 4-12 S-Functions 11-41
Model for Cascaded quarter wave symmetry 7-17 Shift Arithmetic block 6-16
 Mass-Spring System 19-17 quit MATLAB command A-2 Sign block 8-9
Model for a Mass-Spring-Dashpot 19-15 Signal Attribute
Model for Mechanical R Detection Sub-Library 12-13
 Accelerometer 19-19 Signal Attribute
Model for Electric Circuit Ramp block 15-9 Manipulation Sub-Library 12-2
 in Phasor Form 19-23 Random Number block 15-14 Signal Attributes library 12-1
Model for Application of the random number generation C-1 Signal Builder block 15-6
 Superposition Principle 19-25 random number generation example C-1 Signal Conversion block 12-7
Model Info block 10-6 random numbers 1 Signal Displays 2-31
Model Verification Library 9-1 Rate Limiter block 4-7 Signal Generator block 15-4
Modeling Guides Sub-Library 10-9 Rate Limiter Dynamic block 4-8 Signal Routing Group Sub-Library 13-2
Models and Subsystems Rate Transition block 12-8 Signal Routing library 13-1
 Outputs Sub-Library 14-2 Rational Polynomials defined A-8 Signal selection 14-10
Model-Wide Utilities Library 10-1 Real World Value 2-30 Signal Specification block 12-11
moving average defined 5-19 real(z) MATLAB function A-26 Signal Storage and Access Group 13-14
Multiport Switch block 13-10 Real-Imag to Complex block 8-26 Signal Storage and Access
Mux block 2-12 Real-Time Workshop 11-43 Group Sub-Library 13-14

reciprocal in Math Function block 8-11 Signal storage reuse 14-10
N recursion B-1 Signals in the bus 13-2

recursive method B-1 Signals that are being assigned 13-3
NaN in MATLAB A-29 Recursive Realization digital filter 5-6 Simout block 2-9
natural response B-1 Refresh button 13-2 simout To Workspace block 1-12
Non-Recursive Realization digital filter 5-6 Relational Operator block 2-17 Simulation Control 14-1
Nonvirtual bus 12-8 Relational Operator block 6-2 Simulation Control Sub-Library 14-14
Nonvirtual subsystems 11-43 Relay block 4-11 Simulation drop menu 1-12

rem in Math Function block 8-12 simulation start icon 1-12
O Repeating Sequence block 15-13 Simulink Extras 3-5

Repeating Sequence Simulink icon 1-7
open-loop control systems 19-20 Interpolated block 15-21 Simulink Library Browser 1-8
Outport block 2-2 Repeating Sequence Stair block 15-21 Sine block 7-16

Reshape block 8-21 sine in Trigonometric Function block 8-16
P resolution 9-14 Sine Wave block 15-9

roots MATLAB function A-3 Sine Wave Function block 8-17
Parallel Form Realization 19-9 roots of polynomials in MATLAB A-3 sinh in Trigonometric Function block 8-16
Paste Duplicate Inport 2-3 roots(p) MATLAB function A-3 Sinks library 14-1
plant 19-20 round(n) MATLAB function A-24 slew rate 4-7
plot MATLAB command A-10 Rounding Function block 8-13 Slider Gain block 8-6
polar plot in MATLAB A-24 row vector in MATLAB A-3 Source Block Parameters window 1-32
Polar to Cartesian transformation 19-27 Running Simulink 1-7 Sources library 15-1
polar(theta,r) MATLAB function A-23 RWV (Real World Value) 2-30 Specify via dialog 2-31
poly MATLAB function A-4 Spherical to Cartesian
polyder MATLAB function A-7 S transformation 19-27
Polynomial block 8-14 sqrt in Math Function block 8-11
polynomial construction from Saturate on integer overflow 8-10 square in Math Function block 8-11
 known roots in MATLAB A-4 Saturation block 2-19 SR flip-flop 6-7
polyval MATLAB function A-6 Saturation Dynamic block 4-3 ssCallSystemWithTid 11-34
Port Data Types 2-31 Scope block 14-6 ssEnableSystemWithTid 11-34
Ports & Subsystems library 11-1 script file in MATLAB A-26 Start simulation 1-11, 2-6
pow (power) in Math Function block 8-11 script in MATLAB A-2 Stateflow 11-3
precedence in Boolean expressions 2-18 second harmonic 7-16 State-Space block 3-6
PreLookup Index Search block 7-7 seed C-1 Step block 15-12
Probe block 12-14 Selector block 13-6 Stop Simulation block 14-14
Product block 2-6 semicolons in MATLAB A-8 Stored Integer 2-30
Product of Elements block 8-8 semilogx MATLAB command A-12 string in MATLAB A-16
pseudocode 11-40 semilogy MATLAB command A-12 subplots in MATLAB A-18
pseudorandom number generation. C-1 Series Form Realization 19-7 Subsystem block 2-2, 11-2
Pulse Generator Block 2-28, 15-5 Set-Reset (SR) flip-flop 6-7 Subsystem Examples block 11-41

S-Function block 11-43, 16-7 Subsystem Semantics 11-43
Q S-Function Builder block 16-13 Subtract block 8-3

S-Function Examples 11-44, 19-27 Sum block 2-15, 8-2
quadratic factor - expressed as A-9 S-Function Examples block 16-13 Sum of Elements block 8-4

IN-3

swept-frequency Unit Delay With Preview
 cosine (chirp) signal 15-14 Resettable block 17-15
Switch block 2-14 Unit Delay With Preview Resettable
Switch Case Action External RV block 17-16
 Subsystem block 11-41 unity feedback system 19-20
Switch Case block 11-41 Update Diagram 2-3

User-Defined Functions 16-1
T

V
tangent in Trigonometric
 Function block 8-16 Variable Time Delay 3-11
tanh in Trigonometric Function block 8-16 Variable Transport Delay 3-11
Tapped Delay block 5-3 Vector / Matrix Operations
Taylor polynomial 3-3 Group Sub-Library 8-19
Taylor series 3-3 Vector Concatenate block 8-23
Terminator block 2-5 Virtual bus 12-8
text MATLAB command A-14 Virtual subsystems 11-43
thermal noise 15-17 Viscous Friction 4-14
third harmonic 7-16
Time-Based Linearization block 10-4 W
title(‘string’) MATLAB command A-12
To File block 14-2 warping 15-18
To Workspace block 14-4 Weighted Moving Average block 5-19
Transfer Fcn block 3-7 Weighted Sample Time block 12-15
Transfer Fcn Direct Weighted Sample Time Math block 8-5
 Form II block 17-2, 19-5 While Iterator Subsystem block 11-38
Transfer Fcn Direct Form II white light 15-17
 Time Varying block 17-3 white noise 15-17
Transfer Fcn First Order block 5-14 Width block 12-16
Transfer Fcn Lead or Lag block 5-15 Workspace blocks 2-9
Transfer Fcn Real Zero block 5-18 Wrap To Zero block 4-16
Transformations 19-27
Transport Delay block 3-10 X
transpose in Math Function block 8-12
Tree Pane 1-7 xlabel MATLAB command A-12
Trigger block 11-2 XY Graph block 14-12
Trigger-Based Linearization block 10-2
Triggered Subsystem block 11-25 Y
Trigonometric Function block 8-16

ylabel MATLAB command A-12
U

Z
Unary Minus block 8-11
Uniform Random Number block 15-16 Zero-Order Hold block 5-23
Unit Delay block 2-24 Zero-Order Hold Reconstructor 19-2
Unit Delay Enabled block 17-9 Zero-Pole block 3-8
Unit Delay Enabled
 External IC block 17-12
Unit Delay Enabled Resettable block 17-11
Unit Delay Enabled Resettable
 External IC block 17-13
Unit Delay External IC block 17-6
Unit Delay Resettable block 17-7
Unit Delay Resettable
 External IC block 17-8
Unit Delay With Preview
 Enabled block 17-17
Unit Delay With Preview Enabled
 Resettable block 17-19
Unit Delay With Preview Enabled
 Resettable External RV block 17-20

IN-4

